当前位置: 仪器信息网 > 行业主题 > >

二氧化氮气体探测器

仪器信息网二氧化氮气体探测器专题为您提供2024年最新二氧化氮气体探测器价格报价、厂家品牌的相关信息, 包括二氧化氮气体探测器参数、型号等,不管是国产,还是进口品牌的二氧化氮气体探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氧化氮气体探测器相关的耗材配件、试剂标物,还有二氧化氮气体探测器相关的最新资讯、资料,以及二氧化氮气体探测器相关的解决方案。

二氧化氮气体探测器相关的资讯

  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 实验室突然充满二氧化氮(图)
    消防官兵正在现场营救。  前天晚上10点左右,宁波望春工业园区一实验室内,一名技术人员在利用硝酸清洗不锈钢零件时,由于操作不慎导致5升硝酸瞬间挥发,造成二氧化氮气体泄漏,污染了整栋厂房。所幸事故没有造成人员伤亡。  据当时在场作业的文师傅介绍,当晚,他和几名工作人员一起利用硝酸清洗不锈钢零件。起初,他利用了少量的硝酸进行加热,然后清洗不锈钢零件,起初试验非常成功。因此,他想利用更多的硝酸来做。  没想到,待加入5升硝酸后,情况突然变了,在短短几秒钟内整个实验室就充满了二氧化氮。  文师傅立即放下手中的活往外跑,同时通知其他同事。当他们跑至楼梯口时,整幢厂房已经完全被污染。  消防官兵经过半个多小时的奋力处置,大部分气体被排除。由于还有部分房间门被锁住,直至昨天凌晨1点左右,毒气才完全被排出。  文师傅解释说,可能当时实验用的是含铁的不锈钢劣质产品,导致铁和混合酸(硝酸和盐酸)发生剧烈反应,溶液温度急剧上升,加速硝酸分解成有刺激性气味的二氧化氮气体。  据消防部门介绍,二氧化氮是一种有刺激性的低毒酸性气体,常见于汽车尾气和化工厂废气,同时也是“酸雨”形成的主因。  所幸,这次实验药剂用得比较少,产生的二氧化氮气体并不是很多,对周边人员的身体健康及周围环境没有大的影响。
  • 广州空气质量昨超标两级 主要污染物是二氧化氮
    明明是蓝天白云,但眼前总灰蒙蒙的,胸还有点闷,这是为什么呢?原来是空气质量超标了。昨日、前日,广东省、广州市每日在线监测数据都显示空气质量超标,昨日部分站点更是超过达标标准两级,为轻度污染,主要污染物是二氧化氮。  广雅麓湖等监测点都超标  监测数据显示,这两天的空气质量都超标了,二氧化硫、二氧化氮、可吸入颗粒物这三项空气质量评价指标中,后两项都超标了。仅昨日,广雅中学、天河职幼、市86中、麓湖、市监测站等5个监测站点的空气质量超过标准两级,为轻度污染,其他五个监测站点录得的空气质量超标一级,为轻微污染。显示的主要污染物是二氧化氮。  “我也感觉有点胸闷。”昨日,广东省环保厅有关负责人表示,除了视觉上的感觉外,呼吸也感觉没有那么顺畅了,而造成近日空气质量超标的主要原因是机动车尾气。“二氧化硫主要是工业排放,二氧化氮的污染源主要是机动车尾气、电厂、锅炉等,但是超标比较严重的监测站点都是在市中心,说明主要是由机动车尾气造成的,局部的污染比较重,再加上气象条件不利于污染物扩散。”  二氧化氮是气体,如果超标了市民可以怎么防范?对此,该负责人表示,根据检测数据显示,二氧化氮和可吸入颗粒物都明显超标,在空气中,颗粒物会吸附许多污染物、通过鼻腔进入人的身体,通过戴口罩,是可以将一部分污染物过滤掉的。
  • 中国碳卫星观测首次成功用于城市二氧化碳排放定量监测
    中国碳卫星联合欧洲哨兵卫星对中国唐山地区开展相关监测(2018年5月6日)示意图。中科院大气所供图中国科学院大气物理研究所(中科院大气所)中国碳卫星(TanSat)研究团队联合芬兰气象研究所团队,最近首次利用中国碳卫星观测定量识别和计算城市碳排放,这也是中国碳卫星首次成功用于城市二氧化碳排放的定量监测,从而实证中国碳卫星具有城市级别碳排放监测的能力。在中欧温室气体遥感监测合作协议支持下,中芬研究团队这次合作研究还通过使用欧洲哨兵卫星(Sentinel-5P)同步开展二氧化氮观测及对比研究,相关研究成果论文10月25日在专业学术期刊《大气科学进展》上在线发表。 中欧卫星协同观测计算和排放清单结果一致中科院大气所中国碳卫星研究团队指出,应对或减缓全球变暖,是人类在21世纪面临的挑战,由于化石燃料燃烧和土地利用变化等人为活动,二氧化碳浓度增加了40%以上。与化石燃料使用有关的排放尤其局限于当地,城市地区是全球二氧化碳排放量的主要贡献者,占全球排放量70%以上。尽管新冠肺炎疫情对全球经济体造成较大影响,但化石燃料二氧化碳排放量2021年仍然增加了5%。与此同时,科学家在计算人为排放方面仍然存在较大的不确定性。该团队认为,利用碳监测卫星进行全球人为排放的监测更具优越性,碳监测卫星直接观测大气二氧化碳浓度,但仅凭单一二氧化碳要素的观测,定量区分二氧化碳浓度变化源来自于人为排放还是自然过程是一个难点问题。化石燃料燃烧为二氧化碳人为排放之主要来源,而石油等化石燃料的燃烧伴随排放二氧化氮,即人为排放二氧化碳和二氧化氮具有较强的同源性,因此,理论上通过二氧化氮和二氧化碳的同步监测,就可以有效计算人为碳排放。本次联合研究应用中国碳卫星二氧化碳观测数据和欧洲哨兵卫星的二氧化氮观测数据,选取中国唐山(2018年5月6日)和日本东京(2018年3月29日)两个案例,定量计算出人为碳排放和二氧化氮的相关性。该计算结果和排放清单给出的结果一致,论证了通过联合应用中国碳卫星和欧洲哨兵卫星的协同观测,可以对二氧化碳/二氧化氮排放比例进行定量监测,证实了中国碳卫星可以定量识别城市人为碳排放。同时,这也标志着中国已经具备空间监测人为活动碳排放的能力。中国碳卫星及其观测数据逐步走向世界中科院大气所介绍说,中国碳卫星全称为“全球二氧化碳监测科学实验卫星”,目标是实现全球大气二氧化碳柱平均干空气混合比(简称“全球大气二氧化碳浓度”)的高精度监测,为碳排放科学研究提供卫星观测数据。2016年12月,中国碳卫星成功发射并在轨运行,成为世界第三颗温室气体卫星。中国碳卫星是一颗近极地太阳同步卫星,星上搭载有主载荷“高光谱分辨率大气二氧化碳探测仪”(ACDS)和辅助载荷“云和气溶胶偏振成像仪”(CAPI)。其中,主载荷利用对地球反射的近红外/短波红外太阳辐射,对大气中二氧化碳的含量进行探测。中国碳卫星第一版全球大气二氧化碳浓度科学数据产品于2017年10月对全球发布;第二版全球大气二氧化碳浓度科学数据产品将精度提升至1.47ppm(体积百万分比)的国际先进水平精度;基于第二版科学产品,中国碳卫星获得全球二氧化碳通量的数据产品。2020年初,中国科技部国家遥感中心与欧洲空间局签署温室气体遥感监测合作协议,推动中国碳卫星加入欧洲空间局第三方卫星数据应用计划,也表明中国碳卫星及其观测数据开始逐步走向世界。本次研究在该协议的支持下,中芬团队联合使用中国碳卫星和欧洲哨兵卫星,也进一步提升了中国碳卫星的监测能力。中国下一代碳卫星已论证设计即将研制在中国碳卫星即将迎来发射运行6周年纪念日之际,中科院大气所中国碳卫星研究团队透露,中国下一代碳卫星的论证设计工作已经开始,卫星研制工作也即将启动。中国新一代碳卫星将在秉承第一代卫星所具有的技术优势基础上,进一步提升探测能力,以应用需求与科学需求为出发点。其目标测量将以城市为重点,以高定量、高时频、高分辨探测全球大气二氧化碳浓度从城市中心到郊区的梯度,以提高碳排放量估算的准确性。该团队表示,中国下一代碳卫星将是一个天基系统,希望每天可多次覆盖一个城市或者碳排放点源,同时将具备协同开展二氧化氮观测能力,以更好地用于对人为碳排放量进行独立测算。
  • 中国碳卫星观测首次成功用于城市二氧化碳排放定量监测
    中国科学院大气物理研究所(中科院大气所)中国碳卫星(TanSat)研究团队联合芬兰气象研究所团队,最近首次利用中国碳卫星观测定量识别和计算城市碳排放,这也是中国碳卫星首次成功用于城市二氧化碳排放的定量监测,从而实证中国碳卫星具有城市级别碳排放监测的能力。在中欧温室气体遥感监测合作协议支持下,中芬研究团队这次合作研究还通过使用欧洲哨兵卫星(Sentinel-5P)同步开展二氧化氮观测及对比研究,相关研究成果论文10月25日在专业学术期刊《大气科学进展》上在线发表。中欧卫星协同观测计算和排放清单结果一致中科院大气所中国碳卫星研究团队指出,应对或减缓全球变暖,是人类在21世纪面临的挑战,由于化石燃料燃烧和土地利用变化等人为活动,二氧化碳浓度增加了40%以上。与化石燃料使用有关的排放尤其局限于当地,城市地区是全球二氧化碳排放量的主要贡献者,占全球排放量70%以上。尽管新冠肺炎疫情对全球经济体造成较大影响,但化石燃料二氧化碳排放量2021年仍然增加了5%。与此同时,科学家在计算人为排放方面仍然存在较大的不确定性。该团队认为,利用碳监测卫星进行全球人为排放的监测更具优越性,碳监测卫星直接观测大气二氧化碳浓度,但仅凭单一二氧化碳要素的观测,定量区分二氧化碳浓度变化源来自于人为排放还是自然过程是一个难点问题。化石燃料燃烧为二氧化碳人为排放之主要来源,而石油等化石燃料的燃烧伴随排放二氧化氮,即人为排放二氧化碳和二氧化氮具有较强的同源性,因此,理论上通过二氧化氮和二氧化碳的同步监测,就可以有效计算人为碳排放。本次联合研究应用中国碳卫星二氧化碳观测数据和欧洲哨兵卫星的二氧化氮观测数据,选取中国唐山(2018年5月6日)和日本东京(2018年3月29日)两个案例,定量计算出人为碳排放和二氧化氮的相关性。该计算结果和排放清单给出的结果一致,论证了通过联合应用中国碳卫星和欧洲哨兵卫星的协同观测,可以对二氧化碳/二氧化氮排放比例进行定量监测,证实了中国碳卫星可以定量识别城市人为碳排放。同时,这也标志着中国已经具备空间监测人为活动碳排放的能力。中国碳卫星及其观测数据逐步走向世界中科院大气所介绍说,中国碳卫星全称为“全球二氧化碳监测科学实验卫星”,目标是实现全球大气二氧化碳柱平均干空气混合比(简称“全球大气二氧化碳浓度”)的高精度监测,为碳排放科学研究提供卫星观测数据。2016年12月,中国碳卫星成功发射并在轨运行,成为世界第三颗温室气体卫星。中国碳卫星是一颗近极地太阳同步卫星,星上搭载有主载荷“高光谱分辨率大气二氧化碳探测仪”(ACDS)和辅助载荷“云和气溶胶偏振成像仪”(CAPI)。其中,主载荷利用对地球反射的近红外/短波红外太阳辐射,对大气中二氧化碳的含量进行探测。中国碳卫星第一版全球大气二氧化碳浓度科学数据产品于2017年10月对全球发布;第二版全球大气二氧化碳浓度科学数据产品将精度提升至1.47ppm(体积百万分比)的国际先进水平精度;基于第二版科学产品,中国碳卫星获得全球二氧化碳通量的数据产品。2020年初,中国科技部国家遥感中心与欧洲空间局签署温室气体遥感监测合作协议,推动中国碳卫星加入欧洲空间局第三方卫星数据应用计划,也表明中国碳卫星及其观测数据开始逐步走向世界。本次研究在该协议的支持下,中芬团队联合使用中国碳卫星和欧洲哨兵卫星,也进一步提升了中国碳卫星的监测能力。中国下一代碳卫星已论证设计即将研制在中国碳卫星即将迎来发射运行6周年纪念日之际,中科院大气所中国碳卫星研究团队透露,中国下一代碳卫星的论证设计工作已经开始,卫星研制工作也即将启动。中国新一代碳卫星将在秉承第一代卫星所具有的技术优势基础上,进一步提升探测能力,以应用需求与科学需求为出发点。其目标测量将以城市为重点,以高定量、高时频、高分辨探测全球大气二氧化碳浓度从城市中心到郊区的梯度,以提高碳排放量估算的准确性。该团队表示,中国下一代碳卫星将是一个天基系统,希望每天可多次覆盖一个城市或者碳排放点源,同时将具备协同开展二氧化氮观测能力,以更好地用于对人为碳排放量进行独立测算。
