当前位置: 仪器信息网 > 行业主题 > >

微孔物理吸附分析仪

仪器信息网微孔物理吸附分析仪专题为您提供2024年最新微孔物理吸附分析仪价格报价、厂家品牌的相关信息, 包括微孔物理吸附分析仪参数、型号等,不管是国产,还是进口品牌的微孔物理吸附分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微孔物理吸附分析仪相关的耗材配件、试剂标物,还有微孔物理吸附分析仪相关的最新资讯、资料,以及微孔物理吸附分析仪相关的解决方案。

微孔物理吸附分析仪相关的论坛

  • 【求助】荧光微孔板分析仪

    工作需要测总抗氧化值 想用 ORAC方法。有人用荧光微孔板分析仪但价格太贵,铂金爱尔默公司说是70万。想请教高手,这个实验能不能不用荧光微孔板分析仪,只用荧光分光度计能不能做成?激发波长是485,发射波长是535nm.[em0808]

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

  • 物理吸附表征内容及用途

    物理吸附表征内容及用途

    [img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453158294_7217_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453167774_606_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453176504_5804_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453187644_1453_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453197634_9209_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453207914_2001_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453213382_5685_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453223122_7380_3904283_3.jpg!w690x517.jpg[/img]

  • 【分享】北京精微高博公司“高性能氮吸附比表面及孔径分析仪”项目喜获国家创新资金资助

    北京精微高博科学技术有限公司的“高性能氮吸附比表面及孔径分析仪”项目,喜获2011年国家中小企业创新基金的资助,这是精微高博公司产品在2010年4月获国家级技术鉴定之后,又一里程碑式的记录,这标志着精微高博公司自主研发创新能力达到了一个崭新的高度。当前,国际上先进的静态法比表面及孔径分析仪,正朝着高精密及微孔分析的方向发展,仪器的智能化,自动化程度也有了很大的提高,北京精微高博公司研制的高性能氮吸附比表面及孔径分析仪,已经在控制精度和测试精度上进入了世界先进行列,微孔测试下线可达到0.35nm,相对压力由10-7到10-1的等温吸附曲线测试压力点可>100点,0.35-2nm微孔孔径分布曲线得到的最可几孔径, 重复偏差<0.02nm,完全达到了国际先进水平,北京精微高博公司在国产比表面及孔径分析仪的研究与制造上取得了可喜的进步。

  • 吸附分离技术

    吸附分离技术一、吸附分离技术概论1.吸附:是指物质从气体或液体浓缩到固体表面从而达到分离的过程。 2.吸附的机理3.吸附的分类物理吸附l 分子间力(范德华力)引起l 没有选择性l 吸附速度快、解吸容易 化学吸附l 化学反应,形成牢固的化学键l 有选择性l 吸附慢、不易解吸 4.吸附分离技术的特点n 操作简便、设备简单、价廉、安全;n 常用于从大体积料液(稀溶液)中提取含量较少的目的物;n 不用或少用有机溶剂,吸附和洗脱过程中pH变化小,较少引起生物活性物质的变性失活; n 选择性较差,收率低(人工合成的大孔网状聚合物吸附剂性能有很大改进)。5.吸附分离技术的应用方式n 如果需要的组分较易(或较牢固地)被吸附,可在吸附后除去不吸附或较不易吸附的杂质,然后再将样品洗脱; 二、吸附剂1.传统吸附剂(1)活性炭n 活化:使用前应加热烘干,以除去大部分气体。对于一般的活性炭可在160℃加热干燥4~5小时;锦纶活性炭受热易变形,可于100℃干燥4~5小时。(2)硅胶n 适用对象: 可用于萜类、固醇类、生物碱、酸性化合物、磷脂类、脂肪类、氨基酸类等的吸附分离。n 活化: 硅胶一般于105~110℃加热干燥1~2小时后使用。活化后的硅胶应马上使用,如当时不用,则要贮存在干燥器或密闭的瓶中,但时间不宜过长。(3)氧化铝n 适用对象:特别适用于亲脂性成分的分离,广泛应用在醇、酚、生物碱、染料、苷类、氨基酸、蛋白质以及维生素、抗生素等物质的分离。 n 种类:n 活化:在使用前150℃下加热干燥2小时,除去水分以使其活化。 2.大孔吸附树脂 大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型吸附剂,是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。在实际应用中对一些与其骨架结构相近的分子具很强的吸附能力。 (1)大孔吸附树脂的特点n 选择性好,解吸容易,机械强度好,可反复使用和流体阻力小;n 其孔隙大小、骨架结构和极性,可按照需要,选择不同的原料和合成条件而改变,因此可适用于各种有机化合物;n 使用时无需考虑盐类的存在。 (2)大孔吸附树脂的类型n 非极性大孔吸附树脂 XAD-1?? XAD-5n 中等极性大孔吸附树脂 XAD-6?? XAD-7n 极性大孔吸附树脂 XAD-9~ XAD-12和XE(3)大孔吸附树脂的选择n 吸附物的极性 非极性吸附剂易吸附非极性物质(从极性溶剂如水中);极性吸附剂易吸附极性物质(从非极性溶剂中);中等极性的吸附剂则对上述两种情况都具有吸附能力 三、影响吸附的因素1.吸附剂的性质 (1)比表面积:与吸附容量有关(2)孔径:与吸附速度有关(3)极性大小:与吸附力的强弱有关 表面具含氧官能团如-COOH、-OH等,有助于对极性分子的吸附。 2.吸附质的性质(1)溶质从较易溶解的溶剂中被吸附时,吸附量较少。所以极性物质适宜在非极性溶剂中被吸附,非极性物质适宜在极性溶剂中被吸附。 3.操作条件的影响作业1.常用的吸附剂有哪些?使用前如何活化?2.如何选用活性炭?3.大孔吸附树脂和传统的吸附剂比有何优越性?4.选择大孔吸附树脂应考虑哪些因素?

