当前位置: 仪器信息网 > 行业主题 > >

隧道式微波干燥器

仪器信息网隧道式微波干燥器专题为您提供2024年最新隧道式微波干燥器价格报价、厂家品牌的相关信息, 包括隧道式微波干燥器参数、型号等,不管是国产,还是进口品牌的隧道式微波干燥器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合隧道式微波干燥器相关的耗材配件、试剂标物,还有隧道式微波干燥器相关的最新资讯、资料,以及隧道式微波干燥器相关的解决方案。

隧道式微波干燥器相关的资讯

  • 美研发出双扫描隧道显微和微波频率探针
    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。  过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。  由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。  元器件间的连接是纳米级电子产品至关重要的部分。就分子设备而言,分子极化性测量的范围涉及到电子与单个分子接触的相互作用。极化性测量有两个重要方面,它们分别是接触表面以次纳米分辨率精度进行测量的能力,以及认识和控制分子开关两个状态的能力。  为测量单个分子的极化性,研究小组研发出能够同时进行扫描隧道显微镜测量和微波异频测量的探针。借助探针的微波异频测探,研究人员将能确定单个分子开关在基片上的位置,即使开关处于“关”的状态也不例外。在开关定位后,研究人员便可利用扫描隧道显微镜变换开关的状态,并测量每个状态下单分子和基片之间的相互作用。  维斯说,新开发的探针能够获取单分子和基片之间物理、化学和电子相互作用以及相互接触的数据。维斯同时还是著名的化学和生化以及材料科学和工程教授。参与研究工作的还有美国西北大学的理论化学家马克瑞特奈和莱斯大学合成化学家詹姆斯图尔。  据悉,研究小组新的测量探针所提供的信息集中在电子产品的极限范围,而不是针对要生产的产品。此外,由于探针有能力提供多参数的测量,它有可能被研究人员用来鉴定复杂生物分子的子分子结构。
  • ProCepT喷雾干燥器在罗氏研发(中国)有限公司成功安装
    近日北京安唯安实验设备有限公司代理的比利时ProCepT公司 4M8-TriX喷雾干燥器在中国上海张江药谷的罗氏研发(中国)有限公司成功安装,这是继F. Hoffmann-La Roche AG瑞士研发巴塞尔药物研发中心和罗氏旗下的美国Genentech生物制药研发中心,又一家罗氏新药研发中心采用ProCepT公司的喷雾干燥器。近年来随着固体分散技术作为一个提高难溶API的溶解度和生物利用度的有效策略被广泛接受,喷雾干燥技术在制备固体分散制剂颗粒方面显示出明显的优势。ProCepT公司的4M8-TriX喷雾干燥器由于具有最低可以处理10 mg的样品、具有极高的回收率、采用全过程参数控制和记录技术,已经成为制剂配方研究和新药开发的重要设备,ProCepT公司的喷雾干燥器在全球新药、食品、营养品的研究开发实验拥有广泛的用户。4M8-TriX 喷雾干燥器关于罗氏研发(中国)有限公司罗氏研发(中国)有限公司2004年在上海张江成立,目前已建立了从化合物筛选到毒理学评价的整套新药研究流程,成为一个全功能的、独立按照国际标准进行原创新药研究的研发中心,拥有的100多名科研人员分布在药物化学、药理学、靶点确认等药物研发的各个关键环节,这些研发人员有一半以上是海归人才或国内知名院校的科研学者。关于比利时ProCepT公司比利时普罗赛特有限公司(ProCepT)来之于世界制药行业的强国——比利时,是一家专门提供干燥、团聚、包衣和混合等工艺研究设备的制造厂家和服务提供商。经过近20年的专注于过程工艺开发所积累的工程、制造和应用专长,我们设备已经被全世界数百家最著名的制药、生物技术、精细化工、营养保健、食品行业用户及大学和研究机构所使用。我们的工程设计概念是基于模块化、可视性、准确性和定制。从API到包衣药片,ProCepT提供完整工艺技术:喷雾干燥 Nutsche过滤干燥 真空干燥微波干燥流化床干燥 流化床制粒 流化床包衣高剪切制粒挤出滚圆 片剂包衣 均质混合更多ProCepT公司产品信息,请关注!Beijing AnWeiAn Lab Equipments Co.,Ltd北京安唯安实验设备有限公司地址:北京市海淀区昆明湖南路4029室Post code:100195Tel: +86 10 88132032Fax:+86 10 82386759Email: info(at)al-tt.comWeb: www.al-tt.comNetShow: www.instrument.com.cn/netshow/SH102845/
