当前位置: 仪器信息网 > 行业主题 > >

融变时限仪

仪器信息网融变时限仪专题为您提供2024年最新融变时限仪价格报价、厂家品牌的相关信息, 包括融变时限仪参数、型号等,不管是国产,还是进口品牌的融变时限仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合融变时限仪相关的耗材配件、试剂标物,还有融变时限仪相关的最新资讯、资料,以及融变时限仪相关的解决方案。

融变时限仪相关的资讯

  • 盘点| 固体药物质量控制——崩解仪与融变时限仪
    p   固体药物崩解度(栓剂融变时限)的测定是溶出度测定的前提。只有崩解(融变)时限合格的药物,确保活性药物成分(API)最大限度地与介质接触,才有进行后续的生物等效性测定的价值,如溶出度和释放度等的测定。所以崩解测试是一项重要的质量控制手段。 /p p   2015版《中国药典》中四部通则中指出:“崩解系指口服固体制剂在规定条件下全部崩解溶散或成碎粒,除不溶性包衣材料或破碎的胶囊壳外,应全部通过筛网。”一般而言,筛网的直径为2mm。片剂的崩解仪的装置为升降式崩解仪,主要结构为能升降的金属支架与下端镶有筛网的吊篮,并附有塑料挡板。若把到吊篮更换为不锈钢管,则变成药典规定的口崩片的检测装置(筛网直径为710um)。通过装置在烧杯内溶质内的垂直往复运动来模拟药物在体内的崩解,评价药物的崩解时限是否达标(下图为各种剂型的质量要求)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 389px " src=" https://img1.17img.cn/17img/images/202004/uepic/f5350945-9414-413e-923c-7e06886c8baa.jpg" title=" 0..png" alt=" 0..png" width=" 600" vspace=" 0" height=" 389" border=" 0" / /p p   对于丸剂而言,崩解的时间叫做溶散时限,也是用崩解仪进行测定。肠溶衣片(包括蜡丸)和结肠定位的缓释片则需要更换不同的介质模拟不同的消化道环境。 /p p   对于栓剂的质量控制,需要使用融变时限仪。根据药典通则“0922融变时限检查法”:本法系用于检查栓剂、阴道片等固体制剂在规定条件下的融化、软化或溶散情况。栓剂融变检查仪应测量3粒样品的融化情况。装置由透明套筒和金属架组成。在检查阴道片时,需将金属挂钩端向下,倒置于容器中。 /p p   崩解仪和栓剂融变时限检查仪的最新设计集成了许多先进的科技,将药物释放的时间精准测量,为药物质量控制把好关卡。仪器信息网编辑为大家整理了一些优质品牌的仪器,为广大药学工作者参考。(排名不分先后) /p p    strong span style=" color: rgb(0, 112, 192) " 水浴加热型崩解仪 /span /strong /p p    span style=" color: rgb(255, 0, 0) " 1. a href=" https://www.instrument.com.cn/netshow/C307813.htm" target=" _blank" Teledyne Hanson Research /a ——Disi AutoSense 崩解仪 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 203px " src=" https://img1.17img.cn/17img/images/202004/uepic/2ead682c-b56c-420f-be98-c84041b4ebcb.jpg" title=" 1.Teledyne Hanson Research——Disi AutoSense 崩解仪.jpg" alt=" 1.Teledyne Hanson Research——Disi AutoSense 崩解仪.jpg" width=" 600" vspace=" 0" height=" 203" border=" 0" / /p p   来自Teledyne Hanson的Disi AutoSense& #8482 可以支持全自动崩解试验。每个吊篮可以独立编程和操作,允许四个吊篮同时测试。每个样品管的挡板内有一个铜环,每次进出溶质时跟踪样品高度的变化。吊篮底部内置一个特殊传感器,可连续测量崩解后溶质的温度。药物完全崩解后,系统感应使篮子自动从烧杯中取出。精确智能高效自动的吊篮可以通过磁力耦合自动对准每个烧杯中心线,即时连接和断开。该系统不需要工具调整篮子位置。智能篮子组件精密防水、耐腐蚀,可以快速清洁。Teledyne Hanson的精密烧杯是专为此崩解仪配套设计的,十分耐用。被测试的产品可以通过批号来追踪。温度和崩解百分比实时数据会显示在计算机屏幕上,同时存储在数据库中。用户权限和安全设置是高度可配置的,并由软件记录。标准片剂、胶囊和具有多阶段崩解的特殊产品均可以得到精确监控和记录。 /p p    span style=" color: rgb(255, 0, 0) " 2. a href=" https://www.instrument.com.cn/netshow/C323171.htm" target=" _blank" LOGAN 禄亘——崩解仪DST-3/6 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 233px " src=" https://img1.17img.cn/17img/images/202004/uepic/e96f5d10-b1b6-446b-846c-3753484f34c5.jpg" title=" 2.LOGAN 禄亘——崩解仪DST-3 6.png" alt=" 2.LOGAN 禄亘——崩解仪DST-3 6.png" width=" 400" vspace=" 0" height=" 233" border=" 0" / /p p   LOGAN DST-3/6崩解仪针对固体制剂如片剂、胶囊剂、丸剂崩解时限测定设计,符合药典要求。仪器可配备1-2个水槽,一次可放6个吊篮,每个吊篮可放6组样品。吊篮和溶媒高度通过标配工具,轻松实现高度调校过程。双独立式水箱设计,单列式布局,方便观察各独立吊篮。仪器操作便捷,耐用性强,微处理器控制时间和温度,只需简单输入,即可测量。测量结束提前报警提示,自动升起到最高位置,方便全方位观察药品崩解情况。升降装置由金属制成,耐酸性强。 /p p    span style=" color: rgb(255, 0, 0) " 3. a href=" https://www.instrument.com.cn/netshow/SH100320/" target=" _blank" Agilent 安捷伦 /a ——Agilent 100自动崩解仪 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 243px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/1cfb4fc7-6474-478a-a07e-af3da336700a.jpg" title=" 3.Agilent 安捷伦——Agilent 100自动崩解仪.png" alt=" 3.Agilent 安捷伦——Agilent 100自动崩解仪.png" width=" 243" vspace=" 0" height=" 300" border=" 0" / /p p   可编程的安捷伦100 自动崩解仪提供了可靠、遵循药典法规的崩解度测试方法。该仪器由往复驱动系统、水浴、加热器/循环器组成,提供了节省宝贵台面的一体化设计。有单篮和三篮模式均可使用,以及进行符合美国药典USP标准崩解度测试所需要的各种附件。吊篮在运行结束时可以自动升起离开液面。吊篮将保持在介质上方,等待实验人员回来查看结果。三篮模式为每个篮提供了独立的数字化时间显示,可以同时进行测试,也可以依次测试,最大限度提高了实验室效率。可加入打印机选件,记录关键的测试信息。此外,换上栓剂吊篮配件可以进行栓剂融变时限的测定。 /p p    span style=" color: rgb(255, 0, 0) " 4.ERWEKA—— a href=" https://www.instrument.com.cn/netshow/C141279.htm" target=" _blank" ERWEKA ZT 720系列 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 258px " src=" https://img1.17img.cn/17img/images/202004/uepic/39be053b-19a6-4ece-8d2b-d610a6b283df.jpg" title=" 4.ERWEKA——ERWEKA ZT 720系列.jpg" alt=" 4.ERWEKA——ERWEKA ZT 720系列.jpg" width=" 600" vspace=" 0" height=" 258" border=" 0" / /p p   ERWEKA ZT720系列采用独特的磁力系统和探头,ZT722型智能崩解仪可自动测定每个样品的崩解时间。仪器可以确定测试样本是否完全分解。ZT720配有单独驱动的试验站(一个ZT721或两个ZT722),并配有集成的通流加热器。用户客户可根据需要选择药篮:A型药篮配有6个标准药片试管,B型药篮含有3个较大药片试管(根据美国药典USP/欧洲药典EP标准)。Pt100型温度传感器可以使水浴温度达到恒定控制。ZT 720系列通过创新的7英寸触摸屏控制,存储和检索多达200种产品/方法的结果和参数在4GB的存储空间中。USB和LAN接口确保数据导出简单方便。由于亚克力材料水浴可拆卸,并配有一个出口阀,可以轻松进行清洁。 /p p    span style=" color: rgb(255, 0, 0) " 5. a href=" https://www.instrument.com.cn/zc/546.html?AgentSortId=1539& SampleId=& IMShowBigMode=& IMCityID=& IMShowBCharacter=& SidStr=" target=" _blank" pharma-test——PZT AUTO EZ全自动片剂崩解仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 560px height: 375px " src=" https://img1.17img.cn/17img/images/202004/uepic/f174fdcb-29d1-4017-994f-3e498f7931f3.jpg" title=" 5.pharma-test——PZT AUTO EZ全自动片剂崩解仪.jpg" alt=" 5.pharma-test——PZT AUTO EZ全自动片剂崩解仪.jpg" width=" 560" vspace=" 0" height=" 375" border=" 0" / /p p   PTZ AUTO-EZ全自动崩解仪最多可容纳4个工作站。每个样品的崩解时间可自动检测,且篮体可独立操作。每个测试位置有一个完整的PT-MKT电子崩解测试篮。篮子可测试6个样品,包括六个玻璃管和圆盘。对于直径大于30 mm的较大样品,仪器还提供PT-MKT33篮配件(“B”型)。此样品篮可测三个样品。为了自动检测崩解时间,在玻璃管底部插入了一个小金属环分离篮底筛。当样品分解时,这个金属环就闭合了筛子之间形成了接触。这样就可以检测到崩解的时间。内置加热系统采用无声循环泵和加热器对外部水进行预热,可进行过热保护。为了便于清洗和维护,套装提供一瓶ALGEX水防腐剂。在试运行结束时,各吊篮提升装置会将吊篮从介质中完全移除。如果测试样品需要改变溶液pH(如缓控释片),该功能会非常为实用。PTZ AUTO EZ配有串行RS-232接口。该仪器可以连接到PC机上,PTZ32软件可提供测试方法、结果归档、批量比较和图形信息。 /p p    span style=" color: rgb(255, 0, 0) " 6. a href=" https://www.instrument.com.cn/netshow/C117374.htm" target=" _blank" Copley Scientifice科普利(英国)——崩解仪DTG4000 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 360px height: 185px " src=" https://img1.17img.cn/17img/images/202004/uepic/7ed41d63-3c9b-4fa6-8b0a-09f6ed9f6565.jpg" title=" 6.Copley Scientifice科普利(英国)——崩解仪DTG4000.jpg" alt=" 6.Copley Scientifice科普利(英国)——崩解仪DTG4000.jpg" width=" 360" vspace=" 0" height=" 185" border=" 0" / /p p   DTG系列崩解仪可以分析包衣片剂的延迟释放以及胶囊外面的胶质溶解等。崩解测试时,按“START”仪器自动将全套篮子放入检测介质中;检测完毕仪器自动地将从检测介质中提取,并有声音提示。PT-100温度传感器持续监测水浴温度。吊篮采用快速释放技术,且保证在运行中处于准确位置。DTG系列模具在真空情况下一次性整体成型,彻底解决了连接处漏水问题;水浴底部圆弧设计含低液位报警装置。此外,所有螺丝部件使用手拧组合,清洗吊篮可以不用任何工具可以轻松拆解。DTG4000最多可同时使用4个吊篮测定样品。Copley公司可以提供三种文件:符合药典规范的证书 激光编码和证书(符合药典技术要求的认证文件) IQ/OQ/PQ认证文件。 /p p    span style=" color: rgb(255, 0, 0) " 7. a href=" https://www.instrument.com.cn/zc/546.html?AgentSortId=9219& SampleId=& IMShowBigMode=& IMCityID=& IMShowBCharacter=& SidStr=" target=" _self" 恒创利达hengchld——BJ-3三杯崩解时限仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 254px height: 206px " src=" https://img1.17img.cn/17img/images/202004/uepic/03aa512f-c49f-4031-a000-78a2b8387802.jpg" title=" 7.恒创利达hengchld——BJ-3三杯崩解时限仪.jpg" alt=" 7.恒创利达hengchld——BJ-3三杯崩解时限仪.jpg" width=" 254" vspace=" 0" height=" 206" border=" 0" / /p p   恒创利达BJ-3崩解仪有3个吊篮工作位测定崩解时限。三个吊篮可单独运行,分别控制。电子温度传感器可显示和监控水浴箱内各点及烧杯中的温度。高精度数字电子传感器,无需校准可自动控制水浴温度为37.0℃。并可随时重新设定预置温度。吊篮升降时间预制为15分钟,也可任意重新设定。采用单片机为核心的计算机控制技术,智能化性能参数。仪器水浴温度过热报警和自动保护功能。 /p p    span style=" color: rgb(255, 0, 0) " 8. a href=" https://www.instrument.com.cn/netshow/C231503.htm" target=" _self" 上海安亭——ZB-1C智能崩解仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 235px height: 235px " src=" https://img1.17img.cn/17img/images/202004/uepic/d2d0fee5-9f64-4a76-8f08-30ea3f7c3a54.jpg" title=" 8.上海安亭——ZB-1C智能崩解仪.jpg" alt=" 8.上海安亭——ZB-1C智能崩解仪.jpg" width=" 235" vspace=" 0" height=" 235" border=" 0" / /p p   上海安亭电子仪器厂生产的ZB-1C智能崩解仪符合药典规定。具备两个吊篮,可进行对照实验,作为一种评价仿制药质量的工具。 /p p    strong span style=" color: rgb(0, 112, 192) " 无水浴崩解仪 /span /strong /p p    span style=" color: rgb(255, 0, 0) " 9. a href=" https://www.instrument.com.cn/zc/546.html?AgentSortId=11698" target=" _self" SOTAX /a ——DT-50 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 560px height: 217px " src=" https://img1.17img.cn/17img/images/202004/uepic/660d2fa4-4d95-4405-8ae8-a836b32a0d56.jpg" title=" 9.SOTAX——DT-50.jpg" alt=" 9.SOTAX——DT-50.jpg" width=" 560" vspace=" 0" height=" 217" border=" 0" / /p p   SOTAX DT-50采用无水浴设计,专利感应加热技术将加热时间缩短到3-5分钟,确保烧杯内的温度分布非常均匀。达到目标温度时自动测试,开始后无任何延迟持续温度监测。片剂崩解达到终点时会自动检测。吊篮带有无线自动中心磁耦合,可以在几秒钟内更换。每种类型样品篮和序列号会被自动识别和编程。测试完成后,自动打印报告,记录单个片剂的分解时间。随着样品容量的增加,可在测试系统中添加到4个独立工作站和一个MediaPrep工作站的解体系统工作站。DT50还可以与q-doc& reg 数据管理软件无缝集成,每个站点单独控,所有结果都自动记录在一个中央SQL数据库中进行评估。 /p p    span style=" color: rgb(255, 0, 0) " 10. a href=" https://www.instrument.com.cn/netshow/C220139.htm" target=" _blank" textvalue=" DISTEK——sensIR 3200 bathless片剂崩解仪" DISTEK——sensIR 3200 bathless片剂崩解仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 576px height: 186px " src=" https://img1.17img.cn/17img/images/202004/uepic/6b12c1ec-0e48-4384-8976-3e8eff018f52.jpg" title=" 10.DISTEK——sensIR 3200 bathless片剂崩解仪.jpg" alt=" 10.DISTEK——sensIR 3200 bathless片剂崩解仪.jpg" width=" 576" vspace=" 0" height=" 186" border=" 0" / /p p   Distek sensIR 3200结合了两项独家技术——无水浴加热和近红外线终点探测感应装置,提供最具创新性的崩解测试仪。