当前位置: 仪器信息网 > 行业主题 > >

土壤石灰缓冲容定仪

仪器信息网土壤石灰缓冲容定仪专题为您提供2024年最新土壤石灰缓冲容定仪价格报价、厂家品牌的相关信息, 包括土壤石灰缓冲容定仪参数、型号等,不管是国产,还是进口品牌的土壤石灰缓冲容定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤石灰缓冲容定仪相关的耗材配件、试剂标物,还有土壤石灰缓冲容定仪相关的最新资讯、资料,以及土壤石灰缓冲容定仪相关的解决方案。

土壤石灰缓冲容定仪相关的资讯

  • 沈仁芳:建立组织委员会直接领导第三次全国土壤普查
    p  在今年的全国两会上,全国人大代表、 中国科学院南京土壤研究所所长沈仁芳带来了两份建议,分别是《关于尽快开展第三次全国土壤普查工作的建议》和《关于提高南方农田土壤抗酸化能力的建议》。/pp  在第一份建议中,沈仁芳表示,土壤安全是保障国家粮食安全与生态环境安全的前提和基础。土壤资源数量和质量家底是土壤安全保障的基本要素。我国土壤资源数量和质量均属严重制约型,人地、人粮矛盾突出。特别是近30年来,我国优质耕地急剧减少、基础地力持续下降、水土流失、土壤酸化、土壤污染等问题突出,土壤安全形势日趋严峻。然而,我国土壤资源具有类型多、分布广、利用方式多、利用强度大等特点,土壤问题多样,成因复杂,当今国际上还没有哪一个国家像中国这样,急需土壤科技的发展。/pp  沈仁芳建议,由国家统一建立一个组织委员会,直接领导第三次土壤普查工作,由国家国有自然资源资产管理和自然生态监管机构牵头,联合农业部、国土资源部、环保部、财政部及有关单位的领导和专家参加,协调各部门和各行业,保障土壤普查的顺利进行。成立第三次土壤普查技术委员会,负责技术方案的制订。技术委员会应主要为土壤专家组成,由中国土壤学会在全国遴选专家,吸收农业、环保和国土资源部门的技术专家参加,由领导小组任命技术总负责人。技术委员会可再分若干技术组。土壤普查后,要编制土壤数字化地图,开发多尺度、多源土壤信息大数据的集成与信息化管理技术。建立国家和区域土壤档案、质量监测平台与预警体系,建设多位一体的土壤信息服务网络。开展国家土壤功能分区工作。充分发挥中央、地方和基层财政和科研单位的作用。全国土壤普查是一个浩大的工程,需要投入大量的资金和人力物力。统筹中央资金和地方财政,也需要大量基层科研单位和科技人员的帮助。由于工作量大,耗时长,普查可分期、分区、分类进行,各省区可根据条件分先后开展,相对独立地完成普查工作。/pp  在第二份建议中,沈仁芳表示,我国南方亚热带地区水热资源丰富,农林业生产潜力巨大,是经济作物和粮食的主产区,但由于分布的多为酸性土壤,并且随着近年来大气酸沉降不断加剧和大量施用化肥等人为活动干扰,使得这一区域土壤酸化速度显著加快,土壤酸化和肥力退化问题突出,严重制约了土壤生产潜力的发挥。土壤酸化不仅对农林业生产和生态环境会造成严重危害,同时土壤酸化还会加重重金属污染物的危害。土壤酸化使土壤中重金属的活性增加,增加了植物对这些有害重金属的吸收量,因此加强土壤酸化防治工作刻不容缓。/pp  沈仁芳认为,施用石灰等碱性改良剂是目前治理土壤酸化的常用方法,但是由于农田土壤酸化是一个反复循环的过程,改良后的土壤会随着化学肥料的持续施用再次酸化,所以需要反复施用改良剂。鉴于亚热带地区土壤的酸缓冲容量低,抗酸化能力弱,应该更加重视提升该地区农田土壤的抗酸化能力,有效减缓土壤酸化的速度,使农田土壤在一个较长时间内维持酸碱度基本稳定,从源头上解决土壤酸化问题。/pp  对此,沈仁芳提出3点建议:/pp  一是制订土壤酸化的分类治理方案。2005年启动的全国测土配方施肥项目,已获得全国各地海量的农田土壤pH数据,应充分利用这一大数据资源研究制订我国土壤酸化的分类防治方案。对土壤pH低于5.0的强酸性土壤,建议在施用石灰等碱性改良剂中和土壤酸度的同时,采取有效措施同步提升土壤的抗酸化能力;对土壤pH在5.0-6.0范围的酸性和弱酸性土壤,建议采用阻控措施,通过提升土壤的抗酸化能力减缓土壤酸化速度。对土壤酸化的提前阻控,可降低治理成本,效果事半功倍。建议结合目前国家正在实施的耕地休耕试点,优先选择发生严重酸化的土壤进行休耕,恢复土壤肥力和正常功能。/pp  二是增施有机肥提高土壤抗酸化能力。/pp研究表明,长期施用有机肥或将有机肥与化肥配合施用可以促进土壤酸碱平衡,减缓土壤酸化。施用有机肥可提高土壤有机质含量,从而提高土壤的酸缓冲容量,显著提高土壤的抗酸化能力。建议在亚热带地区的农田中大力推广各类有机肥,并坚持长期施用。由于畜禽粪制备的有机肥含有一定量的重金属等有害物质,存在环境和健康风险,因此需要采取有效措施降低或去除畜禽粪有机肥中的有害物质,避免带来二次污染。/pp  三是积极研发和推广农作物秸秆炭化还田技术。农作物秸秆经过热解炭化制备的生物质炭是一种优良的酸性土壤改良剂,不仅可以在短期内中和土壤酸度,提高土壤pH,而且可显著提高土壤的酸缓冲容量和抗酸化能力,对酸化土壤的治理及化学肥料持续施用导致的土壤再酸化的阻控均有很好的效果,可在较短时间内显著提高土壤的抗酸化能力。与传统秸秆直接还田相比,炭化还田具有减量化、养分富集、有机物不易分解等优点。施用生物质炭还可改善土壤理化性质,提高土壤肥力水平。但目前主要的做法大多是将秸秆收集到固定场所再进行炭化处理,成本很高,难以推广。建议鼓励相关部门多学科、多专业交叉与合作,加强秸秆田间就地炭化技术以及炭化与机械化还田一体技术的研发,降低秸秆炭化处理成本,为大面积推广消除障碍。/p
  • 同行客户通过仪器信息网成功订购远慕缓冲液
    上海远慕生物科技公司是国内elisa试剂盒优质供应商,代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品。欢迎来电咨询。 同行客户通过仪器信息网成功订购远慕缓冲液,下面是客户跟我们的聊天记录: 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当时就下了订单。 常用缓冲溶液的配制: 乙醇-醋酸铵缓冲液(pH3.7) 取5mol/L醋酸溶液15.0ml,加乙醇60ml和水20ml,用10mol/L氢氧化铵溶液调节pH值至3.7,用水稀释至1000ml,即得。 三羟甲基氨基甲烷缓冲液(pH8.0) 取三羟甲基氨基甲烷12.14g,加水800ml,搅拌溶解,并稀释至1000ml,用6mol/L盐酸溶液调节pH值至8.0,即得。 三羟甲基氨基甲烷缓冲液(pH8.1) 取氯化钙0.294g,加0.2mol/L三羟甲基氨基甲烷溶液40ml使溶解,用1mol/L盐酸溶液调节pH值至8.1,加水稀释至100ml,即得。 三羟甲基氨基甲烷缓冲液(pH9.0) 取三羟甲基氨基甲烷6.06g,加盐酸赖氨酸3.65g、氯化钠5.8g、乙二胺四醋酸二钠0.37g,再加水溶解使成1000ml,调节pH值至9.0,即得。 乌洛托品缓冲液 取乌洛托品75g,加水溶解后,加浓氨溶液4.2ml,再用水稀释至250ml,即得。 巴比妥缓冲液(pH7.4) 取巴比妥钠4.42g,加水使溶解并稀释至400ml,用2mol/L盐酸溶液调节pH值至7.4,滤过,即得。 巴比妥缓冲液(pH8.6) 取巴比妥5.52g与巴比妥钠30.9g,加水使溶解成2000ml,即得。 巴比妥-氯化钠缓冲液(pH7.8) 取巴比妥钠5.05g,加氯化钠3.7g及水适量使溶解,另取明胶0.5g加水适量,加热溶解后并入上述溶液中。然后用0.2mol/L盐酸溶液调节pH值至7.8,再用水稀释至500ml,即得。 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 缓冲盐使用不当对色谱柱影响很大!该注意什么?如何解决?
    p style="text-indent: 2em "柱压升高/pp style="text-indent: 2em "原因:缓冲盐使用不当导致缓冲盐析出,堵塞塞板和键合相颗粒之间的孔隙,阻碍流动相传质,引起柱压升高;/pp/pp style="text-indent: 2em " /pp style="text-indent: 2em "相同化合物的保留时间发生变化/pp style="text-indent: 2em "原因:如果没有冲洗干净就进行进样,色谱柱内含有的盐会使化合物的保留时间发生变化;/pp/pp style="text-indent: 2em " /pp style="text-indent: 2em "柱效下降/pp style="text-indent: 2em "原因:/pp style="text-indent: 2em "i)有些缓冲盐会渗入到键合相的深处,损害硅胶基体,导致色谱柱键合相流失,柱床变松,柱效下降 /pp style="text-indent: 2em " /pp style="text-indent: 2em "ii)凝结在键合相表面,使C18碳链难以舒展,对物质的保留能力下降,导致柱效下降。因此用过缓冲盐后需要对色谱柱进行冲洗,水中缓冲盐浓度较大时应特别引起注意。/pp style="text-indent: 2em " /pp style="text-indent: 2em "流动相中缓冲盐的正确使用方法:/pp style="text-indent: 2em "1. 使用前的处理: 在使用缓冲盐作流动相之前需要用不含缓冲盐的流动相冲洗色谱柱,直至基线平稳。原则上,用于冲洗的流动相与分析时所用的流动相含水的比例相同(或含水更多),不同的只是用于冲洗用的流动相中不含缓冲盐。理由:缓冲盐通常易溶于水,难溶于有机溶剂。用含缓冲盐的(特别是做流动相的水为饱和的缓冲盐溶液时)流动相进行分析时,如果分析前色谱柱中用于保存色谱柱的流动相中含水的比例相对较小,不先冲洗掉,接下来做样品的时候所用的流动相中如果有机溶剂含量大,而其比例中所含的水又不足以溶解该缓冲盐时,缓冲盐将会在色谱柱柱体上析出,沉积下来,这将可能导致上述对色谱柱的损害。/pp style="text-indent: 2em " /pp style="text-indent: 2em "2. 使用后的处理:用与分析时含水比例相同的流动相(与分析用流动相唯一的区别是,用于冲洗的流动相不含缓冲盐)进行冲洗约30min,直至基线平稳。如果该色谱柱在接下来很长的一段时间内不使用,要长期保存,则需再加上一步,即用纯的有机溶剂冲洗一遍,直至基线平稳。/pp style="text-indent: 2em " /pp style="text-indent: 2em "使用缓冲液要注意几点:/pp style="text-indent: 2em "1:避免使用盐酸盐,盐酸盐对钢质有腐蚀作用。br//pp style="text-indent: 2em " /pp style="text-indent: 2em "2:缓冲液最好要现配现用,往往缓冲液是良好的菌类培养液,隔天或放置长时间实验时会有很多怪现象发生。/pp style="text-indent: 2em " /pp style="text-indent: 2em "3:实验后不可用有机溶剂直接过度,有机溶剂会处使盐类析出,造成液路或色谱柱堵塞,可用95:5的水甲醇冲洗。/pp style="text-indent: 2em " /pp style="text-indent: 2em "4:使用缓冲液要及时掌握ph范围,做到胸中有数。/pp style="text-indent: 2em " /pp style="text-indent: 2em "5:清洗液路和柱子时,有温控可加热到30摄氏度易于冲洗。/pp style="text-indent: 2em " /pp style="text-indent: 2em "6:长时间用缓冲溶液要注意观察接头处有无析出,若有白色盐类析出,可考虑一定周期用10%硝酸冲洗一下液路(拆下柱子,走30ml,再用5倍水冲洗)可以避免液路的堵塞。/pp style="text-indent: 2em " /pp style="text-indent: 2em "7:选择缓冲液要用可靠的试剂,避免不纯的盐类造成不必要的麻烦。/pp style="text-indent: 2em " /pp style="text-indent: 2em "如果流动相中有机溶剂的比例很高是不能用来冲洗缓冲盐的,是洗不出来的。通常C18柱先用5%~10%的甲醇冲洗,是可以把缓冲盐冲洗出来的,然后用纯的有机溶剂来保护柱子。最好的方法是使用与流动相相同浓度不含盐的流动相进行清洗。但就是速度慢一些。用水是为了快速替换,一般在15分钟以内最好,且用0.8的流速较好. 如果用纯水冲,容易造成键合的碳链的流失,最好用5%~10%甲醇水溶液冲。可以用纯水代替流动相中的缓冲液,有机相不变。这样冲洗柱子比较稳妥。/pp style="text-indent: 2em " /pp style="text-indent: 2em "色谱柱异常及解决办法/pp style="text-indent: 2em "柱压与硅胶基质的形态(如无定形或球形硅胶)、颗粒大小、填料合成条件、装柱条件、所用流动相和分析时的温度有关。不同厂家的色谱柱柱压会有所差别,相同流动相和温度的条件下,不同厂家的新色谱柱有的柱压可能相差4、5个MPa,特别是低端和高端色谱柱之间,这一区别比较明显。这是由色谱柱厂家所选用的硅胶基质及其生产条件决定的,这种差异的存在是正常的。同时需要说明的一点是,柱压与柱效有一定的关系,通常柱效高的色谱柱柱压相对而言会高一点,但柱压高的色谱柱并不一定就具有高柱效。/pp style="text-indent: 2em " /pp style="text-indent: 2em "在色谱柱的使用过程中柱压通常会出现两种升高的形式:/pp style="text-indent: 2em " /pp style="text-indent: 2em "第一种是,随着使用时间的延长色谱柱柱压慢慢上升,这是正常的;/pp style="text-indent: 2em " /pp style="text-indent: 2em "第二种是,使用过程中(流动相和温度没有改变的条件下)色谱柱压力突然升高很多。这种压力突然升高的现象,通常是由工作人员操作不当引起的。/pp style="text-indent: 2em " /pp style="text-indent: 2em "原因:/pp style="text-indent: 2em "1)样品太脏,使用前没有过滤,导致柱筛板堵塞;/pp style="text-indent: 2em "2)样品含有的杂质在流动相中的溶解性不是很好,与流动相混合后析出,导致柱塞板堵塞; /pp style="text-indent: 2em "3)使用缓冲盐,处理错误,缓冲盐在色谱柱中析出,堵塞塞板和键合相颗粒之间的孔隙。