  • 便携式干燥器——DM系列干燥剂膜干燥器
    便携式分析仪经常会由于采样中的水分问题而影响分析数据,而博纯推出的DM™ 系列干燥剂膜干燥器便捷、高效的去除水分,并且不会损失任何分析物,将会成为便携式分析仪的理想伴侣。  该便携式干燥器体积紧凑(普通烟盒大小),无需泵或吹扫气体,内置的Nafion管周围有可置换干燥剂,这些干燥剂有颜色改变指示剂提醒用户更换。一般用于流量为1L/M的样气,可用于临时干燥或与便携式分析仪一同使用,提高分析仪的准确度。  查看产品图片,请登录http://www.instrument.com.cn/netshow/SH101541/C95476.htm  关于博纯  成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。  博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。  博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。  拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。  关于豪迈:  创立于1894年的英国豪迈国际有限公司(Halma p.l.c. – www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。  销售联系方式  夏黎明先生 中国区销售经理  上海市长宁区仙霞路137号盛高国际大厦1801室  邮编:200051  电话:021-52068686-113  传真:021-52068191  电子信箱: fxia@permapure.com  网址:http://www.permapure.com
  • 热像仪应用 — PDM滚筒干燥器
    滚 筒 干 燥 器 什么是滚筒干燥器? 滚筒干燥器是通过转动的圆筒,以热传导的方式,将附在筒体外壁的液相物料或带状物料,进行干燥的一种连续 操作设备。需干燥处理的料液由高位槽流入滚筒干燥器的受料槽内。干燥滚筒在传动装置驱动下,按规定的转速转动 。物料由布膜装置,在滚筒壁面上形成料膜。筒内连续通入供热介质,加热筒体,由筒壁传热使料膜的湿分汽化,再 通过刮刀将达到干燥要求的物料刮下,经螺旋输送至贮槽内,进行包装。蒸发除去的湿分,视其性质可通过密闭罩 引入相应的处理装置内;一般为水蒸气,可直接由罩顶的排气管放至大气中。其工作原理:滚筒干燥机是一种内加热 传导转动干燥设备,湿物料在滚筒外壁上获得以导热方式传递的热量,脱除水分,达到所要求的湿含量,热量由筒内 壁传到筒外壁,再穿过料膜,其热效率高,可连续操作,故广泛应用于液态物料或带状物料的干燥,对膏状和粘稠物 料更适用。 滚筒干燥器的型式很多:按滚筒数量分为单滚筒、双滚筒、多滚筒;按布料方式,可分为浸液式、喷洒式;按操 作压力,又可分为常压和真空操作两类。 为什么要对滚筒干燥器进行检测? 滚筒干燥器是一种内加热传导转动干燥设备,如果其内部传热不均匀,会造成纸张局部热应力不同,从而造成纸 张边缘缺陷或其它缺陷,从而影响整体生产。使用红外热像仪可以检测滚筒的整体温度均匀性,从而可以检测出滚筒 的质量好坏,避免纸张缺陷的产生。 红外热像仪如何对滚筒干燥器进行检测? 一般来说,滚筒干燥器的表面比较光亮,反射率高而发射率低;或是其外部覆盖着纸张或厚毡毯,直接用热像仪 检测滚筒比较困难。建议使用热像仪拍摄纸张,通过检测纸张的温度均匀性来间接检测滚筒的温度均匀性。如果滚筒 内部加热不均匀或是表面有缺陷,会使纸张产生局部缺陷,从而使我们通过检测纸张的缺陷来检测滚筒的质量。典型客户 宁波中华纸业、APP金奉源纸业、APP金桂浆纸业等 滚筒如何能做好滚筒干燥器的检测? 我们建议:1 若在自动模式下图像不清晰,可先使用自动模式测量滚筒的温度范围;然后手动设置水平及跨度,将温度范围设 置在最小,并包含有先前测量的温度范围(各款仪器最小温度范围不同)。 2 拍摄到滚筒后,尽量与该滚筒的接触测温进行对比,这样可及时发现有问题的滚筒。 3 若现场有多台滚筒,且工作状态相似,请互相对滚筒的外壳温度,这样可及时滚筒的缺陷故障等。