  • 微孔结构分析

    微孔结构分析按照IUPAC的分类,孔尺寸小于2nm的也为微孔,其大小只相当于数个分子直径,在微孔中,其位能因孔壁力场的重叠而增大,因而微孔固体与气体分子间相互作用也得到加强,以至于在很低的相对压力下有可能把孔充满,从而使等温线在压发生变形,导致在微孔固体中的吸附一般产生I型等温线。I型吸附等温线的存在标志该固体为微孔固体。微孔物质在吸附和催化中占有重要地位,它们的应用愈来愈广泛,特别是在环境保护工业中,最重要的微孔固体,是活性炭和结晶形的分子筛,它们的广泛应用有赖于它们的微孔结构和表面性质。经过特殊制备的金属和非金属氧化物的干凝胶,有许多也属微孔物质,如氧化硅、氧化钛、氧化铝和氧化锡干凝胶,甚至某些盐类如钼酸铵也能制成微孔固体。鉴于微孔物质的重要性,讨论其孔结构特别是微孔结构是很必要的。

  • 做微孔分析用氮气还是氩气

    氩气是惰性气体,并且是球形单原子分子。氮气是非球形双原子分子,并且四极距可能导致局部吸附,特别是具极性的吸附剂。除了氮气会在极性点上发生吸附,氩气和氮气在分子大小和吸附热上很接近。标准压力下氩气的沸点是87.29K,氮气的沸点是77.35K。 对于微孔分析,使用液氩温度下氩气吸附要好于液氮温度下氮气吸附或氩气吸附。氩气作为惰性气体与固体表面特定作用少,且液氩温度高于液氮温度,可缩短平衡时间。除此之外,填充微孔的氩气压力高于氮气压力,更容易测量精确。

  • 免费直播讲座——氮吸附法介孔与大孔的测试与分析

    [b][color=#ff0000][b][color=#ff0000]直播时间:[/color][/b]2018/11/15 10:00[/color][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要内容:1. 测试方法、过程,从吸附量到孔体积的详细推算;2. BJH法孔径分布的表征方法,各个表征参数的物理含义、推导过程、应用价值;3. 孔径分析的重点、难点,吸脱附如何选择,滞后曲线与孔型的关系;4. 影响测试精度因素的分析比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[color=#ff0000][b]免费报名链接:[/b][/color][url]https://www.instrument.com.cn/ykt/Course/Live/Index?sId=127[/url][b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],免费名额有限哦,先到先得!

