当前位置: 仪器信息网 > 行业主题 > >

全自动压力控制器

仪器信息网全自动压力控制器专题为您提供2024年最新全自动压力控制器价格报价、厂家品牌的相关信息, 包括全自动压力控制器参数、型号等,不管是国产,还是进口品牌的全自动压力控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动压力控制器相关的耗材配件、试剂标物,还有全自动压力控制器相关的最新资讯、资料,以及全自动压力控制器相关的解决方案。

全自动压力控制器相关的论坛

  • 微机控制全自动压力试验机,推动水泥行业发展

    我们都知道在水泥行业长期沿用的手动式压力试验机,是很烦的一件事情,知道吗现在又发明了一种全自动的压力试验机器了。它使用的功能很好可以减少工作人民的艰苦,还可以减少工作时间,象这样一算,时间比以前少了不少,事情也多做了不少,真是想的非常好。具体还是看看下面怎么说的吧。 新型微机控制电液式全自动压力试验机所取代。该机采用电液直接数字控制技术对试验机实施控制,可以显著提高控制精度,拓展量检范围和加荷速度调节范围。日前,研制开发出了微机控制电液式全自动压力试验机,以其选材考究、工艺先进、自动化程度高、平稳性好等诸多功能,形成了自身的独特优势,产品不仅受到了用户的青睐和好评,而且畅销全国各地,实现了生产厂家和使用厂家“双赢”的局面。 新一代微机控制电液式压力试验机采用了全新的数字伺服阀为核心的电液直接数字控制技术,由微机控制加载和数据处理,测量范围宽,加载精度高,自动化程度高,目前广泛使用的手动式压力试验机的最新换代产品之一。 电液直接数字控制技术,是当今自动控制领域新兴的热门技术之一,其主要特点是将传统控制与计算机控制相结合,用数字信号直接对系统进行控制,从而提高控制系统的重复精度、抗干扰性和稳定性。 凯锐开发的微机控制全自动电液式试验机,依靠完善的质量保证体系和完备的检测手段,产品多次荣获优质产品称号,均获得良好的使用效果。

  • 【原创】微机控制全自动弹簧试验机简介

    一、产品描述:TLW微机控制全自动弹簧拉压试验机依据国家弹簧拉压试验机标准规定的技术要求制成,专业设计的自动控制和数据采集系统,实现了数据采集和控制过程的全数字化调整。能对拉簧、压簧、碟簧、塔簧、板簧、卡簧、、片弹簧、复合弹簧、气弹簧、模具弹簧、异形弹簧等精密弹簧的拉力、压力、位移、刚度等强度试验和分析。微机控制全自动弹簧拉压试验机主机与辅具的设计借鉴了日本岛津的先进技术,外形美观,操作方便,性能稳定可靠。计算机系统通过一诺公司控制器,经调速系统控制伺服电机转动,经减速系统减速后通过精密丝杠副带动压盘上升、下降,完成试样的压缩等力学性能试验。 微机控制全自动弹簧拉压试验机采用调速精度高、性能稳定的全数字伺服调速系统及伺服电机作为驱动系统,一诺公司控制器作为控制系统核心,以Windows为操作界面的控制与数据处理软件,实现试验力、试验力峰值、横梁位移、试验变形及试验曲线的屏幕显示,所有试验操作均可以通过鼠标在计算机上自动完成。二、微机控制全自动弹簧拉压试验机产品构成系统:2.1 主机:采用门式结构。2.2 传动系统:由减速器、精密丝杠副及导向部分等组成。2.3 驱动系统:由交流伺服调速器极其电机实现系统驱动。2.4 测量控制系统:试验力测量控制系统由高精度负荷传感器、测量放大器、A/D转换、稳压电源等组成;位移测量控制系统由光电编码器、倍频整形电路、计数电路等组成。通过各种信号处理,实现计算机显示、控制及数据处理等功能。2.5 安全保护装置:式样断裂停机、过载保护、横梁极限位置保护、过电流、过电压、超速保护等。三、微机控制全自动弹簧拉压试验机主要技术参数:1、样式:门式2、最大试验力:1/2/5/10/20/50/100KN;3、试验力分档:×1、×2、×5、×10、四档;4、量程: 2%---100%;5、试验力准确度;±1%6、位移分辨率:0.01mm;7、位移测量准确度:±1%;8、拉伸行程:700mm 9、压缩行程:700mm 10、试验行程:700mm 11、位移速度控制范围: 1mm/min~300mm/min 分档可调12、位移速度控制精度:±1%;13、试验机级别:1级14、变形示值误差:≤±(50+0.15L)15、试验机尺寸:760*500*1700 mm16、外观:应符合GB/T2611要求17、成套性:符合标准要求18、保护功能:试验机有过载保护功能19、供电电源:220V,50Hz 20、重量:600KG

  • 【仪器心得】+ConST811A智能全自动压力校验仪使用心得

    【仪器心得】+ConST811A智能全自动压力校验仪使用心得

    [font=宋体][color=#222222]实验室采购检测和计量校准仪器设备,涉及压力和温度相关设备的,尤其是在北京企事业研究院所,肯定都知道康斯特公司。[/color][/font][font=宋体][color=#222222]他们的智能全自动压力校验仪、压力仪表以及控制器,还有智能标准槽/炉以及干体炉、过程控制仪器等,都是口碑不错,使用居多的计量检测仪器。[/color][/font][font=宋体][color=#222222]我们实验室进行压力计量以往都是用的康斯特手动打压泵,去年我们更新换代,替代为智能全自动压力校验仪811。作为一名使用康斯特多年的用户,下面来评价一下该款仪器的优势和不足,希望大家在选购仪器设备时少走弯路,也希望厂家不断改进仪器来满足用户的需求。[/color][/font][img=,342,249]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231200211016_5103_2771427_3.jpg!w342x249.jpg[/img][font=宋体][color=#222222]一、厂家介绍:[/color][/font][font=宋体][color=#222222]北京康斯特仪表科技股份有限公司[/color][/font][font=宋体][color=#222222],专注于为全球用户提供压力、温度及过程仪表的校准及检测技术专业解决方案。康斯特以创新为根本、品质为目标、交付为通道、服务为导向,构建了以北京总部、洛杉矶全资子公司、犹他州分部、欧洲分部为中心的全球24小时快速服务体系,致力于成为具有国际独特地位的高端校准及检测产业集团。2015年,公司于深交所创业板上市,股票代码300445。[/color][/font][font=宋体][color=#222222]公司专家在全国压力计量技术委员会、全国温度计量技术委员会、全国压力标准委员会和全国校准方法标准委员会担任委员。公司实施差异化产品创新战略,持续高比例进行研发投入,专职研发团队占总人数的33%,在美国及欧洲主要国家获得12项专利授权,获得22项国内发明专利和190余项国内专利和著作权, ConST811现场全自动压力校验仪荣获 “改革开放40周年机械工业杰出产品”,ConST685智能多通道超级测温仪荣获德国iF设计奖,多项产品获得了北京市新技术新产品认证。[/color][/font][font=宋体][color=#222222]康斯特的产品广泛应用于电力、石油、化工、计量、冶金、机械、制造等行业。康斯特将继续秉承“让校准测试更轻松”的核心理念,为客户提供校准及测试技术专业解决方案,为您创造更大的价值![/color][/font][font=宋体][color=#222222]二、811突出优势:[/color][/font][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222])自动打压,省去人工费力的杠杆式打压,去一趟现场,二十多个压力表,晚上胳膊瘦一圈;[/color][/font][font=宋体][color=#222222]2[/color][/font][font=宋体][color=#222222])用户界面友好,图文并茂,操作简单上手快,安全系数高;[/color][/font][font=宋体][color=#222222]3[/color][/font][font=宋体][color=#222222])带有自动检漏功能,可外部独立供电,省心省力。[/color][/font][font=宋体][color=#222222]4[/color][/font][font=宋体][color=#222222])还带有电测功能,测量和输出兼备,传感器和变送器不在话下。还有直流电源的供电功能。[/color][/font][font=宋体][color=#222222]三、811为校准实验室计量校准、内部校准和自校神器:[/color][/font][font=宋体][color=#222222]被检仪表覆盖压力变送器、差压变送器、压力开关、数字压力计、压力传感器、I/P控制器、HART/PROFIBUS PA总线设备、气压计、指针式一般压力表、指针式精密压力表等压力仪表。[/color][/font][font=宋体][color=#222222]现场实验室大幅提高计量、测试的工作效率,应用在电力、石油、化工、制药、计量、冶金、生物、食品、交通及汽车制造等领域。[/color][/font][font=宋体][color=#222222]四、811选型指南:[/color][/font][font=宋体][color=#222222]811[/color][/font][font=宋体][color=#222222]分为气压版、差压版、微差压版、气象版。分别对应压力发生范围:[/color][/font][font=宋体][color=#222222](-0.09 ~ 6)MPa[/color][/font][font=宋体][color=#222222]、(-95 ~ 250)kPa、(-10 ~ 10)kPa、(100 ~ 1200)hPa.a。详细技术参数还是参见说明书。[/color][/font][font=宋体][color=#222222]五、常见疑问和总结:[/color][/font][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222])811气压版是可以做到7MPa的。为适应国内标准,811气压版常规产品的上限被设定为6MPa,用户可根据自己的实际需要,定制7MPa版本的811。[/color][/font][font=宋体][color=#222222]2[/color][/font][font=宋体][color=#222222])811气压版噪音有多大?经官方样机测试,811气压版,稳压时在60分贝左右。[/color][/font][font=宋体][color=#222222]六、总结[/color][/font][font=宋体][color=#222222]市场上[/color][/font][font=宋体][color=#222222]测试仪[/color][/font][font=宋体][color=#222222]厂家很多,有进口的有国产的,各厂家的仪器特点不同,突出的特点也不一样,有的仪器市场占有率较高,与仪器灵敏度,稳定性好,使用方便,售后服务好等有关系。想在市场上占有一席之地,一是不断改进与提高仪器的使用技术,二是满足用户需求,设计出用户满意的[/color][/font][font=宋体][color=#222222]仪表[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222]由于我们坐标北京,他们总部也在北京,维修和售后方便快捷,他们的售后和技术支持响应还是很快的,服务也是周到快捷的。压力和温度的校准仪器我们购买的比较多,目前CNAS能力验证和测量审核都是使用他们的压力仪表进行盲样测试的。[/color][/font][font=宋体][color=#222222] [/color][/font]