  • ProCepT 4M8-TriX喷雾干燥器在山东轩竹医药成功安装
    近日北京安唯安实验设备有限公司代理的比利时ProCepT公司4M8-TriX喷雾干燥器在中国山东轩竹医药科技有限公司成功安装,这些继药明康德、罗氏(中国)研发中心等药物研发机构又一家中国重要的新药研发单位采用4M8-TriX喷雾干燥器。 近年来随着固体分散技术作为一个提高难溶API的溶解度和生物利用度的有效策略被广泛接受,喷雾干燥技术在制备固体分散制剂颗粒方面显示出明显的优势。另外,喷雾干燥器也是鼻喷吸入新剂型的强大工具。ProCepT公司的4M8-TriX喷雾干燥器由于具有最低可以处理10 mg的样品、具有极高的回收率、采用全过程参数控制和记录技术,已经成为制剂配方研究和新药开发的重要仪器,ProCepT公司的喷雾干燥器在全球新药、食品、营养品的研究开发实验拥有广泛的用户。 关于山东轩竹医药科技有限公司山东轩竹医药科技有限公司是一家国际化的创新药物研发企业,成立于2002年,2012年经资产重组成为四环医药控股集团有限公司旗下的全资子公司。四环医药控股集团于2010年10月28日在香港成功上市(股票代码:00460.HK),是集研发、生产和销售于一体的集团化医药企业。山东轩竹医药科技有限公司主要进行新分子实体药物的研究和开发,所研究的领域主要包括抗感染领域、心血管疾病领域、抗肿瘤领域、糖尿病领域等比较前沿的七个新药研发领域。目前为止,已建立了新药设计与合成中心、新药动物药效学评价中心、药物体内外评价中心、体内外药代评价中心、早期动物毒性评价中心、化合物成盐和晶型研究中心、化合物量产中心等几大技术平台。已经形成完整的新药研究开发体系,包括从新药结构设计到药物筛选评价得到CRCD(Candidate Ready for Clinical Development)的创新药物研究体系,由研究项目管理、化合物设计、化合物合成、物化评价、体外药效学筛选、动物模型的建立、动物药代和毒性评价等组成;以及从CRCD的确立到临床研究申请(Investigational New Drug Application,IND),再到新药上市申请(New Drug Application,NDA)的创新药物开发体系,由开发项目管理、药学研究、药理毒理研究及管理等组成。在国内药物研究与开发领域中一直处于领先水平并致力于建设国际一流的创新药物研究平台。自2009年底开始公司陆续申报注册了6个国家1.1类新药,截至2013年7月已有4个获得I类新药临床批件。公司拥有一支高素质的科研队伍,现有研发人员约150人,海归博士6名,国内院校毕业博士4名,硕士55名,本科以上人员占比72%。核心技术团队由多名具有多年创新药物研发经验的海归博士组成,其中公司CEO吴永谦博士荣获国家“千人计划”,另有山东省“泰山学者”史澂空博士、舒楚天博士,及济南市“千层次”人才彭鹏博士。公司新药研究团队融合了国家新药研究领域的最先进国家和地区的先进技术,步入国内新药研发领先行列。各研究中心下细化各部门,由来自国内各大高校和新药研究企业的博士、硕士及本科组成,更好地发挥国际和国内先进水平。 关于比利时ProCepT公司比利时普罗赛特有限公司(ProCepT)来之于世界制药行业的强国——比利时,是一家专门提供干燥、团聚、包衣和混合等工艺研究设备的制造厂家和服务提供商。经过近20年的专注于过程工艺开发所积累的工程、制造和应用专长,我们设备已经被全世界数百家最著名的制药、生物技术、精细化工、营养保健、食品行业用户及大学和研究机构所使用。我们的工程设计概念是基于模块化、可视性、准确性和定制。 从API到包衣药片,ProCepT提供完整工艺技术:喷雾干燥 Nutsche过滤干燥 真空干燥 微波干燥流化床干燥 流化床制粒 流化床包衣高剪切制粒挤出滚圆 片剂包衣 均质混合 更多ProCepT公司产品信息,请关注!Beijing AnWeiAn Lab Equipments Co.,Ltd北京安唯安实验设备有限公司地址:北京市海淀区昆明湖南路4029室Post code:100195Tel: +86 10 88132032Fax:+86 10 82386759Web: www.al-tt.comNetShow: www.instrument.com.cn/netshow/SH102845/
