当前位置: 仪器信息网 > 行业主题 > >

微流控芯片细胞分析

仪器信息网微流控芯片细胞分析专题为您提供2024年最新微流控芯片细胞分析价格报价、厂家品牌的相关信息, 包括微流控芯片细胞分析参数、型号等,不管是国产,还是进口品牌的微流控芯片细胞分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微流控芯片细胞分析相关的耗材配件、试剂标物,还有微流控芯片细胞分析相关的最新资讯、资料,以及微流控芯片细胞分析相关的解决方案。

微流控芯片细胞分析相关的资讯

  • 清华大学-岛津中国联合举办首期微流控芯片质谱联用细胞分析讲习会
    p style="text-indent: 2em "2017年9月26日,清华大学和岛津中国联合举办的首期微流控芯片质谱联用细胞分析讲习会(The First Workshop on Chip-MS for Cell Analysis)在岛津中国质谱中心举行。讲习会展示了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用的接口技术以及芯片上细胞培养与观察研究的最新成果,同时也展示了岛津高性能质谱检测仪器与多通道微流控芯片联用的广阔发展前景。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/130e3014-8846-414d-b449-a86e3999d5a8.jpg" title="1.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "讲习会现场/span/strong/pp style="text-indent: 2em "岛津中国事业战略室产品企划部部长端裕树博士致欢迎词。他表示,多通道微流控芯片-质谱联用(Chip-MS)系统是清华大学林金明教授长期攻克的研究课题,获得多项的中国发明专利,2016年这项成果与岛津公司合作,结合岛津现有的高性能质谱,成功地研制了具有多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能的分析仪器。虽然还没有正式对外发售,但是该系统的功能、性能已经基本达标。因此,采用workshop这种非正式的形式来和大家进行交流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/e0550fe2-1703-4e06-a0c7-ca82fa599559.jpg" title="2.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "岛津中国事业战略室产品企划部部长 端裕树/span/strong/pp style="text-indent: 2em "林金明教授向与会者介绍,细胞是生命体最基本的结构和功能单元。对细胞及其代谢物的分析对于疾病诊断、药物筛选、细胞识别、细胞定量、细胞代谢、细胞生理过程和细胞相互作用等研究的意义重大。细胞分析的难点在于:细胞尺寸微小(微米级),难于操纵;细胞内待测物含量少,需高灵敏度检测;细胞内生物学容量大,需高通量分析。为此,林金明课题组开始了采用微流控芯片系统和质谱系统进行细胞共培养和细胞分析的研究,并于2012年开始陆续发表了一系列高水平相关论文,先后在国内外重要学术期刊上发表研究论文50多篇,申请国家发明专利12项,获得授权发明专利6项。2016年,林金明课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津中国质谱研发中心开展合作,开发Chip-MS细胞分析系统。该系统有三大难点:多通道芯片与质谱联用;细胞共培养;细胞形态观察。目前,第一代Chip-MS系统已经基本完成,预计明年初正式发售。该系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成。该系统还可用于细胞的药物代谢、环境污染物对细胞成长过程的影响、营养物质对细胞培养过程的影响、疾病机理、细胞的分选和检测等研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/58b3d4f8-888c-4169-bf38-570ceb54f2cf.jpg" title="3.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "清华大学教授 林金明/span/strong/pp style="text-indent: 2em "清华大学化学系博士研究生张婉玲对微流控芯片质谱联用系统的实验方法做了详细介绍。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/f273b176-a05c-48d8-b154-76e45661cb68.jpg" title="4.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "清华大学化学系博士研究生 张婉玲/span/strong/pp style="text-indent: 2em "岛津中国质谱中心中心长滨田尚树向与会者介绍了岛津中国质谱中心的定位、仪器、研究项目等情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/c8c2a041-e2cd-47b4-9c4a-37c6b69cd394.jpg" title="5.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "岛津中国质谱中心中心长 滨田尚树/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/33e66341-fd0f-4461-b079-a0f2b057ce43.jpg" title="6.jpg"//pp style="text-align: center "span style="text-indent: 2em "strong博士生张婉玲与岛津工作人员在为与会者演示Chip-MS系统的实验方法/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/6745bfe1-0529-4245-ac90-3ace0a1b1a72.jpg" title="14.png"//pp style="text-align: center "strongspan style="text-indent: 2em "微流控芯片-质谱联用细胞分析系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/27909020-b8b0-4e8c-82e6-1fd1d0644b2b.jpg" title="8.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "岛津中国质谱中心工作人员向与会者介绍岛津质谱产品和技术/span/strong/pp style="text-indent: 2em "span style="text-indent: 2em "据悉,第二期微流控芯片质谱联用细胞分析讲习会将于今年12月下旬举办,举办地点初步确定在上海。/span/p
  • 【视频回看】微流控芯片、拉曼SERS、流式细胞术、膜片钳?“花样”单细胞分析前沿技术都给你!
    p style="text-align: justify text-indent: 2em "细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义。作为细胞研究的“标配”,创新细胞分析技术在生命科学基础研究、生物制药、新型治疗方法中的应用与进展不可不知!/pp style="text-align: justify text-indent: 2em "仪器信息网举办的“细胞分析技术与应用”专题网络研讨会在6月5日成功召开,本次会议报告干货十足,诚意满满,对广大细胞分析领域用户的研究工作具有一定指导意义。错过了直播的小伙伴不要遗憾,部分专家的精彩报告视频回放即刻奉上!/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《单细胞试剂盒分析》/strong/span/ppspan style="color: rgb(192, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 212px " src="https://img1.17img.cn/17img/images/201906/uepic/c6e217a3-3a1c-404e-ab9a-af4cc9876f3b.jpg" title="001.jpg" alt="001.jpg" width="200" height="212" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "江德臣,南京大学化学化工学院及生命分析化学国家重点实验室教授,博士生导师,单细胞分析课题组组长,教育部青年长江学者,江苏省化学化工学会质谱专业委员会秘书长。研究兴趣为高内涵单细胞分析方法和装置的建立,及其在细胞信号传导机制研究中的应用。以第一/通讯作者在PNAS、JACS、Anal Chem 等期刊发表学术论文50余篇。/span/pp style="text-align: justify text-indent: 2em "单细胞分析可以揭示细胞个体特征,以助于理解细胞自身的复杂性及彼此之间存在巨大差异,具有重要的生物学价值。在过去的六年中,江德臣教授所在实验室发展了基于微/纳试剂盒的单细胞分析策略,将宏观维度生物测量理论与方法引入单细胞分析中,建立了通用性强、通量高且可测量单细胞及单细胞器内生物分子活性的新型分析方法和装置。span style="color: rgb(192, 0, 0) "stronga href="https://www.instrument.com.cn/webinar/video_105263.html" target="_blank"(span style="color: rgb(0, 112, 192) "点击查看视频回放/span)/a/strong/span/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《微流控芯片单细胞分泌分析》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/c6f4bf34-0adc-48e7-aa50-6026304a3bef.jpg" title="陆瑶.jpg" alt="陆瑶.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-align: justify font-family: 楷体, 楷体_GB2312, SimKai "陆瑶,博士, 副研究员,中国科学院大连化学物理研究所单细胞分析研究组组长。研究相关工作发表于PNAS,Science Signaling等国际期刊,主要科研成果在美国两家公司获得应用,作为主要发明人参与开发的单细胞蛋白分析技术获国际发明专利授权,目前已应用于CAR-T肿瘤免疫治疗药品开发及临床测试,被美国著名科普杂志科学家(The Scientist)评选为2017年度十大医疗技术发明首位。现主要从事基于微流控芯片的单细胞分析技术开发及其在人类健康/疾病相关问题中的应用等研究。/spanbr//pp style="text-align: justify text-indent: 2em "细胞是生命存在的基础,探索生命健康与疾病常需要以细胞研究为基础。由于细胞与细胞之间存在差异,群体细胞的研究结果只能得到一群细胞的平均值,这往往会掩盖个体差异信息。为更全面的了解细胞以服务人类健康、疾病研究,单细胞分析就变得尤为必要。在过去的几年中,陆瑶老师团队开发了一系列的基于抗体条形码微流控芯片的高通量、高内涵单细胞细胞分泌分析工具,大大加深了人们对细胞分泌异质性的认识,并尝试将其服务临床实现个体化、精准医疗。span style="color: rgb(0, 112, 192) font-size: 14px "strongspan style="color: rgb(0, 112, 192) "(含未公开发表内容,暂不提供回放视频)/span/strong/span/pp style="text-align: center "strongspan style="color: rgb(192, 0, 0) "报告题目:《拉曼单细胞流式分选技术及应用》/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 240px " src="https://img1.17img.cn/17img/images/201906/uepic/e7fe07cf-f676-4425-985b-a6b1b99d2bc7.jpg" title="马波.jpg" alt="马波.jpg" width="200" height="240" border="0" vspace="0"//pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em text-align: justify "马波,研究员,博士生导师,中科院青岛生物能源与过程研究所微流控系统团队负责人。自2003 年起致力于微流控芯片技术在分析化学和生命科学中的基础和应用研究。目前研究方向聚焦在:基于微流控技术的高通量单细胞分析技术和仪器研究,研制了首套拉曼单细胞流式细胞分选仪;用于临床、环境和食品安全的便携式微生物检测系统;工业酶、菌株和微藻的高通量筛选、选育和定向进化研究等。/span/pp style="text-align: justify text-indent: 2em "“单细胞拉曼图谱” 是特定细胞的“化学指纹”,蕴含着该特定细胞在特定生理状态下的丰富的生化信息,通过体现细胞化学组成及其变化,能够静态和动态地表征和监测该细胞的遗传背景、生理状态及所处微环境。与现有荧光细胞分选技术FACS相比,拉曼激活单细胞分选RACS 具有无损非标记的特点。因此,马波教授团队先后研发了单细胞拉曼光镊液滴分选、高通量流式拉曼单细胞分析与分选及单细胞测序等系列关键技术,并于新近推出了单细胞拉曼分选耦合测序的RACS-SEQ系统,同时提供适用于拉曼抗生素耐药性快检、单细胞测序的芯片和试剂盒。该仪器及试剂盒将为耐药性快速检测、合成生物学细胞工厂表型筛选、工业菌株和高通量酶定向进化和筛选等提供创新的系统解决方案。strongspan style="font-size: 14px color: rgb(0, 112, 192) "(含未公开发表内容,暂不提供回放视频)/span/strong/pp style="text-align: center "strongspan style="color: rgb(192, 0, 0) "报告题目:《肿瘤靶向的拉曼SERS探针和拉曼微球的构建和应用》/span/strong/ppstrongspan style="color: rgb(192, 0, 0) "/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 242px " src="https://img1.17img.cn/17img/images/201906/uepic/7c59cb63-76ee-4bdd-ba86-db17ae600e1e.jpg" title="汤新景.jpg" alt="汤新景.jpg" width="200" height="242" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "汤新景,博士,北京大学药学院教授,长江学者奖励计划青年学者,国家优秀青年科学基金获得者,教育部跨世纪(新世纪)人才。近年来,在反义核酸药物及非编码RNA等功能核酸的定点修饰及其功能的精确光调控、新型荧光核酸探针和新型肿瘤靶向的光学纳米探针等方面开展了一系列的研究工作。/span/pp style="text-align: justify text-indent: 2em "拉曼纳米探针基于其高的光谱分辨率和深的组织穿透性而被广泛应用于生物体系。目前大多数的拉曼纳米探针是利用增敏金属表面负载的染料分子,且拉曼信号位于1400-1700 cm-1 范围内。鉴于此,汤新景教授设计并构建了一系列基于生物体系拉曼信号静默区(1900-2500 cm-1)的拉曼报告基团的金纳米拉曼探针以及无需金属增敏的拉曼纳米微球。通过进一步的拉曼纳米探针表面的靶向修饰和功能化,实现对肿瘤细胞、组织以及活体小鼠的特异性拉曼光谱检测或拉曼成像。a href="https://www.instrument.com.cn/webinar/video_105271.html" target="_blank" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strongstrong/strong/span/a/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《肝细胞移植治疗肝衰竭的问题和策略》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/bd1cd376-e0ab-4ac6-8ad6-43c62228704c.jpg" title="何志颖.jpg" alt="何志颖.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em "何志颖,研究员,博士生导师。同济大学附属东方医院再生医学研究所执行所长、课题组长,同济大学东方临床医学院生物技术教研室主任。入选上海市浦江人才计划等。现任中华医学会医学细胞生物学分会委员、中国整形美容协会干细胞研究与应用分会副秘书长等。科研上以干细胞与肝脏再生为研究方向,开展肝细胞移植基础和应用研究,致力肝脏疾病的细胞治疗。在Nature,Cell Stem Cell,Gastroenterology等期刊发表SCI论文37篇。/span/pp style="text-align: justify text-indent: 2em "肝衰竭是多数肝脏疾病重症化的共同结局,肝细胞移植治疗肝衰竭成为新的希望。如何获得非供体来源的肝细胞、提高移植肝细胞在宿主肝脏中的植入和增殖效率及开展活体示踪评价细胞移植的安全性等,成为肝细胞移植应用于临床迫切需要解决的主要问题。何志颖老师在报告中分享了应用多能干细胞肝向诱导分化、肝向谱系重编程等方案,获得充足的非供体来源的肝系细胞;通过局部磁场干预促进移植肝细胞在受体肝脏的植入效率;通过基因修饰或在受体肝脏释放生长因子促进移植肝细胞的增殖能力,寻找特异标志物分选具有肝脏再殖能力的肝系细胞,实现了移植肝细胞在受体肝脏的有效再殖;最后,应用活体生物体内发光成像系统,何志颖教授对肝细胞移植后在体内的分布进行了动态观察,开展了肝细胞移植后在肝脏中归巢与再殖规律的研究。a href="https://www.instrument.com.cn/webinar/video_105264.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strongstrong/strong/span/a/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目《质谱对大脑代谢通路的解析——从单细胞分析到组织成像》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/bf5f8e7b-bab1-45d3-9b30-42440313e939.jpg" title="黄光明.jpg" alt="黄光明.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "黄光明,中国科学技术大学化学系教授,博士生导师。2001及2004年先后在北京师范大学获分析化学学士和硕士学位,2007年在清华大学获得博士学位。2012-今在中国科学技术大学化学系任教。于2013年入选中组部第四批“青年千人计划。美国质谱协会会员,中国质谱分析专业委员会委员。长期从事质谱分析及其化学、生命科学等领域的应用研究。目前主要承担国家自然科学基金青年及面上项目,中组部千人计划以及科技部重大研发计划子课题等课题。在Cell,PNAS,Angew. Chem. Int. Ed.,Anal. Chem.,Chem. Sci., Chem. Comm. 等国际期刊上发表论文50余篇,引用1200余次。于2018年获得中国质谱学会首届“质谱青年奖”。/span/pp style="text-align: justify text-indent: 2em "针对单细胞分析中的一系列技术难题,黄光明教授通过兼容膜片钳技术实现了活体细胞原位取样,并结合毫秒级超快电泳分离技术,搭建了单细胞质谱分析平台。利用该平台实现了对脑切片组织样品上的单个神经元细胞研究,在脑内发现了一条新的谷氨酸合成通路,阐释了其促进学习记忆功能的分子机制,为在单细胞内开展代谢通道研究提供了新的研究平台。a href="https://www.instrument.com.cn/webinar/video_105270.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strong/span/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者错过参与会议直播的网友,可以点击报告视频精彩回放进行学习与分享。/spanspan style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 0, 0) "更多专家报告请点击查看:/spana href="https://www.instrument.com.cn/news/20190612/486910.shtml" target="_blank" style="text-decoration: underline border: 1px solid rgb(0, 0, 0) "span style="border: 1px solid rgb(0, 0, 0) "istrongspan style="border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai "【视频回看】单细胞原位、定量分析、无损分选,还有?“最夯”重器都在这儿!/span/strong/iistrongspan style="border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai "/span/strong/i/span/a/pp style="text-align: center "span style="text-decoration: underline " /spanbr//pp style="text-align: center "strong关注span style="color: rgb(192, 0, 0) "【3i生仪社】/span解锁生命科学新鲜资讯!/strong/ppstrong/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/bb3dca69-d424-4faa-b6d3-f9b9d6eee2d8.jpg" title="小icon.jpg" alt="小icon.jpg"//p
  • 清华大学-岛津中国联合举办第六期微流控芯片质谱联用细胞分析讲习会
    2019年1月8日,清华大学-岛津中国在岛津西安分析中心成功举办了第六期微流控芯片质谱联用细胞分析讲习会。首期微流控芯片质谱联用细胞分析讲习会于2017年9月在岛津中国质谱中心成功举办,至今已经走过北京、广州、上海及成都等地。第六期讲习会来到古都西安,介绍了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪,得到了来自高校、研究所及企业三十多位专家学者的关注及报名参会。第六期微流控芯片质谱联用细胞分析讲习会合影  岛津企业管理(中国)有限公司事业战略室本部长端裕树博士首先代表岛津公司对参加讲习会的全体代表和专家表示热烈欢迎。随后,清华大学林金明教授介绍了微流控芯片质谱联用细胞分析的最新研究进展,西安交通大学生命科学与技术学院赵永席教授做了题为“活细胞核酸组装与扩增分析”的学术报告,端裕树博士对微流控芯片质谱仪器的结构和性能做了详细的介绍,清华大学化学系许柠研究助理介绍了仪器的实验方法,并现场演示了仪器对细胞的缺氧实验,为参会代表展示了现场试验结果,回答代表们提出了问题和仪器使用过程中的注意事项。林金明做微流控芯片质谱联用仪器研发与应用的研究进展介绍赵永席教授做题为“细胞核酸组装与扩增技术”的学术报告端裕树博士介绍仪器研发过程、结构和性能许柠助理介绍仪器的使用方法并现场演示微流控芯片上的细胞分析方法  讲习会后,在工作人员引导下,代表们参观了岛津西安分析中心实验室。对于本期讲习会,全体与会者给予了一致好评。最终,第六期微流控芯片质谱联用细胞分析讲习会圆满结束。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 清华大学-岛津中国联合举办第六期微流控芯片质谱联用细胞分析讲习会
    p  2019年1月8日,清华大学-岛津中国在岛津西安分析中心成功举办了第六期微流控芯片质谱联用细胞分析讲习会。/pp  首期微流控芯片质谱联用细胞分析讲习会于2017年9月在岛津中国质谱中心成功举办,至今已经走过北京、广州、上海及成都等地。第六期讲习会来到古都西安,介绍了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪,得到了来自高校、研究所及企业三十多位专家学者的关注及报名参会。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/027f115f-a7a9-417c-b2d5-8a736173bfb2.jpg" title="1_副本.jpg" alt="1_副本.jpg"//pp style="text-align: center "strong第六期微流控芯片质谱联用细胞分析讲习会合影/strong/pp  岛津企业管理(中国)有限公司事业战略室本部长端裕树博士首先代表岛津公司对参加讲习会的全体代表和专家表示热烈欢迎。随后,清华大学林金明教授介绍了微流控芯片质谱联用细胞分析的最新研究进展,西安交通大学生命科学与技术学院赵永席教授做了题为“活细胞核酸组装与扩增分析”的学术报告,端裕树博士对微流控芯片质谱仪器的结构和性能做了详细的介绍,清华大学化学系许柠研究助理介绍了仪器的实验方法,并现场演示了仪器对细胞的缺氧实验,为参会代表展示了现场试验结果,回答代表们提出了问题和仪器使用过程中的注意事项。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/aad681c0-8486-4c34-9129-df227eb4ac54.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="text-align: center "strong林金明做微流控芯片质谱联用仪器研发与应用的研究进展介绍/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/03af8353-e6db-4b79-bc3b-4f78611653fd.jpg" title="3_副本.jpg" alt="3_副本.jpg"//pp style="text-align: center "strong赵永席教授做题为“细胞核酸组装与扩增技术”的学术报告/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/98a21a10-6da4-4ebb-b141-0181214f9889.jpg" title="4_副本.jpg" alt="4_副本.jpg"//pp style="text-align: center "strong端裕树博士介绍仪器研发过程、结构和性能/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/70bc3041-ff92-48c8-9980-629f74b2d356.jpg" title="5_副本.jpg" alt="5_副本.jpg"//pp style="text-align: center "strong许柠助理介绍仪器的使用方法并现场演示微流控芯片上的细胞分析方法/strong/pp  讲习会后,在工作人员引导下,代表们参观了岛津西安分析中心实验室。对于本期讲习会,全体与会者给予了一致好评。最终,第六期微流控芯片质谱联用细胞分析讲习会圆满结束。/ppbr//p
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 清华大学-岛津中国成功举办第十期微流控芯片质谱联用细胞分析讲习会
