当前位置: 仪器信息网 > 行业主题 > >

近红外光谱定量分析

仪器信息网近红外光谱定量分析专题为您提供2024年最新近红外光谱定量分析价格报价、厂家品牌的相关信息, 包括近红外光谱定量分析参数、型号等,不管是国产,还是进口品牌的近红外光谱定量分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近红外光谱定量分析相关的耗材配件、试剂标物,还有近红外光谱定量分析相关的最新资讯、资料,以及近红外光谱定量分析相关的解决方案。

近红外光谱定量分析相关的论坛

  • 近红外光谱定量分析的七个重要环节

    ①准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件;利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。②选择与建立校正样品集中各个样品:为了克服近红外光谱复杂与变化的高背景,校正样品集中的各个样品必须包括今后待测样品中的全部背景,利用该校正样品集建立的数学模型,就能够校正样品中各种复杂的背景,该数学模型也只能适用于包括这些背景的样品。③准确测定样品集中每个样品的各种待测成分或性质(称为化学值)。因为这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。④剔除异常值,建立校正校品集(标样集):由上述①、②环节测定的校正样品集中种样品的光谱与化学值,有可能由于种随机的原因而有较严重的失真,这些样品的测定值称为异常值。为保证所建数学模型的可靠性,因此在建立模型时应当剔除这些异常值。⑤对校正样品集中样品光谱的预处理与分析谱区的选定:光谱的预处理与谱区的选定,是克服近红外光谱测定不稳定的有效环节。根据标样光谱的状况对光谱预处理,包括求导、数字滤波、付立叶变换与小波变换滤波等,以降低系统背景与随机背景。⑥选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想是应用近红外光谱的全光谱的信息,以解决近红外光谱的谱峰重叠与复杂背景的影响。⑦用外部证实法检验和评价数学模型,以检验数学模型在时间空间上的稳定性。可以用另外几批独立的、待测量已知的检验样品集,用数学模型预测计算检验集中各样品的待测值;对实际值与预测值作线性相关,并用相关系数和预测标准差来表示预测效果,要求相关系数接近1、预测标准差逼近于校正标准差。为了检验数学模型在时间、空间上的稳定性,需要用数学模型预测不同时间和空间的检验样品集,检验预测标准差是否都能得到稳定的结果。

  • 【分享】近红外光谱定量分析的七个环节

    [em01] [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析的七个环节① 准确扫描校正样品集中各个样品规范的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]:为了克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件;利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 ② 选择与建立校正样品集中各个样品:为了克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]复杂与变化的高背景,校正样品集中的各个样品必须包括今后待测样品中的全部背景,利用该校正样品集建立的数学模型,就能够校正样品中各种复杂的背景,该数学模型也只能适用于包括这些背景的样品。可以按光谱特征或浓度来选择校正校品集。③ 准确测定样品集中每个样品的各种待测成分或性质(称为化学值)。因为这些值测定的精确度是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]运用数学模型进行定量分析精确度的理论极限。④ 剔除异常值,建立校正校品集(标样集):由上述 ① 、② 环节测定的校正样品集中种样品的光谱与化学值,有可能由于种随机的原因而有较严重的失真,这些样品的测定值称为异常值。这些失真的样品,若包含在校正校品集中,就会影响所建数学模型的可靠性,因此在建立模型时应当剔除这些异常值。一般定量分析程序中都包含用统计方法指出某些异常值,应用人员可以根据情况决定是否将这些异常样品剔除。 ⑤ 对校正样品集中样品光谱的预处理与分析谱区的选定:光谱的预处理与谱区的选定,是克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定不稳定的有效环节。根据标样光谱的状况对光谱预处理,包括求导、数字滤波、付立叶变换与小波变换滤波等,以降低系统背景与随机背景。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析数学模型所包含的谱区(光谱的数据点)一般应根据样品的特点而选定;增加谱区的范围就可以增加对光谱信息采集的范围,即提高信息量;但因为每个光谱的数据点也包含了测量误差,因此数学模型所利用的数据点越多,则包含的测量误差也越大,为了减少[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中某些信息量小、失真大的部分谱区,以避免这些谱区的测量误差影响数学模型的稳定性,需要选择建立数学模型所用的谱区。可以依据导数光谱或相关系数随频率变化的相关图,用以选择数学模型包括的频率范围。 ⑥ 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想是应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的全光谱的信息,以解决[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的谱峰重叠与复杂背景的影响。如前所说,不同组分虽然在某一谱区可能重叠,但在全光谱范围内不可能完全相同,因此,为了区别不同组分,必须应用全光谱的信息。可用内部交叉证实法确定数学模型所用的最佳维数(即阶数)。内部交叉证实的方法是评价确定数学模型的一种有效方法。这种方法是依次、每次从校正样品集中提出一个或几个样品,然后用剩余的样品建立数学模型,并用数学模型预测原来提出的一个或几个样品,作为对数学模型的检验。反复进行上述步骤,直至校正样品集中的每个样品都被预测检测过一次为止。为了评价数学模型,将内部交叉证实时用数学模型预测计算的校正集中各样品的化学值与各样品的实际值作线性相关,计算相关系数和校正标准差,并用相关系数与校正标准差来评价数学模型的预测效果。要求相关系数接近 1 、校正标准差逼近于校正集测定标样化学值的标准差。如果内部交叉证实的方法确定数学模型预测的效果较好,则可以运用外部证实法进一步检验和评价数学模型;不然,须重复 ④ 、 ⑤ 、 ⑥ 以优化数学模型 ⑦ 用外部证实法检验和评价数学模型,以检验数学模型在时间空间上的稳定性。可以用另外几批独立的、待测量已知的检验样品集,用数学模型预测计算检验集中各样品的待测值;对实际值与预测值作线性相关,并用相关系数和预测标准差来表示预测效果,要求相关系数接近 1 、预测标准差逼近于校正标准差。为了检验数学模型在时间、空间上的稳定性,需要用数学模型预测不同时间和空间的检验样品集,检验预测标准差是否都能得到稳定的结果。如果外部证实的方法确定数学模型预测的效果好,则可以考虑[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中应用这些数学模型;不然须重复 ④ 、 ⑤ 、 ⑥ 以优化数学模型。如果测定的样品在时间和空间条件上有一些新的变化,原有的数学模型已不适合此新条件,则需重新建立有代表性的校正样品集(可以在原有的样品集中增加一些新的样品类型,以使新的校正样品集能代表新的类型样品),然后再按照 ①—⑦ 环节对数学模型进行修正与维护。

  • 【分享】近红外光谱定量分析的七个环节!!!!!