  • Thermo参与中美加强低氧化氮燃烧与二氧化硫控制技术合作活动
    为期五天的“第二届中美合作低氧化氮燃烧与二氧化硫控制研讨会”8月份在大连圆满结束,本次会议是在2001年国家科技部和美国能源部签订的《关于在化石能技术开发和利用合作议定书》的框架背景下召开的。   会议以“洁净能源、保护环境”为主题,主要目的是在低NOx和SO2控制技术领域的框架内,促进中美双方的交流与合作,搭建中美技术交流平台,加强中美发电厂环保技术交流与合作;为中美企业合作提供对接;扩大中美双方有关部门与企业的影响。来自中美政府部门、相关企业及科研单位的近200名代表参加了会议。 Thermo环境仪器事业部空气质量部的法规管理经理J. Ron Jernigan, P.E., DEE 在会议上做了主题为“电力工业中NOx, O2, SO2 采样和分析仪器使用现状”的报告,获得与会代表的一致好评。 Jernigan在报告中参照EPA(美国环保署)颁布的第75号法案酸雨监测项目,简要介绍了美国电力企业对气体排放监测技术的选择。 通过美国环保署酸雨监测项目10多年CEMS系统的运行经验,电力企业在SO2 监测项目上有85%选用了通用的紫外荧光法, 在NOX监测项目上有96.4%选用了通用的化学发光法。 EPA 2003年第四季度EDR(电子数据报告)资料表明:做为电力企业一直选用的CEMS分析仪器制造商Thermo Electron Corporation,在SO2 监测和NOX监测项目上分别占有71.5%和62.7%的份额。
  • SO2传感器:大气污染物中二氧化硫检测
    近年来,大气污染治理取得了显著成效,这得益于我们不断进步的环境空气监测技术。大气污染物是指由于人类活动或自然过程排入大气并对人和环境产生有害影响的物质。大气污染物按其存在形态可概括为两大类:气溶胶状态污染物和气体状态污染物。气溶胶状态污染物是指在大气污染中,那些沉降速度可以忽略的小固体粒子、液体粒子或它们在气体介质中的悬浮体系。根据气溶胶的来源和物理性质,可分为粉尘(1~200μm)、烟(0.01~1μm)、飞灰、黑烟、雾等。气体状态污染物则是以分子状态存在的污染物。气态污染物的种类很多,总体上可以分为几大类:以SO2为主含硫化合物;以氧化氮和二氧化氮为主的含氮化合物;碳氧化物;有机化合物及卤素化合物等。其中二氧化硫,一种带有毒性的气体,当它逃逸到空气中,就会与水分子结合,形成酸雨,这些酸雨对环境造成了严重的破坏。它不仅会腐蚀建筑物的表面,还会对植物和动物造成严重的伤害。因此,对二氧化硫的检测和控制变得很重要。那么,二氧化硫的检测标准是什么呢?让我们一起了解一下。二氧化硫的检测标准主要分为两类:环境空气质量标准和工业排放标准。在环境空气质量标准方面,不同国家和地区对二氧化硫的浓度限制各有不同。在中国,环境空气质量标准规定二氧化硫的日均值不得超过60微克/立方米,年均值不得超过20微克/立方米。而在美国和欧盟,相应的浓度限制分别为75微克/立方米、140微克/立方米、30微克/立方米和350微克/立方米、125微克/立方米、20微克/立方米。这些标准的设立是为了保障人们的身体健康和环境的可持续发展。另一方面,工业排放标准则是为了限制工业生产过程中二氧化硫等有害物质的排放。中国的工业排放标准规定火力发电厂、钢铁厂、石油化工厂等大气污染物排放的二氧化硫的浓度不得超过35毫克/立方米,总量不得超过0.5克/千瓦时。而美国和欧盟的标准分别为200毫克/立方米、0.8克/千瓦时和400毫克/立方米、1.2克/千瓦时。这些标准的实施是为了降低二氧化硫等有害物质对环境和人类健康的影响。对于二氧化硫检测,推荐英国Alphasense SO2传感器SO2-B4,可以检测5ppb的SO2气体,非常适合环境空气质量监测系统和仪器。同时提供独特传感器板 (ISB) Alphasense B4 4电极气体传感器 -ISB,该独特传感器板子(ISB) 用于 Alphasense B4 系列四电极气体传感器。该稳压器提供双通道电压输出。而ISB可以测量氧化(CO, H2S, SO2, 和 NO) 和还原(O3和 NO2)气体。ISB被配置四个版本于特定的传感器:NO, NO2, O3 和 CO/ H2S/ SO2。通过了解这些二氧化硫的检测标准,我们可以更好地理解其对我们生活和环境的影响。同时,也希望这些信息能够帮助大家更加深入地了解二氧化硫的危害以及检测和控制的重要性。
  • 解读 HJ 57-2017 《固定污染源废气 二氧化硫的测定 定电位电解法》新标准
    一、简述为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境、保障人体健康、规范固定污染源废气中二氧化硫的测定方法。环境保护部于2017年11月28日批准发布了HJ 57-2017《固定污染源废气 二氧化硫的测定 定电位电解法》标准,并于2018年1月1日起实施。自标准实施之日起,原《固定污染源排气中二氧化硫的测定 定电位电解法》(HJ/T 57-2000)废止。本标准首次发布于2000年,原标准起草单位为中国环境监测总站。本次为第一次修订,由环境保护部环境监测司和科技部标准司组织制订,修订的主要内容如下:1、明确了方法的检出限和测定下限;2、增加了术语和定义;3、明确了干扰及消除的要求;4、补充了试剂和材料、仪器和设备的要求;5、增加了精密度和准确度的内容;6、增加了质量保证和质量控制的内容,规定了注意事项。二、HJ 57-2017《固定污染源废气 二氧化硫的测定 定电位电解法》标准解读标准修订项目记实2013年2月,环境保护部办公厅印发了《关于开展2013年度国家环境保护标准项目实施工作的通知》(环办函[2013]154号),下达了《固定污染源废气 二氧化硫的测定 定电位电解法》(修订HJ/T57 -2000)标准制订任务,项目承担单位为中国环境监测总站。2014年2月,武汉天虹公司作为仪器设备单位参加了环境保护部标准司组织的标准开题论证会;2014年7月-9月,武汉天虹携烟气分析仪参与了方法验证预实验和现场测试方法验证实验;2014年12月,中国环境监测总站组织6家标准验证单位,其中武汉天虹烟气分析仪作为验证仪器参与标准方法验证;2016年9月至2017年6月,武汉天虹分别受邀参加中国环境监测总站组织的该标准的初审和复审工作。新标准对干扰及消除的要求:干扰及消除 特测气体中的颗粒物、水分和三氧化硫等在易在传感器渗透膜表面凝结并造成传感器损坏,影响测定;应采用滤尘装置、除湿装置、滤雾器等进行滤除,消除影响。 氨、硫化氢、氯化氢、氟化氢、二氧化氮等对样品测定会产生一定的干扰,可采用磷酸吸收、乙酸铅棉吸附、气体过滤器滤除等措施减小干扰。 一氧化碳干扰显著,测定样品时须同时测定一氧化碳浓度。一氧化碳浓度不超过50μmol/mol时,可用本标准测定样品。一氧化碳浓度超过50μmol/mol时,二氧化硫测定仪初次使用前,应开展一氧化碳干扰试验(参见附录A);在干扰试验确定的二氧化硫浓度最高值和一氧化碳浓度最高值范围内,可本标准测定样品。武汉天虹是国内最早一批研制定电位电解法烟气分析仪的厂家之一。除较早期仪器设备外,客户选用武汉天虹的烟气分析仪均具备交叉干扰消除功能。只要客户配置的烟气分析仪具备一氧化碳测量功能,该分析仪均具备一氧化碳对二氧化硫传感器的干扰消除功能。 武汉天虹环保系列烟尘烟气分析仪TH-880F微电脑烟尘平行采样仪TH-880W(触摸屏)微电脑烟尘平行采样仪TH-880W(无线型)微电脑烟尘平行采样仪TH-990FIII智能烟气分析仪 新标准《附录A 一氧化碳干扰试验——动态混气矩阵试验法》一氧化碳干扰试验——动态混气矩阵试验法 稀释配气装置 可对二氧化硫、一氧化碳、氮气等标准气体动态配气;至少具备3个输入通道,1个输出通道;以质量流量控制各输入和输出通道的气体流量,其中输入通道的质量流量计量程应不低于5L/min输出通道的质量流量计量程应不低于10L/min,精度均应达到或优化±2%。 武汉天虹环保出品的TH-2008M动态气体发生器仪器特点:1、采用7寸全触摸彩屏;2、中英文菜单式操作界面,操作简单;3、具有近百种程序段和序列段设置,可灵活预设仪器标定的各种参数;4、具有温度压力自动补偿功能;5、可查询程序段和序列段的设置;6、具备RS232、RS485、USB等数据传输和拷贝功能;7、进口高精度质量流量计,3路配气通道,可扩充配气通道;8、可选配交直流两种供电模式,适用于户外现场使用。HJ 57-2017新标准CMA资质认证 现场验证实景图片: 一、定电位电解法传感器测试SO2消除CO干扰的方法消除干扰方法的原理矩阵试验法 对多种气体的相互干扰采用矩阵方法,计算出相互干扰的系数输入仪器,从而消除相互间的干扰。特点:计算准确,测量准确性高。仪器在进行交叉干扰标定时步骤较多,每种标准气体及不同浓度均要使用,需配置稀释配气装置配置传感器满量程范围内的所需混合标气。如果污染气体超传感器量程或有未知污染物将可能出现误差。
  • 高精度温室气体综合探测卫星紫外高光谱大气成分探测仪正样交付
    紫外高光谱大气成分探测仪11月4日,高精度温室气体综合探测卫星(DQ-2)紫外高光谱大气成分探测仪(EMI-NL)通过了航天八院环境卫星项目办组织的正样交付验收评审。紫外高光谱大气成分探测仪(EMI-NL)是国产第三代超光谱大气痕量气体监测载荷,拥有独立的天底与临边观测模块,能获取大气痕量气体高空间分辨率水平分布与垂直廓线,主要用于定量监测全球和区域二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)和甲醛(HCHO)等痕量污染气体成分的分布和变化,用以分析人类活动排放和自然排放过程对大气组成成分和全球气候变化的影响。EMI-NL载荷性能指标大幅提升,天底对地空间分辨率达到7*7平方公里,达到国际先进水平;并增加了临边同步观测模式,临边切高分辨率为2公里。该载荷具备公里级别的空间分辨率、天底临边同步双模式同步观测,对辨识污染源位置、量化点/面源排放通量、研判区域间相互影响等具有重要作用。经讨论,评审专家组认为紫外高光谱大气成分探测仪(EMI-NL)正样产品按照正样研制技术流程完成了所有研制工作,经测试、试验,功能、性能满足任务书要求;研制过程质量受控,未发生质量问题;文档资料齐全,符合《八院卫星型号产品交付验收实施要求》,同意通过评审。DQ-2卫星是《国家民用空间基础设施中长期发展规划(2015-2025)》中规划的业务星,具有主被动方式结合获取高光谱分辨率、高时间分辨率温室气体、污染气体及气溶胶等大气环境要素的遥感检测能力。DQ-2卫星共配置五台有效载荷,其中紫外高光谱大气成分探测仪(EMI-NL)、云和气溶胶成像仪(CAPC)分别由安光所环境光学中心和光学遥感中心承担研制任务。正样验收评审会
  • 别再怪过年禁放烟花爆竹了~烟花爆竹一响,二氧化硫、PM2.5瞬间爆表!