无水浴加热不仅减少了预热时间,而且消除了传统水浴式仪器带来清洁不便以及温度不准的缺点。为了满足您测试要求,sensIR 3200可以放置两、四或六组测试烧杯(运行三种独立的方法)。其体积小,高度集成化的特点是其他设备所不及的。 /p p    span style=" color: rgb(255, 0, 0) " 11. a href=" https://www.instrument.com.cn/netshow/C376250.htm" target=" _self" Electrolab——EDl-2SA\EDl-3X半自动崩解仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 249px height: 249px " src=" https://img1.17img.cn/17img/images/202004/uepic/af68dd65-d8c5-4f63-8eed-fc33a9341a7d.jpg" title=" 11.Electrolab——EDl-2SA-EDl-3X半自动崩解仪.jpg" alt=" 11.Electrolab——EDl-2SA-EDl-3X半自动崩解仪.jpg" width=" 249" vspace=" 0" height=" 249" border=" 0" / /p p   Electrolab这款EDl-3X仪器可以单独记录每片的崩解时间。仪器采用电机加热,比水浴加热省时且易于清洁。实验结束后吊篮可以从罐子里自动出来。最高温度可至40摄氏度,具有自动校准功能。底部有绿色LED设备照明,可以更好地观看崩解情况。能够配置2个或者3个独立的吊篮,每个吊篮有独立温度探头。符合人体工程学设计,可快速装载并易于清洁。 /p p    strong span style=" color: rgb(0, 112, 192) " (栓剂)融变时限仪 /span /strong /p p    span style=" color: rgb(255, 0, 0) " 12. a href=" https://www.instrument.com.cn/netshow/C275810.htm" target=" _self" 恒创利达hengchld——RBY-4B融变时限仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 360px height: 294px " src=" https://img1.17img.cn/17img/images/202004/uepic/a077ba21-6807-4b8f-ada5-e831c6c37e07.jpg" title=" 12.恒创利达hengchld——RBY-4B融变时限仪.jpg" alt=" 12.恒创利达hengchld——RBY-4B融变时限仪.jpg" width=" 360" vspace=" 0" height=" 294" border=" 0" / /p p   恒创利达RBY-4B配备电动升降与手动翻转双功能机头。共有3套5000 mL烧杯,内部有透明套筒。进口不锈钢网架结构新颖灵活。磁性水泵循环水流匀热系统,全自动智能化控制温度。可以随意预置时间参数,翻转频率,水浴温度三个参数 分时显示预置值和实时值。系统预设了三种快捷模式供用户使用。机器还可以可自动检测、自动诊断和故障报警。 /p p    span style=" color: rgb(255, 0, 0) " 13. a href=" https://www.instrument.com.cn/netshow/C220139.htm" target=" _self" DISTEK——Basket for Suppositories (Black Polypropylene) /a /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 148px height: 256px " src=" https://img1.17img.cn/17img/images/202004/uepic/b73b212b-4fd3-4dbf-9d4d-d88db40a71b9.jpg" title=" 13.DISTEK 吊篮.png" alt=" 13.DISTEK 吊篮.png" width=" 148" vspace=" 0" height=" 256" border=" 0" / /p p   DISTEK这一款黑色聚丙烯吊篮,专为栓剂的检测设计。可以安装在崩解仪上进行测定。符合欧洲药典和美国药典。 /p p    span style=" color: rgb(255, 0, 0) " 14. a href=" https://www.instrument.com.cn/zc/546.html?AgentSortId=1539& SampleId=& IMShowBigMode=& IMCityID=& IMShowBCharacter=& SidStr=" target=" _self" Pharma Test /a ——PTS 3E 栓剂崩解测试仪 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 328px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/b8e9d064-4989-4731-9f9c-db910c91e951.jpg" title=" 14.Pharma Test——PTS 3E 栓剂崩解测试仪.png" alt=" 14.Pharma Test——PTS 3E 栓剂崩解测试仪.png" width=" 328" vspace=" 0" height=" 300" border=" 0" / /p p   PTS-3E栓剂崩解试验机的符合欧洲药典,用于栓剂崩解(融变)时间的测定。标准不锈钢外壳符合GMP标准。水浴、样品架和测试篮易于拆卸,便于清洗。加热系统可以防止油脂侵入,避免污染仪器内部机件。内置1000W加热管和循环泵的恒温器,提供过热保护。免费提供IQ/OQ文件。有机玻璃水浴、POM齿形齿轮、弹簧、POM有机玻璃驱动臂和篮子支架、不锈钢篮以及栓剂测试玻璃盖板和玻璃擦拭棒等配件可以更换。 /p p    span style=" color: rgb(255, 0, 0) " 15.ERWEKA——ST 35 栓剂崩解测试仪 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 355px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/c603badc-bb9e-46db-b11a-c024d6f0c58a.jpg" title=" 15.ERWEKA——ST 35 栓剂崩解测试仪.png" alt=" 15.ERWEKA——ST 35 栓剂崩解测试仪.png" width=" 355" vspace=" 0" height=" 300" border=" 0" / /p p   ERWEKA栓剂崩解测试仪ST-35有三个测试台,每个测试台位于一个4升的玻璃容器内。恒温加热水浴无泄漏设计和双重保护。ST-35具有一个集成的“大功率”直通式加热系统和一个用于温度显示的内部温度传感器。由于ST-35的体积小巧,仪器可以很容易地分开,便于清洗。可在每个玻璃烧杯放置单独可控的磁力搅拌器,控制液体的流动变化。 /p p    span style=" color: rgb(255, 0, 0) " 16. a href=" https://www.instrument.com.cn/netshow/C128103.htm" target=" _blank" SDT-1000 栓剂崩解仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 560px height: 236px " src=" https://img1.17img.cn/17img/images/202004/uepic/7c24659e-a985-4f0c-93c0-96cc1065247e.jpg" title=" 16.SDT-1000 栓剂崩解仪.jpg" alt=" 16.SDT-1000 栓剂崩解仪.jpg" width=" 560" vspace=" 0" height=" 236" border=" 0" / /p p   栓剂崩解仪SDT-100严格遵循欧盟药典标准2.9.2的要求:对栓剂的融变时限测定。内部包含两个不锈钢圆板,每个圆板直径为:50 mm、带有39个孔径为4 mm的圆孔,两个圆板之间距离为:30 mm。使用PT100温度传感器测量和显示其水浴温度。在测量过程中,黑色手柄每10分钟旋转半圈,从而带动样品旋转180度,搅拌速度从80-200 rpm可调。装置也适合阴道片的检测,只使用样品支架,放置于玻璃容器中,液面高度刚好覆盖上层的平板,取片剂置于平板上。特殊设计的附件有可以利用4L的容器测量栓剂的软化时间的3个玻璃柱。 /p p    span style=" color: rgb(255, 0, 0) " 17. a href=" https://www.instrument.com.cn/netshow/SH101430/C146971.htm" target=" _blank" 天津天光光学仪器——RBY-4自动融变时限检查仪 /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 360px height: 171px " src=" https://img1.17img.cn/17img/images/202004/uepic/10966358-ef60-449d-8142-cd37dbe59f8f.jpg" title=" 17.天津天光光学仪器——RBY-4自动融变时限检查仪.png" alt=" 17.天津天光光学仪器——RBY-4自动融变时限检查仪.png" width=" 360" vspace=" 0" height=" 171" border=" 0" / /p p   RBY-4型自动融变时限检查仪是RB-1型检查仪的升级产品,主要特点是三个金属架可按用户设定的运行方式,自动同步翻转。预设三种翻转模式,专用于栓剂及阴道片等固体制剂的融化,软化或溶散情况的检查。RBY-4为机电一体化新产品,采用微电脑实现水浴测控温,计时报警及过热声光报警。工作可靠,操作简便,性能优良,其技术指标完全符合《中国人民共和国药典》的规定。仪器由主机箱和水浴箱两大部分组成。加热功率最高可达1300W。 /p p    span style=" color: rgb(255, 0, 0) " 18.上海黄海药检—— a href=" https://www.instrument.com.cn/list/CM1045567/C293117.html" target=" _self" 智能融变时限仪RBY-N /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 252px " src=" https://img1.17img.cn/17img/images/202004/uepic/5d76746f-af68-44f4-a8b7-aa80f3aa4074.jpg" title=" 18.上海黄海药检——智能融变时限仪RBY-N.png" alt=" 18.上海黄海药检——智能融变时限仪RBY-N.png" width=" 400" vspace=" 0" height=" 252" border=" 0" / /p p   黄海药检智能融变仪RBY-N采用可以自动翻转金属架,无需人工等待。使用便捷医用级别专业管路设计,减少水域内部污染。遵循GMP规范设立三级不同用户权限,可以使用打印机USB接口连接输出实验记录。 /p p strong & nbsp /strong span style=" color: rgb(0, 0, 0) " strong 欲了解更多产品信息,点击进入 a href=" https://www.instrument.com.cn/zc/546.html" target=" _self" span style=" color: rgb(255, 0, 0) " 崩解度仪专场 /span /a 和融变时限仪专场。 /strong /span /p p strong span style=" color: rgb(32, 88, 103) " & nbsp span style=" color: rgb(255, 0, 0) " 友情链接: /span a href=" https://www.instrument.com.cn/news/20200413/535932.shtml" target=" _blank" style=" text-decoration: underline color: rgb(247, 150, 70) " span style=" color: rgb(247, 150, 70) " 固体药物质量控制——溶出度仪篇 /span /a br/ /span /strong /p p ------------------------------------------------------------ /p p br/ /p p span style=" font-size: 20px " strong & nbsp 欢迎报名“药典与药品质量控制”专题网络研讨会 /strong /span br/ /p p & nbsp & nbsp & nbsp 安全有效、质量可控是合格药品关键特点。药典作为国家药品的基本标准,指导地方标准和企业内部标准的建立,是新药审批生产的重要依据。2020版《中国药典》发布在即,对药品质量控制也提出新的要求。 /p p   为促进行业内药物质量检测技术交流,提升药品质量控制水平,仪器信息网将于 span style=" color: rgb(255, 0, 0) " strong 2020年4月30日 /strong /span 举办“药典和药品质量控制”专题 i 网络研讨会 /i ,我们将邀请药品质控领域专家就最新药品质量分析技术、新版药典变化、药品标准修订等话题进行交流。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/ypzlkz/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 305px " src=" https://img1.17img.cn/17img/images/202004/uepic/21678d8d-6f49-4530-84d8-f255c8ffef8e.jpg" title=" 19.药典会议宣传.jpg" alt=" 19.药典会议宣传.jpg" width=" 600" vspace=" 0" height=" 305" border=" 0" / /a /p p a href=" https://www.instrument.com.cn/webinar/meetings/ypzlkz/" target=" _blank" strong 报名链接: span style=" color: rgb(255, 0, 0) " https://www.instrument.com.cn/webinar/meetings/ypzlkz/ /span /strong /a /p p br/ /p
  • 材料学院朱静、于荣、钟虓研究团队实现原子面分辨测量材料轨道与自旋磁矩
    p   2月5日,清华大学材料学院朱静、钟虓、于荣研究组在高空间分辨材料磁性表征方法取得重大进展,于国际顶级期刊《自然· 材料》(Nature Materials)在线发表了题为“应用色差校正电子显微学方法进行原子尺度磁圆二色谱成像”(Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy)的研究论文。该研究基于朱静、钟虓、于荣研究组之前所发展的定量电子磁圆二色谱(Electron Magnetic Circular Dichroism)技术和占位分辨电子磁圆二色谱技术,优化衍射动力学条件,应用色差校正透射电子显微学技术,联合德国于利希研究所、亚琛工业大学、瑞典乌普萨拉大学与日本筑波大学的合作者,在国际上首次通过实验手段获得了材料内部原子面分辨的磁圆二色谱,并基于实验结果定量计算出每一层原子面的元素的轨道自旋磁矩比,该工作被选为《自然· 材料》当期目录图片。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/41263e28-aeab-4671-997e-a9a077bed2a0.jpg" title=" 1.png" width=" 534" height=" 301" style=" width: 534px height: 301px " / /p p style=" text-align: center " 《自然· 材料》当期目录图片:原子面分辨自旋探测示意图。 /p p   磁性材料被广泛应用于国民经济和国家安全中的各个领域,信息科技的高速发展尤其对磁性材料的先进性能研发提出了迫切需求。实现自旋构型与材料结构的原子尺度协同定量表征,是理解、预测与调控磁性材料的物理性质的关键 /p p   近五十年以来,传统的磁成像手段如中子衍射、X射线磁圆二色谱、电子全息等,成像分辨率达到微米或纳米尺度,均无法实现原子分辨。实现自旋构型原子尺度成像,在当今材料科学基础研究中具有重大的科学意义,在设计制造高密度、低功耗、快速的存储器件、推进信息与通讯技术方面有广阔的应用前景。 /p p   清华大学材料学院朱静、钟虓、于荣带领几代研究生王自强、宋东升、王泽朝等围绕原子尺度自旋表征领域开展了长达十年的持续攻关。他们原创性地发展了定量电子磁圆二色谱技术,实现了利用透射电子具高空间分辨的占位分辨的磁参数测量及材料面内本征磁性测量等技术,解决了纳米尺度上定量获得材料磁结构信息的难题。在此基础上,结合色差球差校正与空间分辨电子磁圆二色谱技术,突破性地实现逐层原子面的自旋构型成像,定量测量原子尺度的轨道自旋磁矩比,在原子尺度上同时测量材料的结构、成分与磁矩。该研究团队在国际上首次成功地将自旋表征磁圆二色谱的分辨率从纳米尺度推进到了原子尺度,将材料的轨道自旋磁矩分布磁信息与其原子构型、元素组成、化学键合等结构信息在原子层次上一一对应,如图2所示,对于在原子尺度理解自旋、晶格、电荷、轨道等多个自由度的结构参量与材料磁性能之间的相互关联有重要意义。电子磁圆二色谱技术自2006年诞生以来,由于其实验技术和理论解释的复杂性与挑战性,十多年来国际范围内仅有有限的几个研究组坚持这一方向的研究,而北京电子显微镜中心经过几代人的努力,在该领域得到了稳健的、飞速的发展,目前已受到国内外学术界的普遍关注。原子尺度磁圆二色谱成像工作于2018年2月5日被国际顶级的材料科学杂志《自然· 材料》在线发表。 /p p br/ /p
  • 你的拉曼如何实现变温测量?