  • 红外全自动压片机压片时出现裂片的原因

    红外全自动压片机压片时出现裂片的原因

    在药剂实验过程中我们经常会用到[b][url=http://www.chem17.com/st26894]红外全自动压片机[/url][/b],大家有可能会遇到压片会有裂片和裂痕,究竟是什么原因呢?  [b]红外全自动压片机[/b]在压片过程中出现裂片的重要原因是颗粒的压缩行为不适宜,是由于颗粒有较强弹性,压成的药片的弹性复原率高;又因压力分布不均匀等引起。用单冲压片机压片时,片剂的上表面压力较大;用旋转压片机压片时,片剂的上、下表面的压力较大;由于弹性复原率与压力大小有关,所以在片剂上表面或上、下表面的弹性复原高;片剂的上表面受压时间最短并首先移出模孔并脱离模孔的约束,所以易由顶部裂开。  用此机理为指导可以科学设计处方以防止裂片,并对前面所列出的问题做出合理解答,例如调整处方,增加塑性强的辅料,改善颗粒的压缩成型性,扑热息痛片易于裂片,加入适量的可压性淀粉可以解决此问题等。适当降低压力可以防止裂片,是因压力小,弹性复原率也小;增加压缩时间可增大塑性变形的趋势而可防止裂片;颗粒中含有适量水分,可增强颗粒的塑性并有润滑作用,因而改善压力分布,可防止裂片。另外,加入优质润滑剂和助流剂以改变压力分布也是克服裂片问题的有效手段。  [b]红外全自动压片机[/b]裂片的其它原因如模孔变形、磨损,压片机的冲头受损伤以及推片时下冲未抬到与模孔上缘相平的高度等。[align=center][img=,250,305]http://ng1.17img.cn/bbsfiles/images/2017/10/201710111538_01_471_3.png[/img][/align]

  • LMR2000-智能气路控制器(压力气路专用)

    LMR2000-智能气路控制器(压力气路专用)

    [align=center][b][font=宋体] [/font][/b][/align][b][font=宋体]关键词:[/font][/b][font=宋体]气路控制、高压、程控、独立、分离、切换、差压气路、远程通讯、自动化、密封快速、操作简单。[/font][b][font=宋体]概述:[/font][/b][font=宋体] [/font][font=宋体]智能气路控制器主要针对压力设备生产厂家、计量院、校验量身定制实现对气路的自动切换。不同量程,不同设备之间的气路自动切换,可选择手动控制版本或自动控制版本,便于系统集成,实现系统高度智能化,通过RS232接口与智能气路控制器进行通讯,实现多路进气及多路输出的压力切换。全自动实现、解决目前通过拆装管路进行气路切换难题,便于集成化设计。[/font][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]型号:LMR2000(可按客户需求定制)[/font][font=宋体]2) [/font][font=宋体]进气控制:实现多路进气控制[/font][font=宋体]3) [/font][font=宋体]出气控制:实现多路出气控制[/font][font=宋体]4) [/font][font=宋体]密封:0泄露[/font][font=宋体]5) [/font][font=宋体]支持压力:可达到 40MPa[/font][font=宋体]6) [/font][font=宋体]切换方式:可自动、手动气路切换[/font][font=宋体]7) [/font][font=宋体]工作环境:15~55℃,5…95%RH [/font][font=宋体]8) [/font][font=宋体]系统供电:220VAC,2A [/font][font=宋体]9) [/font][font=宋体]压力接口:7/16-20 SAE[/font][font=宋体]10) [/font][font=宋体]通讯接口:RS232 [/font][font=宋体]11) [/font][font=宋体]安装:支持19寸标准机架[/font][font=宋体]12) [/font][font=宋体]重量:约10kG[/font][b][font=宋体]功能:[/font][/b][font=宋体](1)智能气路控制器内置高压力控制阀,气路自动切换与显示一体,自动完成压力管路自动切换并显示在液晶屏上,便于用户读取数据。[/font][font=宋体](2)触摸屏操作[/font][font=宋体](3)多通道模式,可按用户需求选择装配。[/font][font=宋体](4)通用的RS232通信模式,与上位机通信。[/font][font=宋体](5)操作界面简洁大方,便于用户操作。[/font][font=宋体]北京莱森泰克科技有限公司[/font][img=,520,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206081422153697_1326_5627570_3.jpg!w520x516.jpg[/img][img=,520,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206081422153697_1326_5627570_3.jpg!w520x516.jpg[/img][font=宋体]地址:北京市通州区东燕郊留山大街10号13B[/font]

  • LPC6000 全自动压力校验仪

    [b][font=宋体][color=black]概述:[/color][/font][/b][font=宋体][color=black]全自动压力校验仪定制化按需求匹配,以最大限度满足客户需求。此设备为单通道多模块,及大气压参考模块以实现模拟表压和绝压。可根据用户具体需求定制。这个特点使LPC6000特别适合用于需要对多种不同量程的压力装置进行校准和生产的场合。[/color][/font][b][font=宋体]功能特性及技术参数如下:[/font][/b][align=left][font=宋体]1) [/font][font=宋体]精确度:0.01%FS、0.02%FS、0.05%FS(可选);[/font][/align][align=left][font=宋体]2) [/font][font=宋体]稳定速度快:10秒内(50ml 10%量程);[/font][/align][align=left][font=宋体]3) [/font][font=宋体]系统供电:220VAC,0.5A;[/font][/align][align=left][font=宋体]4) [/font][font=宋体]支持绝压及表压;[/font][/align][align=left][font=宋体]5) [/font][font=宋体]设备尺寸:[/font][font=宋体]324*350*150[/font][font=宋体];[/font][/align][align=left][font=宋体]6) [/font][font=宋体]密封0泄露;[/font][/align][align=left][font=宋体]7) [/font][font=宋体]时尚外观:7寸LCD显示屏触摸操作;[/font][/align][align=left][font=宋体]8) [/font][font=宋体]适用kPa, Pa, MPa, bar, mbar等36种压力单位;[/font][/align][align=left][font=宋体]9) [/font][font=宋体]压力接口为:7/16-20内螺纹接口;[/font][/align][align=left][font=宋体]10)[/font][font=宋体]支持内置泵;[/font][/align][align=left][font=宋体]11)[/font][font=宋体]重量:约8kG;[/font][/align][align=left][font=宋体]12)[/font][font=宋体]工作环境: 10~55℃;[/font][/align][align=left][font=宋体]13)[/font][font=宋体]可定制化(按客户需求);[/font][/align][align=left][font=宋体]14)[/font][font=宋体]人性化智能设计;[/font][/align][align=left][font=宋体]15)[/font][font=宋体]控制:全部支持触摸屏操作;[/font][/align][align=left][font=宋体]16)[/font][font=宋体]可远程通讯操作,支持:RS232与RS485。[/font][/align][align=left][font=宋体] [/font][/align]

  • 全自动压力校验仪

    [font=Arial, 宋体][color=#333333]一、设备概况:[/color][/font][font=Arial, 宋体][color=#333333]全自动压力校验仪定制化按需求匹配,大限度满足客户需求。此设备为单通道多模块,及大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPC6000特别适合用于需要对多种不同量程的压力装置进行校准和生产的场合。[/color][/font][font=Arial, 宋体][color=#333333]应用领域:压力传感器生产厂家、校准实验室、航空航天、公共设施、医药、医疗、保健行业。[/color][/font][font=Arial, 宋体][color=#333333]二、功能特性及量程范围[/color][/font][font=Arial, 宋体][color=#333333]? 精确度高达到:0.01%FS;[/color][/font][font=Arial, 宋体][color=#333333]? 稳定速度快:10秒内(50ml 10%量程);[/color][/font][font=Arial, 宋体][color=#333333]? 人性化智能设计;[/color][/font][font=Arial, 宋体][color=#333333]? 支持外部通讯;[/color][/font][font=Arial, 宋体][color=#333333]LPC6000量程范围:[/color][/font][font=Arial, 宋体][color=#333333]参数 标准 可选[/color][/font][font=Arial, 宋体][color=#333333]准确度 0.01%FS 0.01%、0.02%、0.05% 0.1% 0.2%[/color][/font][font=Arial, 宋体][color=#333333]双向表压 ±100 kPa 范围内任意量程[/color][/font][font=Arial, 宋体][color=#333333]绝压 0~200kPa 范围内任意量程[/color][/font][font=Arial, 宋体][color=#333333]校准周期 365 天 365 天[/color][/font][font=Arial, 宋体][color=#333333]可选大气压参考[/color][/font][font=Arial, 宋体][color=#333333]? 压力控制稳定性:[/color][/font][font=Arial, 宋体][color=#333333]当前量程跨度的0.003%,稳定10秒后优于0.001%。[/color][/font][font=Arial, 宋体][color=#333333]? 外部气源:[/color][/font][font=Arial, 宋体][color=#333333]采用内置泵自动输出压力,无需外加真空泵及气源。[/color][/font][font=Arial, 宋体][color=#333333]三、基本技术参数[/color][/font][font=Arial, 宋体][color=#333333]? 系统供电:220VAC,0.5A;[/color][/font][font=Arial, 宋体][color=#333333]? RS232通讯接口;[/color][/font][font=Arial, 宋体][color=#333333]? 支持绝压及表压;[/color][/font][font=Arial, 宋体][color=#333333]? 密封0泄露;[/color][/font][font=Arial, 宋体][color=#333333]? 时尚外观:7寸LCD显示屏触摸操作;[/color][/font][font=Arial, 宋体][color=#333333]? 适用kPa, Pa, MPa, bar, mbar等36种压力单位;[/color][/font][font=Arial, 宋体][color=#333333]? 压力接口为:7/16-20内螺纹接口;[/color][/font][font=Arial, 宋体][color=#333333]? 支持内置泵;[/color][/font][font=Arial, 宋体][color=#333333]? 重量:约8kG;[/color][/font][font=Arial, 宋体][color=#333333]? 工作环境: 10~55℃;[/color][/font][font=Arial, 宋体][color=#333333]? 可定制化(按客户需求)。[/color][/font][font=Arial, 宋体][color=#333333]四、选购配件[/color][/font][font=Arial, 宋体][color=#333333]? 工业级仪表箱:[/color][/font][font=Arial, 宋体][color=#333333]工业级仪表箱用于LPC6000的运输,也可作为LPC6000空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPC6000定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPC6000运输的保护箱体。[/color][/font][font=Arial, 宋体][color=#333333]? 校准证书[/color][/font][font=Arial, 宋体][color=#333333]每台LPC6000出厂时可溯,可代送国家计量单位出具证书。[/color][/font][font=Arial, 宋体][color=#333333]北京莱森泰克科技有限公司[/color][/font][font=Arial, 宋体][color=#333333]北京东燕郊经济开发区留山大街10号兴远高科产业园13B303 [/color][/font]