  • 山西农业大学135.00万元采购高压灭菌器,超纯水器,过氧化氢灭菌,冷冻干燥机,微波消解仪
    详细信息 山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的采购公告 山西省-晋中市 状态:公告 更新时间: 2022-08-14 招标文件: 附件1 项目概况山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的潜在报价人应在山西省政府采购网-政府采购云平台线上获取谈判文件,并于2022年08月23日下午14点30分(北京时间)前提交报价文件。 一、项目基本情况 项目编号:1499002022ATP01814 项目名称:山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目采购方式:竞争性谈判预算金额(元):1350000元;其中第一包:350000元,第二包:1000000元;最高限价(元):第一包:350000元,第二包:1000000元;采购内容:本项目共分二个包,参与报价的报价人提交的报价文件必须实质上响应本谈判文件要求,内容如下: 包号 序号 设备名称 技术参数 数量 单位 是否进口 第一包 1 86寸智慧黑板 详见竞争性谈判文件 2 台 否 2 斜挂式拓展屏(含液压壁挂支架) 详见竞争性谈判文件 2 台 否 3 同步无线时钟显示 详见竞争性谈判文件 2 台 否 4 高清矩阵 详见竞争性谈判文件 1 台 否 5 智能融合信息终端 详见竞争性谈判文件 1 套 否 6 智能触摸面板 详见竞争性谈判文件 1 套 否 7 远程空调控制器 详见竞争性谈判文件 1 台 否 8 多合一传感器 详见竞争性谈判文件 1 台 否 9 触控型电源控制器 详见竞争性谈判文件 2 个 否 10 电动窗帘套装(4个) 详见竞争性谈判文件 1 套 否 11 三路电源控制器 详见竞争性谈判文件 1 台 否 12 音箱 详见竞争性谈判文件 4 只 否 13 功率放大器 详见竞争性谈判文件 1 台 否 14 数字音频处理器 详见竞争性谈判文件 1 台 否 15 无线领夹话筒 详见竞争性谈判文件 1 套 否 16 无线鹅颈话筒 详见竞争性谈判文件 1 台 否 17 电源时序器 详见竞争性谈判文件 1 台 否 18 智慧讲台 详见竞争性谈判文件 1 套 否 19 机柜(含辅材) 详见竞争性谈判文件 1 台 否 20 功率放大器 详见竞争性谈判文件 1 台 否 21 有线鹅颈话筒(2对) 详见竞争性谈判文件 2 套 否 22 录播平台服务器 详见竞争性谈判文件 1 台 否 23 资源管理平台软件 详见竞争性谈判文件 1 台 否 24 互动平台服务器 详见竞争性谈判文件 2 台 否 25 互动教学管理平台 详见竞争性谈判文件 5 台 否 26 互动录播一体机(含软件) 详见竞争性谈判文件 1 套 否 27 教师高清云镜摄像机 详见竞争性谈判文件 1 套 否 28 学生高清云镜摄像机 详见竞争性谈判文件 1 套 否 29 音频处理器 详见竞争性谈判文件 1 套 否 30 全向麦克风 详见竞争性谈判文件 2 支 否 31 控制面板 详见竞争性谈判文件 1 台 否 包号 序号 设备名称 技术参数 数量 单位 是否进口 第二包 1 微波消解仪 详见竞争性谈判文件 1 台 否 2 正置显微镜 详见竞争性谈判文件 1 台 否 3 全自动液氮冷冻研磨机 详见竞争性谈判文件 1 台 否 4 阔叶分析系统 详见竞争性谈判文件 2 台 否 5 植物根系分析仪 详见竞争性谈判文件 1 台 否 6 光谱仪 详见竞争性谈判文件 1 台 否 7 