  • 【资料】微孔分析方法之----αs图法

    【资料】微孔分析方法之----αs图法

    T曲线和t图法原本是根据VI型等温线计算孔径分布时为了估算孔壁上吸附层厚度提出的,如果只是研究与标准等温线的偏离情况,则不需要吸附厚度t和吸附系数ν/νm。此外,在BET公式不成立时也不能计算单分子层吸附量νm。因此,Sing提出用某个相对压力(P/Po)S的吸附量νs代替单分子层吸附量νm,实际中采用P/Po)s=0.4时的吸附量ν¬ ¬ 0.4。把吸附量ν/ν¬ ¬ 0.4叫做αs,根据标准试样的吸附等温线求得αs的值,作αs-P/Po图,即得标准αs曲线。与t图法一样,根据标准αs曲线就可以绘制待测固体αs图,即吸附量ν-αs图。如果αs图是过原点的直线,说明待测固体的等温线与标准等温线一致。这时直线的斜率等于ν¬ ¬ 0.4. αs图法的优点是即或不知道吸附层厚度也能使用,同时还适合于氮以外的吸附质。对于没有微孔的固体,αs图与t图一样是过原点的直线,其斜率为s。固体中存在的中孔和微孔,αs图就偏离直线。设标准试样的比表面积为A(standard),由αs图的斜率s能够计算试样的比表面积AS,因为:s(试样)/s(标准)=ν¬ ¬ 0.4(试样)/ν¬ ¬ 0.4(标准)=AS/A(标准)----1所以,As=[s(试样)/s(标准)]* A(标准)----2如果已知标准样的A(标准),由式2可求得试样的比表面积As.这种方法不需要单分子层吸附量νm或吸附质分子的占有面积αm,当BET图的直线线性差或者B点不明显或不知道正确的αm值时就可以采用αs图测量比表面积。经常采用氮吸附测量比表面积和孔径结构。固体中含有中孔和微孔时,αs图与t图一样出现直线弯折,其解析也类似。由于采用大型计算机进行吸附模拟需要许多假定和参数,分子模拟法还存在许多问题,因此t图法、αs图法以及Duninin方法、分子探针法等作为微孔解析方法更接近于实际,目前仍是最好的方法。举例:二氧化硅吸附氮的标准αS曲线数据图[img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909091557_170522_1611921_3.jpg[/img]

  • 【原创大赛】如何测量比表面及孔径?一文带你了解气体吸附仪

    测量比表面和孔径分析的方法包括:气体吸附法、压汞法、电子显微镜法(SEM 或 TEM)、小角 X 光散射(SAXS)和小角中子散射(SANS)、电声电振法、核磁共振法、图像法大孔分析技术等。其中气体吸附法是常见的分析方法。气体吸附法孔径测量范围从 0.35nm~ 100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。另外,气体吸附技术相对于其它方法,容易操作,成本较低。如果气体吸附法结合压汞法,则孔径分析范围就可以覆盖从大约 0.35nm到1mm 的范围。气体吸附法也是测量所有表面的最佳方法(不规则的表面和开孔内部的面积)。使用气体吸附法进行分析的仪器常用来测定物质的比表面及孔径特征,也可以直接测量物质的吸附特性,因此也常统称为吸附仪。从实际用途来看,主要包含:比表面及孔径分析仪、多组分气体吸附仪、高压吸附仪、蒸汽吸附仪、真密度仪、化学吸附仪等。气体吸附法原理:当固体表面的原子所处的环境与体相原子不同,它受到一个不平衡的力的作用;因此,当气体与清洁固体表面接触时,将与固体表面发生相互作用;气体在固体表面上出现累积,其浓度高于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],这种现象称为吸附现象。吸附气体的固体物质成为吸附剂,被吸附的气体成为吸附质。依据吸附剂和吸附质之间的不同作用力,气体吸附分为物理吸附仪和化学吸附仪。物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力(范德华力)所引起,吸附于固体表面的气体分子,不与固体产生化学反应,这种吸附称为物理吸附;利用物理吸附原理测量的仪器被称为物理吸附仪。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。物理吸附的特点是:吸附热小,吸附速度快,无选择性,可逆,通常是发生在接近气体液化点的温度,一般是多层吸附。物理吸附仪可以测定物质的比表面积、平均孔径和孔径分布等,此外也可以直接测试物质吸附性能。化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附,利用化学吸附原理进行测量的仪器被称为化学吸附仪。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。与物理吸附相比化学吸附具有吸附力强、对吸附气体有选择性、单层吸附、通常不可逆,样品不可回收再利用等特点,常用于测定催化剂酸碱活性位、活性金属表面积、金属分散度等。

  • 请问氮气物理吸附怎么取点?

    请问氮气物理吸附怎么取点?

    我要测分子筛的的氮气物理吸附-脱附曲线,样品既有微孔也有介孔,但微孔较多,请问怎么取点呢?取多少点?还有,我现在的数据分析,发现BET算出的C值在所有范围内都是负的,这跟我做氮气吸附的取点有没有关系?怎么避免这个问题?还有一点,t-plot怎么取点比较合理呢?多谢大神指点!http://ng1.17img.cn/bbsfiles/images/2016/09/201609281555_612465_2991446_3.jpg

  • 【原创】大昌华嘉“吸附仪在新材料上的应用”全国巡讲

    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。 在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。 日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116423.jpg 会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 物理吸附同步连接XRD、GC、磁悬浮天平 化学吸附仪链接质谱、红外、低温脉冲和TPR 高压吸附仪在储氢材料的应用   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116575.jpg

