当前位置: 仪器信息网 > 行业主题 > >

二氧化碳涡街流量计

仪器信息网二氧化碳涡街流量计专题为您提供2024年最新二氧化碳涡街流量计价格报价、厂家品牌的相关信息, 包括二氧化碳涡街流量计参数、型号等,不管是国产,还是进口品牌的二氧化碳涡街流量计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氧化碳涡街流量计相关的耗材配件、试剂标物,还有二氧化碳涡街流量计相关的最新资讯、资料,以及二氧化碳涡街流量计相关的解决方案。

二氧化碳涡街流量计相关的论坛

  • 电加热二氧化碳减压器

    电加热二氧化碳减压器

    http://ng1.17img.cn/bbsfiles/images/2017/10/2015110509241608_01_1632217_3.jpg网上找到的二氧化碳减压器,有电加热,二级压力指示,可调流量计,不知哪里有卖?

  • 二氧化碳培养箱二氧化碳的纯度

    今天有个同事问我这个问题,我想在这里和大家共同讨论,这个二氧化碳培养箱的 二氧化碳的 纯度究竟是什么样的就可以了。 其实我觉得这个没必要多 纯,一般性的就成了吧。毕竟 我们用的 二氧化碳的浓度是5%的,就是培养箱的二氧化碳的使用浓度

  • 【资料】二氧化碳地质封存技术利用

    中国二氧化碳地质封存技术日趋成熟在重庆举行的“碳捕捉与封存技术发展潜力研讨会”上,专家们表示,中国二氧化碳地质封存技术日趋成熟,相关项目已进入“试运行”阶段。二氧化碳地质封存是指将二氧化碳注入地下并长期封存于1000米至3000米深的地层中,可分为咸水层封存、枯竭油田和气田封存。参加“碳捕捉与封存技术发展潜力研讨会”的专家们表示,中国二氧化碳地质封存技术日趋成熟,相关项目已进入“试运行”阶段,其中包括了位于内蒙古鄂尔多斯的亚洲最大的封存项目,以及中石化、中石油、华能集团等在各地的一些此类项目。

  • 【分享】什么是二氧化碳当量?

    人们在谈论温室气体时,会提到二氧化碳当量。那么,什么是二氧化碳当量呢?   二氧化碳当量是指一种用作比较不同温室气体排放的量度单位,各种不同温室效应气体对地球温室效应的贡献度皆有所不同。为了统一度量整体温室效应的结果,又因为二氧化碳是人类活动产生温室效应的主要气体,因此,规定以二氧化碳当量为度量温室效应的基本单位。一种气体的二氧化碳当量是通过把这一气体的吨数乘以其全球变暖潜能值(GWP)后得出的(这种方法可把不同温室气体的效应标准化)。  之所以有二氧化碳当量这样的计量方式,是为了构造一个合理的框架以便对减排各种温室气体所获得的相对利益进行定量。二氧化碳是最重要的温室气体,但也存在一些比如甲烷、一氧化二氮等别的温室气体。这些“非二氧化碳”气体的综合影响相当巨大,再加上空气污染形成烟雾带来的升温,非二氧化碳气体的暖化效应大体上与二氧化碳相当。下表是几种温室气体的全球变暖潜能值。  由此可见,减少1吨甲烷排放就相当于减少了25吨二氧化碳排放,即1吨甲烷的二氧化碳当量是25吨;而1吨一氧化二氮的二氧化碳当量就是298吨。遏制全球变暖需要长达数十年的努力,科学家和政策制定者有时候会将这些非二氧化碳气体减排看作是“容易实现的目标”。气体全球变暖潜能值(GWP)二氧化碳甲烷一氧化二氮125298