实验型冷冻干燥机 详见竞争性谈判文件 1 台 否 8 整形机 详见竞争性谈判文件 1 台 否 9 高压灭菌锅 详见竞争性谈判文件 1 台 否 10 便携式植株自动测高仪 详见竞争性谈判文件 1 台 否 11 气压式揉捻机 详见竞争性谈判文件 1 台 否 12 96孔板甩板离心机 详见竞争性谈判文件 1 台 否 13 烘焙提香机 详见竞争性谈判文件 1 台 否 14 中型杀青机 详见竞争性谈判文件 1 台 否 15 糖酸测定仪 详见竞争性谈判文件 4 台 否 16 PAR光量子计 详见竞争性谈判文件 10 台 否 17 真空干燥器 详见竞争性谈判文件 1 台 否 18 油浴锅 详见竞争性谈判文件 1 台 否 19 电泳槽 详见竞争性谈判文件 2 台 否 20 超纯水系统 详见竞争性谈判文件 1 台 否 注:按照财政部《政府采购进口产品管理办法》(财库[2007]119号)的有关规定,本项目涉及的所有采购内容除特别标注为“进口产品”外,均必须采购国产产品,即非“通过中国海关报关验放进入中国境内且产自国外的设备”。所采购的货物必须符合国家的强制性标准。 合同履行期限:第一包:合同签订后15日内供货并完成安装调试;第二包:合同签订后30日内供货并完成安装调试;交货地点:采购人指定地点;本项目不接受联合体。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:面向中小企业;3.本项目的特定资格要求:无。三、获取采购文件时间:2022年08月15日至2022年08月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:山西省政府采购网-政府采购云平台线上获取(http://www.ccgp-shanxi.gov.cn/home.html)方式:只允许在线获取凡有意参加报价的报价人,请按照以下步骤获取谈判文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于谈判文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取谈判文件。四、报价文件递交截止时间:2022年08月23日下午14点30分(北京时间)地点:登录山西省政府采购网-政府采购云平台投标客户端提交。电子报价文件递交及格式要求 1、报价文件递交截止时间前在政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)完成递交(上传),递交截止时间前未完成报价文件上传的,视为撤回报价文件,报价人自行承担责任。2、纸质报价文件请在递交截止时间前到开启现场递交,五、报价文件开启时间:2022年08月23日下午14点30分(北京时间)地点:山西省政府采购网-政府采购云平台。六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1、报价人应在报价文件递交截止时间前按照山西省政府采购平台的操作流程将电子报价文件上传至山西省政府采购采购平台系统。2、有关本项目谈判文件的变更信息以上述网站公告为准,采购代理机构不再另行通知。3、报价文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成报价文件上传的,视为无效报价;报价人自行承担责任。4、纸质报价文件请在开启时间前到开标现场递交,(截止时间后送达的报价文件将被拒收)。5、纸质报价文件递交地点:太原市高新开发区新岛科技园D座四层会议室。6、报价人仅提交电子报价文件但未提交相对应纸质报价文件的,均视为该报价人未按照要求提交报价文件,其相应的报价文件将被视为无效且被拒绝。7、针对本项目的质疑需一次性提出,多次提出将不予受理八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:山西农业大学地 址:山西省晋中市太谷区铭贤南路1号联系人:张老师联系方式:0351-62853732.采购代理机构信息名 称:山西德汇招标代理有限公司地 址:太原市高新开发区新岛科技园D座四层403室联系方式:0351-72315533.