当前位置: 仪器信息网 > 行业主题 > >

原子荧光分光光度仪

仪器信息网原子荧光分光光度仪专题为您提供2024年最新原子荧光分光光度仪价格报价、厂家品牌的相关信息, 包括原子荧光分光光度仪参数、型号等,不管是国产,还是进口品牌的原子荧光分光光度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原子荧光分光光度仪相关的耗材配件、试剂标物,还有原子荧光分光光度仪相关的最新资讯、资料,以及原子荧光分光光度仪相关的解决方案。

原子荧光分光光度仪相关的方案

  • 高效液相色谱原子荧光分光光度联用法测定海产品中的甲基汞含量
    建立高效液相色谱原子荧光分光光度法在线联用技术测定海产品中甲基汞的方法。方法以25% 氢氧化钾甲醇溶液水浴加热后超声提取样品,试液中的甲基汞与2-巯基乙醇结合。以5% 甲醇溶液( 含60 mmol /L乙酸铵和0. 1% 2-巯基乙醇) 作流动相,经Supelco C18色谱柱( 150 mm × 4. 6 mm,5 μm) 分离,紫外消解后经KBH4还原由原子荧光光度计进行测定。结果甲基汞的检出限为0. 7 μg /L( 以汞计) ,样品测定的相对标准偏差小于4. 6% ,采用两种参考物质考查方法的准确性,以测定市售海产品中甲基汞含量。结论本研究通过简化仪器装置,改进前处理步骤,有效地提高了方法的可靠性,该方法简便、快速、可靠,可用于海产品中甲基汞的含量测定。
  • 原子荧光分光光度计在食品中铅的测定分析
    铅是一种有害元素,铅元素生物半衰期一般较长,铅广泛存在于自然界,自然界中的铅经食物链进入人体,食物链是人体铅的主要来源。为了保障人体健康,对事物中的铅进行测定极为重要,食品中铅的测定可以用氢化物原子荧光光谱法。
  • 荧光分光光度法在多维片中维生素C含量测定上的应用
    荧光分光光度法是对荧光物质进行定性和定量的有效方法。目前国家标准对于测定多维片中维生素C含量的方法以荧光分光光度法为主。应用港东F-380型荧光分光光度计对多维片中维生素C的含量进行测定。结果证明此方法操作简便,线性良好是测定多维片中维生素C含量的理想方法。
  • 紫外可见分光光度计和荧光分光光度计的可定量浓度范围的差异
    紫外可见分光光度计和荧光分光光度计都经常用于样品定量。使用紫外可见分光光度计进行定量时基于朗伯比尔定律,测定的吸收值一定范围内与样品浓度成正比。另一方面,利用荧光分光光度计时,使用荧光强度。在低浓度时,荧光强度与浓度成正比,所以,可以用于定量。本次使用紫外可见分光光度计和荧光分光光度计两台仪器分别测定了罗丹明B溶液。罗丹明B是用于纤维和皮革的染色的荧光物质。关于测定结果,对两个机种的定量、检测下限值和标准曲线的线性度进行了比较。
  • 荧光分光光度计在自来水分析中的应用
    F-7000 荧光分光光度计具有如高灵敏度(RMS信噪比为800)以及同类产品最高级别的高扫描速度(60,000nm/min)等许多新功能。 目前,荧光分光光度法在各个领域内得到广泛应用:诸如有机电致发光和液晶等工业材料;水质分析等环境相关领域;荧光试剂的合成与开发等制药领域;细胞内钙离子浓度测定等生物技术相关领域。
  • 荧光分光光度计测定钙制剂中微量的铝含量
    在分析化学领域,准确测定钙制剂中微量的铝含量具有重要意义。荧光分光光度计作为一种灵敏的分析仪器,为这一测定提供了可靠的方法。以8-羟基喹啉为络合剂,采用荧光分光光度法测定钙制剂中微量铝(Ⅲ),考察铝(Ⅲ)与8-羟基喹啉的显色条件,
  • 日立荧光分光光度计固体样品支架附件
    当测定固体样品或高浓度溶液样品的荧光时,需要使用固体样品支架,测定样品表面的荧光。日立荧光分光光度计配备有独特设计的固体样品支架,在入射角为30° 的同时,还将样品表面倾斜10° ,这可以大大减少镜面反射光和杂散光,从而获得精确的荧光测量。
  • 天美FL970荧光分光光度计分析Cy-7的发光特性