  • 有没有精确控制负压的压力控制器

    现有一台设备,目前使用斜管压力计监控压力变化并手动调节控制旋钮使压力稳定在196Pa±2Pa,整个实验过程持续一小时,占用一个人力,欲改成自动压力控制,不知有没有合适改造方案或压力控制系统推荐?最好是国产的,进口的也行,就是预算不多。请各位专家们不吝赐教,谢谢

  • 高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对现有技术在印刷或喷绘设备中油墨流量控制不准确,使得油墨粘稠度产生异常造成批量性质量方面的问题,本文提出了相应的串级控制解决方案,即通过双回路形式同时控制油墨的流量和压力。本解决方案不仅可以保证油墨最终流量的控制精度和避免出现质量问题,同时还采用了专门的PID串级控制器,代替传统的PLC控制器且无需再进行编程工作。[/b][/color][/size][align=center][size=16px] [img=高精度级联控制器在印刷和喷绘设备油墨流量控制中的应用,550,300]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161500376435_5330_3221506_3.jpg!w690x377.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 油墨是用于印刷的重要材料,它通过印刷或喷绘将图案、文字呈现在承印物上。油墨中的主要成分和辅助成分主要由连结料(树脂)、颜料、填料、助剂和溶剂等组成,它们均匀地混合并经反复轧制而成一种黏性胶状流体。油墨具有一定的粘稠度,当油墨在管道内输送时,如果流量发生改变或发生其他意外情况,就会导致油墨的粘稠度发生改变,很容易造成批量性的不良品发生。由此可见,油墨流量的精密和稳定控制是印刷和喷绘设备中的核心技术之一。[/size][size=16px] 针对油墨流量精密控制需求,特别是根据客户的要求以及现有技术的不足,希望可以进行技术升级以预防因油路,气路,或者油墨粘度异常造成批量性的问题。为此,为了具体解决油墨流量控制不准确使得油墨粘稠度产生异常造成批量性质量问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案基于流量和压力串级控制原理,即对油墨流量和油墨压力同时进行调整,由此实现高精度的油墨流量控制。解决方案的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.油墨流量和压力精密控制系统结构示意图,690,312]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161502292249_6607_3221506_3.jpg!w690x312.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 油墨流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,解决方案的油墨流量控制系统由压力控制和流量控制两个闭环控制回路构成,这两个控制回路详述如下:[/size][size=16px] (1)压力控制回路:压力控制回路由电气比例阀独立构成,其内部包括压力传感器、调节阀和控制器。压力控制回路的作用是对高压气源压力进行自动减压,并快速恒定控制在压力设定值上。压力控制回路作为串级控制(或双闭环控制)的辅助控制回路(内部闭环回路),主要用来控制加载在油墨桶上的压力,以便快速调节和控制油墨桶的油墨输出流量。[/size][size=16px] (2)流量控制回路:流量控制回路由流量计、串级控制器和压力控制回路构成。在控制过程中,串级控制器检测流量计输出信号并与设定值比较,然后驱动压力控制回路使油墨输出流量稳定在设定流量值上。流量控制回路作为串级控制(或双闭环控制)的主控制回路(外部闭环回路),主要用来检测油墨桶的输出流量并给压力控制回路输出控制设定值。[/size][size=16px] 通过上述两个控制回路的串联最终构成串级控制(级联控制或双闭环)回路,即流量控制回路的输出作为压力控制回路的输入,压力控制回路作为最终流量控制回路的执行机构。[/size][size=16px] 另外需要说明的是,图1只是给出了双闭环控制回路的结构示意图,在具体实施过程中还需根据流量控制精度、耐压范围和油墨喷嘴孔径等工艺参数进行相应的配套器件选择,在此方案中使用了超高精度的PID串级控制器,具有24位AD、16位DA和0.01%最小输出百分比,这样基本就可以满足绝大多数油墨流量控制精度的要求。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文所述的串级控制系统,通过PID串级控制器、电气比例阀、压力传感器和高精密流量计等元件,通过流量控制和压力控制的双闭环控制形式,实现了设定流量和实际流量自动精密控制。由此可预防因油路、气路或者油墨粘度异常造成批量性的不良发生。[/size][size=16px] 本解决方案的特色之一是采用专门的PID串级控制器来代替一般控制中所用的PLC控制装置,通过串级控制器的配套软件可方便进行流量控制,无需再对PLC控制装置进行编程的繁复操作。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 玻璃塑形吹气压力自动控制解决方案

    玻璃塑形吹气压力自动控制解决方案

    [color=#ff0000]摘要:玻璃制品吹塑成型工艺中,始终存在人工吹气和机器吹气气压不稳造成成品一致性差、成品率不高等问题。为解决这些问题,本文提出了一种吹气气压全自动控制解决方案,使得吹气气压可以按照设定曲线进行快速和精密控制,可大幅提高生产效率和产品良率。[/color][size=18px][color=#ff0000]一、问题的提出[/color][/size]玻璃是一个非结晶无定形固体,玻璃制品在加工过程中需要加热软化和吹塑成型,但目前的吹塑成型工艺存在以下几方面的问题需要解决:(1)在目前大多数通过人工用嘴吹气方式向玻璃制品的内部进行吹气的吹塑成型工艺中,需要依靠人力用管吹气然后将熔融的玻璃液塑形。这种工艺方法极大增加了生产者的负担,容易使得生产者因脑部缺氧而产生晕眩,同时降低了工作效率。这种工艺所生产的成品一致性差,且成品率不高,同时对于玻璃制品的生产周期延长,不利于广泛的推广和普及。(2)在玻璃瓶成型工艺中,由于风从吹塑管出来后一直作用于玻璃瓶的瓶底,吹塑气压不够均匀,会导致玻璃瓶成型后瓶底厚薄不一,同时现有的自动吹塑装置在吹塑过程中会出现气压不稳定的情况,不具备自动稳压的功能,导致玻璃瓶质量层次不一。分析现有玻璃制品的吹塑成型工艺可以发现,整个吹塑过程是一个典型的小型密闭空间内的气压变化过程,如果可以精密控制这个气压变化过程,并总能准确重复这个气压变化过程,即可实现玻璃制品吹塑工艺的自动化和质量可靠性,大幅提高成品率和缩短生产周期。本文针对玻璃制品吹塑成型工艺中存在的上述问题,提出了一种吹气气压全自动控制解决方案,吹气气压可以按照设定曲线进行快速和精密控制,由此大幅提高生产效率和产品良率。[size=18px][color=#ff0000]二、技术方案[/color][/size]玻璃塑形吹气压力自动控制的基本原理是按照需要快速控制一个密闭空腔内的气压,用此气压来代替人工吹气时的压力变化。整个控制装置的结构如图1所示。[align=center][img=玻璃塑形吹气压力自动控制,500,386]https://ng1.17img.cn/bbsfiles/images/2022/05/202205111628124420_8460_3384_3.png!w690x533.jpg[/img][/align][align=center]图1 玻璃塑形吹气压力自动控制装置结构示意图[/align]吹气压力自动控制装置主要包括腔体、电动针阀、压力传感器、PID控制器和高压气源。腔体内的压力精密控制采用动态控制法,即根据压力传感器的测量值与设定值的比较,PID控制器同时调节进气流量和排气流量,使得腔体内的压力快速达到动态平衡,将压力控制在设定值上。设定值可以是一个不随时间变化的压力恒定点,也可以是根据玻璃吹塑工艺要求设计出来的压力随时间变化的曲线,以此来满足不同压力要求。总之,通过此技术方案,可实现玻璃塑形吹气压力的自动精密控制,并可保证控制精度和重复性,以此保证产品质量和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • LPC6000全自动压力校验仪(压力)