项目联系方式项目联系人:刘女士、游先生电 话:0351-7231553邮 箱:3497054244@qq.com附件信息: 园艺学院蔬菜花卉 竞争性谈判文件(定稿).doc943.3K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:高压灭菌器,超纯水器,过氧化氢灭菌,冷冻干燥机,微波消解仪 开标时间:2022-08-23 00:00 预算金额:135.00万元 采购单位:山西农业大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山西德汇招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的采购公告 山西省-晋中市 状态:公告 更新时间: 2022-08-14 招标文件: 附件1 项目概况山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的潜在报价人应在山西省政府采购网-政府采购云平台线上获取谈判文件,并于2022年08月23日下午14点30分(北京时间)前提交报价文件。 一、项目基本情况 项目编号:1499002022ATP01814 项目名称:山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目采购方式:竞争性谈判预算金额(元):1350000元;其中第一包:350000元,第二包:1000000元;最高限价(元):第一包:350000元,第二包:1000000元;采购内容:本项目共分二个包,参与报价的报价人提交的报价文件必须实质上响应本谈判文件要求,内容如下: 包号 序号 设备名称 技术参数 数量 单位 是否进口 第一包 1 86寸智慧黑板 详见竞争性谈判文件 2 台 否 2 斜挂式拓展屏(含液压壁挂支架) 详见竞争性谈判文件 2 台 否 3 同步无线时钟显示 详见竞争性谈判文件 2 台 否 4 高清矩阵 详见竞争性谈判文件 1 台 否 5 智能融合信息终端 详见竞争性谈判文件 1 套 否 6 智能触摸面板 详见竞争性谈判文件 1 套 否 7 远程空调控制器 详见竞争性谈判文件 1 台 否 8 多合一传感器 详见竞争性谈判文件 1 台 否 9 触控型电源控制器 详见竞争性谈判文件 2 个 否 10 电动窗帘套装(4个) 详见竞争性谈判文件 1 套 否 11 三路电源控制器 详见竞争性谈判文件 1 台 否 12 音箱 详见竞争性谈判文件 4 只 否 13 功率放大器 详见竞争性谈判文件 1 台 否 14 数字音频处理器 详见竞争性谈判文件 1 台 否 15 无线领夹话筒 详见竞争性谈判文件 1 套 否 16 无线鹅颈话筒 详见竞争性谈判文件 1 台 否 17 电源时序器 详见竞争性谈判文件 1 台 否 18 智慧讲台 详见竞争性谈判文件 1 套 否 19 机柜(含辅材) 详见竞争性谈判文件 1 台 否 20 功率放大器 详见竞争性谈判文件 1 台 否 21 有线鹅颈话筒(2对) 详见竞争性谈判文件 2 套 否 22 录播平台服务器 详见竞争性谈判文件 1 台 否 23 资源管理平台软件 详见竞争性谈判文件 1 台 否 24 互动平台服务器 详见竞争性谈判文件 2 台 否 25 互动教学管理平台 详见竞争性谈判文件 5 台 否 26 互动录播一体机(含软件) 详见竞争性谈判文件 1 套 否 27 教师高清云镜摄像机 详见竞争性谈判文件 1 套 否 28 学生高清云镜摄像机 详见竞争性谈判文件 1 套 否 29 音频处理器 详见竞争性谈判文件 1 套 否 30 全向麦克风 详见竞争性谈判文件 2 支 否 31 控制面板 详见竞争性谈判文件 1 台 否 包号 序号 设备名称 技术参数 数量 单位 是否进口 第二包 1 微波消解仪 详见竞争性谈判文件 1 台 否 2 正置显微镜 详见竞争性谈判文件 1 台 否 3 全自动液氮冷冻研磨机 详见竞争性谈判文件 1 台 否 4 阔叶分析系统 详见竞争性谈判文件 2 台 否 5 植物根系分析仪 详见竞争性谈判文件 1 台 否 6 光谱仪 详见竞争性谈判文件 1 台 否 7 实验型冷冻干燥机 详见竞争性谈判文件 1 台 否 8 整形机 详见竞争性谈判文件 1 台 否 