    春运已正式开启,春节的脚步也越来越近。于是,近期又有全国多个城市新加入 “禁放烟花爆竹的阵营”,还有一部分本来禁燃限燃的城市在原来规定上进一步“加码”。 如石家庄三环以内禁止销售和燃放烟花爆竹;日照新发布城市建成区内禁止燃放烟花爆竹的声明......烟花爆竹确实会导致严重的空气污染问题,这是不争的事实。济南市环境监测中心站曾做过相关测试。测试结果表明,燃放前区域空气中细颗粒物(PM2.5)浓度为0.088微克/立方米,可吸入颗粒物(PM10)浓度为0.16微克/立方米。燃放后PM2.5和PM10 最高浓度分别飙升100倍和80倍。 烟花爆竹的制作原料往往含有硫、硝酸钾、木炭粉等,为了燃放时颜色各异,还掺有镁、铅等重金属。烟花爆竹的燃放会产生大量二氧化硫、氮氧化物、烟尘等颗粒物,且城市中建筑物的密集会导致空气流通不畅。燃放烟花爆竹形成的烟雾不能迅速扩散,大量二氧化硫、氮氧化物、二氧化碳等气体以及烟尘颗粒物、硫化钾、金属氧化物等污染因子会悬浮滞留在空气中。 尤其是PM2.5浓度会大幅攀升,大家长时间呼吸到含有大量有害物质的空气,刺激呼吸道黏膜,伤害到肺组织,容易引起或诱发支气管炎、气管炎、肺炎、肺气肿等疾病,特别是对老年人、儿童及体质较弱者影响较大。禁放烟花爆竹无疑是大气污染防治的重要举措之一,然而由于冬季气温较低,地面逆温频率增加,以及煤炭等的消耗量比较大,使二氧化硫等污染物在近地层不断积累,导致一次排放和二次转化成的PM2.5浓度较高。所以想要营造一个“清净”的过节氛围,必要的适时的环境监测少不了。冷杉 4000 厂界/厂区挥发性有机物(非甲烷总烃、苯系物、恶臭硫化物、气态污染物)在线监测系统,完全自主研发,性能指标达到并超越国际领先水平,具有超高的系统稳定性和安全可靠性,测量结果实时准确,且维护少,运行成本低。该系统非常适用于监测园区、厂区或环境中二氧化硫、氮氧化物、PM2.5、二氧化氮臭氧、总烃、甲烷、非甲烷总烃、苯系物、硫化氢、一氧化碳、氨气、一氧化氮、PM10等一种或多种化合物。系统组成预处理系统采样总管、机柜(正压防爆或常规)在线分析仪非甲烷总烃、苯系物、有机硫、二氧化硫、氨气分析仪、一氧化碳分析仪、臭氧分析仪、M2.5/PM10控制系统及软件上位机工控系统、系统控制软件气源零气发生器、氢气发生器、空气发生器、氮气发生器标定系统标准气体、气体动态校准仪(选配)辅助监测气象参数系统介绍样气经多级过滤除尘,进入在线气相色谱仪,采用定量环或脱附管定量,通过阀切换进入色谱柱,将不同的目标污染物分离并依次进入氢火焰离子化检测器(FID)或火焰光度检测器(FPD),测定其污染物浓度。仪表测试结果将直接上传至系统上位机,并通过数采仪,上传至相关部门。 常规型 防爆型系统特点1标准化设计?符合国家标准规范要求?结构设计合理,可实现连续自动监测2运行稳定安全,数 据真实可靠?采样管线选用聚四氟乙烯、硼硅酸盐玻璃或耐腐蚀、惰性化材质,减少管路吸附造成的损失。?全管路保温伴热,避免高沸点烃类物质冷凝“积油”及部件腐蚀3无人值守、操作方便?具有自我保护功能,气源供应不足时,火焰熄灭,关闭氢气空气 ?自动恢复运行功能,开机、气源供应恢复或意外断电恢复后自动运行?具备自动校准功能,实现无人值守应用行业 》环境空气自动监控 》居民区大气污染自动监控 》企业边界大气污染自动监控 》职业环境空气污染自动监控 》重点产业园区空气污染自动监控 》工作场所空气污染自动监控
  • 《2020年中国温室气体公报》公布 全球二氧化碳浓度继续升高
    9月29日,中国气象局发布《2020年中国温室气体公报(总第10期)》。当日,中国气象局科技与气候变化司副司长严明良在中国气象局10月新闻发布会上介绍,2020年我国6个区域本底站的二氧化碳和甲烷浓度与2019年相比总体呈现增加趋势。中国气象局科技与气候变化司副司长严明良(图片来源:中国气象局)严明良表示,《2020年中国温室气体公报(总第10期)》与联合国世界气象组织(WMO)发布的《2020年WMO温室气体公报》相呼应,报告了中国2020年主要温室气体监测数据情况。严明良介绍,目前中国气象局有7个国家大气本底站开展温室气体业务观测,分别为青海瓦里关、北京上甸子、浙江临安、黑龙江龙凤山、湖北金沙、云南香格里拉和新疆阿克达拉。瓦里关国家大气本底站是世界气象组织全球32个大气本底站之一。2020年瓦里关国家大气本底站观测的二氧化碳、甲烷和氧化亚氮的浓度分别为414.3±0.2 ppm、1944±0.7 ppb、333.8±0.1 ppb,与北半球中纬度地区平均浓度大体相当,二氧化碳浓度较2019年增幅约2.5ppm,与全球增幅持平。2020年我国6个区域本底站的二氧化碳和甲烷浓度与2019年相比总体呈现增加趋势。据悉,中国气象局在世界气象组织框架下,协调中国区域的温室气体及相关微量成分高精度观测,所用数据处理方法、标准、流程均与国际接轨,自上世纪九十年代开始温室气体本底浓度观测。从2016年起,我国发射3颗二氧化碳在轨卫星,2018年开始开展机载温室气体在线观测和平流层温室气体原位观测试验。2021年,中国气象局组建了包含44个国家级气象观测台站和16个省级气象观测站在内的国家温室气体观测网。截至目前,已经初步形成天、空、地一体化的温室气体立体观测能力。温室气体主要包括《京都议定书》限排的二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、六氟化硫(SF6)、氢氟碳化物(HFCs)、全氟化碳(PFCs)、三氟化氮(NF3),以及《蒙特利尔议定书》限排的消耗臭氧层物质。世界气象组织/全球大气监测网(WMO/GAW)负责协调大气温室气体及相关微量成分的系统观测和分析。大气温室气体浓度联网监测分析是历次《联合国政府间气候变化专门委员会(IPCC)科学评估报告》《联合国气候变化框架公约(UNFCCC)》、WMO和联合国环境规划署(UNEP)《臭氧损耗科学评估报告》等的数据来源和科学基础。2021年10月25日,WMO发布《2020年全球温室气体公报》。公报采用的大气温室气体浓度数据来自WMO/GAW、全球大气气体先进试验(AGAGE)等。公报称,全球大气主要温室气体浓度继续突破有仪器观测以来的历史记录,二氧化碳、甲烷和氧化亚氮的浓度分别达到413.2±0.2 ppm、1889±2 ppb、333.2±0.1 ppb,2020年大气二氧化碳浓度增幅约2.5 ppm,高于过去十年平均增幅(2.4 ppm)。2020年全球大气甲烷和氧化亚氮浓度也达到了新的高度,增幅分别达11 ppb和1.2 ppb。根据美国国家海洋大气局(NOAA)的温室气体指数分析结果,2020年由大气长寿命温室气体引起的辐射强迫相比1990年上升了约47%,而其中二氧化碳的贡献超过80%。会上,严明良还表示,未来,中国气象局将进一步提升观测能力,形成覆盖我国16个气候关键区并辐射全球主要纬度带的全要素温室气体本底观测骨干网,增强全球大气二氧化碳和甲烷宽覆盖、高精度、高时空分辨率的业务化观测能力,基于我国自主卫星,联合多种星载探测手段,提高全球温室气体监测水平,为顺利实现我国碳达峰目标和碳中和愿景目标提供科学监测支撑。中国气象局气象探测中心副主任张雪芬在会上透露,“十四五”期间,中国气象局计划在全国16个气候关键观测区增补9个大气本底站,现正在开展前期的选址等相关工作。中国气象局气象探测中心副主任张雪芬(图片来源:中国气象局)同时,“十四五”期间,中国气象局还计划在我国主要的地、市级以上城市以及区域代表性好的地区,开展以二氧化碳为主的温室气体浓度的高精度在线观测和通量观测,并且有针对性地推动开展甲烷等非二氧化碳等温室气体浓度的观测,以满足我国碳中和监测评估系统的评估的需求。此外,中国气象局还将进一步加强国家级、省级在温室气体观测计量、标校溯源等方面的能力,进一步发挥中国气象局在我国温室气体监测方面的优势。
  • 大连理工大学陈珂:高精度光纤光声气体传感器及装置
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。大连理工大学 陈珂副教授本次会议中大连理工大学陈珂副教授介绍了其课题组在光纤光声气体传感技术及应用方面开展的一系列工作(点击回看》》》),得到与会老师的关注和认可。会后,我们也再次邀请陈珂副教授分享大连理工大学光纤光声传感研究团队的系列成果。1、成果简介大连理工大学光纤光声传感研究团队开展了光纤声波/振动传感技术和光声光谱微量气体检测技术的应用基础研究工作。在光纤传感技术研究方面,首次提出并设计了超高灵敏度光纤悬臂梁声波传感器,信噪比相比于传统电学麦克风提高了1-2个数量级;研制出超高速振动/声波传感解调仪器,采用光谱解调法实现了200 kHz的解调速度,将解调算法集成到FPGA中,大幅度提升了解调的稳定性。在光声光谱技术研究方面,将光纤声波传感器用于光声信号探测,提出了干涉型光纤声波锁相探测方法,设计了新型的光纤悬臂梁增强型光声光谱仪器,实现了对多种微量气体的超高灵敏度检测。研究了基于光纤光声传感的变压器油中溶解气体原位检测技术,研究了气体绝缘设备中六氟化硫分解产物的光纤光声检测技术,并在多个变电站开展了示范应用。根据变压器油中溶解气分析和煤矿瓦斯突出应用需求设计了多套激光光声光谱多组分气体分析仪器,掌握了目前世界上唯一的高瓦斯背景中多组分微量气体光学检测技术。成果1:光纤振动/声波传感器及解调仪器设计的光纤振动/声波传感器采用MEMS悬臂梁结构,具有灵敏度高、稳定性好的特点。研制了基于光谱解调的超高速光纤法布里-珀罗(F-P)传感解调仪,在FPGA中集成光谱采集、光谱相位解调等功能,显著提升了解调速度和稳定性。成果2:光声光谱变压器油中溶解气体分析仪针对高电压油浸式变压器油中溶解气体分析需求,研制了多套激光光声光谱气体分析仪。其中对油中溶解乙炔气体的检测极限达到0.05μL/L。