    自2017年9月起,清华大学联合岛津中国在北京、广州、上海、成都、沈阳、武汉等地陆续举办了九期 “微流控芯片质谱联用细胞分析讲习会”,将微流控芯片质谱联用技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者。2021年10月25日,由清华大学-岛津中国联合举办的第十期微流控芯片质谱联用细胞分析讲习会成功在中国科学院深圳先进技术研究院举办,有来自高校、科研所和企业等近30位用户参加。2016年,清华大学林金明教授课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津合作,开发了新一代细胞微流控芯片-质谱联用细胞分析系统(Cellent CM-MS,Cell Microfluidics-Mass Spectrometry)。该系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成,能够实现多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能。CM-MS的应用领域主要集中在科研、临床、新药开发、环境有毒有害物质与食品营养物质研究等领域。微流控芯片在线分析全过程会议由岛津中国研发中心副中心长国広沖之致辞。他首先感谢清华大学林金明教授与岛津联合举办此次讲习会,并感谢中国科学院深圳先进技术研究院罗茜博士在使用细胞微流控芯片-质谱联用细胞分析系统后,给岛津提了很多建议和意见。岛津旨在为用户提供更便利更高效的分析手段,今后也会在仪器改进的道路上继续提高技术。岛津中国研发中心副中心长国広沖之本次讲习会首先由清华大学林金明教授做了《微流控芯片质谱联用仪器及其细胞药物代谢研究》专题报告。林教授详细介绍了微流控芯片的研发历程,实现了从传统培养皿到微流控芯片培养细胞的重大转变;带来了新应用分享:基于CM-MS技术的红景天苷减轻BV2小胶质细胞缺氧炎症损伤代谢机制分析;并向大家介绍了开放式微流控单细胞分析方法的建立。清华大学 林金明教授中国科学院深圳先进技术研究院罗茜研究员带来了《MC-MS研究尼古丁暴露与戒断对小鼠海马神经元细胞的代谢影响》专题报告。详细分享了使用岛津细胞微流控芯片-质谱联用细胞分析系统CM-MS研究尼古丁的实验流程及分析结果。罗茜研究员特别提到岛津LCMS-8060非常适合与微流控芯片仪器联用,用于小分子代谢物分析。中国科学院深圳先进技术研究院 罗茜研究员岛津中国开发中心部长岡户孝夫带来了《微流控芯片质谱联用仪器的结构和基本性能介绍》,本次CM-MS开发的主要概念是“功能整合、自动化操作、具灵活性以对不同研究目的支持”,而自动化是本次开发最主要的概念,在今后也会继续研究开发支持客户自主设计不同流路的仪器,以满足不同研究目的的需求。岛津中国开发中心部长岡户孝夫中国农业科学院许柠博士带来了《微流控芯片质谱联用仪器的实验操作和细胞代谢分析》,介绍了微流控芯片细胞分析仪器的新应用成果,并对应用前景进行了预测。中国农业科学院许柠博士讲习会后,与会人员参观了中国科学院深圳先进技术研究院的实验室,许柠博士现场演示了CM-MS微流控芯片质谱联用仪器的操作。与会人员参观实验室休息时间与会人员沟通交流第十期CM-MS讲习会全体人员合影本次讲习会将微流控芯片-质谱联用细胞分析技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者,与会者纷纷表示受益匪浅。该系统还具备多通道芯片与质谱联用、细胞共培养、细胞形态分析三大特点,有望成为目前最有效的细胞研究手段之一。
  • 清华大学-岛津中国 成功举办第十期微流控芯片质谱联用细胞分析讲习会
    导语自2017年9月起,清华大学联合岛津中国在北京、广州、上海、成都、沈阳等地陆续举办了九期 “微流控芯片质谱联用细胞分析讲习会”,将微流控芯片质谱联用技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者。2021年10月25日,由清华大学-岛津中国联合举办的第十期微流控芯片质谱联用细胞分析讲习会成功在中国科学院深圳先进技术研究院举办,有来自高校、科研所和企业等近30位用户参加。 2016年,清华大学林金明教授课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津合作,开发了新一代细胞微流控芯片-质谱联用细胞分析系统(Cellent CM-MS,Cell Microfluidics-Mass Spectrometry)。该系统由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成,能够实现多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能。CM-MS的应用领域主要集中在科研、临床、新药开发、环境有毒有害物质与食品营养物质研究等领域。微流控芯片在线分析全过程 会议由岛津中国研发中心副中心长国広沖之致辞。他首先感谢清华大学林金明教授与岛津联合举办此次讲习会,并感谢中国科学院深圳先进技术研究院罗茜研究员在使用细胞微流控芯片-质谱联用细胞分析系统后,给岛津提了很多建议和意见。岛津旨在为用户提供更便利更高效的分析手段,今后也会在仪器改进的道路上继续提高技术。 岛津中国研发中心副中心长国広沖之 本次讲习会首先由清华大学林金明教授做了《微流控芯片质谱联用仪器及其细胞药物代谢研究》专题报告。林教授详细介绍了微流控芯片的研发历程,实现了从传统培养皿到微流控芯片培养细胞的重大转变;带来了新应用分享:基于CM-MS技术的红景天苷减轻BV2小胶质细胞缺氧炎症损伤代谢机制分析;并向大家介绍了开放式微流控单细胞分析方法的建立。 清华大学林金明教授 中国科学院深圳先进技术研究院罗茜研究员带来了《MC-MS研究尼古丁暴露与戒断对小鼠海马神经元细胞的代谢影响》专题报告。详细分享了使用岛津细胞微流控芯片-质谱联用细胞分析系统CM-MS研究尼古丁的实验流程及分析结果。罗茜研究员特别提到岛津LCMS-8060非常适合与微流控芯片仪器联用,用于小分子代谢物分析。 中国科学院深圳先进技术研究院罗茜研究员 岛津中国开发中心部长岡户孝夫带来了《微流控芯片质谱联用仪器的结构和基本性能介绍》,本次CM-MS开发的主要概念是“功能整合、自动化操作、具灵活性以对不同研究目的支持”,而自动化是本次开发最主要的概念,在今后也会继续研究开发支持客户自主设计不同流路的仪器,以满足不同研究目的的需求。 岛津中国开发中心部长岡户孝夫中国农业科学院许柠博士带来了《微流控芯片质谱联用仪器的实验操作和细胞代谢分析》,介绍了微流控芯片细胞分析仪器的新应用成果,并对应用前景进行了预测。中国农业科学院许柠博士 讲习会后,与会人员参观了中国科学院深圳先进技术研究院的实验室,许柠博士现场演示了CM-MS微流控芯片质谱联用仪器的操作。 与会人员参观实验室休息时间与会人员沟通交流第十期CM-MS讲习会全体人员合影 本次讲习会将微流控芯片-质谱联用细胞分析技术及其在细胞培养、药物筛选领域的最新研究成果展示给高校、研究所及企业的众多专家学者,与会者纷纷表示受益匪浅。该系统还具备多通道芯片与质谱联用、细胞共培养、细胞形态分析三大特点,有望成为目前最有效的细胞研究手段之一。
  • 清华大学、岛津中国联合举办第四期微流控芯片质谱联用细胞分析讲习会
    p  2018年6月25日,由清华大学-岛津中国联合举办的第四期微流控芯片质谱联用细胞分析讲习会在岛津成都分析中心举行。本期讲习会展示了采用由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪进行细胞共培养及其药代动力学模拟研究最新成果。在此之前,该系列讲习会已经成功举办三期。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/fe102d1e-a43f-49e6-b316-a35c55095f13.jpg" title="1.jpg"//pp  清华大学化学系林金明教授做题为“ 微流控芯片上的细胞共培养及其药代动力学模拟研究”。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/bdd58fc2-d315-4079-8bea-b48b1185e50d.jpg" title="3.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong清华大学化学系林金明教授/strong/pp  西南大学药学院黄承志教授做题为“纳米光谱探针用于增强显微生物成像”的学术报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/1b0c3c4e-a2e7-4770-8baf-5a0d71f1d96a.jpg" title="4.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong西南大学药学院黄承志教授/strong/pp style="text-indent: 2em "span style="text-indent: 2em "岛津中国事业战略本部长端裕树博士对参加讲习会的专家代表莅临岛津成都分析中心表示热烈的欢迎。他介绍,2016年岛津公司与林金明教授课题组合作,成功研制了用于细胞及其代谢物分析的微流控芯片质谱联用细胞分析仪。/span/pp style="white-space: normal text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/bee1a67f-ebf4-40c7-b19b-decb4455d203.jpg" title="2.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="white-space: normal text-align: center "strong岛津中国事业战略本部长端裕树博士/strong/pp style="text-indent: 2em "清华大学化学系博士研究生张婉玲同学为参会代表进行了“微流控芯片质谱联用实验方法介绍”并进行了仪器现场演示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/66bbe157-ca08-434d-ad1d-00abc8cafdb7.jpg" title="6.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong仪器现场演示/strong/pp style="text-indent: 2em "span style="text-indent: 32px "微流控芯片质谱联用细胞分析仪可广泛应用于疾病诊断、药物筛选、细胞识别、细胞定量、细胞代谢、细胞生理过程和细胞相互作用等研究。/span/p
  • 微流控芯片技术助力细胞外囊泡产量提高
    2022年12月24日,中国科学院深圳先进技术研究院杨慧课题组的最新研究成果发表在生物医学工程领域TOP期刊Materials Today Bio上。研究团队研发了一种微流控芯片技术,实现了细胞的工程化改造,并显著提高了细胞外囊泡的分泌量。深圳先进院客座博士生郝锐、博士生胡师为该论文的共同第一作者,杨慧为通讯作者,厦门大学萨本栋微米纳米科学技术研究院郭航教授为文章的共同通讯作者。2013年,诺贝尔生理学或医学奖颁发给发现“细胞的囊泡运输调控机制”的三位科学家。囊泡运输构建了人体生理学和病理学过程中的“智慧物流运输系统”,负责细胞间的物质递送和信息通讯。因此,细胞外囊泡被视为重要的生物标志物和天然的运载工具,在智能药物递送、重大疾病精准诊疗等领域展现了巨大的应用潜力。然而在常规培养条件下,供体细胞往往存在分泌效率有限、外囊泡产量低等技术问题,极大的限制了细胞外囊泡的实际应用。为了提高细胞外囊泡的分泌量,常用的技术手段包括分子调控、乙醇处理、pH调节等生化策略,因依赖于生化试剂添加物,易改变细胞生理状态而影响外囊泡的功能性和安全性。为应对这一挑战,杨慧团队提出一种名为“种子SEED芯片 (Small Extracellular vEsicles Developer)”的微流控编辑平台,能够高通量且无损伤的刺激细胞,提高细胞外囊泡的分泌量。“种子SEED芯片”由于借助了微流控芯片技术可在微观尺度精确操控流体的特点,该尺度相当于百分之一的头发丝直径,可以将物理场作用定位到细胞尺度,实现对细胞的高通量且高精度的操控。芯片内部引入“鱼骨型”微结构阵列,机械挤压刺激细胞,增强细胞外囊泡的分泌量,针对不同来源的细胞可实现微结构的特异性开发。研究中采用骨髓来源间充质干细胞作为应用对象,该技术成功使干细胞外囊泡的产量提高了数倍。上述干细胞外囊泡在生物医学研究及临床应用中具有重大潜力,但干细胞有限的扩增能力,极大限制了其分泌外囊泡的数量,为实际应用提出了挑战。此项工作成功构建了大规模生产细胞外囊泡的新范式,并以角膜损伤模型为例,验证了此方法生产的干细胞外囊泡能够显著促进组织修复。未来,基于微流控芯片技术增强细胞外囊泡分泌量的新策略有望发展成为一种平台型工具,并与胞内递送研究相结合,提高细胞外囊泡产量的同时,将具有临床治疗作用的外源物质装载到外囊泡中,为外囊泡装载研究以及精准治疗应用提供新的技术支持。
  • 清华大学、岛津中国联合举办第五期微流控芯片质谱联用细胞分析讲习会
    pstrong仪器信息网讯 /strong2018年9月26日,由清华大学-岛津中国联合举办的第五期微流控芯片质谱联用细胞分析讲习会在清华大学化学系举行。本期讲习会介绍了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪,得到了来自高校、研究所及企业三十多位专家学者的关注及报名参会。在此之前,该系列讲习会已经在北京、广州、上海及成都成功举办了四期。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/077a4d7f-7573-4800-8bcb-95bd81bd4206.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "strong讲习会现场/strong/pp  清华大学化学系林金明教授介绍了微流控芯片-质谱联用仪器的研发工作和课题组利用微流控芯片-质谱联用仪器开展的多项研究工作。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/9e4579e8-6608-46bf-9fe6-78449d4ef39e.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "strong清华大学 林金明教授/strong/pp  岛津中国事业战略室本部长端裕树博士介绍了CM-MS仪器的结构和基本性能。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/92163aec-12be-4b8b-965f-ba99c92aea7f.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "strong岛津中国事业战略室本部长 端裕树博士/strong/pp  清华大学许柠助理向参会人员介绍了CM-MS仪器实验方法介绍,并现场讲解了微流控芯片-质谱联用仪器的操作细节。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/7502d986-ec26-4340-92e2-b9259b095d1b.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "strong清华大学 许柠助理/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/6794e948-363f-4d68-8b32-09d778dc3fac.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "strong现场讲解/strong/pp  据悉,第六期微流控芯片-质谱联用细胞分析讲习会初步定于2018年12月下旬在西安举行。br//pp  往期回顾:/pp  a href="https://www.instrument.com.cn/news/20170928/230318.shtml" target="_self" style="color: rgb(79, 129, 189) text-decoration: underline "span style="color: rgb(79, 129, 189) "清华大学-岛津中国联合举办首期微流控芯片质谱联用细胞分析讲习会/span/a/ppspan style="color: rgb(79, 129, 189) "  a href="https://www.instrument.com.cn/news/20171225/236638.shtml" target="_self" style="text-decoration: underline color: rgb(79, 129, 189) "span style="color: rgb(79, 129, 189) "清华大学与岛津在沪联合举办第二期CM-MS细胞分析讲习会/span/a/span/ppspan style="color: rgb(79, 129, 189) "  a href="https://www.instrument.com.cn/news/20180327/242994.shtml" target="_self" style="text-decoration: underline color: rgb(79, 129, 189) "span style="color: rgb(79, 129, 189) "清华大学第三期CM-MS细胞分析讲习会在广州举行/span/a/span/ppspan style="color: rgb(79, 129, 189) "  a href="https://www.instrument.com.cn/news/20180625/466426.shtml" target="_self" style="text-decoration: underline color: rgb(79, 129, 189) "span style="color: rgb(79, 129, 189) "清华大学、岛津中国联合举办第四期微流控芯片质谱联用细胞分析讲习会/span/a/span/p
  • 清华大学-岛津中国联合举办第七期微流控芯片质谱联用细胞分析讲习会
    p style="line-height: 1.75em text-indent: 2em margin-top: 10px margin-bottom: 10px "2019年5月10日,由清华大学-岛津中国联合举办的第七期微流控芯片质谱联用细胞分析讲习会在岛津沈阳分析中心举行。本期讲习会展示了采用由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪进行细胞共培养及其药代动力学模拟研究最新成果。在此之前,该系列讲习会已经分别在北京、上海、广州、成都、西安等地等成功举办了六期。/pp style="text-align: center margin-top: 10px "img width="600" height="331" title="图片1.png" style="width: 600px height: 331px max-height: 100% max-width: 100% " alt="图片1.png" src="https://img1.17img.cn/17img/images/201905/uepic/134064a6-9f33-43cb-b50d-d75ff200d78b.jpg" border="0" vspace="0"//pp style="text-align: center line-height: normal margin-top: 10px margin-bottom: 5px "第七期微流控芯片质谱联用细胞分析讲习会会场/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "岛津中国事业战略本部长端裕树博士对参加讲习会的全体代表莅临岛津沈阳分析中心表示热烈的欢迎。随后,清华大学化学系林金明教授介绍了微流控芯片质谱联用细胞分析的最新研究进展。东北大学副校长、理学院教授王建华做题为“ICP-MS(单)细胞分析探索”的学术报告。端裕树博士对微流控芯片质谱仪器的结构和性能做了详细的介绍。清华大学化学系许柠研究助理介绍了仪器的实验方法并现场演示了仪器对细胞的缺氧实验,期间,代表们提出问题并展开了讨论交流。/pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "img width="600" height="450" title="图片2.png" style="width: 600px height: 450px max-height: 100% max-width: 100% " alt="图片2.png" src="https://img1.17img.cn/17img/images/201905/uepic/4d006aeb-d4a0-4093-9cd9-73fa1a24f410.jpg" border="0" vspace="0"/林金明做微流控芯片质谱联用仪器研发与应用的研究进展介绍/pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "img width="600" height="451" title="图片3.png" style="width: 600px height: 451px max-height: 100% max-width: 100% " alt="图片3.png" src="https://img1.17img.cn/17img/images/201905/uepic/528d5f40-500c-44c9-ae00-ca62d6f06492.jpg" border="0" vspace="0"//pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "王建华教授做题为“ICP-MS(单)细胞分析探索”的学术报告/pp style="text-align: center margin-top: 10px "img width="600" height="450" title="图片4.png" style="width: 600px height: 450px max-height: 100% max-width: 100% " alt="图片4.png" src="https://img1.17img.cn/17img/images/201905/uepic/2c909f01-9686-4273-95a4-458c43848c18.jpg" border="0" vspace="0"//pp style="text-align: center margin-top: 10px "端裕树博士介绍仪器研发过程、结构和性能/pp style="text-align: center margin-top: 10px "br/img width="600" height="451" title="图片5.png" style="width: 600px height: 451px max-height: 100% max-width: 100% " alt="图片5.png" src="https://img1.17img.cn/17img/images/201905/uepic/a283d0ec-e8cf-426e-93e5-7d9be66781e5.jpg" border="0" vspace="0"//pp style="text-align: center margin-top: 10px "许柠助理介绍仪器的使用方法并现场演示微流控芯片上的细胞分析方法/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "讲习会后,在工作人员引导下,代表们参观了岛津沈阳分析中心实验室。最终,第七期微流控芯片质谱联用细胞分析讲习会圆满结束。/p
  • 低压直流细胞电穿孔微流芯片系统
    成果名称低压直流细胞电穿孔微流芯片系统单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:电穿孔(电转染)是一种利用外加电场击穿细胞膜,使平时不能穿透细胞膜的大分子(核酸、蛋白质、药物等)进入细胞的技术。电穿孔技术已在细胞实验、基因治疗等领域广泛应用。但目前的技术均需要金属电极,金属电极产生的金属离子渗出、气泡等对细胞有不利影响,降低了转染效率。此外,高压脉冲电源的使用使得目前此类仪器操作复杂、价格居高不下。这些都大大限制了电穿孔技术的广泛应用。针对上述问题,北京大学工学院熊春阳课题组采用微流芯片技术,实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。2009年,熊春阳副教授申请的&ldquo 低压直流细胞电穿孔微流芯片系统&rdquo 项目得到了第二期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用微流体中因尺度效应而产生的层流,用高电导率的液体来代替电极,将细胞悬浮液通过流动聚焦技术夹在高电导率溶液之间,形成三个平行流动的稳定流层。通过将电极与两侧的高电导率溶液相连,再与直流电源相连,电压会大部分施加在中间电阻较大的细胞流层。由于微流尺度较小,即使很低的电压都可产生较大的场强,从而可以实现细胞电穿孔。这项工作在基金的支持下得以顺利的推进,通过相关设备的购置和实验测试,课题组完成了微流控芯片的设计和加工、液体导电层的引入、不同类型细胞电转染参数的优化等工作。该项目目前已经顺利结题,相关成果已经申请中国专利,正在申请国际专利。应用前景:该项目实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。由于课题组具有完全的自主知识产权,这一工作可以打破目前国外同类仪器建立的技术壁垒,具备较强的市场推广前景。
  • 8月30日09:30直播|类器官与器官芯片专场-第六届细胞分析大会