    在FL970荧光分光光度计上标配的检测器的R928光电倍增管可以使检测波长延伸至900 nm,可以用于对新开发近红外荧光试剂的特性的检测,有着良好的灵敏度以光谱响应。
  • 荧光分光光度计测定白色LED用荧光体的量子效率
    白色LED通常用于LED照明或液晶电视的背光源,它因其良好的节能效果,以及不含有害物质汞的特点而受到广泛关注。荧光体的光学特性决定了白色LED的性能。本文向您介绍如何使用日立荧光分光光度计F-4700测定白色LED用荧光体的量子产率。F-4700拥有超快扫描和驱动速度,三维光谱分析更加方便、快捷,提供追踪监控化学反应过程。超高灵敏度的优异功能,可以检测出低至1*10-12mol/L的荧光素,同时,更有利于痕量样品的测量。此外F-4700更配置荧光指纹测定功能和日差变化校正功能,使操作更加简单。
  • 荧光分光光度法在醋酸钙、氯化镁中铝盐含量测定上的应用
    本文依据《中国药典》2010年第二版氯化钠中铝盐的测试方法,应用港东F-280型荧光分光光度计对铝元素含量进行测定。样品经溶解后调节pH,再与8-羟基喹啉形成稳定荧光络合物,经提取定容后得到待测液, 在激发波长392nm发射波长518nm下检测其荧光强度从而测定氯化钠中的铝盐含量。此方法还适用于多种药品中铝盐含量的检测,如氯化镁、醋酸钙等。结果证明此方法操作简便,结果准确。
  • 紫外可见分光光度计UV1901PC测定合金中的微量铍
    测重金属有多种仪器,比如X荧光,ICP,原子吸收分光光度计,原子荧光分光光度计等,紫外可见分光光度计是其中一种较经济实惠的测试仪器。优点是适合测含量较低的重金属,准确性高,仪器灵敏性高。缺点是实验室方法,需要用到多种试剂。
  • 荧光分光光度法在胶粘剂测定上的应用
    随着现代电子行业对产品功能可靠性的重视,共性覆膜被越来越多的生产厂商所提及。它是通过涂覆胶粘剂(涂覆胶、三防胶)使线路板表面形成一个绝缘和防潮层,隔离灰尘和颗粒以避免短路,从而起到保护密封元器件减少与环境的接触并阻挡腐蚀,保护电子装置中的金属接点免受环境的损坏的作用。此工艺使产品的防水防潮,防烟雾和防静电等的恶劣环境可靠性有一个质的飞跃。由于大部分的胶粘剂在涂覆之后都会呈现出无色透明状,肉眼很难检查涂覆效果进行判断。所以在实际使用过程中会向胶粘剂里添加一定量的荧光剂,通过测试涂覆之后产品的荧光现象来检查胶黏剂的涂覆与否及其均匀程度。应用分子荧光分光光度计测试涂覆胶黏剂(涂覆胶、三防胶)后产品的荧光发射谱图,通过谱图寻找荧光特征峰、比较荧光峰的荧光强度来判断该样品是否涂覆了胶黏剂或者是否涂覆均匀,此方法操作简单,效果显著。
  • 氢化物原子荧光光度法测定水产品中的总砷
    摘 要 强氧化剂加热湿法消解、氢化物原子荧光光度法测定水产品中的总砷。该方法在一个较宽的检测限(0—120 ng/mL)范围,相关系数0.9999,加标回收率在93.1%--103.5%,测试数据的RSD4%,方法准确可靠,是测定较高含量砷的快速、灵敏、具有推广意义的方法。关键词 氢化物原子荧光光度法 水产品 砷
  • 水质 石油类的测定 荧光分光光度法 技术方案(美国特纳TD-500D)
    美国特纳TD-500D便携式水中油分析仪,是一款用正己烷代替红外法四氯化碳作萃取剂的紫外荧光测油仪,检测原理为紫外荧光法(国内又称分子荧光法、荧光分光光度法),符合新国标(征求意见稿)的技术要求,可快速、轻松和可靠地测量水中油含量(原油、燃油、润滑油、柴油,部分的凝析油及精炼的碳氢化合物),测量范围为0.005~1000mg/L。TD-500D具有体积小、重量轻、精度高、重现性好、操作简单、检测速度快、萃取剂相对安全环保等优点。
  • 使用 Agilent Cary Eclipse 荧光分光光度计和浸入式光纤探头对饮料中的奎宁进行定量分析——简化分析、改善工作流程并节省成本