  • 晒晒多功能吸附仪

    晒晒多功能吸附仪

    大家有什么意见或者建议,随时提出来。http://ng1.17img.cn/bbsfiles/images/2013/03/201303071043_428965_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071043_428966_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428967_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428968_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428969_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071045_428970_788_3.jpg产品简介MFA-140多功能吸附仪是一款可应用于微孔领域的高性能、多功能物理吸附分析仪;拥有先进的技术、卓越的品质、更全面的理论模型及优良的测试精度,满足科研、学术探讨等多方面应用需求;从功能方面MFA-140可进行比表面积\孔径\孔容\孔分布\气体吸附量等性能测试,具备独立并行的4个分析站,拥有液氮液位高度显示及液氮添加功能,意外断电分析点储存和测试恢复功能,采用10寸触摸控制和内置工控机;从技术方面该产品引入死体积高度校准技术,以替代“等温夹”技术;独有集成气路,减少仪器内部90%的气路管使用,大大提高了仪器整体的真空度、抽速,并有效解决了传统仪器漏气率高,污染难维护的问题;应用I-PID动态可调技术,实现真空抽速恒定,防止样品倒吸污染气路,提高真空系统效率;高品质集成电路,采用纯铜镀金制板工艺,配以高品质进口元器件,处理速度快,耐腐蚀使用寿命长;引入死体积双向定位技术,解决液氮添加死体积校准问题

  • 材料中物理吸附

    在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。

  • 有关莫瑞提克物理吸附

    物理吸附产品应用:分子筛、药品、陶瓷、活性炭、炭黑、催化剂、油漆与涂料、推进染料、储氢材料、燃料电池等领域内当代材料科学的尖端研究。它可测表面积与进行微孔分析,来用于探测孔隙结构和表面能量特性的精微细节。

  • 材料表征之物理吸附

    材料表征之物理吸附

    [img=材料表征之物理吸附,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241040543064_4373_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241041301720_2977_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241043459714_5656_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241044185308_7597_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241044444424_9357_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附表征,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045065334_3428_3904283_3.jpg!w690x517.jpg[/img][img=材料表征之物理吸附,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045557845_1528_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045552293_6474_3904283_3.jpg!w690x517.jpg[/img]

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 微孔测试技术

    一般把微纳米粉体表面上的孔按其尺寸分为三类,孔径大于50nm为大孔,孔径在2至50nm为中孔或介孔,孔径小于2nm称为微孔。从理论上说,氮吸附法测定孔径分布只适合于介孔。随着技术的不断进步,氮吸附法测孔的范围已可扩大至0.35~500nm的范畴,再大的孔需用压汞法测定,0.35nm已到微孔的极限,再小已无意义。测定微孔的技术非常复杂,因为,在氮气相对压力很低( 0.01)时才能发生微孔填充,孔径在0.5~1nm的孔只有在氮分压小于0.00001时,才能产生微孔填充,动态法是无能为力的,静态容量法需要氮气压力小于1Pa, 为了测定更细微的孔,常采用分子泵,采用氩气作为吸附质比较有利,他产生微孔填充的压力比氮气高,另一种可行的方法是采用CO2作吸附质在室温进行吸附,可以无需分子涡轮泵级的真空度。微孔分析的方法也很多,有D-R法、t-图法、 αs- 图法、 HK 、SF法、 NLDFT法等,其中t-图法相对比较实用。t-图法中,吸附量V被定义为吸附统计层厚t的函数,关键在于选择适当的t曲线,由V-t图中,可以很方便的得到比表面积、微孔孔径、微孔体积,在活性炭等微孔材料的分析中应用较多,效果很好。