/pp style="text-indent: 2em " /pp style="text-indent: 2em "解决办法对于第二种,即柱压突然升高的情况,通常有以下几种解决办法:/pp style="text-indent: 2em " /pp style="text-indent: 2em "1)将色谱柱反接,用含水比例较大的流动相进行冲洗。/pp style="text-indent: 2em "2)色谱柱进样一端的筛板取下,分别放在水中和甲醇中超声或更换新的柱筛板。如果柱效没变,但柱压仍然较高,则应考虑进样端填料受污染的问题,因此除了取下进样端筛板超声外,还需要挖掉进样端的部分填料,挖去填料之前先检查一下填料的颜色,如果填料的颜色发生了变化,则应该挖掉直到见到白色的填料为止。/pp style="text-indent: 2em " /pp style="text-indent: 2em "挖掉后色谱柱将出现一个缺口,填补缺口的填料可以从另一支相同品牌、相同型号的报废色谱柱的出口端获得,填料用有机溶剂如甲醇等调成糊状装入缺口处,压紧刮平,再装上筛板。/pp style="text-indent: 2em " /pp style="text-indent: 2em "柱子使用经验谈:/pp style="text-indent: 2em "色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。br//pp style="text-indent: 2em " /pp style="text-indent: 2em "1、样品的前处理:/pp style="text-indent: 2em "a、最好使用流动相溶解样品。/pp style="text-indent: 2em "b、使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。 /pp style="text-indent: 2em "c、使用0.45µ m的过滤膜过滤除去微粒杂质。/pp style="text-indent: 2em " /pp style="text-indent: 2em "2、流动相的配制:/pp style="text-indent: 2em "液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点:/pp style="text-indent: 2em "a、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。/pp style="text-indent: 2em "b、流动相具有一定惰性,与样品不产生化学反应(特殊情况除外)。/pp style="text-indent: 2em "c、流动相的黏度要尽量小,以便在使用较长的分析柱时能得到好的分离效果;同时降低柱压降,延长液体泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。/pp style="text-indent: 2em "d、流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最好使用对紫外吸收较低的溶剂配制。/pp style="text-indent: 2em "e、流动相沸点不要太低,否则容易产生气泡,导致实验无法进行。/pp style="text-indent: 2em "f、在流动相配制好后,一定要进行脱气。除去溶解在流动相中的微量气体既有利于检测,还可以防止流动相中的微量氧与样品发生作用。/pp style="text-indent: 2em " /pp style="text-indent: 2em "3、流动相流速的选择:/pp style="text-indent: 2em "因柱效是柱中流动相线性流速的函数,使用不同的流速可得到不同的柱效。对于一根特定的色谱柱,要追求最佳柱效,最好使用最佳流速。对内径为4.6mm的色谱柱,流速一般选择1ml/min,对于内径为4.0mm柱,流速0.8ml/min为佳。当选用最佳流速时,分析时间可能延长。可采用改变流动相的洗涤强度的方法以缩短分析时间(如使用反相柱时,可适当增加甲醇或乙腈的含量)。/pp style="text-indent: 2em " /pp style="text-indent: 2em "注意:/pp style="text-indent: 2em "a.由于甲醇廉价,对于反相柱推荐使用甲醇体系(必须使用乙腈的场合除外)。 /pp style="text-indent: 2em "b.对于正相柱推荐使用沸程为30-60℃的石油醚或提纯后的己烷作流动相,没有提纯的己烷不得使用。用水最好使用超纯水(电阻率大于18兆欧),去离子水及双蒸水中含有酚类杂质,有可能影响分析结果。/pp style="text-indent: 2em "c.含水流动相最*在实验前配制,尤其是夏天使用缓冲溶液作为流动相不要过夜。最好加入叠氮化钠,防止细菌生长。/pp style="text-indent: 2em "d.流动相要求使用0.45 µ m滤膜过滤,除去微粒杂质。/pp style="text-indent: 2em "e.使用HPLC级溶剂配制流动相,使用合适的流动相可延长色谱柱的使用寿命,提高柱性能。/pp style="text-indent: 2em " /pp style="text-indent: 2em "冲柱子的目的:/pp style="text-indent: 2em "只要是有机溶剂就行,不过黏度不要太大,因为有机溶剂能够防止细菌生长,冲柱子的目的就是为了防止细菌生长堵塞仪器系统和柱子。一般甲醇和乙腈相互冲洗是没有问题的,但乙腈要比甲醇价格贵的 。/pp/pp style="text-indent: 2em " /pp style="text-indent: 2em "保留时间变化的原因:/pp style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/2cd56489-c062-4aa1-be75-7281c5c04309.jpg" title="16-47-25-88-510998.png" alt="16-47-25-88-510998.png"/br/ 柱头塌陷/pp/pp style="text-indent: 2em "在使用过程中,填料下沉,在柱子进口处出现一个小空间,使得分离效果不良。br//pp style="text-indent: 2em " /pp style="text-indent: 2em "补救方法:卸开柱头螺丝,找一点同类填料,用甲醇湿润后,添在柱子上,反复几次。然后装上螺丝,用溶剂冲洗1-2小时,使之平衡。/pp style="text-indent: 2em " /pp style="text-indent: 2em "小结/pp/pp style="text-indent: 2em "正确使用缓冲盐很有必要,既可以防止缓冲盐析出,也可以达到提高色谱柱使用寿命的目的。我们不妨用一句话来总结它的使用方法:用前要过滤,用后需冲洗。/ppbr//p
  • 缓冲盐的这些“陷阱”你中招了吗?
    在色谱分析过程中常常需要使用缓冲盐来调节流动相的pH值,缓冲盐的不当使用对色谱柱可能造成柱压升高、柱效下降以及使化合物的保留时间发生变化等影响。“柱压升高原因:缓冲盐使用不当导致缓冲盐析出,堵塞塞板和键合相颗粒之间的孔隙,阻碍流动相传质,引起柱压升高;“相同化合物的保留时间发生变化原因:如果没有冲洗干净就进行进样,色谱柱内含有的盐会使化合物的保留时间发生变化;“柱效下降原因:1)有些缓冲盐会渗入到键合相的深处,损害硅胶基体,导致色谱柱键合相流失,柱床变松,柱效下降;2)凝结在键合相表面,使C18碳链难以舒展,对物质的保留能力下降,导致柱效下降。因此用过缓冲盐后需要对色谱柱进行冲洗,水中缓冲盐浓度较大时应特别引起注意。那么如何正确使用缓冲盐呢?使用前的处理:在使用缓冲盐作流动相之前需要用不含缓冲盐的流动相冲洗色谱柱,直至基线平稳。原则上,用于冲洗的流动相与分析时所用的流动相含水的比例相同(或含水更多),不同的只是用于冲洗用的流动相中不含缓冲盐。缓冲盐通常易溶于水,难溶于有机溶剂。用含缓冲盐的(特别是做流动相的水为饱和的缓冲盐溶液时)流动相进行分析时,如果分析前色谱柱中用于保存色谱柱的流动相中含水的比例相对较小,不先冲洗掉,接下来做样品的时候所用的流动相中如果有机溶剂含量大,而其比例中所含的水又不足以溶解该缓冲盐时,缓冲盐将会在色谱柱柱体上析出,沉积下来,这将可能导致上述对色谱柱的损害。使用后的处理:用与分析时含水比例相同的流动相(与分析用流动相唯一的区别是,用于冲洗的流动相不含缓冲盐)进行冲洗约30min,直至基线平稳。如果该色谱柱在接下来很长的一段时间内不使用,要长期保存,则需再加上一步,即用纯的有机溶剂冲洗一遍,直至基线平稳。使用缓冲液要注意几点01避免使用盐酸盐,盐酸盐对钢质有腐蚀作用。02缓冲液是良好的菌类培养液,缓冲液最好要现配现用。03实验后不可用有机溶剂直接过度,有机溶剂会处使盐类析出,造成液路或色谱柱堵塞。04使用缓冲液要及时掌握pH范围,做到胸中有数。05清洗液路和柱子时,有温控可加热到30摄氏度易于冲洗。06长时间用缓冲溶液要注意观察接头处有无析出,若有白色盐类析出,可考虑一定周期用10%硝酸冲洗一下液路(拆下柱子,走30mL,再用5倍水冲洗)可以避免液路的堵塞。07选择缓冲液要用可靠的试剂,避免不纯的盐类造成不必要的麻烦。如果流动相中有机溶剂的比例很高是不能用来冲洗缓冲盐的,是洗不出来的。通常C18柱先用5%~10%的甲醇冲洗,是可以把缓冲盐冲洗出来的,然后用纯的有机溶剂来保护柱子。最好的方法是使用与流动相相同浓度不含盐的流动相进行清洗。但就是速度慢一些。用水是为了快速替换,一般在15分钟以内最好,且用0.8的流速较好。如果用纯水冲,容易造成键合的碳链的流失,最好用5%~10%甲醇水溶液冲。可以用纯水代替流动相中的缓冲液,有机相不变。这样冲洗柱子比较稳妥。小结正确使用缓冲盐很有必要,既可以防止缓冲盐析出,也可以达到提高色谱柱使用寿命的目的。我们不妨用一句话来总结它的使用方法:用前要过滤,用后需冲洗。
  • 碱溶液提取-火焰法测定土壤中的六价铬
    土壤中铬通常以三价铬和六价铬的形式存在,六价铬有剧毒,是一种被公认的致癌物。因此,掌握土壤中的六价铬污染状况势在必行。为贯彻《中华人民共和国环境保护法》和《中华人民共和国土壤污染防治法》,规范土壤和沉积物中六价铬的测定方法,中华人民共和国生态环境部于19年12月发布了HJ 1082-2019.土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法。 本文参考HJ 1082-2019.的方法,使用日立原子吸收分光光度计ZA3000,测定土壤中的六价铬。土壤的碱溶液提取法碱性提取液 :分别称取30 g碳酸钠和20 g氢氧化钠,溶解于纯水中,并定容至1 L。(pH>11.5)磷酸氢二钾?磷酸二氢钾缓冲液 : 分别称取87.1 g磷酸氢二钾和68.0 g磷酸二氢钾,溶解于纯水中,并定容至1 L。■ 操作步骤 通过碱溶液提取法,可以仅提取土壤中的六价铬。土壤碱提取液中的六价铬分析(火焰法)通过碱溶液提取法提取5.00 g样品,定容至100mL,测定出的检出限为0.5mg/kg。使用高盐燃烧头。■测定条件 ■测定结果 对土壤1和土壤2样品进行了测定,测得土壤1中含六价铬的量微1.80±0.04,土壤2并未检测到六价铬。分别对两个样品进行1mg/LCr加标实验,土壤1和土壤2回收率分别为99%和101%,证明实验结果准确可靠。 综上所述,日立原子吸收分光光度计ZA3000采用偏振塞曼校正法,即使对含盐分高的土壤分解液样品,也可以不受共存物质的背景吸收干扰,高精度分析土壤中的六价铬。
  • 中科院大连化物所利用“缓冲”策略开发光稳定荧光探针揭示活细胞内脂滴动态过程
    近日,大连化物所分子探针与荧光成像研究组(1818组)徐兆超研究员团队利用“缓冲”策略,发展了细胞内脂滴动态识别荧光探针LD-FG,该探针具有优异的光稳定性,可在空间超分辨成像的基础上实现高时间分辨率和长时间稳定成像,从而发现了多种新的脂滴动态过程。  脂滴是维持脂质和能量稳态的关键细胞器,由中性脂组成的内核及包裹其外的单层磷脂组成。脂滴表面分布着多种蛋白,以调控脂类的储存、代谢及脂滴运动。越来越多的研究揭示,脂滴具有更多的生理功能,例如抗菌免疫能力、促进药物积累和激活能力、内核膜代谢能力、与其他细胞器相互作用以交换营养分子、作为癌症和衰老大脑神经认知功能障碍的标志物等。尽管对脂滴功能的机制缺乏研究,但已证实这些功能与脂滴生命周期的动态密切相关。揭示脂滴的动态有助于研究脂滴的功能机制和发现新的功能。然而,脂滴的数量、位置、大小和组成在细胞之间甚至在同一细胞内可能会有很大差异,脂滴的生命周期、时间和位置上也通常不可预测且难以观察。此外,这些事件在脂滴生命周期中的发生率仍然未知。这种细胞异质性和不可预测性要求用于探测脂滴动态的成像技术不仅具有对脂滴的识别能力,更需要具有较好的空间和时间分辨率,以及长时间的的稳定成像能力。  超分辨荧光成像可突破衍射极限实现最高可达单分子的空间分辨,但荧光团易光漂白而迅速淬灭的问题使得超分辨荧光成像一直面临着时间分辨率低和成像时间长的挑战。因此提高荧光团的光稳定性是超分辨荧光成像面临的前沿问题。  本工作中,徐兆超团队提出了“缓冲荧光探针”(buffering fluorogenic probe,BFP)的策略来解决脂滴动态成像中光稳定性的问题。“缓冲”策略(buffer strategy)是指在成像过程中,脂滴内部光漂白的荧光探针被外部周围新的和完整的荧光探针有效取代,即荧光探针交换速率大于漂白速率时,即可确保脂滴成像的光稳定性。该策略要求探针在脂滴外部时处于荧光淬灭的状态,并且在脂滴外具有较高的浓度以保证足够的缓冲能力。LD-FG有适中的脂溶性保证了既有足够的分子对脂滴进行荧光染色,同时又有足够比例的分子在脂滴外作为缓冲池。缓冲池不仅可以快速补充脂滴中的光漂白探针,保证了长时间荧光成像的光稳定性,还可以及时染色细胞中的新生脂滴,并接收脂滴减小或消亡中释放到外部的探针。  基于LD-FG优异的光稳定性,团队借助结构光照明显微镜对脂滴的多种动态过程进行了高时空分辨率的成像,首次发现了两种新的脂滴融合模式,包括多个脂滴的同时融合和线粒体介导的融合;揭示了细胞不同区域和不同细胞之间的异质性;提出脂肪细胞分化过程中脂滴成熟的新模型,即首先进行快速脂滴融合,接着是缓慢成熟步骤;首次在细胞中观察到融合过程中的哑铃形中间形态,证明聚结(coalescence)并不像以前知道的那样罕见,而是在细胞中无处不在的。  作为最小的生命单元,细胞是含有细胞器、分子复合物和功能单分子的多体系、跨尺度的复杂系统,不同尺度单元又根据其位置、结构、运动、浓度以及与其他功能单元的动态相互作用,精确、有序和协调地执行复杂多样的细胞功能,这使得细胞具有个体与系统性相统一、异质性、高度动态、不确定性等多种特征。团队期望“缓冲荧光探针(BFP)”的策略可以在未来用于开发针对更多不同细胞内生物靶点的光稳定探针,最终实现细胞内生物分子全景超时空分辨动态成像。  相关成果以“Stable Super-resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen-bond Sensitive Fluorogenic Probe”为题,于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所1818组博士研究生陈婕和博士后王超。该工作得到国家自然科学基金、大连化物所创新基金等项目的资助。