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析的七个环节① 准确扫描校正样品集中各个样品规范的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]:为了克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件;利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 ② 选择与建立校正样品集中各个样品:为了克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]复杂与变化的高背景,校正样品集中的各个样品必须包括今后待测样品中的全部背景,利用该校正样品集建立的数学模型,就能够校正样品中各种复杂的背景,该数学模型也只能适用于包括这些背景的样品。可以按光谱特征或浓度来选择校正校品集。③ 准确测定样品集中每个样品的各种待测成分或性质(称为化学值)。因为这些值测定的精确度是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]运用数学模型进行定量分析精确度的理论极限。④ 剔除异常值,建立校正校品集(标样集):由上述 ① 、② 环节测定的校正样品集中种样品的光谱与化学值,有可能由于种随机的原因而有较严重的失真,这些样品的测定值称为异常值。这些失真的样品,若包含在校正校品集中,就会影响所建数学模型的可靠性,因此在建立模型时应当剔除这些异常值。一般定量分析程序中都包含用统计方法指出某些异常值,应用人员可以根据情况决定是否将这些异常样品剔除。 ⑤ 对校正样品集中样品光谱的预处理与分析谱区的选定:光谱的预处理与谱区的选定,是克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定不稳定的有效环节。根据标样光谱的状况对光谱预处理,包括求导、数字滤波、付立叶变换与小波变换滤波等,以降低系统背景与随机背景。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析数学模型所包含的谱区(光谱的数据点)一般应根据样品的特点而选定;增加谱区的范围就可以增加对光谱信息采集的范围,即提高信息量;但因为每个光谱的数据点也包含了测量误差,因此数学模型所利用的数据点越多,则包含的测量误差也越大,为了减少[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中某些信息量小、失真大的部分谱区,以避免这些谱区的测量误差影响数学模型的稳定性,需要选择建立数学模型所用的谱区。可以依据导数光谱或相关系数随频率变化的相关图,用以选择数学模型包括的频率范围。 ⑥ 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想是应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的全光谱的信息,以解决[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的谱峰重叠与复杂背景的影响。如前所说,不同组分虽然在某一谱区可能重叠,但在全光谱范围内不可能完全相同,因此,为了区别不同组分,必须应用全光谱的信息。可用内部交叉证实法确定数学模型所用的最佳维数(即阶数)。内部交叉证实的方法是评价确定数学模型的一种有效方法。这种方法是依次、每次从校正样品集中提出一个或几个样品,然后用剩余的样品建立数学模型,并用数学模型预测原来提出的一个或几个样品,作为对数学模型的检验。反复进行上述步骤,直至校正样品集中的每个样品都被预测检测过一次为止。为了评价数学模型,将内部交叉证实时用数学模型预测计算的校正集中各样品的化学值与各样品的实际值作线性相关,计算相关系数和校正标准差,并用相关系数与校正标准差来评价数学模型的预测效果。要求相关系数接近 1 、校正标准差逼近于校正集测定标样化学值的标准差。如果内部交叉证实的方法确定数学模型预测的效果较好,则可以运用外部证实法进一步检验和评价数学模型;不然,须重复 ④ 、 ⑤ 、 ⑥ 以优化数学模型 ⑦ 用外部证实法检验和评价数学模型,以检验数学模型在时间空间上的稳定性。可以用另外几批独立的、待测量已知的检验样品集,用数学模型预测计算检验集中各样品的待测值;对实际值与预测值作线性相关,并用相关系数和预测标准差来表示预测效果,要求相关系数接近 1 、预测标准差逼近于校正标准差。为了检验数学模型在时间、空间上的稳定性,需要用数学模型预测不同时间和空间的检验样品集,检验预测标准差是否都能得到稳定的结果。如果外部证实的方法确定数学模型预测的效果好,则可以考虑[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中应用这些数学模型;不然须重复 ④ 、 ⑤ 、 ⑥ 以优化数学模型。如果测定的样品在时间和空间条件上有一些新的变化,原有的数学模型已不适合此新条件,则需重新建立有代表性的校正样品集(可以在原有的样品集中增加一些新的样品类型,以使新的校正样品集能代表新的类型样品),然后再按照 ①—⑦ 环节对数学模型进行修正与维护。

  • 【分享】近红外光谱分辨率对定量分析的影响

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=100969][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分辨率对定量分析的影响[/url]分享!

  • 【分享】------近红外光谱定量分析的七个环节!!!!!

    [color=#DC143C]① 准确扫描校正样品集中各个样品规范的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]:为了克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件;利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 ② 选择与建立校正样品集中各个样品:为了克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]复杂与变化的高背景,校正样品集中的各个样品必须包括今后待测样品中的全部背景,利用该校正样品集建立的数学模型,就能够校正样品中各种复杂的背景,该数学模型也只能适用于包括这些背景的样品。可以按光谱特征或浓度来选择校正校品集。③ 准确测定样品集中每个样品的各种待测成分或性质(称为化学值)。因为这些值测定的精确度是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]运用数学模型进行定量分析精确度的理论极限。④ 剔除异常值,建立校正校品集(标样集):由上述 ① 、② 环节测定的校正样品集中种样品的光谱与化学值,有可能由于种随机的原因而有较严重的失真,这些样品的测定值称为异常值。这些失真的样品,若包含在校正校品集中,就会影响所建数学模型的可靠性,因此在建立模型时应当剔除这些异常值。一般定量分析程序中都包含用统计方法指出某些异常值,应用人员可以根据情况决定是否将这些异常样品剔除。 ⑤ 对校正样品集中样品光谱的预处理与分析谱区的选定:光谱的预处理与谱区的选定,是克服[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定不稳定的有效环节。根据标样光谱的状况对光谱预处理,包括求导、数字滤波、付立叶变换与小波变换滤波等,以降低系统背景与随机背景。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析数学模型所包含的谱区(光谱的数据点)一般应根据样品的特点而选定;增加谱区的范围就可以增加对光谱信息采集的范围,即提高信息量;但因为每个光谱的数据点也包含了测量误差,因此数学模型所利用的数据点越多,则包含的测量误差也越大,为了减少[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中某些信息量小、失真大的部分谱区,以避免这些谱区的测量误差影响数学模型的稳定性,需要选择建立数学模型所用的谱区。可以依据导数光谱或相关系数随频率变化的相关图,用以选择数学模型包括的频率范围。 ⑥ 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想是应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的全光谱的信息,以解决[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的谱峰重叠与复杂背景的影响。如前所说,不同组分虽然在某一谱区可能重叠,但在全光谱范围内不可能完全相同,因此,为了区别不同组分,必须应用全光谱的信息。可用内部交叉证实法确定数学模型所用的最佳维数(即阶数)。内部交叉证实的方法是评价确定数学模型的一种有效方法。这种方法是依次、每次从校正样品集中提出一个或几个样品,然后用剩余的样品建立数学模型,并用数学模型预测原来提出的一个或几个样品,作为对数学模型的检验。反复进行上述步骤,直至校正样品集中的每个样品都被预测检测过一次为止。为了评价数学模型,将内部交叉证实时用数学模型预测计算的校正集中各样品的化学值与各样品的实际值作线性相关,计算相关系数和校正标准差,并用相关系数与校正标准差来评价数学模型的预测效果。要求相关系数接近 1 、校正标准差逼近于校正集测定标样化学值的标准差。如果内部交叉证实的方法确定数学模型预测的效果较好,则可以运用外部证实法进一步检验和评价数学模型;不然,须重复 ④ 、 ⑤ 、 ⑥ 以优化数学模型 ⑦ 用外部证实法检验和评价数学模型,以检验数学模型在时间空间上的稳定性。可以用另外几批独立的、待测量已知的检验样品集,用数学模型预测计算检验集中各样品的待测值;对实际值与预测值作线性相关,并用相关系数和预测标准差来表示预测效果,要求相关系数接近 1 、预测标准差逼近于校正标准差。为了检验数学模型在时间、空间上的稳定性,需要用数学模型预测不同时间和空间的检验样品集,检验预测标准差是否都能得到稳定的结果。如果外部证实的方法确定数学模型预测的效果好,则可以考虑[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中应用这些数学模型;不然须重复 ④ 、 ⑤ 、 ⑥ 以优化数学模型。如果测定的样品在时间和空间条件上有一些新的变化,原有的数学模型已不适合此新条件,则需重新建立有代表性的校正样品集(可以在原有的样品集中增加一些新的样品类型,以使新的校正样品集能代表新的类型样品),然后再按照 ①—⑦ 环节对数学模型进行修正与维护。[/color]

  • 【原创大赛】“敏感”的水—近红外光谱技术用于定性和定量分析的“好帮手”

    近红外(near-infrared,NIR)光谱是当分子受到近红外区域的电磁辐射后,吸收一部分近红外线,使分子中原子的振动能级与转动能级跃迁而产生的分子吸收光谱。主要反映的是含氢基团(C-H,O-H,N-H,S-H)基频振动的倍频和合频信息,其波长范围为780-2500 nm。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术以其快速分析、无损检测、操作简便等优点而成为一种重要分析手段,但其吸收信号弱,谱带重叠,需要通过化学计量学方法解析重叠光谱及消除干扰。目前结合化学计量学方法的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已在农业与食品工业、生命科学与医药、烟草工业、环境工程及石油化工等领域得到了广泛的应用。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已被公认为一种精确的水含量测定方法,由于溶剂的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中包含了有关溶质的重要信息,因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术不仅可以作为探测水结构的工具,还可以用来确定水与环境中其他成分的相互作用。水光谱组学作为[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的一项新兴内容,借助化学计量学方法,分析不同扰动因素(温度、压强、溶质等)下水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,在分子水平上反映溶液中其他分子的信息。大量研究工作表明,温度或溶质等扰动因素的变化会引起水中氢键数目的变化,使水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]谱带的位置和强度发生改变。因此,通过分析光谱中水的谱峰变化,可以反映溶液中溶质的结构信息。由于水光谱组学能够特征识别与水结构相关的水吸收模式,近红外结合水光谱组学可以提供发掘隐藏在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的信息的可能性,为分析水溶液提供新的途径。据报道,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合水探针不仅被用作分析水和金属离子之间相互作用的生物标志物,还被用作反映蛋白质变性过程的指针。除此之外,水探针也实现了水溶液和血清中葡萄糖的准确定量。可见,“敏感”的水是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于定性分析和定量分析的“好帮手”。

  • 【近红外光谱专家系列讲座】:12月10日 第三讲:近红外定量分析模型

    【近红外光谱专家系列讲座】:12月10日 第三讲:近红外定量分析模型

    【专家讲座】:第三讲:近红外定量分析模型【讲座时间】:2015年12月10日 14:00【主讲人】:闵顺耕 (中国农业大学理学院应用化学系教授,博士生导师,主要研究领域:红外/近红外光谱、化学计量学、农产品品质与营养分析、农产品安全。)【会议简介】内容提要:第三讲 近红外定量分析模型3.1 定量分析流程3.2 常见建模算法3.3 模型性能评价3.4 建立定量模型中的问题问题1. 样本集(样品分布?)①代表性②样本集数量③离群样本判断及取舍④检验集样品选择和数量⑤配制样品的共线性问题⑥化学值的准确度与精密度问题2.光谱测定(仪器性能、参比选择与光谱质量、测量方式、 不均匀性样品测定及颗粒度影响、在线光谱测定)-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年12月10日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/17405、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 【分享】-----应用近红外光谱定量分析技术多成分、快速检测饲料品质 !!!

