当前位置: 仪器信息网 > 行业主题 > >

陶瓷电容压力变送器

仪器信息网陶瓷电容压力变送器专题为您提供2024年最新陶瓷电容压力变送器价格报价、厂家品牌的相关信息, 包括陶瓷电容压力变送器参数、型号等,不管是国产,还是进口品牌的陶瓷电容压力变送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶瓷电容压力变送器相关的耗材配件、试剂标物,还有陶瓷电容压力变送器相关的最新资讯、资料,以及陶瓷电容压力变送器相关的解决方案。

陶瓷电容压力变送器相关的资讯

  • 盘点|压力测量仪器与技术大全
    压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。伴随经济、技术的进步,压力测试在实际的生产工作中发挥着至关重要的左右,为生产活动提供了大量有价值的参考信息,使生产和科研活动的质量和效率都得到了实质性的提升。而压力测量仪表是用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。类别原理仪器种类液柱式根据流体静力学原理,将检测压力转换成液柱高度进行测量U形管压力计、单管压力计、斜管压力汁等弹性式利用各种形式的弹性元件,在被测介质的作用下,使弹性元件受压后产生弹性形变的原理弹簧管压力计、波纹管压力计及膜片式压力计等电测式将压力转换成电信号进行传输及显示电阻式压力计、电容式压力计、压电式压力计和压磁式压力计等负荷式直接按照压力的定义制作。这类压力计误差很小,主要作为基准仪表使用常见的有活塞式压力计、浮球式压力计和钟罩式压力计仪器信息网特盘点各类常见压力检测仪器,以供读者参考。液柱式压力计 液柱式压力计是利用液柱所产生的压力与被测压力平衡,并根据液柱高度来确定被测压力大小的压力计。所用的液体叫封液——水,酒精,水银等. 液柱式压力计结构简单,灵敏度和精确度都高,常用于校正其他类型压力计,应用比较广泛。液柱式压力计按照结构形式可大致分为U形管压力计、单管压力计、斜管压力汁等。U形管压力计是根据流体静力学原理用一定高度的液柱所产生的静压力平衡被测压力的方法来测量正压、差压和负压既真空度的。由于其结构简单、坚固耐用、价格低廉、使用寿命长若无外力破坏几乎可永久使用、读取方便、数据可靠、无需外接电力既无需消耗任何能源。故在工业生产各科研过程中得到非常广泛的应用,广泛用于测量风机和鼓风机的压力、过滤器阻力、风速、炉压、孔压差、气泡水位、液体放大器或液压系统压力等,也可用于燃烧过程中的气比控制和自动阀门控制,以及医疗保健设备中的血压和呼吸压力监测。斜管压力计 在测量微小压差时,由于h值较小,用U形管或单管液柱式压力计测量时的相对误差极大,此时可休用斜管式压力计,斜管式压力计分墙挂式和台式两种。  在许多实验中往往需要同时测量多点的压力,例如压力分布实验。这时就要采用多管式压力计,多管式压力计的工作原理与斜管压力计相同,实际就是多根斜管压力计,由于多管压力计各测压管的内径不可能一样,因此,由毛细现象所造成的各测压管的初读数也不一致,测量前必须读出每根测压管的初读数,并作适当的修正。弹簧管压力计 弹簧管压力计又称波登管压力计。它是一种常见的也是应用最广泛的工程仪表,主要组成部分为一弯成圆弧形的弹簧管,管的横切面为椭圆形,作为测量元件的弹簧管一端固定起来,通过接头与被测介质相连,另一端封闭,为自由端,自由端借连杆与扇形齿轮相连,扇形齿轮又和机心齿轮咬合组成传动放大装置。当被测压的流体引入弹簧管时,弹簧管壁受压力作用而使弹簧管伸张,使自由端移动,其移动距离与压力大小成正比,或者带动指针指示出被测压力数值,适用于对铜合金不起腐蚀作用的气体和液体。波纹管压力计 波纹管压力计的波纹管由金属片折皱成手风琴风箱状,当波纹管轴向受压时,由于伸缩变形产生较大的位移,故一般可在其自由端安装传动机构,带动指针直接读数,从而测量出介质压力。波纹管压力计可广泛应用于石油、化工、矿山、机械、电力及食 品行业,直接测量不结晶体,有腐蚀性的气体、液体的压力。波纹管压力计的特点是低压区灵敏度高,常用于低压测量,但迟滞误差大,压力位移线性度差,精度一般只能达到1.5级,常在其管内安装线性度较好的螺旋弹簧。膜片式压力计 膜片压力计适用于测量无爆炸危险、不结晶、不凝固、有较高粘度,但对铜和铜合金无腐蚀作用的液体、气体或蒸汽的压力。 膜片压力计耐腐蚀性能取决于膜片材料。不锈钢耐腐膜片压力计的导压系统和外壳等均为不锈钢,具有较强的耐腐蚀性能。主要用于化学、石油、纺织工业对气体、液体微小压力的测量,尤其适用于腐蚀性强、粘稠介质(非凝固非结晶)的微小压力测量。 膜片压力计的工作原理是基于弹性元件(测量系统上的膜片)变形。在被测介质的压力作用下,迫使膜片产生相应的弹性变形——位移,借助连杆组经传动机构的传动并予放大,由固定于齿轮上的指针将被测值在度盘上指示出来。压阻式压力计 压阻式压力计是基于单晶硅的压阻效应而制成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于腔内。当压力发生变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的电压输出信号。 具体来讲,当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍 压阻式压力计是电阻式压力计的一种。采用金属电阻应变片也可制成压力计,测量原理以金属的应变效应为主。电容式压力传感器 电容式压力传感器,是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力计。特点是,输入能量低,高动态响应,自然效应小,环境适应性好。 电容式压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。压电式压力传感器 压电式压力传感器是基于压电效应的压力传感器。它的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。 这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。目前比较有效的办法是选择适合高温条件的石英晶体切割方法。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。压磁式压力传感器 压磁式压力传感器是利用铁磁材料的压磁效应制成的,即利用其将压力的变化转化成导磁体的导磁率变化并输出电信号。压磁式的优点很多,如输出功率大、信号强、结构简单、牢固可靠、抗干扰性能好、过载能力强、便于制造、经济实用,可用在给定参数的自动控制电路中,但测量精度一般,频响较低。 所谓压磁效应就是在外力作用下,铁磁材料内部发生应变,产生应力,使各磁畴之间的界限发生移动,从而使磁畴磁化强度矢量转动,因而铁磁材料的磁化强度也发生相应的变化,这种由于应力使铁磁材料磁化强度变化的现象,称为压磁效应。 若某一铁磁材料上绕有线圈,在外力的作用下,铁磁材料的导磁率发生变化,则会引起线圈的电感和阻抗变化。当铁磁材料上同时绕有激磁绕组和测量绕组时,导磁率的变化将导致绕组间耦合系数的变化,从而使输出电势发生变化。通过相应的测量电路,就可以根据输出的量值来衡量外力的作用。霍尔式压力计 霍尔式压力计是利用霍尔效应制成的压力测量仪器。当被测压力引入后,弹簧管自由端产生位移,从而带动霍尔片移动,改变了施加在霍尔片上的磁感应强度,依据霍尔效应进而转换成霍尔电势的变化,达到了压力一位移一霍尔电势的转换。 霍尔压力计应垂直安装在机械振动尽可能小的场所,且倾斜度小于3°。当介质易结晶或黏度较大时,应加装隔离器。通常情况下,以使用在测量上限值1/2左右为宜,且瞬间超负荷应不大于测量上限的二倍。由于霍尔片对温度变化比较敏感,当使用环境温度偏离仪表规定的使用温度时要考虑温度附加误差,采取恒温措施(或温度补偿措施)。此外还应保证直流稳压电源具有恒流特性,以保证电流的恒定。活塞式压力计 活塞式压力计又称为静重式压力计,是利用流体静力平衡原理及帕斯卡定律工作的的一种高准确度、高复现性和高可信度的标准压力计量仪器。 流体静力平衡是通过作用在活塞系统的力值与传压介质产生的反作用力相平衡实现的。活塞系统由活塞和缸体(活塞筒)组成,二者形成极好的动密封配合。活塞的面积(有效面积)是已知的,当已知的力值作用在活塞一端时,活塞另一端的传压介质会产生与已知力值大小相等方向相反的力与该力相平衡。由此,可以通过作用力值和活塞的有效面积计算得到系统内传压介质的压力。在实际应用中,力值通常由砝码的质量乘以使用地点的重力加速度得到。 活塞式压力计也常简称活塞压力计或压力计,也有称之为压力天平,主要用于计量室、实验室以及生产或科学实验环节作为压力基准器使用,也有将活塞式压力计直接应用于高可靠性监测环节对当地其它仪表的表决监测。浮球式压力计 浮球式压力计是以压缩空气或氮气作为压力源,以精密浮球处于工作状态时的球体下部的压力作用面积为浮球有效面积的一种气动负荷式压力计。 压缩空气或氮气通过流量调节器进入球体的下部,并通过球体和喷嘴之间的缝隙排入大气。在球体下部形成的压力将球体连同砝码向上托起。当排除气体流量等于来自调节器的流量时,系统处于平衡状态。这时,球体将浮起一定高度,球体下部的压力作用面积(即浮球的有效面积)也就一定。由于球体下部的压力通过压力稳定器后作为输出压力,因此输出压力将与砝码负荷成比例。钟罩式压力计 钟罩式压力计的作用原理,是直接从压强定义出发,用一台天平对压力在液封受力器上 的垂直作用力F进行测定。这个受力器是一只几何形状有一定要求的钟罩,根据对钟罩几何 尺寸的精密测量和理论分析,求出其受力有效面积S后,待测压强p可由公示p=F/S求出。 因为钟罩式压力计有独特的结构原理,并具有、足够高的精度,这就可以通过与其他基准压力仪器比对,发现未知的系统误差。同时,钟罩式压力计在测量压强差时,其单端静压强可以根据需要调整,直至单端压强为零,即可以测量绝对压强。另外,该仪器还具有操作简单、受外界干扰小等优点。在高新科技快速发展的现今,静态的压力测量方法已获得了较大的优化,成为了各领域中常用的测量体系,并逐渐朝着动态的压力校准趋势发展。由此,相关技术人员针对压力计量检测方法的进步展开了深入的探究。简而言之,压力计量检测的未来趋势表现在测试精度等级、测试响应速率、测试可靠性与智能化水平这几个方面的提高。比如,在活塞式仪表测试中融进了智能加码与操作部位激光监测方法,如此不仅提升了检测效率,并且提高了测试的精准性,同时为绝压式仪表与活塞式仪表智能测试体系的进步打下了良好的基础。针对数字式仪表及压力变送器和压力传感器等设备的量传任务有了精良的全智能压力控制其能够用作量传标准,利用1台控制器配置若干个压力模块能够操作许多量程范围,随意确定测试点的高精度检测任务,而且能够选用气介质来工作,如此防止了采用液体介质在检测压力时引起的诸多问题,大幅度提升了数字式仪器的测试效率与智能化程度。
  • 浙江省计量科学研究院预算628万元购买压力仪表气候环境影响自动检测装置等多台仪器
    3月30日,浙江省计量科学研究院公开招标,购买压力仪表气候环境影响自动检测装置、PCR荧光检校系统等多台/套设备,预算628万元。  项目编号:ZJ-2140597  项目名称:浙江省计量科学研究院2021年第一批仪器设备  采购需求:  标项一  标项名称: 压力仪表气候环境影响自动检测装置  数量: 1  预算金额(元): 600000  简要规格描述或项目基本概况介绍、用途:压力仪表气候环境影响自动检测装置,详见采购文件第三部分。  标项二  标项名称: 压力变送器长期稳定性自动检测装置  数量: 1  预算金额(元): 550000  简要规格描述或项目基本概况介绍、用途:压力变送器长期稳定性自动检测装置,详见采购文件第三部分。  标项三  标项名称: PCR荧光检校系统  数量: 1  预算金额(元): 450000  简要规格描述或项目基本概况介绍、用途:PCR荧光检校系统,详见采购文件第三部分。  标项四  标项名称: 正压法活塞式气体流量标准装置等  数量: 1  预算金额(元): 1500000  简要规格描述或项目基本概况介绍、用途:正压法活塞式气体流量标准装置1套、恒流量耐久性试验装置1套、流量计耐久试验装置1套,详见采购文件第三部分。  标项五  标项名称: DN32-DN50质量法水表试验装置等  数量: 1  预算金额(元): 1800000  简要规格描述或项目基本概况介绍、用途:DN32-DN50质量法水表试验装置1套,DN15-DN25水表综合性能试验装置1套,DN15-DN25水表耐久试验装置1套,详见采购文件第三部分。  标项六  标项名称: 转速标准装置、限速器标准装置  数量: 1  预算金额(元): 680000  简要规格描述或项目基本概况介绍、用途:转速标准装置、限速器标准装置1套,详见采购文件第三部分。  标项七  标项名称: 手持式三维扫描仪  数量: 1  预算金额(元): 250000  简要规格描述或项目基本概况介绍、用途:手持式三维扫描仪1套,详见采购文件第三部分。  标项八  标项名称: 100N静重式力标准装置和10kN静重式力标准装置  数量: 1  预算金额(元): 450000  简要规格描述或项目基本概况介绍、用途:100N静重式力标准装置1套,10kN静重式力标准装置1套,详见采购文件第三部分。  合同履约期限:标项 1、2、3、4、5、6、7、8,按采购文件要求。  本项目(否)接受联合体投标。  开标时间:2021年04月20日 09:00(北京时间)2021年第一批仪器设备公开招标文件(电子招投标方式)(定稿).pdf
  • 建卫陶瓷行业通过七项新国标 下半年正式推行
    2011年下半年,建筑卫生陶瓷行业将有7项新国家标准被正式推行。这7项新国家标准已被全国建筑卫生陶瓷标准化委员会专家组审议通过。  据悉,2011年将要实施的建筑卫生陶瓷新国标包括:《建筑卫生陶瓷分类及术语》国家标准、《节水型卫生洁具》国家标准、《便器用压力冲水装置》国家标准、《便器用重力式冲洗装置》国家标准、《防静电陶瓷砖》国家标准、《陶瓷地砖表面防滑性试验方法》国家标准和《建筑卫生陶瓷用原料黏土》国家标准。  其中,第1项国家标准是对《陶瓷砖和卫生陶瓷分类及术语》的修订,其他6项都是新制定的国家标准,涉及建筑陶瓷、卫生洁具、建筑卫生陶瓷用原料等。  有关负责人表示,这些标准都是最新制定的,拥有行业内的最高发言权,对企业和行业的发展影响较大。业内专家分析表示,标准的制定肯定会综合考虑大多数企业的情况,大多数企业是可以达到标准的。这7项国家标准将在修改、完善后,于2011年下半年正式执行。届时,这些新的国家标准可能被强制性推行。
  • 建筑卫生陶瓷新国标将实施
    有消息称,建筑卫生陶瓷行业7项新国家标准即将于2011年下半年正式推行。这7项新国家标准是刚刚落幕的第三届全国建筑卫生陶瓷标准化技术委员会首次年会暨国家标准审议会的全国建筑卫生陶瓷标准化委员会专家组最新审议通过的。  即将实行的标准包括:  《建筑卫生陶瓷分类及术语》国家标准  《节水型卫生洁具》国家标准  《便器用压力冲水装置》国家标准  《便器用重力式冲洗装置》国家标准  《防静电陶瓷砖》国家标准  《陶瓷地砖表面防滑性试验方法》  《建筑卫生陶瓷用原料粘土》国家标准。  据悉,其中第1项国家标准是对gb/t9195-1999《陶瓷砖和卫生陶瓷分类及术语》的修订其他6项都是新制定的国家标准,涉及建筑陶瓷、卫生洁具、建筑卫生陶瓷用原料等。  年会宣布了国家标准化管理委员会《关于全国建筑卫生陶瓷标准化委员会(sac/tc249)换届的批复》,第三届全国建筑卫生陶瓷标准化技术委员会由87名委员组成,李转任主任委员,尹虹、武庆涛、缪斌、张旗康、宋子春任副主任委员,刘幼红任委员文章出处是华夏陶瓷网兼秘书长,王博、张锦华任委员兼副秘书长。  第三届全国建筑卫生陶瓷标准化技术委员会副秘书长、潮州市陶瓷行业协会秘书长张锦华表示这些标准都是最新制定,拥有行业内的最高发言权,对企业和行业的发展影响较大。业内专家分析表示,标准的制定肯定会综合考虑大多数企业的情况,大多数企业是可以达到标准的。  据悉,新的国家标准将再次修订,并将于2011年下半年正式执行,届时,可能这些新的国家标准也将强制性推行。  记者采访了部分企业,业内人士普遍认为这些标准实施后会在一定程度上提升行业的水平,淘汰部分落后的小企业,但如果不强制实行的话,效果并不会明显。也有业内人士表示在新标准执行后新的器型可能会依照国家标准,但以前的器型还是不会作大的改动,因为部分改变,有可能会影响销售。  长葛市科技局副局长、长葛市卫生陶瓷协会秘书长张建民表示这次制定的新国标要求更严格高效,对于长葛卫生陶瓷提出了更高的要求,但长葛的许多企业已经达到了标准要求,他们也肯定会做到,将很好地执行这些新标准。