  • 【转帖】二氧化碳变塑料

    提起二氧化碳,我们并不陌生。人体呼出的是二氧化碳;植物进行光合作用需要二氧化碳;现在人们常说起的一个环保名词-温室效应更与二氧化碳有关,它又成了全球气候变暖的主要元凶。据统计,全球每年因燃烧化石能源而产生的二氧化碳达240亿吨,其中约150亿吨被植物在进行光合作用时吸收,剩下的90亿吨就永远停留在大气层中了。   其实,这并不是二氧化碳本身的过错,二氧化碳是一种无色无味的气体,化学性质非常稳定,很难同其它物质发生反应。在今天地球已不能完全消纳二氧化碳的情况下,能不能换一种思维的角度,把它当作资源来看待呢?   采访孟跃中:因为二氧化碳里面含有碳含有氧,它是组成有机物的必备的两种主要元素,也就是说大家都在关注是不是可以把二氧化碳用作原料来制备我们通常所用的塑料,而制备这塑料最关键的技术就是催化剂的技术。   二氧化碳制成塑料的设想最初是由日本京都大学的井上祥平教授实现的,1969年,他首次使用了一种名叫“二乙基锌”的催化剂,激活了二氧化碳,使碳原子与其它化合物反应生成可降解塑料,从此开启了人类利用二氧化碳制造塑料的大门。由于最初发现的催化剂成本很高,无法进行工业化开发,于是各国科学家便开始寻找高效的催化剂,目前国际上的最高催化效率能达到每克催化剂催化60-70克的塑料,但催化剂的价格更高。中科院广州化学所的孟跃中博士另辟奚径,他不再去寻找新的催化剂,而是利用现有的催化剂来增加它的催化效率。在化学上有个正比关系,就是催化剂与被催化物的接触面越大,催化反应也就更加有效。要使催化剂接触面尽可能大,也就必须使它的颗粒尽可能小,最好能够实现分子与分子的“握手”,孟博士沿着这个思路,采用“负载化”技术,成功地进行了二氧化碳与环氧化物的共聚反应。通过这种方法,原来一粒催化剂表面积如果为1平方厘米的话,处理后的表面积起码可以增加500倍,催化效率增长了近70倍。这项技术使得每克催化剂能够催化120-140克的塑料,高出此前国际最高水平的2倍,,每吨催化成本只需200元,这种塑料分子量高,物理机械性能与通用塑料相当,完全可以用常规的加工成型方式使其加工成普通塑料制品,用这项技术生产出的新塑料中二氧化碳含量达到了43%,由于这种塑料的分子结构中含有特殊的酯键,因而在紫外线、微生物等外部环境条件下可以发生破坏和断裂,进而使其降解。   在地球资源日益匮乏的今天,把原本是令人头疼的废气当作资源不失为一个好的出路,二氧化碳来源充足,利用它制成塑料从源头上减少了污染,而这种塑料又是可生物降解的,避免了二次污染,这为人类大规模生产塑料的前景带来一片光明。

  • 二氧化碳的贴子合集

    二氧化碳有关资料:国家标准《公共场所空气中二氧化碳测定方法 GB/T 18204.24-2000》空气中有微量的二氧化碳,约占0.039%。二氧化碳略溶于水中,形成碳酸,碳酸是一种弱酸。 二氧化碳平均约占大气体积的387ppm。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。二氧化碳常压下为无色、无臭、不助燃、不可燃的气体。二氧化碳是一种温室气体因为它发送可见光,但在强烈吸收红外线。二氧化碳的浓度于2009年增长了约二百万分之一。 气体状态 气体密度:1.96g/L 液体状态 表面张力:约3.0dyn/cm 二氧化碳是空气中常见的化合物,其分子式为CO₂,由两个氧原子与一个碳原子通过共价键连接而成,常温下是一种无色无味气体,密度比空气略大,能溶于水,并生成碳酸。液态二氧化碳蒸发时会吸收大量的热;当它放出大量的热气时,则会凝成固体二氧化碳,俗称干冰。干冰的使用范围广泛,在食品、卫生、工业、餐饮中、人工增雨有大量应用。二氧化碳认为是造成温室效应的主要来源。二氧化碳在室外是全球暖化的元凶之一,在室内对人体健康影响及行车安全顾虑更是不容忽视的主因之一。实验证明在CO2高浓度的环境下,植物会生长得更快速和高大。但是,‘全球变暖’的结果可会影响大气环流,继而改变全球的雨量分布与及各大洲表面土壤的含水量。二氧化碳浓度含量会影响人类的生活作息,整理出二氧化碳浓度含量与人体生理反应如下: ·350~450ppm:同一般室外环境 ·350~1000ppm:空气清新,呼吸顺畅。 ·1000~2000ppm:感觉空气浑浊,并开始觉得昏昏欲睡。 ·2000~5000ppm:感觉头痛、嗜睡、呆滞、注意力无法集中、心跳加速、轻度恶心。 ·大于5000ppm:可能导致严重缺氧,造成永久性脑损伤、昏迷、甚至死亡。

  • 二氧化碳的溶解度

    跪求: 我在做一个课程设计,有一个数据:二氧化碳在1.5MPa,40摄氏度时在碳酸丙烯酯中的溶解度实在是找不到阿,不知道哪位高手可以帮个忙???[em02] [em02]

  • 【求助】干燥二氧化碳气体的方法?

    大家好,关于红外分析仪中的气体干燥方法,干燥二氧化碳气体中的水分,但不能吸附二氧化碳气体,请问那种干燥剂最好呢?我用过3a的分子筛但也对二氧化碳有微量的吸附作用,大家有更好的办法吗?谢谢。

  • 【资料】二氧化碳及其用途!