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](Near lnfrared Spectroscopy,NIBS)分析技术是20世纪70年代发展起来的一种新的成分分析技术,其应用波长范围大约为3-0.70um,属红外光谱范围,是电磁波的一个组成部分。NIRS作为电磁波的一个组成部分,具有电磁波和物体作用时表现出的一般特性,如透射、漫反射、吸收等,此外,其最突出的特点是这一光谱区域为含氢基团的倍频和合频吸收区。物质的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是其中各基团振动的倍频和组合频率的综合吸收表现。尽管朗伯一比尔(Lamher-Beer)定律适合每个基团的吸收强度与其含量之间的定量关系,但对于一个吸收峰高度叠加光谱的定量分析,简单地应用朗伯一比尔定律显然是不合适的。这也是传统的光谱工作者避开近红外区的原因之一。 早期的NIRS分析技术主要是利用近红外的透射(Near lnfrared Transmittance,NIT)光谱测定液体中的水分含量和苯、乙醇等含一OH基团的化合物[刨。由于大多数食品和农产品的未破坏无损伤物料对NIRS来说是不透明体,测量其透射率有一定困难,所以该技术未能用于食品和农产品分析。真正使NIBS分析技术应用于农产品方面是1976年Norris将近红外反射光谱应用于谷物的水分研究并提出相对NIRS定量分析技术之后,其理论是:物质中某一化学成分的含量与近红外区内多个不同的波长点吸收率呈线性关系。 通过对一批已知其化学成分含量的NIRS校正,可获得X个波长点的回归系数,再用这个被确定的模型来预测未知样品中该化学成分的含量。 近十几年来,随着计算机技术的发展,大量光谱数据的处理成为可能;同时,NIRS分析技术本身也不断地发展,如采用的光谱区段、进样方法、光谱采集方法及定标用的统计方法等,都使NIBS分析技术的应用日益广泛,由最早谷物中水分含量的测定发展到同时测定谷物中的蛋白质、淀粉、油分等多种组分,应用范围也由农业扩展到食品、医药、纺织、石油等行业。2 国内外应用NIB分析技术检测饲料品质情况 NIBS分析技术毕竟是在对农产品尤其是谷物品质分析的研究中形成和发展起来的,目前文献涉及的NIBS分析绝大多数是相对NIB分析,而且多数是农产品方面的品质分析和应用研究,在饲料方面的应用也几乎全是对饲料作物及其产品的品质分析和应用研究。近十几年来笔者检索到的用NIRS分析技术测定水分和/或蛋白质和/或脂肪的报道共有221篇,除26篇涉及医学、15篇涉及环境生态、9篇涉及木材及其加工等行业外,其余171篇都是关于农产晶类的研究,其中饲料类33篇。这33篇报道,都采用相对NIR分析方法。 虽然相对NIB分析技术作为预测粗蛋白含量的快速检测方法已于1989年被AOAC首次通过,但由于该方法在实际应用中技术性能变化较大,AOAC也只是对该方法作一些规则性描述。上述33篇饲料类文献表明,长期以来许多学者对相对NIB分析技术作了很多研究,水分、蛋白质、脂肪、灰分是做得比较多的项目,定标应用效果良好,参见文献国外的实验材料多数选单一原料,也有报道混合饲料的相对NIB效果差于单一原料,对动物性饲料原料或混料的研究较少。 我国NIBS分析技术的研究起步较晚。"七五"期间,以中国农业科学院畜牧所为主,全国约20家研究所联合研制了一些饲料质量分析定标软件,如饲料用玉米、大豆粕、苜宿粉、蛋鸡配合饲料中的干物质(DM)、粗蛋白(CP)、粗纤维(CF)和灰分含量定标软件以及6种饲料的消化能(DE)和代谢能(ME)、4种饲料原料的氨基酸(AA)、6种饲料的植酸磷、饲料添加剂中喹乙醇分析软件。之后,中科院长春光机所研制出了具有9个滤光片NIRl501型近红外反射光谱仪,到1996年出现了该国产NIR分析仪在饲料检测中的应用研究。与国外情况相似,我国的NIBS技术也多以粮谷作物及其产品为研究对象,文献中提及的"饲料"都是饲草类或粮谷类配合饲料。文献于1996年应用国产滤光片式NIR分析仪对全国各饲料厂及原料供应商采集的50个鱼粉样品(48个用于定标)的水分、粗蛋白含量进行定标、预测,效果良好。同年,福建省测试技术研究所用NIR分光光度计成功地测定成鳗饲料中粗纤维含量。王文杰报道曾用NIR技术对预混料中维生素A、喹乙醇、土霉素的检测进行研究,证明NIR是一种有应用价值的监测手段。丁丽敏用NIR技术对鱼粉的氨基酸含量和豆粕、玉米的真可消化氨基酸含量进行定标和预测,结果表明鱼粉赖氨酸和总的氨基酸的定标效果达到可利用程度,而蛋氨酸和胱氨酸的定标精度有待进一步提高;豆粕中除与胱氨酸有关的方程较差外,其它氨基酸的定标方程经检验有良好的预测性能;玉米真可消化氨基酸的定标性能不如豆粕好,目前还不能实际应用。3 饲料领域中如何应用NIRS定量分析技术 上述国内外研究工作均采用相对NIR法,尚未见NIT分析技术在饲料领域中的研究报道。纵观近10年来国内外的应用研究情况,应用NIRS作为饲料的定量分析技术,都遵循这样的过程--定标(Calibration)和预测(Prediction)。定标目的在于建立常规分析方法和NIRS分析法得到的结果之间可靠的函数关系,包括定标样品的选择,常规法测定定标样品某成分含量,获取定标样品的光谱数据并进行数学处理,经回归计算产生某成分的定标方程,再对该成分定标方程的准确性进行评价。定标样品在数量理论上只要比回归自由度的数目多一个就可以计算,但实际上数量越多,定标方程越有普遍意义。实际工作中,至少应考虑取50个样品。光谱数据的预处理和采用的回归校正方法是影响定标方程效果的主要因素,预处理较多采用趋势变换法、标准正态变量转换法、乘性散射校正法和加权乘性散射校正法等,回归校正方法常用逐步回归分析法(SMLR)、主成分分析法(PCR)、最小偏差分析法(PLS)和傅立叶转化等,其中PLS法是目前NIBS分析上应用最多的回归方法。预测是考察定标方程在实际应用中的可行性,其样品的选择和处理与定标用的样品大致一样,只是样品数目和成分含量分布不必象定标样品严格,结果需用预测标准差(Standard Error of Prediction)和相关系数(Rc)来衡量。为了获得满意的Rc要注意尽量多收集样品,并增加样品的覆盖范围,使各不同含量水平的定标样品数目尽可能均匀分布。 上述国内外研究工作为我国饲料行业应用NIRS分析技术提供了大量的经验和基础数据,但是近10年来我国NIRS分析技术在仪器和研究方法上均落后于欧美国家,目前NIBS分析技术还没有在我国农业科研和生产中得到真正的应用。由于应用NIRS分析技术作为一种定量分析方法,与化学法或物理化学法相比,主要具有如下优点:(1)无需称样,可以连续无限次地进行分析;(2)样品制备简单,只需粉碎,不用任何化学试剂处理,或者根本不用样品制备,对样品无损耗,测定后仍可作它用;(3)测定快速,只需几秒钟或几分钟即可完成,且一次可完成多个成分的测定。因此,NIRS分析法也称无损分析法,已引起化学和分析测试工作者的普遍重视,许多科学家认为此种技术将成为21世纪快速、实时分析和过程分析的最先导技术。

  • 近红外光谱检测云南烟叶主要化学成分快速定量分析模型的方法

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]检测云南烟叶主要化学成分快速定量分析模型的方法摘要:应用近红外测定了910个具代表性的云南省全省12个地区收购烤烟的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据, 并采用化学计量学中的偏最小二乘法分别对实验数据进行处理,建立了预测云南全省烟叶总糖、尼古丁、氯和钾、水份含量的校正模型.通过对模型进行数理统计检验 ,其预测值与测定值不存在显著性差异,满足检测效果,满足了复烤企业配方打叶的原料及成品的快速检测需要。[em01]

  • 近红外定量分析

    近红外光谱定量分析中,定量模型的评价有两个指标RMSEP、RMSEC,为什么一般RMSEP的值大于RMSEC

  • 有人用多元线性回归方法做过红外光谱的定性定量分析吗?