  • “100家实验室”专题:访清华大学新型陶瓷与精细工艺国家重点实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第四十六站:清华大学新型陶瓷与精细工艺国家重点实验室(以下简称:陶瓷实验室)。  清华大学新型陶瓷与精细工艺国家重点实验室是国家教育部系统唯一从事高性能陶瓷材料领域科学研究与人才培养工作的国家重点实验室。在清华大学无机非金属材料重点学科的基础上,1988年陶瓷实验室被列为世行贷款重点学科发展项目,1991年正式批准建设,1995年11月通过国家验收对外开放。清华大学新型陶瓷与精细工艺国家重点实验室  陶瓷实验室主任潘伟教授介绍到:“陶瓷实验室位于清华大学逸夫技术科学馆二段内。实验室现有固定科研人员42人,其中中国工程院院士2名,中国科学院院士1名,博士生导师25人,杰出青年基金获得者7人,长江学者4人,新世纪优秀人才支持计划获得者2人。” 实验室还分别于2005年和2006年获得国家教育部创新团队和国家自然科学基金委创新研究群体科学基金支持。  “陶瓷实验室以高温结构陶瓷、信息功能陶瓷、陶瓷基复合材料、能源环境材和生物陶瓷等作为主要研究方向,属于应用基础研究类型的国家重点实验室,主要瞄准陶瓷新材料领域的科学发展前沿和国民经济、社会发展中的重大需求,进行集中研究。”  目前,陶瓷实验室主要承担国家973、863、国家自然科学基金等国家部委重大、重点项目,以及国际合作和横向项目等。特别值得一提的是,陶瓷实验室在铁电压电陶瓷材料、结构陶瓷材料的增强增韧机理、陶瓷胶态成型技术、陶瓷基复合材料结构设计等基础研究方面,取得了国际高水平的科研成果。  陶瓷实验室占地约6000m2,有各种功能齐全、水平先进的大型工艺装备和实验仪器86台(套),总价值10000万余元,如高分辨透射电子显微镜、扫描电子显微镜、原子力显微镜、激光共聚焦显微镜、高温显微镜、X射线衍射仪、DSC/TG分析仪、激光共聚焦拉曼光谱分析仪、频谱和介温谱自动测试系统、电滞回线测试装置,高温力学测试机、颗粒分布自动分析仪、高温综合热分析仪、高温导热系数测试仪、高温力学性能测试系统、放电等离子烧结炉、气压烧结炉和多功能高温烧结炉等。安捷伦B1505A功率器件分析仪/曲线追踪仪 (对材料进行特性分析,使其达到效能与安全需求) HORIBA JY公司LabRAM HR型号高性能拉曼光谱仪(通过拉曼光谱对材料进行定性、定量分析以及结构分析)日本岛津S7000型X射线衍射仪(主要功能:物相分析/1200℃以下的相变分析/残余应力分析/纤维取向分析/薄膜样品分析)日本岛津SSX-550扫描电子显微镜(SEM)(主要用于进行各类物体的显微形貌分析、微区成份分析及显微组织结构分析) 德国耐驰DSC/TG分析仪(主要用于真空条件下的差热实验和热失重实验,测试陶瓷材料的收缩曲线及膨胀系数)德国FRITSCH A22激光粒度仪 (适用于金属氧化物、陶瓷、粘土、催化剂以及其他无机材料颗粒的粒度分布特性测试。) 美国布鲁克海文ZETAPLUS0 Zeta电位仪(适用于Zeta电位和粒度的测试,用来表征胶体体系稳定性和颗粒表面带电性能的重要参数。)  此外,陶瓷实验室还设精细陶瓷分室(在清华大学核研院),占地2500m2,现有在编人员20人。该分室两次被评为一级实验室,也是北京高技术实验室。在开展生物陶瓷、纳米陶瓷、超细粉体、精细陶瓷及无损评价上取得出了明显成果,其中获得部级一、二、三等奖九项。建成了三个中试中心,包括超细粉体、精细陶瓷部件及生物陶瓷制品研究中心,还与美国企业建立了生物功能材料中心。  通过了解,陶瓷实验室在进行基础和应用基础研究的同时,也十分注重科技成果的转化以及产业化工作。  (1)在新型陶瓷的制备技术,信息功能陶瓷元器件等领域成功进行了应用转化。利用陶瓷胶态成型新工艺成果建立了陶瓷胶态(注射)成型中试基地,研制成功具有自主知识产权的工艺装备,开发了造纸机全陶瓷脱水元件、高功率金红石陶瓷电容器、超大功率新型复合陶瓷臭氧发生器薄壁管、高性能陶瓷系列微珠等产品。在河北邯郸高新技术产业开发区建立陶瓷胶态注射成型成果转化和规模化生产基地,占地166亩,现已建成近万平米的生产车间和年产5000吨陶瓷微珠生产线,预计实现年产值2亿元。  (2)在功能陶瓷领域进展显著,所研制的高性能铁电压电陶瓷材料,其成果已在广东风华公司和深圳宇阳公司等片式元件产业化基地实现了成果转化,取得了显著经济与社会效益。另外,高性能低烧多层陶瓷压电变压器及背光电源已在西安康鸿公司实现产业化,这一具有自主知识产权的创新性成果在国家有关部委及国家863计划的支持下,在西安建立了具有国际先进水平的片式压电陶瓷变压器和多层压电陶瓷驱动器的研发与产业化基地,对推动西部经济建设发挥了重要作用。陶瓷实验室依托单位-清华大学材料系所获奖项  附录1:清华大学新型陶瓷与精细工艺国家重点实验室  http://www.mse.tsinghua.edu.cn/ceramiclab/index.htm  附录2:潘伟教授简介  潘伟,清华大学教授,博士生导师。1987年在日本名古屋大学获工学硕士学位,1990年在日本名古屋大学获工学博士学位。1990~1991年在日本神户制钢公司钢铁技术研究所工作。1991年回国工作,至今在清华大学材料科学与工程系目前在新型陶瓷与精细工艺国家重点实验室工作。先后担任材料科学与工程系党委副书记,副系主任,系主任,系教学委员会主任。现任清华大学材料科学与工程系党委书记,新型陶瓷与精细工艺国家重点实验室主任,清华大学教代会提案委员会主任委员,清华大学学位委员会委员,材料科学与工程学位分委员会主席。  兼任中国硅酸盐学会常务理事,中国硅酸盐学会特种陶瓷分会常务副理事长兼秘书长,中国复合材料学会理事,《硅酸盐通报》、《复合材料学报》、《无机材料学报》、《过程工程学报》、“Journal of The Ceramic Society of Japan”、“Composites Science and Technology”等杂志编委。  近期主要研究:高温陶瓷热障涂层材料、透明陶瓷材料、可加工陶瓷复合材料、有机无机功能复合材料、陶瓷微波烧结、梯度功能陶瓷材料,陶瓷生物仿生,纳米复合陶瓷材料,纳米功能纤维及敏感器件等研究。并从事《材料化学》和《材料合成热力学》的教学工作。先后负责多项国家自然科学基金以及国家“863”课题研究。  获得清华大学学术新人奖励,北京市科学技术二等奖,国务院政府特殊津贴,获得授权发明专利15项,发表论文350余篇,其中SCI收录论文220篇。  附录3:新型陶瓷与精细工艺国家重点实验室所获奖项荣誉  1978年“高压钠灯”全国科学大会奖   1987年“陶瓷分离环”等获两项国家科技进步二等奖,清华大学无机非金属材料学科被评为国家重点学科   1988年“复合氮化硅陶瓷刀具”国家技术发明二等奖,重点实验室立项   1995年 国家重点实验室通过正式验收开放   1996年“高性能铁电压电陶瓷材料组成及低烧技术”国家技术发明二等奖   1998年 国家教委所属重点实验室评估中被评为优秀   2002年 以实验室为基础的“材料学”评为重点学科, 全国第一   2004年“陶瓷胶态成型新工艺”国家技术发明二等奖   2005年“高性能低温烧结软磁铁氧体”国家技术发明二等奖   2005年“非均质材料显微结构与性能关联”国家自然科学二等奖   2007年 以实验室为基础的重点学科“材料学”评估全国第一。
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3 -5%MgO 的粉末混合物作为原料进行烧结实验。结果表明,碳的加入使 Si3N4 陶瓷的热导率从 102 W/(mK)提高到 128 W/(mK),提高了 25.5%。在第一步烧结过程中,碳热还原过程显著降低了氧含量,增加了晶间二次相的N/O比,在半成品 Si3N4样品中,有Y2Si4O7N2第二相出现,β-Si3N4 含量较高,棒状 β-Si3N4 晶粒较大。在第二步烧结过程中,第二相Y2Si4O7N2与碳反应生成了 YbSi3N5,极大降低了晶格氧含量,得到了较粗的棒状晶粒和更紧密的 Si3N4 -Si3N4 界面,使得 Si3N4 陶瓷的热导率有了显著的提升,所制备的Si3N4 的 SEM 图如图 5 所示。图 5 最后的Si3N4陶瓷样品抛光表面和等离子刻蚀表面的 SEM 显微照片:(a)SN 和(b)SNC 的低倍图像 (c)SN 和(d)SNC 的高倍图像在制备高导热氮化硅陶瓷中加入碳是降低晶格氧含量的有效方法,该方法对原料含氧量和烧结助剂的要求不高,降低了高导热氮化硅陶瓷的制备成本,随着技术的不断改进,有望在工业化生产中得到应用。02晶型转变、晶轴取向的影响2.1 晶型转变对热导率的影响及改进方法β-Si3N4因为结构上更加对称,其热导率要高于 α-Si3N4。在高温烧结氮化硅陶瓷的过程中,原料低温相 α-Si3N4会经过溶解-沉淀机制转变为高温相 β-Si3N4,但是在烧结过程中晶型转变并不完全,未转变的 α-Si3N4会极大地影响氮化硅陶瓷的热导率。为了促进晶型转变,得到更高的 β/(α + β)相比,目前比较常用的方法是:(1)在烧结制度上进行改变,如提高烧结温度和延长烧结时间及后续的热处理等 (2)在α-Si3N4中加入适量的 β-Si3N4棒状晶粒作为晶种。图6为加入晶种后氮化硅陶瓷的双模式组织分布。图 6 加入晶种后 β-Si3N4陶瓷的双模式组织分布Zhou 等探究了不同的烧结时间对氮化硅陶瓷热导率、弯曲强度、断裂韧性的影响。由表 3 可见,随着烧结时间的延长,氮化硅陶瓷的热导率逐渐升高。这主要是由于随着溶解沉淀过程的进行,晶粒不断长大,β-Si3N4含量不断增加,晶格氧含量降低。童文欣等研究了烧结温度对 Si3N4热导率的影响,发现经 1600℃烧结后的样品既含有 α 相又含有 β 相。在烧结温度升至 1700℃及 1800℃后,试样中只存在 β 相。随着烧结温度的升高,样品热导率呈现增加的趋势,可能是晶粒尺寸增大、液相含量降低以及液相在多晶界边缘处形成独立的“玻璃囊”现象所致。表 3 不同烧结时间下Si3N4的性能比较Zhu 等发现在烧结过程中加入 β-Si3N4作为晶种,能得到致密化程度和热导率更高的氮化硅陶瓷。为了进一步促进晶型转变,得到大尺寸的氮化硅晶粒,可以采用 β-Si3N4代替α-Si3N4为起始粉末制备高导热氮化硅陶瓷。梁振华等在原料中加入了 1%(质量分数)的棒状 β-Si3N4颗粒作为晶种,氮化硅陶瓷的热导率达到了 158 W/(mK)。刘幸丽等探究了不同配比的 β-Si3N4/α-Si3N4对氮化硅陶瓷热导率和力学性能的影响,结果表明,当原料中全是 β-Si3N4时氮化硅陶瓷有最高的热导率,达到了108 W/(mK),但是抗弯强度也降低。综合以上研究发现,适当提高烧结温度和延长烧结时间都能在一定程度上促进晶型转变 加入适量的 β-Si3N4晶种用来促进晶型转变可以在较短的时间内提高 β/(α+β)相比,使晶粒生长更加充分,得到高热导率的氮化硅陶瓷。2.2 晶轴取向对热导率的影响及改进方法由于 c 轴的生长速率大于 a 轴,各向异性生长导致了 β-Si3N4呈棒状,也导致了其物理性质的各向异性。前面叙述了氮化硅晶粒热导率具有各向异性的特征,β-Si3N4单晶体沿a 轴和c 轴的理论热导率分别为170 W/(mK)、450 W/(mK),因此在成型工艺中采取合适的方法可以实现氮化硅晶粒的定向排列,促进晶粒定向生长。目前能使晶粒定向生长的成型方法有流延成型、热压成型、注浆成型等。在外加强磁场的作用下,氮化硅晶体沿各晶轴具有比较明显的生长差异。这主要是由于氮化硅晶体沿各晶轴方向的磁化率差异,在外加强磁场的作用下,氮化硅晶体会受到力矩的作用,通过旋转一定的角度以便具有最小的磁化能,氮化硅晶粒旋转驱动能量表达式如下:Δχ = χc -χa,b (2) (3)式中:V 是粒子的体积,B 是外加磁场,μ0 是真空中的磁导率,χc 和 χa,b 分别表示氮化硅晶体沿 c 轴和 a,b 轴的磁化率,|Δχ |是晶体沿各晶轴方向的磁化率差值的绝对值。而粒子的热运动能量 U 的表达式为:U=3nN0kB (4)式中:n 是物质粒子的摩尔数,N0 是阿伏伽德罗常数,kB 是玻尔兹曼常数,T 是温度。当 ΔE 大于 U 时,粒子可以被磁场旋转。由图 7 可知,若 c 轴具有较高的磁化率,棒状粒子将与磁场平行排列 若 c 轴的磁化率较低,棒状粒子将垂直于磁场排列。图 7 磁场对晶格中六边形棒状粒子排列的影响示意图:(a)χc > χa,b (b) χc<χa,b 在弱磁性陶瓷成型过程中引入强磁场,可以制备出具有取向微结构的样品。由于氮化硅晶粒沿各轴的磁化率 χc<χa,b可以在旋转的水平磁场中通过注浆成型等技术制备具有 c 轴取向的氮化硅陶瓷,制备原理如图 8 所示。图 8 磁场中制备具有晶轴取向的陶瓷杨治刚等用凝胶注模成型取代了传统的注浆成型,在6T 纵向磁场中制备出具有沿 a 轴或 b 轴取向的织构化氮化硅陶瓷,并研究了烧结温度和保温时间对氮化硅陶瓷织构化的影响规律。结果表明,升高烧结温度促进了氮化硅陶瓷织构化,而延长烧结时间对织构化几乎没有影响。Liang 等在使用热压烧结制备氮化硅陶瓷时,发现氮化硅晶粒{0001}有沿 z 轴生长的迹象,有较强的取向性。这有利于制备高导热的氮化硅陶瓷。Zhu 等在 12T 的水平磁场中进行注浆成型,得到热导率为 170 W/(mK)的高导热氮化硅陶瓷。研究发现,在注浆成型的过程中模具以 5 r/min 的转速旋转形成一个旋转磁场,从而导致 β-Si3N4在凝结过程中具有与磁场垂直的 c 轴取向,c 轴取向系数为0.98。图9 为磁场和模具旋转对棒状氮化硅晶粒取向的影响。图 9 磁场和模具旋转对棒状氮化硅晶粒取向的影响现阶段,在大规模生产中很难实现氮化硅晶粒的取向生长,目前文献报道的定向生长的氮化硅陶瓷仅限于实验室阶段,需要通过合适的方法,在工业化生产中实现氮化硅晶粒的取向生长,这对制备高导热氮化硅陶瓷是极具应用前景的。03陶瓷基片制备工艺3.1 成型工艺由于电力电子器件的小型化,对氮化硅陶瓷基板材料的尺寸和厚度有了更加精细的要求,商业用途的氮化硅陶瓷基板的厚度范围是 0.3~0.6 mm。为了实现大规模生产氮化硅陶瓷基板材料,选择一种合适的成型方法显得尤为重要。目前制备氮化硅陶瓷的成型方法很多,如流延成型、热压成型、注浆成型、冷等静压成型等。但是为了同时满足小型化、精细化的尺寸要求和实现氮化硅晶粒的定向生长,流延成型无疑是实现这一目标的关键。图 10 是流延成型工艺的流程图,下面对流延成型制备氮化硅陶瓷基板材料进行叙述。图 10 流延成型工艺流程图流延成型的浆料是决定素坯性能最关键的因素,浆料包括粉体、溶剂、分散剂、粘结剂、增塑剂和其他添加剂,每一种成分对浆料的性能都有重要影响,并且浆料中的各个组分也会互相产生影响。虽然流延成型相比于其他成型工艺有着独特的优势,但是在实际操作中由于应力的释放机制不同,容易使流延片干燥时出现弯曲、开裂、起皱、厚薄不均匀等现象。