  • 【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    [align=center][color=#333333]物理吸附法[/color][color=#333333]or BET[/color][color=#333333]法?[/color][/align][align=center][color=#333333]---[/color][color=#333333]浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称[/color][/align][align=center][color=#333333]丁延伟[/color][/align][align=center][color=#333333](中国科学技术大学理化科学实验中心,安徽省合肥市,[/color][color=#333333]230026[/color][color=#333333])[/color][/align][b][color=#333333]摘要:[/color][/b][color=#333333]气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。[/color][color=#333333]BET[/color][color=#333333]法作为一种[/color][color=#333333]多分子层吸附理论,常用来计算固体材料的比表面积。[/color][color=#333333]本文介绍了物理吸附法和[/color][color=#333333]BET[/color][color=#333333]法的相关理论及应用,力图规范确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称为物理吸附法。[/color][color=#333333] [/color][b][color=#333333]关键词:物理吸附,[/color][color=#333333]BET[/color][color=#333333]模型,比表面积[/color][/b][color=#333333] [/color][b][color=#333333]1. [/color][color=#333333]前言[/color][/b] 多孔材料由于其特殊的多孔性结构,使其具有高比表面积、高孔隙率、高透过性、高吸附性、可组装性等诸多优异的物理化学性能,因而在化工、生物医药、环保、功能材料等领域均有广泛应用[sup][/sup]。多孔材料的研究已成为当今材料科学研究领域的一大热点。多孔材料的研究离不开结构表征分析,多孔材料的孔隙结构特性主要包括孔径、孔径分布、孔形态、孔容积及孔通道特性等方面。多孔材料的孔隙结构是不规则的,孔穴尺寸在不同方向上存在着差异。多孔材料的这种各向异性状态,可以对其各项性能产生不同程度的影响[sup][/sup]。了解多孔材料的比表面积和孔隙形貌对研究其活性、吸附、催化、力学性能等都具有重要意义。多孔材料的表征方法很多,根据检测目的不同,一般可分为X射线小角度衍射法、气体吸附法、电子显微镜、压汞法、气泡法、离心力法、透过法、核磁共振法等。 气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用[sup][/sup]。气体吸附技术主要分为物理吸附和化学吸附两大类。通常使用物理吸附技术来确定固体材料的比表面积、孔径分布、孔隙度等信息[sup][/sup]。 然而,在许多已经公开发表的各种科研论文、专利等技术资料中通常对用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称存在比较混乱的现象。例如,有些技术资料中称这种方法为BET法,而有的则称为比表面积测定法。本文试图从理论角度来规范这类方法的名称。[b]2.物理吸附相关理论[sup][/sup][/b] 通常将互不相混溶的两相接触所形成的过渡区域称为界面,吸附作用则发生在两相之间的界面上。吸附是物质(通常为固体物质)表面吸着周围介质(液体或气体)中的分子或离子现象,是一种传质过程。吸附质(adsorbate)通常定义为在界面上被吸附的物质,而吸附剂(adsorbent)则被定义为具备从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者液相中吸附某些组分的能力的物质。吸附作用通常可以分为物理吸附与化学吸附。依靠分子间普遍存在的van der Waals力产生的吸附作用称为物理吸附,而由于吸附质分子与吸附剂发生化学作用产生的吸附称为化学吸附。 吸附质在吸附剂上的吸附量([i]x[/i])是绝对温度([i]T[/i])、气体压力([i]p[/i])或液体浓度([i]c[/i])和固体-气体之间的吸附作用势([i]E[/i])的函数,用式(1)表示。[img=,576,135]http://ng1.17img.cn/bbsfiles/images/2017/08/201708140959_01_2984502_3.jpg[/img] 对于给定的气-固体系,当温度[i]T[/i]保持恒定时,通常可认为吸附作用势[i]E[/i]保持不变。此时平衡吸附量[i]x[/i]只是压力[i]p[/i]的函数,该表达式得到的曲线通常称为吸附等温线(adsorptionisotherm)。同样的道理,当压力[i]p[/i]保持恒定时,吸附量[i]x[/i]与温度[i]T[/i]的关系曲线则称之为吸附等压线;当吸附量[i]x[/i]保持恒定不变时,[i]p[/i]与[i]T[/i]的关系则称为吸附等容线。[color=#333333] 物理吸附是由分子间的弱相互作用力所引起的吸附,由于该作用较弱,由此产生的吸附热较小,吸附和脱附速度也都较快。被吸附物质也较容易脱附下来,因此物理吸附是可逆的。例如分子筛对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。[/color] 通常情况下,我们可以通过分析吸附体系的吸附等温线根据相关的理论模型来得到固体材料的比表面积、孔径分布、孔隙度、表面性质等参数。 实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。 由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范[sup][/sup]。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等,其研究深入到吸附作用的机理。[b]3. 气体吸附法测定比表面积与孔参数的基本原理[/b][color=#333333] 用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。本文主要介绍静态容量法仪器的工作原理及实验样品用量。