    所谓多元是指多个波长处的谱带,单元是指单个波长处的谱带。在红外光谱中(不是近红外)人们似乎多用单元线性回归和最多两元的比例线性回归来进行定量分析。我很想知道,像近红外那样用多元线性分析方法来分析红外光谱,是不是一个用效的定性(如种类的鉴别)和定量(如组分的比例)分析方法?

  • 近红外光谱定量分析模型的样本影响 (文章分享)

    以近红外光谱小麦蛋白质定量模型为例,重点分析了异常样本问题。对于异常样本的存在性,本文是以PLSR算法的隐变量建模中校正方差与验证方差的解释百分比曲线的背离特性作为判断依据,当两个百分比曲线具有显著的偏离或偏离点时,则认为样本中存在异常样本或样本模式异常,异常样本已经显著对建模产生影响。

  • 【原创大赛】温度效应与近红外光谱的完美产物—温控近红外光谱技术

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应被认为是科学实验的干扰因素,之前科学家们一直在努力消除温度效应带来的影响或研究校正温度的方法。但是我们可以换一个角度看待温度效应,充分利用温度这个扰动因素,结合[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,利用温度扰动引起的光谱变化实现了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的定量分析和结构分析新方法—温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,并在混合物体系、生物体系及实际复杂体系分析中得到应用[sup][/sup]。 温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中包含了温度和浓度变动引起的光谱变化,利用这些扰动,我们可以溶液体系进行定量和结构分析。我们课题组利用多级同时成分分析(MSCA),建立了两级模型,分别描述了光谱与温度之间的定量关系(QSTR)和光谱与浓度之间的定量关系(QSCR),实现了对水溶液和血清样品中葡萄糖的定量分析。进一步,根据样品中包含相同成分的特点,提出了互因子分析(MFA)的新方法[sup][/sup]。通过提取不同温度或不同浓度光谱中相互包含的光谱特征,并通过光谱特征的相对含量对温度或浓度进行了定量分析。通过分析葡萄糖水溶液温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]得到了光谱变化与温度和浓度之间良好的线性关系,验证了该方法的可行性。并将MFA应用于血清样品中葡萄糖的定量检测中,也得到了满意的定量模型,为水溶液体系和生物体系的定量分析提供了一种新的途径和方法。 除了定量分析,我们还将温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于结构分析。我们发展了一种基于主成分分析(PCA)载荷旋转的光谱解析方法。对简单二元水-乙醇混合体系的温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行了分析,计算得到了在混合溶液中水和乙醇的光谱信息,通过分析计算光谱和纯物质光谱的差异,可以得到水和乙醇在溶液中的结构信息以及二者之间的相互作用信息。继而通过温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术研究了生物大分子,如蛋白,与水的相互作用。通过二维相关光谱和高斯拟合分析了不同温度下卵清蛋白水溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],提取出了五种不同结构水团簇的特征光谱,得到了其强度随温度的变化趋势和随温度变化的先后顺序。结果表明,含有两个氢键的水结构变化能够很好的反映蛋白质的结构转变,并且在蛋白形成凝胶的过程中促进了凝胶结构的形成。进一步,通过温控及红外光谱技术结合化学计量学算法对更复杂的人血清样品进行了分析。将水作为探针,采用PCA和二维相关光谱分析的方法分析了血清样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],获得了与血清样品差异相关的水结构特征光谱,并实现了疾病诊断目的。除此之外,我们还建立了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中温度相关变量识别的方法。通过连续小波变换结合蒙特卡洛无信息变量消除的方法,筛选出了与温度相关的变量信息,通过所选变量实现了不同溶液的识别。 因此,温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术结合化学计量学方法可以成为一种对水溶液和生物体系中溶质含量、结构变化以及与溶剂相互作用进行分析的有效手段。

  • 为什么近红外光谱定量或定性分析大多需要化学计量学方法?

    [font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为含氢基团的倍频及合频吸收,其吸收峰均为宽峰,谱峰重叠严重,鲜有尖锐的谱峰及基线分离的谱峰,光谱指纹特征弱;而且倍频和合频吸收更易受温度和氢键的影响。因此,在实际应用中,以传统光谱分析的方式仅采用某一个峰对有机物进行定性和定量分析,其效果不理想,需要采用化[/font][font=宋体]学计量学方法解析光谱数据,最大限度地提取检测对象的有用光谱信息。[/font]

  • 【分享】现代近红外光谱分析

    目录信息 第一章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的发展概况 1.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的发展过程 1.1.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的发展 1.1.2计算技术的发展 1.1.3应用领域的发展 1.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析基础 1.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的特点 参考文献 第二章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的产生及光谱特征 2.1近红外分子振动光谱 2.2有机化合物的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]特征 2.2.1C—H键的谱带归属 2.2.2C=O键的谱带归属 2.2.3O—H键的谱带归属 2.2.4N—H键的谱带归属 2.2.5水的吸收 2.3部分有机化合物、水及石油产品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图 2.3.1异辛烷 2.3.2正己烷 2.3.31-十四烯 2.3.4乙醚 2.3.5丙酮 2.3.6乙醇 2.3.7二乙胺 http://book.hzu.edu.cn/book.htm?245652.3.8苯 2.3.9甲苯 2.3.10乙酸 2.3.11乙酸乙酯 2.3.12水 2.3.13汽油 2.3.14柴油 2.3.15煤油 参考文献 第三章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.1引言 3.1.1概述 3.1.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的主要性能指标 3.1.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的基本结构 3.1.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的主要类型 3.1.5[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的选型 3.2滤光片型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.3光栅扫描型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.4傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.5声光可调滤光器[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.5.1测量原理 3.5.2基本结构 3.6多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.7[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器中的检测器 3.8[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的数据处理与分析系统 3.8.1校正集样品的设定及光谱的预处理 3.8.2定性或定量校正模型的建立 3.8.3未知样品组成或性质的预测 3.9[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器发展展望 参考文献 第四章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析实验技术 4.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中的样品 4.1.1采样及其对分析结果的影响 4.1.2样品的处理 4.1.3样品的装载 4.1.4校正样品集的选择 4.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的常规分析技术 4.2.1液体样品分析 4.2.2固体、半固体样品的分析 4.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]漫反射分析技术 4.3.1漫反射分析定量原理 4.3.2影响漫反射分析的主要因素 4.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中的测样器件 4.4.1透射分析的测样器件 4.4.2漫反射分析的测样器件 4.5光纤技术在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中的应用 4.5.1光纤导光原理 4.5.2光纤材料 4.5.3光纤测样器件 4.5.4光纤测样器件与光谱仪器的连接 参考文献 第五章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在线过程分析技术 5.1过程分析发展的5个阶段 5.1.1离线分析 5.1.2现场分析 5.1.3侧线在线分析 5.1.4定位实时在线分析 5.1.5非接触性分析 5.2液体样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]过程分析技术 5.2.1影响液体样品过程分析的因素 5.2.2液体样品的光谱采集方式 5.3固体样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]过程分析技术 5.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在过程分析中的应用举例 5.4.1面粉[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在线分析系统 5.4.2抗生素生产过程的在线分析 参考文献 第六章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中常用的数学方法 6.1引言 6.2光谱分析与比尔定律 6.3线性代数基础知识 6.3.1矢量 6.3.2矩阵 6.4数理统计基础知识 6.4.1随机变量及其分布 6.4.2正态分布(高斯分布) 6.4.3均值与方差 6.4.4协方差与协方差矩阵 6.5回归分析及相关分析 6.5.1一元回归分析 6.5.2多元回归分析 6.6主成分分析 6.6.1二维空间中的主成分分析 6.6.2多维空间中的主成分分析 6.6.3主成分分析算法 6.7常用多变量校正方法 6.7.1多元线性回归法 6.7.2主成分回归法 6.7.3偏最小二乘法 6.7.4主成分数的确定 6.8模式识别 6.8.1数据预处理及常用参数计算公式 6.8.2作图方法 6.8.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中常用的模式识别算法 6.9人工神经网络 参考文献 第七章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定性及定量分析 7.1定量分析的步骤 7.1.1校正模型训练集样品的选择 7.1.2用标准方法测定样品物化性质 7.1.3测量光谱数据 7.1.4光谱的预处理 7.1.5建立校正模型 7.1.6校正模型的验证 7.1.7分析样品 7.1.8定量分析的流程 7.1.9[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定柴油十六烷值应用举例 7.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的误差来源 7.3定性判别分析 7.3.1基于有限波长的方法 7.3.2基于全谱的方法 7.3.3具体分析步骤 7.3.4应用 参考文献 第八章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在石油化工领域中的应用 8.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于石油化工产品分析的光谱基础 8.2燃料油的组成及性质分析 8.2.1汽油的组成及性质测定 8.2.2喷气燃料的组成及性质测定 8.2.3柴油的组成及性质测定 8.3润滑油的组成及性质分析 8.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在石油加工过程中的应用 8.4.1在原油蒸馏装置中的应用 8.4.2在流化催化裂化装置中的应用 8.4.3在蒸汽裂解装置中的应用 8.5[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在高分子合成及加工中的应用 8.5.1聚合过程的监测 8.5.2聚合物化学组成的测定 8.5.3聚合物结构的测定 8.5.4聚合物物性指标的测定 8.5.5聚合物类型的判别分析 8.5.6在合成纤维工业中的应用 8.6[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在基本有机合成中的应用 参考文献 第九章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在其它领域中的应用 9.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在农业和食品工业中的应用 9.1.1粮食和饲料 9.1.2肉类和奶制品 9.1.3水果和蔬菜 9.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在纺织工业中的应用 9.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在制药工业及临床医学中的应用 9.3.1在制药工业中的应用 9.3.2在临床医学中的应用 参考文献 附录1化学计量学期刊名录 附录2化学计量学研究机构和团体名录 附录3技术术语缩写词汇表