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)仪器信息网将于2023年08月30日-09月01日举办第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。大会首日8月30日,特设【类器官与器官芯片】专题会场,12位嘉宾在线分享类器官的构建及流式、细胞成像等表征分析技术的应用!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023 (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 8月30日|类器官与器官芯片主题日程 精彩报告 速览《细胞(类器官)力学芯片研究进展》熊春阳 北京大学工学院 教授【摘要】越来越多的研究表明,物理力学微环境是机体生长发育、结构重建以及功能维持的重要因素,也与疾病的发生发展密切相关。微流控技术既可以在体外精确构建细胞(类器官)的物理力学微环境,也可以实现对细胞(类器官)表型的高通量、精确检测,为类器官和器官芯片研究与应用提供了强有力的工具。本次报告将介绍近期我们在细胞(类器官)力学芯片方面的一些研究进展。安捷伦细胞分析技术在类器官领域的应用林鹤鸣 安捷伦科技(中国)有限公司 产品应用专家【摘要】类器官作为更接近体内真是水平的研究模型,近年来受到越来越多研究者的青睐。类器官的拍照成像,是质控类器官,了解类器官生长情况的最直接手段。 安捷伦提供了长时间,高通量自动化的成像分析方法,同时配合微孔板检测,流式细胞术以及细胞能量代谢等手段,让科研工作者更为深入全面的分析类器官模型背后的科学问题。干细胞与类器官王凯 北京大学 研究员【摘要】干细胞衍生的类器官能够复现人体组织的三维结构和特征,能够用于研究人胚胎发育的过程,构建疾病模型和作为替代性的细胞治疗疗法。Hamilton自动化解决方案在细胞高通量筛选的应用潘晓 哈美顿(上海)实验器材有限公司 应用工程师【摘要】目前有多种细胞培养类型和基于细胞的系统用于基于细胞的试验;从传统的二维(2D)单层细胞到基于支架的3D培养(例如类器官),以及最近的器官芯片Organs-On-A-Chip (OOAC)。在基于细胞的高通量筛选试验中,在培养细胞的同时需要评估大量化合物/条件。这些试验的效率及标准化通常是通过自动化得以实现。自动液体处理系统可以通过控制关键因素确保整个过程的标准化,例如吸液和分液的速度、吸头在孔内的位置、移液步骤中板的倾斜、试剂在板上的温度和工作区域的无菌性。此外,自动化液体处理工作站可以通过96和384移液头显著提高通量,并整合第三方设备进行细胞成像。 在本次网络会议中,主要讨论如何使用Hamilton自动化液体处理工作站满足基于细胞的高通量筛选要求。Application of organoid technology in prostate stem cell and cancer research蔡志伟(Chua Chee Wai) 上海交通大学医学院附属仁济医院 研究员【摘要】In the recent years, we have witnessed the emergence of androgen receptor (AR)-independent prostate cancer (AIPC) with the clinical use of second-generation androgen deprivation therapy. Upon the progression to AIPC, the remaining treatment options are mainly palliative but not curable. Therefore, understanding the cellular origins and dynamics involved in AIPC evolution is crucial for identifying timely treatment strategies for these patients. In this presentation, I will first share with you the invention of prostate organoid technology, which facilitates novel discoveries in prostate stem cell and cancer research. Subsequently, I will talk about how we integrate organoid technology and single-cell transcriptomic analysis to identify novel AR-independent prostate luminal progenitor and cancer subsets. Our findings have highlighted the capability of organoid technology in preserving progenitor potential and tumor heterogeneity. Consequently, continual investigations using organoid technology should yield novel insights into the emergence of AIPCs and identify novel therapeutic targets for AIPC patients.复杂皮肤类器官构建及其应用冷泠 中国医学科学院北京协和医院 正高级/教授【摘要】冷泠研究团队基于空间基质组学技术及其研究成果,创建了一种具有表皮及毛囊附属器、真皮及神经系统的完整细胞极性的皮肤类器官。利用该类器官进行病毒的体外感染,首次为新冠肺炎和脱发后遗症之间的关联提供了证据;进行罕见病治疗研究,实现了该疾病表皮附属器和血管的新生,推动类器官在罕见病治疗和药物筛选中的应用。实时活细胞成像分析在3D器官细胞模型中的应用陆叶舟 赛多利斯(上海)贸易有限公司 生物分析产品应用科学家【摘要】 1. 实时活细胞成像与分析技术介绍 2. 实时活细胞分析促进3D细胞模型培养及应用 应用案例解析:神经肌肉类器官、食管类器官、胰腺导管癌类器官、肾脏类器官、胶质母细胞瘤球体、直肠癌类器官等基于微流控的细胞无标记分选和打印研究陈华英 哈尔滨工业大学(深圳) 副教授【摘要】 微流控芯片在单细胞操控、培养和分析领域具有独特优势,已被广泛用于单细胞分析。本文主要介绍课题组在利用微流控芯片进行单细胞打印、克隆扩增、弹性模量测量和形貌分选方面的最新研究进展。课题组开发的一款集成两个气动微阀门的芯片,可以通过气压控制阀门的闭合程度,进而在单细胞尺度实现细胞大小的动态筛选。前后两个阀门分别控制细胞的尺寸上限和下限,符合尺寸要求的细胞可以在压力泵的驱动下被快速打印到384孔板内,实现每孔一个细胞。打印后的单细胞活性为97.2%。与对照组相比,打印过程未对细胞活性造成影响。此外,课题组还开发了一款集成颗粒分离和压力传感器以进行单细胞弹性模量精密测量的微流控芯片。该芯片可将细胞悬浮液中的杂志分离到侧通道,并使单个细胞在微流道中受挤压变形,同时由压力传感器记录导致细胞变形的压力。通过研究细胞变形量和对应的压力,并结合幂律流变模型,可以计算出细胞的弹性模量和粘度数据。利用该芯片获得了K562和人脐静脉细胞的弹性模量分别是64.2 ± 33.3 Pa 和383.4 ± 226.7 Pa。基于上述技术课题组开发了利用图像实时处理进行细胞大小、形貌和弹性分选的微流控系统,实现了混合细胞群体的无标记高通量分选打印。上述工作为微流控芯片在高通量单细胞分析领域的创新应用提供了实验基础。流式细胞术在类器官研究中的应用于化龙 贝克曼库尔特 高级应用专家【摘要】1流式用于类器官构建 2流式用于类器官质控 3流式用于类器官免疫监测 4流式用于类器官药物筛选TOPMOS类器官高通量药物筛选系统杨根 北京大学 副教授【摘要】本团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。类器官多维度多模态显微成像应用游换阳 徕卡显微系统(上海)贸易有限公司 应用专员【摘要】针对类器官成像复杂性,Leica提供全流程需要的设备,从类器官获取,日常培养观察,高清宽场和共聚焦成像再到最后的人工智能大数据分析,徕卡提供全流程成像分析解决方案,助力类器官科研。类器官与器官芯片在细胞分析中的应用与发展陈早早 江苏艾玮得生物科技有限公司/东南大学 副总经理/副研究员【摘要】人体器官芯片并非电子产品,而是一种‘体外的活的人体器官’,简单的说,即科研人员利用人体自身的干细胞,在U盘大小的芯片上制作出微缩的人体器官,以模拟人体相应器官的功能,制造出要用显微镜才能观察到的体外迷你的‘心脏’、‘肝脏’、‘肾脏’等等。人体器官项目正逐渐从研发端走到应用端的“最后一公里”。不仅在药物发现、细胞分析、环境评估、精准医疗、航天医学方面都有器官芯片的应用。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 新芯片实验室技术让单细胞基因分析更高效
    据美国物理学家组织网近日报道,最近,加拿大英属哥伦比亚大学与英属哥伦比亚癌症研究所、转化与应用基因组学中心合作,开发出一种硅酮材料的芯片实验室技术,能让每个细胞像弹球机里的球一样各就各位,然后进行基因检测。这种“单细胞基因分析”技术使基因检测更加灵敏迅速,有助于肿瘤分析和临床疾病的诊断。本周出版的《美国国家科学院院刊》对该芯片实验室进行了详细介绍。  这种芯片实验室大小跟一个9伏电池相当,能同时分析300个细胞。研究人员设计了一种路线,用液体载运细胞通过显微管道和一个个小阀门,当细胞挨个进入各自的小空位时,它们的RNA就会被提取出来,经过复制用于进一步分析。  标准基因检测要求使用大量细胞,才能得出由上千万不同细胞平均化以后的“综合图像”,这会掩盖细胞的真实属性和它们之间的相互作用。“这就好比用混合水果慕丝来研究草莓和树莓为什么不一样。”领导该研究的高通量生物中心副教授卡尔汉森介绍说,而单细胞分析正在成为基因研究中的黄金手段,因为即使是从同一肿瘤组织中采集的样本,也包含了正常细胞和多种癌细胞类型,而单细胞分析显出极微小的差异。  此外,这种芯片实验室几乎将所有细胞分析过程整合在了一起,不仅能分离细胞,还能用化学试剂将细胞混合起来,通过检测反应过程中的荧光发射获得它们的基因编码。所有这些都能在芯片上完成,不仅操作简单,而且成本效益高。
  • 650万!《多色拉曼光谱微流控芯片高通量稀有细胞分选系统》国家重大科研仪器研制项目获批
    p  2017年8月17日,国家自然科学基金委员会发布2017年度国家自然科学基金申请项目评审结果的通告,其中国家重大科研仪器研制项目(自由申请)共计83项,总批准金额5.9亿元。/pp  从详细名单得知,83个项目中有多项涉及类别的科学仪器,其中《多色拉曼光谱微流控芯片高通量稀有细胞分选系统》名列其中,项目负责人为吴一辉,依托单位为中国科学院长春光学精密机械与物理研究所,批准金额650万元。/pp  更多详细名单请查看如下链接:/pp  a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20170817/226928.shtml" target="_blank"span style="color: rgb(255, 0, 0) "strong2017自然科学基金国家重大科研仪器研制项目全名单公布 总投资5.9亿/strong/span/a/pp /p
  • 电泳微流控芯片:生物分析的里程碑
    电泳微流控芯片是一种结合了电泳和微流控技术的创新型生物分析工具。该技术整合了微流体学的优势,通过微小尺度的通道、电场和高度灵活的流动控制,实现了对生物分子的高效分离、检测和分析。——技术原理——电泳原理:在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象。电泳微流控芯片技术可以分为两种主要类型:毛细管电泳和芯片上电泳。毛细管电泳利用单根毛细管作为分离通道,而芯片上电泳则将电泳所需的缓冲液、电极等组件集成到一个微流控芯片上,实现设备的微小化和自动化。这种集成化设计使得电泳微流控芯片具有高通量、高效率、低样品消耗和快速分离等优点。电泳微流控芯片的原理主要基于电场驱动下的带电粒子在微尺度流道中的迁移与分离。具体来说,电泳微流控芯片利用微加工技术在芯片上构建微米级的流道,这些流道用于容纳电泳缓冲液。当在芯片两端施加电场时,缓冲液中的带电粒子(如DNA、蛋白质等)会根据其电荷和电场方向发生迁移。不同带电粒子由于其电荷、质量和形状的差异,在电场中的迁移速度会有所不同,从而实现粒子的分离。——应用领域——电泳微流控芯片的应用领域非常广泛,涵盖了多个重要的科学和工业领域。以下是其主要的应用领域:1、生物医学:在生物医学领域,电泳微流控芯片技术主要用于DNA片段、多肽、蛋白质等生物分子的分离和分析。它被认为是后基因时代中最有希望攻克蛋白质研究、基因临床诊断等科学难题的分离分析手段之一。此外,电泳微流控芯片技术也被用于PCR反应,可以大大简化操作步骤,显著提高检测效率。2、新药物合成与筛选:电泳微流控芯片技术在新药研发过程中发挥着重要作用。它可以用于药物分子的分离和筛选,从而加速新药的研发进程。3、食品和商品检验:电泳微流控芯片技术可以用于食品中添加剂、污染物等的检测和分析,确保食品的安全和合规性。同时,它也可以用于商品的质量控制和检验。4、环境监测:在环境监测领域,电泳微流控芯片技术可用于水、土壤、空气等环境样本中有害物质的检测和分析,为环境保护和污染治理提供科学依据。5、刑事科学:电泳微流控芯片在法医学中具有重要的应用,特别是在DNA分离、检测和分析方面,对于个体身份的鉴定和犯罪现场的物证分析具有重要意义。6、其他科学领域:此外,电泳微流控芯片技术还广泛应用于军事科学、航天科学等其他重要科学领域,为这些领域的研究和发展提供了强大的技术支持。——优势——1、高分辨率和快速分离:微流控芯片中的通道尺寸小,因此具有较高的分辨率和更快的分离速度。这使得它能够在短时间内准确地分离和识别出各种生物分子,如DNA、蛋白质等。2、低样品和试剂消耗:由于微流控芯片中的流体通道尺寸微小,所需的样品和试剂量大大减少。这既降低了分析成本,也减少了生物样本的浪费,对于珍贵的生物样本尤其重要。3、高通量分析能力:微流控芯片可以并行处理多个样品,实现高通量分析。这大大提高了分析效率,使得在短时间内能够处理更多的样本,适用于大规模的生物分子分析任务。4、易于集成和自动化:电泳微流控芯片可以与其他技术(如质谱联用)实现联合分析,进一步提高分析的准确性和灵敏度。此外,微流控芯片技术易于实现自动化,减少了人为操作的误差,提高了分析的准确性和可靠性。5、微型化和便携性:电泳微流控芯片采用微型化设计,使得整个分析系统更加紧凑和便携。这使得它可以在现场进行实时分析,无需复杂的实验室设备,为现场检测和即时分析提供了便利。保利微芯公司简介保利微芯科技有限公司隶属中国保利集团公司,由保利置业集团有限公司投资,设计研发微流控生物芯片,公司具备技术先进的微流控生物芯片设计制造能力,已形成创新性的、技术领先的微流控芯片整体解决方案。可以承接国内外芯片设计、应用公司的微流控芯片生产订单,为即时诊断(POCT)、基因测序、环境保护、食品安全和科学研究等应用领域的客户提供有核心竞争力的高性价比芯片产品。
  • 微流控芯片的产业化:坚持中迎来曙光——访浙江大学微分析系统研究所所长方群教授
    微流控芯片分析是当前的科技前沿领域之一,其目标是通过对芯片微通道网络内微流体的操纵和控制,完成化学实验室中取样、预处理、反应、分离和检测等分析功能,实现分析装备的微型化、集成化和自动化,最终实现芯片化,即所谓“芯片实验室”(Lab-on-a-chip)。微流控芯片已被列入21世纪最为重要的前沿技术的行列。  浙江大学微分析系统研究所是国内建立较早的专门从事微流控芯片相关技术研究的科研机构,建所十年来取得了许多研究成果。2010年8月21日,在第三届全国生命分析化学学术报告与研讨会上,仪器信息网编辑(以下简称“Instrument”)就该研究所的情况与微流控芯片的研究现状、技术发展、产业化等问题采访了浙江大学微分析系统研究所所长方群教授。浙江大学微分析系统研究所所长 方群教授  Instrument:方教授,您好!首先请您介绍下浙江大学微分析系统研究所的相关情况,以及贵所建立以来在微流控技术方面取得了哪些成绩?  方群教授:浙江大学微分析系统研究所是我国已故的著名分析化学家方肇伦院士于2000年1月创建,其目标是借助浙江大学学科比较齐全、综合交叉优势明显的特点,发展具有中国特色的微流控芯片分析技术与系统。目前,研究所有教师11名,研究生40余名。  研究所的研究主要围绕微流控芯片展开,研究方向涉及:微纳流控芯片加工和表面处理技术、工艺 微流体操控技术、方法和理论;微流控芯片取样、试样引入和前处理、反应技术;微流控芯片光谱、电化学、质谱检测技术研究;基于微流控原理的液滴分析、毛细管电泳、流动注射分析、生物传感器分析系统研究,以及纳米技术和仿生技术在微流控系统中的应用;基于微流控技术的微型化分析仪器研制;微流控系统在生物分析、单细胞分析、蛋白质组研究、临床检验、高通量筛选中的应用。  目前,研究所在微流控芯片简易加工技术、微流控试样引入技术、微流控单细胞分析的集成化、微流控荧光和光度检测系统的微型化等方面,取得了具有国际先进水平的研究成果。十年间,研究所发表了140余篇高水平的SCI论文,共承担和参与省部级以上项目50余项,申请国家发明专利40余项,其中20余项已获授权。2003年科学出版社出版了由方肇伦院士主编,研究所全体老师参加撰写的国内第一部有关微流控芯片的专著“微流控分析芯片”。研究所还研制了多种具有自主知识产权的微流控分析仪器装置或样机,为相关仪器的产业化创造了有利基础。  Instrument:您是973项目“微流控学在化学和生物医学中的应用基础研究”中“高速及多通道阵列微流控分离检测新方法的研究”课题的负责人,请谈谈该课题的进展情况,以及到目前为止取得了哪些成果?遇到了哪些困难?  方群教授:由复旦大学杨芃原教授任首席科学家,由全国11家单位参加的973项目“微流控学在化学和生物医学中的应用基础研究”分为6个课题,我所负责的是其中第三课题,参与单位有浙江大学、中科院大连化学物理研究所、东北大学和中科院长春应用化学研究所,主要进行高速及多通道阵列微流控分离检测新方法的研究。目前,该课题研究进展顺利,已取得一些出色的研究成果,预计能够完成既定目标。  我的研究组主要进行了微流控系统的试样引入技术研究,将微流控芯片与缺口管阵列结合,进样通量最快可以达到6000个样品/小时,这是目前文献报道中单通道通量最高的芯片进样方法。同时,我们通过将自发进样技术与基于短毛细管和缺口管阵列的毛细管电泳(CE)系统相结合,建立了一种微流控平移自发进样方法,将进样量减少至低于100pL的水平,并进一步将该方法应用于高速毛细管电泳(HSCE)分析,建立了一种通用型的HSCE系统。该系统应用于氨基酸试样的电泳分离,其分离速度和效率等性能已经达到甚至优于芯片HSCE系统。在此基础上,研究组还将皮升级平移自发进样方法及其HSCE系统成功地应用于基于胶束电动色谱模式的氨基酸手性分离和基于凝胶电泳模式的DNA片段和蛋白质分离中。  近期,我们研究组还研制了一种用于纳升级试样测定的全集成微型化手持式光度计。该光度计所有部件包括双波长紫外发光二极管(LED)光源、光电二极管检测器、长光程液芯波导检测池、微量试样驱动装置、控制电路、液晶显示器和电池均集成于12cm×4.5cm×2.1cm 的仪器内。该仪器成功应用于微量DNA 试样的纯度和含量测定,以350nL的试样消耗获得了约15mm的有效光程。对比商品化的微消耗光度计,手持式光度计以其1/3的试样消耗量获得了其15倍的检测光程,且价格低廉,在现场分析和即时检验等领域具有很好的应用前景。此外,我们还将该光度计与缺口管阵列结合,成功用于血清中总胆固醇含量的快速自动分析。浙江大学微分析系统研究所方群教授研究组研制的手持式光度计  在研究中,我们确实遇到了一些困难。首先,寻找能产生原创性成果的研究方法和思路是一个难点。其次,微流控芯片的研究是多学科综合性交叉的研究,需要生物、医学、光学、机械、电子等其他研究领域人员的参与,但我们现在缺乏这方面的人才。再有,微流控芯片的研究成果产业化困难。实验室的研究出来的装置距离市场上出售的产品有相当大的距离,这里面还涉及到与企业之间的合作等诸多问题,所以比较困难。  Instrument:下一步微分析系统研究所的工作将主要集中在哪些方面?  方群教授:研究所成立之初,当时的浙江大学校长潘云鹤院士对我们的期望是“顶天立地”。“顶天”即要做好原创性的基础研究,“立地”就是要把研究成果实现产业化,做成商品化仪器,应用于各种实际应用领域。微流控芯片的研究已有近二十年的历史,目前,在某种意义上,其研究已处于一个“十字路口”的阶段了。所以根据建所之初的规划,以及微流控芯片技术当前的发展状况,我们研究所明确了下一个“十年”的工作方向:  (1)坚持进行原创性的研究。  研究所建立之时,方肇伦院士就一直强调要做有创新性的研究工作和要有“小米加步枪”的创业精神。近些年来,我们更是把工作的原创性和系统性放在首位。我们试图走通这样一条道路,即从新现象的发现,到新方法的提出,新系统的建立,一直到新仪器的产业化和实际应用的道路。微流控芯片因其结构微型化,因而具有许多宏观系统不具有的特点。这些特点使其在研究中能够产生一些新现象,基于这些新现象建立的新方法新技术则具有较强的原创性,而基于此研制出的仪器装置和系统是全新的,研究者可以拥有自主知识产权,然后可以将其产业化。所以,原创研究是后续应用和产业化的基础工作,一定要做好。  (2)研究所将在微流控芯片的应用和产业化方面投入更多精力。  让微流控芯片产业化,是我们研究所的更高目标。在原创研究的基础上,我们试图将现有的微流控技术研究成果进行整合,构建出完整的仪器,然后将这些仪器推广到多个应用领域,尤其是化学、生物医学、药学、临床检验和现场分析等一些重要领域,希望能够产生重要的影响,对微流控芯片的产业化产生一些推动作用。这方面的工作难度很大,我们将尽力而为。  Instrument:您前面所说的“微流控芯片技术的研究已处于‘十字路口’阶段”,其具体涵义是什么?能否为我们解释下?  方群教授:这里我是用“十字路口”这四个字来形容当前微流控芯片技术的研究现状。以在分析化学中的情况为例,微流控芯片出现之初,研究者众多,大家在分析化学的各个领域都进行了普遍地尝试。然而,十多年已过去,微流控芯片分析领域内相对容易研究的领域已基本了解清楚,而剩下的领域和任务都是“硬骨头”。这些“硬骨头”研究难度大、耗费时间长、不易出成果且成果产业化难度大,这需要研究者具有极大的毅力、耐力以及坚持的信心。  在这样的情形下,研究者们面临着多种选择,也即处在“十字路口”。坚持还是放弃,这是不容易决定的。而我们研究所不会轻易改变研究方向,一定会坚持啃“硬骨头”。  Instrument:能否谈谈当前我国微流控芯片研究的情况以及在国际上所处的地位?该领域当前的研究热点与难点是什么?未来发展趋势如何?  方群教授:我国科学家们对微流控芯片的研究大部分从2000年以后开始。2001年,国家自然科学基金委启动了题目为“微流控生化分析系统的基础研究”的重大研究项目,这个项目对我国微流控芯片技术的发展起到很大的推动和促进作用。到2006年,相关的研究几乎是“遍地开花”。到目前为止,我国学者发表的以“微流控(microfluidic)”为主题词的SCI论文数目仅次于美国,位居世界第二。可以说,我国的微流控技术的研究水平在国际上处于较先进的地位,在部分研究领域已具有一定的国际领先优势。  从已发表的论文来看,目前微流控芯片研究的热点主要集中在以下几个方面:(1)纳流控或微-纳流控;(2)微流控芯片在细胞生物学中的应用;(3)液滴微流控系统。  我个人认为,未来的五到十年,微流控芯片研究可能会有以下几个发展趋势:  (1)微流控芯片研究将向极限发展:从微米到纳米,从多细胞到单细胞,从大量分子到单分子,从单一通道到多通道阵列,分析通量越来越高;  (2)微流控技术不断向其它相关学科渗透,相互间的结合将更为紧密;  (3)微流控液滴分析将得到很好的发展,尤其在分析化学和高通量筛选领域;  (4)微流控芯片的应用领域将继续拓展,将有可能成为科学研究的工具;  (5)微流控芯片将实现产业化,相关仪器将得到推广。  Instrument:微流控芯片目前的应用领域是哪些?将来可能向哪些领域拓展?目前科学家们是否已经找到微流控芯片的“Killer Application(关键性应用)”?  方群教授:目前,微流控芯片的应用领域非常广阔,已超出了其创始人原先预料的那些领域。微流控芯片出现后,其应用领域很快从分析化学扩展到医学、药学、生物化学、细胞生物学、分子生物学、合成生物学、环境分析、化工、材料科学,甚至物理光学、计算机学等领域,而且目前还在持续拓展中。  就目前的情况看,国际上对具体什么是微流控芯片的“Killer Application”,还未形成一致的看法。甚至有科学家认为微流控芯片可能没有“Killer Application”,而是有很多“Application”。通常我们认为微流控芯片分析系统比较适用于药物筛选、疾病诊断,这主要是针对微流控芯片的快速、高通量和低消耗的特点来说的。因为在这两个领域,所要筛选的样品的数量非常之大,并且要求筛查速度快、样品和试剂的消耗量低,而这正好是微流控芯片系统的特点,所以其在这方面将会大有可为。此外,微流控芯片系统微型化、集成化和自动化的特点使得它很适合应用于现场和个体分析。我个人认为:微流控芯片的“Killer Application”最有可能出现在POCT(即时检验,Point-of-Care Testing)领域。  Instrument:至今为止,国内外仪器厂商只有少数几家公司推出过微流控芯片的仪器,微流控芯片的产业化进程发展比较缓慢。您认为当前微流控芯片产业化的困难在哪里?以及应当如何推进其产业化?  方群教授:目前,微流控芯片的产业化确实进行得较为缓慢,相关仪器的销售也不尽如人意。追溯微流控芯片产业化的历程,或许我们可以从中得到一些启示。  微流控芯片出现之初,大家都非常看好它,很多的风险投资蜂拥而至,所以在这个领域,一下子建立了许多的公司,并有相关产品推出。但随后不久,投资企业发现这个领域不能立竿见影,所以就转向了,这就形成了微流控芯片这个领域产业化的低谷。究其原因,我想可能是:最开始大家都看到了这个领域的广阔前景和光明前途,但却低估了该领域研究的难度和技术的复杂性。但是,伴随着产业化的低谷,微流控芯片的基础研究却蓬勃发展起来,进行得如火如荼,这就说明当初人们对这个领域的认识还不够透彻,研究还不够深入,这直接影响了其产业化的进程。  而先前推出的产品在市场定位上并不明确,这些产品虽有一定的应用领域,但其介于通用与专用之间,难以打开广阔的市场。微流控芯片产业化的困难就在于其相关技术还不是很成熟,科学家们也还没有找到一致公认的“Killer Application”。而促进其产业化,就是要加强相关研究,在技术和应用上寻求突破。目前,微流控芯片历经十几年的基础研究积累,已经到了一个可以出一些重要的产业化成果的阶段。最近,已经出现了一些好苗头,一些公司又推出一些新的产品,利用微流控芯片完成样品的前处理,然后与其他仪器联用。这些仪器可以手提,可以做现场检测,将会有广阔的应用前景。  这说明微流控技术的产业化虽然还有较长的路要走,但已曙光初现。我们希望有远见和有实力的企业能够加入到这一进程中,与科学家们一起合作努力,以早日实现微流控技术的全面产业化和广泛的普及应用。  后记  在近两个小时的采访之中,方群教授一直强调:“微流控芯片的研究目前主要是基础研究为主,微流控技术的产业化需要较长时间来解决一些基本问题。”也许正是因为如此,微流控芯片的产业化之路才走得如此艰难。但即便如此,方群教授以及他所在的浙江大学微分析系统研究所一直“顶天立地”,从未放弃过在微流控芯片科研与产业化方面的努力,他们这种坚持不懈、勇攀高峰的精神让人着实敬佩。  采访编辑:杨丹丹  附录1:方群教授简历  方群,浙江大学化学系教授,浙江大学微分析系统研究所所长。辽宁大学分析化学学士(1985年-1989年),沈阳药科大学药物分析学硕士(1989年-1992年)和博士(1994年-1998年)。目前主要从事微流控分析的研究工作,研究方向包括微流控高通量试样引入和前处理技术、微流控液滴分析和毛细管电泳分析、微流控光谱和质谱检测技术、微型化分析仪器研制,以及微流控系统在生化分析、临床检验、药物筛选、蛋白质组和单细胞分析中的应用。发表研究论文60余篇,参加出版专著2部,申请国家发明专利18项,其中9项获得授权。主持国家和省部级科研项目10项,2006年获得教育部新世纪优秀人才支持计划资助,2008年获国家自然科学基金委杰出青年基金资助。目前担任中国化学会有机分析专业委员会委员。担任“Analytica Chimica Acta”、“Analytical and Bioanalytical Chemistry”、“色谱”、“分析化学”、“分析科学学报”和“化学传感器”的编委。  附录2:浙江大学微分析系统研究所介绍  浙江大学微分析系统研究所由我国著名分析化学家方肇伦院士创建于2000年初,目标是发展具有中国特色的微流控芯片(Microfluidic chip)分析技术和系统。微流控芯片分析是当前的科技前沿领域之一,其目标是通过对芯片微通道网络内微流体的操纵和控制,完成化学实验室中取样、预处理、反应、分离和检测等分析功能,实现分析装备的微型化、集成化和自动化,最终实现芯片化-即所谓“芯片实验室”(Lab-on-a-chip),使分析效率成百倍、千倍地提高。  研究所现有教授5名,副教授5名,实验技术人员1名,博士和硕士研究生40余名。研究所每年在化学一级学科和分析化学二级学科招收博士和硕士研究生10余名,并接受博士后人员和访问学者,同时欢迎生物、医学、药学、生物医学工程、光学、电子学、流体力学等相关专业的同学报考研究生。  研究所研究方向涉及微纳流控芯片加工和表面处理技术、工艺,微流体操控技术、方法和理论,微流控芯片取样、试样引入和前处理、反应技术,微流控芯片光谱、电化学、质谱检测技术研究,基于微流控原理的液滴分析、毛细管电泳、流动注射分析、生物传感器分析系统研究,以及纳米技术和仿生技术在微流控系统中的应用,基于微流控技术的微型化分析仪器研制,微流控系统在生物分析、单细胞分析、蛋白质组研究、临床检验、高通量筛选中的应用。同时,在此基础上积极寻求微流控分析仪器的产业化之路。  研究所成立近十年来,在全所师生的共同努力下,取得了可喜的成绩,探索出了一条有中国特色的发展微流控芯片分析的有效途径。在该领域的研究取得一系列重要突破,部分成果,包括:微流控玻璃芯片的简易加工技术、微流控芯片高通量试样引入技术、微流控单细胞分析的集成化、微流控吸收光度和激光诱导荧光检测系统的微型化等在相关学术领域已具备一定国际领先优势。研究所成立以来,共承担和参加省部级以上项目50余项,其中主持国家自然科学基金重大项目1项,国家杰出青年基金1项,国家自然科学基金面上项目11项,主持国家科技部863项目课题1项,973项目课题1项,主持省部级科研项目10余项。发表SCI论文140余篇。申请国家发明专利40余项,其中21项已获授权。2003年科学出版社出版了由方肇伦院士主编,研究所全体老师参加撰写的国内第一部有关微流控芯片的专著“微流控分析芯片”。此外,研究所还研制了多种具有自主知识产权的微流控分析仪器装置或样机,为相关仪器的产业化提供了有利基础。
  • 第三届微流控细胞分析学术报告会圆满落幕——新原理、新技术未来可期
    2021年9月29日,为期两天的第三届微流控细胞分析学术报告会在北京中国国际展览中心(天竺新馆)圆满落幕。本届论坛由中国分析测试协会和清华大学化学系联合举办,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台。本届会议,共计20余位资深专家学者就微流控细胞分析领域的最新科研成果分别作精彩报告!会议首日,10余位专家就器官模拟与细胞代谢分析等领域进行分享探讨(点击查看首日精彩报告:微流控技术大有可为)。会议次日,7位专家学者分别就微流控新原理、新技术等方向带来精彩主题报告,详情如下:报告人:南京大学 李仲秋副研究员报告题目:《生物传感和能源转化的纳流控器件》李仲秋副研究员报道了各类纳流控器件应用于不同的材料与生物的成果,对比说明了纳流控器件之于传统器件在性能上的优势,并提出了纳米通道中分子检测方法的一般模型。报告人:南方科技大学 蒋兴宇教授报告题目:《微流控-液态金属的细胞调控与分析》蒋兴宇教授介绍了用微流控芯片来提升细胞分析检测性能的系列方法与各类应用,此外还着重介绍了结合微流控芯片的金属高分子导体(MPC),拓展了微流控芯片研究的新思路。报告人:北京工业大学 汪夏燕教授报告题目:《基于超薄可控温微坑阵列芯片的单细胞胞内递送》汪夏燕教授介绍了一整套单细胞操作的基本流程,包括对细胞的捕获、固定到探针递送等步骤,结合三光路显微镜成像技术,能有效实现对单个细胞的精准检测研究。报告人:中国农业大学 林建涵教授报告题目:《用于病原微生物快速检测的微流控生物传感器研究》林建涵教授提出了食源性致病微生物检测的重要性,并针对此问题提出了免疫磁珠分选的方法,实现了对目标微生物的高通量检测;此外还针对提升检测灵敏度介绍了电化学生物传感器等有效新型分析方法。报告人:清华大学 梁琼麟教授报告题目:《药物分析“芯”方法》梁琼麟教授介绍了建立“芯片药物实验室”的基本思路,并基于此设计了一系列的芯片器官与仿生材料,以物理结构重现、细胞结构重现和器官功能重现为目标,完成了肾小球模拟的重要工作。报告人: Chinese Chemical Letters编辑部 郭焕芳副主编报告题目:《中国化学快报进展》郭焕芳副主编介绍了CCL杂志的创办理念与该期刊目前取得的优异成绩,并呼吁各位学者在撰写高水平论文的同时,保持学术端正。报告人:华中农业大学 何子怡副研究员报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》何子怡副研究员通过总结传统芯片液滴产生的模式,提出了基于声控产生液滴的新型方法,兼备了仪器的便携性与实验的可控性,为芯片液滴技术发展提供了新的思路。报告环节过后,清华大学林金明教授就闭幕式致辞。清华大学林金明教授闭幕式致辞林金明教授总结了为期两天的专家报告内容,为各位从事微流控生命分析的学者们提出了期许,希望大家铭记该会议的追求创新的精神,共同推动中国微流控分析领域更上一层楼。后记放眼未来,林金明教授认为微流控芯片在单细胞分析等领域应用意义重大,将会对生命科学的研究起到巨大的促进作用。与此同时,我们期待各位专家学者在微流控细胞分析技术领域取得更多的突破与创新,也期待在下一届微流控细胞分析技术学术会议能继续为听众带来如此前沿技术的饕餮盛宴。