,同时课题组还开发了光声光谱油中溶解气体原位检测仪,可以直接将光声传感器安装于变压器取油口。 成果3:光纤光声传感解调仪器本团队创新性地将光纤F-P声波传感器用于微弱光声信号探测,研制了多套光纤光声传感解调仪器。在FPGA中集成了相位解调算法、数字锁相、激光调制等功能。对乙炔气体的检测极限可达到ppt量级。 成果4:光声光谱煤矿自然发火监测仪研制的光声光谱煤矿自然发火监测仪,可对多种特征气体进行同时测量。检测指标如下:乙炔:0.5ppm;乙烯:1ppm;一氧化碳:1ppm;乙烷:5ppm;甲烷:0.1%;二氧化碳:0.1%成果5:高精度光声光谱环境气体分析仪开发的二氧化氮和二氧化硫气体分析仪,可对环境中痕量气体进行实时监测。二氧化氮气和二氧化硫气体的检测限分别达到1ppb和10ppb。下图中实验数据是开发的二氧化氮气体分析仪与环境监控站的对比结果。成果6:多通道同步FPGA数字锁相放大器针对光谱探测中微弱光信号检测需求,开发了多通道同步FPGA数字锁相放大器。采用定制的线阵探测器对光谱进行同步快速读取,光功率检测极限达到10fW量级,动态范围达到120dB。 2、产业化探索本团队开发的光谱检测、光纤传感类检测仪器具有较高的技术成熟度。在电力、石化等行业具有较好的应用前景。3、课题组未来研究计划光声光谱与光纤传感技术结合后,具有本质安全、抗电磁干扰、灵敏度高、可远距离探测以及多点测量等优势。本课题组将重点研究光纤光声传感技术中的基础科学问题以及工程应用关键技术。欢迎电力、石化、煤矿和环境监测等相关科研院所和公司联系我们。联系人:陈珂(大连理工大学)Email:chenke@dlut.edu.cn课题组介绍陈珂,大连理工大学光电工程与仪器科学学院副教授,博士生导师,大连市青年科技之星,光纤光声传感团队负责人,主要从事光纤传感、激光光谱和微弱信号检测等方面的研究工作。担任中国光学工程学会光谱技术及应用专委会委员,中国电气工程学会测试技术及仪表专委会状态监测学组委员,国家自然科学基金通讯评审专家。工作近8年来,共主持科研项目32项,其中,国家自然科学基金面上项目等国家级项目2项,省部级项目2项,大连市高层次人才创新支持计划项目1项,企业合作项目20余项;在Analytical Chemistry、Optics Letters等期刊上发表SCI/EI论文93篇,其中第一/通讯作者论文63篇;已申请和授权发明专利43项,其中第一发明人专利21项。
  • 苏州纳米所石墨烯高灵敏一氧化氮传感器件研究取得新成果
    石墨烯(Graphene)是由单层碳原子构成蜜蜂窝形式的二维纳米结构,具有大的比表面积和良好的载流子传导性能,预期在高灵敏、低功耗室温生物化学传感器方面将得到广泛应用。然而,由于传感物质与石墨烯之间的吸附、电荷转移和脱附等相互作用,器件的有效制作方法和性能优化等方面还有大量工作需要探索。  一氧化氮(NO)气体一方面是有害气体,另一方面却是重要的生物功能信息传递分子。及时监测呼出气体的NO浓度变化,可对哮喘等肺部疾病的发作提前预警。然而,目前NO呼吸气体测试仪器体积偏大、价格昂贵,而且大都集中在大型医疗机构,无法在更大范围内推广使用。  近期,中科院苏州纳米技术与纳米仿生研究所器件部刘立伟课题组李伟伟等与中科院物理所科研人员合作,在制作基于石墨烯的高灵敏一氧化氮气体传感器方面取得进展。研究人员以微纳加工图形化的石墨烯为电极,利用交流电泳技术制作金属纳米颗粒修饰还原的氧化石墨烯传感通道。气体分子的作用降低了石墨烯与金属颗粒之间Schottky势垒的厚度,实现了1 ppb(10亿分之一)至1 ppm(100万分之一)的高灵敏探测性能,对于低功耗、室温NO高灵敏呼吸和环境探测具有潜在应用价值。器件制作示意图和性能测试如图所示。  该项工作成果已经发表在ACS Nano(2011, 5 (9), pp 6955–6961)上。  该项研究得到了国家基金委、科技部、苏州市科技发展计划的资助,并得到苏州纳米所加工和测试平台的技术支持。  基于石墨烯的高灵敏传感器件结构和性能
  • 台风暴雨无所遁形!这台“太空CT机”开启中国紫外高光谱探测新篇章
    极端气象灾害持续给全球带来巨大生命财产损失,如何应对?如今,中国有了能精准捕捉台风暴雨的全新“大国重器”。今天(7月1日),央视新闻记者从中国气象局获悉,风云三号F星正式投入业务运行。F星是风云三号系列的第七颗卫星,同时也是风云系列第三颗太阳同步上午轨道卫星。它将接棒风云三号C星,开展全球地气系统综合探测业务。新华社发 胥晓璇 编制由中国航天科技集团八院抓总研制的F星,于2023年8月3日在酒泉卫星发射中心成功发射。它搭载10台功能强大、性能先进的遥感仪器,可大幅提高对大气温湿度垂直廓线、大气痕量气体及地球辐射收支能量的观测精度。尤其是新研的2台紫外高光谱探测仪,将开启我国风云卫星紫外高光谱探测新篇章。在试运行过程中,F星对内蒙古东部、东北地区、华北北部等大范围降雪过程及新疆强降雪天气,以及近期长江中下游强降水天气的监测中发挥了较好应用效益。未来,这台“超级太空CT机”有望对区域和中小尺度天气、短临天气,特别是台风、暴雨等重大灾害性天气预报精度的提高具有重要贡献。风云三号F星在轨效果图。中国航天科技集团八院供图“三维CT”助力精准捕捉台风暴雨全球气候变暖背景下,极端天气气候事件频发。台风和暴雨区域的大气温湿度分布可以描绘台风和暴雨的位置、强度等信息,其分层越精细,台风和暴雨信息刻画就越精准。据航天科技八院风云三号F星总指挥李海生介绍,F星搭载了先进的微波温度计、微波湿度计、红外高光谱大气探测仪三台仪器探测大气温湿度廓线。相比C星,F星大气垂直探测通道数量提升了近47倍。微波温度计大气探测通道17个,微波湿度计大气探测通道15个,红外高光谱大气探测仪探测通道达3000多个。“通道越多大气垂直分层探测越精细,这也就意味着这台大气温湿度‘CT机’垂直分层能力显著提升,对大气温湿度分层认知更精准。”李海生说。同时,通过微波和光学大气探测仪器深度联合,充分发挥微波通道不受天气影响和高光谱探测通道更精细的优势,F星可探测人眼难以分辨的大气温湿度廓线信息,为大气做更精准的“三维扫描”,让台风、暴雨“有迹可循”。中国气象局局长陈振林表示,F星的发射将进一步提升天气预报的时效和精度,为防灾减灾作出更大贡献。风云气象卫星在轨运行示意图。国家气象卫星中心供图“俯瞰、侧视”双管齐下能够高精度、高频次地对全球大气痕量气体的时空分布特征和变化趋势进行动态监测,是F星的一大亮点。痕量气体是大气中浓度低于十万分之一的粒子,主要有臭氧、一氧化碳、二氧化碳、二氧化硫等,影响着全球大气环境和气候变化。2008年搭载于风云三号A星的紫外臭氧垂直探测器、紫外臭氧总量探测器开机工作,首次实现了我国对全球臭氧总量的定量探测。F星总设计师王金华表示,F星在紫外探测能力方面进行了重要升级,配置了两台新研制的紫外高光谱遥感仪器。其中,紫外高光谱臭氧天底探测仪通过从上而下的天底观测方式获取太阳散射信号,仪器正面“俯视”地球大气,犹如一台“超广角CT机”,可实现每天一幅全球大气微量成分探测图像,能为气候变化研究和环境监测提供重要数据支撑。该仪器幅宽达2900公里,空间分辨率优于7公里,其光谱分辨率和空间分辨率均大幅优于国内外同类紫外探测仪器,达到国际先进水平。紫外高光谱臭氧临边探测仪则以切线形式对大气进行侧面扫描,通过临边方式观测大气紫外—可见光波段太阳后向散射,反演得到全球臭氧垂直廓线、二氧化硫和二氧化氮柱总量以及气溶胶定量和定性产品。其垂直分辨率优于3公里,性能指标同样达到国际先进水平。图源:央视四套将生产6类48种产品F星是一颗极地太阳同步上午轨道卫星。因天气系统在上、下午时段表现迥异,近地轨道卫星采用多星组网观测,能更好地获取时空均匀分布的探测资料。中国气象局副局长曹晓钟表示,F星将与在轨的“下午星”风云三号D星、“黎明星”风云三号E星、“降水星”风云三号G星组网观测,其观测资料和产品将广泛应用于天气预报、气候预测、灾害监测、环境监测等领域。F星投入业务运行后,将生产图像类、云辐射类、海陆表类、大气参数类、大气成分类、空间天气类共计6类48种产品。针对地表和大气成分的探测需求,全新研发了土壤冻融、二氧化氮、二氧化硫、臭氧总量和廓线、气溶胶总量及指数等新型遥感产品。下一阶段,F星将按照“边测试、边应用、边服务”的原则开展在轨测试。截至目前,我国共有9颗风云气象卫星在轨运行,持续为全球129个国家和地区提供数据产品和服务。
  • 大气二氧化碳观测有了立体网络
    据悉,中国科学院大气物理研究所基于低成本中精度温室气体传感器,研究团队成功构建地基—无人机协同碳观测网络(LUCCN),并利用该观测网络对发电厂二氧化碳排放进行了定性和定量研究。相关研究成果在线发表于《大气科学进展》杂志。人为排放的大量二氧化碳留存在大气中,造成全球气候的显著变化。为尽快落实《巴黎协定》,降低气候变化对人类的影响,控制人为碳排放已成为社会各界的基本认识。“然而,由于对城市地区、重点行业的二氧化碳排放情况了解不足,我们目前掌握的全球碳收支情况仍具有很大的不确定性。”论文第一作者、中国科学院大气物理研究所副研究员杨东旭说,考虑到人为排放源具有较高的排放强度和复杂多变性,有必要对大气二氧化碳浓度变化开展密集、高质量的连续探测。为此,来自中国科学院大气物理研究所、中国科学院空天信息创新研究院等单位的多个科研团队紧密合作,在广东省深圳市和广西壮族自治区南宁市先后开展了针对城市地区和重点行业的温室气体地基遥感和无人机综合观测实验。实验中,杨东旭团队构建了一套地基便携设备和无人机飞行阵列协同的碳观测网络,以弥补温室气体探测卫星时空连续性不足的缺憾,形成了针对排放源的立体观测网络。该观测网络由5台地基观测设备和4台无人机设备构成,能够实现空—地协同的温室气体原位探测。杨东旭说:“这些探测设备均采用低成本、高精度的非色散红外传感器对大气二氧化碳浓度进行探测,每台地基观测设备均配备了高精度微型气象站,辅助后续的数据定标和量化分析。”杨东旭表示,新观测网络兼具地基和无人机的探测能力,在探测的时间连续性、空间覆盖度、机动性等方面具有明显优势,极大地提升了探测数据的有效信息含量。