  • 【原创大赛】近红外光谱与温度的完美邂逅

    【原创大赛】近红外光谱与温度的完美邂逅

    在几年前的研究工作中,我们偶然发现[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]强度会随温度改变。随着更深入的研究,我们发现[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度之间存在定量关系。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度的邂逅,使我们课题组成功发展了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术。当然,这个技术的开发不是一蹴而就的,我们也做了大量的调研与实践。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅体现了结构、官能团等分子本身的特征,还体现了诸如氢键等分子内和分子间作用力。这些作用力会影响分子键及其振动模式,而这些作用力本身容易受到温度、压力等外界条件的影响。因此,温度变化会导致分子间作用力的变化,进而带来振动光谱的变化。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]作为一种振动光谱,必然会受到温度变化的影响。温度的变化会带来[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,进而影响多元校正模型的预测能力及[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析的准确性。此外,温度的变化也会带来物质结构的改变,如氢键强度的变化、高聚物的分解等。从而,在连续改变温度的条件下测得的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]就包含了丰富的物理和化学信息,体现了物质的结构变化和分解过程。这就为物质结构分析和化学反应过程的研究提供了一种新手段。因此,有关温度对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]影响的研究越来越广泛,同时,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度变化的相关性研究已应用于过程分析和结构分析,从而扩大了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的应用范围。[align=left]然而,在定量分析方面,科学工作者们一直致力于消除温度效应的影响,其中,对温度变化进行校正是消除[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]温度效应最直接的办法。分段直接校正等化学计量学方法已用于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中温度不敏感模型的建立,并成功地应用于水溶液中葡萄糖、蛋白质等物质的分析。然而,温度变化对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的影响并非完全是负面的。Peinado等提出应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应来产生三维数据,并应用平行因子分析(PARAFAC)对三维数据进行分析。结果表明,通过这种方法可以对样品温度进行建模和预测,而且,可以将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应转化为可利用的参数,应用于样品浓度的定量分析。我们课题组考察了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度之间的定量关系,并在此基础上建立一种新的定量分析方法。在研究中考察了水、乙醇等常用溶剂及其混合溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度之间的关系。分别基于偏最小二乘(PLS)和多级同时成分分析(MSCA)建立了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度的定量关系模型(QSTR),并利用模型对溶液中各组分浓度进行了定量分析。[/align][align=center][img=温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于定量分析,690,193]https://ng1.17img.cn/bbsfiles/images/2018/10/201810081704067733_6411_2695586_3.png!w690x193.jpg[/img][/align][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度的完美邂逅,让我们拥有了一个可以探寻科学真谛的工具。我们将投入更多的力量,利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进行物质的定量和结构分析。

  • 温控近红外光谱研究进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分析水基生物样品的有力工具。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅包含独立的分子结构和官能团的信息,还涉及分子间或分子内相互作用。一些扰动(例如,温度或添加物)会影响分子结构和相互作用,从而导致[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]发生变化。基于温度对光谱的影响,开发温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得了随温度变化的光谱。由于水的强吸收和温度对水的氢键具有显着影响,该技术已被用于水溶液的结构和定量分析。 最早通过两种氢键模型观察水的温度依赖性光谱变化,用于研究光谱变化和氢键之间的关系,发现氢键和非氢键水物种的光谱特征随温度变化明显。近年来,提出了一种更为复杂的模型,根据扰动引起[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,提出了水可以采取形成零、一、二、三和四个氢键的结构(S[sub]0[/sub],S[sub]1[/sub],S[sub]2[/sub],S[sub]3[/sub]和S[sub]4[/sub])。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的宽峰和重叠峰,已采用化学计量学方法来提高分辨率并提取分析中的光谱特征。利用高斯拟合,得到了在不同温度下测量的水和葡萄糖溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的光谱成分。通过分析光谱成分的变化,发现葡萄糖与葡萄糖相互作用诱导的有序(四面体)水团簇。水随温度升高,为生物系统中碳水化合物的生物保护功能提供了可能的原因。此外,提出了多级同时成分分析(MSCA)和互因子分析(MFA)从温度依赖的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中提取定量信息,水溶液或血清样品中低浓度葡萄糖的定量测定得以实现。因此,在化学计量学的帮助下,温度依赖性[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以成为水溶液结构和定量分析的有用工具。

  • 【分享】近红外光谱分析数据的前处理

    【分享】近红外光谱分析数据的前处理

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析必须借助于各种相应的数学模型,分析的关键是建立预测效果优秀的数学模型。数学模型预测样品的效果决定于建模所用数据,以及(用算法)对建模数据中信息的充分提取。NIR分析大致有一半的误差来自于建模数据。因此优化建模数据在NIR分析中具有特殊的意义。  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析需要从样品复杂的光谱中提取有关的信息,这些信息包括两部分:样品光谱中关于待测量的定性或定量信息,以及与待测量信息重叠在一起的、确定的、因此是可以通过模型加以校正的背景信息;由于分析过程必须把背景的信息加以校正后才能提取待测量的信息,因此待测量信息和能确定的背景信息这两部分信息合在一起都是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析需要的有效信息。另外,每个光谱数据除了包含有效信息以外还包含测量误差等不确定的、难以校正的、干扰测定的无效信息或称干扰信息,分析过程根据这两部分有效信息通过数学处理消除干扰信息,才能完成分析。  建模过程应用的光谱数据越多,得到的有效信息就可能越多,预测误差减少、预测准确度也得以提高。这就使模型在不同时间与空间的稳定性得以提高;另一方面,建模过程中每引入一个光谱数据的同时会带来影响提取有效信息的干扰信息,使模型的预测误差增加、测定准确度下降。组成建模数据的两个部分:建模样品光谱的数目与每个光谱包含的数据点(谱区的前处理都应符合“少而精”,且有一个最佳值,即有效信息率最高点。优化建模数据的目标就是确定或接近该最佳点,使数学模型的预测效果达到或接近最佳值。优秀的软件应能辅助确定数学模型的最佳参数。  建模数据也就是建立数学模型所用校正样品集。校正样品集包括直接用于建立模型的建模样品集与检验模型的检验样品集。现代NIR分析包括一系列优化校正样品集光谱的技术,包括建模集与检验集的分割,优化校正样品集总体的样品组成以及优化各样品的光谱两个方面,如对建模样品集光谱的各种前处理方法,优化选择用于建立数学模型的谱区以及优化选择各种NIR定量分析算法的最佳参数等等多种多样的处理技术,由上节可知这些前处理技术的本质都是压缩和恢复,目标都是提高建模数据的有效信息率。  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析建模数据的各种前处理技术,以及这些技术针对解决的问题见下图。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806161740_93295_1604460_3.jpg[/img]