  • IEC缓冲液的类型
    在离子交换过程中保持pH的恒定是十分重要的,正如前面讨论过的,pH的改变会造成蛋白质带电荷数量和分布状况发生变化,从而直接影响到蛋白质是否能结合在交换剂上以及结合力的强弱。因此,在离子交换色谱中流动相必须使用缓冲液。缓冲液的种类很多,能够起缓冲作用的物质可分为两类:第yi类是由弱酸(或弱碱)及相应的盐构成的系统;第二类是兼性离子化合物。对于第yi类缓冲物质,在进行离子交换时,如果缓冲离子所带的电荷与离子交换剂上的功能基团相反,将参与离子交换过程,并可能对局部pH产生影响,因此应尽可能采用与功能基团带同种电荷的缓冲离子,即:使用阴离子交换剂时选择带正电荷的缓冲离子;使用阳离子交换剂时选择带负电荷的缓冲离子。当然这也并不是jue对的,比如磷酸盐缓冲液也经常在阴离子交换过程中被采用,但在这种情况下应特别注意在上样前充分平衡,确保色谱系统的pH和离子强度与起始缓冲液一致。第二类缓冲物质在阴、阳离子交换中均能采用。表1和表2分别列出了阳离子交换色谱和阴离子交换色谱时常用的缓冲液。在离子交换过程中虽然可以除去很多杂蛋白,起到纯化效果,但目的蛋白的洗脱峰中必然含有大量缓冲物质和盐的成分,这些成分的引入对于目的蛋白来说本身也是一种杂质。特别在色谱后需对洗脱峰进行冷冻干燥,以得到纯蛋白样品时,在冻干后的粉末中往往绝大部分是缓冲物质和盐。如果在冻干前进行脱盐或透析操作,虽然可以基本除去这些杂质,但也有可能造成蛋白活性的回收率下降。此时应优先考虑采用挥发性的缓冲物质,这样在冻干阶段可以将这部分杂质除去,常见的挥发性缓冲物质列于表3。◌ Q /SP/DEAE/CM Tanrose FF快流速琼脂糖基架离子交换介质◌ Q/SP Tanrose HP 高分辨率琼脂糖基架离子交换介质◌ Q/SP Tanrose XL 高载量琼脂糖基架离子交换介质◌ Q/SP Tanrose BB 大颗粒琼脂糖基架离子交换介质◌ DEAE/CM Tandex 葡聚糖基架离子交换介质
  • 土壤是酸是碱,一测便知
    一、应用背景土壤的酸碱度(pH值)是土壤重要的理化参数,对土壤微量元素的有效性及肥力有重要影响。在土壤pH值在6.5左右时各种营养元素的吸收利用率最|高。过酸或过碱都会影响养分吸收,降低土壤养分的有效性,难以形成良好的土壤结构,严重抑制土壤微生物的活动,影响各种作物生长发育,使土壤失去耕种价值。 《HJ 962-2018 土壤 pH值的测定 电位法》规定了测定土壤pH值的电位法,以水为浸提剂,用pH复合电极(或指示电极配套参比电极)浸入土壤悬浊液测定即可得到土壤的pH值。根据测定的pH值,判读土壤的酸碱性,从而采取相应的改良措施来调节土壤的酸碱度,使得改良后的土壤适于作物的生长。 二、PHSJ-4F型实验室pH计与6121低电导pH复合电极测定土壤pH含量PHSJ-4F型实验室 pH 计是全新设计的新一代实验室分析仪器。仪器支持电极标定功能,具有标液组管理功能, 自动识别 GB、DIN、NIST 等多种 pH 缓冲溶液,配套pH标准缓冲溶液,使用简便快捷。6121低电导pH复合电极适用于电导率100μS/cm以上的低电导率样品。采用多孔PTFE新型液络部结构,不易被污染物堵塞,在复杂样品中有更好的稳定性和可靠性;采用进口环氧树脂材质,耐高温耐酸碱,适用范围广。 ● 测量前准备超纯水处理:煮沸、冷却、密封放置。配套试剂:pH标准缓冲溶液。 ● 土壤pH测试1. 仪器标定 使用pH 4.01(25℃)标准缓冲溶液、pH 6.86(25℃)标准缓冲溶液、pH 9.18(25℃)标准缓冲溶液标定电极。2. 生态环境部标准土壤样品测定结果称取样品各10.00g置于烧杯内,分别用移液管准确移取纯水25mL放于烧杯内,立即用封口膜进行密封。搅拌2分钟后静置30分钟,将电极插入样品溶液中,电极探头浸入液面下悬浊液垂直深度的1/3-2/3处,轻轻摇动样品溶液,待读数稳定后,记录pH值。测试完成后用水清洗电极,并用滤纸吸干电极外部的水,然后进行下次测定。土壤水溶液的电导率一般在几百μS/cm,6121低电导pH复合电极测试结果很好,且稳定的很快。 ● 测量过程中需要注意什么?1. 测量前将超纯水煮沸后冷却至室温,密封放置,避免超纯水中溶解CO2对pH值的影响。2. 测试过程中注意去除电极表面的气泡。 三、雷磁PHSJ-4F型实验室pH计及6121低电导pH复合电极● 大屏幕点阵式液晶显示,直观清晰、内容全面● 3种读数模式:Smart-Read功能,智能判别终点 Timed-Read功能,自动定时存贮读数 Cont- Read功能,连续测量(支持间隔连续测量)● 支持电极性能提醒功能和电极标定提醒功能● 符合GLP规范,支持数据的查阅、删除和打印● 适用范围:电导率100μS/cm以上的低电导率样品● 测量范围:(0-11)pH● 温度范围:(0-80)℃● 材质:进口环氧树脂● 参比结构:Ag/AgCl
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品制备、保存、流转和检测技术规范(征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 2 部分:土壤中总砷的测定》(GB/T 22105.2-2008)。5.2.53 总铅5.2.53.1 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.53.2 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.53.3 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.53.4 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.54 总镉5.2.54.1 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.54.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55 总铬5.2.55.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.55.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.56 总镍5.2.56.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.56.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.56.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。土壤含水量的测定按《土壤检测 第 3 部分:土壤机械组成的测定》(NY/T 1121.3-2006)。采用林业行业标准的检测方法按《森林土壤含水量的测定》(LY/T 1213-1999)测定含水量。5.3 结果上报检测实验室完成样品检测后,检测员需及时填写检测原始记录。原始记录经三级审核无误后,检测结果(附表 4)及时录入上报至土壤普查工作平台,经省级质量控制化验室审核后确认。原文下载:全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 玩转这5种缓冲液赋形剂让您的实验得心应手!
    话题介绍什么是赋形剂?对于寻找能够稳定早期开发生物制品的缓冲液的预配方研究人员来说,缓冲液的优化不能仅局限于缓冲液的pH值和盐浓度的变化。赋形剂作为缓冲液的添加剂,即使在缓冲液优化的早期预制剂阶段,赋形剂的添加对长期稳定候选生物制剂有很大帮助,因此是制剂评估的关键因素。但每一类赋形剂都以不同的方式协助稳定生物制剂——无论是单克隆抗体还是疫苗抗原。下面跟随小编,一起来了解一些最重要的生物制剂辅料,以及它们如何提高制剂的稳定性。1. 辅助剂辅助剂能够产生更强的免疫反应,对疫苗尤其重要。他们通常是可以增强免疫反应的单独的小分子生物制剂。2. 表面活性剂表面活性剂有助于降低溶液的表面张力,使疏水分子更容易保持溶解状态。聚山梨醇酯80或聚山梨醇酯20是常见的表面活性剂。3. 氨基酸氨基酸是一种特殊的赋形剂,用于帮助稳定蛋白质分子上的自由电荷。它们是一种有助于降低带电分子之间跨蛋白质吸引力的方法,而不会使盐浓度过高。通常用于这项工作的氨基酸有精氨酸、脯氨酸、甘氨酸、组氨酸和蛋氨酸。精氨酸、脯氨酸和甘氨酸也有助于调节最终制剂的粘度。4. 糖类糖类作为是非常实用的构象稳定剂,对抗体尤其有效。它们为冻干产品提供冻干保护,并对生物分子的溶剂化具有有益的作用。蔗糖是添加到缓冲液中最常见的糖之一,但也会使用甘露醇、山梨醇和海藻糖。5. 多元醇多元醇与糖类似,是增强生物制品热稳定性的稳定分子。它们还充当“膨胀剂”以保持蛋白质的整体三维结构,这在冻干过程中尤为重要。甘油是用于增强稳定性的非常常见的多元醇,除此之外也会使用甘露醇和山梨醇。总结如何快速精准的筛选赋形剂? 如您所见,有许多不同类型的赋形剂有助于提高生物制剂的长期稳定性,从而提高其进入临床的机会。需要特别注意的是,您构建的每种治疗药物都会有不同的表现,所以针对每种候选药物,进行多种赋形剂筛选以确定哪种赋形剂能够为您的治疗药物带来最大的稳定性是至关重要的。 那么问题来了,我们到底应该如何精准且快速高效的完成海量的赋形剂筛选呢?作为实验室里必不可少的王牌仪器,拥有PR Panta蛋白稳定性分析仪无疑是非常有助于预配方领域的上游研究人员评估缓冲剂成分,以及研究如何提高其疗法稳定性的核心设备。它可以提供低检测限的多种稳定性参数、高分辨率数据均有助于加快缓冲液优化的过程。PR Panta蛋白稳定性分析仪(点击图片 查看更多)如需了解PR Panta蛋白稳定性分析仪如何协助您的候选生物制剂获得成功,欢迎联系我们获得更多信息。
  • hplc液相色谱系统准备缓冲液的技巧
    液相色谱是世界各地实验室使用的流行纯化技术。如果系统设置和操作正确,它可以立即从混合物中分离出所需的化合物。学习如何使用和制备缓冲液和溶剂是能提高系统性能的重要技巧之一。准确制备和正确选择缓冲液对于在液相色谱中获得可重复的结果至关重要。 一、了解您的化合物 如果您正在寻找混合物中的特定化合物,您应该使用最能将您的分析物与其他分析物分开的缓冲液/溶剂组合。例如,了解极性和溶解度(极性或非极性)、电离、您正在寻找的紫外吸光度将有助于指导您使用特定的色谱柱和溶剂组。 二、纯度 使用较低等级且成本较低的试剂来制作缓冲液以节省一些钱是很诱人的,但从长远来看,它最终会变得更加昂贵。与含有稀少或不含杂质的 HPLC 级试剂相比,纯度较低的试剂会导致不需要的峰和嘈杂的基线。它们还会对您的系统造成严重破坏,造成阻塞,从而导致系统故障和更昂贵的维护费用。所有试剂和溶剂,包括您使用的水,都应该是高质量的 HPLC 级,以减少缓冲液中不需要的微粒。高级试剂的成本可能比低级试剂略高,但纯度的差异是值得的。HPLC 级试剂还有助于获得更一致的结果并保持系统平稳运行。 即使是使用高纯度实验级别的溶剂,也需要在进入色谱系统前进行过滤,采用恒谱生溶剂过滤器可以有效过滤化学污染等杂质进入系统,通用于流动相或输液泵,配套用于外径1/8英寸或1/16英寸的管子,放置于流动相溶剂瓶中,过滤杂质。过滤后,溶剂应储存在有盖的容器中,以防止被灰尘或其他不需要的材料污染。 四、避免气泡 在与您的系统一起使用之前对缓冲液进行脱气或真空过滤可以大限度地减少流动相中的空气和微粒。如果液相色谱系统中发生流动相脱气,主要会影响泵和检测器。为了解决这个问题,在将新制备的流动相泵入 HPLC 系统之前进行脱气,连同在线脱气器,应彻底脱气以去除所有溶解的气体。最有效的脱气形式是用氦气或其他低溶解度气体鼓泡。如果该方法可用,建议在整个分析过程中以非常低的水平持续对流动相进行脱气。 五、定期检查 细菌几乎可以在任何溶液中适应和生长,甚至是有机溶剂,具体取决于浓度。为防止细菌生长堵塞色谱柱筛板,每次制备新的缓冲液批次时更换缓冲液容器,检查缓冲液瓶/袋是否有细菌生长迹象。摇晃或搅拌时出现浑浊的溶液应丢弃。使用抑菌剂(例如 0.02% 叠氮化钠)处理会延长溶液的储存时间,尽管这些试剂可能会影响您的色谱图。 六、新鲜配置 恒谱生建议稀释缓冲液的有效期为一周。这种做法可确保缓冲液的 pH 值不受长期储存的影响,并且不会出现微生物生长。pH 值变化和微生物生长都会影响您的色谱运行并导致运行之间的不一致。虽然您可以添加稳定剂,例如焦亚硫酸钠,但这些试剂会影响光学和色谱结果。 液相色谱法可能是一项具有挑战性的技术。遵循上述关于如何准备和使用缓冲液进行纯化的提示,将有助于使每次运行的一致性和可重复性。
  • 新品发布 | Welbuffer生物缓冲液-1分钟完成试剂配制
    缓冲溶液是指当加入少量强酸、强碱或稍加稀释时,能保持其pH值基本不变的溶液,它对强酸、强碱或稀释有一定的抵抗作用。由于缓冲溶液中同时含有较大量的弱酸(抗碱成分)和共轭碱(抗酸成分),它们通过弱酸解离平衡的移动以达到消耗掉外来的少量强酸、强碱,或对抗稍加稀释的作用,使溶液的H+离子或OH-离子浓度没有明显的变化,因此具有缓冲作用。用传统方法配制时需要计算、称量、混合并使用强酸碱调节pH,操作繁琐费时。月旭科技特推出Welbuffer缓冲速溶颗粒或片剂,能够解放您的双手,无需搅拌,一步加水溶解完全即可完成试剂配制,晃动混匀即可,无需磁力搅拌。即取即用,使用简单、快速。我们本次新品提供免费试用,如果您感兴趣,可以浏览至文末申请试用哦~产品优势1. 运输及存储便捷大多数试剂都是对温度有要求、重量较重、体积较大的,因此在存储、配送方面的费用占比是很大一部分的成本,而颗粒剂与片剂可以有效减缓这些问题。2. 使用方便,提高效率一步加水快速溶解完全即可完成试剂配制。即取即用,使用简单、快速、无需计算、称量及混合,无需使用强酸碱调节pH。3. 稳定可靠高纯度、生物级生产原料,进行广泛测试,包含多项技术指标(重量、pH值、pKa值、电导率以及杂质含量等)。采用制药工艺生产,将大容量试剂配制完成后经过滤纯化,再使用喷雾干燥技术获得均匀颗粒。4. 批次重复性好少量试剂的人工配制往往造成批间差异大的问题。通过大批量的颗粒剂配制,分装成大量三年有效期的小包装。每次一包颗粒剂即加水即用的特点可有效避免批间差的问题。5. 可定制根据用户的需求,可定制不同配方、不同包装及不同剂型的产品。6. 有效期长在室温(2-30℃)避光干燥密封保存及运输的条件下,有效期长达3年。产品用途分类1. 科研诊断用缓冲液(PBS及Tris缓冲液试剂速溶颗粒剂及片剂)2. 蛋白分析检测用缓冲液(PAGE蛋白电泳缓冲液速溶颗粒及片剂)3. 分子生物学实验用缓冲液(DNA/RNA电泳缓冲液速溶颗粒及片剂)产品信息试用申请今天的新品为大家提供了四款产品,可以申请免费试用,分别是:TBST缓冲液速溶颗粒;PBS缓冲液速溶颗粒(pH7.4);TBS缓冲液速溶颗粒;PBST缓冲液速溶颗粒。如果您有需要,可以识别上方二维码,选择您想试用的产品。