    每一道快速有效的制造工艺均基于精心设计与有条不紊的质量控制方案,该方案可在最大程度提高生产力的同时确保产品质量。发现缺陷后,生产线管理人员不能浪费任何时间。在竞争激烈的市场中,拥有任何一种可将停机时间最小化并能快速成功恢复生产的解决方案都是一种巨大优势。准确可靠的无缝筛查过程对快速发现生产异常至关重要。对于需要快速测量的应用,基于光纤的分析解决方案已作为一个选项在全球范围内得到使用。光纤耦合解决方案尚未得到充分利用的一个领域是常规荧光分光光度法,因为该方法难以使抗室光干扰特性达到实现准确而可重现测量所需的水平。光纤荧光分析解决方案可缩短测量时间,可为来自各种应用的样品提供准确而稳定的数据,还可通过简化分析流程和降低整体使用维护成本来节省经费。Agilent Cary Eclipse 荧光分光光度计针对这一问题提供了独特的解决方案。荧光分光光度计的灵敏度最高可达其他光谱方法的1000 倍。该技术还具有高选择性和易用性,并在QA/QC 应用中得到广泛使用。Cary Eclipse 荧光分光光度计以实现完全抗室光干扰特性的理念进行设计与制造,是一款独一无二的产品。该仪器确保使用光纤获得重要测量优势(无需使用比色皿、缩短分析时间以及减少潜在污染)的同时不损失结果质量。本应用简报使用食品和饮料行业的示例阐述了Cary Eclipse 的独特优势。食品和饮料质量受到的审查力度已变得前所未有的严格,食品生产的所有领域都需要更高标准的质量和工艺控制。这就需要灵敏而快速的分析技术。荧光分光光度计是食品生产众多方面中非常重要的技术,因为这款仪器可提供多种食品系统中关键物质的详细、实时观察结果,这些关键物质包括蛋白质、维生素、次级代谢产物、色素、毒素以及香精化合物。
  • 原子荧光光度法测定石灰、硫磺中的砷含量
    石灰作为澄清剂和硫磺作为脱色剂是糖厂在生产过程中必不可少的生产加工助剂,每年糖厂季都大量使用,在食品安全严峻的今天,其砷含量对最终产品有一定影响,采用原子荧光光度计测定石灰和硫磺的砷含量,便捷,高效,耗时短,效果良好,回收率在87%-105%之间。
  • 日立荧光分光光度计—自动滤光器附件
    三维荧光光谱,即化合物的荧光指纹特征谱,能够给出化合物荧光峰的完整信息,分析快速、信息丰富、适于现场操作。通常在测量荧光光谱时,往往不能得到一张只含有荧光发射的谱图,因为存在着散射光的影响,而这种影响在三维光谱扫描中尤为突出。 本通讯使用日立F7000型分光光度计,及自动滤光器附件,测定了淀粉样品的三维指纹光谱。自动滤光器附件可根据波长自动加入滤光片,排除多级衍射峰的干扰,快速获得样品的三维谱图。
  • 使用原子荧光光度计检测大米中重金属含量的实验操作步骤
    使用原子荧光光度计检测食品中重金属含量是一种常见的实验方法。以下是一般的实验操作步骤:实验准备:仪器准备: 确保原子荧光光度计(Atomic Fluorescence Spectrometer)处于良好状态,并进行仪器的日常校准和质量控制。标准品准备: 准备一系列重金属的标准溶液,以便构建标准曲线。这些溶液应该包括待检测重金属的不同浓度。样品处理: 如果食品样品中有固体颗粒,需要进行样品前处理,例如酸溶解或者微波消解,以释放重金属。
  • 海光仪器:氢化物原子荧光光度法测定水产品中的总砷
    强氧化剂加热湿法消解、氢化物原子荧光光度法测定水产品中的总砷。该方法在一个较宽的检测限(0—120 ng/mL)范围,相关系数0.9999,加标回收率在93.1%--103.5%,测试数据的RSD4%,方法准确可靠,是测定较高含量砷的快速、灵敏、具有推广意义的方法。
  • 原子荧光光谱法测定奶粉中的痕量砷
    砷是有害元素,本文根据国标GB/T5009.11-2003 《食品中总砷及无机砷的测定 总砷的测定 第一法 氢化物原子荧光光度法》采用原子荧光光谱法测定奶粉中的砷含量,灵敏度高,稳定性好,所测样品中砷含量符合国家标准。
  • 北京东西分析仪器:原子荧光光谱法测定奶粉中的痕量砷
    砷是有害元素,本文根据国标GB/T5009.11-2003 《食品中总砷及无机砷的测定 总砷的测定 第一法 氢化物原子荧光光度法》采用原子荧光光谱法测定奶粉中的砷含量,灵敏度高,稳定性好,所测样品中砷含量符合国家标准。