  • 【原创大赛】温控近红外光谱研究进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分析水基生物样品的有力工具。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅包含独立的分子结构和官能团的信息,还涉及分子间或分子内相互作用。一些扰动(例如,温度或添加物)会影响分子结构和相互作用,从而导致[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]发生变化。基于温度对光谱的影响,开发温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得了随温度变化的光谱。由于水的强吸收和温度对水的氢键具有显着影响,该技术已被用于水溶液的结构和定量分析。 最早通过两种氢键模型观察水的温度依赖性光谱变化,用于研究光谱变化和氢键之间的关系,发现氢键和非氢键水物种的光谱特征随温度变化明显。近年来,提出了一种更为复杂的模型,根据扰动引起[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,提出了水可以采取形成零、一、二、三和四个氢键的结构(S[sub]0[/sub],S[sub]1[/sub],S[sub]2[/sub],S[sub]3[/sub]和S[sub]4[/sub])。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的宽峰和重叠峰,已采用化学计量学方法来提高分辨率并提取分析中的光谱特征。利用高斯拟合,得到了在不同温度下测量的水和葡萄糖溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的光谱成分。通过分析光谱成分的变化,发现葡萄糖与葡萄糖相互作用诱导的有序(四面体)水团簇。水随温度升高,为生物系统中碳水化合物的生物保护功能提供了可能的原因。此外,提出了多级同时成分分析(MSCA)和互因子分析(MFA)从温度依赖的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中提取定量信息,水溶液或血清样品中低浓度葡萄糖的定量测定得以实现。因此,在化学计量学的帮助下,温度依赖性[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以成为水溶液结构和定量分析的有用工具。

  • 二维相关近红外光谱的应用发展

    以下内容摘自《土壤近红外光谱检测》宋海燕著|化学工业出版社二维相关光谱分析技术提高了光谱分辨率,增强了其对谱图的分辨能力,并在揭示分子内和分子间的相互作用及判断分子中各官能团反应的先后顺序的研究中发挥了重要作用,因此该技术在各个研究领域均得到广泛的应用。如:Krzysztof Zdzislaw Haufa等,采用二维相关近红外光谱分析了不同水分含量对1,2-丙二醇和1,3-丙二醇结构的影响。结果发现在浓度低的时候,OH基团呈明显非结合状态,当浓度高并且位于纯液体状态时,二醇结构就由分子间的氢键决定。Chunli Mo等用二维相关近红外光谱分析了不同水分含量对桑蚕丝素蛋白的影响。结果发现采用近红外光谱结合二维相关光谱技术跟踪分析水丝蛋白结构的动态变化可行。二维相关光谱将谱图信息由一维扩展到了二维,其关注的是困扰引起的细微特征的光谱变化,因此可以解释一维光谱中很难解释的现象,如谱峰重叠或外界干扰下理化指标变化等现象。若能将二维光谱与一维光谱协同分析将会更有助于对被测物质特性的检测和定量分析。

  • 红外光谱的定量分析

    红外光谱的定量分析简述[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=19088]红外光谱的定量分析[/url]

  • 有看头了!褚小立领衔近红外光谱分会17位专家编著《近红外光谱分析技术实战宝典》!