  • 上新 | 实验人必看,逗点生物新品磷酸盐缓冲液清新面世~
    PBS新品上市,欢迎关注!在生物实验中,磷酸盐缓冲液(Phosphate-Buffered Sline,PBS)的主要用途是漂洗、稀释或作为基础溶液配置其他溶液,用途非常广泛,属于生物实验室必不可少的一种试剂。逗点生物最 新研发推出新品PBS,产品经0.1μm 过滤除菌,可直接使用,且质量稳定、规格多样、货源充足,有效应对各种细胞培养需求,帮助提供相对稳定的离子环境和pH缓冲能力,为您实验保驾护航。新品上市,实验必购PBS核心优势,持续加固!厂家直销逗点生物具备厂家直销优势,货源稳定,供应充足,配送及时,想要囤货的老师们可放心购买~多种规格新品推出,有1X(即用型)、5X、10X、20等多种规格可供选择,随需定制,满足您多种实验需求~透亮无沉淀通过ISO13485:2016医疗器械质量管理体系认证,无菌车间生产,批次间稳定,液体透亮不含沉淀~PBS数据亮眼,品质保障!表1:无菌情况逗点生物产品无菌情况与某国际知名品牌效果相当 表2:pH、渗透压逗点生物产品数值稳定,与某国际知名品牌效果相当表3:内毒素逗点生物产品内毒素<0.1EU/mL,符合行业水平表4:微粒检测逗点生物产品的不溶性微粒数低于某国际知名品牌作为生物实验室的常用试剂,PBS磷酸盐缓冲液的品质必须有保障。为此,我们选取了国际国内四家知名品牌的同类产品,分别从四个维度进行数据比对。结果显示,逗点生物所研发生产的PBS在无菌情况、pH/渗透压、内毒素、微粒检测等重要指标上均有亮眼表现。PBS认准货号,购买无忧!想要了解更多产品信息请拨打逗点生物客服热线咨询订购电话:400-860-5168转3309
  • 标签印刷错误 赛默飞苏州工厂主动召回缓冲液
    p  据江苏省食品药品监督管理局官网7月2日消息,赛默飞世尔(苏州)仪器有限公司报告,由于缓冲液标签印刷错误等原因,赛默飞世尔(苏州)仪器有限公司对其生产的缓冲液(备案号:苏苏械备20160782号)进行主动召回,召回级别为三级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/e68fd095-4c6a-4d9a-9f90-bbf9d441ceb4.jpg" title="IMG4ccc6aa7fc9a4490485195.jpg"//ppbr//p
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH6.0的样品检测4水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量1.0g/kg时不检测八大离子5碳酸钙(无机碳)√除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH6.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • 快来围观 正确选择花卉土壤的重要性
    花卉不仅可以美化环境、丰富日常生活,而且也能净化大气,使空气变得清新宜人。花卉栽培离不开土壤、水和空气,土壤由有机酸、无机酸、碱以及盐类等物质构成,各类物质含量不同,使土壤表现不同的酸碱性。pH值代表了土壤的酸碱强度,且影响土壤养分的转化、有效性和存在状态,进而影响植物的生长发育。下表是常见花卉生长土壤的pH值对照表,帮助您来选择更适宜的土壤:下表是常见花卉生长土壤的pH值对照表,帮助您来选择更适宜的土壤:ST270穿刺pH电极具有坚固的锥形敏感球泡等特点,可以刺入湿润样品的内部,获取样品内部pH信息。(ST270穿刺pH电极)所需试剂:1 mol/L KCl溶液,pH标准缓冲液。仪器设备:ST3100台式pH计,ST270穿刺pH电极。(ST270穿刺pH电极快速测量土壤pH值)实验步骤1、土壤样品准备使用1mol/L KCl溶液充分润湿土壤,等待几分钟测量。(注:采用与国标萃取溶液相同的试剂湿润样品,结果具有可对比性。) 2、仪器校准用pH4.01、pH6.86和pH9.18三个标准缓冲液校准仪器。校准前确保pH电极中填充液在一半以上,加液孔打开。校准后电极斜率应在90%以上。3、样品测量完成校准后,清洗电极,将穿刺pH电极测量端刺入润湿的土壤内部,待稳定后记录读数。实验结果:ST270穿刺电极测试结果:5.66±0.02(1 mol/L KCl溶液润湿/萃取)。经实验对比,同国标萃取法测得实验结果5.98±0.01非常接近。除测量土壤pH值外,ST270穿刺pH电极还可测量湿润的固体、半固体样品内部的pH值,如肉类、水果、糕点、果冻、培养基、凝胶等。有没有小激动呢?原来pH值离我们的生活那么那么近。其实,奥豪斯不仅拥专业级的ST270穿刺pH电极,还拥有溶解氧电极等数十种优质电极。
  • 济南盛泰发布济南盛泰ST303G土壤有机质消解仪新品
    v 产品研发背景介绍:土壤有机质是泛指土壤中来源于生命的物质。土壤有机质是土壤固相部分的重要组成成分,是植物营养的主要来源之一,能促进植物的生长发育,改善土壤的物理性质,促进微生物和土壤生物的活动,促进土壤中营养元素的分解,提高土壤的保肥性和缓冲性的作用。检测土壤有机质含量是衡量土壤肥力重要指标的主要工作之一,也是对了解土壤肥力状况,进行培肥、改土具有一定的指导意义。v 参考国标:v 应用范围:适用于检测有机质含量低于15%的土壤样品消解预处理或各种食品、制药、农业等样品的消解处理。 v 操作原理:在加热条件下,用过量的重铬酸钾-硫酸溶液氧化土壤有机碳,多余的重铬酸钾用硫酸亚铁标准溶液滴定,由消耗的重铬酸钾量按氧化校正系数计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。 v 主要仪器设备:土壤有机质消解器自动调零滴定管温度计(300℃)v 操作步骤:精密称取样品0.05-0.5g(精确到0.0001 g),放入硬质玻璃管中,准确加入10.00 mL 重铬酸钾-硫酸溶液(0.4mol/L),摇匀。将玻璃管插入已升温至175℃的加热腔体里,等试管中的溶液沸腾时开始计时,5min±0.5min后取出,冷却片刻,将试管内的消煮液和土壤残渣无损地转入滴定杯中,用水冲洗试管,洗液并入滴定杯中,使杯内溶液总体积在50-60mL。用硫酸亚铁溶液滴定至终点。每批分析需做两个空白试验,此次空白试验未用其他代替物,其他步骤与土样测试相同。 产品主要特点优点:全程智能化消解技术消解温度与消解时间均可人工设定,自动运行,实时监测,消解结束自动停止加热,自动报警;全新设计隔热防腐技术加热腔体采用新型隔热技术,杜绝隔热材料外露,加热过程腔体散热迅速,升温小,整机表面做防腐处理,经久耐用;消解试管整体迁移技术可整体移动24支消解管,消解结束可迅速整体移出加热腔,快速降温,大幅提升工作效率;加热腔PID控温技术整体采用24块铝合金加热腔模组设计,环绕式加热,整体升温迅速,孔间温差小,消解效果一致性好;大容量消解管设计100ml大容量消解管,采用耐高温耐酸碱腐蚀材料,消解过程无需额外增加回流设计;智能式人机对话操控模式操控端采用5寸彩色液晶触摸屏,60度人性化仰角设计,可实时监控整个消解过程。 技术规格:1、主机尺寸:355mm×338mm×228mm2、额定功率: 2300W3、额定电压:220v 50Hz4、消解管尺寸:28mm×250mm5、消解管最大容量:100ml6、消解温度设定范围:室温-300℃(可调)7、消解时间:0-240min(可调);8、消解单元:24个创新点:国内首款针对土壤有机质检测的消解器,可一次性检测24个样品,加热温度与消解时间可自由设定,孔与孔之间温差小,24支消解管可通过可移动支架整体迁移,以便快速降温等。广泛适用于国内各级环境监测、农业、第三方检测公司等部门检测土壤有机质的实验项目。济南盛泰ST303G土壤有机质消解仪
  • 中国土壤环境监测方法现状、问题及建议
    p  摘要:综述了目前中国现行的土壤环境监测国家标准方法和环保、农业、林业等行业标准方法,指出国家标准和环保行业标准方法侧重于土壤污染物的检测,而农业和林业标准方法侧重于土壤营养元素及其有效态、理化指标的检测。针对现行标准方法存在的一些问题(如检测的土壤污染物种类少、部分方法先进性不足、土壤环境监测的基础研究薄弱以及方法的标准化尚待完善等),提出加强土壤监测标准方法的顶层设计、合理增加土壤污染物的控制种类,及时更新方法、发展多组分测定方法,加强标准方法研究的系统性、协调性,以及逐步增加原位监测标准方法等建议,为土壤监测技术的发展提供借鉴和参考。/pp  土壤是经济社会可持续发展的物质基础,关系人民群众身体健康和美丽中国建设,加强土壤环境保护是推进生态文明建设和维护国家生态安全的重要内容。2016年国务院印发的《土壤污染防治行动计划》中,就明确提出完成土壤环境监测等技术规范制修订、形成土壤环境监测能力、建设土壤环境质量监测网络、深入开展土壤环境质量调查、定期对重点监管企业和工业园区周边开展监测等工作任务。监测方法是监测工作的基础,只有完善土壤环境监测方法体系,加强土壤环境监测技术水平,才能保障监测的科学性、规范性、准确性以及评价结果的客观性和合理性,从而掌握土壤环境的真实状况,进一步推进土壤环境监管。/pp  根据质量管理体系的要求,环境监测应优先选用标准分析方法。中国土壤标准分析方法分为国家标准和行业标准两大类。国家和环保行业标准方法侧重土壤环境污染检测,农业、林业行业标准方法则主要侧重土壤营养元素及其有效态、理化指标的检测。笔者对目前中国土壤环境监测标准方法进行综述,指出存在的问题,并提出针对性的建议。/pp  1 土壤污染物及其监测方法/pp  土壤污染物包括无机物(重金属、酸、盐等),有机物,化学肥料,农药(杀虫剂、杀菌剂及除草剂),放射性物质,寄生虫,病原菌和病毒等 近年来,一些新型污染物(如兽药、抗生素、溴化阻燃剂、全氟化合物等)在土壤中的赋存、迁移等也成为研究热点。/pp  目前多数土壤监测方法针对的是土壤中的无机物和有机物,按测定方式可分为2种:采样后实验室测定(又称异位测定)和现场测定(又称原位测定)。/pp  实验室测定方法中,针对土壤中的无机物,有光学分析法(如原子吸收光谱法、原子发射光谱法、原子荧光光谱法、X射线荧光光谱法等),仪器联用法〔如电感耦合等离子体-质谱法(ICP-MS)等〕,以及电化学法(如极谱分析法)和以特定化学反应为基础的化学分析方法。其中光学分析法适用范围广,灵敏度较高,操作便捷,应用广泛 仪器联用法可实现定性、定量分析,检测灵敏度高、重现性好,但仪器较昂贵 极谱法选择性好,可测定组分线性范围宽,能实现连续测定,但易造成汞污染 化学分析法操作简便,但样品前处理复杂,灵敏度和选择性都较低,目前使用较少。针对土壤中的有机物,分析方法主要有色谱分析法〔如气相色谱法(GC)、高效液相色谱法(HPLC)〕,以及色谱-质谱联用法〔如气相色谱-质谱法(GC-MS)和高效液相色谱-质谱法(HPLCMS)〕。/pp  现场测定方法中,针对无机污染物和有机污染物,测定方法分别有便携式X 射线荧光光谱法和便携式气相色谱-质谱法等。/pp  2 中国土壤环境监测标准方法现状/pp  土壤环境污染监测中常用的标准方法是国家标准和环保行业标准。迄今为止,中国有51个涉及土壤监测的国家和环保行业标准方法,其中无机物和有机物监测方法分别为23个(表1)和17个(表2),3个放射性监测方法(表3),8个土壤理化性质及其他监测方法(表4)。/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/0f7be038-b868-4c35-a30a-eebb5206ebce.jpg" style="float:none " title="土壤监测1.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/ef16ff2d-4052-480f-ab55-cc1db1edc730.jpg" style="float:none " title="土壤及检测2.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/a21af8d0-ad32-43ef-aa25-97291184ad40.jpg" style="float:none " title="土壤监测3.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/e26893be-1fc9-4dc3-a8bc-e58086ff5002.jpg" style="float:none " title="土壤监测4.jpg"//pp  23个无机物监测方法涵盖了55种无机组分,包括33个元素总量(As、Cd、Co、Mn等),7种氧化物(SiO2、Al2O3等),7种盐类(氰化物、硫酸盐等)以及9种元素有效态(Cu、Fe 等)。涉及的前处理方法有3种:酸消解、碱熔和浸提(提取液有二乙烯三胺五乙酸、碳酸氢钠、氯化钾、氯化钡等溶液)。酸消解方法最为常用,又分为2种体系(常压和高压),消解液有盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸(王水)等。测定方法主要有8种:ICP-MS、波长色散X 射线荧光光谱法、火焰原子吸收分光光度法、石墨炉原子吸收分光光度法、原子荧光法、分光光度法、离子选择电极法和重量法等。/pp  17个有机物监测方法涉及161个组分的测定,其中绝大多数是集样品前处理和分析一体的方法,也有独立的样品前处理方法,如《土壤和沉积物有机物的提取加压流体萃取法》(HJ 783—2016)。样品前处理方法有6种:顶空、吹扫捕集、索氏提取、加压流体萃取、微波萃取和超声波提取等。分析方法有5种:GC、GC-MS、HPLC、高分辨GC-高分辨MS以及高分辨GC-低分辨MS等。161个测定组分中,包括16种多环芳烃,18种多氯联苯单体,67种挥发性有机物,17种二恶英类,10种有机磷,8种有机氯,21种酚类以及丙烯醛、丙烯腈、乙腈和毒鼠强。/pp  3个放射性监测方法中,涉及钚和铀2个元素,测定方法有放射化学分析法、固体荧光法和分光光度法等。