    拉曼测量在科研上的“江湖”地位不用多说,“江湖”上到处都是他的传说。随着仪器技术的发展,拉曼技术已经广泛应用于科研的各个领域,如今拉曼已经由普通拉曼发展到显微拉曼,已经由室温拉曼发展到低温拉曼。低温显微拉曼测量能够清楚展示材料随温度的相变、峰位移动、峰位半高宽的变化,通过低温测量还可以大地增强弱信号样品的信号强度。因此变温拉曼可以通过无损测量获得样品特性随温度的变化。那么如何实现低温显微拉曼呢?今天我们就为您介绍两种途径。 一、不甘平凡,普通拉曼也能实现地覆天翻几乎所有室温拉曼都可以通过升达到上面提到的这些功能。具体来说,在已有的室温拉曼系统基础上配置一台低温的恒温器就可以实现变温测量了。但是需要注意的是,低温拉曼的恒温器与普通电学测量的恒温器有诸多不同点:1、光学窗口。光学窗口的设计是光学恒温器的重中之重,通光范围、窗口位置、工作距离等技术指标都对实验有影响。而工作距离是光学窗口重要的指标,通常工作距离越近就越容易获得更大的NA值,这对于样品信号的收集和信噪比都是很重要的。因此我们要求恒温器的光学窗口要具有近工作距离等特点。2、样品震动。低温拉曼要求样品位置的超低震动,传统制冷机恒温器由于震动较大使得样品始终处于一个振动状态,很难对某一个位置进行低温显微测量。灌液氮和液氦的湿式恒温器虽然没有制冷机,但是由于气流很难控制导致温度有时会出现轻微波动,并且随着液氮或液氦的消耗,实验时间受到限制。因此低温拉曼需要超低震动的恒温器。3、位置漂移。在变温测量过程中样品台等机械结构会随着温度的变化热胀冷缩,从而导致样品和物镜的相对位置发生变化,甚至在达到目标温度后样品台温度的缓慢驰豫也会导致位置漂移,这使得变温显微拉曼对同一位置的测量变得很困难。因此低温拉曼需要样品台位置漂移小的恒温器。4、变温速率。变温测量通常都要测一系列不同温度的光谱来分析样品特性随温度的变化,而传统恒温器温度由一个温度点到下一个温度点时需要很长时间才能稳定。这是因为样品台等内部结构热容较大,每到一个温度点需要一定的稳定时间。这就导致整个实验时间非常长,可达几天之久,此中的“酸爽”在博士阶段应该是有体会。因此低温拉曼需要一款能够快速变温并稳定的恒温器。综合以上四点,要将一台室温拉曼升成低温拉曼需要的恒温器必须是低温技术与光学技术的集大成者。 二、巧夺天工,全新系统让你与众不同话说,不破不立!如果说将室温拉曼升成低温拉曼是地覆天翻,那么全新的低温拉曼系统可以说是再造乾坤。因为通过集成硬件和软件系统,全新的低温显微拉曼已经超越了机械的硬件拼接。除了上述普通升低温拉曼系统所有的功能之外,该系统还具有以下神技:1、 集成式软件控制样品聚焦、定位2、 集成式软件控制样品温度,无需额外控温仪3、 自动控制系统抽真空、降温、升温4、 自动二维扫描成像与数据收集5、 快速变温样品台实现大温区快速变温测量(4K-600K)6、 低位置漂移样品台设计7、 集成式高数值孔径镜头(NA0.75或0.85可选)8、 兼容变温拉曼和电输运同时测量什么?拉曼还能自动二维扫描成像?是的,可以轻松得到一张二维的拉曼扫描图像,听到这心里有没有一点小“雀跃”?通过扫描拉曼功能和新的算法,此新系统甚至还可以测量样品的热导率二维分布,此外全新系统软件控制聚焦也给用户带来了很多便利。这些功能对于普通变温拉曼来说简直就是“降维打击”。我们来看全新系统的一个简单案例。图1和图2分别是MoS2-WS2多层膜异质结(非外延式异质结)在5K(图1)和150K(图2)下的二维拉曼扫描成像。扫描范围200μm*200μm,每一个像素点1μm*1μm。每一幅图片就是40000次的拉曼测量,这是手动测量所不敢想象的。两幅图的右侧图片是通过k-means clustering方法进行分析后得到的结果,可以清楚地看到不同温度下边界态的相对强度明显不同。这对样品区域特性的研究具有重要意义。 图1,MoS2-WS2多层膜异质结(非外延式异质结)5K温度下的拉曼二维扫描图像(左)与k-means clustering分析结果(右)扫描范围200μm*200μm,每一个像素点1μm*1μm。 图2,MoS2-WS2多层膜异质结(非外延式异质结)150K温度下的拉曼二维扫描图像(左)与k-means clustering分析结果(右)扫描范围200μm*200μm,每一个像素点1μm*1μm。 综上所述,什么恒温器能够满足普通拉曼的低温升呢?下面为您揭开庐山真面目。纵观目前商业化的恒温器,Montana Instruments生产的超精细无液氦低温光学恒温器是实现普通拉曼做低温升的佳恒温器。近工作距离、超低震动、低位置温漂、超快变温和高稳定性已经成为Montana恒温器帮助用户“笑傲科研”的看家本领。目前国内外已经有很多科研工作者体会到了Montana恒温器带来的便利,国内已有近百台设备在各大实验室工作。 图3,Montana Instruments生产的低温恒温器主机部分。 而全新的低温显微拉曼系统就是Montana Instruments与 Princeton Instruments经过长时间的探索研究联合推出的全新的集成式低温显微拉曼系统——CryoRAMAN。 图4,CryoRAMNA集成式低温拉曼系统主机部分。Quantum Design中国正在引进一套设备作为样机,我们将在7月份举行大型Workshop进行低温拉曼的应用和技术讲解。欢迎大家到时来参加,有机会可以进行免费测试,体验CryoRAMAN带来的便利。拉曼向低温拉曼的发展已经成为大势所趋。无论是升还是整套购买,赶紧行动起来吧!
  • 聚力融变,智赢未来—德国耶拿中国2019年会全新召开
    2020年伊始,我们与疯狂的病毒不期而遇,与把酒言欢的聚首擦肩而过。这场突如其来的灾难使得德国耶拿公司原定春节后的培训及财年年会计划也因此取消,但随后公司迅速采取积极的应对措施,通过网络会议形式完成了全部计划!疫情虽然将我们阻隔在天南海北,但阻隔不了我们同心战“疫”的决心,更阻挡不了耶拿人不断前进的脚步!本届网络年会共历时一天半,分为三个篇章:篇章一:工作回顾2019随着公司业务的拓展,公司加入了许多新鲜的血液。年会伊始,新员工的自我介绍正式拉开了年会的帷幕。之后,德国耶拿大中华区总裁赵泰先生做了“年度工作回顾与展望”的主题发言,从公司经营、市场与品牌、业务拓展以及公司能力提升等方面,对2019年做了全面的回顾与总结,并提出了公司2020年重点工作和发展目标。赵总鼓舞全体员工在2020年秣马厉兵,砥砺前行。 随后,各部门经理依次对本部门全年工作做了详细的汇报和分析并分享2020年的目标。通过公司领导对2019年的工作总结,耶拿中国的每一位员工能非常清楚公司的运营状况及未来发展的方向及空间,再次加强了每一位耶拿中国人的信心! 篇章二:颁奖典礼毫无疑问,实现梦想的道路并不平坦,但幸运的是耶拿中国拥有这样一批坚持追梦、从不言败的伙伴们。在颁奖典礼环节,公司对优秀员工进行了表彰和颁奖。获奖者当中,有业绩过人的销售冠亚季军,有快速成长的销售能手,有兢兢业业的售后支持,有善于思索的售前应用,有默默奉献的行政专员,还有最佳协作的团队̷̷他们没有豪言壮语,但是却用实际行动告诉了我们什么是主人翁精神。耶拿秉承“精神奖励和物质奖励并举”的原则,为年度优秀员工提供的丰厚的物质奖励:万元旅游奖金、品牌拉杆箱、折叠跑步机、平衡车、电子书、COACH手包等。年会奖品多种多样,根据获奖人员的年龄、喜好和家庭情况精心挑选,耶拿的人文 关怀由此可见一斑。企业的发展除了需要吸纳新鲜血液外,更离不开稳定的团队。今年又有一批员工荣获耶拿五年勋章,同时还有2名同事荣获十年勋章。更令人兴奋的是今年又新增一位十几年如一日在自己的工作岗位上取得骄人成绩的、耶拿十五年勋章的获得者,耶拿中国感谢他的付出,除了双钻奖章外,特奖励浪琴高端手表一块! 篇章三:团队建设同样的一块铁,可以锯融消损,也可以百炼成钢;同样的一支队伍,可以碌碌无为,也可以成就大业!结束了第一天紧张的工作回顾与展望,在第二天上午,我们首次利用网络开展了别开生面的团队拓展活动。2020年伊始,最令每一位中国人关注牵挂的莫过于肆虐的新型冠状病毒,拓展的第一项讨论“疫情带给我的̷..” 活动,耶拿全员首先对武汉的同事表示了深切的问候和关怀,同时很多同事积极分享了自己的感受:对最美逆行者的敬意、心怀感恩、亲人共处、健康的重要性等等。接下来的看图猜谜,是比眼力、脑力及知识储备的环节;五字接龙颠覆传统的成语接龙,难度更大,创意连连!猜歌名让喜欢音乐的同事大放异彩;最后的诗词接力考验了团队的默契度。虽然今年的拓展活动是在线举行,内容及形式受环境影响较往年简化许多,但每个人还是充满热情。没有一个冬天不可逾越,没有一个春天不会到来!2020年的开头太难了,但只要我们守望相助,便能无惧前行!2020年,耶拿人上下一心,聚力融变,定能智赢未来!
  • 国产厂商已实现SIM超分辨显微镜原创技术的引领——​访北京大学席鹏教授
    在高端科学仪器领域,国产品牌鲜有能用“引领”二字来描述的。而在许多科学家和工程师的不懈努力之下,SIM超分辨显微镜成为例外。近五年,国内创新企业和传统光学企业纷纷推出超分辨显微镜,其中以结构光照明(SIM)技术路线最具代表性,这些国产SIM超分辨显微镜陆续进入大型科研平台并得到用户的充分认可。北京大学席鹏教授是推动这一领域快速发展的科学家之一,他的多项成果也已完成产业化并得到了市场的良好反馈,他的另外一个身份是艾锐科技首席科学家。 仪器信息网也特别采访了席鹏教授,听他述说其光学显微镜研发之路以及对当前高端光学显微镜技术和市场发展的看法。北京大学席鹏教授仪器信息网:您是如何走上光学显微镜研发这条道路的?为何选择超分辨显微成像技术为主要研究方向?席鹏:我的专业背景是光学工程,从本科到博士,我一直都在从事光学工程相关的研究,后来在博士后期间以及在工作以后,我分别跟从普渡大学、密西根州立大学和马普研究所三位导师,包括J. Paul Robinson 教授、 Marcos Dantus 教授,还有诺奖得主德国马普生物物理化学研究所Stefan Hell教授,他们既是学术大咖,也都有自己的产业化公司。我自己在做学术的时候,发现很多技术在迭代行成一篇好的文章后,往往随着学生的毕业就流失了。而我的实验室在开发了这些技术以后,有很多合作者找到我们,希望进一步产生应用上的合作,可是由于实验室有限的接待能力,使得我们不能够去服务于广大的用户。因此,在2020年,我们决定将其中一些技术,特别是超分辨技术进行产业化,并注册了北京艾锐精仪科技有限公司来承接这个任务。仪器信息网:请您介绍您团队的主要研究工作和成果。对比市场上其他同类技术,您所研究的技术及其转化的产品有何特点和优势?席鹏:我们从2016年开始了STORM偏振超分辨技术的研究,2019年发表了Polar-SIM技术的文章。基于我自己光学工程的背景,我们会从硬件的源头进行创新,比如偏振STORM技术,它的核心是利用旋转的偏振实现对于超分辨结构的解析以及偶极子的判定,我们进一步结合了菲斯特算法,实现了50个纳米的高时空分辨率的超分辨。后来我们又结合结构光在偏振上的特性实现了偏振结构光超分辨显微成像技术。总体来说,我们实验室擅长将光学的硬件和软件进行结合,使得我们的技术能够始终保持在一个非常强的技术驱动的前沿,从而满足用户的多方面的需求。仪器信息网:您所研发的技术产业化目前进展如何?席鹏:我们公司注册于2020年,感谢公司全体同仁的努力付出,经过三年技术的不断迭代,我们公司有了4款产品,其中2款是显微类产品,包括 Polar-SIM高保真偏振超分辨显微系统以及Nova-SD转盘共聚焦显微成像系统。同时我们还开发了一些周边产品,分别是活细胞显微镜工作站和成像分离器。随着我们对产品的不断开发和迭代,我发现自己在做教授的时更多是在进行原理性验证和实现性能的突破,最后去发表文章。而在做产品的道路上,则要从原料的可靠性、产品的可靠性、产品UI设计的用户友好度、产品外观是否美观、电磁兼容性等各个方面不断努力去进行产品标准化的设定。当做了这些过去作为教授没有做过的工作后,我发现我们可以更好的响应用户的需求,从而能够解决更多以前从来没有想过的问题。仪器信息网:您所研究的技术及产品主要应用领域有哪些?SIM超分辨显微技术的市场需求呈现怎样的特点和趋势?席鹏:我们公司现在有4款产品,其中Polar-SIM超分辨显微镜是更适合于活细胞和固定细胞的超高时空分辨率成像的技术,且由于SIM超分辨显微镜需要将结构光的条纹对样品进行调制,所以它也更适合薄样品成像;我们还开发了兼容后样品的转盘共聚焦成像系统;在做活细胞成像时,我们需要对活细胞进行长时程的培养,所以我们开发了基于显微镜的活细胞培养工作站;为了进一步结合多色成像,能够看到多种细胞器的相互作用,我们开发了成像分离器。从活细胞成像来看,由于SIM超分辨显微技术能够实现活细胞中细胞器的精准观察和相互作用的研究,因此它在基础生命医学、新药研发和疾病的相互作用等方面都可以得到相应的应用。仪器信息网:近几年市场上商业化SIM超分辨显微镜越来越多,您认为应该如何进行差异化竞争?席鹏:实际上这个领域并不是厂商越来越多,而是呈现此消彼长的状态。最早SIM超分辨显微由国际巨头GE、尼康、蔡司这三家作为主要引领的品牌。后来随着中国厂商和技术的崛起,艾锐科技、超视计、纳析光电等公司都推出了自己的SIM超分辨显微镜产品。在2021~2022年,GE公司决定退出全球SIM超分辨显微镜市场;2023年,尼康公司决定退出全球SIM超分辨显微镜市场。所以,整体来看,现在是中国公司在进行非常强的原创性技术的引领。讲到竞争,从用户的角度这不是坏事,只要竞争公平有序,那么适度的竞争能够在为用户提供多种多样的性能提升和服务提升方面带来一定的好处。从另外的一个方面,我们厂商也会致力于去开发更多适用于不同用户的具有差异化的产品,来满足用户多样性的需求。此外,在这样的竞争过程中,会让我们自己的产品性能和质量得以提升,从而进一步走出国门,实现对海外市场的覆盖。随着国内市场的崛起,大家可以看到国内竞争已经达到趋于饱和的状态,而海外市场则形成真空,只有蔡司一家品牌,而海外的市场又远远大于国内的市场容量。因此通过在国内的充分竞争后,我相信中国的高水平超分辨企业将会走出一条属于自己的出海之路,就像小米、华为、TCL这样品牌一样,形成高性能、高质量、“皮实”的仪器系统,使得海内外的用户都能够得到这样一个科技的普惠。仪器信息网:您如何评价目前国内高端光学显微镜自主研发和国产化现状,与国外技术相比处于什么水平?席鹏:虽然在结构光照明超分辨显微成像上我们做到了一定程度的突破,但在整体高端显微成像仪器上,我们是不可以掉以轻心的,因为国外的仪器厂家如蔡司、徕卡、尼康、奥林巴斯都有百年以上的悠久积累和沉淀,他们的品牌、所积累的技术优势以及一代代产品的迭代形成的专利和用户信赖度成为了牢靠的“护城河”。我们要想突破,一定要做好相应的准备,从源头做起,让我们的显微镜技术能够从下至上逐步去实现全球化,达到国际化的竞争水平。如果说在超分辨显微成像上我们已经走出了一条道路,我认为主要归功于我们在技术上的降维打击,即通过高校、科研院所在技术上的原创性迭代,实现了本领域的产品对国际大企业的技术优势的突破,完成了更优质、价格也更低的替代。将该模式进行推广时,一方面我们要通过国产替代来逐步提升民族显微镜的提升;另外一方面我们则应当融入国际化大潮中,与全球优秀供应商共同成长,共同合作,来实现自有品牌的国际化。仪器信息网:谈谈对国产生命科学仪器未来的展望。席鹏:这个问题我想引用一句话——“革命尚未成功,同志仍需努力”。国产生命科学仪器或科研仪器,虽然只占到国民生产总值不足4%的份额,但其影响力却可以触达60%以上的工业生产总值。所以科学仪器发展对中国来说任重而道远。当我们去数“985” 、“211”高校数量时会发现大概只有160多家的规模,也就是说,国内高质量高校总量并不多,国外其实有大量的高校科研院所和非常巨大的市场在呼唤着我们这些优质的国产仪器走出国门。在这里我也特别要感谢所有愿意尝试国产仪器创新和研制的老师们——你们成为“第一个吃螃蟹的人”这样的行动让国产仪器能够不断自我提升,走到海外,实现出海政策的重要推进。因此在我看来,对于未来科学仪器行业,国内市场的优势就是人口基数大,如果我们能像小米、TCL这些家电品牌,利用人口红利实现科学仪器的颠覆式创新的话,那么在国内市场就会有相当大的成长;放眼国际,则是一个高端海量的市场规模。因此,我们可以实行两步走的策略。仪器信息网:今年是仪器信息网成立25周年,请您谈谈对仪器信息网未来有哪些建议或者期待?首先非常感谢仪器信息网在这25年里对国产仪器的支持与陪伴,有一句话叫做“春江水暖鸭先知”,仪器信息网的编辑们一定能够通过这25年来的相知相伴,感受到国产仪器不断成长、不断崛起的力量。在这里特别祝贺仪器信息网25岁生日快乐,也期待未来仪器信息网和国产好仪器能够共同成长,不断进步。席鹏教授采访视频