    [font=&][color=#333333]一、设备概况:[/color][/font][font=&][color=#333333]全自动压力校验仪定制化按需求匹配,以大限度满足客户需求。此设备为单通道多模块,及大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPC6000特别适合用于需要对多种不同量程的压力装置进行校准和生产的场合。[/color][/font][font=&][color=#333333]应用领域:压力传感器生产厂家、校准实验室、航空航天、公共设施、医药、医疗、保健行业。[/color][/font][font=&][color=#333333]二、功能特性及量程范围[/color][/font][font=&][color=#333333]l精确度高达到:0.01%FS;[/color][/font][font=&][color=#333333]l稳定速度快:10秒内(50ml 10%量程);[/color][/font][font=&][color=#333333]l人性化智能设计;[/color][/font][font=&][color=#333333]l支持外部通讯;[/color][/font][font=&][color=#333333]l压力控制稳定性:[/color][/font][font=&][color=#333333]当前量程跨度的0.003%,稳定10秒后优于0.001%。[/color][/font][font=&][color=#333333]l外部气源:[/color][/font][font=&][color=#333333]采用内置泵自动输出压力,无需外加真空泵及气源。[/color][/font][font=&][color=#333333]三、基本技术参数[/color][/font][font=&][color=#333333]l 系统供电:220VAC,0.5A;[/color][/font][font=&][color=#333333]l RS232通讯接口;[/color][/font][font=&][color=#333333]l 支持绝压及表压;[/color][/font][font=&][color=#333333]l 密封0泄露;[/color][/font][font=&][color=#333333]l 时尚外观:7寸LCD显示屏触摸操作;[/color][/font][font=&][color=#333333]l 适用kPa,Pa, MPa, bar, mbar等36种压力单位;[/color][/font][font=&][color=#333333]l压力接口为:7/16-20内螺纹接口;[/color][/font][font=&][color=#333333]l支持内置泵;[/color][/font][font=&][color=#333333]l重量:约8kG;[/color][/font][font=&][color=#333333]l工作环境: 10~55℃;[/color][/font][font=&][color=#333333]l可定制化(按客户需求)。[/color][/font][font=&][color=#333333]四、选购配件[/color][/font][font=&][color=#333333]l 工业级仪表箱:[/color][/font][font=&][color=#333333]工业级仪表箱用于LPC6000的运输,也可作为LPC6000空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPC6000定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPC6000运输的保护箱体。[/color][/font][font=&][color=#333333]l 校准证书[/color][/font][font=&][color=#333333]每台LPC6000出厂时可溯源至计量院,可代送国家计量单位出具证书。[/color][/font][font=&][color=#333333]北京莱森泰克科技有限公司[/color][/font][font=&][color=#333333]网址: [/color][/font][url=http://jump2.bdimg.com/safecheck/index?url=x+Z5mMbGPAvE9iZcxuq5Dy5lhOquVngGnS3puQKnueWbLCERGtco9WCMbZlzVoVEFVvvS76lDWCdzjAdl/EsQrrDnfXruLlFi85Bz//6C6PtJOb7oF0VoZuQye2MG4bWMDxm7iZ2BjQ=]http://www.laisen.com[/url][font=&][color=#333333]北京东燕郊经济开发区留山大街10号兴远高科产业园13B303[/color][/font]

  • 采用PID控制器实现温度、压力和振动等交变试验的自动控制

    采用PID控制器实现温度、压力和振动等交变试验的自动控制

    [size=16px][color=#339999]摘要:目前各种PID控制器仪表常用于简单的设定点(Set Point)和斜坡(Ramp)程序控制,但对于复杂的正弦波等周期性变量的控制则无能为力。为了采用标准PID控制器便捷和低成本的实现对正弦波等周期性变量的自动控制,本文介绍相应的解决方案。解决方案的主要内容一是采用具有远程设定点功能的PID控制器,二是采用外置信号发生器,发生器输出的周期信号作为PID控制器周期性改变的设定值,从而实现周期性变量的自动控制。[/color][/size][align=center][size=16px][img=正弦波等周期性变量PID自动控制的解决方案,600,365]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031128526531_6859_3221506_3.jpg!w690x420.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在各种科研生产中经常会设计一些周期性的温度、湿度、真空压力和振动等交变环境或边界条件来进行各种特定的测试和考核,这些周期性边界条件或环境所呈现出的常见形式往往会是方波、正弦波,三角波和梯形波等,这在各种物理参数的动态测试和产品构件的性能考核试验过程中体现的尤为明显,由此就要求相应的自动化系统能提供这些不同波形环境变量的准确控制,从而保证实际环境的变化与测试及试验数学模型对边界条件的描述尽可能的吻合,最终保证物理变量测试以及考核试验的准确性和可靠性。[/size][size=16px] 在各种温度、湿度、真空压力和振动等环境的形成和自动化控制过程中,基本都是采用各种小巧的工业级PID控制器和PLC可编程逻辑控制器,这些控制器非常适用于定点或变化速度较慢的线性变化控制,图1(a)所示就是这样一个非常典型温度控制变化过程曲线。[/size][align=center][size=16px][color=#339999][b][img=典型被控变量变化曲线,690,213]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031129551376_5834_3221506_3.jpg!w690x213.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 温度过程典型变化曲线:(a)折线形式;(b)正弦波形式[/b][/color][/size][/align][size=16px] 对于图1(a)所示的典型温度变化过程,采用普通的PID程序控制器进行编程设计就可以实现,并且还可以编辑多条这样的多折线控制程序进行存储和调用运行。但对于如图1(b)所示的正弦波形式的温度控制和线性升温加正弦波调制的温度控制,目前还未看到可进行这种周期性变量控制的标准化PID控制器。为了在实际应用中实现这种周期性变量的PID控制,往往需要采用计算机和PLC并进行复杂的控制程序编写才能实现这种复杂功能,但这具有较高的技术门槛。[/size][size=16px] 为了解决上述PID控制器对于复杂正弦波等周期性变量控制的无能为力,并能采用标准PID控制器便捷和低成本的实现对正弦波等周期性变量的自动控制,本文将提出以下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] PID调节器进行自动控制的基本原理是根据设定值与被控对象测量值之间的控制偏差,将偏差按比例、积分和微分通过线性组合形成控制输出量,对被控对象进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。[/size][size=16px] 由此可见,对于PID控制器要实现自动控制的必要前提是要已知被控对象的变化要求,并将此要求按照设定值曲线输入给PID控制器。通常的设定曲线如图1(a)所示,它可以通过设定不同的爬升速率构成控制程序曲线。如果采用此方式来进行如图1(b)所示正弦波那样的周期性被控对象,则需要设计很多个小折线才能准确代表波形曲线,而在实际应用中还需能不断调整被动对象的波幅和频率,由此可见采用这种折线方式来对正弦波类周期性变化被动对象进行设定值近似无可操作性。总之,这种问题最终可以归结到如何使得PID控制器的设定值变得符合周期性函数特征,并可以很方便的进行波形、波幅和频率的更改。[/size][size=16px] 为了可以很方便的将PID控制器设定值按照所需的函数波形进行设置,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外部设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)外置一个函数信号发生器,给PID控制器传输所需的波形信号。[/size][size=16px] 依据上述方案所确定的PID控制装置及其接线如图2所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波等周期变量PID控制装置及接线图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031146347077_9300_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 正弦波等周期变量PID控制装置及接线图[/b][/color][/size][/align][size=16px][color=#339999][b]2.1 具有远程设定点功能的PID控制器[/b][/color][/size][size=16px] 所用的具有远程设定值功能的PID控制器一般配置有两个输入通道,第一主输入通道作为测量被控对象的传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px][color=#339999][b]2.2 函数信号发生器[/b][/color][/size][size=16px] 对于所有被控对象而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现被控对象周期性变化的控制,可以采用各种相应的函数信号发生器输出周期性设定值,对于热电偶和热电阻的周期信号输出,可以采用专门的过程校验仪输出相应的温度设定值。[/size][size=16px][color=#339999][b]2.3 接线、参数设置和操作[/b][/color][/size][size=16px] 在如图2所示的周期性变量PID控制系统中,在主输入通道上连接过程传感器,在主控输出通道连接的是执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,在一般情况下可以通过内部设定点进行PID自动控制。[/size][size=16px] 如果要对被控对象进行周期性变化的控制,则使用远程设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器或过程校验仪。[/size][size=16px] 完成外部接线后,在运行使用远程设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,需要满足以下几方面要求:[/size][size=16px] (1) 辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2) 辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3) 显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1) 内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择远程设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合时为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决正弦波等周期性变量的PID控制问题,而且使用简便和门槛较低,无需再进行复杂的程序编写。[/size][size=16px] 另外,本解决方案还可以进行多种拓展,如可实现被控对象周期性调制波的加载,非常便于实现更复杂的第二类和第三类边界条件的精密PID控制。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~[/align][size=16px][/size]

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 制冰机控制面板实现全自动化控制

    随着科技的发展和人们需求的增加,天然冰块已经远远不能满足人们的需求,所以出现了制冰机,制冰机因为其特殊性被运用到了多种行业,已经成为人类生产生活离不开的一种机器。制冰机是一种采用制冷系统,以水载体,在通电状态下通过某一设备后,制造出冰的设备。制冰机通过补充水阀门,水自动进入一个蓄水槽,然后经流量控制阀将水通过水泵送至到分流头,在那里水均匀地喷淋到制冰器表面上,像水帘一样流过制冰器的壁面,水被冷却至冰点,而没有被蒸发冻结的水将通过多孔槽流入蓄水槽,重新开始循环工作。制冰机制冷系统中,冷凝器、蒸发器、压缩机、控制系统和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。其控制系统采用触摸屏控制,通过触摸屏对制冰机进行开、停机自动控制,使冰桶机械运转系统、供水循环系统协调匹配,达到安全高效运行。控制系统大尺寸全触屏中英文液晶屏显示,图形操作界面直观方便,便于理解。制冰机的整个制冰过程均设置有缺水,满冰,高低压报警,相序保护,过载保护等触摸屏能控制.当机组出现保障时,触摸屏自动停机保护,并在输入点上显示故障指示灯状态,当故障恢复时,触摸屏接收信息自动启动机组,实现了全自动化控制。