/pp  8个理化指标等方法中,涉及5个测定指标(电导率、氧化还原电位、有机碳、可交换酸度、干物质和水分等),以及5种测定方法(电极法、滴定法、重量法、分光光度法和非分散红外法等)。另外,农业、林业也有土壤检测标准方法,主要侧重于土壤营养元素及其有效态、理化指标的检测,详见表5和表6。农业行业标准方法中,有21个涉及无机元素及其有效态测定的方法,有15个涉及土壤理化指标的方法 林业行业标准方法针对的是森林土壤,有15个涉及无机元素及其有效态测定的方法,有13个涉及土壤理化指标的方法。/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/028c7c4a-4d6e-4bdf-b577-a660da14e2df.jpg" style="float:none " title="土壤监测.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/400bfc0a-fd59-4d4d-90c9-abec47f38d03.jpg" style="float:none " title="土壤.jpg"//pp  3 中国土壤环境监测标准方法存在的问题/pp  3.1 现行标准中监测污染物的数量不足/pp  现行标准方法中,未覆盖目前中国生产、使用、排放的大量化学品及特征污染物。/pp  一方面,特征污染物明确、但无标准方法监测。如正在修订的《建设用地土壤污染风险筛选指导值》中,虽然规定了酞酸酯类、石油烃类、毒杀酚、灭蚁灵等污染物的风险指导值,但目前尚缺标准方法,给该“指导值”的实际执行造成技术瓶颈。/pp  另一方面,如何确定企业用地的特征监测因子难度更大。企业用地类型多样,人类活动强度大,涉及各种化学品和生产加工过程中产生的污染物,种类繁多,污染源类型复杂。在《建设用地土壤污染风险筛选指导值(三次征求意见稿)》中,结合行业生产特征、污染物理化和毒性性质,将污染物项目分为9类:金属与无机物、脂肪烃及其衍生物、单环芳烃及其衍生物、多环芳烃、多氯联苯与二口恶英、有机农药、石油烃和邻苯二甲酸酯,共包括121项土壤污染因子。但实际污染场地中,污染因子不限于这121项。如何合理筛选并科学监测特征污染物,从而进一步有效管控其环境、健康风险,是目前面临的一个难题。/pp  3.2 一些标准方法长期没有修订,新技术、方法难有法定地位/pp  正在修订的《农用地环境土壤环境质量标准》中,测定土壤中六六六和滴滴涕的方法(GB /T14550—2003),还规定可以用填充柱分离方法,而目前几乎很少有监测单位自行填充色谱柱,普遍是购买商品化毛细管柱进行分离测定。又如,原子吸收分光光度法是测定重金属所用的普遍方法,但以该方法为基础的标准方法-铜/锌、镍、铅/镉的测定方法是1997年颁布的,且分散在GB/T 17138、GB/T 17139和GB/T 17141等3个标准中,意味着要分析1个样品中的这5种元素时,至少要使用3种不同的标准方法,人力成本较高,时效性也不好。/pp  3.3 土壤环境监测基础性研究较少,对标准方法的完整性、系统性、科学性技术支持不足/pp  3.3.1 土壤粒径规定不统一/pp  无机样品测定时要求的粒径不统一(2.0、0.85、0.15、0.075mm等),使得样品研磨环节时效性、可比性较差 有机样品测定时是否研磨、研磨的尺度要求不一,实际操作时无所适从。/pp  土壤粒径是影响土壤光谱的重要因素之一,随着土壤粒径的减小,土壤光谱反射率呈现不同幅度的升高,小于0.154mm的土壤粒径对土壤光谱反射率的影响最大。《土壤环境监测技术规范》(HJ/T 166—2004)的“常规监测制样过程图”中规定,土壤样品自然风干、用四分法取压碎样、粗磨后,过孔径2mm尼龙筛后可进行样品入库存档,但在其中8.3.2小节,又规定过孔径0.25mm尼龙筛后,用于样品库存放以及土壤pH、阳离子交换量、元素有效态含量等项目的分析,前后规定有矛盾。测定土壤pH时,有要求研磨成粒径为0.25mm的,也有要求磨成2mm的,所得的数据可比性如何,还有待商榷。/pp  《土壤环境监测技术规范》(HJ/T 166—2004)还规定,土壤元素全量分析是用研磨到全部过孔径0.15mm筛的样品,这个规定有些片面,如X射线荧光光谱法测定就需要将土壤样品研磨后过0.075mm筛。该规范中,要求用于农药测定的样品,要研磨到全部过孔径0.25mm筛,而早期的有机氯测定,的确是将样品研磨成粒径为0.25mm的,但通常土壤有机物(特别是易挥发、易分解等有机物)分析是用新鲜样品,掺拌无水硫酸钠或粒状硅藻土研磨成“细粒状”或“流砂状”,有的分析方法不要求过筛,有的要求过1mm的金属筛。/pp  3.3.2 酸消解体系不统一/pp  元素混酸(王水-高氯酸-氢氟酸)全溶、王水(部分全溶)、硝酸-过氧化氢法等前处理所用试剂体系不同,结果也不同,相应的结果评价体系并未一一建立,使得有些测定结果不可比、也无法评判。/pp  盐酸-硝酸-高氯酸-氢氟酸的混酸“全酸”体系对样品进行消解,获得的是元素的全量,即将土壤晶格中的元素也一并提取出来 而其他一些酸浸渍法(如盐酸-硝酸溶浸法、硝酸-硫酸-高氯酸溶浸法以及硝酸溶浸法等),对土壤中部分元素则是不完全的消解提取,测得的元素含量结果比“全酸”体系的测定结果要低。使用不同的前处理方法得到的分析结果,用同一个评价标准如《土壤环境质量标准》(GB 15618—1995)进行评价,不仅数据不可比,结论也不科学。/pp  3.3.3 元素形态分析、有效态分析,在不同的场合概念不明确/pp  在评估环境效应时,往往不用土壤中元素总量数值,因为元素的迁移性、生态有效性、在生物体中的积累能力(又称生物可给性),与该元素在环境中存在的物理形态及化学形态密切相关。生物可给性指化学物质被吸收的能力和可能的毒性,是研究不同的形态被生物吸收或在生物体内积累的过程。/pp  元素在环境中的物理形态与化学形态分析即为“形态分析”,目前广泛应用的形态分析方法是由TESSIER等提出的土壤样品重金属元素顺序提取法,该方法利用化学性质不同的提取剂选择提取样品中不同相态的金属元素,先后分别提取5态:可交换态、碳酸盐结合态、铁锰水合氧化物结合态、有机物和硫化物结合态和残渣态,有学者将这种方法归为物理形态分析。化学形态分析又可以分为筛选形态、分组形态、分配形态以及个体形态等分析。/pp  环境中的土壤元素有效态与生物可给性概念密切相关,它与作物吸收效率有关,指在植物生长期内能够被植物根系吸收的元素,其土壤中的含量与作物的吸收有较高的相关性。多数测定中有效态的提取液是二乙烯三胺五乙酸-氯化钙-三乙醇胺(DTPA-CaCl2-TEA)缓冲溶液,可浸提出土壤中的铜、铁、锰、锌、镉、钴、镍、铅等元素。也有用0.1mol/L HCl或水浸提土壤中有效硼的,还有用1mol/L乙酸铵-对苯二酚溶液浸提有效态锰,用草酸-草酸铵溶液浸提有效态钼,用pH为4.0的乙酸-乙酸钠缓冲溶液、0.02mol/L H2SO4、0.025%或1%的柠檬酸溶液浸提硅。酸性土壤中有效硫用H3PO4-HAc溶液浸提,中性或石灰性土壤中有效硫用0.5mol/L NaHCO3溶液浸提。土壤中有效钙、镁、钾、钠用1mol/L NH4Ac浸提,土壤中有效态磷用0.03mol/L NH4F-0.025mol/L HCl或0.5mol/L NaHCO3浸提。由于各元素有效态的浸提方法不同,至今针对污染元素有效态的限值标准还很难形成。/pp  在一些应用场合下,元素“形态分析”“有效态分析”概念并不很清晰,分析方法有差异,会造成不同分析方法所获得的监测结果可比性差,从而引起监测信息发布时的混乱,也难以成为污染土壤的健康风险判断和评估等工作的科学技术支撑。/pp  3.4 在方法的标准化、系统化方面尚有许多工作待开展/pp  3.4.1 缺少原位监测方法标准/pp  至今,为数不多的土壤原位(现场)监测方法,只是用于污染物的初步、快速筛查,以定性、半定量为主,检测范围有限,灵敏度也不高,没有形成方法标准,所得测定结果不能作为科学决策及环境管理的主要依据。/pp  3.4.2 样品前处理方法单独成为标准还是融入分析方法中,缺乏顶层设计/pp  美国EPA的方法体系是样品前处理方法与分析方法相对独立,使用时可以自由组合,但实验室要有自己的标准操作程序(SOP),明确自己所用的前处理、分析方法。如EPA3000系列的方法为固体样品有机物的前处理方法,其中EPA3540C方法为索氏提取、EPA3545A方法为加压流体萃取、EPA3546A方法为微波萃取、EPA3550C方法为超声波萃取等。而EPA8000系列为前处理后的有机样品分析方法,如EPA8260是GC-MS法测定挥发性有机物 EPA8270D是GC-MS法测定半挥发性有机物 EPA8290A是高分辨GC-高分辨MS测定二恶英 EPA8318A是用HPLC 法测定氨基甲酸酯类等。中国的方法体系中,往往前处理和分析是“捆绑”在一个方法中的,如《土壤和沉积物多氯联苯的测定气相色谱-质谱法》(HJ 743—2015)中,规定了微波萃取、超声波萃取、索氏提取、加压流体方法提取PCBs,并给出了具体的提取条件。但近期又有独立的前处理方法标准颁布,如《土壤和沉积物有机物的提取加压流体萃取法》(HJ 783—2016),规定该方法适用于土壤中有机磷农药、有机氯农药、氯代除草剂、多环芳烃、邻苯二甲酸酯、多氯联苯等物质的提取。这样一来,原有方法体系中“前处理+分析方法”的模式就被打破了。“前处理+分析方法”的模式执行简单,规范性强,但若有新的前处理方法发展出来,由于重新考上岗证、将新方法纳入质量管理体系等工作需要一段时间,不能及时将新方法直接用于实践 单纯的前处理标准方法在具体实践中比较灵活,但存在与原有“前处理+分析方法”的规定可能不一致的问题,且可能会有某些实验室不制订规范的作业指导书,选用前处理方法比较随意,最终导致数据不可比。/pp  今后是否沿用原有的体系,还是前处理方法相对独立,需要从顶层设计上通盘考虑。/pp  3.4.3 质量保证与质量控制有待完善/pp  以前的标准方法中,质量保证与质量控制的内容较少 近年来颁布的标准方法中,从新方法制订的角度,规定了“精密度”和“准确度”等质控指标,由多家实验室对污染物分别进行多次重复测定而获得。在日常样品分析时,通常情况下分析人员无须对同一样品进行3次以上的重复测定,也不太可能就一个样品,去寻找其他实验室来比对测定。因此,“精密度”和“准确度”这2个质控指标在日常分析工作中指导意义并不大,需要研究制订日常工作中实用、有效的质控指标及其评价标准,尤其是不同土壤基质下样品的回收率、平行样的测定偏差等量化评价指标。/pp  3.4.4 方法的先进性、普适性较难兼顾/pp  标准方法的出台,原则上需要1家方法研制单位和另外至少6家验证单位,会导致一些需要用新型、价格较为昂贵的仪器(如高分辨GCMS、HPLC-MS-MS等)进行测定的污染物(如毒杀酚、多溴联苯醚等),其标准方法不能及时制订、颁布 而没有标准分析方法,又导致一些新型仪器推广使用受限,制约了新技术的发展。/pp  又如X-荧光分析法,地质部门已将其作为标准方法使用多年,实际工作中解决了批量样品的快速、准确检测,但由于环保部门使用较少、配置仪器设备的单位较少,对该方法性能了解不全面、应用经验不足,即使有标准方法颁布,在某些专项工作中还是不推荐使用。/pp  4 中国土壤环境监测方法发展建议/pp  4.1 加强土壤监测标准方法的顶层设计,合理增加土壤污染物的控制种类/pp  建议结合环境标准和污染控制标准的陆续更新工作,将标准方法体系规范化、系统化的规划和发展作为土壤监测标准方法顶层设计的重点,例如,合理厘清标准方法与技术规范的关系 慎重考虑今后是将样品前处理方法单独设为一种系列标准,与现有的实验室分析标准系列并行,还是融入分析方法中,成为“一体化”的标准 既继续发挥经典标准方法的作用、保持历史监测数据的连续性,又兼顾和吸纳先进、高效以及简易、快速的监测方法作为标准分析方法。/pp  《国家环境保护标准“十三五”发展规划(征求意见稿)》中,拟新增14个无机物的标准测定方法,其中新增测定组分有硫化物、氟化物、Tl、Sn、六价铬等 拟新增26个有机物的标准测定方法,其中新增测定组分有持久性有机污染物(PCB混合物、指示性毒杀酚、多溴联苯、多溴联苯醚、全氟辛基磺酸和全氟辛基羧酸、六溴环十二烷和四溴双酚A),农药(苯氧羧酸类农药、阿特拉津和西玛津、草甘膦、敌稗、代森锰锌、杀虫剂),酞酸酯类,烷基汞,总石油烃,挥发酚,醛/酮/醚类,苯胺类和联苯胺类等 另外,还拟新增其他指标:有机化学物质吸收常数、粒度、阳离子交换容量等标准方法。说明中国土壤监测标准方法(尤其是有机物的标准方法)开发已经受到一定的重视。建议在土壤目标污染物的选择上,针对农田地块,可以参考与土壤有关系的农作物、食品残留标准所控制的污染物(如相关食品安全国家标准) 针对企业用地,要在企业历史调查基础上,筛选特征污染因子,将与企业生产活动相关、对人体健康和土壤环境质量影响较大、有可能对土壤(地下水)产生高风险的污染物,初定为目标污染物,同时要综合考虑化合物特性(反应降解、土壤吸附性、挥发性等),目前的分析测试技术水平以及国内外土壤污染风险评价情况等,确定目标污染物,并参照国际方法、文献中相对成熟的方法,建立目标污染物的标准测试方法。/pp  4.2 及时更新标准方法,大力发展多组分同时测定的高效方法/pp  异位监测主要包括化学实验分析法和仪器分析法,目前几乎很少使用化学分析法研究土壤重金属、有机物,精度高、操作简单、可同时测多个项目的仪器分析法(如GC、HPLC、ICP-AES、X射线荧光光谱法等),以及仪器联用法是主流发展趋势,从分光光度法、原子吸收分光光度法到ICP、ICP-MS,从色谱法到色谱-质谱联用,所能测的目标物范围更广,监测精度从mg/kg到μg/kg,再到ng/kg,痕量污染物的检出限逐渐降低。《国家环境保护标准“十三五”发展规划(征求意见稿)》中,新增的分析方法有ICP-AES、催化热解-原子吸收法、HPLC-MS、GC-原子荧光法等,也吸纳了仪器联用的技术手段。食品安全国家标准中,水果和蔬菜、粮谷、茶业中,分别同时测定500、475、448种农药残留,这种多残留的测定技术也值得环保领域借鉴。/pp  4.3 科学研究标准方法,加强其系统性、协调性/pp  今后土壤监测标准方法开发可紧紧围绕土壤质量标准、污染场地修复限值、农产品标准等的需求,也可以将相对成熟的文献方法进行标准适用性转化,相对缩短方法标准研制的周期 在方法规定的细节方面进一步予以梳理(如元素筛分的粒径相对统一),便于提高测定效率 在测定方法与评价标准的匹配性方面要予以重视,土壤元素总量、形态和有效态测定方法均各有侧重,元素总量符合国家现行的土壤评价标准体系,且测定体系相对统一,结果可比性强 元素有效态能有效评估污染物可能的迁移、土壤污染对地下水的影响,更能反映环境效应,这些监测的目的不同,均需要研究,不可厚此薄彼 另一方面,应将总量、形态、有效态的评价方法与监测方法一一匹配,不管是元素形态分析还是有效态分析,需要模拟植物在土壤中生长的实际情况与多种因素对形态及生物可给性的综合影响,通过大量实测数据,探索具有普适意义的生物可给性方法学,并最终形成规范化的分析方法体系及可操作的控制标准体系。/pp  4.4 鼓励原位监测方法的探索,使之尽可能准确、标准化/pp  原位监测可实现快速、非破坏、大面积地监测土壤污染物,实验周期短,目前研究热点有便携式X-荧光光谱、高光谱遥感探测、生物发光技术(针对无机物)、便携式GC-MS(针对有机物)等,但技术大多处于定性或半定量化试验阶段,研究思路可借鉴,大面积推广应用仍需验证。对区域土壤进行监测时,可先用原位监测进行前期摸底调查,然后有针对性地重点选择异常点或面,用标准方法深入监测。原位监测的总体趋势是向精度更高的微观探索技术和节约时间成本的中观、宏观监测技术发展,不仅可用遥感技术对土壤重金属进行实地定位观测,还可用不同时期的影像叠加,对比观测土壤质量变化情况 通过近红外、热红外接收的遥感影像、光学侦测和修正(LIDAR)探测、计算得到组分含量,实现土壤污染物的定性、定量监测。/pp  5 结论/pp  中国土壤监测标准方法包括国家标准、行业标准两大类,其中国家标准和环保行业标准侧重于土壤污染物的检测,农业和林业行业标准侧重土壤营养元素及其有效态、理化指标的检测。在现行标准方法中,监测污染物的数量不足,一些标准方法长期未修订导致新技术和新方法尚无法定地位,土壤环境监测的基础性研究较少,对标准的完整性、系统性、科学性技术支持不足,在方法的标准化、系统化方面尚有许多工作待开展。建议加强土壤监测标准方法的顶层设计,合理增加土壤污染物的控制种类 及时更新标准方法,发展多组分同时测定的高效方法 科学研究标准方法,加强其系统性、协调性 鼓励进行原位监测方法的探索,使之尽可能地准确、标准化。/p