  • 清华大学采购高分辨拉曼光谱仪 需实现纳米材料的瞬态测温
    p   根据《中华人民共和国政府采购法》等有关规定,现对清华大学高分辨拉曼光谱仪采购项目进行公开招标,欢迎合格的供应商前来投标。 /p p   strong  采购需求: /strong /p p style=" text-align: center " img title=" 22222222222222.JPG" alt=" 22222222222222.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/380a91c4-3cff-4ab8-90cf-748271d62c65.jpg" / /p p   设备用途介绍 :高分辨拉曼光谱仪可测量各种低维纳米材料的拉曼信号,表征材料分子结构,通过拉曼光谱的频移实现温度测量。根据国家重大科研仪器研制项目的需求,利用拉曼光谱仪实现纳米材料的瞬态测温,开发热扩散率测试仪器。 /p p strong   招标文件的发售时间及地点等: /strong /p p   预算金额:300.0 万元(人民币) /p p   时间:2018年12月25日 10:04 至 2019年01月02日 16:30(双休日及法定节假日除外) /p p   地点:清华大学实验室与设备处老环境楼(学堂路和至善路交叉口西南角)101C办公室 /p p   招标文件售价:¥300.0 元,本公告包含的招标文件售价总和 /p p   招标文件获取方式:现场现金 /p p strong    /strong 投标截止时间:2019年01月17日 09:00 /p p   开标时间:2019年01月17日 09:00 /p p    strong 采购项目需要落实的政府采购政策: /strong /p p   需要落实的政府采购政策:扶持小微企业、监狱企业、残疾人福利性企业发展,优先采购节能产品、环境标志产品等。 /p p & nbsp /p
  • 中国科大实现界面化学动态过程的原位高分辨成像分析
    中国科学技术大学环境科学与工程系刘贤伟课题组在界面化学过程的原位高分辨成像方面取得进展,相关研究成果以“Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry”为题近日发表于Nature Communications。污染物的催化转化是水污染控制技术的重要方法,解析环境催化材料在污染物转化过程中活性位点的动态变化,对理解材料的构效关系,解析催化机理,设计并研发新的环境催化材料具有重要意义。尽管目前研究人员对分析纳米材料的活性位点有浓厚的兴趣,但在温和的水溶液环境中,对单个纳米材料界面反应的动态演绎过程研究仍然存在挑战。 图1高分辨表面等离子体散射相干成像示意图   针对上述挑战,研究团队研发了高分辨等离子体散射干涉成像技术,通过调制入射光有效消除了反射光的干扰,实现了具有高空间分辨率和高抗干扰能力的表面等离子体散射干涉成像。以银的表面化学反应为例,研究团队原位追踪了溶液中单根银纳米线的动态电化学转化过程,在空间上刻画了纳米线反应动力学分布,为建立纳米线表面缺陷、重构与反应活性的关系提供了关键证据。该免标记成像分析方法,可以与电子显微镜等技术耦合表征纳米材料的结构和化学组成,为高分辨原位成像分析污染物的催化转化动态过程和解析其构效关系提供了有效的分析方法与技术平台。 图2 单根纳米线表界面动态反应过程的成像分析   该研究工作得到了国家自然科学基金等项目的支持。
  • 我国高端磁兼容脑PET成像仪器实现零突破
    近日,中国科学院深圳先进技术研究院(简称“深圳先进院”)成功研发国内首台高清晰磁共振兼容人脑PET功能成像仪器(命名为“SIAT bPET”),实现了我国在高端磁兼容脑PET成像仪器研发方面零的突破。“通常,PET成像仪器由于探测器的深度不确定效应,空间分辨率会随着偏离成像视野中心而变差,严重影响成像精度。”深圳先进院医工所劳特伯生物医学成像研究中心研究员杨永峰表示,他们团队研发了高三维分辨率双端读出探测器,使得该大口径成像系统达到14%的中心效率(350-750 keV能量窗),和整个成像视野好于1.4 mm的空间分辨率,两项性能指标都处于国际领先水平。 杨永峰介绍道,与国外商业磁兼容脑PET成像仪器相比,SIAT bPET的效率提高了近2倍(从7.2%到14%),平均体分辨率提高了30倍以上(从约64mm3到2mm3)。同时,SIAT bPET采用了创新的电子学和磁兼容设计,使得磁共振成像对PET成像的影响几乎可以忽略不计,PET成像对磁共振成像图像信噪比的影响小于5%,满足同时开展PET/MRI成像的尖端科研需求。 据了解,PET和MRI都是脑科学研究和脑疾病诊断的重要工具,PET的高灵敏度、高定量精度功能代谢成像和MRI的高空间分辨率、高软组织对比度解剖结构成像高度互补,PET和MRI还可以相互辅助,进一步提升各自的脑神经成像能力。PET分子成像通过测量大脑的血流、葡萄糖和氧的代谢、蛋白质的生成、药物的分布和神经递质的动力学等,探索不同脑区的功能,确定病变脑区的功能演变,对于脑疾病干预治疗策略和新药物探索具有重要意义。 “不过,目前市场上并没有高性能脑PET成像仪器。”杨永峰说,与美国脑计划项目正在资助研发的多个高性能脑PET成像仪器相比,SIAT bPET的空间分辨率和效率也处于先进水平。“高空间分辨率使得研究大脑的细微焦点脑功能区和小的核团成为可能,还可以通过降低部分容积效应来提高脑PET成像研究的定量精度;高效率除了通过提高脑PET图像的信噪来提高研究的定量精度,也为高精度研究神经递质活动和其他动态脑生化与功能活动奠定基础。” 2022年,团队成员邝忠华在国际核医学和分子影像年会与IEEE医学成像会议上口头报告了该研究成果,随即引起了广泛的国际关注。同时,该仪器也为开展基于PET功能成像的脑科学研究、老年性痴呆等疾病的早期定量诊断研究和新药开发提供了一台重要的新工具。 据悉,相关研究由基金委国家重大科研仪器研制、深圳市孔雀团队和中国科学院仪器研制团队等项目资助。深圳先进院研制的SIAT bPET探测器系统和脑成像仪器照片SIAT bPET获得的Derenzo模体图、人脑FDG代谢图和兔子NaF骨扫描图SIAT bPET和联影uMR790 3T磁共振成像系统上同时获得的人脑PET/MRI图像
  • 高分辨质谱平台实现mRNA mapping流程化
    在之前的一篇微信稿中,咱们介绍了mRNA疫苗的质谱表征方法,“Orbitrap 高分辨质谱助力mRNA疫苗表征”,今天小编继续为大家详细拓展mRNA mapping的质谱表征应用。作为一种新的药物形式,mRNA在多个疾病领域具有显着的治疗潜力。进入细胞后,mRNA药物使用内源性细胞机制来表达预编程的蛋白质。这种表达的蛋白质可以实现多种目的,从促进特定的免疫反应到调节或恢复各种代谢过程等[1]。据WHO官网统计,全球目前正在临床试验阶段的mRNA药物已有几十种,应用方向覆盖传染性疾病、罕见病、肿瘤免疫学等。与大多数生物治疗药物一样,序列分析也是mRNA药物的一个关键质量属性(CQA)。经典的检测方法如Sanger测序和二代测序 (NGS)等已被用于核酸链高通量及大规模的测序。然而在生物制品的表征分析中,往往需要正交方法以获取更全面的信息。对于核酸分析,LC-MS 作为Sanger和NGS的正交方法,与传统测序技术相比具有独特的优势:可直接对核酸样品进行分析(无需扩增等处理步骤);更高的检测灵敏度(直接检测低水平的序列变异体或修饰杂质(由于核酸样品与蛋白样品的较大差异,其测序流程的前处理及LC/MS方法也大不相同。核酸仅有4个特定碱基,在组合形式上远小于蛋白序列,因此会有多个重复序列片段,需要酶解成较长的片段(通常大于15nt)以得到可用于序列覆盖的特征片段。此外核酸样品极不稳定,非常容易降解。基于此需求,我们在前处理上需要选择特异性较强的酶,并且减少酶解时间,得到具有漏切位点的较长片段。下图显示了优化后的核酸mapping分析流程,从前处理到液相分离、质谱检测、数据分析的一套完整方案。点击查看大图 No.01# 前 处 理Nuclease T1是一种真菌核酸内切酶,可切割鸟嘌呤残基后的单链RNA,具有较强的特异性,常用于核酸测序应用。但由于核酸内切酶效率很高,酶解时间较难控制,且传统的溶液酶解方法会使核酸酶残留在分析柱上造成污染。基于以上需求,赛默飞推出了一款前处理磁珠RNase T1 Mag Bulk Kit,将Nuclease T1酶固定在磁珠上,通过简单快速的磁铁吸附及可有效控制酶解时间,并去除溶液里的T1酶,该方式可以有效提高实验的重现性并降低酶的干扰(如下图)。有离线及在线两种方式可供选择:a) 将样品配成200 μL体积放于eppendorf管中(如下图a所示),置于酶解仪中震荡孵育(37-50℃, 2000 rmp)5min ,通过磁铁吸附的方式将酶解上清与磁珠分离,再加入1%甲酸终止反应;图a:手动前处理示意图(点击查看大图)b) 采用全自动磁珠纯化仪,反应、分离及纯化均可根据设置好的程序进行自动操作,适用于高通量前处理需求(图b)。图b: 全自动化在线前处理示意图(点击查看大图)反应条件的优化:a. 反应时间:酶解时间控制在5min 内,随着反应时间的增加(30min, 1h, 4h, overnight),序列覆盖度明显降低。对于修饰mRNA(如甲基化修饰),需要增加反应时间至30min.b. 反应温度:37℃与50℃的结果类似No.02# 色 谱 柱色谱分离采用一款专用于核酸分析的色谱柱,Thermo Scientific™ DNAPac™ RP,该色谱柱由球形宽孔径 4 µm 聚合树脂构成,可耐受极端 pH (0-14) 和温度 (5-110°C) 条件,在HPLC 和UHPLC仪器上均可使用,针对寡核苷酸可实现高分辨率和高通量,较小和极大的核酸链均可分辨(如下图A)。图A(点击查看大图)图B显示DNAPac™ RP色谱柱的各类型号,mRNA mapping建议选用2.1*100 mm型号。图B(点击查看大图)
  • 得利特在线溶解氧分析仪--实现微量溶解氧的在线监测
    “十四五”期间,国家将建立统一的水生态监测技术体系,指导各流域按照物理、化学、生物完整性要求,研究建立符合流域特征的水生态监测方法、指标体系、评价办法,初步形成基于流域的全国水生态监测网络,逐步开展分类、分区、分级的水生态监测与评估。预计到2035年,形成科学、成熟的水生态监测体系并业务化运行,为水质目标管理向水生态目标管理转变奠定基础。将探索开展生态流量、水位监测和河流生态水量遥感监测研究,加快建立完善水资源、水环境、水生态数据共享机制。B2100在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。突出特点:1、 192×64点阵液晶、多参数显示、内容丰富2、 采用先进的嵌入式系统设计、贴片工艺技术提高了产品性能和可靠性、符合EMC设计要求3、 中、英文双语可编程切换,满足不同用户需求4、 全中、英文引导式操作模式、使用简单、通俗易懂5、 可编程的自动或手动温度补偿方式、使用灵活方便6、 两路完全隔离的电流信号输出,可分别设定输出电流范围7、 带有上、下限报警功能,可分别设定报警值8、 带有标准的485数字通讯接口,可实现远距离通讯9、 具有历史数据、运行、校准记录存储、查询功能,可查询100000条历史数据、1000条运行记录、100条校准记录10、防护等级高,达到IP65,可以满足各种复杂环境应用要求11、电极零点漂移量小,响应速度快12、电极残余电流小,维护简单、寿命长久、结构牢固、抗污染能力强技术参数:显 示:中、英文显示,192×64点阵液晶测量范围:(0~20)μg/L、(0~200)μg/L 、(0~20)mg/L (量程自动切换)分 辨 率:0.1μg/L、0.01mg/L基本误差:±1.5%F.S或1ug/L(取大者)响应时间:25℃时60秒内达到变化的90%温度传感器:热敏电阻  温度测量范围:(0.0~99.9)℃  温度测量精度:±0.5℃  温度测量分辨率:0.1℃  温度补偿范围:(0~50)℃(手动或自动)样品条件:温度范围:(5~50)℃   流量范围:(50~300)ml/min (150ml/min左右佳)环境温度:(5~45)℃环境湿度:不大于90%RH(无冷凝)电流输出:(4~20)mA(二路隔离输出)电流精度:±1%F.S电流负载:800Ω报警输出:二路报警输出、直流5A/30V或交流5A/250V。储运温度:(-20~55)℃外形尺寸:144mm×144mm×115mm(宽×高×长)开孔尺寸:139mm×139mm供电电源:交流(85~265)V、频率(45~65)Hz功 率:≤10W重 量:约1.2 kg