  • 对“国产全自动透气仪”中的“全自动”的理解差异

    一.什么叫做透气仪? 透气性测试仪,行业又称为压差法气体渗透仪。透气性测试是指包装材料对气体等渗透物的阻隔作用,透气性能测试是从包装的角度上分析产品货架期的重要指标。用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。透气性测试仪(参考:YG461E-Ⅱ型透气性测试仪)用于测试特定条件压力下单位面积的空气流速,用户只需设定标准测试压力,仪器会自动探测测试头面积、自动选定测试孔大小、自动控制风机抽力大小。二.透气仪的适用范围 透气性测试仪适用于各种织物,包括机织物、非机织物、气囊织物、毯子、绒毛织物、针织物、多层织物及棉绒织物,这些织物可以是为竞争力的、大面积的、涂层、经过树脂处理的或任何其他处理过的。透气性测试仪还能测试通过黏厚、弹性多孔物件的气流,比如聚氨酯泡沫。影响织物舒适性的一个重要因素是织物的透气性。运动服、防风防寒服均对织物透气性有较高要求。有些工业纺织品如飞机降落伞、滤布等对织物透气性有特殊要求。织物透气性决定于织物中经纬纱线间以及纤维间空隙的数量与大小,亦即与经纬密度、经纬纱线特数、纱线捻度等因素有关。此外还与纤维性质、纱线结构、织物厚度和体积重量等因素有关。三.透气仪的设计原理 织物透气性测试原理:所谓织物透气性,是指织物两面存在压差的情况下,织物透过空气的性能。习惯上用透气量表示,即织物两面在规定的压差下,单位时间内垂直通过织物单位面积空气体积,单位为L/m2.s。因为压差是空气赖以流动的必要条件,只有在被测织物两面保持一定的压差,才能在织物中产生空气流动。 四.透气仪的结构 仪器外部构造由机架、试样固紧装置、流量装置、显示面板等部分组成;仪器的内部构造由压力传感器、CPU数据处理器、吸风机、反馈调节装置等部分组成。按规定的方法和试验参数,将试样夹持在织物透气仪的进气孔上,然后调节风机速度,使织物两面达到规定的压差,根据喷嘴孔径和二侧压差大小测定织物的透气率其中透气率指:织物两面在规定的压差下,单位时间内,垂直流过织物单位面积的气流量,单位(mm/s),而织物在两面存在压差的情况下,透通空气的性能,即称为透气性。 五.对“国产全自动透气仪”中的“全自动”的理解差异 仅仅自动更换喷嘴的并非全自动透气仪!目前,国内生产透气量仪(或称织物透气性测试仪)厂家越来越多,技术水平参差不齐,厂家宣传几乎大同小异,都在宣传为---全自动织物透气仪。但是,对于客户而言,到底该产品达到什么样的技术水平,才能称作--全自动织物透气仪。市场上很多厂家,都把自动更换喷嘴作为产品的最大卖点,声称只要是自动更换喷嘴的透气仪,就是全自动透气量仪。其实,这是一种技术误导!专家指导:仅仅自动更换喷嘴的并非全自动透气仪!真正的全自动透气仪,不仅仅是自动更换测试喷嘴,更关键的是测试过程的快捷,全智能,无人工辅助,无人为干扰!国内很多厂家的所谓自动更换喷嘴,完全是人工辅助干预的,整个测试过程,如果没有人为操作,根本无法完成实验。即通过单片机程序控制机械旋转动作,再反馈到仪器屏幕上,显示喷嘴大小是否合适,进而人为的点击操作屏幕,选择机械动作来达到更换喷嘴的目的;测试过程,需要多次的人工操作才能完成一次实验;不但测试效率低下,费事费时,关键是人工干预的误差较大,测试数据失真。--这种方式,完全是技术误导,只能称之为半自动型透气测试仪。通过人工操作屏幕来更换喷嘴的并非全自动透气仪!际高技术研发中心,通过多年技术攻关,推出的真正全自动织物透气仪,摒弃这一技术误区,从而一举打破这一宣传误导。际高YG461E系列全量程自动透气性测试仪,不但是自动更换喷嘴,而是整个测试过程全自动化,无需人为干扰,无需人工操作屏幕,无需人为值守,真正通过程序控制机械动作自动更换喷嘴,测试效率提高至少10倍以上。

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 防水型压力控制器

    防水型压力控制器:怎么防水呢?采用什么材质?(YWK-50/C)型防水型压力控制器是怎么输出的。具体资料有没有啊

  • 全自动粘度测定仪新品上市

    全自动粘度测定仪新品上市

    [align=center][img=粘度测定仪,690,690]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101459384500_6400_3145235_3.jpg!w690x690.jpg[/img][/align][align=left]A1019全自动粘度测定仪采用了模块化设计,检测部分采用了先进的传感器和高精度AD转换电路,主控部分采用了多个工业应用、超低功耗微处理器、可编程控制器,良好可靠的通讯将各模块组成一个统一的、可靠的测控平台。[/align]全自动粘度测定仪的运行程序,采用高质量、最简捷的模块化程序设计,并与硬件有机的结合,使得运动粘度测定过程的升温和恒温、液位检测、计时、清洗粘度管、打印等全部工作全自动完成,达到了一键出结果的操作方式。仪器特点:1、良好人机界面,方便操作。2、一键完成相对粘度测定,简化操作。3、全部模块化设计稳定、可靠性高。4、全自动储存1000个检测结果。5、检测过程遵守标准规定,数据可靠。6、检测方法可靠,重复性好。7、可长期连续工作,故障率极低。

  • 微流控芯片进样装置高精度压力和流量控制器的国产化替代

    微流控芯片进样装置高精度压力和流量控制器的国产化替代

    [size=16px][color=#339999][b]摘要:针对微流控芯片压力驱动进样系统中压力和流量的高精度控制,本文提出了国产化替代解决方案。解决方案采用了积木式结构,便于快速搭建起气压驱动进样系统。解决方案的核心是采用了串级控制模式,结合高精度的传感器、电气比例阀和PID控制器,通过压力和流量的双闭环PID控制回路可实现微流控芯片内液体流量的高精度控制。另外,解决方案具有强大的拓展功能,可进行手动、自动、程序和周期控制,同时也具备芯片的温度控制功能。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][color=#339999][b][/b][/color][/size][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 微流控芯片是将成百上千的微流道集成于以平方厘米为单位的芯片上,以实现样本的制备、分离、筛选、检测等功能,其特点在于可以用极少量的检测样本有效地完成各类检测,可取代常规的生化实验平台。微流控芯片中的微流道内径非常细小,可以实现低至1微米的空间细胞操作精度,因此在向微流道中进样时,对于流量的控制要求非常高。[/size][size=16px] 目前的微流控进样系统,主要是一些国外进口产品,如法国FLUENT公司基于传统的压力控制元件生产的MFCS-EZ流体驱动-精密压力控制器性能比较优良,达到稳定的时间可低至100ms,压力稳定误差小于0.1%,但价格昂贵;美国ELVEFLOW公司基于压电效应设计的OB1 MK3压力控制器性能更加优异,达到稳定的时间可低至35ms,压力稳定误差小于0.01%,但其功耗较高,售价更为昂贵。[/size][size=16px] 为了实现对微流控芯片内微流体压力和流量的高精度自动控制,特别是为了实现国产化替代,本文提出了一种压力和流量的串级控制解决方案。[/size][size=18px][color=#339999][b]2. 压力驱动的微流量精密控制工作原理[/b][/color][/size][size=16px] 微流控芯片中气压驱动进样系统的工作原理非常简单,如图1所示,即采用可调气压作为驱动力,控制一个装有液体的封闭容器中的气体压力实现液体驱动,控制液体向微流控芯片进行充注。[/size][align=center][size=16px][color=#339999][b][img=01.微流控芯片压力驱动进样系统工作原理图,500,267]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542286750_971_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 压力驱动进样系统工作原理图[/b][/color][/size][/align][size=16px] 充液过程中随着流阻的变化,负载也在不断改变,为保证流经微流控芯片液体流量的恒定在设定值,对应的驱动压力也应随时进行调节。[/size][size=16px] 在微流控芯片气压驱动进样系统中,针对不同的应用场景和要求,目前国外产品普遍采用了两种控制技术,一种是对驱动压力进行控制的开环控制技术,另一种是同时对压力和流量进行控制的闭环控制技术。[/size][size=16px] 如图2所示,在仅对驱动气压进行控制的进样系统中,是在进气端口增加了一个压力调节器。此压力调节器中集成了压力传感器、阀门和PID控制器,通过对高压气源的减压控制,由此用来精密调节和控制密闭容器上部的气体压力。[/size][align=center][size=16px][color=#339999][b][img=02.微流控芯片进样系统纯压力控制工作原理图,600,248]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541131358_1798_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 微流控芯片进样系统纯压力控制工作原理图[/b][/color][/size][/align][size=16px] 从图2可以看出,这种纯压力控制方式尽管可以调节微流控芯片内液体的流量,但无法获知具体流量是多少,这样一种开环控制形式更无法对液体流量进行高精度控制。[/size][size=16px] 为实现对微流控芯片内液体流量的精密控制,在上述开环控制形式的基础上,通过增加液体流量计和PID控制器,与压力调节器组成一个闭环控制回路,如图3所示。在此闭环控制回路中,PID控制器检测流量传感器信号并与设定值进行比较,通过PID控制算法计算后向压力调节器输出控制信号,压力调节器对进气气压进行调节,最终使微流控芯片内的液体流量在设定值处恒定。[/size][align=center][size=16px][color=#339999][b][img=03.微流控芯片进样系统压力和流量串级控制工作原理图,600,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541419942_6786_3221506_3.jpg!w690x333.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 微流控芯片进样系统压力和流量同时控制工作原理图[/b][/color][/size][/align][size=16px] 从图3可以看出,这种压力和流量同时控制的工作原理采用了一个非常典型的PID串级控制(级联控制)结构,即压力调节器作为压力控制的PID辅助控制回路,同时压力调节器作为执行器与流量传感器和PID控制器构成PID主控制回路。这种PID串级控制结构常用于高精度控制领域中,所以采用这种串级控制方法可以实现微流体压力驱动进样系统流量的高精度调节和控制。需要说明的是流量传感器可以布置在微流控芯片的进口端或出口端,具体可以根据微流控芯片的具体结构来进行选择。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 从上述微流控芯片压力驱动进样系统的串级控制工作原理可知,采用串级控制方式在理论上可实现流量的高精度控制,而要实现这种高精度控制,还需要相应的硬件配置提供保证。为此,本解决方案提出的硬件系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.微流控芯片进样系统压力和流量串级控制系统结构示意图,650,366]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542005587_5164_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 微流控芯片进样系统压力和流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的系统中,为实现高精度的压力和流量控制,解决方案中的关键部件配置如下:[/size][size=16px] (1)流量传感器:需根据流量的范围和控制精度需要选择合适的流量传感器,目前市场上有多种国内外的液体流量传感器可供选择。同时要求传感器具有相应的模拟量信号输出。[/size][size=16px] (2)压力调节器:压力调节器可选择电气比例阀,同样需要根据压力调节范围选择相应的型号。另外尽可能采用高精度和高速电气比例阀,特别是更快速度的压电式电气比例阀。[/size][size=16px] (3)超高精度PID控制器:在测量精度和控制精度都满足要求的前提下,主回路PID控制器精度将最终决定流量控制精度,如果PID控制器精度不够,则无法发挥传感器和压力调节器的精度优势。为了,本解决方案选择了超高精度的PID控制器,其具有24位AD、16位DA和采用双精度浮点运行的0.01%最小输出百分比。另外,此控制器具有PID参数自整定功能,并带有标准MODBUS通讯协议的RS485接口,可方便与上位计算机连接。[/size][size=16px] 通过上述高精度器件的配置,可很方便的搭建起微流控气压驱动进样系统并实现高精度的压力和流量控制。另外,采用超高精度PID控制器的高级功能,还可实现以下拓展功能:[/size][size=16px] (1)采用自带的计算机软件,可通过上位计算机直接进行界面操作,无需再进行编程。[/size][size=16px] (2)采用远程设定点功能,可实现手动旋钮调节方式的压力和流量控制。[/size][size=16px] (3)同样采用远程设定点功能以及外置一个周期信号发生器,可对压力和流量按照设定周期和幅度进行周期性变化。[/size][size=16px] (4)采用正反向控制功能以及外置一个TEC半导体制冷模组,可实现对微流控芯片的加热和制冷控制。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案模块式结构以及高精度器件的配置,可灵活和快速搭建起微流控芯片进样系统,并可在很高的精度上实现微流控芯片压力驱动进样系统中的压力和流量控制。[/size][size=16px] 另外,依此解决方案所搭建的压力和流量控制系统还具有强大的拓展功能,可满足各种微流控芯片气压驱动进样系统的使用,完全可以替代进口产品,同时也为后续多通道微流控压力驱动进样系统的国产化替代奠定的技术基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 自动上料控制器 自动打磨控制器