  • 263万!福建省南平环境监测中心站采购全自动土壤样品制备系统等土壤专项仪器
    近日,财政部发布土壤专项仪器设备采购项目货物类采购项目招标公告,潜在投标人应在2022-06-13 08:30(北京时间)前递交投标文件。项目详情如下:采购单位:福建省南平环境监测中心站 项目编号:[350700]HJGCZJ[GK]2022001项目名称:福建省南平环境监测中心站福建省南平环境监测中心站土壤专项仪器设备采购项目货物类采购项目采购方式:公开招标预算金额:2639000元包1:采购包预算金额:2639000元投标保证金:26390元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量允许进口品目预算(元)1-1A032405-环保监测设备环保监测设备1(批)否2639000采购仪器详情: 台式pH计HJ962-2018、台式电位计(配置要求:台式主机一台,ORP电极一支,电源适配器,支架,操作手册,校准缓冲溶液一套)、恒温油浴锅、恒温水浴锅、玛瑙研磨机、微波消解仪(原子荧光、原子吸收、ICP-MS等制备样品)、数控电热板、全自动索式提取仪、氮吹仪、全自动型GPC凝胶净化系统、冷冻干燥机、超声波清洗机、高通量真空平行浓缩仪(配置要求:1 真空浓缩主机 1台;2 全透明水浴模块 1套;3 加热振荡模块 1套;4触摸屏控制系统 1套;5冷凝回收系统 1套;6 真空泵及控制器 1套;7 冷却循环系统 1套; 8 48位样品架 1套;9 60ml收集瓶(100个/包)1套)、全自动土壤样品制备系统(核心产品)。为全面掌握我国土壤资源情况,国务院决定自2022年起开展第三次全国土壤普查。当前,按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等均在有序组织开展第三次全国土壤普查实验室筛选工作。以下为第三次土壤普查理化性状检测主要仪器设备清单,供土壤检测实验室建设和仪器采购提供参考:类别名称制样设备视频监控设备研磨设备 筛分设备 称样设备百分之一电子天平 万分之一电子天平 物理指标测定仪器设备颗粒分析自控吸液仪或土壤颗粒分析吸管仪或土壤比重计直径 20cm,高 5cm,孔径为 10mm、7mm、5mm、3mm、1mm、0.5mm、0.25mm 的土壤筛组和孔径为 5mm、3mm、2mm、1mm、0.5mm、0.25mm 的土壤筛组样品前处理设备微波消解仪 可控温电热消解仪 恒温油浴箱 恒温振荡器 马弗炉 铂金坩埚 (30mL)化学性质及重金属检测仪器定氮仪 酸度计 电导率仪 分光光度计 火焰光度计 原子荧光光谱仪 火焰原子吸收分光光度计 石墨炉原子吸收分光光度计 电感耦合等离子体发射光谱仪 电感耦合等离子体质谱仪
  • 土壤三普常见技术问题答疑手册发布 讨论了这些仪器和方法
    近期,国务院第三次全国土壤普查领导小组办公室组织第三次全国土壤普查专家技术指导组,对试点期间各地反馈的关于平台应用、外业调查采样、内业样品制备与检测等问题进行梳理总结与分析研判,初步形成常见技术问题答疑手册,第1期共139问。其中,答疑手册第三部分专门就样品检测过程中的问题进行了解释,包括制样器具选择、样品前处理的步骤、相关的标准方法以及所使用的仪器等,包括原子吸收分光光度法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法、X 射线衍射法、火焰光度法等。仪器信息网摘录部分如下:102.国家层面是否统一制样器具的类别、材质和型号?答:《土壤样品制备与检测技术规范(试行)》中 2.4 对样品制备所需工具和材质已做明确要求,承担样品制备任务 的实验室应结合本省任务安排及实际情况,确定相应样品制 备器具。103.第三次全国土壤普查工作平台上样品制备的起止时间如何界定?答:一般样品和剖面样品的制备起止时间为粗磨开始和粗磨结束。水稳性大团聚体的制备起止时间为风干开始和风干结束。104.1 mm 土壤样品如何细磨?答:按照《土壤样品制备与检测技术规范(试行)》中 2. 6.1“一般样品制备”有关要求,采用四分法或多点取样法,在 送检样品中分取约 50g 样品(具体数量依据相关检测方法要 求),用木辊或在瓷(玛瑙)研钵中研磨,使之全部过 1 mm 样品筛,用于速效钾、缓效钾等指标检测。105.阳离子交换量、交换性盐基有多种方法,是否需要根据土壤样品酸碱性来选择不同方法进行样品检测?酸性土壤、中性土壤、石灰性土壤如何界定?答:按照《土壤样品制备与检测技术规范(试行)》规 定,阳离子交换量、交换性盐基等土壤样品检测,应根据土 壤样品酸碱性选择对应的检测方法。依据《中国土壤》(中 国农业出版社,1998),pH7.5 为碱性土壤,pH 6.5~7.5(包含 6.5 和 7.5)为中性土壤。106.有效态铁、锰、铜、锌检测方法为《土壤有效态 锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004),该标准适用范围为 pH6 的土壤,pH6 的土壤样品如何检测?答:农业行业标准《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004) 规定了采用二乙三胺五乙酸(DTPA)浸提剂提取土壤中有效态锌、锰、铁、铜,以原子吸收分光光度法或电感耦合等离子体发射光谱法加以定量测定的方法,该标准规定适用于 pH6 的土壤。《土壤分析技术规范》(第二版)(中国农业出 版社,2006)引用了该标准,并明确 pH6 的土壤也可参照使用。经内业技术组专家研究确定,NY/T 890-2004 标准适用于所有土壤有效态锌、锰、铁、铜含量的测定。107.全氮检测方法为《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012),其中样品前 处理规定了“6.3.1 不包括硝态氮和亚硝态氮的消煮”“6.3.2 包 括硝态氮和亚硝态氮的消煮”两种方法,如何选择?答:鉴于土壤样品硝态氮和亚硝态氮含量很低,对土壤全氮量的测定结果影响很小,经内业技术组专家研究确定, 除含硝态氮高的土壤外,其余耕地园地、林地草地土壤样品 可采用标准中不包括硝态氮和亚硝态氮的方法进行全氮检 测样品前处理。 108.《土壤样品制备与检测技术规范(试行)》规定耕 地园地、林地草地总磷均可用《森林土壤磷的测定》(LY/T 1232-2015)检测,但该标准无电感耦合等离子体发射光谱法的具体步骤。答:《森林土壤磷的测定》(LY/T 1232-2015)条款3. 2 酸溶法明确待测液中磷采用钼锑抗比色法或电感耦合等离 子体发射光谱法测定,鉴于该标准没有明确电感耦合等离子体发射光谱法操作分析步骤,检测实验室应编制电感耦合等离子体发射光谱法测定全磷的作业指导书,并进行方法验证, 经省级三普办审核批准后,可以使用电感耦合等离子体发射光谱法测定全磷。 109.按照《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)和《固体废物 22 种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)检测 镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、钼(Mo)、镍(Ni)、 铅(Pb)、锌(Zn)、铁(Fe)、铝(Al)、钙(Ca)、镁(Mg), 对是检测土壤试样的浸出液还是检测土壤试样,前处理如何操作?答:本次土壤普查借鉴的固体废物检测标准均是检测土壤试样而非检测土壤试样的浸出液。其中,使用《固体废物 22 种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)的方法可采用“盐酸+硝酸+氢氟酸+双氧水,微 波消解法”,也可采用“盐酸+硝酸+高氯酸+氢氟酸,电热板消解法”进行前处理。使用《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)可采用“盐酸+硝酸+氢 氟酸+双氧水微波消解法”进行前处理,若通过验证能满足本 方法的质量控制和质量保证要求,也可以使用电热板等其他消解法进行前处理110.《土壤样品制备和检测技术规范(试行)》中未写明土壤矿物、凋萎系数检测具体方法。 答:《土壤样品制备与检测技术规范(试行)》和第三次 全国土壤普查内业检测培训教材中规定了土壤田间持水量和凋萎系数采用压力膜(板)法,并明确了具体操作步骤和有关要求,土壤矿物测定采用 X 射线衍射法。112.《土壤分析技术规范》(第二版)中比重计法测定机械组成过程繁琐、精度不高,是否可探索建立吸管法使用粒度分布仪测定方法,或使用《森林土壤颗粒组成机械组成 的测定》(LY/T 1225-1999)方法检测?答:《土壤样品制备与检测技术规范(试行)》规定土壤 机械组成测定采用《土壤分析技术规范》(第二版)吸管法 和比重计法,两种方法均可用于土壤机械组成的检测。《土 壤样品制备与检测技术规范(试行)》规定的检测方法主要采用标准方法或权威方法,且经过专家多次研讨确定,在方法未经大量试验验证前不得随意改变。《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)土壤质地分类与颗 粒分级采用美国制,与现有技术规范规定不一致。115.碳酸钙检测用非水滴定法检测,最终结果是否转换为以碳酸钙计? 答:《土壤分析技术规范》(第二版)中非水滴定法测定 结果是以 CO2计,此次三普土壤样品测定结果以碳酸钙含量计。117.林地草地盐碱荒地中交换性盐基总量测定方法仅有《森林土壤交换性盐基总量的测定》(LY/T 1244-1999),该方法明确规定适用于酸性和中性,对于碱性土壤是否适合? 答:对于碱性森林土壤(石灰性土壤或盐渍化土壤), 不能采用《森林土壤阳离子交换量的测定》(LY/T 1244-19 99),因为该标准采用乙酸铵交换-容量法会溶解石灰性土 壤碳酸钙中游离钙离子,导致交换性盐基总量大于阳离子交 换量。鉴于碱性森林土壤的交换性盐基总量目前尚未有明确 的国家或行业标准规定,建议采用《石灰性土壤交换性盐基 及盐基总量的测定》(NY/T 1615-2008)方法测定交换性盐 基总量。118.交换性盐基总量中交换性钠含量较低,采用火焰光度法测定结果稳定性较差、检出限高,建议补充交换性钾、交换性钠、交换性钙、交换性镁 ICP 法测定方法。答:目前没有 ICP 法测定交换性盐基离子标准,应按照 《土壤样品制备与检测技术规范(试行)》规定方法检测。119.部分土壤样品中硝酸盐含量较高,本次阴离子只测定碳酸根、碳酸氢根、硫酸根、氯根,造成水溶盐阴阳离子不平衡,水溶盐总量和离子总量不平衡该如何解决?答:本次普查水溶盐的测定主要针对盐碱地,盐碱地土壤所含的可溶盐主要是钠、钙、镁的氯化盐或硫酸盐和碳酸盐及重碳酸盐。土壤水溶性盐分组成测定按照《森林土壤水 溶性盐分分析》(LY/T 1251-1999)标准操作,该标准规定用离子加合法将阴阳离子总量相加进行计算水溶性离子总量,同时对全盐量与水溶性离子总量之间的允许偏差进行了规定。更多详情请关注:第三次全国土壤普查常见技术问题答疑手册.pdf
  • 建筑土壤限制铬,限铬只限六价铬
    2018年8月1日,国家发布实施《土壤环境质量 建设用地土壤污染风险管控标准》试行稿,加强对建筑用地土壤的环境调查评估,在重金属和无机物污染类别中,六价铬作为其中一项筛选和管控的项目用于区分不同的用地类别。因此,快速、准确的土壤中六价铬分析检测技术成为建设用地土壤的关注所在。 环境中稳定存在两种价态的铬,分别是三价铬[Cr(Ⅲ)]和六价铬[Cr(Ⅵ)]。六价铬是剧毒物质,其毒性除了免疫毒性、生殖毒性、肾脏毒性、神经毒性外,严重的还可致癌或者致突变,国际癌症研究中心明确六价铬化合物为人类致癌物。土壤环境质量中,对一类建设用地和二类建设用地的筛选含量分别为3.0 mg/kg和5.7 mg/kg,对分析方法的检出限提出了较高的要求。应对元素的形态分析要求,您是得心应手了然于胸?还是一切茫然手足无措?岛津公司忧您所忧,想您所想。为您从仪器配置、样品处理到分析条件优化做了系统准备。 ☆☆仪器配置☆☆ 岛津高效液相色谱仪LC-20Ai,电感耦合等离子体质谱仪ICPMS-2030。图1 岛津LC-20Ai+ICPMS-2030联用系统 ☆☆样品前处理☆☆准确称取建筑土壤样品2.50 g置于250 mL圆底烧瓶中,加入50 mL碳酸钠/氢氧化钠混合溶液(称取15.0 g碳酸钠和10.0 g氢氧化钠溶于超纯水中稀释至500 mL而得)、400 mg氯化镁和0.5 mL 0.5 mol/L K2HPO4/0.5 mol/L KH2PO4缓冲溶液,盖上盖子后置于恒温震荡水浴锅中,常温震荡搅拌5 min后,开启加热震荡至90-95℃,消解60 min。消解完毕后取出烧瓶冷却至室温。用0.45 μm滤膜过滤后,滤液用10%的硝酸调节pH值至7.0-7.4之间,加入超纯水定容至100 mL,摇匀,待测。 ☆☆ 形态铬分离☆☆ 使用岛津高效液相色谱仪LC-20Ai实现对不同形态铬的分离色谱柱 Dionex IonPacTM AG11-HC(50*4mm 10 μm)流动相 60 mM硝酸铵和0.6 mM乙二胺四乙酸二钠溶液(pH 7.0)流 速 1.0 mL/min柱 温 30℃进样量 50 μL洗脱程序 等度洗脱 图2 三价铬和六价铬的色谱图 ☆☆结果检验☆☆ 1、检出限考察 表3 检出限考察结果2、建筑土壤样品分析 表4 样品测定及回收率考察结果(%)