为了制备出均匀稳定的流延浆料和干燥后光滑平整的流延片,在保持配方不变的情况下,需要注意浆料的润湿性、稳定性和坯片的厚度等因素。通过流延成型制备氮化硅流延片时,Otsuka 等和Chou 等分别提出了理论液体的流动模型,流延成型过程中流延片厚度 D 与各流延参数的关系如式(5)所示:(5)式中:α 表示湿坯干燥时厚度的收缩系数,浆料的粘度和均匀性对其影响较大 h 和 L 分别表示刮刀刀刃间隙的高度和长度 η 表示浆料的粘度 ΔF 表示料斗内压力,一般由浆料高度决定 v0 表示流延装置和支撑载体的相对速度。为了制备超薄的陶瓷基片,需要在保持浆料的粘度适中和均匀性良好的情况下,适当地调整刮刀间隙和保持浆料的液面高度不变。在有机流延成型中,一般使用共沸混合物作为溶剂,溶解效果更佳,这样就需要保证溶剂对粉体颗粒有很好的润湿性,这与溶剂的表面张力有关,可以用式(6)解释: (6)式中:θ 为润湿角 γsv、γsl、γlv 分别表示固-气、固-液、液-气的表面张力。由式(6)可知,γlv 越小,则 θ 越小,表明润湿性越好。润湿作用如图 11 所示。图 11 润湿作用示意图为了保证流延浆料均匀稳定,需要加入分散剂,其主要作用是使粉体颗粒表面易于润湿,降低粉体颗粒表面势能使之更易分散,并且使颗粒之间的势垒升高,从而使浆料稳定均匀。浆料的稳定性可以通过 DLVO 理论来描述:UT=UA+UR (7)式中:UA 为范德华引力势能 UR 为斥力势能。当 UR大于 UA时,浆料稳定。为了保证浆料的均匀稳定,分散剂的用量也要把控。若用量过多,则产生的粒子很容易粘结,不利于获得珠状颗粒 若用量过少,容易被分散成小液滴,单体不稳定,随着反应的进行,分散的液滴也可能凝结成块。Duan 等先采用流延成型工艺制备了微观结构均匀、相对密度达 56.08%的流延片,然后经过气压烧结得到了相对密度达 99%、热导率为 58 W/(mK)的氮化硅陶瓷。Zhang等采用流延成型工艺和气压烧结工艺制备了热导率为 81W/(mK)的致密氮化硅陶瓷。研究发现分散剂(PE)、粘结剂(PVB)、增塑剂/粘结剂的配比和固载量分别为 1.8%(质量分数)、8%(质量分数)、1.2、33%(体积分数)时能得到最高的热导率。张景贤等先通过流延成型制备 Si 的流延片,然后通过脱脂、氮化、烧结制备出热导率为 76 W/(mK)的氮化硅陶瓷。目前关于流延成型制备的氮化硅陶瓷热导率还不高,远低于文献报道的水平(>150 W/(mK)),通过改善工艺、优化各组分的配比,制备出均匀稳定、粘度适中、润湿性良好的浆料,是大规模制备高导热氮化硅陶瓷的关键。3.2 烧结工艺目前,制备氮化硅陶瓷的主要烧结方法有气压烧结、反应烧结重烧结、放电等离子烧结、热压烧结等,每种方法各有优劣,下面对一些常用的烧结方法进行简要概述。气压烧结(GPS)能在氮气的氛围中通过加压、加热使氮化硅迅速致密,促进 α→β 晶型的快速转变,有助于提高氮化硅陶瓷的热导率。Li 等以 α-Si3N4为原料,通过两步气压烧结法,制备了高导热的氮化硅陶瓷。先将混合粉末在1 MPa的氮气压力下加热到 1500℃ 烧结 8h,然后在 1900℃下烧结 12h,通过两步气压烧结的反应,极大促进了 α→β-Si3N4的晶型转变,氮化硅陶瓷的热导率达到了128 W/(mK)。Kim 等采用气压烧结的方法在 0.9 MPa 的氮气氛围中加热到 1900 ℃,保温 6h,最后得到的氮化硅陶瓷的热导率为 78.8 W/(mK)。Li 等用 Y2Si4N6C-MgO 为烧结助剂,采用气压烧结方法制备了热导率为 120 W/(mK)的氮化硅陶瓷。放电等离子烧结(SPS)工艺是一种实现压力场、温度场、电场共同作用的试样烧结方式,具有升温速率快、烧结温度低、烧结时间短等优点。Yang 等以 MgF2-Y2O3为烧结添加剂,采用 SPS 工艺制备了热导率为 76 W/(mK)、抗弯强度为 857.6 MPa、硬度为 14.9 GPa、断裂韧性为 7.7 MPam 1/2的Si3N4陶瓷。实验表明,由于外加电场的作用,颗粒之间容易滑动,有利于颗粒间的重排,从而得到大晶粒颗粒,使Si3N4在较低温度下达到较高的致密化。Hu 等通过 SPS工艺,以 MgF2-Y2O3和 MgO-Y2O3为烧结添加剂,制备了热导率为 82.5 W/(mK)、弯曲强度为(911±47) MPa、断裂韧性为(8.47±0.31) MPam1/2的Si3N4陶瓷材料。SPS 工艺还可以解决上文提到的以 β-Si3N4为原料制备氮化硅陶瓷难烧结致密的问题。彭萌萌等采用 SPS 工艺在 1600℃ 下烧结5 min,然后在 1900℃ 下保温 3h,获得了致密的氮化硅陶瓷,其热导率高达 105 W/(mK)。Liu 等以不同配比的β-Si3N4 /α-Si3N4粉末为起始原料,采用 SPS 和热处理工艺成功制得致密度高达 99%的高导热氮化硅陶瓷。烧结反应重烧结(SRBSN)由于是以 Si 粉为原料经过氮化得到多孔的 Si3N4 烧结体,进而再烧结形成致密的氮化硅陶瓷,比一般以商用 α-Si3N4为原料制备的氮化硅陶瓷具有更低的氧含量而受到研究者的青睐。Zhou 等采用 SRBSN工艺制备了热导率高达 177 W/(mK)的 Si3N4 陶瓷。结果表明,通过延长烧结时间,进一步降低晶格氧含量,可以获得更高的导热系数。此外,他们还研究了高导热性 Si3N4陶瓷的断裂行为,发现其具有较高的断裂韧性(11.2 MPam1/2 )。Zhou 等采用 SRBSN 工艺,以Y2O3和 MgO 为添加剂制备了Si3N4陶瓷。研究发现Y2O3 -MgO 添加剂的含量和烧结时间都会影响Si3N4的热导率。当添加剂的含量为 2%Y2O3 -4%MgO 时,在烧结 24 h 后,得到热导率为 156 W/(mK)的Si3N4陶瓷,相比于烧结时间 6h 得到的Si3N4陶瓷(128 W/(mK)),热导率提升了21%。Li 等采用 SRBSN 工艺,以Y2O3-MgO 为烧结助剂制备了热导率高达 121 W/(mK)的 Si3N4 陶瓷。采用其他烧结方式也能制备出高导热的氮化硅陶瓷。Jia 等采用超高压烧结制备出热导率为 64.6 W/(mK)的氮化硅陶瓷。Duan 等以 10%的 TiO2 -MgO 为烧结添加剂,在1780℃下低温无压烧结,制备了热导率为60 W/(mK)的氮化硅陶瓷。Lee 等采用热压烧结工艺制备出热导率为 101.5 W/(mK)的氮化硅陶瓷。综合上述研究可发现,虽然烧结方式不一样,但都可以制备出性能优异的氮化硅陶瓷。在实现氮化硅陶瓷大规模生产时,需要考虑成本、操作难易程度和生产周期等因素,因此找到一种快速、简便、低成本的烧结工艺是关键。04结语Si3N4 陶瓷由于其潜在的高导热性能和优异的力学性能,在大功率半导体器件领域越来越受欢迎,有望成为电子器件首选的陶瓷基板材料。但是有诸多限制其热导率的因素,如晶格缺陷、杂质元素、晶格氧含量、晶粒尺寸等,导致氮化硅陶瓷的实际热导率并不高。目前,就如何提高氮化硅的实际热导率从而实现大规模生产还存在一些待解决的问题:(1)原料粉体的颗粒尺寸对制备性能优异的氮化硅陶瓷有着重要影响,但是在减小粉末粒度的同时也会使颗粒表面发生氧化,引入额外的氧杂质,因此需要在减小粒度的同时避免氧杂质的渗入。(2)目前,烧结助剂的非氧化、多功能化成为研究的热点,选用合适的烧结助剂不仅能促进烧结,减少晶界相,还能降低晶格氧含量,促进晶型转变。因此,高效的、多功能的烧结助剂也是重要的研究方向。(3)为了降低晶格氧含量,在制备过程中加入具有还原性的碳能起到不错的效果。故在氮化或烧结中制造还原性的气氛或添加具有还原性的物质是将来研究的热点。(4)实现氮化硅基板的大规模生产,流延成型是一个不错的选择。可是由于有机物的影响,氮化硅基体的致密度不高,而且流延成型的氮化硅晶粒定向生长不明显,如何实现流延片中的氮化硅颗粒定向生长和提升其致密度必将成为研究热点。
  • 中石油通用仪器仪表供应商名单公布
    近日,经过中石油集团严格的考证评估,中石油通用仪器仪表供应商名单公布。序号供应商名称物料编码物资品名1黄山良业智能控制股份有限公司38100201直行程电动执行机构38100205角行程电动执行机构38100208多转电动执行机构2伯纳德控制设备(北京)有限公司38100201直行程电动执行机构38100205角行程电动执行机构38100208多转电动执行机构3常州新能自控设备有限公司38100201直行程电动执行机构38100205角行程电动执行机构38100208多转电动执行机构4上海华伍行力流体控制有限公司38100201直行程电动执行机构38100205角行程电动执行机构38100208多转电动执行机构5多蒙(上海)控制技术有限公司38100201直行程电动执行机构38100205角行程电动执行机构38100208多转电动执行机构6北京远东仪表有限公司38041401雷达液位计7江苏红光仪表厂有限公司38040206翻板磁浮子液位计8江苏新晖测控科技有限公司38040206翻板磁浮子液位计38040301浮筒液位计9重庆市伟岸测器制造股份有限公司38080201电动压力变送器38080202电动绝对压力变送器38080203电动单法兰压力变送器38080204电动差压变送器38080212高压力变送器38080213高静压变送器38080225远传毛细管法兰变送器38080231远传压力变送器10上海洛丁森工业自动化设备有限公司38080201电动压力变送器38080202电动绝对压力变送器38080203电动单法兰压力变送器38080204电动差压变送器38080212高压力变送器38080213高静压变送器38080225远传毛细管法兰变送器38080231远传压力变送器11浙江奥新仪表有限公司38080203电动单法兰压力变送器38080204电动差压变送器38080213高静压变送器38080225远传毛细管法兰变送器38080231远传压力变送器12艾坦姆流体控制技术(北京)有限公司38100410气动薄膜笼式套调节阀38100444气动薄膜直通单座调节阀38100429气动快速切断蝶阀13西派集团有限公司38100410气动薄膜笼式套调节阀38100444气动薄膜直通单座调节阀38100448气动O型切断球阀14浙江永盛科技股份有限公司38100410气动薄膜笼式套调节阀38100444气动薄膜直通单座调节阀38100448气动O型切断球阀15无锡斯考尔自动控制设备有限公司38100410气动薄膜笼式套调节阀38100444气动薄膜直通单座调节阀16迈思可工业技术(上海)有限公司38100410气动薄膜笼式套调节阀38100444气动薄膜直通单座调节阀17成都成高阀门有限公司38100448气动O型切断球阀18苏州安特威阀门有限公司38100448气动O型切断球阀19自贡自高阀门有限公司38100448气动O型切断球阀20浙江新蓝科技有限公司38031501质量流量计
  • 关注有礼:康塔仪器粉末冶金陶瓷展与您相约
    2016年4月27-29日,美国康塔仪器公司将携其全自动比表面积及孔径分析仪NOVAtouch和图像法粒度粒形分析仪、真密度仪等产品亮相“第九届上海国际粉末冶金、硬质合金与先进陶瓷展览会”。欢迎大家莅临我们展位,共同探讨粉末冶金、陶瓷粉末表面改性处理以及多孔陶瓷微观结构表征分析等应用。展位号:A215,凡关注“康塔仪器”微信公众号的观众,可现场领取精美礼品一份。 表征多孔结构的主要参数是:孔隙度、平均孔径、最大孔径、孔径分布、孔形和比表面,这恰是全自动比表面和孔径分析仪的主要功能。NOVAtouch系列全自动比表面积及孔径分析仪作为康塔仪器专利产品,是高质量高性能气体吸附分析系统的代表,共有8个型号,采用彩色触摸屏,完全自动化、操作简单,因为可以不使用氦气,运行成本低;一次可以分析多个样品,因而测量效率高,可充分满足科研或质量控制实验室的需要。 除材质外,材料的多孔结构参数对材料的力学性能和各种使用性能有决定性的影响。由于孔隙是由粉末颗粒堆积、压紧、烧结形成的;因此,原料粉末的物理和化学性能,尤其是粉末颗粒的大小、分布和形状,是决定多孔结构乃至最终使用性能的主要因素。多孔结构参数和某些使用性能(如渗透率等)可以用压汞法等来测定,上图为美国康塔仪器公司的全自动压汞仪,可以同时测定两个样品。 烧结多孔材料的力学性能不仅随孔隙度、孔径的增大而下降,还对孔形非常敏感。孔隙率不变时,孔径小的材料透过性小,但因颗粒间接触点多,故强度大。过滤精度即阻截能力是指透过多孔体的流体中的最大粒子尺寸,一般与最大孔径值有关。孔径分布是多孔结构均匀性的判据。对于过滤材料要求在有足够强度的前提下,尽可能增大透过性与过滤精度的比值。根据这些原理,发展出用分级的球形粉末为原料,制成均匀的多孔结构,用粉末轧制法制造多孔的薄带和焊接薄壁管,发展出粗孔层与细孔层复合的双层多孔材料。康塔Porometer 3G孔径分析仪代表了先进的气体渗透法孔径分析技术:是基于电脑的强大软件控制,拥有卓越性能的紧凑型台式分析测量仪。它提供四种型号,适用于不同的压力(即孔径)和流速范围,以实现材料特性和仪器性能(灵敏度、准确度、再现性)的极佳匹配。精确测定施加于样品上的压力对孔隙分布分析至关重要,而这正是Porometer 3G孔径分析仪的优势所在。 多孔材料的孔径、强度等性能在很大程度上取决于所选用粉末的平均粒度、粒度分布、颗粒形状等;为了制出预定性能的材料,通常要对粉末进行预处理,如退火、粒度分级、球化和球选以及加入各种添加剂(造孔剂、润滑剂、增塑剂)等。粒度粒形分析仪,则可以对这个过程进行监控把关。康塔仪器所提供的欧奇奥图像法粒度粒形分析仪500NANOXY,干法湿法两用,具备颗粒计数功能,可提供50个以上的粒径/形貌分析参数,无疑是满足此类应用的优选产品。
  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 江苏检验检疫陶瓷检测实验室开放展示纪实