[/color][color=#333333] 静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为[/color][color=#333333]N[sub]2[/sub][/color][color=#333333]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图[/color][color=#333333]2[/color][color=#333333])。[/color][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_01_2984502_3.jpg[/img][/align][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_02_2984502_3.jpg[/img][/align][color=#333333] 根据所测得的吸附[/color][color=#333333]-[/color][color=#333333]脱附等温线可以判断吸附现象的本质,如属于分配(线性),还是吸附(非线性);测量吸附剂对特定吸附质的吸附容量;用于计算吸附剂的孔径、比表面、孔容积、孔形状等重要物理参数。[/color][color=#333333] 气体吸附法测定比表面积利用的是多层吸附的原理。其基本原理是测算出某种气体吸附质分子在固体表面形成完整单分子吸附层的吸附量,然后再乘以每个分子的覆盖面积即得到样品的总表面积。单位质量的吸附剂的总表面积([/color][color=#333333]m[sup]2[/sup]/g[/color][color=#333333])称为比表面积,它是表面积的常用表示方式。[/color][color=#333333]但是由于实际的固体表面并不是理想的二维平面,而是粗糙不平滑的。因此吸附法测得的表面积只是吸附质分子可以直接[/color][color=#333333]“[/color][color=#333333]接触[/color][color=#333333]”[/color][color=#333333]到的表面的面积,这一数值会因吸附质分子大小不同而发生变化。为了得到固体材料的真实有效的表面积,吸附质分子应该尽量小、接近球形而且对表面惰性。高纯氮气、氪气和氩气等气体都是适合的选择。其中,由于液态氮的价格便宜、容易高纯度获得,其在大多数表面上都可以形成典型的[/color][color=#333333] II[/color][color=#333333]、[/color][color=#333333]IV [/color][color=#333333]型吸附等温线,并且分子截面积已经得到了公认值,所以最为常用。气体吸附质分子在固体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出。[/color][color=#333333] 气体吸附法测定孔径分布利用的是毛细冷凝现象和体积等效交换原理,即将被测孔中充满的液氮量等效为孔的体积。[/color][color=#333333] 由于不同材料的孔结构大有不同,因此我们采用不同的数据处理方法与模型(如表[/color][color=#333333]1[/color][color=#333333])对不同情况下的孔结构进行具体处理[/color]。[align=center]表1 常用孔结构分析中的数据处理方法与模型[/align] [table][tr][td] [align=center]孔结构参数[/align] [/td][td] [align=center]数据处理方法或模型[/align] [/td][/tr][tr][td] [align=center]比表面[/align] [/td][td]BET, Langmiur(微孔), DR, BJT, DH[/td][/tr][tr][td] [align=center]中孔分布[/align] [/td][td]BJH, DH[/td][/tr][tr][td] [align=center]微孔分布[/align] [/td][td]DA(DR理论的扩展), HK, SF, MP[/td][/tr][tr][td] [align=center]微孔/中孔分布[/align] [/td][td]NLDFT[/td][/tr][tr][td] [align=center]微孔体积[/align] [/td][td]t-方法, DR(含平均孔宽,分子筛和活性炭等微孔表征)[/td][/tr][tr][td] [align=center]分形维数[/align] [/td][td]FHH, NK[/td][/tr][/table][b]4. BET理论[/b][color=#333333] BET[/color][color=#333333]理论是根据吸[/color]附等温线得到固体材料的比表面积的一种理论模型,最初是由三位美国学者S. Brunauer、P. Emmett和E. Teller于1938年提出的[url=https://baike.baidu.com/item/BET][color=black]BET[/color][/url]多分子层吸附理论,BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。其数学表达式即BET方程。 推导BET方程所采用的模型主要做了以下基本假设:(1)吸附表面在能量上是均匀的,即各吸附位具有相同的能量;(2)被吸附分子间的作用力可略去不计;(3)固体吸附剂对吸附质气体的吸附可以是多层的,第一层未饱和吸附时就可由第二层、第三层等开始吸附,因此各吸附层之间存在着动态平衡;(4)自第二层开始[color=#333333]至第[/color][i][color=#333333]n[/color][/i][color=#333333]层([/color][i][color=#333333]n[/color][/i][color=#333333]→∞[/color][color=#333333]),各层的吸附热都等于吸附质的液化热。[/color][color=#333333] 我们可以通过热力学和动力学两种方法来推导[/color][color=#333333]BET[/color][color=#333333]方程,表达式如下:[/color][align=center][img=,675,272]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141001_01_2984502_3.jpg[/img][/align][color=#333333] 由上式可见,当物理吸附的实验数据按[/color][color=#333333] [i]p[/i]/[i]v [/i]([i]p[/i][sub]0[/sub]-[i]p[/i])[/color][color=#333333]与[/color][i][color=#333333]p[/color][/i][color=#333333]/[i]p[/i][sub]0[/sub][/color][color=#333333]作图时应得到一条直线。