    好消息!褚小立领衔近红外光谱分会19位专家编著《近红外光谱分析技术实战宝典》!仪器信息网自2020年起组织业内知名专家、资深版主及专业编辑,以解决用户实际问题为初衷,以平台海量精华内容为基础,经过专家的梳理、加工,将最常见的仪器问题、解决方法和资深用户的经验整理成册,特命名为《实战宝典》,旨在提升行业用户的仪器应用能力、加快个人职业成长,缓解行业实操型人才匮乏的现状,助力用户实现“宝典在手、仪器无忧”!2020年,已发布《水质分析实战宝典》、《气相色谱实战宝典》、《农残分析实战宝典》、《液相色谱实战宝典》、《乳品检测实战宝典》、《药物分析实战宝典》6册宝典,收录仪器类别包括了常用的气相、液相,应用领域涵盖了水质、农残、药物、乳品,深受4.4万用户喜爱。2021年,仪器信息网将陆续发布《原子吸收光谱实战宝典》、《液质联用实战宝典》、《气质联用实战宝典》、《实验室安全实战宝典》、《近红外光谱分析技术实战宝典》、《样品前处理实战宝典》、《土壤分析实战宝典》、《离子色谱实战宝典》、《PCR实战宝典》、《ICP-MS实战宝典》等分册,目前已有3.4万用户预订。未来,我们欢迎广大专家、用户积极报名加入《实战宝典》 “编委组”,发挥自己专业技能特长,与行业专家一起创作更多优质内容,帮助更多用户。《近红外光谱分析技术实战宝典》编委专家阵容如下:特邀顾问:袁洪福,北京化工大学,教授主 编:褚小立,中石化石油化工科学研究院,教授级高工副 主 编:李文龙,天津中医药大学副研究员,博士生导师副 主 编:王家俊,云南中烟技术中心,高级工程师编 委:卞希慧,天津工业大学,副教授编 委:何鸿举,河南科技学院,院长助理编 委:黄越,中国农业大学,副教授编 委:韩娅红,华中农业大学,博士后编 委:李跑,湖南农业大学,副教授编 委:缪同群,上海新产业光电技术有限公司,总计总经理编 委:孙通,浙江农林大学,副教授编 委:王艳斌,石油化工研究院,高级工程师编 委:邢振,北京农业智能装备技术研究中心,高级工程师 编 委:闫晓剑,四川长虹公司,资深专家编 委:杨越,温州大学,讲师编 委:张进,贵州医科大学,副教授编 委:周新奇,谱育科技,经理编 委:邹振民,山东金璋隆祥智能科技有限责任公司,董事长《近红外光谱分析技术实战宝典》大纲目录如下:第一章概述第一节 近红外光谱发展简史第二节 近红外光谱产生机理(概述)第三节 近红外光谱分析与化学计量学方法第四节 近红外光谱及其分析技术的特点(优缺点)第五节 现代过程分析技术与近红外光谱技术问题与回答:1、为什么近红外光谱主要包含的是含氢基团的信息?2、为什么说吸收强度弱反倒是近红外光谱的一种技术优势?3、近红外漫反射光谱与物质的浓度是线性关系吗?4、哪段近红外光的穿透性较强?如何利用这段光?6、近红外光谱区域中哪段谱图包含的化学信息更丰富?7、为什么氢键在近红外光谱中很重要?8、为什么近红外光谱的转移吸收谱带较宽?5、为什么近红外光谱定量或定性分析大多需要化学计量学方法?9、为什么说近红外光谱是现代过程分析技术的主要手段之一?10、哪些场合不太适合采用近红外光谱分析技术?11、在哪些应用场景近红外光谱最擅长?12、采用近红外光谱技术前应有哪些心理上的准备?13、用好近红外光谱需要使用者具备哪些条件?14、近红外光谱与中红外光谱相比,各有哪些技术优势?15、近红外光谱与拉曼光谱相比,各有哪些技术优势?16、近红外光谱与太赫兹光谱相比,各有哪些技术优势?17、近红外光谱与低场核磁相比,各有哪些技术优势?18、近红外光谱与Libs相比,各有哪些技术优势?19、一般情况下,近红外光谱分析技术的检测限能达到多少?…20、短波和长波近红外各有什么特点?…第二章近红外光谱仪器第一节 近红外光谱仪器的构成第二节近红外光谱仪器的分光类型第三节实验室型仪器第四节便携式和微型仪器第五节制造仪器的材料应用与仪器的性能指标第六节近红外光谱仪器的测量软件第七节仪器的维护及校准AQ、PQ与OQ的应用问题与回答:1、近红外光谱仪器的分别辨率重要吗?2、影响近红外光谱仪器噪音的主要因素有哪些?3、基于理论和实验依据,如何选择近红外光谱仪器?4、影响近红外光谱仪器之间一致性的主要因素有哪些?5、近红外光谱文件常见的格式有哪些?6、为什么有的仪器用纳米表示波长,有些用波数表示?7、为什么近红外光谱仪器的长期稳定性很重要?8、药典对近红外光谱仪器的性能指标有何要求?9、光源需要定时更换吗?10、实验室型近红外光谱仪器日常维护有哪些?11、需要间隔多长时间进行一次近红外光谱仪器的校准?12、氟化钙分束器与石英分束器的性能有何差异?13、氦氖激光激光器与半导体激光器的性能有何差异?14、近红外光谱分析技术常用的光源有哪些?15、微型CCD近红外光谱仪的狭缝如何选择?与分辨率的关系如何?…第三章 测量附件与实验方法第一节 近红外光谱的测量方式第二节 常见的测量附件第三节 多种类型样品的制备第四节 光谱采集参数及其优化问题与回答:1、液体样本的近红外光谱通常采用哪些测量方式?2、固体样本的近红外光谱通常采用哪些测量方式?3、水果测量时应注意哪些问题?4、漫反射测量时应注意哪些问题?5、样品温度对近红外光谱测量有影响吗?6、近红外光谱能测量气体吗?7、使用光纤测量附件应注意哪些问题?8、透射测量时应注意哪些问题?9、对于固体有哪些常见的样品制备方式?10、光谱采集参数如何优化?11、水分对近红外光谱测量有影响吗?12、采样杯、比色池光学材料对光谱重现性的影响?13、固体粉末粒径对光谱重现性有何影响?如何提高光谱的重现性?14、如何权衡近红外分析检测的效率与检测数据的“性价比”?15、漫反射和透射测量时,参比光谱如何选取?16、近红外光谱测量时,吸光度为什么会出现负数?…第四章在线近红外光谱分析技术第一节 在线近红外光谱分析系统的构成第二节 取样与样品预处理系统第三节 在线测量方式第四节 在线工程项目的实施(包含过程化学计量学方法与过程建模)第五节 在线分析系统的管理与维护问题与回答:1、在线分析必须使用样品预处理吗?2、选择光纤探头或流通池应注意哪些问题?3、采用液体插入式漫反射探头应注意哪些问题?4、探头的安装位置应如何选取?5、固体在线取样时应注意哪些问题?可以采取哪些手段获取有代表性的在线光谱?6、如何取到与光谱测量对应的在线样品?7、如何实现一台在线仪器测量多个检测点?8、在线分析校正模型是如何建立的?9、光纤的有效传输距离有多长?10、在线仪器的光谱背景是如何获取的?11、选择在线近红外光谱仪应考虑哪些问题?12、医药企业对在线分析仪器有哪些特殊要求?13、传递带的漫反射测量应注意哪些问题?14、国内外涉及在线近红外光谱分析技术的标准有哪些?15、…第五章化学计量学方法与建模第一节 常用的化学计量学方法第二节 定量分析建模的主要步骤第三节 定性分析建模的主要步骤第四节 化学计量学软件的主要功能第五节 商品化的化学计量学软件第六节 建模传递及其方法第七节 模型的评价第八节 模型的管理与维护第九节 近红外定量模型的转移与模型适应性拓展问题与回答:1、近红外光谱预测结果的准确性能够超过参考方法吗?2、建模过程中光谱波段(波长)变量如何选择?3、PLS的最佳(适宜)主因子数如何选择?4、影响近红外光谱分析模型的主要因素有哪些?5、何时选用非线性定量校正方法?6、建模过程中光谱预处理方法如选择?什么是异常样本?7、如何识别建模过程中的异常样本?8、如何识别预测过程中的异常样本?怎样判断近红外的预测结果是内插分析得到的?9、建立实用的模型需要多少个样本?10、模型如何维护?11、提高模型预测稳健性的方法有哪些?12、提高模型预测准确性的方法有哪些?13、何为有代表性的样本?如何选取?14、建模的样本越多越好吗?15、建模时先进行光谱预处理还是先选择(波段)波长选择?16、为什么要进行模型传递?17、进行模型传递需要哪些条件?在不同分光原理的近红外仪器上建立的模型可以相互传递吗?18、模型传递后还需要做那些工作?19、近红外光谱定量和定性分析可以不建模型吗?20、从PLS校正过程,如何解释校正模型的适应性?21、同一方法进行(波段)波长选择,每次(波段)波长选择结果不一致,如何处理?22、一般情况下,建模所用的波长变量数与样本数之间需要满足什么条件?23、近红外光谱的分析流程?24、定量模型的评价指标?25、定性模型的评价指标?…第六章近红外光谱技术的应用第一节 农业领域第二节 食品领域第三节 制药领域第四节 石油和化工领域第五节 纺织领域第六节 饲料领域第七节 烟草领域第八节 其他领域问题与回答:1、作为一名企业采购人员,如何选择合适的近红外光谱仪?2、采用近红外光谱仪分析啤酒时一般采用哪种测量附件?3、目前关于近红外光谱的国家标准有哪些?4、在实际应用中,采用近红外光谱仪分析饲料中的水分、蛋白、脂肪、灰分和实验室分析有多大误差?5、在饲料企业,近红外光谱在哪些环节可以被使用?6、在白酒企业,近红外光谱在哪些环节可以被

  • 国内外涉及在线近红外光谱分析技术的标准有哪些?

    [font=宋体]欧美国家在这一领域具有多年的研发基础,形成的标准具有较好的参考价值。举例如下,[/font][font=宋体][font=宋体]美国:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法:模型建立与维护通则[/font][font=Times New Roman]([/font][/font][font='Times New Roman']AACC 39-00)[/font][font=宋体];多元在线、旁线和实验室红外分析仪的验证规范[/font][font='Times New Roman'](ASTM D6122)[/font][font=宋体];红外光谱多元定量分析规范[/font][font='Times New Roman'](ASTM E1655)[/font][font=宋体][font=宋体];光谱分析仪系统性能评定的标准实施规程[/font][font=Times New Roman](ASTM D8340[/font][/font][font='Times New Roman'])[/font][font=宋体];光度计性能检验指南[/font][font='Times New Roman']([/font][font=宋体][font=Times New Roman]ASTM E1866[/font][/font][font='Times New Roman'])[/font][font=宋体];[/font][font='Times New Roman'][font=宋体]校正模型验证规范[/font] (ASTM E2617-09a)[font=宋体]。英国:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法建立[/font][/font][font=宋体]和验证准则[/font][font='Times New Roman'](Guidelines for the development and validation of near infrared spectroscopy methods[/font][font=宋体][font=Times New Roman],[/font][/font][font='Times New Roman']PSAG)[font=宋体]。荷兰:使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]鉴别药物的方法验证[/font][font=Times New Roman](Verification of the identity of pharmaceutical substances with near-infrared spectroscopy[/font][/font][font=宋体][font=Times New Roman],[/font][/font][font='Times New Roman']RIVM)[font=宋体]。日本:近红外分光光度分析法通则 [/font][font=Times New Roman](JIS K0134)[/font][font=宋体]。中国:[/font][/font][font=宋体]纸张定量、水分的近红外在线测定标准[/font][font='Times New Roman']([/font][font=宋体][font=Times New Roman]QB/T[/font][/font][font='Times New Roman'] 2812-2006)[/font][font=宋体];近红外分析定标模型验证和网络管理与维护通用规则[/font][font='Times New Roman'](GB/T 24895-2010)[/font][font=宋体][font=宋体];分子光谱多元校正定量分析通则[/font] [font=Times New Roman](GB/T[/font][/font][font='Times New Roman'] 29858[/font][font=宋体][font=Times New Roman]-[/font][/font][font='Times New Roman']2013[/font][font=宋体][font=Times New Roman])[/font][font=宋体];[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定性分析通则[/font][font=Times New Roman](GB/T[/font][/font][font='Times New Roman'] 37969[/font][font=宋体][font=Times New Roman]-[/font][/font][font='Times New Roman']2019[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font]

  • 在近红外定性定量分析中,为什么近红外光谱仪器的性能稳定性、同类型近红外光谱仪之间的光学性能一致性很重要?