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。   记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。   这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。   光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。   微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。   &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • 【新案例】利用康宁微反应器实现苄位连续纯氧氧化工艺研究
    研究简介科学期刊OPRD在2021年7月16日这一期(第7期,第25卷)刊登了来自大连理工大学的孟庆伟教授课题组利用康宁反应器进行苄基催化氧化的最新连续流工艺研究成果,并将其作为封面文章进行了特别报道。本文将详细介绍本研究成果。[1]苄基的直接氧化已广泛应用于药物和精细化学品的合成,很多市售药物分子结构中含有一个或多个被氧化的苄基位置(图1)。传统工艺上,苄基氧化反应需要引入金属催化剂,如 Co、Ru、Ni、Mn 和 Cu。难以避免的金属杂质残留限制了这些体系在药物中的应用。近几年研究者希望能够通过应用非金属催化剂实现苄基的氧化,分子氧被认为是一种理想的氧化剂。有研究者采用O2作为氧化剂建立了从苄基化合物中获得酮的绿色方法[2-7]。但反应时间长,从几十小时到几天不等,效率相对较低。微通道反应器持液量低、高效传热特性可以降低纯氧气与易燃溶剂相互作用时发生局部过热而失控的风险。特别是康宁微反应器独特的内部结构,允许反应物连续分散并充分混合,从而消除了气液反应中的传质限制。传质和温度会影响反应动力学,温度升高反应时间缩短。图2. 反应体系示意图孟教授课题组的苄基催化氧化连续流工艺,选用非金属催化,停留时间54s,获得了高达90.3%的收率,且催化剂和溶剂均可实现循环利用(分别获得了92.6%和94.5%的回收率),且该方法具有很好的底物普适性,为奥卡西平等药物的合成,提供了易于放大的工艺。 研究过程实验以1,2,3,4-四氢萘(1a)的氧化反应为模型反应。对苯基sp3 C - H键进行选择性氧化生成相应的酮类化合物。N-羟基邻苯二甲酰亚胺 (NHPI) 作为催化剂,亚硝酸叔丁酯 (TBN) 作为自由基引发剂。一、反应条件优化研究者选择O2作为氧化剂对溶剂、反应温度、停留时间和物料比等进行了优化实验。1、研究者对溶剂体系进行了考察(图3)通过实验得出最佳溶剂为MeCN和DMK的混合溶剂,该体系仅在54s内便获得最高的收率75.1%(条目7)。图3. 溶剂系统筛选2、接下来分别对反应温度、物料比和停留时间做了优化实验,实验结果见下图:图4. 在微通道反应器中进行的温度和物料比条件优化实验 底物1a的转化率与温度的升高呈正相关。然而在高温条件下,副产物2,3-二氢萘-1,4-二酮(3a)的产率增加。 最佳反应温度为100℃(2a收率80.4%;图4(1))。 TBN的数量和1a的转换之间存在近似线性关系见图4(2).选择最佳1.5摩尔当量的TBN来优化反应选择性。 如图4(3)NHPI增加到0.75摩尔当量后继续增加对反应产率基本没有影响,故选择0.75摩尔当量NHPI。 此外,在间歇反应中NHPI的用量减少到0.2个当量时,反应收率仍可达到75.3%。同时,NHPI几乎可以完全回收而不被消耗。这些结果证明NHPI在反应中起到了催化剂的作用。 最佳的液体−气体流速比为1:20(图4条目1−3)。当液体流速(Vl)为1.0ml/min,氧气流速(Vg)为20ml/min,停留时间54s时收率最高。二、放大实验研究者应用康宁高通量微通道G1反应器进行了放大实验研究。实验显示连续运行28小时,产物2a的总收率为79.5%(1H-NMR),1小时可生产0.87g(图5)。图5:规模化连续流动苄基羰基化三、底物扩展实验结果最后,在优化条件下进行了底物扩展研究实验(图6)。由不同苄基化合物制备相应的各种酮,均获得了较高的收率。 图6. 苄基sp3 C的快速氧化−氢键得到相应的酮基 关于反应机理及催化剂的讨论为了进一步了解可能的反应机理,研究者进行了一系列平行反应(图7)。图8. 反应机理反应条件筛选和提出的自由基反应机理均表明NHPI不会在反应中被消耗。研究者在实验后收集NHPI,来验证其是否可用于回收(图10)。经过4个循环后,收率仍高于78%。本实验证实了NHPI作为自由基转运剂的作用,并进一步表明该工艺具有规模化商业回收的潜力,可有效降低成本。结果讨论 该研究描述了在 MeCN 和 DMK 的混合溶剂中,通过NHPI 和 TBN 催化苄型 sp3 C-H 键的选择性氧化生成相应的酮。反应时间仅为54s,远低于间歇工艺。 作为催化剂的NHPI可以回收利用。多次循环的收率变化在1%以内。 NHPI的回收率也在90%以上。 作者对连续流工艺进行了放大研究,结果显现,在相同的工艺条件下,该工艺可实现安全连续化生产。 通过拓展实验,作者从苄基亚甲基中获得了一系列有价值的酮,收率为 41.2%~90.3%。 利用康宁微反应器进行快速的开发,不但可以对反应机理进行研究,也便于拓展底物,建立化合物库。 康宁反应器无缝放大的技术优势使该工艺具有很大的商业化潜力,特别是对于氧气氧化这一类在釜式工艺中存在较多困难的反应。Reference:[1] Lei Yun, Jingnan Zhao, Xiaofei Tang, Cunfei Ma, Zongyi Yu, and QingWei Meng*. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor Org. Process Res. Dev. 2021, 7, 1612–1618.[2] Dobras, G. Kasperczyk, K. Jurczyk, S. Orlinska, B. NHydroxyphthalimide Supported on Silica Coated with Ionic Liquids Containing CoCl2 (SCILLs) as New Catalytic System for SolventFree Ethylbenzene Oxidation. Catalysts 2020, 10, 252−264.[3] Mukherjee, M. Dey, A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C−H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Cent. Sci. 2019, 5,671−682.[4] Li, J. Bao, W. H. Tang, Z. C. Guo, B. D. Zhang, S. W. Liu, H. L. Huang, S. P. Zhang, Y. Rao, Y. J. Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chem. 2019, 21, 6073−6081.[5] Hwang, K. C. Sagadevan, A. Kundu, P. The sustainable room temperature conversion of p-xylene to terephthalic acid using ozone and UV irradiation. Green Chem. 2019, 21, 6082−6088.[6] Liu, K. J. Duan, Z. H. Zeng, X. L. Sun, M. Tang, Z. L. Jiang,S. Cao, Z. He, W. M. Clean Oxidation of (Hetero)benzylic Csp3−H Bonds with Molecular Oxygen. ACS Sustainable Chem. Eng. 2019, 7,10293−10298.[7] Li, S. L. Zhu, B. Lee, R. Qiao, B. K. Jiang, Z. Y. Visible lightinduced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate(iii) complex catalyst. Org. Chem. Front. 2018, 5, 380−385.
  • 我国科学家实现单离子超分辨成像
    记者27日从中国科学技术大学获悉,该校郭光灿院士团队在冷原子超分辨成像研究中取得重要进展,该团队李传锋、黄运锋、崔金明等人在离子阱系统中实现单离子超分辨成像。该成果日前发表于《物理评论快报》。  冷原子系统包括离子阱中囚禁的离子和光场中囚禁的原子等,是研究量子物理的理想实验平台,也是量子模拟、量子计算和量子精密测量实验研究的重要物理系统。冷原子系统中的核心实验技术之一是高分辨单粒子成像。近十年来,冷原子系统的显微成像技术飞速发展,涌现出量子气体显微镜、光镊原子阵列、高分辨率囚禁离子成像等先进技术。然而,受限于光学衍射极限,这些技术分辨率只能达到光学波长量级,研究波函数细节相关的量子现象需要光学超分辨成像。此前,国际上对单原子(离子)直接的超分辨成像尚未取得进展。  中国科学技术大学团队借鉴经典成像领域的受激耗尽超分辨成像方法,结合冷原子系统的原子量子态初始化和读取技术,首次在离子阱中实现单个离子的超分辨成像。实验结果表明,该成像方法的空间分辨率可超越衍射极限一个量级以上,利用数值孔径仅为0.1的物镜即可实现175纳米的成像分辨率。为了进一步展示该方法的时间分辨率优势,团队同时实现了50纳秒的时间分辨率和10纳米的单离子定位精度,并清晰地拍摄了囚禁离子在离子阱中的快速简谐震荡,理论上通过相关操作可将空间分辨率提高至10纳米以下。  这一实验技术可扩展到冷原子系统的多体和关联测量。审稿人认为,该工作“填补了此前缺失的精密测量原子位置的重要工具,有潜力对高频运动的单个运动量子实现空间分辨”。
  • Hybrid SIMS:超高质量分辨双分析器融合系统
    TOF和OrbitrapTM 双分析器融合系统,超高质量分辨(>240000),高质量精度(<1ppm)。适用于定性需求较高的蛋白、脂类等生物样本及未知有机物的定性。01 背景SIMS非常适合从亚微米样品区域获取有机和无机化学信息。这种能力对生命科学应用领域的研究人员来说尤其有趣。在过去的几年里,在亚细胞水平上成像和精确识别分子特征的愿景一直在推动仪器和应用的发展。虽然新的团簇离子源扩大了SIMS仪器在生物应用中的可用性,但使用中的质谱仪缺乏质量分辨率、质量精度和质谱联用能力。除了质量精度之外,高质量分辨率也是获得可靠结果的关键因素。下图中的这两个质量峰,它们的质量分数非常接近,但横向分布却截然不同,若想要解析这些峰,质量分辨率必须大于80000。02 Hybrid SIMS为了满足上述高质量分辨的需求,在现有TOF-SIMS M6的基础上搭载Q ExactiveTM扩展,IONTOF推出了首款商用Hybrid SIMS仪器,该仪器基于TOF和OrbitrapTM双分析器融合系统,可以实现最高质量分辨率( 240,000)和最高质量精度( 1 ppm)以及高质量分辨率SIMS成像。最新一代的气体团簇离子源可以结合亚微米成像与超高质量分辨率,即使在极端复杂的有机系统中(如组织或细胞),也能够很好地区分不同的特征物质。Hybrid SIMS 示意图:Hybrid SIMS 主要性能优势: - 使用ToF和Orbitrap TM双分析器配置 - 超越静态SIMS极限的高分辨成像和质谱测定 - 最高质量分辨率( 240,000) - 最高质量精度(1 ppm) - 扫描频率高达18 Hz - 高传输率高质量分辨率的离子预选择 - 最佳质量分辨率的碎片全谱 - 高质量分辨MS / MS功能 - 包含Thermo完备的数据库03 Hybrid SIMS应用案例案例一:在以下例子中,代表骨髓内胶原纤维的肿块间隔用红色表示。蓝色为C5H15NPO4+的分布,对应于磷脂酰胆碱头基团。案例二:由于质量分辨能力和质量精度,根据Orbitrap分析仪的精确质量,从图中给出的类别中划分出140个不同的物种。案例三:因高质量分辨能力,可以通过共定位分析找到与这个质量为1121.5(番茄苷A)的信号相关的片段,从而判断番茄苷A的分配。案例四:在下列人体纹身皮肤的切片上,ToF-SIMS成像显示在红墨区域有318.14的增强信号。高分辨率Orbitrap的结果分析表明,此处的信号由至少3种不同横向分布的离子组成。案例五:对利用硅片和红/黑记号笔自制的样品进行分析,下图是结合双分析器的3D分析结果。04 总结Hybrid SIMS系统的特点总结为以下几点:1、高质量分辨率和质量精度,可以进行精确的信号识别,减少由于大量干扰而造成误判的风险2、即使是粗糙和绝缘的样品也可以在不影响质量分辨率和质量精度的情况下进行深度成像和分析3、基于双分析器的3D分析能够结质量分辨率、空间分辨率、成像速度和低质量离子的信息,使用TOF-SIMS具有Orbitrap&trade 测量的质量分辨率和精度,包括高性能MS/MS。
  • 侯建国领衔单分子尺度研究 实现亚纳米分辨拉曼成像