直线的斜率[/color][i][color=#333333]m [/color][/i][color=#333333]= ([i]C[/i]-1)/([i]v[/i][sub]m[/sub][i]C)[/i],[/color][color=#333333]在纵轴上的截距为[/color][i][color=#333333]b[/color][/i][color=#333333]=1/([i]v[/i][sub]m[/sub][i]C)[/i][/color][color=#333333],所以以[/color][color=#333333]/V(P[sub]0[/sub]-P)[/color][color=#333333]对[/color][color=#333333]P/P[sub]0[/sub][/color][color=#333333]作图[/color][color=#333333],[/color][color=#333333]得一直线如图[/color][color=#333333]3[/color][color=#333333]所示。[/color][align=center][img=,534,396]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_01_2984502_3.jpg[/img][/align][color=#333333] 根据直线的斜率和截距[/color][color=#333333],[/color][color=#333333]可求出形成单分子层的吸附量[/color][color=#333333]V[sub]m[/sub]=1/([/color][color=#333333]斜率[/color][color=#333333]+[/color][color=#333333]截距[/color][color=#333333])[/color][color=#333333]和常数[/color][color=#333333]C=[/color][color=#333333]斜率[/color][color=#333333]/[/color][color=#333333]截距[/color][color=#333333]+1[/color][color=#333333]。[/color][color=#333333] 根据[/color][i][color=#333333]V[/color][/i][sub][color=#333333]m[/color][/sub][color=#333333]由下式可以计算吸附剂的[/color][color=#333333]BET[/color][color=#333333]比表面积:[/color][img=,557,134]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_02_2984502_3.jpg[/img][color=#333333] 需要指出,为满足以上假设[/color][color=#333333]BET[/color][color=#333333]方程的总有效区为相对压力在[/color][color=#333333]0.05~ 0.3[/color][color=#333333]之间。即便如此,[/color][color=#333333]BET[/color][color=#333333]方程还是不精确的,主要原因如下:([/color][color=#333333]1[/color][color=#333333])吸附剂表面吸附中心能量不均匀;([/color][color=#333333]2[/color][color=#333333])同一层中吸附质分子与相邻分子存在相互作用;([/color][color=#333333]3[/color][color=#333333])在大于[/color][color=#333333]1[/color][color=#333333]的多层吸附中,随吸附质远离吸附中心,相互之间作用力会减弱[/color][color=#333333]。[/color][b][color=#333333]5 [/color][color=#333333]结论[/color][/b] 测定多孔材料的孔结构,关键是通过正确的实验操作获得材料的吸附-脱附曲线,再利用合适的数据处理方法或模型获得相应的结构参数。通过以上分析我们可以清楚的看到,用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的规范名称应为物理吸附法,由物理吸附法可以得到固体材料的比表面积、孔径分布、孔容积、分形维数、孔形状等更为丰富的信息,而BET法只是由吸附曲线中p/p[sub]0[/sub]在0.05-0.3之间的数据根据BET模型计算得到固体材料的BET比表面积。另外,BET法确定比表面积只是确定比表面积的其中一种方法。在实际工作中,我们不应该把这两种不同的方法混为一谈。[align=center]参考文献[/align]1. 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学.北京:科学出版社,2004:13.2. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.3. Ajayan, V. Toshiyuki, M. Katsuhiko, A. New families of mesoporous materials, science and technology ofadvanced materials. Sci Techn Adv Mater, 2006, 10:1.4. Jianlin Shi*, “On thesynergetic catalytic effect of heterogeneous nanocomposite catalysts” , Chemical Reviews, 2013, 113 (3) 2139-21815. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.6. Do D D, Adsorption analysis:equilibria and kinetics, Imperial College Press, 1998.7. Guiqing Lin, Huimin Ding,Daqiang Yuan, Baoshan Wang, and Cheng Wang, J. Am. Chem. Soc.2016, 138,3302-3305.8. Matthias Thommes, KatsumiKaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol and Kenneth S. W. Sing.Physisorption of gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.2015 87(9-10): 1051-10699. 甄开吉,王国甲,毕颖丽, 李荣生, 阚秋斌. 催化作用基础科学出版社,2005.