    自动上料控制器 自动打磨控制器

    自动上料控制器 / 自动打磨控制器产品外形小巧,功能简单实用,参数设置少,无需繁琐操作。该表由杭州双星普天 开发设计,功能支持 定制!一、基本工作原理:监控主电机的电流,当主电机负载电流过大时,控制器输出断开信号,停止副电机工作,随着主电机处理物料的减少,主电机电流降低,控制器开启副电机工作,以此循环。二、基本参数1、供电:220V AC / 24V DC 可选2、输出:单继电器输出,触点容量 250V 3A3、采样方式:采用电流互感器 隔离采样4、量程: 10A / 50A /100A5、安装方式:面板安装 / 导轨安装 可选三、操作方式常规设置内容:报警下限电流值报警下限输出延时报警上限电流值报警上限输出延时设置方法:1、对于已知动作电流的用户,可以进入设置模式后修改设置内容2、该电流表支持快速设置模式,无需进入设置状态,通过简单的按键即可完成动作电流的设置。对于不知道电流大小 或者 需要频繁快速修改设定值的用户特别方便。四、互感器(销售时含)与该表配合使用的互感器有多种,出厂时根据用户测量电流范围选配,无需用户关注。用户只需关注 被检测线的直径,线鼻子是否顺利穿线等问题。与该表配合的常规互感器 穿心孔直径有 26mm / 11mm / 6mm 供选择。如有特别要求,比如钳形口互感器等,采购时需咨询。五、质保自采购之日起,在正常使用情况下,一年内出现质量问题,免费更换。无限期保修http://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507480_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507481_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpg

  • 自动水位控制器开关

    自动水位控制器开关

    [font=&][color=#333333]自动水位控制器开关,也称为鱼缸自动补水器,是一种用于鱼缸或水族箱的设备,可以自动监测和控制水位,确保鱼缸中的水位始终保持在适当的范围内。它通常包括一个水位传感器和一个控制开关。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水位传感器是自动水位控制器的核心部件,它可以通过不同的原理来检测水位。其中,光电液位传感器是一种常用的水位传感器。它利用发射器和接收器之间的光束来检测水位。当水位低于设定值时,光束被阻挡,接收器接收到的光信号减弱,从而触发控制开关,启动补水装置。当水位达到设定值时,光束不再被阻挡,控制开关停止补水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]鱼缸自动补水器的工作原理如下:首先,将水位传感器安装在鱼缸中,确保传感器的位置能够准确地检测到水位。然后,将补水装置连接到自动水位控制器,并将补水管放入鱼缸中。当水位低于设定值时,光电液位传感器会触发控制开关,启动补水装置,补充鱼缸中的水。当水位达到设定值时,光电液位传感器会停止触发控制开关,补水装置停止工作。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]选择合适的自动水位控制器开关时,需要考虑以下几个因素:首先,根据鱼缸的大小和水位需求,选择适当的控制开关和水位传感器。其次,考虑自动水位控制器的稳定性和可靠性,选择具有高品质和可靠性的产品。此外,还需要考虑自动水位控制器的安装和操作便捷性,以及价格和性价比。[/color][/font][font=&][color=#333333][/color][/font][align=center][img=鱼缸补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/07/202307071357083064_4373_4008598_3.jpg!w673x582.jpg[/img][/align][font=&][color=#333333] [/color][/font][font=&][color=#333333]总之,自动水位控制器开关是一种方便实用的设备,可以帮助鱼缸或水族箱保持适当的水位。通过光电液位传感器的检测和控制,自动水位控制器可以自动补充鱼缸中的水,确保鱼类的生活环境稳定和舒适。选择合适的自动水位控制器开关时,需要考虑水位需求、稳定性、可靠性、安装便捷性和价格等因素,以确保其能够满足鱼缸的需求。[/color][/font][font=&][color=#333333][/color][/font]

  • 电动压力校验台的维护保养方法

    [color=#000000][color=#0000ff][b]电动压力校验台[/b][/color]是通过计算机或压力校验控制仪即可实现自动加压、自动采集、自动减压、自动保存和自动打印等一系列工作,从而减轻劳动强度,大大提高了工作效率,可以测量压力的仪表制造厂校验仪表提供压力源,同时也可升级成全自动检定系统,是工矿企、事业单位计量部门校验压力仪表理想的[/color][color=#330033][b]电动压力校验台[/b]。[/color][color=#000000][color=#0000ff][b]电动压力校验台[/b][/color]的维护保养方法:[/color][color=#000000](1)被校验的压力仪表内腔不应含有腐蚀性的介质,防止其流入校验装置内导管,以免影响正常工作。[/color][color=#000000](2)校验装置工作环境温度为+5℃~+35℃,相对湿度不大于80%,周围空气不得含有腐蚀性气体。[/color][color=#000000](3)校验装置内装的压缩机气源只供校验压力仪表用,不准做其他使用。[/color][color=#000000](4)用一段时间后,检查真空泵油是否充足,即不得低于油位线,油量不足将会影响工作性能甚至损坏零件。此时应给真空泵加油。[/color][color=#000000](5)仪表显示屏切勿和发热的物体靠近,以防烫坏塑脂材料。[/color][color=#000000](6)定期加进清洁变压器油,这样才能延长它的使用寿命率。[/color]

  • 气管扩张球囊压力自动控制解决方案

    气管扩张球囊压力自动控制解决方案

    [color=#339999][b][size=16px]摘要:目前临床用气管导管[/size][size=16px]套[/size][size=16px]囊压力管理中缺乏操作简便和技术成熟的套囊压力自动控制仪器,现有压力测量和控制装置操作繁琐,存在充气增压和放气减压过程不及时和压力不稳定等问题。针对这些问题本文提出了[/size][size=16px]套[/size][size=16px]囊[/size][size=16px]压力自动控制解决方案,采用动态平衡原理的球囊压力控制仪可根据设定压力自动排气和进气,快速抑制各种干扰,使球囊压力始终处于稳定状态。控制仪配有面板显示屏和微型气泵,并可连接外置压力传感器,使控制更准确和直观。[/size][/b][/color][align=center][img=气管扩张球囊压力控制,600,369]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031417449117_6777_3221506_3.jpg!w690x425.jpg[/img][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 气管导管套囊在机械通气中可起防止气道漏气,预防呼吸机相关性肺炎的作用,套囊压力管理是气管插管患者气道管理中的一个重要环节。由于气管导管套囊的压力异常与很多因素相关,如患者自身因素(肥胖、有吸烟史或合并哮喘、气管炎等)、麻醉医生因素和外在因素(体位、二氧化碳气腹、术中相关操作、笑气的应用等)以及呼吸机正常运行也会对套囊的压力产生影响。因此在套囊压力管理中,应当调节套囊中的压力以使其维持在一个稳定的水平,以避免漏气和其他潜在疾病的风险。套囊中压力过低可能产生漏气,而压力过高则可能对病人产生不适感。此外,在对套囊中压力进行调节时,也应当尽可能长时间维持套囊内压力稳定,降低套囊的不停膨胀和收缩的频率。但在目前的临床应用中套囊压力管理还无法达到稳定控制要求,所存在的问题主要体现在以下几个方面:[/size][size=16px] (1)外接压力测量和控制装置操作繁琐、器械及人力成本高。充气增压和放气减压过程用时长,压力调节缓慢,不利于抢救插管时快速操作,也不利于整个过程中的压力稳定。[/size][size=16px] (2)缺乏操作简便的套囊压力自动控制的成熟技术和相应仪器。[/size][size=16px] 为了解决上述问题,基于快速闭环气体压力控制技术,本文提出了一种解决方案,可完美的实现套囊压力的快速自动调节和控制。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 依据套囊的结构,临床气管导管套囊的压力控制,从理论上可以归结为对一个弹性体材质的密闭容器进行气压控制,此密闭容器只有一个对外进气或出气接口。由此,我们采用了动态平衡法进行压力控制,其基本原理如图1所示,即压力控制仪的核心是一个四通结构的小管件,其中管件的左右两端口分别作为进气和排气口,向上端口作为压力测量端口,向下端口作为工作压力输出口。[/size][align=center][size=16px][color=#339999][b][img=套囊压力控制仪工作原理,400,293]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031419148618_9875_3221506_3.jpg!w690x506.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 套囊压力控制仪工作原理[/b][/color][/size][/align][size=16px] 在压力控制过程中,PID控制器采集压力传感器信号并与设定压力值进行比较,根据比较差值来驱动进气和出气电磁阀打开或关闭,由此来控制压力输出口处的压力快速达到设定压力值。[/size][size=16px] 根据上述原理制造的套囊压力控制仪实际上是一个自动控制的压力源,此压力源直接连接到气管导管上就能实现对套囊压力的准确控制。整个套囊压力控制装置结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=两种形式气管导管套囊的自动压力控制结构示意图,650,270]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031419447144_9325_3221506_3.jpg!w690x287.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 两种形式气管导管套囊的自动压力控制结构示意图[/b][/color][/size][/align][size=16px] 在压力控制过程中,PID控制器采集压力传感器信号并与设定压力值进行比较,根据比较差值来驱动进气和出气电磁阀打开或关闭,由此来控制压力输出口处的压力快速达到设定压力值。[/size][size=16px] 这里需要说明的是,标准的压力控制仪是在控制仪中内置了一个高精度压力传感器,但在实际应用中压力传感器更靠近被控容器以准确测量容器压力,所以球囊压力控制器提供了一个外置压力传感器的接口,由此可更准确的调节和控制球囊内压力,如图2(a)所示。[/size][size=16px] 由于气管导管往往较细较长,图2(a)所示的外置压力传感器形式因距离球囊较远,往往也不能很准确和及时的监测和控制球囊压力。为此,目前新型的气管导管球囊往往会内置一个微型压力传感器,此内置压力传感器连接到球囊压力控制器可进行更准确和快速的压力控制。[/size][size=16px] 在球囊压力控制仪中集成了一个微型气泵以始终提供正压压力,在控制仪面板上还提供了一个手动调节旋钮。在具体使用过程中,操作人员可根据面板上显示的压力数值来调整旋钮以设定球囊所需要稳定控制的压力值,设定完毕后,按动执行按钮,控制仪就可以全程的进行球囊压力自动控制,无论其他形式的各种干扰,球囊压力始终稳定在设定的压力值上。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案所采用的球囊压力自动控制仪,基于动态平衡的压力控制方法,可很方便的实现球囊进气和排气的自动控制,使球囊压力始终保持稳定,具有很强的各种压力干扰的抑制性和恢复性。并且此球囊压力控制仪进行了最大程度的集成,内置了压力传感器和气泵,并具有很强的适用性,可连接各种气管导管球囊和外部压力传感器。整个操作极为简便,仅需通过面板旋钮进行操作,压力监测和控制结果直观面板数字显示。[/size][size=16px][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 控制器自动加药和进水