    碳在自然界中分布极广,在煤碳、石油、天然气、植物、动物、石灰石、白云石、水和空气中,碳最终几乎全部转化为二氧化碳。地球上所蕴臧的煤炭,石油等矿物约含碳1013吨,可以转化成4×l013吨CO2,而大气中和水中则含有4×1014吨CO2,碳酸盐也可转化成4×l016吨CO2。现在由于工业的发展,大量开来煤炭、石油等资源,它们作为能源而不断被消耗的同时,使大气中CO2的含量与日骤增。每年全世界排出的二氧化碳量高达200亿吨,其中发电厂排出CO2,的量约占27%,由工厂排出的占33%,机动车排出的占23%,一般家庭排出的占17%。这样多的CO2尽管有植物的不断吸收,但大气中的CO2的含量还是不断增加.大气中二氧化碳浓度的不断增加,一是会加剧“温室效应”,二是生态平衡遭到严重破坏,引起一系列生态环境问题,三是大量消耗煤炭、石油、天然气等燃料,引起资源短缺,而且这三方面问题是互相影响互相牵制的。为了彻底解决上述问题,人类开始把“使二氧化碳变害为利”提到议事日程上来。要使CO2变害为益,必须从以下几个方面实现更大的突破。 在现实生活中,人们普遍认识到二氧化碳有害的一面,而忽视了它可利用的一面。其实二氧化碳的应用是相当广泛的。

  • 【求助】只测二氧化碳的峰,求最佳的调试条件?

    求 气相色谱测二氧化碳的条件?用国产的色谱仪,1.5米长 TDX-01的柱子,六通阀进样,TCD检测器,载气有氮气、氦气、氩气,只测二氧化碳的峰,求最佳的调试条件? 问题补充:我用的色谱仪的型号是GC5890C,南京科捷的,新买的机器,请详细点说明,如柱室温度?TCD温度?桥电流大小?和其他注意事项 待测的二氧化碳浓度是3%。其他97%是氮气。能否请你详细点告诉我,因这个课题组现在就我一个人,刚开始做,导师还不在。所以很困惑,

  • 液态二氧化碳样品电导率

    大家有没有做过液态二氧化碳样品的电导率检测啊,非常好奇;我在别的论坛看到一个求助帖,问液态二氧化碳如何提高电导率。只用过[url=https://www.hach.com.cn/product/jcdiandao1]水质电导率传感器[/url],液态二氧化碳样品要检测的话,用什么类型电导率传感器呢,还有上面这个如何提高电导率的问题有没有老师有招的。

  • 求助,SOS,二氧化碳电极

    请问哪位有了解二氧化碳电极的,测定水中的二氧化碳浓度的,能不能推荐一下是国产的,或者相对便宜的,奥立龙的二氧化碳电极一套3万多,有点贵

  • 求助,SOS,二氧化碳电极

    请问哪位有了解二氧化碳电极的,测定水中的二氧化碳浓度的,能不能推荐一下是国产的,或者相对便宜的,奥立龙的二氧化碳电极一套3万多,有点贵

  • 【我们不一YOUNG】2021年电力二氧化碳排放因子?天然气的二氧化碳排放因子是多少?

    问题:1)根据最新生态环境部2024年4月21日发布的《2021年电力二氧化碳排放因子》,得知广东省的碳排放因子为0.4715kg二氧化碳/度,而此平台回复的是碳排放因子0.4512kg二氧化碳/度,哪个是最新的呢?如果此平台是最新的话,请告知来源资料,谢谢! 2)天然气的二氧化碳排放因子是多少?来源资料是?回复:您好!1、0.4715是生态环境部公布的最新因子,以此为准,0.4512是生态环境部以前公布的因子。2、天然气的排放因子是1.56吨二氧化碳/吨标煤,来自国家的碳强度考核文件及碳达峰编制指南。

  • 二氧化碳分析仪

    程版主! 向您咨询一个问题! 有没有能分析微量二氧化碳的好的仪器! 工艺要求二氧化碳小于0.1 ppm,就是林德的工艺包要求进冷箱前二氧化碳小于0.1ppm。什么类型的什么厂家的分析仪器能提供比较可靠地结果? 谢谢!要求都是这么要求的,还有工艺真的能达到二氧化碳小于0.1ppm 吗?