    [font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析依赖于分析模型,因构建分析模型的数据量大,人力物力成本高,模型成熟时间长,因此,希望构建好的模型能在不同仪器上传递使用。这要求仪器具有良好的稳定性和一致性,尤其在近红外仪器网络化使用中更是如此。衡量[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的稳定性在光学指标上有三个维度:一是横轴维度波长稳定性(波长重现性),二是纵轴维度的基线稳定性,三是伸缩维度的分辨率稳定性。上述[/font][font=Calibri]3[/font][font=宋体]个指标又有短期和长期之分。上述三个指标任何一个不稳定,则仪器表现不稳定,仪器不稳定则不能获得良好的分析结果。衡量[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器一致性的光学指标有光谱仪波长准确度(可理解为不同仪器的波长重复性)、分辨率和吸光度准确度。不同仪器上述三个指标越相近,则说明仪器一致性比较好,越容易实现模型传递。另外吸光度准确度影响因素比较多,存在光度的漂移,在模型构建阶段通常使用光谱预处理方法对光谱进行预处理,因此,实际使用中常采用噪声水平代替吸光度准确度评价仪器。[/font][/font]

  • 【原创】近红外与中红外光谱分析的区别

    近红外与中红外光谱分析的区别 是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。 1800年,Herschel 首次发现了NIR光谱区 1900年前后,NIR光谱仪器使用玻璃棱镜和胶片记录器,其光谱范围局限于700 nm—1600 nm。50年代的商品NIR光谱仪使用硫化铅光敏电阻作检测器,其波长范围能延伸至3000 nm,能用于定量分析,但,由于NIR消光系数低和谱带宽而解析困难,该技术并没有获得广泛应用。60年代,Karl Norris 使用漫反射技术对麦子水分、蛋白和脂肪含量进行研究,发现NIR光谱用于常规分析的实用价值。随计算机发展和化学计量学(Chemometrics)诞生,NIR和化学计量学结合产生了现代NIR光谱学。NIR最先应用于农业领域。80年代,光谱仪器制作和计算机技术水平有了大的提高,NIR被广泛应用于在工业和其它领域。近几届匹司堡分析仪器会议上,NIR已成为红外光谱分析报道的热点。NIR在线分析应用给石化工业带来了巨大经济效益,更是引人注目。 根据红外辐射在地球大气层中的传输特性,通常分为近红外(0.75μm到3μm)、中红外(3μm到30μm)、远红外(30μm到1000μm)。 主要区别是波长不同,应用领域不同。 红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒物、药物等诸多方面,在未知化合物剖析方面具有独到之处。 (NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外区域按ASTM定义是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]“沉睡” 了近一个半世纪。直到20世纪50年代,随着商品化仪器的出现及Norris等人所做的大量工作,使得[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,从此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进入了一个沉默的时期。80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在测样技术上所独有的特点,使人们重新认识了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的价值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在各领域中的应用研究陆续展开。进入90年代,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在工业领域中的应用全面展开,有关[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进入一个快速发展的新时期。 我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,除一些专业分析工作人员以外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器市场。由此也可以看出[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界炙手可热的发展趋势。在不久的未来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受。 现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。 与常规分析技术不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。具体的分析过程主要包括以下几个步骤:一是选择有代表性的样品并测量其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];二是采用标准或认可的参考方法测定所关心的组分或性质数据;三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;四是未知样品组分或性质的测定。由[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的工作过程可见,现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术包括了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]、化学计量学软件和应用模型三部分。三者的有机结合才能满足快速分析的技术要求,是缺一不可的。 与传统分析技术相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。因为建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。主要的应用领域包括:石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;在医药领域可以测定药品中有效成分,组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。 相信随着科学技术的不断发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术这一先进的技术必将得到广泛的认同和应用。

  • 【原创大赛】近红外光谱技术中的水探针

    【原创大赛】近红外光谱技术中的水探针

    水是生命的源泉,是生命体系中的重要组成部分。在化学体系中,水是最简单的小分子之一,是水溶液的基本组成。因此,关于水分子的结构与功能研究一直是非常活跃的课题之一。但是,水分子在100 nm到100 μm的光谱区间都有吸收,在大部分光谱区域有很强的吸收,导致很多光谱技术难以用于水溶液体系或含水量较多的分析体系,如生物样品。在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区间,水的吸收相对较弱,在水分子的组合频(5150 cm[sup]-1[/sup])和一级倍频(6950 cm[sup]-1[/sup])有两个较宽的吸收峰。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可以测量水溶液体系或含水量较多的生物样品,并且可以无侵入、实时、动态地进行分析。同时,由于水的结构特点,使其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]很容易受到“扰动”因素的影响。当水分子的环境改变时,其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]将发生变化。在水溶液中,水的光谱包含着溶质的大量信息。 1984年,Inoue等研究了不同化合物溶液在高压条件下的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],发现水的结构随溶质及压力的变化而改变。2000年,Ozaki课题组采用近红外二维相关谱技术研究了人血清蛋白(HSA)随温度的变化,同时研究了温度对水化作用的影响。2005年,Czarnecki等同样采用近红外二维相关谱技术研究了水对N-甲基乙酰胺结构的影响。近年来,关于水分子在蛋白质稳定性、蛋白质内部的质子转移以及蛋白质构象变化中的作用也开展了大量研究工作。2006年,Tsenkova 教授在研究了不同质量牛奶制品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]特征的基础上首次提出了“水光谱组学(Aquaphotomics)”并开展了一系列研究工作。水光谱组学通过研究体系中“水”的光谱信息在温度和溶质(种类和含量)等的“扰动(perturbation)”下产生的变化,了解不同物质及含量对水结构产生的影响,然后再通过水的结构推断溶质的结构与功能。研究结果表明,水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸收模式的不同不仅可以作为生物标记物对疾病或异常状态进行无损诊断,而且可以作为“镜子”反映溶质的动力学过程。例如,利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合水光谱组学对大豆类植物叶片进行快速无损检测,利用水化层中水结构的不同实现了对大豆花叶病潜伏期的诊断。近期的研究工作表明,利用水光谱组学可以有效地提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于稀溶液定量分析的准确度和灵敏度,并应用于糖类旋光异构体的定量分析。 在我们的研究工作中,曾利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建立了温度和浓度的定量模型。2015 年以来,利用多级同时成分分析(MSCA)方法对水-乙醇-异丙醇混合液的温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行了分析,利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅可以建立温度的定量模型(QSTR),还可以建立混合体系中各组分含量的定量模型。利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术研究了葡萄糖对水结构的影响,通过水在一级倍频区吸收带的变化,讨论了葡萄糖对水的氢键结构的影响,并发现葡萄糖使水的有序结构增强,为解释糖类化合物在生物体系中的“保护作用”提供了新的依据。在近期的研究工作中,分别利用水的吸收谱带和葡萄糖的吸收谱带建立了溶液和血清样品中葡萄糖含量的定量模型,说明了水可以作为葡萄糖含量的传感探针。在化学计量学方法研究方面,对高阶解析算法进行了研究,如高维主成份分析(NPCA),平行因子分析(PARAFAC)和交替三线性分解(ATLD)等。发展了共因子分析(MFA)方法用于温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析,可以准确地对溶质进行定量分析。将该方法应用于实际样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析中,实现了人血清样品中血糖的定量分析。我们还对蛋白质的结构变化开展了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析。采用连续小波变换提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分辨率,通过分析人血清白蛋白(HSA)和水的光谱信息随温度的变化,研究了HSA二级结构的热变性过程,并发现水结构变化可以反映HSA的展开过程。进一步将该方法应用于复杂血清样本中,并结合蒙特卡罗-无信息变量消除法(MC-UVE)排除由于血清复杂性带来的干扰,筛选出与蛋白质特征吸收相关的变量研究了不同水结构在蛋白质的热稳定性过程中的变化。应用二维相关光谱研究了卵清蛋白受热形成凝胶的过程中水结构的变化,分析了不同水结构在凝胶形成过程中的变化顺序及功能。[align=center][img=MFA提取[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的水信息,690,589]https://ng1.17img.cn/bbsfiles/images/2018/10/201810081747522818_9206_2695586_3.png!w690x589.jpg[/img][/align] 今后,我们将利用更多[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的信息拓展水光谱组学的概念,开展光谱解析、特征提取等化学计量学方法研究,获取水溶液体系中水的结构及其随“扰动因素”(温度、溶质等)的变化,通过水的光谱信息及其随“扰动因素”的变化建立溶液体系(包括实际体系及生物体系等)的定量、定性分析方法,利用水的光谱信息探测和理解水在化学和生物过程中作用与功能。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制