  • 解决方案|原子荧光法测定废水中的硒
    测定硒含量的分析方法有许多,例如气相色谱法、比色法、荧光法、原子吸收分光光度法等。其中比色法缺陷较多,很少使用。其它几种方法各有优缺点,但都操作复杂、效率较低。用氢化物原子荧光光度法测定硒具有简便、快速、准确的特点,得到广泛的应用。本文建立利用氢化物原子荧光光度法测定废水中硒元素含量的方法,供相关人员参考。
  • Kylin S13原子荧光光度计同时测定土壤中砷、汞和锑的含量
    随着矿产资源的不合理开发和利用、污水灌溉、化肥、农药的大量使用、工业化和城镇化的迅速发展,土壤重金属污染日益严重,可能导致农作物重金属含量超标,从而进入到人或动物的食物链,最终危害人类的健康。世界各国都非常重视环境污染的治理。2016年5月28日,国务院印发了《土壤污染防治行动计划》,简称“土十条”。文中明确指出土壤中镉、汞、砷、铅、铬等重金属为监测重点。因此,土壤中重金属的检测很有必要。目前,土壤中砷、汞和锑的测定方法主要有原子吸收光谱法、原子荧光光谱法和电感耦合等离子体质谱法等。其中,原子荧光光谱法因其灵敏度好、重复性好、准确度高等优点而被广泛使用。但是,目前文献报告的采用原子荧光光谱法测土壤中砷、汞和锑元素,一般都是单道测定或双道测定,还未发现三通道同时测定砷、汞和锑的报道。聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)研究参考HJ 680-2013,采用王水微波消解前处理,原子荧光光谱法三通道同时测定土壤中砷、汞和锑三种元素。该方法操作简单,准确可靠,且检测效率高,为土壤中重金属元素含量的测定提供了较好的参考方法。
  • 海光仪器:双道原子荧光光谱测定化妆品中痕量铅
    原子荧光光谱测定化妆品中痕量铅黄宗平(厦门出入境检验检疫局 福建厦门 361012)摘要:介绍氢化物发生—原子荧光光谱法对化妆品中铅含量的定量分析方法,并研究原子荧光光谱测定铅的分析条件。方法检出限低、精密度高、准确性好,可用于测定化妆品中的痕量铅。关键词:原子荧光光谱;化妆品; 痕量铅中图分类号:O657.31 文献标识码:A 文章编号:HG-AFS DETERMINATION OF TRACE AMOUNTS OF LEAD IN COSMETICSHUANG Zong-ping(Xiamen Entry-Exit Inspection and Quarantine Bureau of P. R. C.,Xiamen Fujian, 361012)Abstract: The hydride generation-atomic fluorescence spectrometric method was used for the determination of trace amounts of lead in cosmetics. The sample was digested with HNO3 and H2O2. Lead(Ⅱ) ion in the sample solution was oxidized to Pb(Ⅵ) and reacted with KBH4 to generate PbH4, which was led into the atomizer, and the lead content was determined by AFS according to the optimized working conditions. A linear calibration curve with lead concentration in the range of 0.0~200.0ng· ml-1 was prepared, having a correlation coefficient of 0.9998. RSD’s of less than 1% were