  • 第六届微流控芯片高端论坛在广州召开
    p style="text-indent: 2em "strong仪器信息网讯/strong 2018年12月15日——16日,由中国科学院大连化学物理研究所和中国生物检测监测产业技术创新战略联盟主办,广东省生物医学工程学会临床实验医学分会、广州市第一人民医院、广州市宝创生物技术有限公司承办,仪器信息网协办的“第六届微流控芯片高端论坛”在广州市广州大厦召开。论坛旨在促成产、学、研、用等多领域人员的充分交流和紧密互动,为微流控芯片研究和产业化提供更充分的信息和资源。会议200余位微流控芯片领域著名学者、生物医学领域著名微流控应用专家以及正在形成中的微流控产业界人士参会交流,分享他们的成果和体会。/pp style="text-align: center " img title="1.jpg" alt="1.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/441376ba-8808-4b12-a85e-fc43aac4f075.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "会议现场/span/pp style="text-indent: 2em "本次微流控芯片高端论坛秉承“小型、高端”的理念,力求为微流控学术和产业领域的互动式交流提供一个有利的平台。会议开幕式由广州市第一人民医院刘大渔(会议执行主席)主持,广东省生物医学工程学会理事长王一飞、广东省生物医学工程学会临床实验分会主任委员徐邦牢和首都医科大学天坛医院实验诊断中心主任康熙雄致辞。/pp style="text-align: center "img title="2.jpg" alt="2.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/51e1b0d9-ab31-44eb-94b1-e9cc9dad2a0b.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "王一飞 广东省生物医学工程学会理事长/span/pp style="text-align: center "img title="3.jpg" alt="3.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/1ea33feb-c457-4038-ba6e-dd38924a3f80.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "徐邦牢 广东省生物医学工程学会临床实验分会主任委员/span/pp style="text-align: center "img title="4.png" alt="4.png" src="https://img1.17img.cn/17img/images/201812/uepic/9cab96d2-dcd8-4c2b-9291-1af8252c1876.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "康熙雄 首都医科大学天坛医院实验诊断中心主任/span/pp style="text-indent: 2em "学术报告部分包括9场特邀报告和22场专题报告。特邀报告内容如下:/pp style="text-align: center "img title="5.jpg" alt="5.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/3b6dd750-7764-425c-a479-e54e754005d4.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "张学记 北京科技大学/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《基于免光刻和3D打印技术微流控装置在肿瘤生物学研究中的应用》/span/strong/pp style="text-indent: 2em "目前,微流控芯片制作往往依赖微机械,微电子加工技术的不断发展也为微流控技术提供了很高的平台。不过昂贵的微电子加工设备和较高的技术门槛限制了微流控芯片技术的推广和应用。张学记教授介绍了他们课题组在微流控芯片领域,特别是不依赖于光刻等微加工手段和桌面3D打印技术制备微流控芯片装置,并将这些装置应用于肿瘤细胞生物学领域的研究及取得的最新成果。包括:(1)通过3D打印快速成型技术,制成悬滴式细胞培养装置,培养3维肿瘤细胞团簇,对药物刺激下的凋亡,细胞团簇在3D细胞外基质中的转移迁移等生物学表型和基因表达做了系统的研究;(2)通过3D打印微流控芯片装置和无光刻模板制备方法,对肿瘤细胞微环境进行有效的模拟,对肿瘤迁移以及基因表达做了系统深入的研究。有助于更好的理解肿瘤-体细胞-微环境三者之间的相互联系和相互作用。/pp style="text-align: center "img title="6.jpg" alt="6.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/3ec6094c-1df4-4503-af58-c80d3b290432.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "杨朝勇 厦门大学/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《基于微流控芯片技术的液体活检新方法》/span/strong/pp style="text-indent: 2em "循环肿瘤细胞(CTC)的检测在肿瘤分期诊断、动态监测、疗效评估、药物开发和预后监测等方面具有重大意义,是一种可望用于替代肿瘤组织活检的液体活检新技术。然而依赖于单一上皮源性抗体的CTC免疫富集及计数检测方法无法对不同分型的CTC进行全面捕获、难于无损释放CTC、无法提供深度的分子病理信息。基于微流恐慌技术,杨教授团队发展了高效核酸适体筛选方法,获得了多条可识别不同CTC的高亲和力、高特异性核酸适体序列;利用流体调控与表面调控技术,杨教授团队构筑了基于细胞尺寸与生物识别特性协同捕获的微流控微柱阵列芯片,实现了CTC的高效捕获与无损释放;借助微流体器件的精准操作优势,团队还开发了一些列高通量单细胞分析方法,用于解释CTC的分子病理信息。团队所发展的肿瘤细胞的识别探针、捕获芯片与高通量单细胞分析方法在癌症的精准诊断、用药指导、疗效评估等方面具有重要的应用前景。/pp style="text-align: center "img title="7.jpg" alt="7.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/d68ef01d-e384-4534-a263-72772ceb851b.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "方群 浙江大学/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《基于微流控液滴系统的核酸分析》/span/strong/pp style="text-indent: 2em "在报告中,方群教授介绍了研究团队基于顺序操作液滴阵列(Sequential Operation Droplet Array,SODA)技术发展的核酸分析系统。在2015年,该团队奖SODA系统应用于单细胞基因表达定量分析,实现单细胞基因分析所需的液滴反应器生成、单细胞捕获、细胞裂解、RNA逆转录、PCR扩增、实时荧光定量检测等多个操作。2017年,该团队将SODA系统应用于数字PCR检测中,发展了一种可快速、灵活形成多体积液滴阵列的方法,并将其应用于多体积数字PCR的绝对定量分析。最近,方群教授基于SODA技术,研制了集成化、低成本实时荧光定量PCR分析系统,该系统可自动完成基于固相萃取的样本核酸提取、样本再分配、逆转录、PCR扩增、实时荧光定量检测,并成功应用于呼吸道感染常见病原体的分析。span style="text-align: center "/span/pp style="text-align: center "img title="11.jpg" alt="11.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/70816ebb-bbb5-4d6d-8325-aefe65764e6b.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "刘大渔 华南理工大学附属广州市第一人民医院/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《微流控芯片:国内IVD行业的基于与挑战》/span/strong/pp style="text-indent: 2em "刘大渔课题组工作于临床检验第一线,其研究目的是针对临床检验工作中的通电问题,针对性的发展创新微流控诊断技术。在报告中,刘大渔研究员介绍了微流控芯片的基础知识、技术特点及典型应用案例。选择了微流控诊断技术最主要的几个应用领域,介绍了代表性的微流控产品和或技术。面对新形势下微流控诊断产业的机遇与挑战,刘大渔研究员从检验医学工作者和微流控技术研究者的双重角度,剖析了微流控技术产业化的难点和解决方案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7b5ce1c4-937d-462b-b79f-0df057387888.jpg" title="罗勇.jpg" alt="罗勇.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "罗勇 大连理工大学/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《器官芯片的研究与应用》/span/strong/pp style="text-align: left text-indent: 2em "span style="text-indent: 2em "器官芯片是2016年世界达沃斯论坛评选的“十大新兴技术”之一,其应用面覆盖药物筛选、医学研究、食品安全、生殖健康等多个领域。罗教授在本次报告中主要介绍器官芯片发展史,技术研究与应用,主要内容包括:(1)肾芯片及其在药物肾毒性评价中的应用;(2)肝芯片及其在联合用药肝毒性评价中的应用;(3)胰岛芯片及其在药物活性评价中的应用;(4)肠芯片及其在肠道菌群研究中的应用;(5)血管糖鄂芯片及其在保健品研究中的应用;(6)肿瘤芯片及其在医学研究中的应用等。/spanbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/1e8e82a8-3b47-426d-b3a3-7cef625c8708.jpg" title="杨梦甦.jpg" alt="杨梦甦.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "杨梦甦 香港城市大学/span/pp style="text-align: center "strong报告题目:《结合微流控技术与单细胞分析研究肿瘤异质性》/strong/pp style="text-indent: 2em "近年来,结合微流控芯片和单细胞分析技术用于肿瘤异质性的研究引起了广泛关注。在本次报告中,杨教授着重介绍了课题组在这一领域的最新进展。杨教授团队开发了一种带有单细胞固定和迁移通道的微流控芯片,研究来自同一细胞系的癌细胞迁移异质性。利用机械约束可调的微流控芯片控制癌细胞的集体迁移,并通过单细胞转录分析,系统的研究了主导细胞和追随细胞的EMT相关基因表达的异质性。同时,该团队还开发出了一种用于捕获上皮性卵巢恶性腹水中的单细胞和细胞簇的微流控芯片,并基于对EMT相关基因进行单细胞转录分析。对被分离细胞的簇内和簇间异质性进行了系统的研究。毫无疑问,微流控技术和单细胞分析技术的结合将在癌症生物学研究和精准医学应用中有巨大潜力。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/2e3e058e-08fd-4cc6-a633-129def37d751.jpg" title="叶嘉明.jpg" alt="叶嘉明.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "叶嘉明 浙江清华长三角研究院/span/pp style="text-align: center "strong报告题目:《微流控芯片的广度开发和深度产业化》/strong/pp style="text-indent: 2em "集成电路芯片使计算机微型化,而微流控芯片使实验室微型化。当前,微流控芯片已在医疗体外诊断、食品安全、环境监测、药物筛选、军事科学等领域获得深入的基础研究与极广泛的应用研究,学术界和产业界一致认为:微流控芯片“极有可能领导化学和生物医学的下一场革命”,并成为未来“必将被深度产业化的科学技术”。叶博士在本次报告中介绍了微流控芯片的技术特征、战略意义、国内外研究及产业化现状,重点围绕报告者多年的微流控产品研发经验,探讨了微流控芯片在应用研究及产业化方面的工作思路。报告内容包括:(1)微流控芯片技术特征与战略意义;(2)国内外微流控研究及产业化现状;(3)微流控芯片产业化的关键要素;(4)微流控POCT系统在食品安全快速检测领域中的产业化进展。报告结尾,叶博士对清华长三角研究院微流控系统工程研究中心进行了简单的介绍。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7e612b05-5b90-4bbf-a5b8-1cb8dbf52663.jpg" title="吴洪开.jpg" alt="吴洪开.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "吴洪开 香港科技大学/span/pp style="text-align: center "strong报告题目:《对微流体芯片产业化的探索》/strong/pp style="text-indent: 2em "微流控芯片技术(Microfluidics)泛指在微尺寸范围内控制、操作和检测流体的技术,是指在微电子、微机械、生物工程和纳米技术基础上发展起来的一门全新交叉学科。在过去的二十多年来,微流控技术发展迅猛,在生物、化学、医学的等领域已经展现了巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新应用研究领域。由于微流控芯片自身的各种特点,相较于它在研究实验室中的广泛应用,微流控技术的产业化发展相对较慢。吴教授在本次报告中主要介绍了近期团队关于微流体技术在细胞冷冻保存及DNA检测方面的产业化探索。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6ebc4663-a27c-45bd-823a-5c3e9c32c069.jpg" title="林炳承.jpg" alt="林炳承.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "林炳承 中国科学院大连化学物理研究所/span/pp style="text-align: center "strong报告题目:《微流控芯片的战略机遇》/strong/pp style="text-indent: 2em "微流控芯片使当代极为重要的新型科学技术平台,国家层面产业转型的潜在战略领域,科技部2017年明确的“颠覆性技术”。林教授指出,微流控芯片的第一轮产业化已在体外诊断领域启动,下一轮产业化将要波及单细胞分析、第二代和第三代测序技术、用于超大规模和超高通量的药物和其他材料筛选的液滴芯片技术、以及用于过程监控、个体化治疗、制药产业和化妆品产业等的器官芯片技术。林教授本次报告主要讨论了未来十年、十五年微流控芯片将会面临的一个重要战略机遇期,并对这一领域的广大研究人员、工程技术人员和产业界认识提出了建议。/pp style="text-indent: 2em "22位专家做了专题报告,部分专题报告如下:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/a16a3d2e-56d9-4b51-8b59-fc009bd48b16.jpg" title="0.png" alt="0.png"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "周小棉 广州市宝创生物技术公司/span/pp style="text-align: center "strong报告题目:《无源微流控芯片的研制与产业化》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0c271cef-45db-420e-a8d6-5e8c08b170c0.jpg" title="程鑫.jpg" alt="程鑫.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "程鑫 南方科技大学/span/pp style="text-align: center "strong报告题目:《数字液滴微流控芯片平台技术介绍及最新进展》/strong/pp style="text-align: center "img title="14.jpg" alt="14.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/863674fa-648f-46c8-bfca-4a154874a5ea.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) " 巫金波 上海大学strong/strong/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《表面张力限制液滴阵列芯片》/span/strong/pp style="text-align: center "img title="15.jpg" alt="15.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/39f9e298-5ad2-473d-b645-c1332e454c0d.jpg"//pp style="text-align: center " span style="color: rgb(127, 127, 127) "李博伟 中国科学院烟台海岸带研究所/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《新型旋转微阀纸芯片分析平台在环境和生化分析中的应用》/span/strong/pp style="text-align: center "img title="16.jpg" alt="16.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/6c8fed2f-8492-4f90-bc98-5459dbc3836f.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "颜智斌 华南师范大学/span/pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "报告题目:《针对微流控芯片的新型低成本非超净间加工方法》/span/strong/ppstrongspan style="color: rgb(0, 0, 0) "/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/44f133bf-0e3f-482d-88e2-1a155b742c1f.jpg" title="郭永.jpg" alt="郭永.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "郭永 清华大学/span/pp style="text-align: center "strong报告题目:《微液滴数字PCR与产业化》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/545b4d6d-b992-4662-b84c-0d4f19d11ba4.jpg" title="周朋.jpg" alt="周朋.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "周朋 北京博晖创新光电技术光电技术股份有限公司/span/pp style="text-align: center "strong报告题目:《微流控HPV基因分型检测产品的产业化及其在市场的应用状况/strong》/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/31637db4-b8ea-4c6e-a5fe-0c9dc3977d11.jpg" title="周蕾.jpg" alt="周蕾.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "周蕾 中国科学院过程工程研究所生化工程国家重点实验室/span/pp style="text-align: center "strong报告题目:《微流控、纳米材料和体外诊断技术》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0f3c53c6-1b47-4fd4-9417-5b84b520c9c8.jpg" title="刘婷娇.jpg" alt="刘婷娇.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "刘婷姣 大连医科大学/span/pp style="text-align: center "strong报告题目:《肝肾PTS培养微流控芯片的构建及其在肿瘤外泌体器官趋向性研究中的应用》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/389c4844-9cf6-47c1-a6e3-b23b8b46ed86.jpg" title="陆瑶.jpg" alt="陆瑶.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "陆瑶 中国科学院大连化学物理研究所/span/pp style="text-align: center "strong报告题目:《基于高密度抗体阵列的单细胞分析/strong》/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0fdd4e9f-1fd4-4117-8a18-3e9595ba3c61.jpg" title="李远.jpg" alt="李远.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "李远 重庆医科大学附属永川医院/span/pp style="text-align: center "strong报告题目:《直微通道微流控芯片:一种简易的细胞生物学功能分析工具》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/99ad1e62-053e-46a8-947e-f0be5cfa5518.jpg" title="张元庆.jpg" alt="张元庆.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "张元庆 中山大学/span/pp style="text-align: center "strong报告题目:《基于微流控芯片的单细胞迁移研究》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/e0b273f0-90ff-4693-bded-7621e73fddac.jpg" title="马波.jpg" alt="马波.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "马波 中科院青岛生物能源与过程研究所/span/pp style="text-align: center "strong报告题目:《拉曼单细胞分析分选技术及其应用》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/cad92a82-2a2e-4673-bc6b-0f2d83d0ffdc.jpg" title="黄术强.jpg" alt="黄术强.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "黄术强 中科院深圳先进技术研究院/span/pp style="text-align: center "strong报告题目:《多尺度微流控技术在细菌耐药性研究中的初步应用》/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/bae60360-2eb7-436b-a872-a3b7c3ad380e.jpg" title="胡斌峰.jpg" alt="胡斌峰.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "胡槟枫 南方科技大学/span/pp style="text-align: center "strong报告题目:《从芯片材料到仪器信号读出:构建微流控诊断平台的逻辑》/strong/pp style="text-indent: 2em "论坛第二天举办了“微流控芯片产业化的机遇与挑战”的主题沙龙,由重庆医科大学检验医学院周钦主持,来自浙江清华长三角研究院的叶嘉明、上海奥普生物医药有限公司的王 鼎、东莞博识生物科技有限公司的霍卫松以及澳银资本的李晋等几位嘉宾就微流控芯片的机遇、挑战和产业发展方向作了热烈的讨论。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/5d12afb5-fa5e-4328-a051-70ad3419229d.jpg" title="0.jpg" alt="0.jpg" width="447" height="447" style="width: 447px height: 447px "/ /pp style="text-indent: 2em "众多企业携创新微流控产品亮相本次会议。广州宝创、深圳天大、广州万孚、杭州霆科、广东国盛、北京百康芯、深圳理邦和赛沛等国内外企业展示了他们的微流控芯片产品。深圳市合川医疗和广州万孚的代表还在午餐研讨会介绍了他们的微流控芯片产品和技术服务。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6c4670a8-3157-4239-a2bd-a395123c6b35.jpg" title="00.jpg" alt="00.jpg"/ /pp style="text-align: center "span style="color: rgb(127, 127, 127) "/span/pp style="text-align: center "span style="color: rgb(127, 127, 127) "微流控厂商部分产品展示/span/ppspan style="color: rgb(127, 127, 127) "/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/57e8dbf7-831c-4ff7-a5f4-eb22b4cff8e9.jpg" title="111.png" alt="111.png"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "本次大会承办单位广州市宝创生物技术有限公司系列产品/spanbr//pp style="text-indent: 2em "为期两天的微流控芯片高端论坛圆满落下帷幕,关于本次会议更多精彩内容,请关注仪器信息网后续报道。/p
  • 微流控技术大有可为——第三届微流控细胞分析学术报告会成功召开