  • 二氧化碳标准气体浓度转换

    二氧化碳标准气体浓度为19487mg/m[b]3怎么换算成百分比如何计算请指教[/b]二氧化碳标准气体浓度为19487mg/m[b]3如何对二氧化碳测试仪进行期间核查[/b]

  • 【求助】二氧化碳 “迷思”

    [size=4]进入2010年,极端气候事件频发。人们猜测,地球的脾气变坏了,可能和二氧化碳的失控有关。[img]http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif[/img]为什么地球会在两种极端的气候之间徘徊?科学界的主流意见是,二氧化碳是主导者。过去10亿年中,伴随着炎热的气候的是大气中高含量的二氧化碳,反之亦然。当然,凡事总有例外,极少量的研究证明,在某些时期,二氧化碳含量高时,气候也极其寒冷;而气候变得炎热时,二氧化碳的含量反而异乎寻常地高是什么因素引起了这一奇怪的现象?面对这道气象难题,我们漏掉了点什么吗?[/size][img]http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif[/img]

  • 【原创】从二氧化碳到工程塑料,我想说的故事

    早上有拜读版面的一个有关二氧化碳催化制成工程塑料的新闻[url]http://www.instrument.com.cn/bbs/shtml/20090216/1738318/[/url],感觉有些新鲜,但也有颇多疑问,于是乎拎出来辩论辩论众所周知,当前塑料生产的原理是利用不饱和单体中的不饱和在温度或者压力的条件下进行打开不饱和键进行聚合的方式进行生产,由于打开不饱和键需要能量,因此这一过程需要能够的施加,换句话说当前大部分塑料合成中都倾向于选择烯键进行开键聚合,不外乎考虑到这一开键聚合过程相对降低的能量!或许当前的高分子聚合理论已经有了较大改变,毕竟这个还是在遥远的十年前,自己从事专业研究时候接触的理论!回过头来看这个新闻,二氧化碳要能够成为塑料,首先要将碳氧键打开,一部分和氢结合形成碳氢键(我们知道塑料的主体是碳氢元素),另一部分组成其他的不饱和键碳氢烯键、碳氮键等等为此后的聚合形成通道(也许有人会说我是一次成型到位,呵呵,这里就算是从微观角度进行考虑吧),我不知道这一过程的形成难度,但估计不是很容易的!当然有个最简单的方式,将二氧化碳通过一定的方式将其中的碳还原成碳然后和活泼氢在一定条件下合成不饱和的烯烃化合物(但将二氧化碳还原游离出碳,估计这个能量成本不会低,由于只是简单探讨,这里不做实际能量数量的换算计算)。所谓催化剂的定义只能增加反应的进程,虽然也有催化剂可以降低反应的活化能!由于报道中并没有涉及到其他的原料说明,所以上述状况纯属臆测(即研究过程为二氧化碳在催化剂的作用下附加一定的能量转成工程塑料)。当然或许会告诉大家在这个过程中会添加某些辅剂(但希望这些辅剂不是真正塑料的成因),因为这很容易让我想起那个煮钉子汤的故事!暂时聊到这里,如果有人愿意做专业沟通,倒是愿意重拾往日书籍,共同做一个探讨!ilog首发,版面继续,一个曾经就读高分子专业的学生疑问

  • 【原创】二氧化碳是如何转化为甲醇的?

    今天中午新闻30分播了一则新闻:英国的科学家近日研究出了一种新方法,可以减少发电站的有害气体排放。 常规的燃气发电站通过燃烧甲烷气体获得发电动力,但这样就会产生含有氮气、二氧化碳以及二氧化氮等气体的混合物,要把其中的温室气体分离出来很不容易,因为成本很高,需要消耗大量其他能源。 为此,科学家们就想出了一个好办法,就是利用一种名为“LSCF”的陶瓷管从空气中过滤出氧气,再与甲烷燃烧,这样产生的就是近乎纯净的二氧化碳以及气态水,冷凝之后就能轻松分离出二氧化碳了,这就是所谓的“清洁燃烧”。最后将所得的二氧化碳转化成甲醇等化学物质,作为工业燃料和溶剂之用。 专家表示,“清洁燃烧”将成为各领域燃烧过程的发展趋势,即以碳中和、温室气体零排放为最终目标。想知道的是:二氧化碳是如何转化为甲醇的?

  • 痕量二氧化碳检测

    请问各位有什么比较便宜的痕量二氧化碳(几个ppm)检测方法?我问了几家公司,色谱仪检测系统总共要10万多人民币。我有常规[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器,但没有FID也没有二氧化碳催化转换装置。

  • 【讨论】去除水中二氧化碳的方法有哪些?milli-Q公司的纯水能去除二氧化碳么?

    因为需要配制NaOH的标准溶液,SOP规定需要用去除二氧化碳的水来配制,以前只知道把水煮沸一会儿可以去除水中的二氧化碳,那么现在有问题如下:1.除了煮沸水,还有别的方法来去除水中的二氧化碳么?2.煮沸的话,需要煮沸多长时间就可以了?3.煮沸过的水保存在密闭的容器里,能放置多长时间?4.milli-Q公司的仪器好多实验室都在用,生产高纯水,那么这种高纯水是去除二氧化碳的水么?

  • 【转帖】二氧化碳超临界流体萃取!

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理 (一). 超临界流体定义  任何一种物质都存在三种相态-[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制