found at concentration levels of 19μ g· g-1 and 38μ g· g-1 with 11 determinations. Recoveries in the range of 96.0% to 101.5% were obtained. The detection limit achieved a value of 0.5ng· g-1, which was much lower than the value of 4μ g· g-1 by AAS method.Keywords: HG-AFS Traces of lead Cosmetics铅是一种重金属,在化妆品原料和成品中都有存在的可能[1]。长期接触含铅量高的化妆品易引起人体慢性铅中毒。因此铅含量作为化妆品中的一个重要卫生项目,有非常严格的限量要求[2]。目前,常采用原子吸收分光光度法进行测定[3]。本法所采用的原子荧光光谱法[4,5]检出限更低,精密度高,准确性好,方便快捷。1 试验部分1.1 主要仪器与试剂AFS2201双道原子荧光光度计(北京海光仪器公司)。盐酸羟铵溶液:120g· L-1,取盐酸羟铵12.0g和氯化钠12.0g溶于100ml水中 盐酸:3mol· L-1,取浓盐酸25ml,加水至100ml。 硼氢化钾:20 g· L-1,称取KOH 1.00g溶于200ml水中,溶解后加入KBH4 4.0g继续溶解,滤纸过滤后使用。 铁氰化钾—草酸溶液:溶解铁氰化钾20g、草酸4g于120ml水中,稀释至200ml。 铅标准溶液:1000μ g· ml-1,由国家钢铁材料测试中心提供。1.2 仪器分析条件灯电流30mA,负高压360V,炉温800℃,原子化器高度8.0mm,读数时间10.0s, 氩气流量:载气400ml· min-1,屏蔽气800 ml· min-1,测量方法:统计测量,读数方式:峰面积。
  • 双道原子荧光光谱测定化妆品中痕量铅
    原子荧光光谱测定化妆品中痕量铅黄宗平(厦门出入境检验检疫局 福建厦门 361012)摘要:介绍氢化物发生—原子荧光光谱法对化妆品中铅含量的定量分析方法,并研究原子荧光光谱测定铅的分析条件。方法检出限低、精密度高、准确性好,可用于测定化妆品中的痕量铅。关键词:原子荧光光谱;化妆品; 痕量铅中图分类号:O657.31 文献标识码:A 文章编号:HG-AFS DETERMINATION OF TRACE AMOUNTS OF LEAD IN COSMETICSHUANG Zong-ping(Xiamen Entry-Exit Inspection and Quarantine Bureau of P. R. C.,Xiamen Fujian, 361012)Abstract: The hydride generation-atomic fluorescence spectrometric method was used for the determination of trace amounts of lead in cosmetics. The sample was digested with HNO3 and H2O2. Lead(Ⅱ) ion in the sample solution was oxidized to Pb(Ⅵ) and reacted with KBH4 to generate PbH4, which was led into the atomizer, and the lead content was determined by AFS according to the optimized working conditions. A linear calibration curve with lead concentration in the range of 0.0~200.0ngml-1 was prepared, having a correlation