  • 安捷伦科技推出 IQFISH FFPE 缓冲液实现 FFPE 组织样品一小时杂交
    安捷伦科技推出 IQFISH FFPE 缓冲液实现 FFPE 组织样品一小时杂交 2013 年 11 月 13 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布推出 IQFISH FFPE 杂交缓冲液,可以实现福尔马林固定石蜡包埋 (FFPE) 组织样品 FISH 处理的一小时杂交。 IQ 技术最早由 Dako 公司开发,以前仅用于解剖病理实验室。而现在,IQFISH FFPE 杂交缓冲液可作为单独产品供应,因此细胞遗传学实验室也可受益于 IQ 技术,从而更快地获得结果。 安捷伦诊断和基因组学业务部门副总裁兼总经理 Jacob Thaysen 说道:“IQFISH FFPE 杂交缓冲液将极大缩短 FFPE 样品的 FISH 处理时间。通过将杂交处理步骤从行业标准的两天减少到仅仅一小时,使我们的客户可以更快地获得结果,且不会影响信号强度。” 有关 Dako IQFISH 杂交缓冲液的更多信息,请访问 www.dako.com。关于 Dako — 安捷伦科技公司旗下子公司 总部位于丹麦的 Dako 公司是组织类癌症诊断的全球领导者。全球的医院和研究实验室都在使用 Dako 的试剂、仪器、软件和专业知识,为癌症病人提供准确的诊断,确定最有效的治疗方案。Dako 公司拥有 1200 名员工,在全球 100 多个国家开展业务。Dako 于 2012 年 6 月归入安捷伦科技旗下。要了解 Dako 的信息,请访问 www.dako.com。关于安捷伦科技公司 安捷伦科技(NYSE 代码:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 北京大学周欢萍团队:淀粉聚离子超分子缓冲层提高钙钛矿太阳能电池疲劳抗性
    【重点摘要:】(1)周欢萍教授团队利用淀粉-聚碘超分子作为缓冲层,显著改善了钙钛矿太阳能电池的疲劳行为和循环稳定性。(2)经修改的钙钛矿太阳能电池在连续42个日夜循环后,发电效率可保持在98%。(3)该研究为如何利用超分子化学调控软晶格材料的元稳定动力学提供了重要见解。【研究背景】由于钙钛矿太阳能电池具有软体和离子晶格结构,它们极易受外部刺激的影响。在循环载荷的实际环境中,电池很容易出现明显的疲劳。由于缺乏对材料降解的基本理解,目前还没有有效的方法来减轻这种循环照明下的电池疲劳。【研究结果】研究人员在钙钛矿材料的界面引入了淀粉-聚碘超分子作为双功能缓冲层,它既可以抑制离子迁移,也可以促进缺陷的自我修复。经修改的钙钛矿太阳能电池在连续42个日夜循环后,原始的光电转换效率可保持在98%。这种电池也达到了24.3%的光电转换效率(认证值为23.9%),并且具有强烈的电致发光,外量子效率高达12%以上。【研究方法】研究人员首先合成了淀粉-聚碘超分子材料,并将其作为缓冲层插入钙钛矿太阳能电池的载流子输运层与光吸收层之间。他们从多个角度分析了缓冲层的影响,包括电化学测量、光致发光谱、小角入射X射线衍射、热重分析等,以确认其双功能机制。然后,他们制备了采用该缓冲层的钙钛矿太阳能电池,并通过42个日夜循环的加速老化试验考察其循环稳定性和发电效能。结果证实,缓冲层明显提高了电池在循环载荷下的稳定性。【结论】本研究通过在钙钛矿太阳能电池的界面引入淀粉-聚碘超分子缓冲层,显著改善了电池的循环稳定性和疲劳行为,为实现钙钛矿太阳能电池的实际应用提供了有效途径。该超分子缓冲层的双功能机制也可应用于其他软晶格材料的界面设计。研究结果对利用超分子化学手段调控软晶格材料的元稳定性具有重要启发意义。a,含不同浓度淀粉-碘Starch-I的w/ Starch-I装置的J-V曲线。b,开路电压和填充因子随Starch-I浓度的依赖性。c,作为LED操作时装置的EL的EQE。d,EQEEL和开路电压随Starch-I浓度的依赖性。含Starch-I的w/ Starch-I装置(a)和参考装置(b)的J-V曲线。外量子效率(EQE)谱及合并的JSC为24.5 mA cm-2 457 的含Starch-I装置。
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 【超级工程师】详细操作发布!土壤中六价铬那些你不知道的事~
    历时2个月的赛程第五届超级工程师大赛圆满完成本次大赛举办是为提高实验室土壤中六价铬检测技术水平促进大家同台竞技 相互交流 相互学习 共同进步坛墨特邀江苏康达检测技术股份有限公司参赛团队为我们展示土壤中六价铬实操过程欢迎各位老师在线与我们一起学习 共同提升https://www.gbw-china.com/ns_detail/1140.html实验步骤1、称样:准确称取5.0 g(精确至0.01 g)样品,置于250 mL烧杯中。2、加液:移取50.0 mL 碱性提取溶液,再加入400 mg氯化镁和0.5 mL磷酸氢二钾-磷酸二氢钾缓冲溶液。3、搅拌:放入搅拌子,用聚乙烯薄膜封口,置于搅拌加热装置上,常温下搅拌样品5 min后,开启加热装置,加热搅拌至90℃~95℃,保持60 min。4、抽滤:取下烧杯,冷却至室温。用滤膜抽滤,将滤液置于250 ml的烧杯中,用水润洗烧杯2-3次,再抽滤,合并滤液。5、调节pH、定容:用硝酸调节溶液的pH值至7.5±0.5。将此溶液转移至100 mL容量瓶中,用水定容至标线,摇匀,待测。6、上机检测:设置火焰原子吸收分光光度计参数,选择空白试样调仪器零点,按浓度由低到高顺序依次测定其吸光度。以六价铬浓度为横坐标,吸光度为纵坐标,建立工作曲线。相关系数大于0.999即可测量样品。有其他关于操作的问题,可以给我们留言哦~
  • 你想要的答案在这里!第三次全国土壤普查常见技术问题答疑手册修订版发布
    近期,国务院第三次全国土壤普查领导小组办公室组织第三次全国土壤普查专家技术指导组,基于新发布的《第三次全国土壤普查技术规程(修订版)》等技术规程规范,对关于平台应用、外业调查采样、内业样品制备与检测等问题进行更新完善,形成《第三次全国土壤普查常见技术问题答疑手册(修订版137问)》,供各地参考。《第三次全国土壤普查常见技术问题答疑手册(第1期139问)》自即日起废止。检测相关问题部分解答如下:1.阳离子交换量、交换性盐基有多种方法,是否需要根据土壤样品酸碱性来选择不同方法进行样品检测?酸性土壤、中性土壤、石灰性土壤如何界定?答:按照《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定,阳离子交换量、交换性盐基等土壤样品检测,应根据土壤样品酸碱性选择对应的检测方法。pH7.5为碱性土壤,pH 6.5~7.5(包含6.5和7.5)为中性土壤。2.有效态铁、锰、铜、锌检测方法为《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004),该标准适用范围为pH6的土壤,pH6的土壤样品如何检测?答:农业行业标准《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)规定了采用二乙三胺五乙酸(DTPA)浸提剂提取土壤中有效态锌、锰、铁、铜,以原子吸收分光光度法或电感耦合等离子体发射光谱法加以定量测定的方法,该标准规定适用于pH6的土壤。《土壤分析技术规范》(第二版)(中国农业出版社,2006)引用了该标准,并明确pH6的土壤也可参照使用。经内业技术组专家研究确定,NY/T 890-2004标准适用于所有土壤有效态锌、锰、铁、铜含量的测定。3.全氮检测方法为《土壤检测第24部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012),其中样品前处理规定了“6.3.1不包括硝态氮和亚硝态氮的消煮”“6.3.2包括硝态氮和亚硝态氮的消煮”两种方法,如何选择?答:鉴于土壤样品硝态氮和亚硝态氮含量很低,对土壤全氮量的测定结果影响很小,经内业技术组专家研究确定,除含硝态氮高的土壤外,其余耕地园地、林地草地土壤样品可采用标准中不包括硝态氮和亚硝态氮的方法进行全氮检测样品前处理。4.按照《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)和《固体废物 22种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)检测镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、钼(Mo)、镍(Ni)、铅(Pb)、锌(Zn)、铁(Fe)、铝(Al)、钙(Ca)、镁(Mg),对是检测土壤试样的浸出液还是检测土壤试样,前处理如何操作?答:本次土壤普查借鉴的固体废物检测标准均是检测土壤试样而非检测土壤试样的浸出液。其中,使用《固体废物 22种金属元素的测定电感耦合等离子体发射光谱法》(HJ 781-2016)的方法可采用“盐酸+硝酸+氢氟酸+双氧水,微波消解法”,也可采用“盐酸+硝酸+高氯酸+氢氟酸,电热板消解法”进行前处理。使用《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)可采用“盐酸+硝酸+氢氟酸+双氧水微波消解法”进行前处理,若通过验证能满足本方法的质量控制和质量保证要求,也可以使用电热板等其他消解法进行前处理。具体检测方法已列入培训教材,并在“检测小课堂”中发布。5.《土壤分析技术规范》(第二版)中比重计法测定机械组成过程繁琐、精度不高,是否可探索建立吸管法使用粒度分布仪测定方法,或使用《森林土壤颗粒组成机械组成的测定》(LY/T 1225-1999)方法检测?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》明确,机械组成检测依据《土壤分析技术规范》(第二版),5.1吸管法。6.水溶性硝酸根离子含量过高的土壤,水溶盐离子加和总量与水溶盐总量检测结果超出《森林土壤水溶性盐分分析》(LY/T1251–1999)中表4允许偏差超范围。答:建议检测机构在出现水溶盐离子加和总量与全盐量不平衡问题时,对可能影响加和离子的原因进行排查,并提供影响加和的其他阴阳离子含量的测定原始记录等备查。7.碳酸钙检测用非水滴定法检测,最终结果是否转换为以碳酸钙计?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定碳酸钙检测采用《土壤分析技术规范》(第二版),15.1土壤碳酸盐的测定 气量法。8.林地草地盐碱荒地中交换性盐基总量测定方法仅有《森林土壤交换性盐基总量的测定》(LY/T 1244-1999),该方法明确规定适用于酸性和中性,对于碱性土壤是否适合?答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》规定土壤中交换性盐基总量和交换性盐基的检测方法,对于pH≤7.5的样品,采用《土壤分析技术规范》(第二版),13.1酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)方法测定;对于pH>7.5的样品,采用《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)方法测定。9.交换性盐基总量中交换性钠含量较低,采用火焰光度法测定结果稳定性较差、检出限高,建议补充交换性钾、交换性钠、交换性钙、交换性镁ICP法测定方法。答:《第三次全国土壤普查土壤样品制备与检测技术规范(修订版)》增加了交换液中钾、钠、钙、镁离子的等离子体发射光谱法。具体检测方法见培训教材,并在“检测小课堂”中发布。10.部分土壤样品中硝酸盐含量较高,本次阴离子只测定碳酸根、碳酸氢根、硫酸根、氯根,造成水溶盐阴阳离子不平衡,水溶盐总量和离子总量不平衡该如何解决?答:本次普查水溶盐的测定主要针对盐碱地,盐碱地土壤所含的可溶盐主要是钠、钙、镁的氯化盐或硫酸盐和碳酸盐及重碳酸盐。土壤水溶性盐分组成测定按照《森林土壤水溶性盐分分析》(LY/T 1251-1999)标准操作,该标准规定用离子加合法将阴阳离子总量相加进行计算水溶性离子总量,同时对全盐量与水溶性离子总量之间的允许偏差进行了规定。检测机构在出现水溶盐离子加和总量与全盐量不平衡问题时,应对可能影响加和离子的原因进行排查,并做好影响加和的其他阴阳离子含量的测定原始记录等。附:第三次全国土壤普查常见技术问题答疑手册(修订版137问).docx
  • YSI pH100A在底泥,土壤的pH测量中应用
    方法概述随着环境监测日益深入,黑臭水体的监测和整治更加重要。水体,水体底泥的污染同时存在,所以监测黑臭水体的底泥和受水污染的土壤是环境监测的一个重要指标。水体的底泥,土壤和沉积物含水率差异大,难以直接测量得到一致的结果。按照(土壤检测第2部分pH检测 NYT1121.2-2006标准)测量方法适合的各类土壤pH测定,适用于底泥的测量。原理:pH的玻璃电极和甘汞电极浸入到土壤悬浊液,构成一电池反应,两者之间产生电位差,由pH仪器测量得到pH值。 土壤水浸pH的测定称取通过2mm孔径筛的风干样品10g±0.1g于50ml高型烧杯,加入25ml去除CO2蒸馏水(土/液比1:2.5),用搅拌器搅拌1分钟,使颗粒充分分散,静止30分钟测试。将电极插入到试样悬浊液中,(玻璃电极球泡下部位于土液界面处,甘汞电极在上部清液。轻轻转动烧杯以除去电极水膜,促使器快速平衡,静止片刻测试pH值。YSI独特的测量电极和仪器赛莱默分析仪器旗下YSI水质仪器的 pH100仪器可选配112-1型平头pH电极,具有极其可靠的双结点电极,是理想的底泥pH值测量的工具。pH100A设计为快速,精确的测量,提供可靠的数据。独特优点:1pH探头平板的电极不会被土壤、底泥颗粒堵塞,降低电极黏泥附着,方便、容易清除干净电极。YSI的pH电极是玻璃电极和参比电极的复合电极,响应速度快,数据稳定。探头内置温度传感器,可以同时测量温度数据。2主机特点配属两种探头,一种可以测试水体,一种可以测试底泥,土壤。IP67防水内置缓冲液识别(NIST和USA)自动/手动温度补偿电极偏差识别电极效率显示自锁功能保持稳定的读数30分钟不操作的自动关机功能50组数据记忆应用领域 更多应用:河流和湖泊底泥研究、湿地底泥研究、海底沉积物、污泥堆放、土壤修复。结语赛莱默分析仪器旗下YSI水质监测仪器,以其简单、易用、智能的特点获得业内的认可及广泛应用。为水质测量提供工具,为环境水污染治理提供了有力的数据支持。而赛莱默分析仪器仍将一如既往的秉承精益求精的精神,提供更优质的产品,更及时的服务,更有效的解决方案,为中国环境监测和污水治理市场贡献自己的力量!