  • FLIR OGI热像仪进军影视业,助力捕捉无形无影的二氧化碳
    众所周知,正常空气中二氧化碳的比例约为0.03%,但由于工业尾气排放,森林减少等原因,空气中二氧化碳的浓度屡创新高!今天,小菲就和大家一起看看德国公共服务广播公司ZDF使用FLIR GF343光学气体成像红外热像仪追踪二氧化碳的纪录片,一起看二氧化碳被排放的瞬间!01可视化二氧化碳德国公共服务广播公司ZDF制作了一个关于温室气体二氧化碳(CO?)的纪录片, 此纪录片可以在全球商业杂志类节目makro上观看。为此,ZDF记者Manfred Kessler和摄影师Armin Vater需要一种能证明二氧化碳存在的可靠方法,但肉眼无法看见二氧化碳。记者Manfred Kessler表示,曾看到过一些红外热像仪将二氧化碳可视化的视频,“在视频中,你可以清楚地看到带特定滤光片的红外热像仪是如何可视化二氧化碳排放的,例如由人或动物呼出的二氧化碳。除此之外,这台热像仪还能够显示从汽车、飞机或化工厂排放出来的二氧化碳。”因此,他们立即寻求与FLIR公司合作,FLIR公司推荐了一款专门用于将二氧化碳可视化的热像仪。02FLIR GF343——CO?专属热像仪并非所有的热像仪都能检测到气体。通常而言,红外热像仪仅将场景中的不同温度显示为不同色彩,将热能可视化。你需要一个配备制冷型探测器、专门捕捉特定波长,并配合特定滤光片的热像仪,才能检测到指定气体。虽然传统红外热像仪近年来已变得更加普遍且其可选配件也经济合算,如FLIR ONE PRO手机红外热像仪,但是在整个德国,仅有少数几款热像仪能够可视化二氧化碳。FLIR GF343就是一款能在安全距离内快捷发现二氧化碳泄漏源的光学气体热像仪。FLIR GF343搭载一颗由锑化铟(InSb),即铟(In)和锑(Sb)元素的化合物制成的高灵敏度探测器,在光电子学领域锑化铟是制造红外传感器的合适材料。探测器装有特定的滤光片,使其能够记录从4200nm到4400nm的极窄波长范围内的图像,该波长范围恰好是二氧化碳能被可视化的红外波长范围。但是,为了实现这一点,探测器本身必须处于极冷条件下:准确说是-198℃。为此,热像仪内部安装了一个Sterling制冷器,以产生极低温度。这需要时间,制冷器在开启后工作大约5分钟,直到探测器足够冷且热像仪可以使用。03学习操作FLIR光学气体热像仪在节目拍摄前,FLIR公司在法兰克福向摄影师Armin Vater和他的同事Lasse Brünjes介绍了 FLIR GF343的一些操作方法。他们不仅学习了热像仪的一般操作功能(记录视频或静态图像、变更设置、更换电池等),也学习了一些对红外成像很重要的特殊功能:选择正确的调色板依据红外辐射强度分配一系列颜色,FLIR热像仪提供一系列调色板,将原本肉眼不可见的红外光谱变得可见。调色板可以是黑白的,将较冷区域显示为深灰和黑色,将较暖区域显示为浅灰色和白色。这种调色板常用于安全部门的红外热像仪上,鉴于其色调简单,从远处检测人员将变得更加容易,在颜色较深的环境中将人显示为明亮的白点。但是,热像仪还有其它调色板,如彩虹色调色板或铁红色调色板,颜色从白色/黄色到深红/紫色。特殊的高灵敏度模式(HSM)能非常清晰地显示气体排放物,这对于移动的视频图像非常有帮助。但是,使用红外热像仪进行作业需要专业知识。例如,使用红外热像仪无法透过玻璃进行检测,这也是热像仪的镜头不采用玻璃材质而采用锗元素的原因。顺带提一下,红外热像仪也无法像我们有时在好莱坞电影中看到的那样,透过墙壁检测人体或热信号,这纯属虚构。但是,那并不是来自makro的拍摄制作团队想要利用FLIR GF343实现的真正作用。取而代之的是,摄影师Armin Vater和他的同事Lasse Brünjes拍摄了一个繁忙十字路口的汽车排放情况,法兰克福机场上飞机的二氧化碳排放情况,一座化工厂的烟囱和居民楼的烟囱,还有人呼出的气体。有了巨大的发现:尽管在肉眼看来,化工厂的烟囱似乎没有任何活动,但是FLIR GF343能清晰地显示出二氧化碳烟柱。makro纪录片已于2019年12月在3Sat播出,想要详细了解有关制造业、旅游业和其它工业领域中二氧化碳排放的情况的菲粉们,可以在makro媒体中心观看。
  • 空气产品公司研制的艾必利® 环境气体标准物质取得国家标准物质定级证书,助力更精准的环保分析
    一氧化氮、二氧化氮、二氧化硫是大气中的主要污染物和雾霾前驱物,这些污染物的存在不仅对人体和动植物有直接危害,还是调控臭氧,形成酸雨和光化学烟雾的重要因子,因此,这些污染物是我国空气质量监测的关键参数。随着环保力度的加强,我国环境监测部门对微量环境气体标准物质,尤其是国家有证气体标准物质的需求量急剧增加。为应对我国环境监测用气体标准物质的市场需求,空气产品公司旗下的北京氦普北分气体工业有限公司于2018年立项开展“低含量环境气体标准物质关键技术研究”项目。该项目由技术专家赵俊秀、项目负责人唐亮带领技术团队历时近1年半进行关键技术攻关研究,攻克了气瓶内壁处理、原料气中微痕量关键杂质定值等关键技术,采用称量法成功研制了低含量氮中一氧化氮、氮中二氧化硫、氮中二氧化氮系列气体标准物质,并考察了组分在气瓶中的长期稳定性。通过与国内最高水平的国家实验室开展比对,验证了认定值的准确性,取得了很好的比对等效度,并于2020年正式推出拥有自主知识产权的3种环境监测用低含量气体标准物质系列新产品——艾必利环境气体标准物质。这三种艾必利环境气体标准物质经全国标准物质管理委员会组织专家评审,符合国家二级标准物质定级鉴定技术条件和相关技术规定要求,于近期顺利通过了国家标准物质定级审查,并取得了国家标准物质定级证书。 艾必利环境气体标准物质定值数据表名称国家标准物质编号量分数(×10-6)不确定度(%)氮中一氧化氮气体标准物质GBW(E)0840031.00~10.0210.0~50.01氮中二氧化硫气体标准物质GBW(E)0840041.00~10.0210.0~50.01氮中二氧化氮气体标准物质GBW(E)08400510.0~1002100~1.00×1031.5 艾必利环境气体标准物质能够顺利获得国家标准物质定级证书,是空气产品公司在微痕量环境监测用气体标准物质研究领域的一项重要突破。该成果将广泛应用于我国各省、市和重点地区的环境空气监测、汽车污染物排放限值监测、汽车排气分析仪等分析仪器计量性能评价等,为进一步构建和完善我国气体成分量值溯源体系以及相关国家标准的有效实施起到有力的基础支撑和保障作用。标准物质作为量值传递与溯源的载体,广泛应用于能源、环境、化工等领域各类产品研发、技术评价、校准与质量控制活动中,对各领域的有效分析测量起到十分重要的作用,是确保测量结果可靠与国际互认的核心与关键。作为全球领先的工业气体供应商,空气产品公司长期致力于向客户提供高品质艾必利特种气体产品。包括本次获得国家标准物质定级证书的新产品在内的所有艾必利特种气体产品均采用了严格品控的原料气体,精确控制和检测杂质含量,同时配合先进的充装系统,确保产品的高准确性、长期稳定性以及可追溯性。同时,我们的技术专家不断探索和研发前沿技术,以帮助客户应对环保合规方面的挑战。 如需进一步了解空气产品公司艾必利特种气体产品,可登录我们的展台进行了解。
  • 全新非二氧化碳温室气体ODS排放在线监测仪全球首发
    全新非二氧化碳温室气体ODS排放在线监测仪全球首发我国生态环境部最近发布了《关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见》,其中第十四条关于推动监测体系统筹融合,明确了温室气体监测的要求。加强温室气体监测,逐步纳入生态环境监测体系统筹实施。在重点排放点源层面,试点开展石油天然气、煤炭开采等重点行业甲烷排放监测。在区域层面,探索大尺度区域甲烷、氢氟碳化物、六氟化硫、全氟化碳等非二氧化碳温室气体排放监测。在全国层面,探索通过卫星遥感等手段,监测土地利用类型、分布与变化情况和土地覆盖(植被)类型与分布,支撑国家温室气体清单编制工作。 为实现二氧化碳排放达峰目标与碳中和愿景提供支撑,助力美丽中国建设工作,我公司推出ARI Medusa - ODS 在线监测仪。ARI Medusa GC-MS 全球臭氧层消耗物质ODS及温室气体全自动在线监测仪全新 AGAGE/ARI Medusa 全球首款商业化Medusa在线监测系统,是大气ODS所有组分监测的最佳选择! ARI Medusa 超低温预浓缩仪 用于大气ODS监测的全自动超低温制冷预浓缩系统Aerodyne Research, Inc. (ARI) 在2020 年中期全新推出了用于气象色谱的超低温制冷预浓缩系统。该系统结合了超低温制冷技术的创新设计以及我们与有15年观测ODS物质经验的 Scripps 海洋研究所及其他 AGAGE 监测网成员的合作. 该超低温制冷预浓缩系统是Aerodyne 新成立的气相色谱部门的一部分。该系统是基于之前该部门带头人已发表工作进行搭建的。 ARI Medusa ODS在线监测仪有以下特点: 电子超低温制冷: ARI低温预浓缩系统通过斯特林制冷技术在无需液氮的情况下,冷阱捕集低温可达到 -165 °C。该技术可满足远处无人值守的全自动采样分析观测,实现每小时一个样品数据。 二阶捕集设计: 通过两次捕集预浓缩设计,每次分析过程可通过样品捕集冷阱最多采集2L空气,同时去除多余气体杂质,如N2, O2, H2O, CO2等. 之后,目标分析物再进一步在第二级冷阱上预浓缩富集成更小的体积,为注入GC做好准备。 更高选择性的分离: 精确的温度控制可实现部分样品从冷阱逐步进行解析,为难以检测的物种(如NF3)提供额外的分离效果。 无与伦比的精准度: 当按照AGAGE观测网规范进行操作时,ARI Medusa预浓缩仪能够为至少28种大气重要化合物提供≤1%的精度。† 应用领域:l 背景站洁净大气 ODS 和含氟温室气体高精度监测l 城市大气 ODS 和含氟温室气体高精度监测l 大气监测中心站点空气样品 ODS 和含氟温室气体的自动化分析工业园区空气 ODS 和含氟温室气体全要素监测