    仪器信息网讯 金秋九月,两年一度的行业盛会,第十九届分析测试学术报告会暨展览会(简称:BCEIA 2021)于2021年9月27-29日在北京中国国际展览中心(天竺新馆)召开。作为BCEIA的重要组成部分,9月28日,由中国分析测试协会和清华大学化学系联合举办的第三届微流控细胞分析学术报告会在中国国际展览中心天竺新馆召开,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台,展示微流控细胞分析领域的最新科研成果。会议当天参会人员逾百人,现场座无虚席。 开幕式现场清华大学化学系林金明教授致辞会议首日,共有10余位专家分别作精彩主题报告:报告人:东北大学 王建华教授 报告题目:《等离子体质谱(单)细胞分析研究》王建华教授介绍了基于等离子体质谱(ICP-MS)的单细胞分析研究。基于流式进样,用时间分辩ICP-MS分析单细胞中微量铬,发现细胞铬浓度与培养液中Cr(III)或Cr(VI)密切关联。三维微交叉液滴发生与ICP-MS联用,使多细胞事件概率小于0.005%,发现MCF-7细胞摄取金纳米粒子时存在明显异质性。利用平面和三维螺旋通道-惯性流辅助单细胞操控,实现高通量单细胞进样,结合ICP-MS分析单细胞对金属纳米粒子的摄取及分布。结合核酸适配体修饰的金纳米粒子与肿瘤细胞表达的biomarker蛋白的相互作用,可检测单个循环肿瘤细胞。报告人:复旦大学 刘宝红教授报告题目:《基于微流控芯片的单细胞检测》刘宝红教授介绍了一系列单细胞单分子成像技术。在生物体内,细胞生活在复杂的微环境中,细胞通过感知周围微环境的变化而调节自身行为和功能,从而影响细胞的形态、基因表达、蛋白质水平和定位,因此,需要发展微纳尺度的微环境模拟和测量方法。在这些变化过程中,蛋白质及其微环境中分泌的特异性生物分子的差异表达起到了关键的作用。该课题组发展了一系列单细胞单分子成像技术,实现了对细胞内外代谢小分子、miRNA、蛋白质等的成像与监测;研究了在微纳限域条件下细胞及其关键生物分子的高灵敏度测量。报告人:上海交通大学医学院分子研究院 张鹏研究员(代厦门大学 杨朝勇教授) 报告题目:《单细胞精准捕获与测序》张鹏教授介绍了该课题组在开发高通量单细胞捕获和分析研究的进展。张鹏教授介绍了利用分子凝胶,实现适体文库三维结构精确调控;利用焓变驱动筛选,提高适体环境适应性。应用机器辅助学习,提高筛选效率。提出协同捕获策略,构筑系列仿生多价和刺激影响界面,实现临床外周血样品CTC高效捕获,开发了无创肿瘤筛查试剂盒。报告人:西安交通大学 赵永席教授报告题目:《单细胞核酸扩增分析》赵永席教授介绍了该课题组在单细胞核酸扩增分析工作进展。核酸是携带遗传信息的重要物质,参与细胞生长、发育、增殖等基本过程。系统分析胞内的核酸序列、碱基修饰以及空间邻近关系等多层次特征,是理解细胞状态、探索生命过程的基础。此次报告将围绕细胞内核酸种类多、同源序列差异小、碱基修饰结构相似、空间邻近距离小所导致的分析检测难题,发展DNA编码扩增分析方法,实现核酸的精准识别与高灵敏定量分析,在单细胞水平解析生命过程与疾病进程中的核酸信息。报告人:中科院大连化学物理研究所 陆瑶研究员报告题目:《基于微流控芯片的单细胞分泌分析技术研究》陆瑶研究员介绍了该课题组在基于微流控芯片的单细胞分泌分析技术研究工作进展。在单细胞水平对这一小部分细胞分泌的生物分子信号实现高灵敏的检测,不仅有助于更清晰认识这些细胞的状态、个体之间的差异/联系等群体细胞研究方法无法分辨的信息,也将有助于发现细胞分泌的异常及其与疾病、药物反应的关系。该课题组利用条形码微流控芯片围绕单细胞分泌谱多组学分析、单细胞分泌谱动态分析、单细胞仿生微环境构建及单细胞操控等方面开展研究,加深了对细胞分泌、通讯异质性规律的认识,并有望为稀有细胞分析等应用提供技术支持。报告人:华中科技大学 刘笔锋教授报告题目:《微流控芯片高通量单细胞分析新方法》刘笔锋教授介绍了该课题组在微流控芯片高通量单细胞分析新方法开发工作进展。单细胞分析是当前分析化学研究的热点,对于揭示细胞异质性及其机制具有重要科学意义,在肿瘤、神经科学、发育生物学和精准医学等领域具有重大应用。刘笔锋重点介绍基于微流控芯片的单细胞分析新技术,聚焦如何实现高通量单细胞分析,包括单细胞水平的化学灌流刺激、药物评价和微生物筛选与分选等及其在生物医学与环境中的应用。报告人:深圳大学 张学记教授报告题目:《微流控芯片细胞多维度分析》张学记教授介绍3D打印技术快速制备可拆卸的微流控装置用于重构肿瘤微环境,该方法极大的便利了以无标记的方式对细胞进行分析和测定。报告人:清华大学 何彦教授 报告题目:《单个纳米颗粒细胞摄取的动态过程分析》何彦教授采用单颗粒暗场成像技术,系统地分析了等离子激元金纳米棒 (AuNR) 在不同条件下的内吞动力学,为细胞摄取纳米颗粒提供了完整的物理图像,为纳米毒性和精准纳米医学的进一步发展提供了重要参考。报告人:国家纳米科学中心 孙佳姝研究员报告题目:《基于微纳传感技术的肿瘤液体活检》孙佳姝研究员介绍了细胞外囊泡作为生物标志物在疾病诊断方面的应用。孙佳姝课题组开发了快速、灵敏、低成本微流控热泳适体传感器与机器学习算法相结合,提高了对乳腺癌和前列腺癌的精准检测,该方法为无创活检提供了新思路。报告人:武汉大学 赵兴中教授 报告题目:《从循环肿瘤细胞到有核红细胞》外周血中的稀有细胞对作为精准医疗的前提和基础的精准诊断,具有不可替代的作用。赵兴忠教授就循环肿瘤细胞和核红细胞这两种外周血稀有细胞的研究进展做了报告。报告人:哈尔滨工业大学 朱永刚教授 报告题目:《细胞代谢物的微流控检测》朱永刚教授介绍了用于检测细胞代谢物(如葡萄糖和乳酸)的微流控装置,并且介绍了基于液滴技术的单细胞蛋白质分析的发展现状。报告人:北京工商大学 林玲教授 报告题目:《3D微流控肿瘤微环境用于细胞代谢产物的研究》林玲教授介绍了基于微流控技术构建的3D细胞共培养模型以及3D肿瘤微环境模型,并介绍了这些模型在药物诱导以及代谢检测等方面的应用。报告人:岛津(中国)公司 韩美英博士 报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》韩美英博士详尽介绍了岛津公司和清华大学林金明教授研发的CELLENT CM-MS微流控芯片质谱联用仪的功能、特点。CM-MS能够更准确地反映生物的真实状态,可为细胞代谢研究、药物代谢研究、疾病机理研究等领域提供强大有效的实验工具。随后,来自海南大学的周诗正分享了题目为《基于深度学习神经网络的图像激活微流控微藻细胞检测系统》的口头报告。至此,第三届微流控细胞分析学术报告会第一天日程圆满落幕,会议受到了众多学者嘉宾以及参会人员的一致热烈反响。期待明日精彩报告继续!会议现场座无虚席参会者踊跃提问本文涵盖了9月28日当天第三届微流控细胞分析学术报告会报告的部分精彩内容,而为期两天的报告会还将继续在会场二楼的E203会议室内进行,欢迎持续关注。
  • 兰伯艾克斯|类器官与微流控芯片的“医工结合”
    器官芯片是由光学透明的塑料、玻璃或柔性聚合物等构成的微流控细胞培养设备,包括由活细胞组成的灌注空心微通道,通过体外重建组织器官水平的结构功能,再重现体内器官的生理和病理特征。器官芯片在类器官的基础上,更加有效的模拟药物代谢、器官之间的相互作用。器官芯片完美诠释FDA微生理系统概念 如下图中的肺器官芯片,是目前模拟肺部体外生理功能的最优模型,其上下两层被生物膜所分开。上层为肺细胞,流通的是空气;下层为肺毛细血管细胞,流通的是培养液。两边为真空侧室,通过循环吸力来使得两侧的真空通道进行伸缩,从而带动膜上细胞的收缩,实现传统培养皿不可能实现的呼吸功能。开发新药的研发成本模型 器官芯片的核心技术之一微流控,是指精确控制微量流体,甚至创建浓度梯度,利用微流体技术使营养物质和其它化学信号以可控的方式运动和传递,可构建和模拟人体组织微环境。美国NIH、FDA和国防部曾在2011年牵头推出 “微生理系统” 计划,把器官芯片技术的开发和应用上升到国家战略层面。来源:Vunjak-Novakovic, et al., (2021). Organs-on-a-chip models for biological research. Cell 微流控芯片的常用材料包括PDMS(聚二甲基硅氧烷)、玻璃、硅、PMMA等。PDMS材料无毒透明、成本低廉,但存在非特异性地吸收小分子的问题。玻璃和硅材料可达纳米级加工精度,但成本较高。目前学界已围绕各种热塑性塑料展开相关探索,如聚氨酯、环烯烃聚合物和共聚物等。来源:Organs-on-Chips Market and Technology Landscape 2019✦ 类器官的培养✦ 类器官培养是一种模拟人体器官结构和功能的培养技术,具有广阔的应用前景。然而,类器官培养的过程比较漫长且试剂昂贵,需要借助专业的设备才能实现。 兰伯艾克斯的LAB-MI二氧化碳摇床式培养箱是一种适用于类器官培养的设备,具有独特的优势。该设备采用先进的摇床技术,能够更好地适应类器官3D生长的特性,促进细胞增殖和分化。此外,该设备还具有稳定的二氧化碳环境控制功能,能够为细胞提供更加真实的生长环境。 兰伯艾克斯作为一家研发制造能力强的公司,可以配合微流控、器官芯片、组织工程等应用定制开发,为类器官培养提供更加专业的解决方案。
  • 微流控芯片——注定被深度产业化的革命性技术
    原标题:微流控芯片—注定被深度产业化的科学技术本文由霆科生物创始人、贝壳社BioShow嘉宾叶嘉明原创分享。微流控芯片已经发展成为一门涉及材料、化学、物理、微机电、生物、医学等领域的综合性交叉学科,我从2003年研究生阶段在导师田昭武院士的引领下有幸进入这个前沿领域,先后从事基础研究、应用研究、产品开发工作,到今天开始走上创业的道路,也仅仅只能说局部地领略到微流控芯片这个伟大“艺术平台”的魅力。因此,今天在有限的时间里,我主要结合个人体会谈谈微流控芯片技术的一些观点,希望能够起到“抛砖引玉”的作用。另外,本人在博士后阶段师从于微流控芯片领域著名专家——林炳承教授,此次分享的内容部分引用了中科院团队近二十年来在微流控芯片领域丰硕的科研成果,以及导师林炳承教授的观点。今天我和大家分享的主题是“微流控芯片——注定要被深度产业化的科学技术”。(一)微流控芯片简介1.1 微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS)技术的发展,电子计算机已由当年的“庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。与之发展类似,今天我们介绍的微流控芯片,又称芯片实验室(Lab-on-a-Chip),是一种以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。1.2 各种材质和功能的微流控芯片及实验室相关配套仪器微流控芯片早期也是从MEMS技术发展而来,通过微加工工艺在硅、金属、高分子聚合物、玻璃、石英等材质的基片上,加工出微米至亚毫米级的流体通道、反应或检测腔室、过滤器或传感器等各种微结构单元,而后在微米尺度空间对流体进行操控,配合流体控制或分析仪器自动完成生物实验室中的提取、扩增、萃取、标记、分离、分析,或者细胞的培养、处理、分选、裂解、分离分析等过程。1.3 微流控芯片的发展及应用领域上世纪90年代初,A.Manz等人采用芯片实现了此前一直在毛细管内完成的电泳分离,显示了它作为一种分析化学工具的潜力;90年代中期,美国国防部提出对士兵个体生化自检装备的手提化需求催生了世界范围内微流控芯片的研究;在整个90年代,微流控芯片更多的被认为是一种分析化学平台,因此往往和“微全分析系统”(Micro Total Analysis System, u-TAS)概念混用。因此,原则上,微流控芯片作为一种“微全分析”技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。2000年G. Whitesides等关于PDMS软刻蚀的方法在Electrophoresis上发表,2002年S. Quake等以微阀微泵控制为主要特征的“微流控芯片大规模集成”文章在Science上发表,这些里程碑式的工作使学术界和产业界看到了微流控芯片超越“微全分析系统”的概念而发展成为一种重大的科学技术的潜在能力。例如,利用微流控芯片作为一种微反应器,通过在微流控芯片上开展组合化学反应或结合液滴技术,有望用于药物合成与筛选,或纳米粒子、微球、晶体等的高通量、大规模制备,甚至形成一种“芯片上的化工厂或制药厂”。(二)微流控芯片的战略意义自微流控芯片诞生以来,一直受到学术界和产业界的极大关注。2001年,“Lab on a Chip”杂志创刊,它很快成为本领域的一种主流刊物,引领世界范围微流控芯片研究的深入开展。2004年美国Business 2.0杂志在一篇封面文章把芯片实验室列为“改变未来的七种技术之一”。2006年7月Nature杂志发表了一期题为“芯片实验室”专辑,从不同角度阐述了芯片实验室的研究历史、现状和应用前景,并在编辑部的社评中指出:芯片实验室可能成为“这一世纪的技术”。至此,芯片实验室所显示的战略性意义,已在更高层面和更大范围内被学术界和产业界所认同。2.1 作为一种战略性的科学技术,微流控芯片的发展有它的内在必然性首先,微型化是人类社会发展的一种趋势,面对我们所生存的已经消耗过度的地球,微型化反映了人类对资源枯竭的忧虑和对资源利用的优化。其次,世界上有太多的技术和流体操控有关,而当被操控的流体在一个微米尺度的空间里流动的时候,会出现很多新的现象,其中的一部分至今还没有被我们所充分认识。第三则是基于对系统研究的需求。系统学研究整体,更研究构成整体的各个局部之间的相互联系,自古以来,人类一直缺少微小但又能操控全局的工具,微流控芯片能承载多种单元技术并使之灵活组合和规模集成的特征使其可能成为系统研究的重要平台。2.2 微流控芯片的战略意义还根植于它和信息科学、信息技术的特殊关系一般认为,在二十世纪,人们借助于电子在半导体或金属中流动得到的“信息”,成就了具有战略意义的信息科学和信息技术;而在二十一世纪,通过带有可溶性生物分子或悬浮细胞的水溶液在微流控芯片通道或平面上流动以研究生命,理解生命,以至部分地改造生命,将有可能同样成就一种新的具有战略意义的科学技术:微流控学。因为,“生命”和“信息”构成了现代科学技术的核心。2.3 微流控芯片——当今国家产业转型的一种先导型科学技术微流控芯片是注定要被深度产业化的科学技术。这种判断首先当然是源于全球性产业转型需求的不可逆转,需求加剧,进程加快;另一方面,或许更为重要的,则是基于对这一科学技术在一些重大领域不可替代性的认识,而这种认识只是在最近的若干年内才被人们所逐步接受。它很可能发展成为当今产业转型的一种模式,对以生物经济为代表的新型经济产生重要影响。例如未来几年内,如果将微流控芯片与“生物手机”、“互联网+”进一步结合,这样一个由一种新兴技术引发的可能具有全局性影响的趋势,是否能够因此诞生一批“风口”行业值得大家期待。(三)基于微流控芯片的代表性关键技术3.1 新一代床边诊断(point of care test,POCT)技术——Microfluidics-based POCTPOCT可直接在被检者身边提供快捷有效的生化指标,现场指导用药,使检测、诊断、治疗成为一个连续过程,对于疾病的早期发现和治疗具有突破性的意义。POCT仪器发展趋势应是小型化、“傻瓜”式,操作简单,无需专业人员,直接输入体液样本,即可迅速得到诊断结果,并将信息上传至远程监控中心,由医生指导保健。目前,市场上有多种即时诊断方法,简单的流动测试工作没有流体管理技术,而当测试复杂性增加时,微流控技术是必要的。微流控芯片所具有的多种单元技术在微小可控平台上灵活组合和规模集成的特点已使其成为现代POCT技术的首选,经过近年的发展,已涌现了一批微流控芯片POCT分子诊断和免疫诊断的成功案例。(Cited from: Commercialization of microfluidic point-of-care diagnostic devices, Lab Chip, 2012,12, 2118-2134)3.2 超高通量筛选的主流平台——微流控液滴芯片在微流控芯片通道上加入两种互不相溶的液体,将其中的分散相以微小体积单元(10-15 L-10-9 L)的形式和极快的速度(100-10000个/秒)分散于连续相中,即可形成用作微反应器或微量生化样品载体的液滴。微流控芯片液滴已被认为是迄今为止最重要的微反应器,能提供一种在单分子和单细胞层面快速开展超大规模,超低含量反应的平台。液滴操控灵活,形状可变,大小均一,又有优良的传热传质性能,产生频率已达数十到数百KHz,在高通量药物筛选和材料筛选领域显示了巨大的潜力。(Cited from: Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed. 2006, 45, 7336-7356)3.3 哺乳动物细胞及其微环境操控平台——微流控芯片仿生实验室由于微流控芯片的构件尺寸和细胞吻合,并可同时测定物理量、化学量和生物量,它已成为对哺乳动物细胞及其微环境进行操控的最具潜力的平台。目前已可以构建微米量级且相对封闭的三维细胞培养、分选、裂解等操作单元,并把这些单元成功延伸到组织和器官。器官芯片是一种更接近仿生体系的模式,可在一块几平方厘米的芯片中培养各种活体细胞,形成组织器官,乃至由不同器官芯片进一步组成活体芯片,从而模拟一个活体的行为并研究活体中整体和局部的种种关系。在药学领域,器官芯片将被部分替代小白鼠等模型动物,用于验证候选药物,开展毒理和药理作用研究。(四)微流控芯片的产业化现状和发展趋势4.1 微流控芯片的市场前景微流控芯片作为一种革命性的技术平台,其市场前景显然是极其巨大的。最近几年微流控芯片取得了突破性进展,引起产业界的极大关注。这些突破性进展主要表现在两个方面,一是已涌现出一批关健性技术,它们在很大程度上具有不可替代性,并因此形成以医学和药学为代表,覆盖面很宽的应用领域,例如最近发展起来的器官芯片、液滴微流控芯片。其中,器官芯片或人体芯片,有望部分代替药物研发过程中的临床前动物实验,最大限度地节约研发成本、缩短研发周期,并且解决动物权等伦理问题,具有极其巨大的潜在市场价值。二是其中的一些应用已经或正在形成规模产业,例如基于微流控技术的新一代床边诊断(Microflluidics-based POCT)系统,被产业界认为目前最有可能成为“Killer Appliction”(杀手级应用)的微流控芯片产品,其市场预计从2013年的16亿美元增长到2019年的56亿美元。(微流控即时诊断市场预测,法国市场研究机构Yole Development提供的数据,转载自互联网)4.2 目前市场上几种代表性微流控芯片产品4.3 微流控分析芯片产品现状及发展趋势总体而言,当前的微流控芯片产品及发展趋势总结如下(个人观点,供探讨):4.4 微流控芯片产业化关键问题(个人观点,供探讨):(1)技术:需要解决微流控芯片批量生产工艺(微加工、键合、表面修饰);重点是要解决芯片质控问题。(2)人才:急需多学科交叉人才、企业研发人员、专业化市场人员进行微流控芯片产品的开发及推广;国内芯片人才特别是在企业从事产品开发的芯片技术人员较为缺乏,专业的人做专业的事!这个很重要。(3)产品:急需具有“Killer Application”特征的微流控产品引领行业市场(产业界一致看好microfluidics-based POCT 系统);普遍认为poct最大市场是应用于医疗诊断行业,这个行业市场最为巨大毫无争议;或许在中国,食品安全、环境检测是否能够首先成为“中国特色”的killer application的一个案例,值得探讨?(4)资本:需要有长远目标的资本或金融机构的积极介入与扶持;个人认为,微流控芯片实验室已经到了产业化的前夕,希望有远见的企业家尽快介入到这一技术的发展过程中来,大家同舟共济,一起滚打几年,一起来改进技术,培育市场,共同发展。某种意义上说,这也是一种机会,等市场完全成熟了再介入进来可能就太晚了一些。(5)政策支持、强强合作:具有强大研发实力的企事业单位和丰富技术积累的科研院所鼎力合作)。(五)我们的工作和未来展望5.1 霆科生物介绍杭州霆科生物科技有限公司(TinkerBio)是一家专注于微流控芯片产业化的国家级高新技术企业,是国内知名的微流控芯片CDMO(合约研发与制造)服务商和先行者。公司依托浙江清华长三角研究院分析测试中心、浙江省应用酶学重点实验室等平台,以微流控芯片技术为核心,围绕食品安全、环境水质检测、医疗体外诊断等领域,坚持“让微流控变得更简单”发展使命和“微流控技术为用户赋能,实现合作共赢”的经营理念,致力于为用户提供最专业、最全面的微流控芯片产品设计开发与生产制造整体解决方案。5.2 微流控芯片产业化进展霆科生物从2014年成立至今,已投入研发经费数千万元,具备PMMA、PC、COC、PDMS、玻璃等材质的微流控芯片从研发到量产全流程转化能力。目前,公司已为国内外上百家食品安全、环境水质与IVD领域的龙头企业与上市公司提供产品(联合)开发与生产服务,已有多项微流控POCT产品实施转产。 霆科生物研发团队承担及参与国家、省市级重点研究课题10多项,已获得授权的专利、软著共50余项,公司已被认定为“杭州市青蓝企业”、“浙江省科技型中小企业”、“浙江省高成长科技型中小企业”、“浙江省最具成长性科技型百强企业”、“杭州市高新技术企业”、“国家高新技术企业”。5.3 未来展望未来十年、二十年内,微流控芯片注定成为一种被深度产业化的科学技术,世界范围内的微流控芯片的科学研究及产业竞争也将日趋激烈。中国被认为是在微流控芯片领域研究水平较高的国家之一,但国内的微流控芯片产业仍处于起步阶段,仅有为数不多的微流控产品面世,远落后于欧美等发达国家。尽管如此,我们欣喜地发现,近年来中国开始有越来越多的微流控技术专家、市场化专业人士,以及科研院校、企事业单位、投资机构,关注并投身于微流控芯片产业化。我们有理由相信,微流控芯片在中国的成功产业化值得期待。最后希望更多关注微流控芯片的人,更多地参与到这个领域来,共同努力!MicroChip,BigWorld!
  • 香港大学开发全新光学芯片生物显微传感系统 可用于细胞分析和药物研发
    细胞功能与结构解析一直是生命科学研究的关键,而其中活细胞无标记检测技术开发一直是生物分析科学发展的核心热点。然而,现今的技术经常需要耗时的准备步骤、高度依赖复杂的检测仪器且与其他设备很难兼容集成,从而限制了其在生物监测领域的功能拓展和广泛应用。由香港大学(港大)电机电子工程系褚智勤博士与机械工程系林原博士、南方科技大学李携曦博士领导的研究团队针对上述问题,开发了一种基于GaN光学芯片的高度集成、低成本微型光学显微传感系统,实现了在空间受限的情况下,高湿度细胞培养箱内无标记细胞活动的监测与分析。团队并成功将新技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这款装置将为细胞生物学和药物研发的基础研究提供新的见解,并有助于新一代生物传感器的开发。团队已为发明申请美国临时专利。相比于传统的以荧光分子、核素等标记分子为基础的有源标记检测技术,无标记检测技术可以最大程度地减少对靶分子、细胞或者组织的功能和结构产生影响,从而揭示检测样本本征状态下的信息。目前,主流商业化的无标记活细胞检测技术包括以电阻抗测量为基础的微电子传感技术,该技术利用活细胞与检测板孔中微电极相互作用,产生电阻抗的改变来定量活细胞状态。然而,这种微电场可能会给一些电信号敏感的样品(神经,心肌)带来潜在的环境干扰。近些年以倏逝波为基础的生物友好、无标记光学传感技术(表面等离子谐振SPR,共振波导光栅RWG等)引起了人们极大的兴趣,并被广泛应用于生物分子相互作用和活细胞活动检测。然而,这种高精密的光学测量手段对设备搭建、场地尺寸及测试环境的要求很高,极大地限制了它在多场景、复杂环境下的推广应用。团队合作开发的光学芯片,是高度集成及低成本的微型光学显微传感系统,能够实时定量芯片表面细胞活动引起的折射率变化并对细胞形貌进行在线成像,实现了对细胞培养箱中无标记细胞活动的监测与分析。该系统核心是一种单片绿光“发光二极管 - 光电探测器(LED-PD)”光电集成器件。其采用的垂直堆栈的分布式布拉格反射镜设计,能够有效提高芯片的发光收集效率。该芯片具有片上光电探测能力,能够实时读取芯片表面集群细胞活动引起的折射率变化。同时通过集成一个微型微分干涉显微镜,实现对细胞形貌和运动的在线追踪。该系统结合对此类细胞的实时折射率和细胞形态的分析,能够定量识别分析细胞的沉降、黏附、伸展、收缩等行为,并成功将此技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这个研究拓展了GaN光学芯片在生物测量领域的发展,特别是这种基于芯片传感和光学成像结合的策略形成的光芯片显微传感系统(chipscope),将为生物传感器的设计和发展提供新的思路。研究结果经已在Advanced Science 刊登 “A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities”论文连结: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202200910
  • 第七届微流控芯片高端论坛在大连开幕
    p style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="text-indent: 0em "仪器信息网讯/span/strongspan style="text-indent: 0em " 2019年11月23日,第七届微流控芯片高端论坛在大连中科院大连化学物理研究所开幕。高端论坛由中科院大连化学物理研究所和中国生物检测监测产业技术创新战略联盟主办,中科院大连化学物理研究所承办,大连理工大学、大连医科大学和仪器信息网共同协办。本届高端论坛为期两天,即11月23日~11月24日,论坛定位为小型、高端,共吸引250余名来自化学、医学、力学、工程学、生物学、材料学、光学等领域专家、学者参会。与会学者就微流控芯片核心技术的研发在器官芯片、单细胞分析及POCT等领域中的应用做了充分深入的交流。/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/dfec842a-76b1-4eb6-8c9f-36dccea12324.jpg" title="1大会现场.jpg" alt="1大会现场.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-indent: 0em font-family: 楷体, 楷体_GB2312, SimKai "大会现场/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/78aa6096-67ca-40f5-80c0-2b5ce19341e6.jpg" title="2曹恒副处长.jpg" alt="2曹恒副处长.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-indent: 0em text-align: justify font-family: 楷体, 楷体_GB2312, SimKai "大连化物所科技处曹恒副处长致辞/span/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "大会开幕式由大连化学物理研究所科技处副处长曹恒作大会致辞。曹恒处长表示大连化物所创建于1949年,是一个基础研究与应用研究并重、应用研究与技术转化相结合的综合性研究所。大连化物所造就了若干享誉国内外的科学家及大批高素质研究和技术人才,先后有20位科学家当选为两院院士。分析化学是大连化物所的传统优势学科领域。曹恒处长回顾了大连化物所的发展历程和产业化进程,并对林炳承研究员团队在微流控芯片研究领域取得的成果做了高度评价。微流控芯片应用领域很宽,有望在精准医学、个性化医疗、药物筛选等多个领域实现重大突破。最后曹恒处长号召相关学者加强合作,共同推动微流控芯片技术及其在重大领域的科学研究与应用发展。/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "在论坛开幕式上,由林炳承、罗勇、刘婷姣和陆瑶共同撰写的重磅新书《器官芯片》正式发布。科学出版社化学分社社长杨震、中科院大连化物所林炳承分别做了介绍说明。/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/53217b3d-af5b-47b1-b8ad-20149da8a472.jpg" title="3杨震.jpg" alt="3杨震.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style="text-indent: 0em font-family: 楷体, 楷体_GB2312, SimKai "杨震 科学出版社/span/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "杨震表示,器官芯片则被世界经济论坛评为2016年世界十大新兴技术之一。国内外已经有很多关于微流控芯片的书籍,但是至今尚未见到器官芯片的相关书籍。国外图书网站关于器官芯片的内容也寥寥无几。作为该领域的第一本中文专著,《器官芯片》一书对这个重要的新兴学科做了全面详实的介绍。他表示希望这部著作会对我国器官芯片研究、医药和其他产业的发展起到极大推动作用。span style="text-indent: 0em " /span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/5550d131-7761-4e35-9d03-78ae1ee9efb5.jpg" title="4林炳承.jpg" alt="4林炳承.jpg"/span style="text-indent: 0em font-family: 楷体, 楷体_GB2312, SimKai "林炳承 中科院大连化学物理研究所/span/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "林炳承教授谈了他撰写《器官芯片》一书的体会。