  • PTFE多孔材料(微孔膜,微孔滤膜)在仪器分析中有哪些应用?

    我们是做PTFE多孔材料的。刚刚进入这个行业,感觉比较迷茫目前查了一些资料,初步了解了PTFE多孔材料有用于液体纯化、色谱、过滤分离等领域大神们能否给我再详细拓展一下PTFE微孔膜,在仪器分析中的具体应用啊!比如为什么要选择PTFE过滤材料而不选择其他滤材

  • 【国产好仪器讨论】之北京精微高博科学技术有限公司的全自动比表面及孔径分析仪(JW-BK132F)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C73677%2Ejpg&iwidth=200&iHeight=200 北京精微高博科学技术有限公司 的 全自动比表面及孔径分析仪(JW-BK132F)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 产品简介: 由我公司自主研发的国内首台研究型、高性能静态容量法微孔分析仪JW-BK132F诞生于2010年,该款仪器完全继承了BK系列孔径分析仪的所有技术特点,核心硬件全部采用国际先进品牌,并引入“涡轮分子泵高端技术,配合微孔分析模型的准确应用,使得该产品综合性能更加完善,测试结果准确性、精确性、稳定性更加完美,是现今国际市场上性价比最高的一款分子泵微孔分析仪,其质量与性能完全能够与国外同类产品相媲美,非常适合活性炭、分子筛等超微孔纳米粉体材料的研究。 仪器型号: JW-BK132F 原理方法: 气体吸附法,静态容量法; 测试功能: 等温吸脱附曲线;单点、多点BET比表面积;Langmuir比表面积;外表面积(STSA);单点吸附总孔体积、平均孔径;BJH介孔大孔孔容积及孔径分布分析;t-plot法、as- plot法、DR法、MP法微孔常规分析;HK法、SF法微孔精确分析;平均粒径估算; 特殊功能:NLDFT法孔径分布分析;真密度精确测试;气体吸附量、吸附热测试;质量输入法测试; 测试气体: 氮、氧、氢、氩、氪、二氧化碳、甲烷等; 测试范围: 比表面积0.005(m2/g)--至无上限;介孔、大孔分析2nm-500nm; 微孔分析0.35nm-2nm;总孔体积0.0001cc/g至无上限; 重复精度: 比表面积≤± 1.0%;外表面积≤± 1.5%;微孔最可几孔径≤0.01nm;真密度≤±0.04% 测试效率: 比表面积平均每样30min;介孔、大孔分析平均每样4-6小时;微孔分析平均每样10-15小时; 分析站: 2个样品测试位,可同时进行真空脱气预处理,原位交替测试;每个测试位原配单独的3L或1L真空玻璃内胆杜瓦瓶,共2个; P0位: 每个样品测试位设有独立的P0管,共2支,由单独的进口压力传感器控制,完全同分析位分开,可实时、准确测量氮气的饱和蒸汽压,并实时参与理论计算; 升降系统: 2个样品测试位原位设有2套独立的升降系统,电动控制、自动控制,且互不干扰; 真空系统: 全不锈钢多通路并联抽真空管路系统,真空抽速微调阀系统专利技术,可在2-200ml/s范围内自动调节; 真空泵: 外置式进口双级旋片式机械真空泵(自动防返油)+ 内置式进口涡轮分子泵,极....【了解更多此仪器设备的信息】

  • 【讨论】静态容量法微孔测试

    1. 微孔:指孔径<2nm的孔;2. 微孔的常规测试方法:◎ 用测介孔的仪器和介孔分析的基本假设,向微孔方向延伸,①孔径和填充压力仍用Kelvin方程处理;②填充于孔中的氮取液氮的密度;◎ 可用t-图法或D&R法,求出<2nm以下微孔的总孔体积、总内表面积;还可用MP法粗略的算出2nm到~1nm之间的孔容/孔径分布;◎ 关键是:选择好“标准等温线”,需要有“标准等温线”的数据库和正确的分析方法;◎ 缺点是:仍采用介孔分析的基本假设来分析微孔是不确切的;不能精确测定微孔区的等温吸附曲线和精确的微孔孔容/孔径分布;3. 微孔分布的精确测试方法:◎ 与上述常规测试方法有重大差别;◎ 微孔精确测试仪器有极高的真空要求,测试系统的实际真空需≤10-3Pa,氮气相对压力P/Po需达到10-8数量级,因此需采用双级真空系统,即用机械泵做前级泵,再加分子泵(或其他二级真空泵)作为二级真空系统;◎ 需有准确测量10-3Pa量级的多级压力传感器;有低压下压力的精密控制系统,在P/Po<0.1的区间可控点应超过100个点;◎ 需有专用的微孔分析软件:HK、FS或NLDFT等;◎ 可以精确测定P/Po在10-7到10-1之间的等温吸附曲线;可以精确测定孔径从0.35到2nm之间的总孔体积、孔容/孔径分布和最可几孔径

  • 【求助】结晶紫降解实验,hplc分析,水系微孔过滤膜,变蓝,为什么?

    我在做结晶紫(紫色)的实验,hplc分析,从水溶液中取出试样离心后,0.45水系微孔过滤膜滤过,滤膜也变成紫色,或较浅紫色,滤液的颜色也变浅了,很郁闷,请教其他人,说是有不溶物,我觉得不是,是否有可能结晶紫吸附在膜上,或是其他原因,很困惑,请教高手。是否有相似情况,如何解决?多谢了!

  • 氮吸附法测定比表面及孔隙率的技术

    任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出: Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.050.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P00.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来

  • 【分享】重量分析技术在吸附研究中的应用

    英国Hiden公司设计的智能重量法吸附分析仪IGA是目前重量分析仪中功能最全的商业化仪器。在全世界的吸附研究领域有着广泛的用户。他们利用IGA对自己的研究实验进行分析表征,取得了辉煌成绩。在Nature和Science上均有多偏文章发表.ps :重量分析技术是新东西吗?什么时候出来的,期待回答!!

  • 麦克ASAP2020微孔分析

    有人用这个仪器做过微孔分析吗听说流程比较麻烦具体怎么做啊有没有操作说明分享一下~~~~(_)~~~~

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制