  • 明星产品——即插即用型氮氧化物检测光源模块
    近年来,我国环境污染问题日趋严重,新出现的有机污染物的危害不断加深,环境风险也在不断加大,已经引起了政府的高度重视。德国贺利氏特种光源作为行业领导者,除了可用于测量挥发性有机物(VOCs)和其他气体的光离子化灯,还最新研制了用于烟气和汽车尾气中氮氧化物在线监测仪中的NOX光源模块。氮氧化物是啥?氮氧化物(NOX)是一氧化氮(NO)和二氧化氮(NO2)的总称,它们在大气中会形成各种有毒物质,也是对流层中臭氧形成的元凶。氮氧化物的来源主要是人为的:燃烧用于能源发电的化石燃料,比如燃煤电厂、燃油电站、垃圾焚烧炉某些化学工艺和用于各种水陆空交通工具的石油燃料 传统检测NOX的方法有化学发光法和电化学法,但是这些方法的缺点是需要将NO2转化为NO再进行测量。NOX也可以用红外法检测,但是样品中的水和二氧化碳会产生干扰。 而紫外吸收法则是更加精确的方法,而且在紫外区域测量可以避免水和二氧化碳的干扰。然而,过去基于紫外共振法的系统在调制灯的时候会有问题,也就是说灯的寿命和能量不能发挥到最优。 充入氮气和氧气的无极放电NOX模块则能够辐射200-600nm的光谱,200nm以上可用于检测NO,NO2,H2S和SO2等等。 基于此,贺利氏特种光源新推出了用于烟气和汽车尾气中氮氧化物在线监测仪中的即插即用型NOX检测模块,模块包含预调制好的紫外光源,仪器厂商可以很容易的将其整合到仪器中。其具有尺寸小巧,即插即用,精确度高,直接测量NO和NO2等特点,受到广大仪器厂商的好评。 明星产品 即插即用型氮氧化物检测光源模块贺利氏氮氧化物检测光源模块整合了调制好的无极放电灯及电源。 为啥是明星产品? 1、尺寸小巧 2、无需调制,即插即用,12V直流供电 3、易于整合和维护更换,减少维护费用 4、精确度高,直接测量NO和NO2 5、没有H2O,CO和CO2的干扰 6、寿命可达一年 7、使用时无耗材消耗年来,我国环境污染问题日趋严重,新出现的有机污染物的危 德国贺利氏特种光源作为行业的领导者,始终致力于在线监测仪器用光源的开发。 欢迎大家莅临环博会E3.3521展位,贺利氏的应用专家期待你与您深入交流。展会现场,更有抽奖活动和技术研讨会精彩纷呈,跟贺利氏光博士一起开启绿色环保之旅吧!
  • 创三个世界第一!全球首颗激光二氧化碳探测卫星发射成功
    4月16日2时16分,长征四号丙运载火箭在太原卫星发射中心升空,将世界首颗具备二氧化碳激光探测能力的卫星——大气环境监测卫星送入预定轨道,发射任务取得圆满成功。星箭均由中国航天科技集团有限公司八院抓总研制。,时长00:30摄影:郑逃逃大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的科研卫星,运行705公里的太阳同步轨道,整星发射重量约2.6吨,装载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等五台遥感仪器,是一颗集CO2激光主动探测、细颗粒物立体探测、气态污染物探测和地表环境探测的多要素综合监测卫星。长征四号丙运载火箭发射升空。吴敬博 摄大气环境监测卫星的成功发射和在轨应用标志着我国在大气遥感领域达到国际领先水平,卫星在轨应用后将实现对生态环境、气象和农业等多领域定量遥感服务能力的跨越式提升,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。首次搭载大气探测激光雷达大气环境监测卫星在CO2探测手段和精度、细颗粒物主被动探测和偏振交火探测体制上,创造了三个世界第一。二氧化碳探测,激光雷达出奇效。大气环境监测卫星实现国际上首次搭载大气探测激光雷达这一主动探测载荷,实现主动激光CO2高精度、全天时、全球探测,探测精度大幅提升至优于1ppm,达到国际最高水平,为我国实现“碳达峰、碳中和”目标提供最精准的遥感数据支撑。同时,大气探测激光雷达通过对大气进行分层“CT”扫描,国内首次实现全球气溶胶光学厚度、形状和尺寸等垂直分布信息的获取。PM2.5监测,综合手段创新高。大气环境监测卫星国际上首次采用了主被动结合、多手段综合的探测体制,通过装载不同类型、不同原理的载荷,将主动发射激光接收的回波信号和被动接收的太阳光反射信号相结合,综合反演多种遥感数据,实现对近地面细颗粒物(PM2.5等)浓度的高精度监测,为大气污染精准防治提供科学数据支撑。中国航天科技集团八院供图偏振交火,信息融合效率高。大气环境监测卫星国际首次采用融合反演级偏振交火探测技术,获取气溶胶光学厚度、粒子尺度等多种参数,通过空间、辐射和偏振维度的信息融合,大幅提升细颗粒物探测精度,达到国际先进水平。此外,紫外高光谱大气成分探测仪及宽幅成像光谱仪也将大幅提升气态污染物以及地表环境监测能力,紫外谱段高光谱大气观测以及宽幅多光谱观测空间分辨率提升一倍。首次创新应用无控制点激光光轴自标定技术大气环境监测卫星每天可绕地球飞14轨,激光雷达不分白天黑夜全天时工作,可谓是一个兢兢业业的“劳模”。除了敬业之外,它还是一个十足的“强迫症”,时刻不忘摆正自己的姿态,以保证极高的指向测量精度,为此还在国内首次创新应用了无控制点激光光轴自标定技术。 中国航天科技集团八院供图这一“神技”顺利施展的前提是要有一把能够实时提供绝对姿态信息的“标尺”,也就是“司机”的“眼睛”——星敏感器。激光雷达自身发射的光源分束后经星敏感器支架上的棱镜反射,建立起激光雷达与星敏感器的在轨标校系统,这样激光雷达就可以借助星敏感器这双“慧眼”实时明确自己“身在何方”。据中国航天科技集团八院控制所卫星姿轨控分系统副主任设计师孙尚介绍,为提供高精度在轨三轴惯性测量精度,姿轨控分系统采用了高精度多头星敏感器。“好比用‘三只眼睛’同时定位,利用一个‘大脑’融合处理出更高精度的姿态测量数据。”据悉,“十四五”期间我国还将发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升我国天基碳监测能力和水平,为我国生态文明建设,实现“双碳”目标贡献航天力量。
  • 中国气象局规范高精度温室气体二氧化碳浓度自动观测系统建设
    中国气象局日前印发《高精度温室气体二氧化碳浓度自动观测系统建设指南》(以下简称《指南》),以期充分发挥气象资源优势,快速构建覆盖我国主要城市和区域的温室气体浓度高精度观测网,规范全国气象部门开展高精度温室气体二氧化碳浓度及通量自动观测系统的建设与运行。《指南》明确了现阶段高精度温室气体浓度与通量自动观测系统的基本观测要求,强调在布局时各地要统筹集约建设,确保测量准确度、精度等满足国家标准和技术指标要求,利用气象部门现有观测站网与资源优势,加强沟通协调、多元投入,快速构建覆盖我国主要城市和区域的温室气体浓度高精度观测网。《指南》建议在我国省会城市和重点城市,至少建设一个温室气体观测站;在区域气候代表性较好的高山气象站点,开展温室气体在线观测;在国家气候观象台、中国气象局野外科学试验基地中,选择有一定海拔高度、代表不同地球系统圈层下垫面特征的站点,开展温室气体浓度高精度观测和通量监测,以获得区分人为排放和自然碳汇作用的碳源、碳汇反演基础数据;宜选择部分具有较大区域代表性的站点,开展碳同位素观测,以获得区分陆地和海洋生态系统的基础数据。“开展大气成分观测,不仅是应对气候变化的需要,也是法律赋予气象部门的职责和义务。其中,大气温室气体浓度的观测是气候与气候变化监测中的一项重要内容。”全国气候与气候变化标准化技术委员会大气成分观测预报预警服务分技术委员会秘书长张晓春介绍。面对国家生态文明建设的新形势新任务新要求,中国气象局于2021年组建了温室气体及碳中和监测评估中心,并在全国数十个城市新建、改建温室气体观测站。《指南》作为气象部门开展温室气体观测的纲领性指导文件,不仅对未来站网建设做出系统性规划,也对已有站点的完善与优化给出具体指导。未来,气象部门将进一步加强温室气体观测业务顶层设计、科学规划,持续推进温室气体观测能力建设。作为国内最早开展大气温室气体二氧化碳本底浓度业务观测的部门,中国气象局从20世纪90年代初,率先在瓦里关大气本底站开展大气温室气体二氧化碳本底浓度的长期业务化观测,积累了长序列的监测结果并获得国际认可。如今,在全国建立了以7个大气本底站为核心的全国温室气体观测网,以及较为完善、与国际接轨的温室气体观测标准规范、运行保障、溯源标校等业务体系,主导编制、颁布的与温室气体观测相关的7项国家标准和7项气象行业标准,成为国内其他行业、部门和单位开展温室气体观测设备研发、组网监测等工作的重要参考和依据。
  • 便携红外线二氧化碳分析仪
    便携红外线二氧化碳分析仪简介 CEA-800型 促销价:5800元一:用途和使用范围 本仪器主要用于环保,卫生防疫系统监测公共场空气中的CO2浓度,也可用于环保,人防。快速准确地对宾馆,商场,医院,影剧院等公共场所中的CO2浓度进行测定. 本仪器为国内先进的交直流供电便携式红外线CO2分析器,直流用镍镉电池供电,机内设有充电线路。仪器光学部分结构先进,电路部分全部采用进口大规模集成电路。体积小,可靠性高,预热时间短,可使用户工作效率大大提高。 二:主要特点: (1) 线性化输出,数字显示直读浓度。 (2) 内置泵、主动式采样,连续测量。 (3) 交直流两用、操作简便。 (4) 符合国家 GB/T18204.24-2000标准 (5) 铝合金仪器箱,美观坚固。 (6) 内藏式过滤器并可在外部更换。 三:工作原理 本仪器是根据比尔定律和气体对红外线的选择性吸收原理设计而成。采用气体滤波相关(G,F,C)技术和红外探测器。 四:主要技术数据 1:测量范围:0-5000PPmCO2 2:重复性:≤1%F.S 3:预热时间:2分钟 4:响应时间:≤10秒 5:环境温度:0℃-35℃ 6:环境湿度:85%R.H 7:重 量:2 公斤 8:外形尺寸:85 ×165×210mm3 9::耗电:≤500mA 10:供电:220VAC+10%;9VDC+10% 五:联系方式: 江苏金坛市亿通电子有限公司 邮编:213200 地址:金坛市华城开发区华兴路180号 电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com E-mail:crh3090@pub.cz.jsinfo.net