coefficient of 0.9998. RSD’s of less than 1% were found at concentration levels of 19μgg-1 and 38μgg-1 with 11 determinations. Recoveries in the range of 96.0% to 101.5% were obtained. The detection limit achieved a value of 0.5ngg-1, which was much lower than the value of 4μgg-1 by AAS method.Keywords: HG-AFS Traces of lead Cosmetics铅是一种重金属,在化妆品原料和成品中都有存在的可能[1]。长期接触含铅量高的化妆品易引起人体慢性铅中毒。因此铅含量作为化妆品中的一个重要卫生项目,有非常严格的限量要求[2]。目前,常采用原子吸收分光光度法进行测定[3]。本法所采用的原子荧光光谱法[4,5]检出限更低,精密度高,准确性好,方便快捷。1 试验部分1.1 主要仪器与试剂AFS2201双道原子荧光光度计(北京海光仪器公司)。盐酸羟铵溶液:120gL-1,取盐酸羟铵12.0g和氯化钠12.0g溶于100ml水中 盐酸:3molL-1,取浓盐酸25ml,加水至100ml。 硼氢化钾:20 gL-1,称取KOH 1.00g溶于200ml水中,溶解后加入KBH4 4.0g继续溶解,滤纸过滤后使用。 铁氰化钾—草酸溶液:溶解铁氰化钾20g、草酸4g于120ml水中,稀释至200ml。 铅标准溶液:1000μgml-1,由国家钢铁材料测试中心提供。1.2 仪器分析条件灯电流30mA,负高压360V,炉温800℃,原子化器高度8.0mm,读数时间10.0s, 氩气流量:载气400mlmin-1,屏蔽气800 mlmin-1,测量方法:统计测量,读数方式:峰面积。
  • 原子荧光光谱测定化妆品中痕量铅
    摘要:介绍氢化物发生—原子荧光光谱法对化妆品中铅含量的定量分析方法,并研究原子荧光光谱测定铅的分析条件。方法检出限低、精密度高、准确性好,可用于测定化妆品中的痕量铅。
  • 原子荧光光谱法测定奶粉中的痕量汞
    汞是有害元素,本文根据国标GB/T5009.17-2003 《食品中总汞及有机汞的测定 总汞的测定 第一法 原子荧光光谱分析法》采用原子荧光光谱法测定奶粉中的汞含量,灵敏度高,稳定性好,所测样品中汞含量符合国家标准。
  • 原子荧光光谱法测定果汁中锡含量
    果汁为快消食品,其部分包装材料为易拉罐和锡箔纸,成分复杂,长时间存放可能会有微量锡元素析出。本文对果汁样品中锡的测定进行了方法学验证。检测方法参考《5009.16-2014食品安全国家标准 食品中锡测定》原子荧光(AFS)是中国具有自主知识产权的分析仪器,广泛应用于环境监测,食品安全,地质矿产等领域,具有灵敏度高、线性范围宽、光谱干扰及化学干扰少、仪器结构简单、成本低等优点。本文对于果汁样品中锡的含量进行了测定并进行了方法学考察。实验结果表明,应用北京吉天仪器有限公司的Kylin S18原子荧光光度计可以进行果汁样品中的锡含量的测定。
  • Kylin S1原子荧光光谱法四道同测自来水中硒,汞,砷和锑
    应用北京吉天仪器有限公司设计的Kylin S1原子荧光光度计可以很好的测定自来水样品中的痕量砷、锑、硒和汞四种元素,线性关系良好;重复性好;各待测元素回收率良好。
  • 大米中镉检测方案(原子荧光光谱)
    为建立盐酸振荡浸取原子荧光光谱法测定大米中痕量镉的分析方法,使用体积比为 1:1的盐酸溶液振荡快速浸取大米, 在原子荧光光谱仪上, 采用以水为载流的进样方式测定大米中的镉含量。研究优化进样方式后的记忆效应、盐酸酸度、硼氢化钾浓度、镉增敏剂用量及共存离子的影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制