    目前,全球信息技术正跨入以量子效应为特征的&ldquo 后摩尔&rdquo 时代。单分子尺度体系具有丰富的功能结构和独特的量子性质,将成为量子计算和信息技术物质载体的最佳选择之一。   十余年来,中科院院士、中国科学技术大学教授侯建国领衔的&ldquo 单分子尺度的量子调控研究集体&rdquo 对单分子尺度体系进行不断的探索,取得了一批重要创新成果,并由此获得2014年度中科院杰出科技成就奖。  领先国际水平   单分子尺度量子调控研究是国家量子调控科学领域的重大科学问题和需求。近年来,该研究集体进一步发展和提升了单分子尺度量子态的探测、操纵及调控技术,率先实现了国际上最高水平的亚纳米分辨的单分子拉曼成像。   &ldquo 2013年,我们在单分子化学识别方面取得重大突破,实现了亚纳米分辨的单分子拉曼成像。该工作在《自然》杂志上发表后,立即引起国际科技界的广泛关注。&rdquo 中国科学技术大学教授杨金龙在接受《中国科学报》记者采访时表示。   &ldquo 我们通过技术上的创新和概念上的突破,将非线性效应融入到常规的针尖增强拉曼散射过程中,从而大大提高了拉曼信号的探测灵敏度和空间分辨能力,将光学光谱探测推进到前所未有的亚分子亚纳米水平,使单分子尺度的化学识别成为现实。&rdquo 中国科学技术大学教授董振超说。   团队成员之一、中国科学技术大学教授王兵表示,尽管科学发展进程非常快,但他们在拉曼成像方面取得的成绩迄今仍保持着世界纪录。   此外,该集体还利用单分子选键化学实现了单分子磁性自旋态控制 成功设计并实现具有多重功能集成的单分子器件 利用纳腔等离激元共振实现了单分子电致发光 揭示出氧化物表面光催化分解水的微观机制等。   团队建设尤为重要   &ldquo 我们能取得现在的成绩,离不开团队的长期密切合作。&rdquo 杨金龙表示,单分子尺度体系的研究并不是一项短平快的研究,这个&ldquo 硬骨头&rdquo 需要很多人一起慢慢地&ldquo 啃&rdquo 。   中国科学技术大学单分子尺度的量子调控研究集体由侯建国(实验)和杨金龙(理论)领衔,一共10位成员组成。&ldquo 团队合作对于整个研究获得新突破是非常重要的,协作是全方位的,贯穿了整个团队发展的始终。每一次新的发现,都是整个团队共同协作和努力的结果。&rdquo 王兵说。   其中一位团队成员告诉记者,每次新加入的成员都会带来新的思路,团队建设实际上也是一个逐渐积累和发展,然后不断提升创新研究能力的过程。   在董振超看来,团队的支持对自己的科研工作非常重要。&ldquo 在学术上,我们经常进行热烈的探讨和争辩,有时甚至争论得面红耳赤,大家都在试图攻击对方的弱点。待这些弱点被攻克后,课题研究自然也就往前迈进了一步。&rdquo   &ldquo 我们的团队研究有两个最鲜明的特色:一个是实验和理论紧密结合,因为量子里面有很多实验现象需要理论支撑 第二个是多学科交叉,包括物理、化学、电子、光学、生物等,这样才能有效促成技术的创新集成和知识的融会贯通。&rdquo 董振超说。  应用前景广阔   &ldquo 目前,我们的研究尚属于基础研究阶段。&rdquo 杨金龙表示,团队成员并不满足于现在的进步,会一直探究下去。   &ldquo 科学的魅力在于对未知的探索。&rdquo 董振超说,当你朝着某个方向努力,但作出来的结果与原来的想象和理论不一样时,就会出现新的信息,这样会反过来促进对一些现象新的理解,进而推动科研向前发展。   该团队一位研究人员表示,他们的目的是深刻理解和有效调控分子尺度上的量子行为。目前的研究离真正的应用还有一段距离,但是研究课题都是瞄准未来的能源、信息、生物等前沿领域,旨在为这些未来技术提供基本信息和科学依据。   &ldquo 比如单分子拉曼成像技术,其最主要的优点是能把微观世界里相邻分子的成分和结构&lsquo 看&rsquo 出来,这在材料科学、纳米催化、分子纳米技术、生物技术等领域可能都有很重要的应用前景。&rdquo 董振超介绍说。   &ldquo 在生命科学领域,拉曼成像的应用有可能提高疾病的早期检测技术水平。比如现有技术只能检测出已达到一定量的癌细胞,如果能事先对生命体作单分子检测,就能在癌变细胞极少的情况下将其检测出来,这对癌症早期治疗意义重大。&rdquo 杨金龙表示。   &ldquo 在研究过程中,我们一方面从科学角度出发,另一方面也从国家整体需求出发,在进行科学探索的同时,关注国家战略方向。&rdquo 王兵说。
  • 清华大学新成果:同时实现深亚埃分辨的原子结构成像和亚纳米分辨的晶体取向成像
    近日,清华大学材料学院于荣教授课题组与李千副教授课题组在晶体取向成像方法和位错三维结构研究中取得进展。该研究基于课题组近期发展的自适应传播因子叠层成像方法,在自支撑钛酸锶薄膜中同时实现了深亚埃分辨的原子结构成像和亚纳米分辨的晶体取向成像,并揭示了钛酸锶中位错芯在电子束方向的结构变化。晶格缺陷是材料中的重要组成部分。相对于完美基体,缺陷处的对称性、原子构型、电子结构都发生变化,在调节材料整体的力学、电学、发光和磁性行为方面发挥着关键作用。然而,缺陷处的对称破缺和原子的复杂构型也给缺陷结构的精确测量带来障碍。比如,位错附近不可避免存在局域应变和晶体取向变化,但是用高分辨电子显微学表征晶体中的原子构型又要求晶带轴平行于电子束,否则分辨率会显著降低。这个矛盾一直是位错原子结构的实验分析中难以克服的困难。研究组通过自适应传播因子多片层叠层成像技术研究了钛酸锶中位错芯的原子结构。如图1所示,研究成功地将晶体倾转从原子结构成像中分离出来,同时实现了达到深亚埃分辨率的原子结构成像和亚纳米分辨率的晶体取向成像。图1. SrTiO3中位错的结构像和取向分布。a、叠层成像的重构相位。b、图a中相位图的衍射图,黄色虚线表示0.3Å的信息极限。c、叠加相位图的晶体倾转分布,白色箭头表示[001]方向在平面内的投影,黄色箭头表示位错核的横向移动。d、晶体在[100]和[010]方向的倾转的分布。标尺长1nm在图1中,位错芯看起来范围很小,只有一两个单胞。这种衬度在位错的高分辨成像中很普遍,人们通常认为这样的位错是沿着电子束方向的直线。然而,应用多片层叠层成像的深度分辨能力,可以看出该位错并不是一根直线,而是随着样品深度发生横向位移,形成位错扭折,如图2所示。图2. 刃位错的三维可视化。a、刃位错的相位图;标尺长5Å。b、图a中用A-B标记的分裂原子柱相位强度的深度变化。c、Sr、TiO和O原子柱的相位强度的深度分布。d、深度分别为2.4nm、6.4nm和12.0nm的相位图;标尺长5Å。e、图d中标记的原子柱的相位随样品深度的变化。f、位错扭折示意图该研究还比较了叠层成像和iCOM技术(其简化版即常见的iDPC技术),结果显示叠层成像在横向和深度方向的分辨率都显著优于iCOM和iDPC,如图3所示。图3.多片层叠层成像和系列欠焦iCOM的深度切片。a、多片层叠层成像和iCOM的深度切片;从上到下,切片深度分别为1nm、4nm和11nm;标尺长5Å。b、沿着位错扭折的势函数和相位图的横截面;从左到右分别是用于生成模拟数据集的势函数、多片层叠层重构的相位和系列欠焦iCOM相位;可以看出,iCOM的模糊效应显著大于叠层成像。c、图b中所示的原子柱的相位随样品深度的变化。黑色垂直虚线表示沿原子柱的转折点的真实位置(与图b中白色虚线所示位置相同);可以看出,iCOM在深度方向的模糊效应也大于叠层成像研究总结了多个位错芯的深度依赖结构与晶体取向分布,揭示了位错移动与薄膜形变方式的相互关系。如图4所示,当薄膜绕位错的滑移面法线方向扭转时,位错滑移;当薄膜绕位错的滑移面法线方向弯曲时,位错攀移。图4. SrTiO3中多个位错的晶体倾转分布。a、包含三个位错的区域的相位图。b、对应图a中区域的晶体倾转分布,其上叠加了相位图;黄色箭头表示位错的横向移动方向。图a和b中的标尺为15Å。c、晶体倾转与位错横向位移的相互关系;晶格矢量c由于倾斜矢量t变为c’,即c’=c+t;黑色方块用于说明应变状态;左边为扭转,右边为弯曲;在两种形变模式中,薄膜上部和下部的应变都是反向的,对应位错向相反方向的横向移动。图b中左上角的位错和图2中的位错对应于扭转模式;图b的中心和右上方的位错对应于两种模式的混合研究结果以“晶体取向的亚纳米尺度分布和钛酸锶位错芯的深度依赖结构”(Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3)为题于1月11日发表在学术期刊《自然通讯》(Nature Communications)上。清华大学材料学院2018级博士生沙浩治、2022级博士生马云鹏、物质科学实验中心工程师曹国平博士、2019级博士生崔吉哲为共同第一作者,于荣教授与李千副教授为共同通讯作者。物质科学实验中心程志英高级工程师在实验数据采集中提供了重要帮助。该研究获得国家自然科学基金基础科学中心项目的支持。
  • 首次实现单个量子光源的超分辨选择性激发和成像
    p   光的衍射极限限制了常规光学成像的分辨率和介质光子器件的尺寸,将对光的操控和利用制约在波长水平,而金属纳米结构的表面等离激元可以将光场束缚在纳米结构表面,使突破衍射极限的纳米尺度光操控成为可能。金属纳米线不仅具有显著的局域电磁场增强效应,可以在纳米尺度上增强光与原子、分子、量子点、色心等纳米量子光源的相互作用,而且支持传输的表面等离激元模式,可作为等离激元纳米波导实现亚波长束缚的光信号传输,是构建片上纳米光子回路的基本元件。金属纳米线与单个纳米量子光源的耦合可以实现单个量子化的表面等离激元的产生和传输,对该体系的研究对于深入认识单光子水平上光与物质相互作用的基本物理和设计纳米量子光子器件都具有重要意义。集成在金属纳米线上的多个纳米量子光源可以通过表面等离激元发生相互作用,产生新的光学现象,如协同辐射和量子纠缠。当纳米光源之间的距离达到亚波长尺度时,光学显微镜的分辨率限制了对金属纳米线上的多个纳米光源进行超分辨成像和超分辨可控激发,阻碍了相关实验的进展。 /p p   针对上述问题,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室魏红副研究员和合作者设计了一种利用金属纳米线上的表面等离激元干涉场作为激发源的超分辨激发和成像方法。由于表面等离激元干涉条纹的周期远小于激发光波长,这种方法具有突破衍射极限的光学分辨率。银纳米线上的传输表面等离激元与局域表面等离激元的干涉形成之字形分布的电场,反向传输的两束表面等离激元干涉形成周期性对称分布的电场。通过调控两束激发光之间的相位差,上述两种等离激元干涉场的分布都沿着纳米线移动,使纳米线上的量子点处的电场强度发生变化,从而可以调控量子点的激发。利用该方法可以实现对相距几十纳米的两个量子点的选择性激发,实验中通过对相距100 nm的两个量子点的选择性激发演示了该技术的可行性。通过将结构照明显微成像技术与金属纳米线上的表面等离激元干涉场相结合,利用模拟计算实现了对多个量子点的超分辨光学成像,分辨率约为96 nm。该工作为研究和表征等离激元纳米波导与多个纳米量子光源耦合体系的光学特性提供了一种实验方法,对于深入认识纳米尺度上表面等离激元增强的光与物质相互作用的机理和规律、设计基于表面等离激元的纳米/量子光子器件和回路等具有重要意义。相关研究结果发表在Nano Letters 18, 2009-2015 (2018)。 /p p   魏红副研究员对金属纳米线表面等离激元的物理特性及其调控进行了长期的系统的研究,取得了一系列原创性的成果。最近她和合作者受邀在国际著名综述期刊Chemical Reviews(影响因子47.9)上发表邀请综述Plasmon Waveguiding in Nanowires [Chemical Reviews 118, 2882-2926 (2018)]。该论文得到了审稿人一致的高度评价,被认为是一篇非常及时、全面和权威的综述(“a very timely and comprehensive review”, “a comprehensive and authoritative review”),是纳米等离激元光子学领域最好的综述论文之一(“one of the best reviews in nanoplasmonics field”)。 /p p   上述工作得到了中国科学院、国家自然科学基金委和科技部的资助。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/4a2fb2c3-f2db-44d4-9c56-367bfaca07e6.jpg" title=" 1.png" / /p p   图1. 利用银纳米线表面等离激元实现对量子点的可控激发(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/0f754c10-d33c-4c70-a4cc-9aabce79ba2c.jpg" title=" 2.png" / /p p   图2. 利用银纳米线表面等离激元选择性激发两个相距100 nm的量子点中的任意一个(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/1074f43b-c0b0-4cd4-99b6-6f18fcfa4c79.jpg" title=" 3.png" / /p p   图3. 将表面等离激元干涉场用于结构照明显微成像技术实现对多个量子点的超分辨光学成像(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/04354f19-0558-4348-9b78-f63646341f13.jpg" title=" 4.jpg" / /p p   图4. 金属纳米线中表面等离激元传输的示意图、表面等离激元模式色散关系的示意图以及三个研究方向(Chem. Rev. 118, 2882-2926 (2018))。 /p p br/ /p
  • Queensgate仪器推出双传感器技术 实现亚纳米级分辨率
    【2013年1月10日,上海】Elektron Technology公司旗下品牌Queensgate近日宣布推出其革命性新款双传感器技术(Dual Sensor Technology)。这一尖端的控制技术与以往相比,可实现更快、更准确以及更稳定的显微镜物镜聚焦。 全新双传感器技术克服了传统纳米定位系统的限制,可提供更快的阶跃响应,提高有效载荷出现变化时的稳定性,并且显著增加自动显微术应用时的机械带宽。       NPC-A-1110DS 独立式模拟单轴闭合环路传动装置   Queensgate推出的双传感器技术彰显了纳米定位技术领域的阶跃性变化是目前业内最尖端的控制技术之一。目前Queensgate的OSM-Z- 100B 100μm目标扫描机构以及NPC-A -1110DS独立式模拟单轴闭合环路传动装置已率先采用这一革命性创新技术系统。其中最新的OSM-Z-100B 100μm目标扫描机构,它将双传感器技术与Queensgate著名的电容纳米传感器(NanoSensors?)的卓越性能结合在一起,以非凡的聚焦稳定性实现亚纳米级分辨率。这项突破性的技术能够应用于各种袖珍模拟和数字控制器,其操作简便,为用户提供顶尖性能。 OSM-Z-100B 100 μm 目标扫描机构   Queensgate 是Electron Technology公司的下属品牌,成立于1979年的英国伦敦,是一家为高科技为工业领域提供纳米定位和感应技术的解决方案商。公司服务于全球客户并为其提供技术领先且质量卓越的纳米定位技术已超过30年。公司设计团队将领先的研究成果运用到具有革命性意义的全新纳米定位系统中。 即使在当今这个全球新技术瞬息万变的环境下,Queensgate 依然处于该领域的前沿地位。凭借着卓越的技术,出色的品质为诸多领域,例如微系统、通信、半导体技术、生物技术以及航空航天技术等领域提供相关支持,并与扫描电子显微镜完美结合,实现微纳米尺度的操纵。