  • 安光所二氧化碳空间外差光谱仪校飞成功
    大气温室气体是导致全球平均气温和海温升高、大范围雪和冰融化、以及海平面上升等全球气候变化的重要因素,特别是二氧化碳的排放是当今世界最为关注的地球大气环境问题。实现对全球大气温室气体(尤其是二氧化碳)的高精度探测,对我国制定相关气候应对措施具有深远影响,将为我国的环境外交政策提供强有力的技术支撑和保障。基于目前科学技术水平,准确把握二氧化碳的全球变化,是目前空间遥感探测的热点和难点,需要充分依靠高灵敏度和高光谱分辨率的遥感探测技术。  由我所承担的院空间科技创新基地重要方向项目“超光谱环境遥感监测关键技术研究”经过近2年攻关,研制成功基于空间外差光谱技术(SHS — Spatial Heterodyne Spectroscopy)的大气主要温室气体二氧化碳航空遥感探测试验样机。该技术目前已被列入高光谱观测卫星与环境减灾小卫星的温室气体探测计划。  日前,在山东日照进行的机载试验受到中国海监北海支队的大力支持,机载试验样机装载于中国海监Y-12飞机,实现一次装机,一次校飞获取信息。试验共飞行两架次,约9个半小时,两个飞行高度(500m、1000m),飞行区域为山东日照市区及附近郊区,选择了农田、工业区、海岸滩涂等典型地表区域,获取了大量数据。预处理结果表明了试验样机完全到达了设计指标,即在大气二氧化碳最主要的吸收波段1575nm范围中,得到光谱分辨率为0.1nm的实际大气二氧化碳吸收光谱,与理论计算对比一致。这些遥感数据将成为反演大气环境中二氧化碳柱浓度不可替代的和最直接的依据。下图为二氧化碳机载试验样机、机载试验状况及大气二氧化碳超光谱曲线。  空间外差光谱技术是近年发展起来的一种新型超光谱遥感探测技术,与传统的傅立叶干涉系统(如日本的GOSAT)和衍射光栅系统(如欧洲的ENVISAT、美国的OCO)高分辨光谱遥感技术相比,空间外差光谱技术更具有针对性,该技术综合了衍射及空间调制干涉技术于一体,在限定的光谱范围内可达到很高的光谱分辨率和信噪比,且具有结构紧凑、无运动部件等特点,因而成为高精度大气成分遥感探测的优选技术之一。  安徽光机所是国内最早开展空间外差光谱技术实验研究的单位之一,先后获得了国家自然基金、863项目、院创新基金的支持。2008年在院重要方向项目支持下,集中攻克了空间外差一体化干涉仪核心技术,解决了大气温室气体空间外差光谱遥感系统设计及定标(辐射、光谱以及吸收池)等关键技术,针对二氧化碳、甲烷以及一氧化碳等大气温室气体的探测研制了机载遥感试验样机和干涉仪组件。  本次校飞试验结果表明,历时两年自主研发的二氧化碳空间外差光谱仪系统指标先进、性能稳定。本次校飞试验,不仅在国内首次获得了高分辨率大气二氧化碳飞行数据,同时验证了该系统在移动平台下获取高质量大气二氧化碳超分辨光谱的能力,为发展包括大气温室气体、气溶胶、污染气体等国家机载大气环境遥感监测系统,以及发展我国大气温室气体星载遥感系统奠定了坚实基础。
  • 近红外NIR在线监测饮料中的二氧化碳-德国Centec
    近红外对CO2测量是一次技术上的革新,新一代的传感器是基于衰减全反射(ATR)技术。 当光线经过一个蓝宝石水晶玻璃,近红外(NIR)光在表面多次反射。晶体表面直接接触碳酸液体,由于液体中的CO2分子吸收特定波长的光,根据CO2浓度,每次反射后强度都衰减。 该传感器具有极高的精度和提供的&ldquo 真实&rdquo 的二氧化碳含量,精确定量的红外吸收溶解的二氧化碳。测量结果不受啤酒中的任何其他气体的影响,比如氮气。 由于没有移动部件,该仪器几乎是免维护。 这个高度创新的设备,将首次在2013年慕尼黑国际饮料技术展展览期间面市! 技术参数如下:
  • 计量规范|青岛众瑞参与的《环境空气在线监测气体分析仪校准规范》正式发布
    “环境治理,监测先行”,环境监测与检测作为环境保护工作的基础,已经成为打响环境污染治理的冲锋号。在大气监测工作中,提高相关设备的技术水平至关重要,不仅保证了监测数据的准确性,降低设备故障发生率,还减少了环境监测成本,提高资源利用率。我国空气污染情况严峻,为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,加强空气污染防治,保护和改善生态环境,保障人体健康,规范环境空气成份自动监测质量评估工作,国家市场监督管理总局于近日发布了jjf1907-2021《环境空气在线监测气体分析仪校准规范》。2021年8月17日,市场监管总局关于发布《基桩动态测量仪检定规程》等24个国家计量技术规范的公告。其中jjf1907-2021《环境空气在线监测气体分析仪校准规范》,青岛众瑞作为校准规范重要参与起草单位,深度参与到标准起草、方法验证等过程中,配合中国计量科学研究院专家完成了大量实验。表1 计量性能校准项目计量性能计量设备二氧化氮气体分析仪二氧化硫气体分析仪臭氧气体分析仪一氧化碳气体分析仪仪器线性相关系数(r):>0.9950.90≤斜率(a)≤1.10截距(b)在测量量程的±1%范围内动态配气在线校准装置示值误差±10%重复性2%2%2%2%响应时间180s120s180s120s动态配气在线校准装置+秒表针对该标准,青岛众瑞推出了两款设备,可充分满足校准规范的要求。青岛众瑞智能仪器股份有限公司成立于2007年8月,专注于检测仪器研发与创新应用的国家高新技术企业,我们在环境监测、生物安全、计量校准等领域为客户提供安全可靠的检测仪器与服务。
  • 奥斯恩发布OSEN-NOX氮氧化物在线监测系统新品
    1、产品简介为促进生态文明建设,落实冀气领办【2018】177号 文件精神,进一步深化锅炉污染治理,消减氮氧化物排放,奥斯恩推出了OSEN-NOX氮氧化物在线监测系统,主要应用于燃气锅炉尾气氮氧化物检测分析,主要针对现有燃煤锅炉进行低氮燃烧改造后的燃气锅炉。适用于20蒸吨/小时以下燃气锅炉、低氮燃烧改造锅炉、更换低氮燃烧器锅炉、整体更换锅炉排放氮氧化物尾气。其中的低氮燃烧器指采用全域混合燃烧器、分级燃烧器(加烟再循环装置)等对氮氧化物尾气分析仪。 OSEN-NOX氮氧化物在线监测系统主要原理是:取样单元采集锅炉尾气并进行初级粉尘过滤再送入预处理单元,预处理单元对气体进行降温、除湿、二次过滤粉尘,气体分析单元进行各项烟气浓度检测分析,在显示屏上实时显示氮氧化物浓度,并将数据信号向外传输到远程电脑端、烟气浓度监测微信云平台等终端。 2、产品组成(1)OSEN-NOX分析仪主机(必选)(2)气体采样装置(必选)(3)一氧化氮分析仪(必配)(4)二氧化氮分析仪(必配)(5)含氧量分析仪(必选)(6)样气预处理单元(选配)(7)气体分析单元(必配)3、产品特点(1)采用进口电化学传感器,精度高,响应速度快,重复性好;(2)分析过程不需化学试剂,不产生二次污染,是一个无损的分析 (3)三级预处理装置:冷凝、除尘、干燥;(4)具有温湿度补偿算法,有效消除温湿度变化干扰;(5)具有一氧化氮、二氧化氮、氧气等相互干扰补偿;(6)采用泵吸式采样,具有零点自动标准功能,消除系统长期运行产生的漂移;(7)选配9寸工业级触摸屏显示,具有历史数据存储和查询功能;(8)仪器具有:4-20mA/RS485信号输出,以太网输出,继电器输出等功能;(9)提供现场数据查询、报表统计、数据打印等功能,直观显示气体浓度、类型、单位、工作状态,数据存储时间大于一年,并有拷贝功能等。 创新点:(1)采用进口电化学传感器,精度高,响应速度快,重复性好;(2)分析过程不需化学试剂,不产生二次污染,是一个无损的分析 (3)三级预处理装置:冷凝、除尘、干燥;(4)具有温湿度补偿算法,有效消除温湿度变化干扰;(5)具有一氧化氮、二氧化氮、氧气等相互干扰补偿;(6)采用泵吸式采样,具有零点自动标准功能,消除系统长期运行产生的漂移;(7)选配9寸工业级触摸屏显示,具有历史数据存储和查询功能;(8)仪器具有:4-20mA/RS485信号输出,以太网输出,继电器输出等功能;(9)提供现场数据查询、报表统计、数据打印等功能,直观显示气体浓度、类型、单位、工作状态,数据存储时间大于一年,并有拷贝功能等。OSEN-NOX氮氧化物在线监测系统
  • 我国首颗全球二氧化碳监测科学实验卫星