林教授表示在世界范围内,器官芯片研究工作尚处于起步,产业化刚刚开始,所以现阶段一个突出任务是让更多人了解“器官芯片”这个领域,并参与有关研究、创新。大连化物所团队进行微流控芯片研究已有20年,经过难以忘却的风风雨雨,但无悔无怨。林教授表示,开展微流控芯片研究和撰写《器官芯片》一书,是一件对国民经济的产业转型和可持续发展具有战略意义的大事,对本书出版感到非常欣慰。/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "本次论坛分大会报告和分会场报告,论坛第一天,9位专家作了精彩生动的大会报告。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 398px " src="https://img1.17img.cn/17img/images/201911/uepic/0f96ed63-be46-4b17-9d71-b702930ddd9f.jpg" title="linbingcheng2.png" alt="linbingcheng2.png" width="600" height="398" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "林炳承 中科院大连化学物理研究所/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《器官芯片及其微环境》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "林炳承首先介绍了大连微流控芯片团队已经完成或者正在进行的器官芯片及其微环境的研究工作,包括器官芯片、器官芯片系统、肿瘤芯片、3D打印芯片等。然后对团队成员的相关研究方向,如用微流控芯片对单细胞蛋白分析、单细胞外囊泡分泌物多路表征、单细胞外囊泡的多指标分析、电润湿和数字液滴芯片、基于大规模有源矩阵芯片的仪器构建、数字微流控液滴芯片的研制、微流控数字液滴中央处理器的研制、数字微流控芯片自动单细胞阵列处理与染色、基于器官芯片肾小球的高血压肾病研究等工作作了简要介绍。/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/2b4184f9-9fbd-47cb-9ae2-1469cf2da007.jpg" title="5林金明.png" alt="5林金明.png" width="600" height="400" border="0" vspace="0"/span style="text-indent: 0em text-align: justify " /span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "林金明 清华大学化学系/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《微流控质谱联用单细胞分析方法研究》/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-align: justify text-indent: 2em "细胞是生物结构和功能的基本单位,细胞研究是生命科学的基础。大多数真核细胞一生都是单一的个体,但是在进化的过程中,他们已经可以互相关联并密切合作形成组织、器官甚至整个植物或者动物。然而,即使在相同的培养条件下,同源细胞在单细胞层面上也会具有形态、基因表达水平、以及生长特性上的差别,这种差别叫做细胞的异质性。了解单细胞之间的异质性对于细胞内生命过程的机理解释具有重要的作用。微流体技术以其微尺度通道和灵活的设计,在细胞研究领域得到广泛应用。林教授团队将操控单细胞的微流控平台与质谱仪结合,使得细胞经过微流控平台分选分离成单细胞后可以直接进入质谱检测,省去对细胞样品处理的中间环节。同时利用电喷雾质谱对细胞膜表面磷脂和蛋白进行原位分析,通过对获得的质谱数据进行指纹分析和聚类,可以区分出肿瘤单细胞在亚种群上的差异。由于本方法的测试灵敏度已经可以达到单细胞级别,可以进而研究细胞在药物作用下的代谢状况,在药物筛选及重大疾病研究等领域有良好的应用前景。/span/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/6c5df344-d6f4-49ce-a80d-10b6119498af.jpg" title="6方群.png" alt="6方群.png" width="600" height="400" border="0" vspace="0"/span style="text-align: justify text-indent: 2em " /span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "方群 浙江大学化学系微分析系统研究所/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《基于序控液滴技术的集成化微流控分析系统》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "2013 年,方群教授研究组发展了基于序控液滴阵列(Sequential Operation Droplet Array, SODA)的微流控液滴操纵新方法,能自动地完成对超微量(pL-nL)液滴的多步复杂操控,包括液滴的生成、融合、分裂、定位、迁移和分选等。在此基础上,方教授建立了一系列SODA 系统,并应用于超微量高通量筛选、单分子数字PCR 分析、单细胞分析、微量细胞实验等。最近,方教授采用将序控液滴技术与核酸分析技术相结合,发展了一种能够自动化实现核酸分析全过程的集成化仪器,可自动完成样品引入、核酸提取、逆转录-扩增、样品分配、双波长实时荧光定量分析等功能。该核酸分析系统被应用于人类咽拭子中8种流感病原体的鉴别,获得了与胶体金法一致的结果。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/6a903637-1428-4e46-a1f9-d96a3455601c.jpg" title="7 魏巍.png" alt="7 魏巍.png" width="600" height="400" border="0" vspace="0"/span style="text-align: justify text-indent: 2em " /span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "魏巍 Institute for Systems Biology/UCLA/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《Single-cell functional multi-omics for cancer systems biology》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "在过去的十年中,单细胞组学技术蓬勃发展,加深了研究人员对癌症中细胞异质性的理解。魏巍教授介绍了单细胞多组学的技术进展,重点分析具有关键功能的生物分子(蛋白质和代谢物)。魏教授还举例说明了如何通过单细胞多组学分析确定重要亚群,以及识别可能导致治疗耐药性的表观遗传重编程或信号网络重连的早期特征。动力学单细胞多组学方法用于标记药物诱导的细胞状态转变。此外,魏教授还讨论了药物诱导的表型可塑性癌细胞的状态发展轨迹。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201911/uepic/ebef175f-039c-4639-88f5-f275a0bdaa43.jpg" title="8黄岩谊.png" alt="8黄岩谊.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "黄岩谊 北京大学br//span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《信息理论用于DNA 测序的错误纠正》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "黄岩谊教授团队发展了一种全新概念的测序方法—纠错编码测序法(简称ECC 测序法),该方法采取一种独特的边合成边测序(SBS)策略,利用多轮测序过程中产生的简并序列间的信息冗余,大幅度增加了测序精度。通过全新设计的特殊测序反应底物,对待测DNA 序列进行三轮独立的SBS 测序,继而产生三条互相正交的简并序列编码。这三条编码可互为校验,后续不但能够通过解码推导出真实碱基序列信息,而且具备对单轮测序错误位点的校正能力。通过和低错误率的荧光发生测序技术相结合,黄教授课题组在实验室搭建的原理样机上获得了单端测序超过200 碱基读长无错误的实验结果。基于这一结果,进行了进一步拓展,发现通过简并碱基,即可进行大多数的测序实验,并通过其自己研发的高通量测序仪器,与现有其它仪器进行了对比。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201911/uepic/a0a91cbf-64cd-4a39-9aab-1ca64fdbcb64.jpg" title="9 程鑫.png" alt="9 程鑫.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "程鑫 南方科技大学/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《数字液滴微流控中央处理器芯片及平台系统的新进展》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "随着现代生物医学工程技术的发展,微阵列生物芯片和芯片实验室技术受到了越来越广泛的关注。由于该领域各类生物分析的需求十分繁杂,微阵列生物芯片和芯片实验室的定制化设计制造的重要性愈发凸显。而这种定制化设计制造的复杂性极高,已成为生物芯片推广应用的瓶颈。因此,亟需开发一种可在生物医学工程领域内普遍适用的微流体操控平台。程鑫教授介绍了基于有源矩阵电路来进行液滴驱动的数字生物芯片平台技术,通过薄膜晶体管驱动的大规模电极阵列,利用介电电润湿(EWOD)或介电泳力(DEP)等现象,实现成几百个电极的并行控制。程鑫教授讨论了数字液滴微流控芯片的架构、工作原理、制造流程、及应用前景,还重点介绍了课题组近一年来在芯片自动化、流体接口、液滴驱动稳定性等领域的新进展。程鑫教授表示,这种新型的数字液滴芯片具备广泛的通用性、大规模可扩展性和可重复使用性,有望广泛应用于生物工程或生物医学工程技术中。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 398px " src="https://img1.17img.cn/17img/images/201911/uepic/2bec897d-92a2-4d35-9721-54b4e6748f4b.jpg" title="10 王琦.png" alt="10 王琦.png" width="600" height="398" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "王琪 大连医科大学附属二院/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《基于微流控芯片技术仿生肺癌脑转移模型的构建及应用》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "肺癌脑转移是肺癌患者死亡的主要原因之一,由于中枢神经系统解剖及功能上的特殊性,脑相对于其他转移靶器官有其独特性,故明确肺癌脑转移的特异性转移机制对其诊疗具有重大意义。然而,目前传统的肿瘤生物研究手段难以在体外模拟复杂的病理过程和仿生微环境,而动物体内模型也受到了实时监测和伦理方面的限制,因此王琪教授利用微流控芯片技术构建了肺癌脑转移多器官仿生模型,为肺癌脑转移机制研究提供了新的方法学平台。该模型由上游仿生“肺”、下游以“血脑屏障”为核心的仿生“脑”两个单元组成,实时监测上游的肺癌细胞侵袭进入循环到达下游靶器官并穿破血脑屏障实现脑转移的病理全过程。在此基础上,该模型已被成功应用于肺癌脑转移机制研究,与传统体内外方法学平台联合首次证实蛋白AKR1B10 促进肺癌脑转移的重要机制及其作为肺癌脑转移新分子标记物的诊断价值。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/f3f2be3b-6288-4be6-9120-4d65754aeedf.jpg" title="11林洪丽.png" alt="11林洪丽.png" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "林洪丽 大连医科大学附属第一院/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《肾脏微流控芯片研究进展》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "基于“肾小球芯片”和“肾小管间质芯片”的构建,林洪丽教授课题组将肾小球和肾小管及管周血管连接起来,进一步构建了仿生“肾单元”微流控芯片。并在此芯片基础上探究高糖高灌注的病理条件下肾小球,肾小管及管周血管的病理变化。研究发现高糖高灌注会破坏肾小球滤过屏障,使肾小球内皮细胞CD31 表达下降,vWF 表达升高;足细胞synaptopodin 表达下降;肾小管上皮细胞E-cadherin 表达下降,kim-1 表达升高;管周血管内皮细胞CD31 表达下降。林洪丽教授表示,搭建仿生肾脏微流控芯片推动了肾脏病体外研究模型的构建及改善,为探究肾脏病发生发展机制提供优良的仿生模型。利用肾脏微流控模型分别再现及研究高灌注、高糖及蛋白负荷病理条件下肾脏的损伤变化及机制,为更好了解肾脏病的发展奠定了基础。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 398px " src="https://img1.17img.cn/17img/images/201911/uepic/e33f2ce4-e962-4811-994a-fdd6f8ed19d1.jpg" title="12 刘笔锋.png" alt="12 刘笔锋.png" width="600" height="398" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "刘笔锋 华中科技大学br//span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《微流控芯片单细胞蛋白质分析》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "单细胞分析对于揭示细胞异质性具有重要科学意义。近年来单细胞测序技术在基因组和转录组层次发现单细胞分辨的差异获得了突破性进展,但单细胞蛋白质组分析仍然存在重大挑战。近几年,刘笔锋教授重点聚焦在基于微流控芯片技术的单细胞蛋白质组分析工作,从离体、活体和原位在体水平分析蛋白质的表达、功能及其动态变化:1)在离体水平,率先提出了单细胞化学蛋白质组的概念,并实现了原理性研究;2)在活体细胞水平,拓展了单细胞组学并系统建立微流控芯片新方法,分析功能蛋白质在化学微环境扰动下细胞信号传导以及细胞-细胞间的相互作用;3)在原位活体水平,以线虫为对象,研究功能蛋白质在活体动物上单细胞分辨水平的动态变化。上述研究对于揭示功能蛋白质在单细胞水平的异质性提供了一条崭新的路径和解决方案,是对单细胞蛋白质组研究的有益尝试。/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "当日,针对“体外诊断”和“单细胞分析/体外诊断”两大专题,11位专家作了精彩的专题报告。/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "br//pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="color: rgb(0, 112, 192) "strong体外诊断分会场/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongbr//strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-indent: 2em "/span/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/5eb76d93-4cf3-4803-b2d7-3bea65a696ff.jpg" title="13 周蕾.png" alt="13 周蕾.png" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "周蕾 中国科学院过程工程研究所br//span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《基于微流控的细胞、免疫、核酸检测》/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201911/uepic/98f645c3-2a48-4f7c-835d-a905cabd32d8.jpg" title="14 孙佳殊.png" alt="14 孙佳殊.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "孙佳姝 国家纳米科学中心/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《微流控肿瘤液体活检技术》/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 395px " src="https://img1.17img.cn/17img/images/201911/uepic/81b6472d-ad1d-4b96-a633-f0494cc1c0c1.jpg" title="15 杜文斌.png" alt="15 杜文斌.png" width="600" height="395" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "杜文斌 中国科学院微生物研究所/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《基于微流控的病原快速筛查和药敏分析》/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 398px " src="https://img1.17img.cn/17img/images/201911/uepic/a5120e8c-b684-455e-9c3e-5f427102b09c.jpg" title="16 盖宏伟.png" alt="16 盖宏伟.png" width="600" height="398" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "盖宏伟 江苏师范大学br//span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《金纳米粒子与量子点之间的等离子共振能量转移及其在免疫分析中的/span/strong/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "应用研究》/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/da8f1296-62b6-4c61-9d41-5a8c77824244.jpg" title="17 董彪.png" alt="17 董彪.png" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 董彪 吉林大学/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《基于上转换荧光的肿瘤标志物及CTC检测研究》/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "br//pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="color: rgb(0, 112, 192) "strong单细胞分析/体外诊断分会场/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongbr//strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-indent: 2em "/span/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201911/uepic/4e11db61-cfe6-4d5e-b1b9-b22f7ddec337.jpg" title="18 吴文明.png" alt="18 吴文明.png" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "吴文明 中科院长春光学精密机械与物理研究所br//span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《高通量微液滴自发式形成与长距离恒速传输方法/span/strong/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "以及单恒温热源循环扩增模型》/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 402px " src="https://img1.17img.cn/17img/images/201911/uepic/e6c8ac7b-1432-48b5-aaf1-d9ef415e8697.jpg" title="19 高荣科.png" alt="19 高荣科.png" width="600" height="402" border="0" vspace="0"/span style="text-align: justify text-indent: 2em " /span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "高荣科 合肥工业大学/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《Highly Sensitive Biomedical sensor based on Self-powered Microfluidic device》/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201911/uepic/35de936b-89ec-4cd4-8d51-a97171cf83cd.jpg" title="20 李颖.png" alt="20 李颖.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "李颖 中国科学院武汉物理与数学研究所/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《闭合式和开放式微流控芯片用于高通量单细胞分析》/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 564px height: 752px " src="https://img1.17img.cn/17img/images/201911/uepic/88ca572b-5624-4fb1-92f7-6e71e8820499.jpg" title="李自达.jpg" alt="李自达.jpg" width="564" height="752" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "李自达 深圳大学/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《Dean flow assisted single cell and bead encapsulation for high/span/strong/pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "performance single cell expression profilingspan style="font-family: 楷体, 楷体_GB2312, SimKai line-height: 1.5em text-indent: 2em "》/span/span/strong/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201911/uepic/f2d3e4d2-0698-4b23-881a-ebb7ac8af327.jpg" title="21边.png" alt="21边.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "边升太 北京体育大学/span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《一种基于流体捕获和超疏水芯片相结合的微流控芯片系统用于研究肿瘤球内部单细胞之间的异质性》/span/strong/pp style="text-align: justify text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="text-indent: 2em "/span/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "img style="max-width: 100% max-height: 100% width: 600px height: 398px " src="https://img1.17img.cn/17img/images/201911/uepic/8da204d6-3e3d-42bd-9944-2fee5d759495.jpg" title="22 李林梅.png" alt="22 李林梅.png" width="600" height="398" border="0" vspace="0"//pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "李林梅 中科院大连化学物理研究所br//span/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "报告主题:《单细胞分泌蛋白分析揭示巨噬细胞在3D肿瘤微环境中/span/strong/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "不同的免疫反应》 /span/strong/p
  • 集百家众长——第五届微流控芯片高端论坛暨产业峰会(大会报告篇)