    能控制水泵自动上水和停止还有加药机启停的[url=https://www.hach.com.cn/product-list/kongzhichuangan]智能控制器[/url],大概要多少钱;就是灌溉用水的水池,现在想实现根据水位高低启动进水;然后放了个水质测定仪和加药装置,想控制自动加药,两个可以用一个控制器实现吗?

  • 全自动模切机的保养方法

    由于机器保养得不好,一来增加维修用度和企业开支;二来对机器有很大的伤害,导致机器的使用寿命缩短;三者影响操纵,延误出产。 跟着纸制品质量的进步,全自动平压平模切机在纸品包装印刷行业得到了越来越广泛的应用。所以在电气方面泛起题目时,维修职员首先要读懂其梯形逻辑图,由此来判定并查找故障原因,这样题目将会很快得到解决。润滑保养分为日保,周保和月保等,详细如下表: 首先,操纵职员要留意防尘、清洁。电气方面的故障有:因全自动模切机中央控制系统采用的是可编程逻辑控制器(PLC),主要检测点电气开关及输出动作都由此出发,而PLC其内部程序为梯形逻辑图。 其次,模切机的换油。此时检测其与上净平台的相对位置,保证动平台的四角度与上净平台(夹放模切板的地方)三者之间的间隔,这样就可解决题目。机械方面,全自动平压平模切机常见的故障有平台压斜现象。在实际出产中,模切纸盒时将会产生大量的废纸边、纸毛,稍不留意就会进入链条传动部位、模切部动平台及一些旋转运动部位,并可能遮挡住光电检测头等,造成故障。模切机主动作是主电机带动滑杆、滑轮,再带动四副肘杆来运动,其在高速工作中达到6000张/小时,若无良好润滑和冷却是很麻烦的。 保养机器是每一个操纵工必需要做到的。机器故障肯定会影响到操纵者的情绪及交货期限。为了进一步完善全自动平压平模切机的操纵工艺,发扬模切机新技术,进步现代化的操纵水准,笔者根据这些年在该方面的工作经验,总结出全自动平压平模切机的一些维护要点及保养知识,与同行们交流共享。然而因为操纵职员缺乏维护保养的知识,导致机器泛起较多的故障,直接影响了出产的正常运行,致使出产本钱进步,既打乱了出产铺排计划,对交货期又产生极大的影响。无论是全自动仍是半自动平压平模切机,都需要专业职员进行加油和保养。所以,一定要把模切机的机身清洁工作放在首位,而后才可以确保机器无端障运行。 必需要对机器的结构及机能了解,这样才能保养好一台机器。这种情况多为异物落入模切处,一般应采取拖动轴杆下的两楔形的位置,同时,把平台滚动到上极限点。