    成立于1998年的江苏检验检疫陶瓷检测实验室,是国家区域性中心实验室,承担着出口陶瓷理化性能的检测和其他委托检测业务,是陶瓷检验的专业检测机构。宜兴作为江苏最大的陶瓷出口产地,正是在该检测实验室人员的严格把关下,一直在美国FDA官方网站上保持着输美日用陶瓷超标“零记录”。江苏检验检疫陶瓷检测实验室于2009年建成了江苏省陶瓷出口基地测试公共服务平台,此举是以检验检疫机构为主体,充分利用社会检测资源,服务企业、服务社会、服务民生的重要途径。然而,公众对于陶瓷实验室的技术保障能力知之甚少,为此江苏检验检疫陶瓷检测实验室通过丰富多彩的开放形式,正面宣传,充分展示质检部门保障质量安全,服务质量提升的技术支撑和技术保障能力,搭建起开放的公共服务平台。  多举措 服务地方外贸经济  近两年,全球通胀不断加剧,各种不确定因素相互激荡,致使陶都宜兴的特色产业——日用陶瓷出口压力持续加大。本着“送政策、送服务”的宗旨,江苏检验检疫陶瓷检测实验室邀请了多家重点日用陶瓷企业负责人及质量监督员召开了座谈会,详细讲解了实验室检测工作的程序、配置的主要仪器设备、具有的技术服务能力,并组织参观了实验室的浸泡室、检测室、化学分析室等,现场演示陶瓷理化性能的试验操作,让代表们零距离接触了“高精尖”仪器设备以及相关产品的安全检测过程,亲身感受了实验室人员科学严谨的工作态度。会上,代表们纷纷表示,参加此次活动,很有收获,不仅了解了陶瓷产品的检测过程,更加明白了产品质量把关的重要性,同时看到了陶瓷检测实验室先进的技术检测能力,进一步增强了陶瓷进出口贸易的信心。  该实验室一直以来在服务企业,促进地方外贸经济的发展方面作了大量的工作:对企业生产过程中产品试制,提供24小时服务,检验人员加班加点,协助企业试制出合格的样品,以最短的时间赢得订单 为进一步方便企业,该实验室为对外地企业样品实行“一条龙”服务,企业寄出需要检测的样品,该室接到样品两个工作日后,就可出具检测报告 对企业实验室进行监督管理,针对技术性问题进行辅导培训并开展比对试验,作为企业实验室的依托。近年来,江苏检验检疫陶瓷实验室的多项有效地服务举措得到了进出口企业的好评,促进了江苏省陶瓷出口基地的发展。  互动交流 服务社会  江苏检验检疫陶瓷检测实验室以服务社会为宗旨,提供公共检测服务,强调公众知情、参与和监督,互动交流,进一步提高其公共检测服务的效率和质量。  该实验室技术人员走进江苏检验检疫系统在线访谈直播间,就铅镉对人类健康的危害和在陶瓷产品中的应用及实验室检测技术等内容与广大爱好陶瓷的网友们一起交流,讲解了进出口日用陶瓷餐具安全卫生项目的限制性要求及相关的控制理论,使网友们对陶瓷餐具中铅镉溶出量的控制方面有了更加直观的了解。实验室每年都积极参加“3.15”消费者权益日活动,在走进消费者的街头宣传活动中,实验室人员通过宣传画板、宣传小册子等资料,向前来参加咨询的消费者图文并茂地介绍了陶瓷检测实验室基本概况,并告知消费者正确选购陶瓷餐具应注意的事项。这些与公众的互动交流活动,打消了公众日常生活中产生的疑虑,增强了消费者的信心,达到了服务社会的目的。  在陶瓷检测实验室开放集中展示月中,他们还邀请了宜兴市人大代表、政协委员等参观了实验室、陶瓷样品展示室,观摩了工作人员的现场实验操作。代表们一致认为陶瓷检测实验室管理规范、设备先进、服务周到,当听到实验室负责人介绍该实验室“输美日用陶瓷铅镉溶出量”持续超标零记录后,对实验室的检测能力和技术水平表示高度肯定,并希望陶瓷检测实验室能在宜兴特色陶瓷产业面临经济转型、打造科学发展新亮点的形势下,勇挑重任,不负众望,再创辉煌,为服务地方陶瓷出口经济健康持续发展做出更大贡献。  科技兴检 搭建检学研合作平台  科学技术是第一生产力,是经济社会发展中最活跃、最革命的元素,是支撑和引领经济社会发展进步的重大因素。江苏检验检疫陶瓷检测实验室一直认真实施科技兴检战略,大力加强质检科技工作,根本目的就是要充分发挥检验检疫实验室的科技作用,为服务经济发展和社会进步提供技术保障,为履行检验检疫的国门卫士职能提供技术支撑。  无锡工艺职业技术学院陶瓷专业材料工程技术系是陶都宜兴的特色专业,每年为陶瓷生产企业输送大量的专业人才。江苏检验检疫陶瓷检测实验室作为该校教学合作基地,多次邀请老师和学生们走进实验室,实验室工作人员就日用陶瓷铅镉溶出量和物理性能检测为学生们上了生动的教学课,并通过展板展示、发放宣传手册等宣传形式,全方位的展示了实验室水平,加深了学生们对陶瓷实验室的良好形象。  为了提高检测人员的科研能力,该实验室与南京工业大学等院校进行技术上的交流与合作,共同开展科研项目的研究。南京工业大学材料科学与工程学院的教授也多次到实验室进行实地考察,对于实验室的科研仪器配备与科研制标的方向给予了很多重要的意见和建议。  该实验室一直注重检学研合作机制,坚定不移地走科技兴检之路,与江苏省陶瓷研究所合作的“硅酸锆放射机理及改性研究”项目在2005年获国家质检总局组织的“科技兴检奖”评审中获得了三等奖。  该实验室注重科技创新,近年来多次主持或参与科研制标项目,参与了《进出口陶瓷检验》、《生态轻纺产品检测标准应用》的编写。并且在国内专业刊物《江苏陶瓷》、《佛山陶瓷》、《中国陶瓷》、《中国陶瓷工业》等及国外J mater Sci:Mater Electron刊物上发表论文14篇。  苦练内功 提升服务企业的能力和水平  江苏检验检疫陶瓷检测实验室苦练内功,持续提高检测能力和技术水平,一直积极参加水平测试和能力验证活动,多次参加国家认监委和中国疾病防治控制中心辐射防护与核安全医学所组织能力验证试验及全国建材样品中放射性含量分析,并获得较好成绩 定期与湖南、潮洲等检验检疫局的陶瓷检测实验室、景德镇陶瓷实验室及安徽局技术检测中心进行比对试验,结果均符合标准规定要求。为进一步提高检测准确性,实验室还开展了不定期样液重现性、同一样品同一仪器不同人员、同一样品不同仪器不同人员等试验,这些都大大提升了实验室服务企业的能力和水平,有助于陶瓷进出口企业更好的应对国外技术贸易壁垒。  江苏检验检疫陶瓷检测实验室通过搭建更加开放的公共服务平台,进一步加强了宜兴检验检疫部门与社会各界的沟通,全方位的展示了实验室的技术水平,促进社会各界理解、支持质检工作,提高了全社会的质量意识,提升了质检部门的形象。
  • 光谱鉴定古陶瓷是否靠谱?
    光谱鉴定古陶瓷是否靠谱? 据称准确率达90%以上   号称最先进“能量色散X荧光光谱仪”现身广州  专家称能为古陶瓷器鉴定“生日”和“出生地”,开具“元素身份证”  有了先进的科学仪器,古代文物鉴定是否便可以从此进入“机器时代”?日前,云南省收藏家协会古陶瓷科学检测实验室的技术人员和鉴定师们携带号称“最先进”的“能量色散X荧光光谱仪”来到广州进行文物鉴定工作。据称这种检测方法可以精确地测定古代文物,特别是古代陶瓷器的“生日”和“出生地”,为文物开具一份严谨的“元素身份证”。  目前流行的“科技检测”方法  一、热释光:可以准确地检测陶瓷的烧成年代,误差在50~80年左右,但是这种方法需要取样,对文物会造成破坏   二、无损检测釉的脱玻化系数,用这种方法对付高仿瓷器非常有效。但是它的局限是只能检测带釉的瓷器   三、无损检测陶瓷的胎、釉的化学成分及微量元素,可以准确断定其新老。  探测仪技术曾用于月球探测车,据称准确率可达90%以上  记者在文德路玉鸣轩中看到了这台“EDX-3600L能量色散X荧光光谱仪”。鉴定活动的负责人那静告诉记者,这台仪器是云南省收藏家协会古陶瓷科学检测实验室于2008年7月从德国引进的,是当今世界上非破坏化学组成分析、检测古陶瓷方面最为先进的X荧光仪。该仪器配置德国硅漂移探测仪(据称这种探测仪技术曾经使用在月球探测车探测器上)、牛津仪器X光管。它的分析范围为1ppm(百万分之一)-99.9% 并且可以深入釉下0.3cm,探测陶瓷胎体的成分 检测有效空间为65×65×55(cm),是目前世界上最大真空容量仓。它可为古陶瓷、青铜器、贵金属、矿物标本等进行科学鉴定。  那静说,这种“光谱鉴定”是一种无损的鉴定方式。技术人员会在陶瓷器的表面选择几个点——一般包括釉的样本区域和胎的样本区域——进行成分分析,并将分析出的微量元素结果与已有的古陶瓷成分数据库进行比照,从中找出吻合的时间段和生产地区,从而确定一件陶瓷器的“真实身份”。据称,这种检测方法的准确率可以达到90%以上。  那么对于愈加“专业化、科学化”的文物仿制手段来说,“光谱鉴定”有没有被“瞒过去”的可能?对此云南省收藏家协会古陶瓷科学检测实验室主任、云南省收藏家协会古瓷研究会总顾问沈华友告诉表示,之前也曾经有人尝试过组织数十位制瓷高手仿制景德镇古瓷,经过大半年的尝试终于在成分上达到了相当程度的吻合,但烧制出来的成品从品相上看,就是一件废品。沈华友表示,一般来讲,陶瓷成分中的钠、镁、铝等“变量”元素的仿制调配相对容易,但铁、钡、锌、铜、锌、铅等“常量”、“恒量”元素的仿制调配就相当困难。要想让各种成分全部吻合,从成本角度来讲几乎没有可行性 而由于不同时期不同窑口使用的陶土和烧制技术、燃料等的不同,很多材料已经消耗殆尽,要重新还原当年的环境,使用旧时的陶土,也是不可能的。  庞大数据库支撑解开考古学上“悬案”  那静表示,事实上这种“最先进”的检测方式的核心并不是价格昂贵的光谱仪,而是一个强大、权威、涵盖面足够广、涵盖时间足够长的数据库,“光谱仪本身只能告诉你一件陶瓷器的成分含量,打出的是一连串的化学元素的百分比,只有和数据库比照之后才能给出鉴定的结论。”她表示,目前他们主要采用的是中国科学院上海硅酸盐研究所建立的数据库。上海硅酸盐所从上世纪50年代开始就进行了对古陶瓷时期、地区、窑口等方面的成分分析和数据统计,这个中国古陶瓷微量元素组成数据库就是在半个多世纪的统计基础上所建立的,也是国内外率先研制成的古陶瓷元素分析专用标准参考物。  除此之外,中科院物理所、国家博物馆、中国科学技术大学、陕西科技大学、复旦大学等机构也都有自己的微量元素数据库。那静也表示,除此之外他们还拥有国内几乎所有研究机构长期积累的古陶瓷及青铜器的检测数据。  在实际检测当中,采用微量元素的分析技术也的确有过不少成功案例,例如1995年在西安附近的唐秋官尚书李晦墓中出土了一批精美的唐三彩制品,其中的唐三彩俑使这个墓葬成为迄今为止有唐三彩俑的年代最早的纪年唐墓,中科院有关单位进行了微量元素分析后,将分析结果与数据库中调出的3个窑址的微量元素数据进行对比分析,最终认为李晦墓唐三彩使用了与黄冶窑唐三彩成分比较接近的高岭土作为制胎原料,如果不存在元素组成相近的其他窑址,可以断定李晦墓中的唐三彩是河南黄冶窑烧制的。  又如河北省的四大历史名窑即邢窑、定窑、井陉窑和磁州窑中,前三个窑口都是以烧制白瓷为主。这三个窑口由于地理位置相距不远,在烧造过程中往往互相借鉴、模仿,致使所生产的白瓷产品在胎釉颜色、造型、纹饰方面有很多雷同或相似之处,使得许多精美的传世品无法确定其确切的产地,留下了不少考古学上的“悬案”。但是从元素分析入手,就可以清楚地把三个窑口区分开来。  “科技鉴定”还存在空白地带 “肉眼”才能辨粗细、定价值  不过专家们也指出,单纯靠“科技鉴定”并不能解决文物鉴定中的所有问题。目前,各种的无损检测方式都需要先进设备的支撑,不具有便携性,而且这些方法都依赖庞大的数据库,而数据库中没有涵盖进去的部分,在检测上就是空白地带 另一方面,仪器能够给出的只是物理分析后的成分列表,至于这件文物在艺术、市场方面的价值,则须依赖专家们的“肉眼”评价。  广东省文物鉴定站副站长邹伟初告诉记者,从现有的技术手段来看,对古代文物的微量元素进行光谱分析的确是最好的方法,特别是在鉴定古陶瓷方面,具有相当高的准确性。但他同时对“科技鉴定”这个提法表示出不同意见。他指出,事实上传统的“肉眼”鉴定方法经过千余年的发展,特别随着近代考古学的进步,已经形成了一套相当完备的体系,而且也是建立在“科学”的基础之上,比如器物类型学等专业学科。专家们在鉴定时看胎,看釉,看器型,依据的都是多年积累的对文物演变规律的熟谙掌握,怎么能说不是“科学”呢?中国著名文物鉴定专家汪庆正也曾经指出,“人文科学”和“自然科学”两者不可偏废。单纯自然科学测定是不可取的,因为标本的取舍要靠人文科学、靠考古发掘来决定。自然科学手段只能是补充,“独立”是行不通的。所谓鉴定,不仅仅是断真伪,还要鉴定它是好的,还是一般的,是精还是粗,这都是鉴定,离开人文科学就不行。他认为鉴定需几个方面工作:一是掌握历史上已经有的资料 二是要有新考古发掘的资料,如窑址的新考古发现等情况 三是传世品的排比、分类 四是自然科学手段的测定 五是进行模拟实验。这五项工作做好了,才能完成鉴定工作。
  • 助力江苏先进陶瓷产业高质量发展-真理光学出席2023中国(宜兴)国际陶瓷全产业链展览会
    2023年5月24-26日第二届中国(宜兴)国际陶瓷全产业链展览会暨第十二届中国(宜兴)工业陶瓷产业创新发展峰会在江苏宜兴青龙山会议中心盛大举行。江苏宜兴为世界陶瓷名镇,宜兴紫砂陶瓷闻名海内外。江苏宜兴陶瓷产业园区是江苏省唯一一家以陶瓷为特色产业的开发区。自2002年国家火炬计划宜兴非金属材料产业基地建成以来,宜兴市形成了以工业陶瓷、耐火材料为主体的非金属材料产业集群,产品涵盖蜂窝陶瓷等先进结构陶瓷、电子器件封装外壳等功能陶瓷以及轻质隔热耐火砖等耐火材料。丁蜀镇作为宜兴非金属材料产业发展的主阵地、主窗口,不断加强规划引领、政策撬动、资源集聚,连续11年举办工业陶瓷产业发展高峰论坛,一批骨干企业在产品升级、科技进步、市场拓展等方面取得喜人成绩。本届大会主题为“新陶瓷 新范畴 新任务”,重点围绕新能源、新材料,关注解决国家“卡脖子”工程需求和陶瓷基础材料的新应用,分设“工陶大家说”沙发论坛,先进陶瓷与半导体、新能源融合发展研讨会,先进陶瓷增材制造技术与应用论坛,工业陶瓷标准制定、检验检测研讨会,全国耐火材料标准化技术委员会标准审查、宣贯及讨论会等活动,来自英国、德国、意大利等国家和19个省的企业代表、40余家大学(学院)和科研院所的专家、教授齐聚一堂,为江苏乃至中国先进陶瓷产业高质量发展共襄盛举。 真理光学作为一家致力于提供精密颗粒表征分析解决方案的专业化公司非常荣幸地受到大会邀请参与本届陶瓷大会。真理光学一直在为客户提供卓越的产品和服务,并不断推进科技创新。此次参展,真理光学展示的LT3600系列全自动激光粒度仪和Nanolink系列纳米粒度及Zeta电位分析仪,是该公司最新推出的高性能仪器,被广泛应用于现代工业、化工、医药、食品等领域,尤其适用于先进陶瓷领域的粒度控制、浆料分散体系评价等方面。先进陶瓷产业作为江苏宜兴当地支柱产业,主要产品集中于高端电子陶瓷和结构陶瓷制造,而高纯度、纳米化和表面电荷等关键参数对于先进陶瓷材料的性能、稳定性以及生产过程中的质量控制都具有非常重要的影响。因此,真理光学展示的这些高端颗粒仪器不仅可以提升陶瓷生产企业的质量控制能力,同时也可以推动陶瓷材料的研发和创新。 展会期间,真理光学的技术人员与各方专家、企业代表深入交流,不断优化产品性能和服务质量,为将来更好的发展奠定了坚实的基础。通过积极参与本次(宜兴)国际陶瓷全产业链展览会,真理光学凭借精湛的产品获得了很多当地先进陶瓷企业的关注,进一步提升了真理光学品牌影响力。 目前,真理光学已经成为中国颗粒分析仪器行业的佼佼者,依托技术创新和优质服务,在海内外市场中得到了广泛的认可和好评。真理光学秉持“科学态度 工匠精神 成就高端颗粒仪器”理念,为中国先进陶瓷产业高质量发展提供更加可靠的粒度检测解决方案和优质服务。我们期待在未来的合作中,与各位客户和伙伴一起携手共进,共同迎接陶瓷产业的新挑战、新机遇。
  • 弗尔德仪器亮相第十一届先进陶瓷国际研讨会--发布陶瓷行业解决方案
    2019年5月25-29日,由中国硅酸盐学会发起的第十一届先进陶瓷国际研讨会(CICC-11)于云南省昆明市完美落幕。此次会议邀请到了来自33个国家和地区的1450名代表参会,CICC已然发展成为亚洲最大、国际知名的陶瓷领域学术盛会。本届CICC-11设置了24个专题研讨会,交流范围基本涵盖了整个特种陶瓷领域及相关学科,汇集业内知名专家学者与会做大会报告、主旨报告及邀请报告。 弗尔德仪器作为陶瓷产品的仪器应用翘楚,应邀赞助第十一届先进陶瓷国际研讨会,为CICC-11的成功举办增砖添瓦。陶瓷领域研究离不开样品前处理、热处理以及理化分析等实验操作,弗尔德仪器应陶瓷行业所需,能够为陶瓷样品的研磨粉碎、热处理、氧/氮/氢/碳/硫元素分析提供先进完善的仪器解决方案。弗尔德仪器旗下产品包括德国Retsch(莱驰)粉碎研磨筛分设备、德国Retsch Technology(莱驰科技)粒度粒形分析仪、德国Eltra(埃尔特)元素分析仪、CarboliteGero(卡博莱特盖罗)烘箱、马弗炉。n 陶瓷制品的研磨粉碎处理对烧结陶瓷的半成品进行检验,需要先对半成品进行研磨粉碎处理。针对不同陶瓷原料、陶瓷粉末以及成品,行星式球磨仪PM 400可以实现陶瓷样品的细粉碎。高能水冷球磨仪Emax优于常规球磨仪能够在更短时间内实现陶瓷样品的纳米研磨。n 陶瓷制品的元素分析、热重分析熔点高达2700℃的碳化硅是陶瓷制品的重要原材料。德国Eltra(埃尔特)元素分析仪特别适用于含碳化硅的陶瓷制品的质量控制。ELEMENTRAC CS-i采用高频感应燃烧法能够对陶瓷样品中的碳含量进行精准测量。ELEMENTRAC ONH-p采用惰性保护气氛熔融技术对陶瓷制品中的氧氮氢元素进行精准可靠的测量。热重分析仪TGA Thermostep由可编程炉连内置天平,加热称重在同一台仪器上完成,大大简化了人工操作,能够一次测量出陶瓷样品的水分、灰分、挥发分。n 陶瓷制品的热处理工艺陶瓷粉末注射成型(CIM)是一种新型陶瓷成型技术,在成型形状复杂的零件和精确控制零件尺寸上有着其他工艺无可比拟的优势。陶瓷注射成型的整个过程主要包括原材料的混合,喂料的注射成型,生胚的排胶和烧结。在CIM工艺过程中,排胶过程最重要的使温度缓慢上升,大量的粘结剂才会析出。CarboliteGero(卡博莱特盖罗)热壁炉——GLO系列,能满足此应用。其加热元件位于炉膛外侧,整个炉膛相当于一个容器。加热元件直接加热炉膛外侧,并向内传导热量,整个炉膛壁是热的,所以叫做热壁炉,也可选配带氢气供气系统的全自动控制系统。退火炉GLO 烧结是CIM工件成形前的最后一个工艺,是一个把粉状物料转变为致密体的传统工艺过程。还有一种工艺是排胶和烧结使用同一台炉子,这样的炉子我们称之为“排胶烧结一体炉”。HTK陶瓷纤维炉,是排胶烧结一体炉,能够在空气环境下排胶和烧结,最高温度2200°C。排胶烧结一体炉HTKn 陶瓷粉末的粒度粒形分析陶瓷粉末注射成型(CIM)对粉末特殊的要求,以使喂料在达到高装载量的同时满足一定的流动性。较理想的粉末一般要求散装密度高、无团聚、颗粒形状为球形、平均粒径小、颗粒内全致密无内孔等。Retsch Technology(莱驰科技)干湿两用多功能粒径及形态分析仪CAMSIZER X2能够满足CIM工艺对陶瓷粉末粒度粒形的检测需求。采用所见即所得的双镜头(CCD)专利技术,能够对陶瓷颗粒的粒径、球形度、纵横比、对称性等粒径粒形参数进行测量与分析。干湿两用多功能粒径及形态分析仪CAMSIZER X2