    p  strong仪器信息网网讯/strong微流控芯片技术是个学科交叉大融合的技术,物理、材料、化学、生物、医学等各个领域的专家均为微流控芯片技术做出各自贡献,可谓百花齐放,一起创造了微流控芯片领域的勃勃生机。微流控芯片技术也在该过程中“吃百家饭”逐渐成长壮大,并作为快速发展的颠覆性技术之一被写入“十三五”规划。会议中来自不同领域的专家慷慨地分享自己的最新研究成果,交流技术难题,为推动我国微流控芯片技术发展献计献策。(依报告顺序展示) 相关报道链接:a title="肩负突破“十三五”规划颠覆性技术责任——第五届微流控芯片高端论坛暨产业峰会" style="COLOR: #c00000 TEXT-DECORATION: underline BACKGROUND-COLOR: #d8d8d8" href="http://www.instrument.com.cn/news/20171218/235992.shtml" target="_self"span style="COLOR: #c00000 BACKGROUND-COLOR: #d8d8d8"《肩负突破“十三五”规划颠覆性技术责任——第五届微流控芯片高端论坛暨产业峰会》/span/a/pp style="TEXT-ALIGN: center"img title="IMG_0071.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/f1c951af-4251-4bb7-b9d0-06cd894ba37c.jpg"//pp style="TEXT-ALIGN: center"strong 大连化学物理研究所教授 林炳承/strong/pp style="TEXT-ALIGN: center"strong作《微流控芯片的崛起和我们的责任》/strong/pp  报告指出微流控芯片作为当代极为重要的新型科学技术平台和国家层面产业转型的潜在战略领域已经处于一个重要发展阶段,微流控芯片研究的主流已从平台构建和方法发展转为不同领域的广泛应用,并从应用的需求中寻求科学问题,进而带动产业化的迅速发展。在报告中林炳承以其大连研究团队的近期工作结合微流控芯片研究和产业化的新进展深刻并且扼要的阐述了其对微流控芯片这一“颠覆性”技术的看法。/ppimg title="IMG_6457.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/990b54d9-0627-453c-9cb5-c9a88a5a59e3.jpg"//pp style="TEXT-ALIGN: center"strong北京科技大学教授 张学记/strong/pp style="TEXT-ALIGN: center"strong作《微流控芯片在肿瘤精准基础生物学研究中的应用》/strong/pp  张学记在报告中为我们带来了其课题组研究的IP-DO(Channel-Printing Device-Opening)assay方法分享,该方法不仅可以对多种细胞在同一块芯片上进行高通量成像分析,而且可以将10个左右目标细胞提取出来进行多基因转录水平分析,从而将细胞的图像信息与基因基因表达水平信息对应起来。张学记还分享了其课题组发明的一种利用3D打印技术制作类似“乐高构件”的3D打印器件从而方便实现肿瘤细胞-体细胞的共培养方法。该方法能够准确地获取肿瘤细胞迁移和转移过程中的动态数据,并且操作简单灵活易于在普通实验室中推广使用。 img title="IMG_0310.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/c4d346c0-5a1f-45fb-bd2a-c812b6ae752d.jpg"//pp style="TEXT-ALIGN: center"  strong国家纳米科学中心研究员蒋兴宇/strong/pp style="TEXT-ALIGN: center"strong  作《Flexible Microchips》/strong/pp  蒋兴宇报告展示的他们团队发的微流控芯片非常具有灵活性,一方面芯片应用具有灵活性,除了应用于检测还可以用于药物分析、药物筛选、组织工程等领域。另一方面芯片材质的灵活性,即芯片可以拉伸、弯曲、折叠,并可与穿戴性电子产品结合。蒋兴宇在报告中展示了新颖的纸张条码检测与多元层析结合研究成果,同时也分享了人造血管研究成果。/pp style="TEXT-ALIGN: center"img title="IMG_0331.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/6c060430-7a0d-4a8c-b23d-b24ea0a50138.jpg"//pp style="TEXT-ALIGN: center"  strong清华大学教授 林金明/strong/pp style="TEXT-ALIGN: center"strong  作《基于微流控平台的细胞共培养及生物微环境模拟的研究》/strong/pp  林金明在报告中介绍了基于微流控芯片上的细胞共培养及生物微环境模拟部分研究成果。其中,林金明课题组在微流控芯片上培养了肝癌细胞,建立了一种微流控芯片上的肝肿瘤模型,成功观测到前体药物卡培他滨的代谢和作用,并与质谱联用对原药及中间代谢产物进行检测。此外他们成功构建的集成化微流控芯片,可用于细胞的共培养、缺氧诱导以及代谢物在线分析。林金明还在报告中大家展示了其设计的微流控芯片质谱联用仪。/pp style="TEXT-ALIGN: center"img title="IMG_0384.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/78ef98d5-f4cb-4aac-8b25-db050435266b.jpg"//pp style="TEXT-ALIGN: center"  strong中国科学院过程工程研究所 研究员/strong/pp style="TEXT-ALIGN: center"strong  作《新材料、新技术与生物检测监测技术》/strong/pp  周蕾指出临床检验、疾控应急、违禁筛查、食品安全等虽然分属于完全不同的行业,但其在具体的工作环节中都面临着“在现场条件下,最短时间内,筛查确定可疑靶标存在与否以及含量”的需求,即生物检测监测。周蕾老师研究的方向主要以上述需求为导向,兼顾学科交叉的科技创新,并以科技创新成果为基础进一步推进学研用及成果转化。周蕾团队在具体研究过程中,通过纳米材料、生物试剂、生物传感器的生产工艺研究,实现了产业化。并确立了“基于纳米材料、器件、生物应用探索的生物检测监测技术研究”科研方向,进而探索并挖掘了碳量子点、聚集发光材料等多种材料与器件的生物应用价值。/pp style="TEXT-ALIGN: center"img title="IMG_0399.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/66a5c0d5-48eb-4d9f-b588-8d9c28ab2c1d.jpg"//pp style="TEXT-ALIGN: center"strong  大连医科大学教授 刘婷姣/strong/pp style="TEXT-ALIGN: center"strong  作《CAF外泌体促进肺转移前微环境的形成研究》/strong/pp  刘婷姣在报告中分享了其研究成果,即为了揭示CAFs及其外泌体是否能够在SACC细胞到达肺之前改造肺组织微环境,形成一个易于肿瘤细胞定植的转移微环境,其设计了一系列实验进行验证。最后证明CAFs外泌体通过构建转移前微环境促进SACC肺转移。/pp style="TEXT-ALIGN: center"img title="IMG_0403.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/48aeda00-87ce-42d0-abf7-0a80d4695f76.jpg"//pp style="TEXT-ALIGN: center"  strong北京大学教授 黄岩谊/strong/pp style="TEXT-ALIGN: center"strong  作《微流控芯片单细胞测序》/strong/pp  黄岩谊报告中指出在单细胞和少数细胞水平上了解异质性、随机性和协同性在生命过程中的关键作用,可以从根本上更好地把握关键生物事件如疾病的发生与发展,也为健康与医疗提供基础科学数据。黄岩谊团队通过微流控芯片,稳定进行单细胞俘获和定量观测,并进行单细胞测序的样品前处理,实现了高质量的哺乳动物单细胞全基因组和全转录组的测序,以及极其微量细胞的表观遗传组测序;同时还可以进行单细胞尺度上的微观定量图像获取。通过微流控技术实现针对同一个单细胞的多维度分析,由此建立两种或者多种定量测量方法间的相关性,使得很多分析可以进一步深入,意义重大。/pp style="TEXT-ALIGN: center"img title="IMG_0409.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/7449b8f3-455c-4a73-b552-e264a324ff14.jpg"//pp style="TEXT-ALIGN: center"strong    海军军医大学教授 马雅军/strong/pp style="TEXT-ALIGN: center"strong  作《虫媒传染病媒介及其携带病原体快速侦检研究现状及其需求分析》/strong/pp  马雅军报告中指出虫媒传染病是人类健康的重要威胁,是重大公共卫生事件的重要原因,历史上曾对军队战斗力造成重大影响。随着我军执行任务的形式和环境更加多样化,虫媒传染病对部队战斗力的威胁日益增加。适于现场的快速、灵敏和准确的媒介种类及其携带病原体的一站式检测技术方法可为虫媒传染病的有效防控、以及流行风险评估提供科学依据。马雅军在报告中也表示出她对微流控芯片技术解决该类问题的期待。/pp style="TEXT-ALIGN: center"img title="IMG_0429.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/c8bbb5e1-b054-42ab-868c-9a2a0710286b.jpg"//pp style="TEXT-ALIGN: center"strong  广州市第一人民医院研究员 刘大渔/strong/pp style="TEXT-ALIGN: center"strong  作《微流控体外诊断技术应对临床检验医学的挑战》/strong/pp  刘大渔以一个在检验医学一线从事微流控体外诊断研究课题组的视角,扼要阐述微流控技术的优势以及临床检验领域的应用前景。针对目前临床检验工作中的痛点问题,结合已有微流控体外诊断技术和本课题组研究工作介绍了微流控体外诊断技术在分子诊断、免疫检测以及病原微生物等三个领域的应用。刘大渔探讨了新形势下微流控体外诊断技术的机遇与挑战,认为微流控技术是应对临床检验医学挑战的有力工具,该技术将会对临床检验能力的提升起到巨大的推动作用。/pp style="TEXT-ALIGN: center"img title="IMG_0437.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/8eaa6e02-91d9-46d6-9890-d6fc0b02a4b5.jpg"//pp style="TEXT-ALIGN: center"strong  大连医科大学附属第二医院副院长 王琪/strong/pp style="TEXT-ALIGN: center"strong  作《基于微流控芯片仿生肺模型的肺癌转移机制研究》/strong/pp  王琪报告中分享了研究成果既采用PDMS材料,依据体内细胞与细胞、细胞与培养介质、组织与组织间、器官与微环境间相互作用的特性以及流体力学原理,设计和制作了一个能够接近肺解剖结构、模拟肺生理功能的微流控芯片仿生肺模型。通过重建肺的解剖结构,包括支气管和肺间质以及血流、气流等模拟肺的生理功能 同时以此为平台,进一步重现肺癌发生及转移过程并进行相关机制等深入研究。该模型还可为其他肺部疾病的研究提供一种重要技术支持。/pp style="TEXT-ALIGN: center"img title="IMG_6742.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/78a5543f-2260-400b-bf20-d923d42b9403.jpg"//pp style="TEXT-ALIGN: center" strong 中国科学院力学研究所研究员 胡国庆/strong/pp style="TEXT-ALIGN: center"strong  作《微纳生物颗粒的微流动操控:从惯性到弹性》/strong/pp  胡国庆指出微纳尺度颗粒(细胞、细菌、合成颗粒、囊泡、生物大分子等)的精确操控在生物、医学、材料和环境等领域有着至关重要的应用。以循环肿瘤细胞和外泌体为代表的稀有生物颗粒的高效富集与分离,一直是制约临床与基础医学研究的技术瓶颈。这些生物颗粒在血液样品中的含量极小,因此要求分离方法必须满足高的处理通量要求。胡国庆团队以微纳生物颗粒的高通量操控为目标,系统研究了惯性效应和黏弹性效应作用下微通道中微纳颗粒在迁移规律与操控机理,并将相关微流控机理成功应用于众多生化研究。/pp style="TEXT-ALIGN: center"img title="IMG_6749.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/e818deed-da09-4373-96e2-809497f5f392.jpg"//pp style="TEXT-ALIGN: center"strong厦门大学教授杨朝勇/strong/pp style="TEXT-ALIGN: center"strong  作《循环肿瘤细胞的识别、捕获与单细胞分析》/strong/pp  循环肿瘤细胞(CTC)的检测在肿瘤分期诊断、动态监测、疗效评估、药物开发和预后监测等方面具有重大意义。杨朝勇团队基于微流控技术,发展了高效核酸适体筛选方法,获得多条可识别不同CTC的高亲和力、高特异性核酸适体序列 利用流体调控与表界面调控技术,构筑了基于细胞尺寸与生物识别特性协同捕获的微流控微柱阵列芯片,实现了CTC的高效捕获与无损释放 借助微流体器件的精准操控优势,并开发了一系列高通量单细胞分析方法,用于揭示CTC的分子病理信息。其所发展的肿瘤细胞的识别探针、捕获芯片与高通量单细胞分析方法在癌症的精准诊断、用药指导、疗效评估方面具有重要的应用前景。/pp style="TEXT-ALIGN: center"img title="IMG_0507.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/70576640-cbe1-49ca-a43c-af1a0ca71207.jpg"//pp style="TEXT-ALIGN: center"strong  大连理工大学教授 罗勇/strong/pp style="TEXT-ALIGN: center"strong  作《基于肾和肝芯片的药物毒性鉴定新方法》/strong/pp  器官芯片技术可以模拟器官的功能,具有较高的仿生性,利用器官芯片进行中药毒性鉴定,结果既与体内结果比较接近,而且速度快,通量高,成本低,在动物实验前进行一轮器官芯片毒性筛查实验,可以大幅减少东阿不的用量,节约成本,提高效率。报告中展示了罗勇团队构建的两种仿生肾和肝的微流控芯片,并进行李茹药物毒性鉴定实验。结果发现顺铂的主要毒性部位为肾小管,肝微环境对毒性结果影响较大。/pp style="TEXT-ALIGN: center"img title="IMG_0622.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/cc40c809-5aac-459c-aceb-242635c2e862.jpg"//pp style="TEXT-ALIGN: center"strong  江苏师范大学教授 盖宏伟/strong/pp style="TEXT-ALIGN: center"strong  作《Digital biosensor and digital immunoassay 》/strong/pp  盖宏伟在报告中分享了研究成果,其团队的建立了一系列基于量子点光谱成像的数字生物传感和数字免疫技术。该类技术具有灵敏度高,检测限低,均相分析,可用于血液样品等特点。同时以微球为探针的超高灵敏免疫分析技术,可以实现10sup-22/sup摩尔水平的生物标记物的绝对定量。/pp style="TEXT-ALIGN: center"img title="IMG_0646.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/6db307d0-74a1-4d69-8462-d87e09927ffe.jpg"//pp style="TEXT-ALIGN: center"strong  中国科学院大连化学物理研究所副研究员 刘显明/strong/pp style="TEXT-ALIGN: center"strong  作《数字微流控芯片微反应器相关衍生技术的研究》/strong/pp  在生化反应与检测如免疫样品反应与检测、珍贵样品合成、单细胞研究等具体应用中,存在对微小、微量样品捕捉、富集、纯化等特殊功能性需求。刘显明报告中展示基于数字微流控液滴平台的磁珠分离与清洗、液滴导入体积反馈控制、passive dispensing等功能性单元的研究工作,以上液滴的操作控制过程均在空气相中进行,不依赖于油相环境,生成物更加单纯,易于与检测仪器接驳且便于开展细胞研究等工作。与通道式微流控芯片相比,如果解决通量问题,数字微流控芯片作为微反应器在生化应用方面可能更具吸引力。/pp style="TEXT-ALIGN: center"strongimg title="IMG_0697.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/558f8192-4389-4bd5-a687-5142d65bf74d.jpg"//strong/pp style="TEXT-ALIGN: center"strong  复旦大学教授 俞燕蕾/strong/pp style="TEXT-ALIGN: center"strong  作《光致形变液晶高分子及其微流控芯片构筑》/strong/pp  俞燕蕾报告中展示了其团队对光致形变液晶高分子材料的研究,并且将这新一代的光致形变高分子材料与传统微流控芯片结合,构筑出微流控芯片的核心部件,实现微管执行器到微流控芯片的制造升级以及芯片通道中生物样品输运的精确光控制,并且该方法驱动流体时无需特殊的光学装置和微组装过程可以最大程度简化微流体控制系统。为推动光控微流体技术在生物领域应用奠定了构筑材料和调控机制的重要基础。/pp style="TEXT-ALIGN: center"img title="IMG_6458.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/3335957a-82ca-4caa-8261-3217d0dab0ec.jpg"//pp style="TEXT-ALIGN: center" strong 中国科学院过程工程研究所研究员 杜昱光/strong/pp style="TEXT-ALIGN: center"strong  作《营养代谢器官芯片的研发及其应用》/strong/pp  器官芯片可以在细胞水平模拟组织微环境并且具有观察方便可实现实时监测,易于连接分析装置,成本低、周期短等优点。使用器官芯片代替部分动物实验进行营养代谢研究成为一种趋势。杜昱光在报告中分享了其团队在器官芯片方面的研究进展,展示了其建立的血管糖萼芯片的生理和高糖损伤模型;研发了一种新型的层叠式大肠器官芯片 搭建了肠-肝-肾的多器官组合芯片模型。并且,其团队分别在模型上进行了实验,取得了非常理想的结果。/pp style="TEXT-ALIGN: center"img title="IMG_0788.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/69f8a922-29bf-4c4e-b1a2-bc16d29ce9aa.jpg"//pp style="TEXT-ALIGN: center"strong  南方医科大学第五附属医院检验科主任 尹小毛/strong/pp style="TEXT-ALIGN: center"strong  作《临床微生物检验:不足与需求》/strong/pp  尹小毛报告指出二十一世纪以来,尽管临床微生物检验领域有了较大发展,但是面对日益增长的临床诊断需求,临床微生物检验尚存在较多不足之处。表示基于当前临床微生物检验存在的不足,医生和患者未得到满足的需求主要体现在:快速、简便和准确的临床微生物检验标本采集、运送和保存方法 样本检验方法以及相应操作简单、成本低廉和通量较高的全自动仪器 可以及时提供正确有效信息的临床微生物检验报告和实验室对于临床微生物检验方法选择的可靠建议。/pp style="TEXT-ALIGN: center"img title="IMG_6902.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/09854b56-72ca-4150-9be2-9a8d62fc966a.jpg"//pp style="TEXT-ALIGN: center" strong 四川大学华西第二医院研究员 许文明/strong/pp style="TEXT-ALIGN: center"strong  作《微流控技术在生殖与围生医学的科研与临床中的应用》/strong/pp  许文明报告围绕微流控技术的发展如,微流控技术在单个细胞分离、干细胞分离、3D细胞培养、组织芯片模型、精子优选应用等技术上的发展。并重点从生殖领域内的科研与临床需求的角度出发,对微流控技术的发展在上述领域的方向作了详细的梳理。他表示对于微流控芯片技术在生殖与围生医学,药物筛选与毒理测试等多领域的应用需要病人、医生、多学科科研人员的通力合作与交流。/pp  第五届微流控芯片高端论坛暨产业峰会大会报告,包罗微流控芯片领域研究新进展,新应用,全景展示了我国微流控芯片技术研究水平以及未来发展和产业化方向。希望像林炳承老师期待的那样,越来越多的科研人员可以加入到微流控芯片技术的研究应用的队伍中,这样微流控芯片技术才能更加成熟,最终真正全面造福人类!/pp /p
  • 北航团队研发新型分析生物芯片平台(CPR) 可用于活细胞中核蛋白分析
    细胞核内的蛋白质在基因的调控、翻译和表达的过程中扮演着重要的角色,常与肿瘤发生、转移以及耐药性有关。但核蛋白被细胞膜和核膜的双重屏障包围,实际检测中,面临比细胞质蛋白检测更多困难。常规蛋白质免疫印迹法、酶联免疫吸附实验和免疫沉淀法均需要将细胞裂解,无法满足活细胞实时检测。而活细胞状态下检测细胞核蛋白主要方法,如分子荧光染料法和质粒表达法,需要特定筛选条件而缺乏一定的适用性,不能满足需求内源核蛋白的精准检测。近日,北京航空航天大学常凌乾课题组在Biosensors and Bioelectronics上发表了题为Companion-Probe & Race Platform for Interrogating Nuclear Protein and Migration of Living Cells的研究论文。该工作设计了一种新型分析生物芯片平台(CPR),能在活细胞中探测核蛋白,同时实时追踪细胞的迁移;该芯片结合纳米电穿孔技术(课题组标签技术),将一种携带有识别细胞核内蛋白特异性识别肽的相伴型组合探针递送进活细胞核内,到检测到靶蛋白后产生绿色荧光。为了追踪活细胞的迁移,作者在平台上设计了多个带有标志点的放射状微通道,作为细胞的可寻址跑道。通过记录细胞在一定时间内经过的标志点的数量,可以监测细胞的迁移距离和估计迁移速度(图1)。图1. 用于探测活细胞核内蛋白和迁移行为的CPR平台原理图作者将40个标记点定义为四个部分,从细胞内探测区域的边缘(起点)到微通道的静脉孔,每十个标记点设为一组间隔。课题选择与细胞迁移率相关的MDM2蛋白作为检测蛋白,其表达水平与细胞迁移速度呈正相关。综合分析结果显示,45%以上的MDM2蛋白过表达的细胞迁移到20号-40号微标记,而对照组细胞只在20号微标记内迁移,表明MDM2蛋白过表达的细胞的迁移能力增强。作者根据在迁移观察区移动的时间和细胞的迁移距离估计了这些细胞的迁移速度,并验证了MDM2蛋白过表达的细胞的速度明显快于对照细胞。通过CPR平台和MATLAB软件计算的迁移速度具有可比性,证明了CPR平台在一定时期内通过简单地计算标记点来评估细胞迁移速度的可行性。根据MDM2蛋白表达和细胞迁移速度的关系分析,MDM2蛋白的表达水平与细胞迁移速度呈正相关关系(图2)。这一结果与报道的MDM2蛋白高表达促进肿瘤迁移的研究一致。图2. 细胞迁移分析的CPR平台为评估CPR平台的多功能性,作者在CPR平台上分析了六个原发性肺肿瘤细胞样本 (T1-T6) 和六个原发性正常肺细胞样本 (N1-N6) 细胞核内MDM2表达。在所有六个原发性肺肿瘤细胞的细胞核中都观察到明显的绿色荧光,表明MDM2蛋白在肿瘤细胞中的高表达。研究发现,相同时间内,原发性肺肿瘤细胞比原发性正常肺细胞迁移得更远(图3)。原代细胞的成功检测显示了CPR平台在分析不同来源的细胞样本方面的高度通用性。图3. 用于跟踪原代细胞迁移的CPR平台该研究第一单位为北京市生物医学工程高精尖创新中心和北京航空航天大学生物与医学工程学院。常凌乾教授为主要通讯作者。第一作者为孙宏博士、董再再博士和张清洋博士。文章的其他主要共同作者包括,中国科学院大学深圳先进技术研究院任培根研究员,北京大学肿瘤医院吴楠教授。https://www.sciencedirect.com/science/article/abs/pii/S0956566322003219
  • 11月16日开播!9位嘉宾共话微流控技术与器官芯片研究进展
    历经30年发展,微流控技术已经从最初的毛细管电泳微型化技术,演变成为一种涵盖基础生物技术到生物医学诊断等各个领域的富有活力的工具性方法技术平台。近年来,微流控技术在药物筛选、疾病诊断、食品安全、环境监测等多领域已获得广泛应用。器官芯片是基于微流控芯片与类器官两项技术结合,形成一种通过微芯片制造方法制造的微流体细胞培养设备,利用芯片来构建和模拟人体组织微环境,形成类似于人体微生理系统。器官芯片应用广泛,在高通量药物筛选、药物吸收代谢、药物开发、人体循环系统、药物毒理学、人工仿生微环境、细胞间互作以及细胞与细胞外基质互作、新型体外培养平台等方面都有所发展。为加强创新微流控分析技术与方法的交流,把最新的微流控分析技术与方法以及热门器官芯片应用推介给广大生命科学科研、临床、医药领域、工业用户,仪器信息网将于2023年11月16日在线举办“微流控技术与器官芯片研究进展与应用”网络研讨会。报名链接 https://www.instrument.com.cn/webinar/meetings/microfluidics231116/『会议日程』微流控技术与器官芯片研究进展与应用会议日程(2023年11月16日)微流控新方法新应用主题报告时间报告方向报告嘉宾单位09:30-10:00《开放式微流控的构建与单细胞原位方法》林金明清华大学 教授10:00-10:30《岛津微芯片电泳MultiNA原理和应用方向介绍》李婷岛津企业管理(中国)有限公司 应用工程师10:30-11:00《基于微纳界面的表面增强拉曼-微流控芯片测量技术》高荣科中国石油大学(华东) 教授11:00-11:30《微流控纸芯片技术在环境检测和生化分析中的应用研究》李博伟中国科学院烟台海岸带研究所 研究员11:30-12:00《数字微流控芯片设备的构建及其在生物化合物合成与分析应用进展》刘显明中国科学院大连化学物理研究所 副研究员12:00-14:00午休器官芯片主题会场14:00-14:30《用于药理毒理的器官芯片研究》张秀莉 苏州大学教授14:30-15:00《基于微流控芯片的肾脏疾病研究及干预》林洪丽大连医科大学附属第一医院 肾内科主任/二级教授15:00-15:30《基于微流控的器官芯片构建及应用研究》毛红菊北中国科学院上海微系统与信息技术研究所 研究员15:30-16:00《基于神经支配的人体仿生类器官和器官芯片的研究》郑付印北京航空航天大学 副教授『精彩报告预览』林金明 教授清华大学《开放式微流控的构建与单细胞原位方法》【报告摘要】:细胞是生物体结构和功能的基本单位。近年来,不同种细胞间、同种细胞不同个体间以及同个细胞不同位置间广泛存在的细胞异质性,使得单细胞分析成为了一个热门的研究领域。单细胞分析可以从结构、功能、遗传、行为等方面揭示和解释细胞异质性,为我们更细致的了解生命活动提供了新的方向。细胞分析的检测手段众多,其中质谱由于通量高、应用范围广、特异性高、能同时测定多种组分、能提供物质结构信息等特点,成为了一种强大的全方位工具。我们在成功研制了微流控芯片质谱联用细胞分析装置的基础上,进一步开展微流控单细胞分析方法的研究。在本次的报告中将重点介绍一种开放式微流控的制备方法及其应用于单细胞的分析研究结果。设计研制了一种超高效的微混合反应器,并将其用于单细胞原位取样后的样品在线衍生化,实现了目标分析物的信号转化与放大,成功实现了单细胞中原本难以直接检测的氨的测定。报名占位李婷 应用工程师岛津企业管理(中国)有限公司《岛津微芯片电泳MultiNA原理和应用方向介绍》介绍岛津微芯片电泳MultiNA仪器基本原理、仪器特点和应用方向。高荣科 教授中国石油大学(华东)《基于微纳界面的表面增强拉曼-微流控芯片测量技术》【报告摘要】: We develop a series of microfluidic sensors for the early diagnostic of hepatocellular carcinoma, prostate cancer, intracranial aneurysm, cardiac diseases etc. Combined with highly sensitive optical detection technology and medical imaging technology, the devices demonstrate great potential in screening test and prognosis. Cancer biomarkers are genes, proteins, and other substances that can be detected for obtaining important information about a person’s cancer. Surface-enhanced Raman scattering (SERS) based immunoassay was proposed to detect the level of cancer biomarkers. Furthermore, circulating tumor cells escape from the primary tumor or metastasis and travel in the circulating peripheral blood, carrying important bioinformation about cancer progression and metastasis. Micro- and nanofabrication technology of SERS active substrates was studied to achieve a trace measurement result. Currently, a lot of approaches have been developed to selectively isolate high-purity CTCs from human peripheral blood samples. A novel strategy of SERS-microfluidics was employed for efficient separation and in-situ heterogeneous phenotype analysis of CTCs at single cell level。