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 啤酒发酵工艺中压力的可编程自动精密控制

    啤酒发酵工艺中压力的可编程自动精密控制

    [font=微软雅黑, sans-serif][size=16px][color=#339999]摘要:针对目前啤酒酿制发酵过程中存在的温度、压力、氧气和二氧化碳含量这些工艺参数的精密控制问题,本文以压力控制为例提出了自动化可编程的啤酒发酵压力精密控制解决方案,解决方案可满足各种大型和小型发酵罐的压力控制需求,可实现变设定压力和可编程的全自动压力准确控制。更重要的是:此解决方案可推广应用到温度和工艺气体含量的实时控制,为真正实现高品质啤酒的酿造以及质量稳定性提供了技术保障。[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#339999][/color][/size][/font][color=#339999][/color][align=center][color=#339999][img=啤酒发酵罐用的可编程全自动精密压力控制装置,550,367]https://ng1.17img.cn/bbsfiles/images/2023/03/202303201143196856_4741_3221506_3.jpg!w690x461.jpg[/img][/color][/align][color=#339999][/color][size=18px][color=#339999][b]1. [font='微软雅黑',sans-serif]问题的提出[/font][/b][/color][/size][font='微软雅黑',sans-serif][size=16px][/size][/font] 在啤酒生产工艺中,发酵是重要且不可或缺的一环,并且在发酵过程中需要实时监测和控制发酵罐内的温度和压力以及氧气和二氧化碳含量等工艺参数,以保证酒液酿制品质和在发酵罐内正常发酵。而目前啤酒发酵过程中需要解决的技术难题之一就是如何对上述参数实现精确的智能化和自动化控制,如在压力这个重要参数的控制过程中,就存在以下几方面的具体问题:[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])压力控制技术和装置简陋,大多采用开环控制方式,有些甚至还在采用人工调节方式,缺少闭环反馈控制和调节能力而无法实施对发酵罐内的压力变化做出及时反应和准确控制,往往会对发酵过程造成影响导致啤酒口感变差。例如,酒液在发酵过程中会产生二氧化碳而造成发酵罐内压力增高,如果不及时进行减压调节方式的压力恒定控制则会导致发酵失败,而如果发酵过程中的压力太低又会影响啤酒的口感,这些问题在长时间的发酵工艺中显得尤为突出。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])现有压力控制装置多为只能设定一个固定压力进行控制,无法根据酿制啤酒的品种和发酵工艺设置对应的压力控制程序并进行程序控制。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]3[/font][font='微软雅黑',sans-serif])在有些大批量啤酒生产中,现有的大型发酵罐压力控制装置体积较为庞大笨重和技术落后。小型和微型精酿啤酒的发酵又缺乏小型的压力控制装置,啤酒酿制还基本靠人工经验来进行压力控制,特别是对啤酒屋这种需要多个品种的啤酒精酿场合,口感和品质很难保证稳定。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]除了上述问题之外,啤酒发酵过程中的压力控制技术还面临以下挑战:[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])在啤酒发酵过程中,不能只为达到压力控制指标而任意对发酵气体进行排放,还需尽可能保留有效气体成分和含量,这就要求在尽可能低的排放条件下还能实现压力的准确控制。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])发酵过程中发酵罐内的温度、压力、氧气含量和二氧化碳含量往往会相互影响,如温度的升降会造成压力的高低变化,气体含量的改变也会对压力产生影响,这都需要在具体控制中予以解决,而现有发酵工艺基本都缺乏这种实时多参数的准确控制能力。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]因此,针对目前啤酒酿制发酵过程中存在的精密控制问题,本文特别针对压力控制提出了自动化可编程的啤酒发酵压力精密控制解决方案,解决方案可满足各种大型和小型发酵罐的压力控制需求,可实现变设定压力和可编程的全自动压力准确控制。[b][size=18px][color=#339999]2. [font='微软雅黑',sans-serif]基本原理[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]啤酒酿造过程中的压力控制是一个典型密闭容器压力控制问题,为此我们采用了常用于密闭容器真空压力控制的动态平衡法。动态平衡法的基本原理是同时调节密闭容器的进气流量和出气流量,使进出气流量按照要求达到某个平衡,从而实现真空压力的准确控制。动态平衡法控制原理框图如图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示。[/font][font='微软雅黑',sans-serif][/font][align=center][size=16px][color=#339999][b][img=动态平衡法压力控制基本原理图,600,257]https://ng1.17img.cn/bbsfiles/images/2023/03/202303201143532162_2097_3221506_3.png!w690x296.jpg[/img][/b][/color][/size][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]动态平衡法压力控制原理示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]在啤酒发酵罐压力控制中采用动态平衡法,主要基于此方法的以下两个特点:[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])动态平衡法有很强的灵活性,其中的各个功能部件可根据需要采用不同的结构形式。对于大尺寸的发酵罐,可以采用分立结构形式来保证罐内压力控制过程中的均匀性,如将独立电动阀门分别布置在发酵罐两侧分别负责调解进气和出气流量。对于小体积发酵罐,则可以采用集成式结构,将进气和出气阀门集成在一起并安装在发酵罐的某个部位进行压力控制而不影响罐内压力均匀。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])动态平衡法比较适合控制压力的同时对氧气和二氧化碳气体含量进行控制,只需在进气口处增加相应流量计就可以实现多个工艺参量的实时控制。[/font][b][size=18px][color=#339999]3. [font='微软雅黑',sans-serif]解决方案[/font][/color][/size][color=#339999][/color][color=#339999]3.1 [font='微软雅黑',sans-serif]分体式结构解决方案[/font][/color][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]对于大型发酵罐,发酵过程中的压力控制要考虑气体在大尺寸空间内的均匀性,即尽可能要保证压力的均匀。为此,针对大型发酵罐的压力控制采用了分体式结构的动态平衡法,相应的压力控制装置结构如图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示。[/font][align=center][color=#339999][b][img=分体式压力控制装置结构示意图,690,318]https://ng1.17img.cn/bbsfiles/images/2023/03/202303201144178376_5606_3221506_3.png!w690x318.jpg[/img][/b][/color][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]分体式压力控制装置结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]分体式压力控制装置主要特点是将进气和排气装置分开,即通过单独气体质量流量计调节进气流量,采用独立的电动调节阀的不同变化开度来调节排气流量,而它们的控制则通过一个双通道的[/font][font=&]PID[/font][font='微软雅黑',sans-serif]控制器来实现,其中压力测量通过一个压力传感器。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示的分体式压力控制装置具有以下几方面的特点:[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])分体结构可以保证大型发酵罐内的压力非常均匀。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])通过调节进气速率和抽气速率,并配备较大口径的高响应速度的电动调节阀,可以非常准确和快速的实现各种程序设定压力的动态控制,关键是采用了双通道[/font][font=&]PID[/font][font='微软雅黑',sans-serif]控制器更能保证长时间发酵过程中压力变化的稳定性以及重复批量生产过程中压力变化的可重复性。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]3[/font][font='微软雅黑',sans-serif])从图[/font][font=&]2[/font][font='微软雅黑',sans-serif]可以看出,进气口处可以并联连接多种气体管路,如氧气和二氧化碳气体。只要控制采用相应的气体质量流量计控制好进气比例,并能保证发酵罐内相应的各种气体含量,那么只需调节电动调节阀就可以准确控制发酵罐内的压力变化。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]4[/font][font='微软雅黑',sans-serif])分体式压力控制装置的不足是进气和出气始终处于一个动态过程,这使得压力控制过程中的用气量比较大,如果后续工艺配备了气体回收处理装置,则此问题不再显着突出。[/font][b][color=#339999]3.2 [font='微软雅黑',sans-serif]集成式结构解决方案[/font][/color][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]对于很多小型啤酒发酵生产场合,往往并不能做到对工作气体的回收,但更需要针对不同品种的啤酒发酵进行压力准确控制。为此我们提出一种集成式结构的压力控制装置方案,如图[/font][font=&]3[/font][font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=集成式压力控制装置结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/03/202303201144389318_6852_3221506_3.png!w690x622.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]3 [/font][font='微软雅黑',sans-serif]集成式压力控制装置结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]图[/font][font=&]3[/font][font='微软雅黑',sans-serif]所示的集成式压力控制装置是图[/font][font=&]2[/font][font='微软雅黑',sans-serif]分体式压力控制结构的一种小型化集成,即将进气调节阀和排气调节阀整体小型化,并与内置微型压力传感器一并集成在压力控制阀内,实现对进气口压力进行降压并对压力控制阀出口的气体压力进行恒定控制,同时通过将压力控制阀的出口与发酵罐连接,进而实现对发酵罐内的压力进行准确控制。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]由于集成式结构压力控制装置的进气和排气流量比较小,所以比较适合小型发酵罐的压力控制,这种集成式控制装置具有以下几方面的特点:[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])为了保证小型发酵罐内的压力均匀性,集成式压力控制装置需要外接一个压力传感器,结合图[/font][font=&]2[/font][font='微软雅黑',sans-serif]中所示的压力控制器和[/font][font=&]PID[/font][font='微软雅黑',sans-serif]控制器构成压力控制闭环回路。此闭环回路可以安装在一个控制箱内形成一个完整的压力控制装置,控制箱上布置有进气接口、排气接口、发酵罐接口、压力控制器引线接口、计算机通讯接口和电源线接口。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])集成式结构压力控制装置同样具有快速、准确和高稳定性的压力控制特点,而其最大优势是节省工艺气体,即只有在欠压或过压时快速打开内部进气阀或出气阀,保压过程中进气阀和出气阀全部关闭。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]3[/font][font='微软雅黑',sans-serif])这种集成式压力控制装置体积小巧,可以直接安装在发酵罐外进行压力控制,也可以与发酵罐的控制器系统进行集成。尽管这种压力控制装置进气和排气流量较小,但非常适合各种小型发酵罐的压力自动化控制。同时,也可以外接出手动旋钮便于人工设定压力控制值。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]4[/font][font='微软雅黑',sans-serif])这种集成式结构压力控制装置的不足是只能控制发酵罐内部压力,无法对进气流量和气体含量进行直接控制。若要进行气体成分和比例进行控制,在进气端还需增加一个气体缓冲罐,在缓冲罐内完成气体成分调节和控制后,再进行压力控制。[/font][b][size=18px][color=#339999]4. [font='微软雅黑',sans-serif]总结[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]本文所提出的解决方案和相应的两种压力控制装置,可以很好的解决啤酒发酵过程中的压力控制问题,整个解决方案的技术特点如下:[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])发酵罐压力控制装置采用了先进控制技术,可实时监测发酵罐内部压力,并根据预设的参数进行调整。可以自动调整氧气和二氧化碳的供应,以保证发酵过程中的适宜环境条件。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])该装置还具有可编程功能,可以根据不同的啤酒配方和发酵条件进行调整。它可以存储多组参数,方便操作人员进行选择和调用。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]3[/font][font='微软雅黑',sans-serif])可满足各种啤酒发酵生产规模的压力控制需求,压力控制可智能化和自动化,可达到很高的控制精度和长期稳定性和重复性,能很好的保证产品品质和重复性。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]4[/font][font='微软雅黑',sans-serif])本解决方案尽管只描述了发酵过程中的压力控制问题,但相应的控制装置具有很强的拓展性,可应用到发酵过程中的温度和气体成分的控制过程。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]总之,啤酒发酵罐用的可编程全自动精密压力控制装置是一种高效、精确、可靠的控制装置,可以有效提高啤酒生产的质量、产量和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 【资料】熔样机 全自动熔样机 DHJ-81全自动熔样机

    全自动熔样机(DHJ-81)技术参数: 电 源:110-230VAC,50-60Hz, 210W 炉头位置:2、4、6 温 度:800℃ - 1600℃ 产 地:德国全自动熔样机(DHJ-81)简介: DHJ-81全自动熔样广泛用于AAS、ICP、X-荧光分析的样品制备,典型样品类型包括氧化物、硫化物、硅酸盐如采矿矿石、冶金矿石、精矿等。也可用于质量监控,如:玻璃和陶瓷工业,炼钢铁矿、高炉炉渣,铝土矿、氧化铝,金属(Pb、Zn、Cu、Ni)硫化物、硅渣、熔渣,矿砂工业,水泥、石灰、窑砖工业,大学及研究机构。 熔融技术应对当今高效自动化要求,同时极大改进过程控制的质量,并降低消耗成本,对于高效、快速,高质量的分析要求,DHJ-81全自动熔样是关键核心。 全自动熔样机(DHJ-81)主要优势: 样品、熔剂混合:预置操作循环的旋转混合运动,确保均匀分散、均匀混合。坩埚冷却:冷却速率精确检测,确保熔融质量。坩埚自动固定:彻底消除夹子导致的交叉污染。可变旋转速度:允许最佳速度设定,确保样品条件最优化。预热/氧化:控制并释放气体,防止样品溢出。独立燃烧头:单组坩埚及燃烧头独立控制温度设定,确保最佳条件。氧气注入:保持富氧火焰、均匀熔融,防止Pt/Au器皿腐蚀。 典化铵注入:预置加湿、混合或释放剂程序控制。 熔融损失:熔融样品精确称量,损失计算,再加热制样。 计算机自动化控制:预置熔融程序,操作循环、数据图形显示,符合ISO国际质量控制标准。人性化操作:特制托盘收集溢出样品,花岗岩垫板铂皿放置。独立燃烧头组成:独立燃烧头架调整,精确控制坩埚下燃烧位置。800℃ - 1600℃下熔融。全自动熔样机(DHJ-81)安全性: 所有潜在安全隐患操作均自动化完成,无需任何手工操作,确保人身安全。同时配置:过温锁控,电源、燃气自动安全切断,内部温度超出预置设定。压力传感:自动氧气及空气压力监控、低于预置值,即自动切断。 注样循环锁控:只有铸模置于燃烧头上正确位置才自动注样,防止误注。 全特氟隆气路:温度监控、耐温、放火、自动安全保护设计。 ---------------------------------------------------

  • 鱼缸水位开关自动控制器

    鱼缸水位开关自动控制器

    [align=left][font=宋体][color=#333333][back=white]随着科技的发展,人们的生活越来越智能化。对于养鱼爱好者来说,一个自动控制的鱼缸水位开关控制器能够极大地提高养鱼的便利性和舒适度。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位[url=https://www.eptsz.com]开关自动控制器[/url]采用先进的微处理器技术,能够实时监测鱼缸的水位。当水位过低或过高时,控制器会立即启动相应的工作模式。当水位过低时,控制器会自动打开水泵,将水注入鱼缸,确保鱼儿有足够的水生活环境。[/back][/color][/font][/align][align=center][img=水位自动控制器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/12/202312141603520014_401_4008598_3.jpg!w673x582.jpg[/img][/align][align=left][font=宋体][color=#333333][back=white]鱼缸补水器分为控制器和磁性吸盘两部分,确定鱼缸需要保持的水位线,将吸盘与控制器对准后分别放在鱼缸壁的内侧与外侧。电源的一头插入控制器,将另一头插入插座内,即可完成补水器供电。水泵插头插入控制器,水泵接上水管放入备用水箱中,既可实现补水功能。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位开关自动控制器是养鱼爱好者的理想选择。它不仅能够提供舒适的鱼儿生活环境,还能大大降低养鱼的难度和劳动强度。在未来,随着技术的不断进步,相信这款控制器将会更加智能、更加人性化,为养鱼爱好者带来更多的便利和乐趣。[/back][/color][/font][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制