  • 长庆油田苏里格南作业分公司163.94万元采购恒温槽
    详细信息 长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次) 陕西省-西安市 状态:公告 更新时间: 2022-12-23 招标文件: 附件1 附件2 招标公告长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次)招标公告 招标编号:ZY22-XA412-FW1266 (重要提示:投标人务必认真填写招标文件附件《投标信息表》中的“服务”、“业绩发票”等表格,并在递交投标文件时,将已填写的《投标信息表》(EXCEL版)上传至中国石油电子招标投标交易平台“递交投标文件”的“价格文件”处。《投标信息表》(EXCEL版)填写的信息须与投标文件内容保持一致,若因填写信息错误或与投标文件内容不一致而导致对评审结果和合同签订的不利后果,由投标人自行承担。) 1. 招标条件 本招标项目长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次)已由长庆油田分公司批准,资金来自企业自筹(资金来源),出资比例为100%,招标人为长庆油田苏里格南作业分公司。项目已具备招标条件,现对该项目的服务进行公开招标。 2. 项目概况与招标范围 2.1项目概况:依据苏南公司2023年已批复工作计划,结合2023年新井投产计划及2023年连井计划,为确保苏南生产现场仪器合格有效,需要对生产现场场站内和井口压力表及压力变送器等按照校验周期进行定期校验,出具校验证明及记录,按照生产现场实际需求,以该项目预计工作量为参考,在2023年年终项目结束时,以实际工作量进行结算。 2.2招标范围:长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次),本项目计划投资163.9356万元(含税及其他所有费用),共需1名服务商。 2.3服务期限:自合同签订之日起至2023年12月31日。 2.4服务地点:苏南公司生产建设现场。 2.5标段划分:本项目划分标段。 3. 投标人资格要求 3.1投标人须是依照中华人民共和国法律在国内注册的法人或其他组织,具备有效的营业执照。 3.2投标人须具有国家(或省级)质量技术监督部门考核并颁发的《法定计量检定机构计量授权证书》,且该证书附件名目中必须包含本项目所涉及的压力表、压力变送器、温度变送器及液位计内容;具有有效的压力表、压力变送器、温度变送器及液位计(液位变送器)的计量标准考核证书。 3.3人员要求:须至少配备项目负责人1人,技术负责人1人,专职安全员1人,操作工4人;所有人员均为企业自有员工,安全员具有有效的安全生产考核合格证,所有人员具有有效的注册计量师执业资格证。 3.4设备及车辆要求:投标人须配备自有设备及车辆,压力、温度变送器检测标准设备配备活塞式压力计、恒温槽、热电偶检定炉;现场配备皮卡车2辆。 3.5 财务要求:未被责令停产停业;未进入清算程序,或被宣告破产,或其他丧失履约能力的情形;投标人应提供2021年度经会计师事务所或审计机构审计的财务审计报告,包括资产负债表、利润表、现金流量表、财务报表附注。 3.6信誉要求:①未被市场监督管理总局在国家企业信用信息公示系统中列入严重违法失信企业名单;②未被最高人民法院在“信用中国”网站(www.creditchina.gov.cn)或各级信用信息共享平台中列入失信被执行人名单失信被执行人;③投标人或其法定代表人、拟委任的项目负责人无行贿犯罪行为。 3.7被中国石油集团公司或长庆油田分公司纳入“黑名单”或限制投标的潜在投标人,其投标将会被否决。 3.8本次招标不接受联合体投标。 4.招标文件获取 4.1凡有意参加投标的潜在投标人,请于北京时间2022年12月24日至2022年12月28日内完成以下两个步骤: ①登录中国石油电子招标投标交易平台(网址:http://ebidmanage.cnpcbidding.com/bidder/ebid/base/login.html在线报名(如未在中国石油电子招标投标交易平台上注册过的潜在投标人需要先注册并通过平台审核,审核通过后登录平台在可报名项目中可找到该项目并完成在线报名,具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”相关章节,有关注册、报名等有关交易平台的操作问题请咨询技术支持团队相关人员,咨询电话:4008800114 语音导航转电子招标平台); ②投标人购买招标文件地址:http://www2.cnpcbidding.com, 投标人在缴费平台和招标投标交易平台仅登录账号一致,首次登录缴费平台需要投标人通过手机验证码登录,登录后设置密码,详见《投标商用户操作手册》。如有问题,致电400-8800-114转电子招标平台。 4.2招标文件每套售价为200元人民币,请有意参加投标的潜在投标人确认自身资格条件是否满足要求,售后不退,应自负其责。 4.3本次招标文件采取线上发售的方式。潜在投标人在4.1规定的时间内完成4.1规定的2项工作(在线报名和自助购买文件)后,潜在投标人可在中国石油电子招标投标交易平台下载招标文件。 4.4投标人支付标书费后,在商城个人中心进入订单列表,点击已缴纳的标书费订单,点击订单详情,可以自行下载电子版普通发票。 4.5此次采购招标项目为全流程网上操作,需要使用U-key完成投标工作,所有首次参与中国石油招标项目投标人必须办理U-key。具体办理通知公告及操作手册下载方法如下: 登录中国石油招标投标网首页:https://www.cnpcbidding.com“通知公告栏目”的“操作指南”中“电子招投标平台Ukey办理通知公告及操作手册”,即可下载“Ukey办理通知公告及操作手册.zip”。 5.投标文件递交 5.1 本次招标采取网上电子版提交投标方式,以“中国石油电子招标投标交易平台”上传的电子版为准。 5.1.1提交时间:投标人须在投标截止时间(详见本章6.1条款)前通过“中国石油电子招标投标交易平台”提交电子版投标文件,投标截止时间未被系统成功传送的电子版投标文件将不被系统接受,视为主动撤回投标文件。考虑投标人众多,避免受网速影响,以及网站技术支持的时间,建议于投标截止时间前24小时完成网上电子版的提交。如果出现上述因素或不可预见因素提交电子版投标文件失败者,一切后果由投标人自行负责。 5.2潜在投标人应在投标截止时间前提交叁万元人民币的投标保证金。 6.开标 6.1 投标截止时间和开标时间(网上开标):2023年01月13日08时30分(北京时间)。 6.2 开标地点(网上开标):中国石油电子招标投标交易平台 6.3 本次招标采取网上开标方式,招标审计相关部门现场监督,所有投标人可准时进入中国石油电子招标投标交易平台开标大厅参加在线开标仪式。 6.4 潜在投标人对招标文件有疑问请联系招标代理机构;对网上操作有疑问请联系技术支持团队人员。 技术支持团队:中油物采信息技术有限公司 咨询电话:4008800114 语音提示“电子招投标” 如有疑问请在工作时间咨询。 招标公告中未尽事宜或与招标文件不符之处,以招标文件为准。 7.发布公告的媒介 本次招标公告同时在中国招标投标公共服务平台(www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com)上发布。 8.联系方式 招 标 人:长庆油田苏里格南作业分公司 联 系 人:王小勇 联系电话:18393827928 招标代理机构:中国石油物资有限公司西安分公司 单位地址:陕西省西安市凤城五路与明光路十字路口天朗经开中心二层 联 系 人:野宁 崔永波 联系电话:029-68934566 电子邮箱:1094036597@qq.com 招标机构: 中国石油物资有限公司西安分公司 2022 年 12 月 23日 公告附件1:投标商用户操作手册.pdf 公告附件2:长庆油田承包商自主管理平台用户操作手册(2022.11).pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:恒温槽 开标时间:2023-01-13 08:30 预算金额:163.94万元 采购单位:长庆油田苏里格南作业分公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中国石油物资有限公司西安分公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次) 陕西省-西安市 状态:公告 更新时间: 2022-12-23 招标文件: 附件1 附件2 招标公告长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次)招标公告 招标编号:ZY22-XA412-FW1266 (重要提示:投标人务必认真填写招标文件附件《投标信息表》中的“服务”、“业绩发票”等表格,并在递交投标文件时,将已填写的《投标信息表》(EXCEL版)上传至中国石油电子招标投标交易平台“递交投标文件”的“价格文件”处。《投标信息表》(EXCEL版)填写的信息须与投标文件内容保持一致,若因填写信息错误或与投标文件内容不一致而导致对评审结果和合同签订的不利后果,由投标人自行承担。) 1. 招标条件 本招标项目长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次)已由长庆油田分公司批准,资金来自企业自筹(资金来源),出资比例为100%,招标人为长庆油田苏里格南作业分公司。项目已具备招标条件,现对该项目的服务进行公开招标。 2. 项目概况与招标范围 2.1项目概况:依据苏南公司2023年已批复工作计划,结合2023年新井投产计划及2023年连井计划,为确保苏南生产现场仪器合格有效,需要对生产现场场站内和井口压力表及压力变送器等按照校验周期进行定期校验,出具校验证明及记录,按照生产现场实际需求,以该项目预计工作量为参考,在2023年年终项目结束时,以实际工作量进行结算。 2.2招标范围:长庆油田分公司2023年苏南公司生产区域压力表及压力变送器校验技术服务项目(二次),本项目计划投资163.9356万元(含税及其他所有费用),共需1名服务商。 2.3服务期限:自合同签订之日起至2023年12月31日。 2.4服务地点:苏南公司生产建设现场。 2.5标段划分:本项目划分标段。 3. 投标人资格要求 3.1投标人须是依照中华人民共和国法律在国内注册的法人或其他组织,具备有效的营业执照。 3.2投标人须具有国家(或省级)质量技术监督部门考核并颁发的《法定计量检定机构计量授权证书》,且该证书附件名目中必须包含本项目所涉及的压力表、压力变送器、温度变送器及液位计内容;具有有效的压力表、压力变送器、温度变送器及液位计(液位变送器)的计量标准考核证书。 3.3人员要求:须至少配备项目负责人1人,技术负责人1人,专职安全员1人,操作工4人;所有人员均为企业自有员工,安全员具有有效的安全生产考核合格证,所有人员具有有效的注册计量师执业资格证。 3.4设备及车辆要求:投标人须配备自有设备及车辆,压力、温度变送器检测标准设备配备活塞式压力计、恒温槽、热电偶检定炉;现场配备皮卡车2辆。 3.5 财务要求:未被责令停产停业;未进入清算程序,或被宣告破产,或其他丧失履约能力的情形;投标人应提供2021年度经会计师事务所或审计机构审计的财务审计报告,包括资产负债表、利润表、现金流量表、财务报表附注。 3.6信誉要求:①未被市场监督管理总局在国家企业信用信息公示系统中列入严重违法失信企业名单;②未被最高人民法院在“信用中国”网站(www.creditchina.gov.cn)或各级信用信息共享平台中列入失信被执行人名单失信被执行人;③投标人或其法定代表人、拟委任的项目负责人无行贿犯罪行为。 3.7被中国石油集团公司或长庆油田分公司纳入“黑名单”或限制投标的潜在投标人,其投标将会被否决。 3.8本次招标不接受联合体投标。 4.招标文件获取 4.1凡有意参加投标的潜在投标人,请于北京时间2022年12月24日至2022年12月28日内完成以下两个步骤: ①登录中国石油电子招标投标交易平台(网址:http://ebidmanage.cnpcbidding.com/bidder/ebid/base/login.html在线报名(如未在中国石油电子招标投标交易平台上注册过的潜在投标人需要先注册并通过平台审核,审核通过后登录平台在可报名项目中可找到该项目并完成在线报名,具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”相关章节,有关注册、报名等有关交易平台的操作问题请咨询技术支持团队相关人员,咨询电话:4008800114 语音导航转电子招标平台); ②投标人购买招标文件地址:http://www2.cnpcbidding.com, 投标人在缴费平台和招标投标交易平台仅登录账号一致,首次登录缴费平台需要投标人通过手机验证码登录,登录后设置密码,详见《投标商用户操作手册》。如有问题,致电400-8800-114转电子招标平台。 4.2招标文件每套售价为200元人民币,请有意参加投标的潜在投标人确认自身资格条件是否满足要求,售后不退,应自负其责。 4.3本次招标文件采取线上发售的方式。潜在投标人在4.1规定的时间内完成4.1规定的2项工作(在线报名和自助购买文件)后,潜在投标人可在中国石油电子招标投标交易平台下载招标文件。 4.4投标人支付标书费后,在商城个人中心进入订单列表,点击已缴纳的标书费订单,点击订单详情,可以自行下载电子版普通发票。 4.5此次采购招标项目为全流程网上操作,需要使用U-key完成投标工作,所有首次参与中国石油招标项目投标人必须办理U-key。具体办理通知公告及操作手册下载方法如下: 登录中国石油招标投标网首页:https://www.cnpcbidding.com“通知公告栏目”的“操作指南”中“电子招投标平台Ukey办理通知公告及操作手册”,即可下载“Ukey办理通知公告及操作手册.zip”。 5.投标文件递交 5.1 本次招标采取网上电子版提交投标方式,以“中国石油电子招标投标交易平台”上传的电子版为准。 5.1.1提交时间:投标人须在投标截止时间(详见本章6.1条款)前通过“中国石油电子招标投标交易平台”提交电子版投标文件,投标截止时间未被系统成功传送的电子版投标文件将不被系统接受,视为主动撤回投标文件。考虑投标人众多,避免受网速影响,以及网站技术支持的时间,建议于投标截止时间前24小时完成网上电子版的提交。如果出现上述因素或不可预见因素提交电子版投标文件失败者,一切后果由投标人自行负责。 5.2潜在投标人应在投标截止时间前提交叁万元人民币的投标保证金。 6.开标 6.1 投标截止时间和开标时间(网上开标):2023年01月13日08时30分(北京时间)。 6.2 开标地点(网上开标):中国石油电子招标投标交易平台 6.3 本次招标采取网上开标方式,招标审计相关部门现场监督,所有投标人可准时进入中国石油电子招标投标交易平台开标大厅参加在线开标仪式。 6.4 潜在投标人对招标文件有疑问请联系招标代理机构;对网上操作有疑问请联系技术支持团队人员。 技术支持团队:中油物采信息技术有限公司 咨询电话:4008800114 语音提示“电子招投标” 如有疑问请在工作时间咨询。 招标公告中未尽事宜或与招标文件不符之处,以招标文件为准。 7.发布公告的媒介 本次招标公告同时在中国招标投标公共服务平台(www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com)上发布。 8.联系方式 招 标 人:长庆油田苏里格南作业分公司 联 系 人:王小勇 联系电话:18393827928 招标代理机构:中国石油物资有限公司西安分公司 单位地址:陕西省西安市凤城五路与明光路十字路口天朗经开中心二层 联 系 人:野宁 崔永波 联系电话:029-68934566 电子邮箱:1094036597@qq.com 招标机构: 中国石油物资有限公司西安分公司 2022 年 12 月 23日 公告附件1:投标商用户操作手册.pdf 公告附件2:长庆油田承包商自主管理平台用户操作手册(2022.11).pdf