  • NCC:天然卤素在气候变化中缓冲对流层臭氧
    本篇论文解读由方雪坤研究团队的杜千娜同学撰写。杜千娜同学:浙江大学环境与资源学院2022级硕士研究生,主要研究方向温室气体HFCs排放反演与清单。第一作者:Fernando Iglesias-Suarez通讯作者:Alfonso Saiz-Lopez通讯单位:1Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain. 文章链接:https://doi.org/10.1038/s41558-019-0675-6论文发表时间:2020年1月研究亮点1.全球综合的、由卤素驱动的对流层O3柱损失在整个21世纪是恒定的(~13%)。2.卤素造成的对流层臭氧损失在目前和本世纪末都显示出明显的半球不对称性。3.预计卤素介导的臭氧损失最大(高达70%)发生在北半球污染地区(美国东部、欧洲和东亚)的地表附近。(注:以上为这位同学的论文解读,非论文原作者意思)研究不足(或未来研究)1.未来经济发展情况预测仍然有多种,目前对未来臭氧损失的估计仍旧依赖于未来经济预测,可能与事实有所偏离。2.未来天然卤素通量和分布的变化将由气候敏感性、未来人为排放和大气化学等因素综合决定。3.未来研究仍需对卤素化学加深了解。(注:以上为这位同学的论文解读,非论文原作者意思)全文概要反应性大气卤素破坏对流层臭氧(O3)。天然卤素的主要来源是海洋浮游植物和藻类的排放,以及海洋和对流层化学的非生物来源,但其通量在气候变暖下将如何变化,以及由此对O3产生的影响目前尚不清楚。本研究使用一个地球系统模型(共同体地球系统模型(CESM))估计发现在当今气候中,天然卤素消耗了大约13%的对流层O3。尽管21世纪天然卤素的含量有所增加,但由于对流层O3损失的半球、区域和垂直异质性的补偿,这一比例保持稳定。这种卤素驱动的O3缓冲预计在污染和人口稠密的地区最大,对空气质量有重要影响。背景介绍对流层臭氧(O3)丰度受原位光化学、平流层内流和地表干沉积之间的平衡控制。O3的光化学破坏发生在整个对流层,主要是通过其光解和随后与水蒸气的反应以及与自由基的反应直接损失。对流层O3也会通过催化循环与活性卤素(Cl, Br, I)发生反应而被破坏,只有将对流层卤素化学考虑在内才能更准确地了解其变化。目前,卤素被估计将使全球对流层臭氧减少约10-20%,对地表臭氧有很大影响。生物源性短寿命卤代烃(VSL),包括CHBr3、CH2Br2、CH3I和CH2ICl,是通过海洋生物如浮游植物、微藻和大型藻类的代谢自然排放出来的。这些卤素化合物的寿命不到6个月,是对流层中活性氯、溴和碘的重要来源。此外由于O3沉积到海洋中,随后海水碘化物氧化为次碘酸(HOI)和分子碘(I2),并释放到大气中,海洋也是无机碘的非生物来源。在对流层中,活性溴和氯实际上是由VSL卤化碳的光氧化产生的。气候变化和社会经济发展已经改变了VSL卤化碳的自然通量(1979-2013增加约7%)和无机碘(1950-2010增加两倍),并可能在21世纪持续。然而,天然卤素变化将如何影响臭氧和对流层化学以及气候仍然未知。结果讨论21世纪的天然卤素排放:在考虑的每种情况下,与目前相比VSL卤代烃排放量在21世纪末都要更大;全球海洋无机碘排放量在RCP 8.5之后增加了约20%,而在RCP 6.0和RCP 2.6期间分别减少了约10%和20%;到2100年,活性卤素浓度将增加约4-10%,在RCP 6.0下,溴驱动了这些变化,但由于碘碳(增加)和无机碘(减少)通量之间的相互作用,碘没有出现显著变化,溴和碘对RCP 8.5反应性卤素负荷变化的贡献相同。在RCP 2.6情景下,活性卤素浓度降低(~5%)。2000-2100年全球天然卤素的年度变化。a)短寿命卤代烃通量,b)无机碘排放,c)对流层天然反应性卤素浓度天然卤素对21世纪对流层臭氧的影响:图2显示了2000-2100年间全球对流层臭氧柱浓度的变化,上面和中间的图分别显示了对流层臭氧柱的绝对变化及其与活性卤素相关的损失。与目前相比,到本世纪中叶,卤素驱动的对流层O3柱损失增加,与RCP 6.0和RCP 8.5期间VSL卤碳排放量不断增加相一致。到2100年,在RCP 8.5条件下,活性卤素对对流层O3的影响保持相对不变,而在RCP 6.0条件下,预计会有较小的消耗。无论排放情景如何(下面的图),预计全球卤素驱动的对流层O3柱损失在整个世纪几乎保持不变(~12.8±0.8%)。2000-2100年全球年度对流层臭氧柱时间序列与卤素化学有关的纬向平均对流层O3损失如图3a、b所示。O3质量的纬向平均损失约为~0.3DU(全球综合为3.9DU),其中溴和碘分别贡献了约16%和80%。卤素介导的臭氧损失显示出明显的半球不对称性(目前在南半球更大)。在南半球温带地区,通过非均相激活进一步增强了平流层O3的消耗。O3相对损失呈现显著梯度,从对流层上层到下层,从北向南增加。RCP 6.0和RCP 8.5由天然卤素驱动的纬向平均对流层O3损失趋势如图3c,d所示。其模式是不均匀的,具有明显的半球和垂直梯度,尽管两种排放情景一致(仅强度不同)。反应性卤素造成的纬向平均对流层O3损失在本世纪,由反应性卤素驱动的臭氧相对损失在对流层中高层减弱(在250hPa时为10-20% 图4a),这一特征在本世纪上半叶和下半叶的南半球高纬度地区被放大。此外,在300至850 hPa之间的热带自由对流层,到本世纪末,卤素造成的未来臭氧损失将减少,这表明该地区臭氧的命运将主要由其他驱动因素控制,包括光解作用以及与水蒸气和羟基自由基的反应(图3c、d和4b)。此外,臭氧损失呈现明显的半球不对称,与“更清洁”的南半球相比,污染更严重的北半球臭氧损失趋势更大。与目前相比,未来卤素介导的O3损失预计将增加10-35%(图4),其中边界层内损失最大。从现在(1990-2009年)到本世纪末(2080-2099年),由活性卤素引起的部分O3柱损失的垂直分辨变化图5显示了从现在到21世纪末近地表臭氧损失变化。在全球范围内,在RCP 6.0情景下,天然卤素引起的2000 - 2100年近地表O3损失变化(15.0±1.1%)大于RCP 8.5情景(3.1±0.7%),但两者共同显示了臭氧损失的增加主要局限于温带地区,在中纬度地区(30°-60°N和30°-60°S)达到峰值(图5b、d)。现在(1990-2009年)到本世纪末(2080-2099年)卤素驱动的近地表臭氧损失变化预计到本世纪末,最大的臭氧损失将发生在受污染的大陆地区,而不是在遥远的海洋环境中,并具有明显的半球不对称性。特别是,在美国东部、欧洲和东亚地区,预计卤素驱动的O3损失大,分别为71.5±12.9%、30.8±4.2%和6.9±10.1%,RCP 6.0和RCP 8.5分别为48.2±12.6%、18.3±3.2%和23.2±10.9%。2000-2100年卤素驱动的近地表O3损失时间序列ReferenceIglesias-Suarez, F. et al. Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change 10, 147-154 (2020).
  • 遏制镉大米刻不容缓,土壤重金属检测是根本!
    h1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 24px "strongspan style="text-align: justify text-indent: 2em "镉大米又来了。/span/strong/span/h1p style="text-indent: 2em text-align: justify "4月24日,湖南省益阳市委宣传部表示,针对“云南昭通市镇雄县销毁一批来自湖南益阳的重金属超标大米”的报道,益阳市通过调查核实相关情况,决定对7家涉事企业予以立案调查。/pp style="text-indent: 2em text-align: justify "镉等重金属污染由来已久,早在20世纪初期,日本富山县由于镉引起的“痛痛病”使镉污染走向人类视野,教科书中的历史事件如今却近在眼前。近几年屡次发生了大大小小近十起镉污染事件,教训深刻,遏制镉污染,提高相关检测规范,保障人民食品安全刻不容缓。/pp style="text-indent: 2em text-align: justify "strong根据最新《GB 2762-2017 食品安全国家标准 食品中污染物限量》大米中的镉限量标准为0.2mg/kg。可以采用GB/T 5009.15-2003 食品中镉的测定或者GB 5009.268-2016食品中多元素的测定即可。/strong/pp style="text-indent: 2em text-align: justify "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 621px height: 194px " src="https://img1.17img.cn/17img/images/202005/uepic/8e710f0a-71a2-4dd9-9231-dcb857d04ea1.jpg" title="1.png" alt="1.png" width="621" height="194"//ppbr//pp style="text-indent: 2em text-align: justify "七家涉事企业理应受到处罚。但源头是这七家大米加工企业吗?显然不是,这几家企业的责任只是将收购的水稻进行加工,但是却倒在自己的质检环节。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 24px "而镉大米的真正源头则要到土地与工厂排污上面。/span/h1p style="text-indent: 2em text-align: justify "镉容易被水稻吸收并蓄积在水稻籽粒中,通过食物链传输,对人类健康造成严重威胁。镉可以通过废水、废渣、废气进入环境,再通过水源进入土壤和农田。“要从根本上解决镉大米等粮食安全问题,必须从源头土壤污染防治着手。”/pp style="text-indent: 2em text-align: justify "2016年国务院印发的《土壤污染防治行动计划》由国务院印发中明确提出。推进土壤污染防治立法,建立健全法规标准体系。2020年,土壤污染防治法律法规体系基本建立;系统构建标准体系;全面强化监管执法,重点监测土壤中镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物,重点监管有色金属矿采选、有色金属冶炼、石油开采等行业。因此目前我过相关土壤中镉的检测标准也比较完备。比如HJ 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法和HJ 832-2017土壤和沉积物 金属元素总量的消解 微波消解法/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 24px "安东帕能为食品检测,土壤治理与修复做什么?/span/h1p style="text-indent: 2em text-align: justify "安东帕有限公司一直以来都致力于为工业和研究运用领域生产高质量的测量和分析仪器。在众多检测领域,安东帕的产品一直处于国际领先地位。安东帕在40年前就开始为广大客户提供微波消解设备,如今客户已经遍布全球。针对食品以及土壤中的重金属检测,本文为大家介绍Multi wave 5000微波消解仪。既可以消解食品,又可以解决土壤前处理问题的多面手。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 429px height: 286px " src="https://img1.17img.cn/17img/images/202005/uepic/ec832309-ad48-4a43-b36c-37306b0c0a9e.jpg" title="2.jpg" alt="2.jpg" width="429" height="286"//pp style="text-indent: 2em text-align: justify "食品的消解,根据GB5009.268进行样品前处理。称取0.5g的大米并加入7mL的硝酸。按照如下步骤进行消解。消解结束即可得到澄清透明无色的溶液。即使油脂也不例外。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 505px height: 152px " src="https://img1.17img.cn/17img/images/202005/uepic/2cc45426-a164-4cda-97f3-83a389b36379.jpg" title="3.png" alt="3.png" width="505" height="152"//pp style="text-indent: 2em text-align: justify "土壤的消解,根据HJ832进行前处理。称取0.5g的土壤,并加入10mL王水进行浸提。我们按照最优化的程序设计,只需要升温10min保持10min即可完成土壤的浸提。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 495px height: 373px " src="https://img1.17img.cn/17img/images/202005/uepic/20754cfe-8668-4e5a-9e23-ea4eea7ce579.jpg" title="4.png" alt="4.png" width="495" height="373"//pp style="text-indent: 2em text-align: justify "镉大米事件表面是食品的质量问题。深层次的则是土地污染问题。在保证餐桌上大米的合格检测之外,还要做好土壤的修复与治理。让大米也“吃”的合格,才能够从根本上解决镉大米事件。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制