    深冬寒夜,中国科学院大气物理研究所2号楼816办公室灯火通明。  杨东旭副研究员带领课题组一直在忙——利用我国首颗全球二氧化碳监测科学实验卫星(碳卫星)取得的观测数据,他们在分析计算全球碳汇和碳排放时空分布的新结果,讨论我国碳汇变化趋势。“这能够帮助我们了解这颗卫星的优势和不足,以便优化未来卫星的设计”。  二氧化碳排放是地球变暖的元凶之一。谁排放了二氧化碳?排放了多少?这些二氧化碳又去哪里了?  这是科学研究需要回答的问题,是政策制定的科学依据,也是全球气候变化国际谈判中的关键数据——  “碳卫星”能够帮助我们给出答案!  2016年12月22日,它在酒泉成功发射。它带在“身上”的,有我国科研人员自主研发的高光谱与高空间分辨率二氧化碳探测仪、多谱段云与气溶胶探测仪等探测设备。这一下子,标志着我国在温室气体监测领域达到了先进水平。  有了观测数据只是第一步,接下来是数据的反演——  太阳辐射在大气中是如何传输的?大气散射、吸收有什么特征?中国科学院大气物理研究所的科研团队研制出了中国碳卫星二氧化碳浓度反演算法,高精度模拟,精确地刻画,这些问题,迎刃而解。  正因为有了这样精度优、效率高的算法,全球大气二氧化碳含量的实时变化情况可以真实、客观地反映出来,碳源汇的定量计算与监测也有了依据。  这颗“碳卫星”真是出手不凡:2017年9月,首幅全球二氧化碳分布图问世,平均精度达到2.11ppm;2020年,中科院大气物理所刘毅团队改进了数据质量和反演算法,将数据精度提升到1.5ppm,并获得陆地生态系统日光诱导叶绿素荧光数据产品;2021年,获取了中国“碳卫星”首个全球碳通量数据集。  “这是一个里程碑式的结果,标志着我国具备了全球碳收支的空间定量监测能力,是国际上继日本、美国之后的第三个具备该技术的国家。”杨东旭自豪地说,这颗“碳卫星”,让我国科技工作者和相关部门能够掌握第一手数据,增加了我国在气候变化全球谈判中的底气。  工作还在继续,正如刘毅所说:“我们希望能与其他国家合作形成碳卫星‘虚拟星座’,联合观测大气二氧化碳,为全球气候变化提供更加丰富的监测数据。同时,我国新一代‘碳卫星’的设计与研发已经提上日程。这将助力我国实现‘双碳’目标,也体现了一个大国的担当。作为科研人员,我们深感使命光荣。”
  • 安东帕全新推出Carbo 520在线二氧化碳传感器
    奥地利安东帕公司全新推出Carbo 520光学二氧化碳传感器,它是一款易于在线安装的饮料生产流程 CO2 传感器。该系统可与您的样品直接接触,在 0 g/L 到 12 g/L 的整个测量范围内提供无漂移的CO2检测结果。详细参数:http://www.anton-paar.com/cn-cn/products/details/carbo-520-optical/co2-sensor/ ? 安装后免维护Carbo 520 Optical 是一种完全免维护的设备。它基于衰减全反射 (ATR) 光谱法来测量 CO2 浓度,传感器中无移动或机械部件,因此不存在磨损且无损耗品。操作传感器时无需准备外部清洗气体和外部压缩空气,因此也不存在需要操控的供气阀。 ? 所需运行成本最少Carbo 520光学二氧化碳传感器只需 24 V 10 W 的电源,耗电量与您的节能灯泡相同。除节能以及传感器使用寿命长之外,Carbo 520 Optical 还具有测量精确、测量速度快的特点,可最大限度降低您的成本,使您在原材料上的花费最少并严格按照规范进行生产。 ? 单次设置后可测量所有饮料Carbo 520的测量结果不受所测饮料的溶解度和糖组分的影响。无论测量可乐、啤酒、果酒还是其他饮料中的 CO2 含量 - 您都可以采用相同的测量方法,无需考虑任何饮料类型差异。 ? CO2 测量结果不受影响,值得信赖Carbo 520光学二氧化碳传感器提供绝对精确的测量结果,因为其设计为可避免其他类似光学系统中纂改测量结果的某些“陷阱”。由于传感器只测量 CO2 分子吸收的光的特定波长,因此该测量具有高度选择性且不受饮料中普遍存在的其他气体(比如氧气或氮气)的影响。另外,由于测量只在样品的表层进行,因此测量结果同样与各个样品的色度或浊度无关。 ? 可轻松测量通常难测的样品就准确度和卫生而言,测量含大颗粒物的饮料是一种特别的挑战。凭借 Carbo 520 二氧化碳传感器,可简单可靠地测量通常难测的样品(比如含果肉的果汁),因为安东帕传感器的构造中不含任何移动部件或卫生死角且该传感器适合于无菌应用。清洁该 EHEDG 认证传感器既轻松又高效。 ? 随时可获得即时测量结果安东帕二氧化碳传感器易于直接在线安装并因此能真正接触您的样品。即使最微小的浓度变化也会迅速进行实时报告,测量值每 4 秒更新一次。系统通信无障碍,可轻松连接 PROFIBUS、Modbus TCP、PROFINET、DeviceNet 和 EtherNet/IP 等现场总线。测量速度越快,则反应速度也就越快 - 从而优化控制和效率。关于安东帕(中国)奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 紫外高光谱大气成分探测仪等随大气环境监测卫星进入预定轨道
    4月16日2时16分,大气环境监测卫星在太原卫星发射中心成功发射。卫星上装载了中科院合肥研究院安光所自主研发的三台载荷——紫外高光谱大气成分探测仪EMI、多角度偏振成像仪DPC、高精度偏振扫描仪POSP。图片来源:新华社(郑斌摄)大气环境监测卫星是国家民用空间基础设施首批启动的综合探测卫星,由国家生态环境部牵头、中国航天科技集团有限公司八院抓总研制,是国家民用空间基础设施中长期发展规划中的科研卫星,也是世界首颗具备二氧化碳激光探测能力的卫星。它装载了包括EMI、DPC、POSP在内的五台遥感仪器,国际上首次采用了主被动结合、多手段综合的探测体制,能够大幅提升全球碳监测和大气污染监测能力。卫星在轨应用后将显著提升生态环境、气象和农业等多领域定量遥感服务能力,助力我国实现碳中和与碳达峰、生态文明建设等国家战略,推动航天强国建设。EMI仪器具有2600千米观测幅宽,最小可探测光谱波长间隔0.6纳米,通过对多种气体吸收光谱“指纹”信息的准确识别,可实现单日覆盖全球,对二氧化氮、二氧化硫、臭氧和甲醛等污染气体开展监测。DPC仪器获取的全球大气气溶胶和云的时空分布信息和POSP仪器通过穿轨扫描获取的高精度大气气溶胶参数,在国际上首次实现了DPC和POSP 的“偏振交火”探测方案,可实现对PM2.5、灰霾等颗粒物污染的定量观测,以满足全球气候变化研究、大气环境监测、遥感数据高精度大气校正等应用需求。此次合肥研究院承担的大气环境监测卫星载荷于2021年3月完成正样交付,2022年2月大气环境监测卫星试验队进入发射场以来,不辱使命,奋力攻关,圆满完成了发射前各阶段测试任务。大气环境监测卫星的成功发射和在轨应用标志着我国在大气遥感领域达到国际领先水平。载荷开机运行后,将与2021年9月发射的“高光谱观测卫星”组网运行,增加我国大气环境卫星观测频次,提高重访能力和全球覆盖能力,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。
  • 新一代二氧化碳纯度在线监控解决方案
    新一代二氧化碳纯度在线监控解决方案用于测量CO2气体中O2的新解决方案安东帕(Anton Paar)推出了新的二氧化碳纯度监测仪,用于监测发酵产生的二氧化碳气体中的氧气。在线氧气传感器Oxy 5100与集成的压力传感器相结合,可在线监测发酵后加压CO2中的O2含量,带自动压力补偿功能,使二氧化碳纯度监测仪成为紧凑,且精确的独立解决方案。此仪表无需气体调节。而对于非加压的测量点,Oxy 5100和其灵巧的传感器盖在气体调节系统之后即可安装。二氧化碳纯度监测仪的组成:一台Oxy 5100&用于自动压力补偿的压力传感器主要特性功能:• 为了快速启动,独特的Toolmaster™ 技术可确保轻松更换瓶盖。所有必需的校准参数都存储在传感器盖中。盖上盖子后,所有校准参数都会自动传输,并且可以立即开始在线测量。• 内置先进的寿命估算器估算光学帽的寿命,并连续监控剩余寿命(以天为单位)。当需要更换时,Oxy 5100便会提示您。Oxy 5100是作为独立解决方案开发的,用于测量啤酒,CSD和DAW等液体中的溶解氧。安东帕在技术上向前迈进,通过增加气相中的O2浓度来扩大覆盖流体的范围。此外Anton Paar特定的适配器或调节系统还可满足用户的定制化需求。适用行业+啤酒厂和苹果酒制造商在啤酒厂中,发酵产生的二氧化碳(CO2)会被收集和纯化,以提高啤酒的可持续性并确保CO2的自给自足。用于O2在线测量的二氧化碳纯度监测器可提供有效处理和高质量CO2的关键信息。在CO2回收工厂中,将发酵产生的CO2收集,过滤,压缩,干燥并从诸如氧气(O2)和氮气(N2)的气体中纯化。在回收的CO2中,O2含量不应超过〜5ppmv。为了减少O2摄入量,确保啤酒稳定性和较长的保质期,必须对O2含量进行可靠且准确的监控,以确保回收的CO2的高纯度且经济性。测量解决方案+用于CO2回收工厂中的O2监测方案全新的二氧化碳纯度监测仪可进行准确可靠,连续的氧气含量和温度在线监测。如果发酵产生的CO2进入限值以内,全自动的O2监测可提供关键信息,以确保高质量和有效的CO2回收。工艺压力的影响会得到补偿, 测量并不受外来气体和湿度的影响。在去除泡沫之后和压缩之前,可安装二氧化碳纯度监测器(上图)。这样可以避免液体完全覆盖传感器的风险,确保测量结果的准确性。使用Pico 3000的CO2纯度监测仪(VARIVENT法兰直接安装在管线中)二氧化碳纯度监测器由一个Oxy 5100在线溶氧传感器和一个压力传感器组成,二氧化碳纯度监测仪符合国际卫生标准并获得EHEDG认证。特定于应用程序的计算由mPDS 5或Pico 3000评估单元执行。一个mPDS 5最多可以连接8个CO2纯度监控器,结果可以显示并传输到PLC或通过Davis 5数据采集和可视化软件在电脑上读取。另外,也可以将二氧化碳纯度监测仪连接至Pico 3000 RC外壳,以进行远程控制。带有Toolmaster™ 的传感器盖Oxy 5100的所有传感器帽均配备了Toolmaster™ 技术,可自动检测每个帽的所有所需配置和校准参数。无需通过HMI进行手动干预,从而减少了停机时间和人为错误,从而可以快速轻松地更换光学帽。产品优势+可靠,准确的二氧化碳纯度监测仪可实现• 实时在线监测氧气含量• 改善了CO2处理的质量和效率• 检测任何违规行为并实时控制过程• 可预测,快速且容易地更换传感器盖• 选择性测量(不受湿度影响)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制