  • 我国三项陶瓷国家标准通过审定
    8月4日,全国日用陶瓷标准化技术委员会在山东淄博召开年会,专题审定由淄博市陶瓷行业协会组织制定的三项陶瓷国家标准。  全国日用陶瓷标准化技术委员会主任、中国陶瓷工业协会理事长何天雄,淄博市政府副市长刘有先等领导出席了会议。  经过专家审定,《镁质强化瓷器》、《高石英质瓷器》和《抗菌骨质瓷器》被审定为国家标准,福禄公司制定的《陶瓷颜料》、陶瓷装饰用《印刷金膏》被认定为行业标准。硅元科技作为主要起草单位和参与起草单位全部参与这五项产品标准的制定,成为一次性承担并通过国家或行业标准审定最多的企业。博纳科技主要承担了《抗菌骨质瓷器》的起草。这三项日用陶瓷国家标准2008年下半年在全国日用陶瓷标准委立项后,在全国各陶瓷产区进行了为期半年的公示,并在有关陶瓷产区广泛征求意见。经过修改补充后,由全国日用陶瓷标准委邀请有关部门专家领导,组织全国日用陶瓷标准化委员会委员进行论证审查。  全国日用陶瓷标准委是国家日用陶瓷行业标准制定监督的权威部门。在一个地区一次审查三个国家标准,在全国尚属首次。三项产品都是由淄博陶瓷科技人员自主创新研制发明,具有自主知识产权。  淄博陶瓷行业协会负责人介绍说,五项标准通过审定将在全国进一步确立淄博陶瓷产区的重要地位,在全国陶瓷行业争得主动权和话语权,对于保护淄博市自主知识产权产品,引领全市陶瓷产业升级换代,提高淄博陶瓷的市场竞争力,提升城市形象将产生巨大作用。
  • 萍乡市陶瓷研发检测中心奠基
    8月18日上午,萍乡市陶瓷研发检测中心暨龙发科技大楼奠基典礼在湘东陶瓷产业基地举行,市人大常委会主任黎德廉,市委常委、副市长周敏,市人大副主任王开贵,市政协副主席李久龙,湖南大学校长助理韩绍昌,武汉理工大学学科建设处处长、教授、博导吴建锋等出席仪式。黎德廉宣布奠基仪式开始。  萍乡市陶瓷研发检测中心是适应萍乡市工业陶瓷产业发展的需要,由龙发实业与武汉理工大学合作兴办的大型工业陶瓷研发检测机构。中心占地13万平米,项目总投资1.5亿元人民币,将建设高标准的研发大楼、工业陶瓷实验室、高科技陶瓷产品生产线。中心主要研发工业陶瓷新产品、工业陶瓷生产新技术、新工艺的开发,中心建成以后,每年将向工业陶瓷行业提供100项新产品、新技术,推动萍乡市工业陶瓷产业上水平、上档次,并创造可观的直接经济效益。  萍乡市陶瓷研发检测中心暨龙发实业科技大楼的建设将进一步增强陶瓷产业基地的"磁场"效应。陶瓷产业基地是湘东区建设赣西工业经济重镇的主战场,是打造中国工业陶瓷之都的重要依托。陶瓷产业基地自2006年8月开工建设以来,变化日新月异,继列入全省重点工业调度项目之后,最近又获批享受江西电网销售电价政策,铁路专用线可望在10月动工建设。目前,进驻陶瓷产业基地的企业有47家,其中16家企业正在开足马力生产,10家企业正在抓紧建设,陶瓷产业基地正由聚集发展向集群发展转变。龙发实业是在湘东本土成长起来的民营企业,短短数年间跃升为全国工业陶瓷行业的龙头企业,其成功在很大程度上得益于强大的科技支撑。通过与高等院校的合作,龙发实业拥有5项国家专利,2个国家重点新产品,今年1至7月接到的订单达1.2亿元。  周敏首先代表萍乡市委、市政府向陶瓷研发检测中心暨龙发科技大楼奠基表示热烈祝贺。他指出,科学技术是第一生产力,现代经济的竞争主要是人才和科技的竞争。建设陶瓷研发检测中心暨龙发实业科技大楼,是萍乡市加快陶瓷产业升级,提升企业核心竞争力的重要战略决策。陶瓷研发检测中心的建设对塑造萍乡工业陶瓷品牌,提升陶瓷工业园区的发展水平,加速国内外人才和资本的流入,推进萍乡市经济社会可持续发展有着深远的意义。
  • 欧盟新指令提高陶瓷铅、镉限量标准
    欧盟修订的《关于与食品接触的瓷器制品的性能标准与合格声明》从2006年5月20日起试行。 新指令对仪器分析方法检出的铅和镉的限量标准由原来的4.0毫克/升、0.3毫克/升,修订为0.2毫克/升、0.2毫克/升,从而提高了此类产品进入市场的门槛。 近日,欧盟委员会对《关于与食品接触的瓷器制品的性能标准与合格声明》这一指令进行修订。新指令指出,从2006年5月20日起,允许符合该指令的瓷器制品使用和进行贸易;从2007年5月20日起,不符合该指令的瓷器制品将禁止生产和进口。新指令增补了在欧盟范围内生产和销售的可能与食品接触的瓷器制品必须附有由生产商和销售商提供的书面声明。另外,新指令对仪器分析方法检出的铅和镉的限量标准由原来的4.0毫克!升、0.3毫克!升,修订为0.2毫克0升、0.2毫克!升,从而提高了此类产品进入欧盟市场的门槛。 业内人士认为,这次限量标准的修订,对我国陶瓷产品出口,甚至对我国整个陶瓷产业,将带来严峻挑战。 限量标准不只影响对欧出口 专家认为,欧盟对我国陶瓷产品限量标准的修改,部分原因是由于我国陶瓷产品大量销往欧洲,导致欧洲市场对我国陶瓷产品采取技术性贸易措施,来阻止中国陶瓷产品的大量进入。这样会使得我国陶瓷产品因不能顺利进入欧洲市场,转向美国等市场,从而可能导致美国等市场对我国陶瓷产品采取措施。因此,欧盟修改限量标准,可能会引起连锁反应,使得美国及亚洲、非洲市场的陶瓷限量标准更为严格。 面对增高的出口门槛,业内人士对我国陶瓷产品的出口表现出明显的担忧。一位不愿透露姓名的日用陶瓷专家告诉记者,我国大部分陶瓷产品属于低档产品,产量大,附加值低。如果短时间内产品销量骤降,企业将陷入严重亏损乃至破产的境地。 在陶瓷产业重要基地之一的淄博,据淄博检验检疫局对2005年淄博市出口必须检测的陶瓷产品情况的统计,如果按照欧洲新的标准,将有95%%的产品不能进入欧盟市场。而国家质检总局2005年10月份公布的对日用陶瓷产品质量进行的国家监督抽查结果显示,广东、广西等十省区市56家企业生产的56种产品,抽样合格率为82.1%%。抽查发现,有6种产品铅溶出量严重超标,最高为国家标准规定的24.98倍;其中一种产品镉溶出量也超标。而欧盟新的限量标准主要就是针对铅和镉的溶出量,我国陶瓷企业如果不尽快提高产品质量,陶瓷出口将面临的巨大冲击不言而喻。 技术与检验面临新挑战记者了解到,铅、镉溶出量超标问题,长期以来一直在困扰着陶瓷行业,至今仍没有好的解决办法。虽然市场上出现了无铅、镉颜料,但只是部分颜色能够实现,对于大红颜色等,仍旧没有很理想的产品可以替代铅、镉颜料。可以说未来几年,这一技术难题得不到攻破,中国陶瓷出口企业将面临严重的困难。 另据介绍,欧盟的限量指令也将对我国出入境检验检疫工作发起挑战。首先,我国陶瓷企业的认证工作必须重新进行。原来通过认证的企业,需要根据新的技术要求全部重新考核,考核的难度将远大于已往。对企业的检验监管模式,也将从原来的粗放式改变为更加严格的全程控制监管模式。而对陶瓷企业的全程控制,其技术难度非常之大,到目前为止仍无法到位。其次,我国的实验室检测也必须再提高一个档次。 限量标准从原来的ppm级提高到ppb级,使得实验室工作必须与之齐头并进。比如,原来仅需要原子吸收就可以做到的检测,必须改为石墨炉检测。这将大大提高检测成本,降低检测速度。 而从消费者角度看,随着人们对食品等产品对人体危害严重程度的认识不断加强,人们对陶瓷产品中铅、镉元素的危害认识更加深入,严格陶瓷产品铅、镉元素的限量也成为发展的必然趋势。 因此,专家认为,从产品本身彻底解决铅、镉溶出量问题,才是关键。为有效应对此次欧盟新陶瓷铅、镉限量,企业应加快研究对策,努力把陶瓷铅、镉溶出量降下来,提高产品档次和附加值。检验检疫部门应加快对检测方法的研究,尽快建立起新的检验监管体系,提高检测能力,确保我国陶瓷产品持续、稳定出口。
  • 新型陶瓷研究国家重点实验室一览
    p style="text-indent: 2em "新型陶瓷在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有耐腐蚀等功能;在生物方面,具有一定生物相容性能,可作为生物结构材料等。但也有它的缺点,如脆性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。下面让我们来了解一下国内研究新型陶瓷的国家重点实验室。/pp style="text-indent: 2em "strong清华大学:新型陶瓷与精细工艺国家重点实验室/strong/pp style="text-indent: 2em "新型陶瓷与精细工艺国家重点实验室致力于发展新型陶瓷科学与技术,开拓新型材料领域的学科前沿。实验室的主要研究方向包括:信息功能陶瓷材料、功能复合材料设计与新材料探索、高性能结构陶瓷、陶瓷材料先进制备工艺、能源与环境材料、生物陶瓷材料。/pp style="text-indent: 2em "成立契机/pp style="text-indent: 2em "新型陶瓷与精细工艺国家重点实验室的前身-清华大学无机非金属材料学科于1987年被评为重点学科,1988年列为世行贷款重点学科发展项目,1991年开始建设“新型陶瓷与精细工艺”国家重点实验室,于1995年通过国家验收正式对外开放。/pp style="text-indent: 2em "科研队伍/pp style="text-indent: 2em "实验室拥有一支学术水平高、教学和科研经验丰富的固定科研人才队伍。现任实验室主任为潘伟教授,学术委员会主任为中国工程院院士李龙土教授。实验室现有研究人员53人,其中教授27人(包括中国科学院院士2人,中国工程院院士2人),副教授19人,高工及其他人员7人。研究队伍中具有博士学位者43人(占总数约80%)。/pp style="text-indent: 2em "科研成果/pp style="text-indent: 2em "在透明氧化铝陶瓷与高压钠灯、复合氮化硅陶瓷刀具、高性能铁电压电陶瓷及低烧技术、陶瓷胶态成型新工艺、高性能低温烧结软磁铁氧体、纳米骨修复材料以及复合材料的结构与性能关联等方面取得了多项重大成果,先后获得全国科学大会奖、国家技术发明奖和国家自然科学奖等国家级科技奖励,其中国家自然科学二等奖2项、国家技术发明二等奖7项、国家科技进步二等奖2项和省部级奖励五十余项。/pp style="text-indent: 2em "通过十几年来的建设和发展,实验室已逐步建成为我国在新型陶瓷材料与精细制备工艺,特别是信息功能陶瓷材料、高性能结构陶瓷材料以及陶瓷基复合材料等领域的重要科学研究与人才培养基地。/pp style="text-indent: 2em "strong中国科学院上海硅酸盐研究所:高性能陶瓷和超微结构国家重点实验室/strong /pp style="text-indent: 2em "成立契机/pp style="text-indent: 2em "为促进我国高性能陶瓷的研究和发展,扩大我国在该领域中的影响,1988年4月,经国家计委和中国科学院批准,在中科院上海硅酸盐研究所建立高性能陶瓷和超微结构开放实验室;1989年1月实验室正式对外开放;1991年纳入国家重点实验室系列,更名为高性能陶瓷和超微结构国家重点实验室;1995年11月通过国家验收。/pp style="text-indent: 2em "科研队伍/pp style="text-indent: 2em "目前,两院院士严东生先生任实验室名誉主任,陈立东研究员任实验室主任,中国工程院院士江东亮先生任实验室学术委员会主任。实验室现有固定人员78人,其中院士3人(含两院院士1人),研究员39人。35岁以下的青年研究人员占全室人员的45%。自实验室建立以来,先后有2人当选第三世界科学院院士,5人当选世界陶瓷科学院院士,6人获得“国家杰出青年基金”,2人入选“国家新世纪百千万人才工程”,2人入选中组部“千人计划”;23人入选中国科学院“百人计划”。/pp style="text-indent: 2em "科研成果/pp style="text-indent: 2em "(1)高性能陶瓷材料设计及其力学性能研究/pp style="text-indent: 2em "(2)氮化物相图研究/pp style="text-indent: 2em "(3)大尺寸钨酸铅闪烁晶体研究/pp style="text-indent: 2em "(4)扫描电声成像系统及其相关器件和材料/pp style="text-indent: 2em "(5)纳米微粒及纳米复相陶瓷的制备科学与性能研究/pp style="text-indent: 2em "(6)新型介孔及低维纳米复合材料研究/pp style="text-indent: 2em "(7)计算材料科学研究与能量转换材料的微观设计/pp style="text-indent: 2em "以上这些重要的研究进展和成果先后荣获国家和省部级科技奖励24项,发表2000余篇高质量学术论文,获授权国家发明专利130余项,取得了良好的经济效益和社会效益。/pp style="text-indent: 2em "strong武汉理工大学:硅酸盐建筑材料国家重点实验室/strong/pp style="text-indent: 2em "实验室概况/pp style="text-indent: 2em "硅酸盐建筑材料国家重点实验室是在原硅酸盐材料工程教育部重点实验室的基础上、于2011年10月获科技部批准立项建设的国家重点实验室。实验室依托的材料科学与工程学科是国家重点学科、“211工程”首批及“双一流”重点建设学科,国家第四轮学科评估结果为A+,进入世界ESI学科排名前1%;其硅酸盐材料专业至今已有50多年的建设历史。1992年由原国家建材局批准成立硅酸盐材料部门开放实验室,2000年成立硅酸盐材料工程教育部重点实验室。/pp style="text-indent: 2em "科研队伍/pp style="text-indent: 2em "实验室现有固定人员90人,其中研究人员80人,技术支撑人员7人,管理人员3人;78人具有博士学位(占比98%);研究人员中有正高职称65人、副高职称13人。形成了一支由国家杰青、长江学者和千人计划专家领衔的结构合理、科研能力强,富于创新的高水平学术队伍。/pp style="text-indent: 2em "科研成果/pp style="text-indent: 2em "技术成果在全国千余条水泥、玻璃、陶瓷、墙体材料等生产线,以及港珠澳大桥、武汉天兴洲大桥、南海岛礁等一大批“一带一路”控制性重难点工程应用,取得显著的社会环保与经济效益,近五年获国家自然科学奖1项(排2、5)、国家技术发明二等奖1项(排1、4)、国家科技进步二等奖2项(单位排2和4)、省部级一等奖和特等奖15项(9项排第1)、二等奖19项。/pp style="text-indent: 2em "新型陶瓷的研究还需要继续深入,也希望越来越多优秀的人才能加入新型陶瓷研究的队伍当中。/p