  • 低价雪糕滥用添加剂与食用胶 融化即变胶状
    这支冰棍在常温放置24小时后,变成了一摊胶状物。   今年是济南30多年来入夏最早的一年,冷食跟着提前热销。但一支冰糕常温放置24小时后,竟成了一摊胶状物,让市民吃着有些担心。生产厂家称,这是一种新型果冻冰糕,不完全融化属于正常。专家指出,这可能是增稠剂添加过量所致。   7日,记者调查发现,越便宜的冰糕添加剂越多,有的多达十几种。业内人士透露,一些企业为了节省成本,找香料、增稠剂来“帮忙”调出好滋味。   市民质疑:冰糕化成胶状物,还能吃么?   “冰棍化成了一摊黏糊糊的胶状物,这是怎么回事?”家住省城闵子骞路附近的市民王先生说,6日天气很热,他就把刚买的冰棍放进啤酒里想给啤酒降温。令人意外的是,冰棍在啤酒中半小时后还没完全融化。王先生取出来一看,冰棍变成了一团软软的胶状物。   王先生看到包装纸上写着,这是一款水晶舌头果冻冰棍,上面添加剂有十余种:黄原胶、卡拉胶、魔芋胶、刺槐豆胶、柠檬酸、苹果酸、甜蜜素、安赛蜜、阿斯巴甜、糖精钠、食用荔枝香精等。“一支冰棍十几种添加剂,会不会超标?”王先生有些担心,原以为买这种白色冰棍,香精和色素会比较少,现在才发现添加剂并不比五颜六色的雪糕少。   记者将一支没有拆包装的舌头果冻冰棍放在常温下24小时,冰棍仍未完全融化,而是缩成一块黏糊糊的胶状物。摸着比果冻稍软,不易捏碎,闻起来香气很浓。随后,记者以消费者的身份咨询该冰糕的生产厂家。对方称,这是一种新型果冻冰糕,不能完全融化属于正常。冰糕虽采用老包装但符合新国标,应该不会有质量问题。至于那一摊胶状物,对方建议暂时不要食用。   市场调查:添加剂种类越多,冷食价格越低   7日,记者走访了省城大润发超市,不少市民正在购买冷食。记者随手查看了几盒雪糕,发现外包装上都标识了食品添加剂种类。   在一款水果口味的雪糕外包装上,标有柠檬酸、甜蜜素、卡拉胶等12种食品添加剂,而旁边一桶蒙牛巧克力口味的冰激凌,其乳化剂、色素、增稠剂等添加剂的数量有10种。记者发现,雪糕中食品添加剂数量的多少,和雪糕价格也有关系。售价三四元一盒的雪糕,食品添加剂数量大都在10种以上 二三十元一盒的雪糕,添加剂数量大都有五六种 而一盒售价27元的八喜雪糕,仅有5种添加剂。   对此,济南群康集团董事长、济南市食品工业协会常务副会长、冷食分会会长于宏昌指出,在冷饮中,国家允许使用的添加剂不到30种。因为结晶体不同,冰糕、雪糕、冰激凌也有各自的标准。其中,冰糕也就是冰棍,它的成分一般只有水、糖和添加剂,水的含量应是95%,添加剂不能超过总重量的5%。雪糕和冰激凌则对总干物投放量有要求,雪糕总干物为15%到25%,这里的总干物指奶、玉米淀粉、饴糖、蔗糖 冰激凌总干物含量为25%到40%,这里的总干物指奶或还原奶。   对于价格低廉的雪糕添加剂较多的现状,于宏昌指出,这是企业降低成本的表现。雪糕中如果添加水果、牛奶等,成本压力大。一些企业节省成本又想提升口味,就需要一些香料、增稠剂来“帮忙”。“所以,市民购买冰棍雪糕时,尽量不要购买过于鲜亮的。”   专家说法:添加剂叠加用量,没有具体标准   “冰糕融成一摊胶状物,应该是配方不合理,可能是食用胶添加过量所致。”于宏昌表示,正常情况下,冰糕中添加剂含量很少,不会出现这种情况,而雪糕、冰激凌更是只会化成水。   质监部门的工作人员表示,根据国家标准,黄原胶、卡拉胶、刺槐豆胶这种添加剂的使用量没有最高量,属于相对较安全的添加剂,食品企业可以根据需要适量添加。   对此,山东省轻工业学院食品与生物工程学院赵教授表示,根据该款冰棍外包装上的标识来看,执行的是SB/T10016标准,这是一个商业推荐性标准,但冰棍中的食品添加含量多少,必须要符合国家食品添加剂使用标准(GB2760_2011)。目前关于食品添加剂的标准仍不够具体详细,尽管每种食品添加剂都在规定含量内,但仍可能存在一些问题。比如,冰棍中同时添加了多种防腐剂、色素,“多种增稠剂的叠加含量就有可能超标了,但关于食品添加剂叠加含量应控制在多少,国家目前并没有具体的标准。”   搜狐健康补充阅读:   问题:我国食品添加剂到底有哪些?   解答:   目前我国食品添加剂目录中有1960多种添加剂,共有22类。分别是(1)防腐剂(2)抗氧化剂(3)发色剂(4)漂白剂(5)酸味剂(6)凝固剂(7)疏松剂(8)增稠剂(9)消泡剂(10)甜味剂(11)着色剂(12)乳化剂(13)品质改良剂(14)抗结剂(15)增味剂(16)酶制剂(17)被膜剂(18)发泡剂(19)保鲜剂(20)香料(21)营养强化剂(22)其他添加剂【阅读:详细解读日常食品添加剂的危害】   问题:食品增稠剂都有些什么?   解答:   由含有多糖类粘质物的植物和藻类制取,如淀粉、果胶、琼脂和海藻酸等,也有从蛋白质的动物原料制取,如明胶和酪蛋白等。少数是人工合成的,如聚丙烯酸钠。常用的增稠剂有淀粉、琼脂、明胶、藻蛋白酸钠、果胶、藻蛋白酸丙二酯、羧甲基纤维素及其盐类的各种变性淀粉(如酸处理淀粉、碱处理淀粉、漂白淀粉、氧化淀粉、乙酸酯化淀粉等)。植物胶类有阿拉伯树胶、瓜尔豆胶(guar gum)和黄原胶(xanthan gum)等。   问题:明胶是什么?   解答:   明胶其实是一种蛋白质,它是用动物的皮或骨头水解熬制而成。人们喜欢吃猪皮、凤爪,并传说吃胶原蛋白美容,明胶就是胶原蛋白煮后的产物,肉皮冻也是明胶的凝冻。只要是食用级明胶,就不用担心。被许多人当作"神奇保健品"的阿胶,只不过是选材和工艺上有所不同,跟明胶并无本质差异。   问题:哪些食物里可能会添加明胶?   解答:   一般而言,在食品加工中,明胶的使用量不大,主要作用有增稠、增加稳定性、成胶等。但是它的用途非常广泛,在主食,如酸辣粉、米线里 肉制品,如火腿肠、肉馅里 饮料,如酸性饮料、啤酒里 零食,如龟苓膏、老酸奶、冰激凌、棉花糖、橡皮糖里,都可能有它的身影。   问题:食品明胶会对健康有什么影响?   解答:   食品中的明胶是一种不完全蛋白质,人体对其的吸收利用率很低。而果冻和龟苓膏中的卡拉胶除了"白占"胃容量之外,更没有任何营养成分。因此,尤其儿童要少吃含食用胶的食品,它会影响其他营养食品的摄入,可能导致儿童营养不良。   问题:如果实在对食品中的明胶不放心,有没有远离明胶的办法呢?   解答:   四点能帮你远离明胶,1.不买皮冻、肉冻、水晶肠、灌汤包等食品。2.买酸奶不要追求浓稠或成冻,天然酸奶经过摇晃搅拌之后会变稀,比牛奶稠不了多少。3.少吃各种软糖、雪糕、冰激凌等产品。4.别买太便宜的产品。   问题:果冻中用的是卡拉胶和魔芋胶,我还听说有果胶,食物中常用的有哪些"胶"呢?   解答:   常用的水胶体,其实都是"天然产物"。它们有的来自海藻的提取物,比如琼脂和卡拉胶 有的来自橘子皮和苹果榨汁后的残渣,比如果胶 有的来自植物的种子,比如阿拉伯胶、瓜尔豆胶、槐豆胶 还有一些水胶体由微生物发酵得到,比如黄原胶。多数的水胶体是直接的提取物,只有很少数经过一定的加工,比如羧甲基纤维素(CMC)。广泛检验表明,它们对健康并没有危害。
  • 中国检验检疫科学研究院融合食品组学和质谱技术,3秒钟实现冻融肉鉴别并发现肉类加工EPT标志物
    近日,中国检验检疫科学研究院张峰首席专家团队在肉类安全领域取得新进展,快速鉴别肉在运输、加工过程中产生的潜在风险物质。将食品组学与快速蒸发电离质谱(rapid evaporative ionization mass spectrometry, REIMS)相融合,在肉表面划一刀(lKnife技术)即可在3秒内实现冻融肉的鉴别;基于超高效液相色谱高分辨质谱(Q Exactive)结合化学计量学的方法能够识别不同温度下烤制猪肉之间的代谢物差异,发现了肉类加工温度标志物,实现熟肉制品的安全鉴别。我国肉类产量已经连续20多年稳居世界第一,是世界上最有影响力的肉类生产大国。肉类作为人们膳食结构的重要组成部分,其安全问题受到人们的广泛关注。由于冷链物流技术不完善,使得冷冻肉在运输过程中发生反复冻融现象,严重影响肉的品质。在该研究中,采用REIMS对新鲜和反复冻融牛肉的脂质成分进行分析,共检出18种脂肪酸离子和60种磷脂离子。建立的PCA-LDA模型成功区分了新鲜和不同冻融次数的牛肉,对于盲测样品的识别率超过92%。OPLS-DA模型用于脂肪酸和磷脂分子之间的差异分析,筛选出m/z 279.2317(FA18:2),m/z 681.4830(PAO-16:0/20:4)和m/z 697.4882(PA18:1/18:2)为牛肉在冻融过程中的差异标志物。所开发的技术仅需3秒钟,即可实现冻融肉和新鲜肉的鉴别。肉类EPT为加工过程中肉品所达到的最高温度,是确保熟肉制品安全的重要指标。为确保熟肉制品安全,研究团队基于超高效液相色谱-Q Exactive质谱和化学计量学建立一种非靶标代谢组学方法,研究不同温度下烤制猪肉之间的代谢物差异,并为指示EPT标志物的选择以及新型有毒热诱导化合物的发现提供帮助。结果表明:肌酸、肌酸酐、2-氨基-1-甲基-6-苯基咪唑并[4,5-b]吡啶(PhIP)、2-甲基-6-氨基-5-羟甲基嘧啶(TMP)和m/z 114.04316的化合物这5种物质可作为指示EPT的标志物。值得注意的是,TMP是首次在烤猪肉中发现。相关研究由在读研究生何启川和闫晓婷在导师张峰研究员的指导下完成,得到了杨敏莉研究员等老师的指导帮助,研究成果分别发表在SCI 1区期刊《Journal of Agricultural and Food Chemistry》和SCI 2区期刊《Journal of Chromatography A》上。该工作得到了国家重点研发计划项目,国家“万人计划”科技创新领军人才项目的支持。 融合食品组学和质谱技术,3秒钟实现冻融肉鉴别并发现肉类加工EPT标志物实验过程
  • Nature Methods:新型光片超分辨显微成像实现精细观测
    华中科技大学课题组3月12日在Nature Methods在线发表研究论文,提出了一种基于深度学习的超分辨荧光显微镜,实现对活细胞的精细动态和相互作用进行快速、三维、长时程地观测。  细胞的稳态离不开内部多种亚细胞结构的精确分工和协同合作,洞悉细胞内细胞器/蛋白分子的精密运转是一项重要的生命科学研究需求,为揭示发育、疾病等浩瀚生命现象的微观机制提供重要参考。借助荧光显微成像技术,人们得以实现对亚细胞结构的特异性观测,但因光学衍射极限的存在,成像的分辨率被限制在200纳米左右,这大大阻碍了对其精细结构的进一步探究。超分辨荧光显微成像技术的出现,使清晰观测亚细胞结构成为可能,但目前主流的超分辨荧光显微镜需通过多组图像测量来突破光学衍射极限,伴随着显著降低的时间分辨率和剧增的光毒性。对活细胞进行低侵入性、高时空分辨率的精细观测目前依然存在巨大的挑战。  研究在硬件上提出一种基于双环掩膜(Double-Ring, DR)调控的选择性光片照明方法(DR-SPIM),利用多级调制光的衍射显著抑制光片旁瓣的同时产生厚度仅为450纳米的超薄、静态、消色差光片,提供高轴向分辨率的原始三维图像并大幅度降低成像对活细胞的光毒性。  在图像处理上,针对原始图像中噪声,衍射极限等多因素耦合造成的复杂降质,研究者们进一步提出各向同性、分而治之(Isotropic Divide-stage-to-process, ID)的计算重建新思路,构建了多段级联的卷积神经网络,先利用局部多级先验知识的分段训练精确模拟成像物理过程,再通过多种损失函数的联合优化对网络进行整体约束,将光学成像中固有的噪声、光学模糊、降采样、非均一性等降质问题联合求解,大幅度提升了算法在应对低信噪比-低分辨率图像时的增强性和精确性。最终,研究团队基于单组带噪、衍射受限的光片图像即实时重建出高信噪比的超分辨图像。  研究人员表示,光学和算法的软硬联合(IDDR-SPIM),克服了超分辨成像中时间和空间分辨率的相互妥协,无损速度地打破衍射极限,将活细胞三维成像空间分辨率提升到各向同性100纳米的同时实现视频速度的高时间分辨率。  研究人员进一步实现了GFP标记内质网和RFP标记线粒体结构的同步-三维-动态超分辨成像,捕捉到了内质网调控线粒体分裂的精细三维动态过程,并基于高时空分辨率的数据对内质网与线粒体的三维相互作用进行定量分析。得益于IDDR-SPIM成像极低的光漂白率,研究人员还对Drp1寡聚体调控线粒体分裂或分支的过程进行了持续观测,并分类表征了线粒体附着蛋白和游离蛋白在运动轨迹和速度上的不同。由于蛋白寡聚体较细胞器结构体积更小,包含荧光分子更少,且在三维空间均存在运动,使用传统的超分辨显微镜均难以捕捉,更难以完成长时间观察。  该研究提出了一种新的光片超分辨显微成像策略,通过多级衍射调控的光片照明成像技术联合分而治之的深度学习单图超分辨算法,大幅突破现有三维超分辨成像的时空分辨率极限,为快速、三维、长时程地观测活细胞的精细动态和相互作用提供了强有力的新工具。  华中科技大学教授费鹏和张玉慧为共同通讯作者。费鹏课题组博士生赵宇轩、周瑶,张玉慧课题组博士后张朦、博士生张文婷为论文共同第一作者。本研究在基金委重大研究计划培育项目、基金委面上项目、国家重点研发计划、基金委重大仪器研制项目、武汉光电国家研究中心WNLO创新基金的资助下开展和完成。
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125
  • 突破传统光学衍射极限:新一代Nanoimager可轻松实现超分辨荧光成像