报名占位李博伟 研究员中国科学院烟台海岸带研究所《微流控纸芯片技术在环境检测和生化分析中的应用研究》【报告摘要】严重的环境污染问题,给社会经济的可持续发展和人民的健康带来了巨大的影响,为解决上述问题,我们基于纳米材料、分子印迹、模拟酶等功能材料,结合比色、荧光、电化学和表面增强拉曼散射光谱等检测原理,创新了一系列基于微流控纸基芯片传感器件和仪器关键部件,并用于环境与生物分析应用研究,取得了系列进展。报名占位刘显明 副研究员中国科学院大连化学物理研究所《大分子晶体学在蛋白分析中的应用》【报告摘要】:数字微流体(简称DMF)控制是一种通过在二维平面上施加电场,自动驱动微量液体(液滴)样品的技术。DMF平台在液滴精准操控方面的优势对于构建液滴微反应器极为有利,本团队与合作者在多肽及多糖等代表性生物化合物从头合成微反应方面分别取得进展。此外,报告人还将在DMF芯片POCT仪器构建及多指标炎症因子与核酸检测等方面汇报进展。报名占位张秀莉 教授苏州大学《用于药理毒理的器官芯片研究》【报告摘要】:新药评价技术,往往由于动物的种属差异大或体外二维细胞的仿生性低,造成候选新药在临床失败。器官芯片因其能够模拟人体器官的部分或关键功能,成为解决该问题的一个有力选项。报告人利用该技术,开发了系列生理和病理模型,并将其应用于药物的药效和毒性评价。近期的研究进展包括:(1)构建了基于肝芯片、肾芯片和心脏芯片的毒效学评价平台,可实现候选药物不同器官的系统毒效评价。2)开展了不同微流控器官芯片对中药化合物的器官损伤评价研究,发现了化合物在生理状态下具有损伤、在病理作用下有保护作用的特性。3)利用肝器官芯片,初步评价了肝毒性药物可通过激活免疫细胞增强肝损伤的特性。4)构建了BBB-iPSC-双神经元芯片,可以用于评价药物的神经保护药效。报名占位林洪丽 肾内科主任/二级教授大连医科大学附属第一医院《基于微流控芯片的肾脏疾病研究及干预》【报告摘要】:微流控芯片技术具有微型化、高通量、样本小、试剂少等特点,为探索疾病的发生机制、新药筛选等提供技术平台。慢性肾肾脏病发病机制复杂,早期肾脏损害即可导致肾小球组织结构和滤过功能、肾小管间质结构的破坏,给治疗带来挑战。应用微流控芯片技术体外建立有效的疾病模型对深入研究其发病机制以及早期防治具有重要意义。报名占位毛红菊 研究员中国科学院上海微系统与信息技术研究所《基于微流控的器官芯片构建及应用研究》【报告摘要】:器官芯片是指结合微流控等技术,将同种组织的不同细胞按照一定的排列分布共培养在特定的空间中,形成具有一定生理功能的结构单元。也可以理解为,在芯片上嵌入能够模拟器官的主要结构和功能特征的生理结构。器官芯片技术的发展也是从MEMS技术和生物技术的交叉发展而来的。本报告主要介绍下课题组基于微流控的器官芯片构建及应用研究方面的部分工作。报名占位郑付印 副教授/博士生导师北京航空航天大学生物与医学工程学院和北京市生物医学工程高精尖创新中心《基于神经支配的人体仿生类器官和器官芯片的研究》报名占位 【报告摘要】类器官和芯片器官在新药研发、疾病模型、个性化医疗和载人航天医学等领域具有广阔的应用前景。我们在芯片上构建了一系列模拟血管化器官微生理结构的多器官模型,如脾血窦、微血管肿瘤、血视网膜屏障等。利用诱导多能干细胞构建了三维(3D)血管化的脑类器官和融合类器官,并结合光遗传学再现了神经与靶组织(血管、肌肉和心肌)或靶器官之间强大的生理和功能耦合。针对器官有效缩放、神经支配和传感器集成问题,通过整合多层流微流控技术、生物3D打印技术、结构色材料编码传感技术,将所制备的器官芯片用于构建神经血管单元、神经肌肉连接和神经心肌连接的体外模型,并与传感器、电生理刺激和在线监测相结合,用于高通量药物筛选应用。扫码会议交流群(群内改备注姓名+单位+职位)如二维码失效,请添加13683372576,备注姓名单位职位,说明微流控群参会提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 刘老师:13683372576,liuld@instrument.com.cn
  • 中科院大连化物所林炳承教授:微流控芯片的战略机遇和我们的社会责任
    作者:林炳承中国科学院大连化学物理研究所摘要本文为作者在第八次全国微流控芯片高端论坛(2020.11.26-28)上报告的书面文字版,整理过程中增添了论坛上部分嘉宾的报告内容。文章以作者所领导的实验室 20 余年来在微流控芯片领域的研究积累为基础,结合近年来这一颠覆性生物技术的蓬勃发展,围绕着微流控芯片三个方面的核心应用,阐述我们所面临的战略性机遇和应对策略。2018 年 10 月 19 日,刘鹤副总理在答记者问时明确提出,“以生物技术和信息技术相结合为特征的新一轮科技革命和产业变革正在兴起,将会创造巨大需求”,微流控芯片是新一代“颠覆性”生物技术的突出代表 [1]。以微流控芯片为代表的新一代生物技术将会和信息技术结合,引发下一波科技革命,左右国家产业变革的战略布局 [2-3]。一 . 微流控芯片的三个核心应用 [4-7]应用反映需求,大量的研究和开发工作围绕着需求展开。微流控芯片有三个核心应用。其中之一是微流控检测分析芯片,这种芯片是新一代即时诊断(point of care testing,POCT)的主流技术,也是体外诊断(IVD)最重要的表现形式;二是微流控反应筛选芯片,微流控芯片还可被看成是迄今为止最重要的一种微反应器,它以液滴为主要特征,在高通量药物筛选,材料合成和单细胞测序等领域有巨大的潜力,其中的数字液滴显示了和电子芯片深度对接的战略前景;三是微流控细胞 / 器官芯片,这类芯片是对哺乳动物细胞及其微环境进行操控最为重要技术平台,可望大规模替代小白鼠等模型动物,用于验证候选药物,开展药物毒理和药理作用研究,实现个体化治疗。下面,将对这三个方面的应用逐一予以阐述。二 . 即时诊断1. 即时诊断现状即时诊断(POCT)是体外诊断的重要组成部分。微流控芯片是即时诊断的主要实现平台,微流控芯片通过即时诊断的方式实现体外诊断。在中国,微流控与体外诊断的绑定从政策层面得到了确认,现阶段国内有近 90% 的微流控芯片公司都从事体外诊断产品的开发。即时诊断的第一轮工作大多集中于以核酸分析为代表的分子诊断,以蛋白质分析为代表的免疫诊断和以代谢物分析为代表的生化诊断。当然,还有一些其他方面的工作,如血液诊断,微生物诊断等。在2020 年 11 月 400 名代表参加的第八届微流控芯片高端论坛上,有多达 40 余个企业参展【图1】,而 2018 年被 Yole 报告列出的中国微流控芯片公司的数目仅为 25 家。Yole 分析师最新数据统计显示,2019 年全球微流控试剂产品市场规模达到 99.8 亿美元,相应的微流控设备市场为 34.8 亿美元,2019 至 2024 年期间的微流控产品市场复合年增长率高达 11.7%,微流控设备市场复合年增长率为 10.8%,预计到2024 年,两类产品的市场将分别达到 173.8 亿美元和 58.1 亿美元 [8]。在我国,2018 年体外诊断市场约 600 多亿人民币, 而 POCT(非血糖)市场约为 100 亿。▲【图一】部分国产 POCT 产品2. 第二波 POCT 技术值得关注的是第二波 POCT 技术。一般认为,第二波POCT 技术的应用对象主要为单细胞分析,液体活捡,肿瘤早期诊断和抗药性试验等,而医生办公室用 DNA 测序,家用基因诊断以及以安全有效使用药品和生物制品为特征的随行诊断等也可能是第二波 POCT 技术的关注对象。从平台角度看,主要会包括 POCT 整机和 5G 等信息技术的联用,以及POCT 设备内部和电子技术的结合。单细胞分析已成为下一波即时诊断技术的重要对象。近年的很多证据表明,细胞群体,即使是很小的群体,都有很大的异质性,这和长期以来认为的细胞群体同一性观点背离,实际上,现行基于细胞同质性的基因表达测定所得的只是一种统计平均,它没有考虑单个细胞之间很小但是很重要的差异,带有误导性。单个细胞之间在大小,蛋白水平,表达RNA 的转录等方面有显著差别,而这些差别往往是肿瘤研究,干细胞生物学,免疫学,发育生物学和神经学中很多长期困惑人们的问题的关键所在。当细胞被用作药物时,则更为突出。陆瑶等从活的单细胞中捡测到 42 种不同的蛋白质,创当时文献的最高捡测记录 [9]。所开发的单细胞蛋白分析技术获美国发明专利授权,并由美国 Isoplexis 公司进行后续开发,产品在 2017 年年底获选美国科学家杂志(The Scientist) 当年度十大医疗技术发明第一名 [10]。这套系统能够同时捕获成千上万个单细胞的完整生物分子和功能信息, 能够更好地分析癌症患者对免疫疗法的治疗反应,提早预测包括细胞免疫疗法在内的抗癌免疫疗效。杨朝勇等则以核酸适体的高效筛选为基础,实现了单细胞的精准捕获与测序 [11]。从平台角度看, 关一民等提出的智能微流控反映了生物技术和信息技术结合的一种趋势。他们利用整晶圆集成 CMOS 前端与微流体 MEMS 后端,制备低成本智能微流体 CMOS- MEMS 芯片,实现对微量液体的自主,精准操作及控制。他们已经研制出一种用于黄曲霉素快速检测的 POCT 系统,并开始扩大到 3D 生物打印,医疗检测及精准用药等方面 [12]。微流控数字液滴可以被看成是 POCT 设备内部和电子技术的结合范例。基于电润湿原理,在二维平面上运动的微流控数字液滴技术因其操控灵活,形状可变,大小均一,又有优良的传热传质性能,已经被应用于需大量使用微反应技术的现代生物化学分析领域。值得一提的是,数字液滴可能因为其所具备的和电子芯片深度对接的能力而在第二波 POCT 中备受重视。在电场作用下,液滴在电介质表面的表面张力减小,因此接触角变小,液滴从未润湿变为润湿,这种表面张力的改变引发液滴受力不平衡,从而驱动液滴运动。可被视作为粒子的液滴一经带电,成熟的电子技术就可以源源不断的进入微流控领域,比如有源矩阵技术。有源矩阵技术是一种在电子行业常用的开关技术,通过与微流控数字液滴技术的结合,薄膜晶体管对行列交汇处的控制电极施加驱动电压,实现液滴移动的自动控制,有源矩阵技术能并行控制超大规模液滴阵列,比如,对于M 行N 列的阵列,利用有源矩阵技术可使所需电极数由原来的 M*N 剧减为 M+N,克服过多的电极引脚造成的空间缺失,全自动完成复杂和庞大样品前处理任务。南方科技大学程鑫和中科院大连化物所陆瑶,刘显明等合作,承担题为“微流控数字液滴中央处理仪器的研制与应用”的国家自然科学基金重大仪器项目,旨在通过微流控数字液滴中央处理仪器和大规模有源矩阵数字微流控液滴芯片的研制,实现微流控技术和电子技术的深度对接 [13]。蒋兴宇等把液态金属和用弹性高分子微流控芯片整合成柔性电子电路后,发现这些柔性电子电路可以在生物医学传感,组织工程,人用器官以及生物计算领域发挥非常大的作用。他们用液态金属和弹性高分子微流控结合 , 制备全柔性血氧传感器,全柔性汗液检测装置,电子血管和功能强大的血管支架 [14]。柔性材料还可制备可穿戴设备。Nature 曾报道一种集成模式,可以对人体体温及汗液中四种生化指标(葡萄糖, 乳酸,钾离子,纳离子)进行连续的定量检测的装置,还可通过多元检测得到不同检数据之间的相互矫正,从而提高检测结果准确性。在此基础上 , 刘宏等发展了相应的可穿戴生化传感技术。他们提出一种新的生物传感思路,研究出基于电解水辅助的电催化反应,发展了相应的无酶葡萄糖传感方法, 解决了无酶传感中的 pH 问题,实现了无酶的葡萄糖检测, 再将该传感器与智能手环,运动头巾等结合,用于监测汗液中葡萄糖的含量,寻求汗液葡萄糖和血糖的关係 [15]。三 .材料的可控合成和筛选这里所指的合成和筛选材料是微尺度的, 微尺度材料合成技术也被称之为微化工技术,它的基础是被视为最小微反应器的液滴。微化工技术因其混合速度快,传递性能好,以及反应条件均一可控,已成为化工学科的前沿方向之一,也是工程前沿和材料化学精准制备的新技术。微化工产业用的芯片兼具高精度的微观特征尺度和较大的宏观器件尺寸,并具有无法通过传统平面光刻实现的三维构型。程亚等利用超快激光微加工技术制造微化工芯片,开拓了这种芯片在微化工产业中的应用 [16]。对液滴技术的研究则更为广泛。方群等发展了一种基于序控液滴阵列技术的微流控液滴操控新方法(SODA),能自动完成对超微量液滴的生成,融合,分裂,定位,迁移和分选等,SODA 技术具有微量自动,操控灵活,通用性强,应用面广等特点,适合于超微量样品和试剂消耗下多种类,大规模的分析和筛选 [17]。林金明等致力于和质谱的联用 [18]。姜洪源等则提出利用低压交流电场实现双乳内核融合,释放等精准操控的新方法 [19]。以微流控芯片为平台,以分散的液滴单元作为微反应器, 通过制备相对简单的微球,比如氧化物,可以打通芯片合成材料的技术路线。微流控技术能够精确控制微量流体的运动速度并进而控制物质传递和反应条件,因此在制备纳米颗粒及微米颗粒时,不仅可以灵活调节颗粒大小、组成、结构(单分散性、壳层厚度,以及其它内部结构)、形貌、分布以及其他物理化学性质,还可以通过微颗粒结构和构成微颗粒的各组分的灵活结合以赋予其更加多样化的功能,从而为新型微颗粒型功能材料的设计和研制提供新的思路和途径。骆广生等把液滴用于微尺度材料合成,专门研究“微尺度流动与材料的可控制造”,并对高端材料化学品予以特别关注 [20]。某种意义上说,药物也是材料。液滴微流控芯片也被广泛用于药物的筛选,比如工业酶。用紫外光照射可产生全基因变性的酵母细胞库,将其和荧光酶底物一起包进液滴,被包进液滴的酵母细胞产生酶,消化底物,因此增加液滴的荧光,在孵化后,将液滴按它们荧光强度的不同分开,这类方法试剂消耗量小(μl 级),筛选速度快(1000 倍),费用还低(100 万分之一)[21]。四 . 器官芯片药物研究的一个重要环节是临床前动物实验,临床前动物实验的弊端包括:化费极大,耗时极长,存在动物权、动物伦理等问题,最根本的是, 动物到底不是人,因此结果往往不准。一个典型案例是2016 年,法国科学家研发的一种已经完成动物试验的神经退行性药物,开始进行一期临床试验,六名健康志愿者中有一名脑死亡,四名病危,法国朝野震惊 [22]。药企的一个重要观点是,他们也并不看好动物试验,但是,他们没有更好的办法。器官芯片的发展提供了一种可能的替代途径。1. 器官芯片已经有很多课题组开展单一或多种器官芯片的研究。林洪丽等构建不同的肾脏芯片用于研究各种不同肾脏病的发生发展机制。比如,高血压肾的损害是促进慢性肾脏病进展至终末期肾脏病的原因之一,他们将肾小球内皮细胞,肾小球基底膜与足细胞共同培养于流体小室中,构建了具有滤过功能的“肾小球”芯片,在这样的模型上,发现高流量灌注会损伤滤过屏障功能,並引起肾小球内皮细胞与足细胞的损伤 [23]。王琪等构建了肺癌脑转移多器官仿生模型 , 该模型由上游仿生肺及下游以血脑屏障为核心结构的仿生脑组成 , 再现上游肿瘤细胞侵袭进入循环到达下游靶器官 , 突破血脑屏障,进一步形成脑转移的病理全过程 , 实现了对复杂病理过程的可视化检测 [24]【图 2】。张秀莉,罗勇等构建了肝 , 肾和心脏芯片并成功地把它们作为药物毒效学评价平台 [25]。赵远锦等利用微流控技术制备了一系列结构功能特异的生物材料,解决器官芯片构建所遇到的瓶颈问题 [26]。张炜佳等则构建了主动脉器官芯片,并实现了一些生物力学模拟 [27]。▲【图二】肺肿瘤脑转移芯片示意 [24]器官芯片是一种多通道,包含有可连续灌流腔室的三维细胞培养装置。器官芯片由两大部分组成,一是本体,由相应的细胞按实体器官中的比例和空间位置搭建;二是微环境,包括芯片器官周边的其他细胞、细胞分泌物和物理力 [28]。比如, 肝脏主要包括肝实质细胞,星状细胞,枯否细胞和内皮细胞, 分别占比约 58.9%,17.6%,14.7% 和 6%,而内皮细胞和肝星状细胞是空间上紧邻的两种细胞,HepG2 细胞部分空间占比大,与其他三种细胞形成的颜色条带形式不尽相同,其他三种细胞为线型或面型条带,HepG2 细胞则为三维条带。除了本体,还有微环境。陆瑶等用一种有 10 路平行通道的微流控芯片,连续测量 5000 多个单细胞在 4 个时间点的蛋白分泌物, 研究了人单个巨噬细胞对 Toll 样受体配体脂多糖(LPS) 的反应过程,揭示了不同蛋白在单个细胞中的四种不同的激活方式,并在相同的时间点对同一样本作单细胞 RNA 测序, 进一步证明了转录水平上存在两种主要的激活状态,分别用于翻译和炎症程序。结果表明,在一个表型均一的细胞群体中, 细胞内存在异质性反应 [29]。还有更多的报道指出, 肠道微环境中很小的剪切力就能极化上皮细胞,形成折叠的绒毛,在肾近端肾小管芯片上,把单一的上皮细胞层暴露在流体剪切力的尖端,能改变上皮细胞的极性,导致离子的移位,形成初级纤毛,纤毛突的平均长度为 10±3.5μm [30]。2. 器官芯片研究的下一波走势普遍认为器官芯片的下一波走势是:从器官芯片本体的构建到本体 + 微环境的仿生;从单一生理模型的构建到千变万化的类器官病理模型仿生;从单一细胞种植方法的发展到3D 打印细胞种植方法的全面介入,以及从单一器官的完善到多器官芯片系统甚至人体芯片的构建。整体而言,则是从以研究为主到研究开发生产并举。▲【图三】高通量单细胞外囊泡的多指标分析 [31]以单细胞胞外囊泡分泌物多路表征为例说明微环境的仿生。陆瑶 , 刘婷姣等把微芯片平台的两个功能部分用于单细胞胞外囊泡分泌物多路表征,一是有 6343 个鉴定单元的微孔阵列用于细胞培养,二是有一组平行微流通道阵列的玻璃抗体条形码用于单细胞囊泡的缚获和检测。这一高通量平台具有通过分泌的囊泡显示单细胞异质性的能力,【图 3】为单细胞外囊泡的多指标分析工作流程示意(上)并显示可视化聚类分析口腔鳞癌细胞系及肿瘤患者样本的功能亚群(下)[31]。在器官芯片中有一种值得注意的类器官技术,类器官是指在体外对干细胞进行诱导分化形成的在结构和功能上都类似于目标器官或组织的三维细胞复合体,具有稳定的遗传学特征,能在体外长期培养。把器官芯片技术与类器官技术结合, 形成类器官芯片技术。这样 , 通过使用患者的诱导多能干细胞(iPSCs)可在芯片上建立各种各样的类器官病理模型,并在体外模拟和重现。类器官芯片可以实现对药物药效和毒性进行更有效、更真实的检测,也可用于个体化治疗。由于类器官可以由人类 iPSCs 直接培养生成,相比于动物模型,会在很大程度上避免因动物和人类细胞间的差异而导致的检测结果不一致性 [32]。3D 生物打印是对传统器官芯片细胞接种方式的一种革命。关一民团队研发了一种由 3D 生物打印机打印的肝芯片 , 他们先把细胞定量图案化接种,再用 24 个细胞培养杯在培养板上形成 4 通道密封的流道结构,让细胞在培养杯定量成球培养,将培养板固定在生物打印机平台进行细胞打印,这样实现了用单细胞打印定量接种均一粒径的细胞团,进而打印器官的技术路线 [33]。还有一个比较著名的案例是 , 美国 Rice 大学团队提出一个 3D 打印的肺状系统,充满气蘘,可以扩张和收缩,具备肺通过向血液泵入氧气而发挥的生物功能。“人体芯片”是一个基于干细胞技术,由器官芯片、仪器和软件组成人体仿真系统,为人体内部的生理和病理过程提供高仿真窗口的技术平台。“人体芯片”的研发过程是:在研制出一系列不同的单一器官及其微环境的基础上,引入液体处理机器人和移动显微镜,开发定制软件,把多重器官的芯片组合,使多个器官芯片共置于一个标准的组织培养孵化器里进行自动化培养,灌注,介质添加,流体连接,样品收集和原位显微镜成像,并通过芯片对多器官人体灌注示踪剂(比如菊粉)的分布作定量预测,最终构建系统化,可灵活拆卸组装的“人体芯片”。“人体芯片”可为人类开展个体化治疗、药物筛选等提供仿真度极高,可靠性更好的技术平台,因此大幅度改善人类生存质量。这样的“人体芯片”应当是生物技术领域的“国之重器”。微流控芯片正处于一个重要的发展阶段,这一阶段的发展具有战略性。已经置身于其中的学术界, 产业界人士宜抓住机遇, 承担起我们的社会责任,强化“学科交叉”,强化“全国范围内微流控芯片从业人员的协同创新”,贯徹 “以任务带学科” 的方针,全面推动微流控芯片技术发展。
  • 开创微流控细胞分析新领域,为生命科学研究提供新工具——访BCEIA2021微流控细胞分析学术研讨会发起人林金明教授
    第十九届北京分析测试学术报告会暨展览会(以下简称BCEIA)将于2021年9月27-29日在北京• 中国国际展览中心(天竺新馆)召开。秉承“分析科学 创造未来”的愿景,面向世界科技前沿,面向经济社会发展主战场,面向国家重大需求,每届BCEIA的学术报告会都会邀请诸多知名科学家到会交流分析科学最新研究成果。近期,中国分析测试协会联合仪器信息网特别组织了BCEIA2021系列专访,邀约参与学术报告会组织和筹备的各领域专家,解读会议主题,分享学科发展趋势与仪器创新研究方向等,以飨读者。清华大学化学系林金明教授作为本届微流控细胞分析学术研讨会的发起人,将为广大参会观众带来一场学术技术交流的盛宴。借此机会,我们采访了林金明教授,请他谈谈对微流控技术成果进展与未来热点展望。微流控细胞分析技术正处“萌芽”阶段自1985年以来,BCEIA学术报告会已经连续举办了18届,吸引众多海内外知名分析科学家参会交流。三十多年以来,BCEIA对我国科学发展与进步起到了不可估量的作用。不仅成就了国产科学仪器的研发与使用,也培养了大批分析测试人才。据林金明教授介绍,今年微流控细胞分析学术研讨会将邀请多名业内资深专家学者,报告主题内容集中在细胞生物学与微流控技术,包括肿瘤细胞、干细胞等细胞生物学研究领域,微流控芯片技术研究进展和微流控技术应用与细胞分析领域,多维度分享技术进展,也为处于萌芽阶段的微流控细胞分析技术的发展奠定基础。应用于生命科学研究的光谱、电化学、色谱、质谱等技术已经发展近百年,但这些手段大部分针对的是元素、分子甚至蛋白质、核酸等的研究。对于模拟人体组织器官真实的微环境进行细胞分析研究时,这些手段就会略显不足。在模拟人体组织微环境时必然涉及到细胞、体液等流体介质,那么微流控细胞分析技术作为一个交叉学科技术显得尤为重要。微流体本身涉及力学、流体力学、材料的设计、芯片的研发制造等,最后还要实现自动化控制等方方面面。此外,细胞组织研究涉及细胞生物学、化学等基础科学。要真正实现细胞分析与微流控技术二者的结合以及更好的应用,需要通过各个领域专家的交流,齐心协力才能推动微流体用于细胞研究的进一步发展。微流控细胞分析技术主要实现了在细胞、组织应用方面仪器小型化,这不仅要求芯片尺寸与细胞高度吻合,也要求材料和细胞生物性高度相容,发展空间十分广阔。林金明教授表示:“微流控芯片一定会在用于细胞分析的小型化仪器上发挥重大作用,如果我们现在不好好去做,未来有可能陷入‘卡脖子’的状态。未来,在超微量流体的流动性、稳定性、操控性以及超微量流体物质的检测技术手段等方面,都需要强有力的创新科技实力,才能避免受制于人。”“第四代色质谱联用技术”实现“Lab on a Chip”谈及成果转化,林金明教授表示目前主要集中于微流控芯片的通道数、培养腔以及控制部位的研究。不同于一百多年来全球科学家传承使用的培养皿细胞培养方法,林金明教授使用微流控技术,将细胞培养集成在一个小小“芯片”上,实现了6通道细胞封闭培养,外部连接控温与二氧化碳气体装置,真正实现细胞培养的功能。这样做的好处是与传统细胞培养相比,过程试剂加样量大大减少;同时,大大降低了对空间洁净度的高要求。目前该成果已经成功实现产业化,并与色谱、质谱联用进行细胞分析,可以称作第四代色质谱联用技术。(第一代:气相色谱质谱联用——小分子、挥发性物质分析;第二代:液相色谱质谱联用——大分子、不易挥发物质分析;第三代:毛细管电泳色谱质谱联用——蛋白质、核酸分析)。此外,林金明教授表示近期在从事细菌领域的微流控技术应用研究,主要集中于食品领域中常见的致病细菌如大肠杆菌、沙门氏菌、金黄色葡萄菌等的分选,目前该工作已经得到了广东省科技厅的支持,正在与深圳一家企业合作进行成果转化。他表示,十分愿意与各类有应用需求的企业以及政府持续合作,希望为相关领域发展做出相应的贡献。推动微流控芯片技术发展势在必行林金明教授认为,目前微流控细胞分析技术的发展还处于全球范围的摸索阶段,对于未来的发展趋势,他认为在以下两个领域比较重要。第一个领域是利用微流控技术进行细胞共培养的研究。目前,细胞的培养基本都局限于二维空间并且无法进行多细胞培养,而人体组织是由多种细胞组成的,所以多种细胞在微流控芯片上的共培养是非常有发展前景的,或者叫做器官模拟培养。另外,基于此一定要做到自动化组织器官培养,这对于器官组织的认知以及各类机制的发现是至关重要的,从而对新药开发、对疾病机制的研究,以及对疾病的治疗等都很有帮助。第二个领域是活性单细胞的分析,要在外围其他细胞的环境作用中进行单细胞分析。在研究过程中,不仅要提供细胞所需的营养物质,还要提供一些细胞所需要的化学刺激等,这些必然离不开微流控技术。放眼未来,林金明教授认为微流控芯片在上述领域实现应用意义重大,将会对生命科学的研究起到巨大的促进作用,希望20年之后能够成为非常先进且实用的分析技术手段。参加BCEIA展会有助提升学生综合能力谈及对BCEIA的感受,林金明教授回忆,自他从国外回国将近20年的时间,不论作为学者还是作为分论坛筹备人,从未间断参加BCEIA。每两年一届的BCEIA都会涌现大量新技术、新产品,这对中国科学仪器发展起到非常好的推进作用。一方面,展会将国内先进的科学知识与创新仪器技术展示给全球的参会者,体现出国产仪器技术水平的不断提升和进步。另一方面,通过吸引国外先进仪器厂家参与展览最新技术进展,也让我们国产厂商以及研究单位直观了解差距,对整个国产科学仪器技术的提升有很大推进作用。更重要的是,30多年以来,BCEIA对学生的综合教育也起到很好的帮助作用。在参会期间,实验室学生也得到一定程度的锻炼和提高,他们不仅参加光谱、色谱、质谱等各种学术报告会,也同时会参观仪器技术展览。对他们而言,是一个综合的学术交流与知识提高的过程——既可以听到专家们的学术报告,又可以了解仪器展览中一些大型成果转化与合作进展,并且与不同国家的仪器技术专家进行充分交流,了解科学仪器的性能参数、应用领域、开发过程等,全方面锻炼他们的学术交流能力和对科学仪器行业的认知能力。后记:目前,林金明教授在清华大学已经开设了微流控芯片细胞分析课程,将研究内容转化成教科书,传授给学生。他表示,一个仪器技术的发展需要到货架上实践,一个科学理论也需要总结成教科书,通过书本传授给学生。我们不仅要追求科学研究的理论进展,也要追求成果的实际落地与应用转化。希望这些成果与理论知识不仅武装每位科学技术研发工作者,更要武装我们年轻一代的学生,从而为国产科学仪器行业的发展尽一份自己的力量。(采编撰稿:刘立东)
  • 让痕量样品分析简简单单-UPLC微流控芯片Trizaic
    贾伟沃特世科技(上海)有限公司实验中心对于痕量样品的液质分析,往往需要纳升级液相(nanoLC)作为分离工具。但是由于纳升液相采用极细管路(内径25-100微米),以及极低流速(200-450nL/min)的原因,在nanoLC使用中,微小的操作误差就会对其分离性能造成巨大影响,甚至导致实验失败。图1(左)显示了纳升毛细管在切割使用中可能存在的问题。为了减小nanoLC的操作难度,沃特世推出了纳升微流控芯片——Trizaic。它将众多的管路与色谱柱整合为一体,在方寸之间实现了nanoLC 的轻松操作。Trizaic作为沃特世的纳升级微流控芯片系统,以UPLC技术为起点,远远超越了其它微流控芯片产品目前的HPLC水平。自然而然,与其它微流控芯片比较,Trizaic天然地具有了UPLC较HPLC的巨大的性能优越性。通过两者的对比, Miller教授于Current Trends in Mass Spectrometry期刊发表的论文中清晰地显示出了Trizaic所能提供的,而HPLC级微流控芯片所无法企及的卓越性能(图1右)。图1. 左:纳升液相切割放大图。右:Trizaic与HPLC微流控芯片分析效果比较。Trizaic不但具有强大的分离性能,在它的结构设计中,更是考虑到了实际使用的便捷性。其主要的特点如下:■ Trizaic使用亚2纳米级填料,这是其超群的分离性能的基础。■ Trap Column与 Analytical Column同时内置于Trizaic内,避免了连接纳升管路所需的精细操作,也因此提高了实验的重现性和稳定性。■ 不必分流,就可实现精确稳定的纳升流速控制。不分流设计可为实验室节省巨大的高纯度流动相购买费用及废液处理费用。■ Trizaic可进行自动控温,保证分离的精确重现性。■ 自动储存记录Trizaic的使用情况,实验追溯轻松便捷。图2. Trizaic内部结构示意图(左图中阴影中)及外观(右)。为了实现卓越的分离性能,不同于其它微流控芯片, 在Trizaic的设计中,沃特世创造性地使用了陶瓷材料,以适应UPLC所必需的材质强度。通过激光蚀刻、高温加压融合、信息储存芯片植入等过程, Trizaic成品不但外观小巧、使用简便,更具有卓越的稳定性。在多达几百的重复实验中,T RIZAIC可以轻松做到并保持卓越的分离性能(图3)。图3. Enolase蛋白酶切混合物(70fmol)使用Trizaic分离分析。图中从上至下依次为第15次、215次、475次重复实验分析色谱图。结果显示出了Trizaic优秀的重现性和稳定性。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###Waters, UPC2, UltraPerformance Convergence Chromatography, ACQUITY, NuGenesis, UPLC, TruView, XSelect, XBridge, Synapt, Xevo 和 Engineered Simplicity是沃特世公司的商标。联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制