  • 佛山携手中科院共建陶瓷研发中心
    10月20日,中科院与佛山市政府科技合作工作会召开。会上,双方签约兴建关于陶瓷、纳米、LED技术等6个行业的研发中心,使双方合作创新的平台达到了15个。  佛山市委书记陈云贤指出:“只有夕阳技术,没有夕阳产业。作为以传统产业为工业基础的佛山,正处在改造传统产业、发展新兴产业的紧要关头。中科院成为我们最重要的技术后盾。”  中科院与佛山市政府于去年7月签约,共建“中国科学院佛山技术创新与育成中心”。1年来,中科院、省及佛山各级财政向院市合作共投入1.12亿元,带动企业和社会资金投入近10亿元。中科院32个研究所与企业的合作项目近300个,带动产值40亿元。  佛山拥有众多的行业龙头企业,中科院所属研究所与这些企业加快建立合作战略联盟和实施重大科技专项,对于以高科技促进佛山传统产业的改造升级提供了充沛的动力。如东鹏陶瓷公司与中科院广州化学研究所开展合作,瞄准陶瓷的高效减水剂这一行业共性技术,成功将入塔浆料水分降至30%,解决困扰行业发展的能耗过多问题。该技术在全国推广后,预计每年可节省能源费用12亿元。  佛山市经济贸易局副局长香秀杏介绍,目前佛山新材料产业发展很快,但存在上下游不配套、人才流失严重等问题,她表示:“我们计划在2015年,让新材料占据佛山材料产业20%比例。”  就新材料与新能源的研发,各位专家也对于陶瓷所能提供的未来空间进行了畅想。  中科院上海硅酸盐研究所研究员王士维建议,佛山可以在透明陶瓷和半导体产业中的陶瓷元件上下工夫。透明陶瓷具有极高的耐腐蚀性,可以广泛应用于各种大型的照明工具。而在半导体产业当中,很多电子元器件都是用陶瓷制成。目前,这一市场主要被日本垄断,国内只有一家中日合资的加工企业。佛山可以在这方面加大力度。  “佛山特种陶瓷、精密陶瓷可用于代替传统材料,以解决耐高温,耐腐蚀磨损的问题。或许可以解决能源汽车电池无油压缩机内腔涂层材料的问题,传统材料受高温、磨损影响使用寿命。”王士维表示,特种陶瓷在国外的运用十分广泛,可根据企业需要,进行特种陶瓷与新能源汽车产业的结合研究。  “新能源的概念很广,减少碳排放的都能算,比如佛山的陶瓷产业很发达,而陶瓷烧窑产生的废物能不能变成新能源汽车燃料?”中科院广州能源研究所的吴创之所长则从能源角度提出了新的解决构想。  根据政府规划,佛山将在2012年,形成光电产业、新材料产业和现代服务业3个产值超千亿元的战略性新兴产业集群 发展一批进入全国行业的排头兵、广东现代产业500强的拥有核心技术和自主品牌的企业。  “佛山的创新产学研模式,对于进一步提高佛山市的创新能力和产业竞争力具有重大意义。未来佛山陶瓷如果能够密切与相关新兴产业结合,注入更多科技手段,将有着非常开阔的发展前景。陶瓷作为一种运用广泛的介质,我们目前对于它的运用还是最低端的装饰用途。如果佛山企业能够把握这一良机,将会迎来新一轮的爆发式增长。但无疑,这对于习惯了传统经营模式的企业来说,是一个巨大的挑战。”一个业内资深人士如此评论。
  • 陶瓷铅镉溶出检测前处理实现自动化
    《日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施的研制》项目,首次利用人机界面可视化操作和自动体积定量、自动三维定位、自动温度控制、pH值实时传感、自动液位检测等智能手段,实现了日用陶瓷铅镉溶出量检测浸泡自动加液系统的精确配酸、自动定位定容加液、废酸液自动中和自动排放、自动温度控制、自动酸雾排放等功能,提高了检测效率和准确性,降低了劳动强度,在陶瓷检测领域达到国际领先水平。日用陶瓷铅镉溶出浸泡室自动加液装置主体检测人员进行日用陶瓷铅镉溶出量检测 3月7日,由山东淄博检验检疫局主持研制的“日用陶瓷铅镉溶出浸泡柜自动加液设备”获得国家知识产权局颁发的发明专利证书,这是淄博局建局以来获得的首个国家发明专利。而就在两个多月前,2011年12月20日,此项课题还获得了“2011年度国家质检总局科技兴检三等奖”,成为该局获得的第3个总局科技兴检奖。淄博检验检疫局科技兴检工作由此走上了一个新的台阶。 随着这项技术的研制成功,一直以来,日用陶瓷铅镉溶出量检测浸泡加液依靠人工手动配置实施的做法可望成为历史。 传统检测方法多不足 淄博,我国北方著名的瓷都。日用陶瓷是淄博大宗出口商品之一,主要出口欧美等市场。铅镉溶出量是日用陶瓷产品重要的安全卫生指标。欧美等发达国家对日用陶瓷铅镉溶出量设置了严格的限量要求。 日用陶瓷样品的前处理——醋酸浸泡,是铅镉溶出量实验的重要步骤,该环节对环境温度、浸泡用酸的浓度、避光性等要求甚严。国内最常用的浸泡室为柜式浸泡室,由人工负责配置和添加醋酸溶液,存在占地面积大、劳动防护差、自动化程度低、劳动效率低、精准度难保证等诸多不足。 近几年,随着日用陶瓷产品出口的不断增长以及检验检疫机构对产品抽查密度和检验检测力度的加大,大大增加了陶瓷实验室检测的工作量。提高检测的自动化程度,加快产品检验检测和放行速度,成为当务之急。 因此,研制一套根据产品的器型和容积,既能对多个样品定量自动加入浸泡用标准浓度的醋酸,又能及时排除醋酸挥发成份等有害物质的装置,对有效保护实验人员安全、提高检测结果的准确性、提高工作效率、加快产品检测和验放速度,具有极其重要的意义。 走别人没走过的路 淄博局陶瓷实验室通过对2007年承担的全国日用陶瓷铅镉溶出量能力验证的返回调查结果进行分析,发现全国几个陶瓷主产区的检验检疫部门在相关实验中,对从总体上提高浸泡室的自动化程度以及劳动者防护方面的研究还未展开。国内大部分浸泡室采用的依然是传统的手动/半自动加液方式。根据陶瓷器形不同设定不同加液量的全自动加液装置还没有被研究开发过。经向权威部门检索查新,国外也没有这方面的研究。 作为国家级陶瓷检测重点实验室,也是全国第四家、山东省第一家获得能力验证提供者认可的实验室,淄博局领导和陶瓷实验室相关人员感到,自己有责任、有义务在提高日用陶瓷铅镉溶出量检测前处理自动化程度方面进行革新攻关,勇走别人没走过的路。他们根据掌握的情况,在充分研讨的基础上,及时组织申报了《日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施的研制》课题,并被山东检验检疫局推荐上报国家质检总局立项。2009年3月,课题获得国家质检总局批准立项后,该局立即成立了由分管副局长王克刚任组长的课题研究小组,通过广泛进行资料调研,收集相关测试方法标准,结合检测实践,认真整理分析,制定了课题研究思路及方案。 课题采用目前世界上最先进的控制系统——德国西门子公司生产的PLC作为主控制系统,以实现数据的采集及分析控制;使用最直观、最人性化的人机界面——触摸屏作为操作界面;为减少控制误差,采用最先进的执行机构——步进电机和燕尾轨道来实现动作的精确定位;使用国内最先进、全密封、无泄漏、耐腐蚀的磁力计量驱动泵来实现精确计量。 自动化装置提速增效 经过一年多的努力,淄博检验检疫局成功研制出“日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施”。 该设备主要由防醋酸腐蚀装置、自动设定加入醋酸体积装置、自动定位装置、醋酸挥发物质及时排除实验室装置组成。课题小组通过对醋酸性能的反复试验,设计出了能够配制4%标准浓度醋酸的混液装置。操作人员可从人机操控界面按照预先设定的比值抽取去离子水和醋酸,经配液箱搅拌均匀后,将配置好的醋酸溶液自动输入储液箱。醋酸由储液箱经酸液输送管道进入可控流量的加液枪,再通过自动定位装置的控制,实现各位置点的酸液自动加液。 经过试验检测,该套系统能够实现酸液的自动稀释和自动计量,能够实现不同位置的多点控制加液和准确计量,达到了预期的设计要求,实现了设备的自动化运行,大大提高了检测效率,降低了劳动强度,改善了工作环境。目前,该设备已应用于淄博检验检疫局国家级陶瓷检测重点实验室铅镉溶出量检测实验中,效果良好。 相关背景 2010年8月,国家质检总局在淄博组织召开了《日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施的研制》(编号:2009IK110)科研项目鉴定会。来自系统内外的7名专家组成鉴定委员会,听取了该项目的工作报告和技术报告,审阅了相关课题材料,现场查看了设备的运行、操作,并对研究过程进行了质询。 专家组审议鉴定后一致认为,该项目技术资料完整,数据详实可靠;采用PLC自动化控制技术,利用人机界面可视化操作和自动体积定量、自动三维定位、自动温度控制、pH值实时传感、自动液位检测等智能手段,研制的一套自动化日用陶瓷铅镉溶出量检测前处理设备,实现了检测浸泡自动加液系统的精确配酸、自动定位定容加液、废酸液自动中和、自动排放、自动温度控制、自动酸雾排放等功能,将有效提高检测效率和准确性,降低劳动强度,减少对人体健康危害和环境的污染,填补了国内外同类研究的空白,在陶瓷检测领域达到国际领先水平。
  • 陶瓷放射性超标 上榜品牌诚恳认错
    据了解,本次抽查依据推荐性国家标准GB/T4100-2006《陶瓷砖》和强制性国家标准GB6566-2001《建筑材料放射性核素限量》的规定,对陶瓷砖产品的尺寸、吸水率、破坏强度、断裂模数、有釉砖抗釉裂性、放射性等6个项目进行检验。国家质检总局的抽查被陶瓷行业简称为“国抽”,是陶瓷行业最严格的产品质量抽查,通常是到企业总部直接进行抽检,执行的标准比较严格,企业很难作弊。  国家质检总局此次公布的抽查结果,引起了业内的轩然大波,特别是放射性超标的“黑榜”之上,有几个竟是消费者耳熟能详的知名品牌。记者在网上看到博华陶瓷针对此事的相关公告写道:“广东博华陶瓷有限公司已获悉国家质量监督检验检疫总局2009年第95号公告(即《2009年第2批产品质量国家监督抽查质量公告》)及相关报道。本着积极、负责的态度,我公司现正组织专人,对涉及的两个型号的产品做进一步的调查。相关资讯,将根据实际情况另行发布。”  而另一家上了“黑榜”的品牌瓷砖就相关情况做了说明:“被抽检出有问题的那批砖,是一个国外客户订购的,因为各个国家标准不同,所以才有部分产品超过了国家标准,刚好被抽查到。国内市场销售的砖肯定是严格执行我国国标的。”  放射性污染对人体伤害具体何在  南京市质量技术监督局、南京市产品质量监督检验院的一位负责陶瓷产品检验的主任告诉记者,瓷砖产品的放射性等级检测分a、b、c三类,a类为最好,放射性水平最低,这种瓷砖外包装上会标明:“放射性水平:a。”此外,抛光砖由于其生产的原材料中含有较多的放射性核素成分因素,其危害比釉面砖大。抛光砖必须有国家强制性产品认证(简称三c),而釉面砖目前没有强调必须做“3c”认证,“室内装潢选用的陶瓷砖,必须是a类瓷砖。”  陶瓷的放射性主要由于原料的使用,并且和砖的厚度、尺寸也有关系。在陶瓷的生产中,硅酸锆等原料对产品能起到增白作用,可以美化产品外观。于是,有个别企业只顾增白产品,提高产品档次,而忽略了这些原材料放射性核素含量极高的特点,配方中过多添加锆类原材料,以至于其陶瓷砖产品的放射性超标或放射性核素含量达到、接近临界值。  海泰纳米环境治理公司副总经理周岳鹏说:“放射性污染超标,其在装修建材污染中对人体的危害可以说是最大的,是白血病最大的诱因,特别是氡,人体长期受到辐射,会增加感染癌症的几率。而且,放射性物质是基本上没有办法治理的。”据南京市质监局的工作人员介绍:“陶瓷砖检验出放射性核素超标,并不表示使用了部分超标产品的房屋,空气质量检验就一定会超标。放射性元素在自然界无所不在,对于并不超标的少量放射性辐射我们大可不必耸人听闻,但超过限量的放射性的确对人类健康有很大危害。”  首先,消费者一定要向经销商索要瓷砖的放射性报告,看其是否为“a类”。如果消费者对产品仍然不放心,也可以自行将产品送到专业的检测机构进行检测。  由于放射性物质无色无味,若没有专门的仪器测量,日常生活中人们根本无法辨别哪些瓷砖辐射会超标,所以在装修时尽量不要把室内全部用瓷砖装饰。如果要选砖,最好选择亚光砖。此外,儿童房尽可能不要铺设瓷砖。同时,由于床的高度一般比较低,人躺在床上,正好在氡等放射性元素的较强辐射范围内,我们日常必须多开窗户,使空气流通,保持清新,这样也可以减少瓷砖对人体的辐射。  在所有瓷砖中,抛光砖中超白砖的辐射更强,彩釉砖表面放射性元素氡的析出率比普通砖要高。工艺陶瓷有着精美图案和金属质感,被一些业主用作电视背景墙,有的甚至床头墙面都铺贴工艺陶瓷。据了解,工艺陶瓷是根据其内在质量和外观质量来分类的,目前国际上只在铅、镉等重金属对工艺陶瓷作了规定,但并没有放射性方面的规定,所以消费者在选择上需更加谨慎。
  • 医用陶瓷材料力学测试,且看我英斯特朗
    陶瓷材料是人类生活和现代化建设中不可缺少的一种材料,它兼有金属材料和高分子材料的共同优点。应用领域非常广泛,涵盖科研、医疗、工业、建筑等,具有优异性能的高级陶瓷材料更是生物医疗领域的明星材料,在这类陶瓷材料的力学测试中经常能看到英斯特朗试验机的身影。陶瓷材料在现代医疗领域有着广泛的应用,其中包括补牙、牙冠、贴面、种植体和牙箍。标准ISO6872"牙科-陶瓷材料”对牙科所用陶瓷材料的力学性能做出了规定,同时提供了测试其弯曲强度的基本方法。测试时,采用英斯特朗万能材料试验机或ElectroPuls电子动静态测试系统,借助Bluehill软件运行试验及分析试验结果。采用微型压缩夹具,安装不同直径的砧子,装载小尺寸样品。测试既可在空气中进行,亦可浸在液体槽中来模拟人体内环境。英斯特朗弯曲夹具符合ISO6872标准试验的测试要求,夹具的特殊设计能确保跨度距离和对中的高精度,解决了这类试验中关键的对齐及平行问题。当今社会中,无数人正在遭受颈部椎间盘突出和腰间盘突出的痛苦,这是一种常见的人体老化现象。当连接脊椎的椎间盘失去灵活性和冲击吸收能力时,神经和脊髓就会受到压迫,引起手臂和颈部的慢性疼痛。过去40年,医学上往往采用颈椎融合术解除此病患,然而这种手术通常会导致颈骨不能运动,造成颈部其余椎间盘的负荷加重。针对上述情况,全新的临床试验是将人造的颈椎间盘组件,即由钛和陶瓷复合材料制成球窝结构,植入脊椎后可以代替受损的颈椎间盘,使患者的人造椎间盘的运动幅度可以和正常的颈椎间盘保持同样的水平。除了上述临床试验以外,医疗器械制造商也在研究人造颈椎间盘在遭受冲击时如何持保持持续有效,以及由钛杯边缘产生的陶瓷球开裂或剥落和固定于底座的陶瓷附件松动或损坏的情况。采用英斯特朗9350HV型落锤试验机,安装45kN (10000 磅) 载荷容量的冲击头可为试验提供足够大的载荷容量。该系统还配有气动回弹制动器,有效防止试样受到任何二次冲击。由于样品的大小、形状和样式不同,英斯特朗可针对客户的特殊需求定制平面锤头和承载夹具。根据英斯特朗9350HV型落锤试验机的控制特性,选择冲击能量和落锤点,客户能够系统地增加每个试样的载荷量级。这样就能收集人造椎间盘受到不同冲击时的应变数据,然后形成产品的冲击性能记录。除上述应用场景外,英斯特朗试验机也可应用在其他高性能陶瓷材料或结构的测试中。SiC陶瓷具有高强度、高硬度、可靠的化学稳定性、良好抗热冲击性能,在国防、核能和空间技术、汽车工业及海洋工程等领域获得了广泛应用。Instron试验机可对SiC陶瓷材料的抗弯强度性能进行检测,测出其三点抗弯强度。另外,英斯特朗试验机也可以应用在双重固化树脂陶瓷粘接耐久性测试上。将样品通过502胶水固定在自制器具上,然后将器具安装在Instron万能材料试验机上,使用缝合线(直径为0.3~0.349mm)沿着树脂柱粘接区的界面,通过抗拉实验模式对树脂柱与陶瓷的粘接界面进行剪切加载,加载速度为1.0mm/min,直至粘接界面断裂,即可测试双重固化树脂陶瓷粘接耐久性。