    近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司新推出的超分辨荧光显微镜—Nanoimager,由牛津大学Achillefs Kapanidis教授团队经过8年时间研发而成,是全球台大视野单分子FRET显微镜,将以超强的分辨率在单分子示踪、活细胞成像、蛋白互作、3D成像等研究领域发挥重要作用。Nanoimager主要技术特点? 横向分辨率20nm;纵向分辨率50nm ? 稳 定 性:1 μm/K的漂移;1 nm (1 Hz to 500 Hz)振幅 ? 支持同时双色成像和顺序四色成像 ? 采用1激光,使用安全 图1 Nanoimager 超分辨成像 Nanoimager采用PALM/dSTORM技术和光激活定位显微技术 (PALM) ,利用单分子定位算法并结合光学系统艾里斑的形状,以超高精度(纳米量)获得荧光分子的中心位置,然后用CCD将其信号进行采集转化终得到分辨率为20nm的超分辨图像。 Nanoimager主要应用案例1、单分子FRET FRET是一种两个荧光分子间非辐射性的能量转移方式,反映两者的分子间距(一般在2 – 10 nm的间距发生)。Nanoimager是台用于大视野单分子荧光共振能量转移(smFRET)的商业化仪器,其适用于smFRET的关键功能包括:同时双色成像;单分子散射光强度和总体平均的实时分析;视野中数千个单分子的高通量成像,以及用交替荧光激发 (ALEX) smFRET的功能来定量化学计量与FRET效率。图2是smFRET用于研究单个DNA霍利迪交叉的动力学。 图2 用smFRET检测霍利迪交叉(HJs)的实时构象变化 2、单分子示踪 Nanoimager可以在两个通道同时示踪细胞或者纯化物样品中的单分子 (图3),并计算扩散系数。细胞中分子的扩散系数可以被示踪,如酶或蛋白可以通过药物和抗生素的反应来示踪。低扩散率可以表示标记分子与另一分子或结构的相互作用或相结合。 Nanoimager可以直接反映纯化样品中荧光粒子的扩散率和预估大小,具有敏感性 (单荧光分子别) 和特异性 (双色标记可以显著降低检测杂质的可能性)。 图3 Nanoimager双色追踪单分子/粒子 3、更大视野的成像 Nanoimager的每个成像通道均有50 μm x 80 μm的大视野,且照明均匀,可以实现单分子或细胞的高通量成像并快速收集数据。图4显示了以10倍于其他技术的速度对突变的大肠杆菌细胞的不同表型进行成像。为了获得不同表型的可靠的结果,需要对大量细胞进行比较。使用具有大视野,能够自动对焦和自动获取数据的Nanoimager可以显著加快整个实验速度和通量。将大视野与超分辨成像结合是Nanoimager的特优势。 图4 Nanoimager的大视野可以在高分辨率下实现高通量成像 超分辨荧光显微镜以其特的优势,已成为生物医学研究的重要工具。如果您想了解更多关于Nanoimager的技术和应用详情,欢迎致电010-85120280咨询,我们会尽快给您满意的答复! 相关产品及链接 1、新一代超分辨荧光显微镜 (NEW):http://www.instrument.com.cn/netshow/SH100980/C273664.htm2、LaVision BioTec光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm3、双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm4、LVEM5 台式透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C157727.htm
  • Science | 空间组学开启新时代 – 樊荣团队发布空间分辨的表观遗传分析新技术
    空间转录组测序在去年一月被Nature Methods选定为年度创新生物学技术以来,已经成为了组织样本基因表达和组学分析的最前沿利器。但是现有的多种空间组学技术基本局限于对转录组的研究。2020年底,耶鲁大学的樊荣教授团队首次报道了利用组织样本原位编码方法同时分析空间转录组和蛋白组。以此开启的空间多组学分析 (spatial multi-omics)成为了今年 Nature 杂志看好的2022年最值得期待的七个技术领域之一。但是到目前为止, 还没有任何技术能够实现对基因表达机制方面的高空间分辨率的分析。染色质状态决定基因组功能,并以细胞类型特异性的方式进行调节。同时,细胞在组织中的组织方式与它们的功能之间又存在很强的相互联系。因此空间分辨的表观遗传测序技术 (spatial epigenomics)将为这个最前沿的空间组学领域开启另一个全新的篇章。近日,耶鲁大学樊荣教授团队在Science上在线发表了题为Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level 的最新空间组学技术Spatial-CUT&Tag (第一作者邓彦翔博士)。Spatial-CUT&Tag技术能够在空间和全基因组水平上观察组织发育的表观遗传机制,实现了与发育和疾病相关的表观遗传调节的空间映射,是科学和医学应用领域的一项重大突破。图1 Spatial-CUT&Tag总体设计和实验流程在樊荣团队的研究中,研究人员专注于最重要的表观遗传变化之一,组蛋白修饰。Spatial-CUT&Tag利用微流控技术将组织进行空间二维编码,并与CUT&Tag技术进行结合,实现了全基因组尺度的空间组蛋白修饰分析。在对小鼠胚胎的空间表观遗传测序中,成功分辨出小鼠胚胎各个器官,测序结果与单细胞表观遗传数据进行比较,数据质量达到相同水平,同时与ENCODE数据库中bulk ChIP-seq测序数据进行比对,也实现了很好的匹配。图2 小鼠胚胎器官发育的空间表观遗传分析利用Spatial-CUT&Tag技术,首次实现直接在产后小鼠大脑中以高空间分辨率观察到特定的组蛋白修饰特征。通过亚型分析发现,H3K27me3在产后小鼠大脑中也可以控制或维持大脑皮质层的形成,与其在小鼠胚胎大脑中的作用相一致。图3 产后小鼠大脑组织空间表观遗传分析樊荣团队进一步测试把荧光染色成像后的小鼠嗅觉球组织切片做Spatial-CUT&Tag测序,然后关联空间表观遗传组到单个细胞核,首次证明可以在组织样品里原位获得单细胞表观遗传组测序数据。Spatial-CUT&Tag作为一项基于NGS的全新空间组学技术,实现了对于组织环境中表观遗传机制的全基因组图谱分析。Spatial-CUT&Tag作为一个全新的起点,可以在不同组织上实现更多类似的发现。从长远来看,樊荣团队希望利用该技术了解不同疾病状态的表观遗传起源,开发针对表观遗传的药物,开辟一条全新的疾病治疗途径。樊荣团队目前正在开发更多空间组学技术。原文链接http://doi.org/10.1126/science.abg7216
  • 高精度、高分辨力绝对式光栅旋转编码器实现产业化
    高档数控机床与基础制造装备国家科技重大专项“高精度、高分辨力绝对式光栅旋转编码器”课题通过验收并实现产业化。  “高精度高分辨力绝对式光栅旋转编码器”是我国高档数控机床和基础制造装备急需的关键部件,被称为数控系统的“眼睛”。“十二五”期间,在国家科技重大专项的支持下,长春禹衡光学有限公司集中核心技术力量,成功解决了高精度、高分辨力绝对式旋转编码器的设计、制造、检测、应用等软硬件的核心问题,实现了高精度编码器的小型化和电子多圈计数,提高了光栅的生产效率,实现了编码器芯片功能的高度集成和编码数据的快速传输等,达到国际同类产品的先进水平,实现了系列化和产业化,年生产能力已达10万台。
  • 日立发布SU3500新型扫描电镜 实现低压高分辨
    仪器信息网讯 2012年12月6日,由天美(中国)科学仪器有限公司与日立高新技术公司共同举办的“日立新一代钨灯丝扫描电镜SU3500(以下简称‘SU3500’)研讨会”在北京举办。来自国内各大高校和科研院所约30余位专家参加了此次新品研讨会。天美公司副总裁赵薇、日立高新技术公司中国事业集团先端分析仪器部部长Imada Yoshinori在研讨会上进行了致辞。日立高新电子显微镜全球应用工程师振木 昌成与日立高新技术公司电镜营业部马玉娥经理对SU3500新型扫描电镜最新功能和应用进行了详细讲解,并且进行了现场实际操作演示。    左至右:天美公司副总裁赵薇,日立高新技术公司中国事业集团先端分析仪器部部长Imada Yoshinori,日立高新电子显微镜全球应用工程师振木昌成   扫描电镜是利用电子束“照射”样品表面,通过产生的二次电子信号成像来观察样品的表面形态。根据电子枪产生电子束的机理不同,扫描电镜主要有场发射、钨灯丝 此次推出的新品SU3500属于应用最广泛、使用最经济的钨灯丝扫描电镜。扫描电镜在低加速电压下工作具有减少或消除样品的荷电效应、增强样品的表面衬度和成分衬度以及减少样品辐照损伤等优点 因此,提高电子显微镜在低加速电压和低真空下的分辨率是扫描电镜的研究热点。   低加速电压下实现高分辨。通常加速电压降低,灯丝的发射电流会按比例减少,图像的亮度也会正常衰减。SU3500采用了最新开发的自动多级电子枪偏压设计,能够在特定的加速电压条件下,实现高的发射电流。与日立S-3400相比,SU3500的信噪比增强,成像质量更加优越。在加速电压为3kV时,二次电子图像分辨率可达7nm 在加速电压为5kV时,电子背散射图像的分辨率可达10nm。   低真空下实现不导电样品的直接观察。新设计的SU3500真空程序使真空度可达到650Pa,实时真空反馈允许在用户设定的特定压力下,保持样品室快速的真空稳定性。SU3500可变压力模式允许对处于自然状态下的潮湿、油腻和非导电样品进行观察 电子束与空气分子相撞产生的正电荷可消除样品表面的多余电荷,因此不需要进行传统的样品前处理,如干燥和镀膜。   SU3500的操作软件也有多项改进,使科研人员的工作效率大幅提高。例如:多模式多用途观察显示功能可以通过菜单操作选择单幅图像、双幅图像、四幅图像以及全屏图像显示 双幅图像及四幅图像显示模式可以同时显示由两种不同的探测器观察到的图像,或者为了多用途观察而合成图像。信号混合功能可以将富有样品表面细微结构信息的二次电子像和富有丰富成分信息的背散射电子像在一幅画里面叠加显示,更易于评价与分析。   低电压、低真空下获得极高的分辨率是SU3500最大亮点。天美公司副总裁赵薇表示,SU3500扫描电镜在加速电压为3kV时,二次电子图像分辨率达7nm 先进的3D技术以及非常便利的可视化操作,使SU3500成为目前全球最高端的钨灯丝扫描电镜。 专家现场体验SU3500新型扫描电镜功能    SU3500新型扫描电镜   相关新闻:   天美(中国)北京总部乔迁庆典及答谢晚宴   看清“不一样”的天美——访天美控股有限公司董事长劳逸强
  • 我国学者实现活细胞的高分辨低功耗快速拉曼成像
    记者从中国科学技术大学了解到,该校工程科学学院Zachary J. Smith教授团队与合作者一起,提出了一种基于线扫描拉曼成像系统和偶氮增强拉曼探针相结合的快速生物成像方法,实现了对细胞器动态过程的高分辨率、低功耗的影像。相关研究成果日前在线发表于学术期刊《美国化学学会杂志》。拉曼成像是一种无标记的单细胞分析技术,能够从分子水平获得细胞的结构和组成信息,广泛应用于生物医药研究领域。然而,拉曼散射截面十分微小,通常需要在高激光照度下历经数小时才能获得一帧细胞拉曼图像,无法捕捉到细胞器的时空演变信息。拉曼探针作为另一种拉曼信号增强方法,具有细胞可透过性、靶向性、低毒性等特点,但是常见的炔烃标记的拉曼探针还无法满足高分辨率的快速细胞动态成像。为此,研究人员设计了一种动态偶氮增强拉曼成像系统,能够实现对细胞器动态过程的高分辨低功耗快速拉曼成像。研究人员采用了一种新型的超灵敏共振拉曼探针,即偶氮增强拉曼散射探针,在极大提高拉曼信号的同时,能够抑制荧光背景,相对拉曼强度提高了3-4个数量级。结合自主设计的线扫描自发拉曼成像系统,实现对偶氮增强拉曼探针标记后的活细胞中多种细胞器的快速拉曼成像,并且能够获得全拉曼光谱信息。
  • 重大突破 | 国防科技大学实现反射层析激光雷达三维超分辨成像
    面对远距离小目标,常规探测手段往往只能对其定位,看到的目标只是一个点。而有些特殊需求下,需要掌握其面特征甚至体特征,实现运动目标认知,此时迫切需要发展超分辨成像手段。国防科技大学脉冲功率激光技术国家重点实验室主任胡以华教授团队,继2022年实现10千米距离上优于2厘米分辨率的国内外报道最高水平的反射层析激光雷达超分辨二维成像的基础上,近期实现了三维超分辨成像的重大突破。实现10千米距离2.0×2.0×3.5厘米分辨率的三维超分辨成像反射层析激光雷达实现二维成像的原理日趋成熟,国内外也开展了相关的实验研究,但是实现三维成像的原理和方法在国内外未见报道。团队创新性地提出了反射层析激光雷达三维成像技术架构,建立了激光探测的多角度多视场交叠取样、窄脉冲激光回波的高速高保真采集及图像重构融合处理方法,研制出反射层析激光雷达三维成像实验系统,在合肥紫蓬山地区开展了距离为10.38 km的外场实验,实现目标图像的三维超分辨重构。实验中,在山上(31°43′28″N, 116°59′55″E)的百米高实验塔上分别设置两类目标:1)高度75 cm、宽度30 cm的立体组合件,如图1 (a)所示;2)多块厚度1.7 cm、断面面积不同的块状体构成的从下到上间距9 cm到2 cm递减、面积渐小的60°倾斜角梯形立体分辨率测试靶,如图1 (b)所示。成像实验系统布置在该市华南城(31°46′20″N, 117°5′35″E)楼上,如图1 (c)所示。在多种实验环境和实验参数设置下,成功获得了如图2 (b)、图2 (d)所示的立体目标三维超分辨成像结果。图1 反射层析激光雷达三维成像实验实施图(a) 立体组合件;(b) 立体分辨率测试靶;(c) 反射层析激光雷达三维成像实验系统经第三方专家现场实测,在10.38 km距离上,环绕平面成像分辨率优于2 cm,环绕轴向分辨率优于3.5 cm。根据反射层析激光雷达成像的原理,只要激光脉冲回波信噪比足够,其三维成像分辨率与光学孔径、作用距离、激光发散角相对无关,因此,本实验为实现千千米超远距离微小目标的三维成像奠定了基础。该实验系统光学孔径为260 mm,相同孔径的光学成像系统衍射极限角约为5 μrad,对应10 km处常规光学成像的极限分辨率约为5 cm。本成果取得了超过同口径光学成像衍射极限的远距离小目标超分辨成像能力,其成像分辨率居激光成像领域国内外最优水平,特别是通过独创的技术手段和处理算法首次得到立体目标结构的十千米距离厘米级超分辨三维成像结果。图2 目标实物与成像结果(a) 立体组合件;(b) 立体组合件重构图像;(c) 立体分辨率测试靶;(d) 立体分辨率测试靶重构图像科研团队简介国防科技大学电子对抗学院胡以华教授科研团队长期致力于运动目标精确激光探测和光电对抗等领域方向理论与应用研究,围绕目标的激光三维成像、反射层析激光雷达成像、大气扰动激光探测、相干探测、光子探测以及量子纠缠探测方法,取得了一系列研究成果,为空天弱暗目标远距离探测、高精度定位和多维信息获取提供新型技术手段。团队先后出版专著《激光成像目标侦察》、《目标衍生属性光电侦察技术》、《Theory and Technology of Laser Imaging Based Target Detection》和《激光相干探测应用理论方法》,公开发表学术论文300余篇,授权发明专利70余项,获国家技术发明二等奖2项、国家教学成果二等奖2项、安徽省重大科技成就奖、省部级科技一等奖8项。团队带头人,国防科技大学电子对抗学院胡以华教授,脉冲功率激光技术国家重点实验室主任,光学工程学科首席专家,中国光学学会会士,安徽省科学技术协会兼职副主席。长期从事光电探测与对抗领域研究,取得多项系统性创新成果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制