  • 加热台面性能对陶瓷电热板的影响
    陶瓷电热板主要用于样品金属元素分析前对样品进行加热、消解、赶酸处理,分体控制与大尺寸设计的特点,避免人员受到酸雾的伤害和大批量处理样品,安全保障、提高实验工作效率。作为一款新型的实验室用电热板,加热台面已不同于以往的传统台面,采用陶瓷作为加热台面有哪些优势呢?陶瓷加热台面又跟其他材质台面有哪些不同?优势特点1、玻璃陶瓷材质的台面耐磨损、防腐蚀、易清洁且不会生锈,让陶瓷电热板使用寿命更长久。 2、分体控制系统,控制器与加热体分离控制,避免了实验人员在加热消解过程受到酸雾的直接伤害,人体安全。 3、数显控温系统,精确控制温度,升温速度快,加热均匀,温度可达到400℃满足大部分样品消解。4、样品处理能力强:加热台面为500x400mm,可放置48个50ml三角瓶。5、超薄机身,机身的厚度为5cm左右的,便于放置实验室通风柜内且不占用多余空间。不同加热台面材料性能比较 台面使用温度防腐性易清洁性HT-300陶瓷电热板400℃不长锈一抹即净不锈钢台面400℃易长锈,寿命短长锈,难清洁喷涂化工陶瓷台面300℃涂层磨损后易长锈不易清洁喷涂特氟龙台面250℃涂层磨损和易长锈难清洁适用样品范围实验陶瓷电热板在很多领域得以广泛应用,主要有食品、纺织、塑料、地质、冶金、煤炭、生物医药、石油化工、环境监测、污水处理、电池制造、化妆品、保健品等多个领域。
  • 沃尔玛等上“黑榜” 部分陶瓷用品铅超标11倍
    近日,广东省工商局发布《广东省2011年流通领域日用陶瓷质量监测情况通报》(下称《通报》),通过对市场流通的日用陶瓷商品监测发现,近三成产品铅、镉溶出量等指标不合格,特别严重的铅溶出量超标11.3倍。其中,沃尔玛、华润万家赫然在列。  此次检测共有36家销售单位抽取了180款日用陶瓷商品,涉及生产单位53家。依据国家相关标准,对商品的铅溶出量、镉溶出量、热稳定性、抗冲击、产品标识标注等项目进行检测,检测发现有46款商品核查总体不合格。其中,裕行陶瓷有限公司生产的陶瓷用品铅溶出量单值最高56.4mg/L,比国家强制性标准允许限量分别超出11.3倍。铅镉是有毒的重金属,如果人们长期摄入铅镉而聚于人体内,将会影响人的造血、神经、肾脏和其他器官的功能。  值得注意的是,国内大型连锁超市华润万家、沃尔玛、新一佳等也牵涉其中,华润万家珠海柠溪店、沃尔玛佛山季华分店分别检出不合格瓷器。华润万家公关部负责人告诉《第一财经(微博)日报》:“公司已经在第一时间将所有涉及商品下架,并要求生产厂家提供相关批次的检测报告。而此前购买相关产品的消费者可以前来退换货。”而截至记者发稿,沃尔玛公关负责人对此并未表态。  事实上,卷入其中的企业可能更多。以华润万家不合格产品茶杯为例,记者在其生产企业广州市均乐家庭用品有限公司网站上看到,公司跟广东省的好又多、大福源、易初莲花、家乐福、华润万家、世纪联华、百佳等大部分终端销售市场均有合作。  此次检测暴露两大问题,家具用品送检流于形式,以及儿童餐具标准缺失。  华润万家相关负责人表示,一些陶瓷日用品生产企业只要提供国家质检报告,在质量上就符合进入华润万家的上架门槛。业内专家质疑:“正如此前地板行业送检一样,陶瓷行业也存在这类问题,送检达标产品即可进入流通渠道,这显然是不科学的。”对于家具行业流通商品,很多企业仅靠一张送检报告便走遍天下,国家层面也只是每年对其进行一定程度的抽检。“很多商品已经在市场流通很久才被发现,有的甚至一直大行其道,给消费者带来伤害。”前述专家指出,“首先,必须加强抽检力度,国家抽检力度远远不够,其次,应该有更加科学严格的方法对家具行业流通商品进行检测。送检只可作为企业自检的参照,不能作为流通市场的通行证。”  此次曝光的陶瓷用品,有部分属于儿童陶瓷餐具,一旦儿童使用了这些铅、镉超标的餐具,后果将不堪设想。不仅如此,一位家具行业专家还向记者透露,即便达到国家标准也未必适合儿童使用,儿童体质较弱,其使用的餐具乃至整个儿童家具都必须有更为严格的安全、环保标准,但是至今尚未有这类标准出台。
  • 欧盟提议加强对食品接触陶瓷的要求
    近日,欧盟委员会发布了加强对食品接触陶瓷要求和范围的法规草案。新草案将对铅和镉的迁移做出新的限制,同时会制定食品接触陶瓷边沿的新统一标准。  新法规草案主要根据法规(EC) No 1935/2004,将废除有关食品接触性陶瓷的84/500/EC指令及其修订版2005/31/EC指令。草案包括上釉、搪瓷及/或经过装饰的食品接触性陶瓷材料及物品。根据新提案,食品接触陶瓷应归为3类中的某类,相关方有义务提供合规性声明。84/500/EEC指令法规草案 范围与食品接触材料陶瓷分类第一类 不可填充的材料和物体 可以被填充,但内部深度(从最低点测量到经过上边缘的水平面)不超过的物体。 第二类除第一类和第三类以外的可被填充的物体 第三类 烹饪器皿 容量3L的包装和储存容器要求(迁移)第一类≤0.8mg/dm2(铅)≤0.07 mg/dm2(镉) 第二类≤4 mg/L(铅)≤0.3 mg/L(镉)第三类≤1.5 mg/L(铅)≤0.1 mg/L(镉)第一类≤0.002mg/dm2(铅)≤0.001 mg/dm2(镉) 第二类≤0.01 mg/L(铅)≤0.005 mg/L(镉)第三类≤0.0038mg/L(铅)≤0.0019 mg/L(镉)其他要求合规性声明合规性声明生效日期1984在欧盟官方公布后的第20日  注:mg/dm2毫克每平方分米 mg/L毫克每升
  • 古陶瓷鉴定开启光谱检测新模式
    日前,香港皇廷2016秋季中国艺术品拍卖会在厦门开始了其全国巡展首站,展出了19件历朝陶瓷精品。这些拍品采用了“科技+人文”鉴宝的新模式,也是目前唯一附有国际标准化组织ISO认证机构检测报告的古陶瓷拍品。  据介绍,仪器检测是将瓷器放进真空环境的X荧光光谱仪后,再经过拉曼光谱仪检测釉面成分。随后,专家根据检测数据进行对比和经验分析,给出古陶瓷的年代与真伪的参考报告。
  • 胶东最大陶瓷研发中心落户平度
    为最大程度参与国内装饰瓷砖市场竞争,3月7日,青岛地区唯一的室内瓷砖生产企业华青集团入驻平度,青岛地区最大的瓷砖市场正式开业。  目前,华青陶瓷在研发方面加大了投入,已经组建胶东地区最大的陶瓷研发中心 在人力资源方面引进佛山知名陶企顶级行业人才 在工艺流程方面引进意大利的生产、测试设备,42道钻石级检测工序确保了产品精细化零缺陷 在材料方面精挑细选采用最优质的釉料和无辐射的极品矿料。
  • 美国丹纳赫西特新推出Model278压力传感器
    日前,丹纳赫Setra(西特)全新推出Model278大气压力传感器。该产品长期稳定性小于0.1mb/年,可用于要求精确测量、快速响应和长期稳定、长期可靠的环境中。  为了经受自动气象站(AWS)恶劣的环境和环境监测需要,Model278外壳采用了不锈钢和聚酯材质构成。可插拨的5针端子排使得连接数据记录仪和信号连接非常简单,1/8“倒刺压力接口简化了气路连接,传感器的体积只有(3.6”×2.4“×1.0”)是应用和替代现有产品的理想选择。  Model278可工作在-40℃~60℃(-40°F~140°F)的温度范围内。用户可选择0-2.5VDC或0-5VDC的输出,3线或4线电路和9.5-28VDC激励。传感器工作功耗很低(3mA标称)。它的休眠特性使功耗降低到1μA,并且当压力读数快速启动时传感器也能快速启动。  Model278采用Setra的SETRACERAMTM电容式敏感元件和独特的IC模拟电路,这从根本上简化了设计,热稳定玻璃熔融陶瓷敏感腔结合Setra久经考验的电容式电荷平衡IC电路,使得传感器在精度和环境补偿方面都有出色的表现。SetraceramTM敏感元件具有卓越的热膨胀系数和低机械迟滞使得Model278具有良好的长期稳定性。
  • 投入1500万 玉林建国家级陶瓷检测实验室
    日前,国家质检总局正式下文批准在玉林市筹建国家级陶瓷检测重点实验室,这标志着玉林市在陶瓷领域的技术研发能力居于国内行业领先水平。玉林重点实验室的建成,将使玉林市的陶瓷检测、科研制标、科学研究等方面提高到一个新的水平,它不仅将成为西南地区陶瓷产品检测研究和技术交流的中心,而且将在全国乃至世界陶瓷科研领域中占据重要地位。  拥有一个国家级重点陶瓷实验室,是10多万陶瓷产业人的梦想  近几年来,玉林市陶瓷出口产业迅猛发展,成为第一大创汇产业。至2009年,玉林市日用陶瓷出口量已跃居全国第三位,直接从事日用陶瓷生产人员达10多万人。  目前,玉林市拥有一个自治区级陶瓷工业园区北流日用陶瓷工业园区,全市有各类日用陶瓷生产企业近100家,具有出口质量许可证企业近40家,日用陶瓷年出口总量在全国起着举足轻重的作用。作为全国出口日用陶瓷行业龙头企业的广西三环集团,2001年至今连续9年日用陶瓷产量、销售收入、出口创汇三项指标位居全国同行业首位。  然而,玉林市当前的陶瓷产品研发、技术含量、产品档次与一些传统陶瓷产区相比还有一定差距,陶瓷出口企业对国外提出的一些较高要求的检测项目,还需送区外的得到国际认可的实验室进行检测,这不但增加了企业负担,还影响到企业交货时间等。更值得思考的是,由于玉林市尚没有一个有实力的陶瓷产品的设计、开发中心,没有能力对传统产品进行及时更新换代,随着原材料、煤电、人工成本的不断上涨,玉林市这一优势产业将会面临被淘汰的危险。  拥有一个国家级重点陶瓷实验室,是玉林10多万陶瓷产业人的梦想,它的建成也将填补玉林尚无国家重点实验室的历史空白。  投入1500万元建设陶瓷实验室,开启划时代陶瓷产业革命  建设国家级陶瓷检测重点实验室,对玉林陶瓷生产有着划时代的重要意义。玉林检验检疫局局长陈爱荣介绍,按照建设目标要求,玉林重点实验室将建成布局合理、层次分明、功能配套,集检测、科研、开发、信息一体化的实验室,配备国际一流的种类齐全的包括日用陶瓷、建筑陶瓷和卫生陶瓷等全项目检测仪器设备,可以满足广西、乃至西南区域开展陶瓷检测新项目、新方法的研究以及适应快速反应和应急能力的需求,也将成为国内外互认的第三方社会实验室。  据悉,玉林重点实验室的建设,在现有玉林检验检疫局陶瓷实验室基础上计划增加投入1500万元,其中实验室设施设备投入1000万元,科研项目和专业人员培训投入各200万元,实验室修缮改造300万元。建成后的玉林重点实验室,拥有先进的检测设备、雄厚的技术力量,检测能力达到国际先进水平,检测结果实现与欧盟等国际权威检测机构合作和互认,将成为国家认监委日用陶瓷能力验证依托实验室,成为中西部乃至全国最有影响的陶瓷检测中心,不仅能开展日用陶瓷、建筑陶瓷和卫生陶瓷的全项目检测,还可以帮助出口企业提高产品质量,通过共同研发新产品提高出口产品和产品档次,加快玉林市的外向型经济发展。  目前,玉林重点实验室正在紧锣密鼓筹建之中。它的建成将有效解决玉林市陶瓷生产、升级换代中可能产生的技术问题,发挥信息和技术优势帮助企业有效应对国外技术壁垒,解决出口发达国家提出的检测问题,加强陶瓷生产企业技术人才培训,提高生产管理水平,确保产品质量,增强玉林陶瓷产品在国外市场的竞争力,从而提升玉林陶瓷的品位乃至玉林的知名度。
  • 宁波材料所高品质碳化硅陶瓷先驱体研制获进展
    p style="text-align: justify " 碳化硅(SiC)陶瓷具有耐高温、耐磨损、耐腐蚀、耐辐照、抗氧化、热膨胀率小和热导率高等优异的综合性能,在航空航天、核电、高速机车、武器装备等关键领域具有重要的应用价值。SiC陶瓷因其极高的热稳定性和强度,成型加工困难。/pp style="text-align: justify " 目前,国际上陶瓷材料的制备主要采用传统的粉末成型方法,包括微粉制备、成型(压延、挤塑、干压、等静压、浇注、注射等方式)、烧结(热压烧结、反应烧结、常压烧结、气氛压烧结、热等静压烧结、放电等离子体烧结等方式)、加工等过程。最近30年,陶瓷材料新型制备工艺层出不穷,在各个环节上均有所突破,但仍存在局限性,制备温度高(虽然添加烧结助剂可降低烧结温度,但烧结助剂又会影响陶瓷的性能)、不易获得均匀的化学成分与微观结构、难以进行精加工以及陶瓷材料高脆性难以解决等问题。/pp style="text-align: justify " 先进的陶瓷制备技术必须在原料制备、成型、烧结等方面有所突破。自1975年Yajima等利用聚碳硅烷制备出SiC陶瓷纤维后,先驱体转化陶瓷技术进入人们的视野。根据BCC Research调查报告,2017年全球陶瓷先驱体市场为4.376亿美元(其中,SiC陶瓷先驱体占40.4%市场份额),预计到2022年将达到7.124亿美元,年均增长10.2%。所谓先驱体转化陶瓷是首先通过化学合成方法制得可经高温热解转化为陶瓷材料的聚合物,经成型后,再通过高温转化获得陶瓷材料。其具有诸多优点:分子的可设计性:可通过分子设计对先驱体化学组成与结构进行设计和优化,进而实现对陶瓷组成、结构与性能的调控;良好的工艺性:陶瓷先驱体属于有机高分子,继承了高分子加工性好的优点,例如可溶解浸渍、可纺丝、可模塑成型、可发泡、可3D打印等,因此能用于制备传统粉末烧结工艺难以获得的低维材料和复杂构型,例如陶瓷纤维、陶瓷薄膜、复杂立体构件等;可低温陶瓷化,无需引入烧结助剂;可制备三元和多元共价键化合物陶瓷;可获得纤维增韧的陶瓷材料,从而解决陶瓷材料高脆性问题。/pp style="text-align: justify " 先驱体转化陶瓷技术可以灵活控制和改善陶瓷材料的化学结构、相组成、原子分布和微结构等,具有传统陶瓷制备技术无法比拟的优势。以先驱体转化法制备陶瓷材料,其关键之处在于能否制备出合适的先驱体,这直接决定了是否能成功制备出优异性能的陶瓷材料。目前成功开发并应用的SiC陶瓷先驱体主要是固态聚碳硅烷(PCS)。但PCS作为SiC陶瓷先驱体仍存在不足,如PCS中C/Si为2,其热解产物富碳,最终影响SiC陶瓷的性能;PCS陶瓷产率较低;其在室温下为固体,用于形成复合材料中陶瓷基体时,浸渍过程中需要二甲苯、四氢呋喃等溶剂,而在裂解之前又需要蒸发这些溶剂,导致制备周期长和工艺繁琐等。/pp style="text-align: justify " 近日,中国科学院宁波材料技术与工程研究所核能材料工程实验室经过研究,制备出一种流动性好(复数粘度0.01~0.2Pa· S)、存储时间长(>6个月)、氧含量低(~0.1 wt%)、陶瓷产率高(1600℃陶瓷产率达~79wt%)、陶瓷产物中C/Si为~1.1,且1500℃静态氧化后质量变化小于3%的液态超支化聚碳硅烷(LHBPCS)。样品品质获得多个应用单位的肯定。此外,该研究团队在LHBPCS固化交联机理上也有深入研究,能够实现其光固化成型和低温热固化成型,凝胶化时间仅数分钟,且结构致密无泡孔。/pp style="text-align: justify " 相关研究成果发表在J. Eur. Ceram. Soc.、Adv. Appl. Ceram.、J. Am. Ceram. Soc.等期刊上。相关研究得到了国家自然科学基金重大研究计划、中科院重点部署项目等的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/9ac36bf1-5a4d-425e-8eea-cf053400b28a.jpg" title="45194.jpg"//pp style="text-align: center "图1.制备的LHBPCS及交联固化与烧结后致密形貌/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/27cabeb1-60bb-4654-a4ce-51691bd77624.jpg" title="13639.jpg"//pp style="text-align: center "图2.制备的LHBPCS在不同热引发剂(TBPB)含量下交联速率变化/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制