9 高压灭菌锅 详见竞争性谈判文件 1 台 否 10 便携式植株自动测高仪 详见竞争性谈判文件 1 台 否 11 气压式揉捻机 详见竞争性谈判文件 1 台 否 12 96孔板甩板离心机 详见竞争性谈判文件 1 台 否 13 烘焙提香机 详见竞争性谈判文件 1 台 否 14 中型杀青机 详见竞争性谈判文件 1 台 否 15 糖酸测定仪 详见竞争性谈判文件 4 台 否 16 PAR光量子计 详见竞争性谈判文件 10 台 否 17 真空干燥器 详见竞争性谈判文件 1 台 否 18 油浴锅 详见竞争性谈判文件 1 台 否 19 电泳槽 详见竞争性谈判文件 2 台 否 20 超纯水系统 详见竞争性谈判文件 1 台 否 注:按照财政部《政府采购进口产品管理办法》(财库[2007]119号)的有关规定,本项目涉及的所有采购内容除特别标注为“进口产品”外,均必须采购国产产品,即非“通过中国海关报关验放进入中国境内且产自国外的设备”。所采购的货物必须符合国家的强制性标准。 合同履行期限:第一包:合同签订后15日内供货并完成安装调试;第二包:合同签订后30日内供货并完成安装调试;交货地点:采购人指定地点;本项目不接受联合体。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:面向中小企业;3.本项目的特定资格要求:无。三、获取采购文件时间:2022年08月15日至2022年08月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:山西省政府采购网-政府采购云平台线上获取(http://www.ccgp-shanxi.gov.cn/home.html)方式:只允许在线获取凡有意参加报价的报价人,请按照以下步骤获取谈判文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于谈判文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取谈判文件。四、报价文件递交截止时间:2022年08月23日下午14点30分(北京时间)地点:登录山西省政府采购网-政府采购云平台投标客户端提交。电子报价文件递交及格式要求 1、报价文件递交截止时间前在政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)完成递交(上传),递交截止时间前未完成报价文件上传的,视为撤回报价文件,报价人自行承担责任。2、纸质报价文件请在递交截止时间前到开启现场递交,五、报价文件开启时间:2022年08月23日下午14点30分(北京时间)地点:山西省政府采购网-政府采购云平台。六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1、报价人应在报价文件递交截止时间前按照山西省政府采购平台的操作流程将电子报价文件上传至山西省政府采购采购平台系统。2、有关本项目谈判文件的变更信息以上述网站公告为准,采购代理机构不再另行通知。3、报价文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成报价文件上传的,视为无效报价;报价人自行承担责任。4、纸质报价文件请在开启时间前到开标现场递交,(截止时间后送达的报价文件将被拒收)。5、纸质报价文件递交地点:太原市高新开发区新岛科技园D座四层会议室。6、报价人仅提交电子报价文件但未提交相对应纸质报价文件的,均视为该报价人未按照要求提交报价文件,其相应的报价文件将被视为无效且被拒绝。7、针对本项目的质疑需一次性提出,多次提出将不予受理八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:山西农业大学地 址:山西省晋中市太谷区铭贤南路1号联系人:张老师联系方式:0351-62853732.采购代理机构信息名 称:山西德汇招标代理有限公司地 址:太原市高新开发区新岛科技园D座四层403室联系方式:0351-72315533.项目联系方式项目联系人:刘女士、游先生电 话:0351-7231553邮 箱:3497054244@qq.com附件信息: 园艺学院蔬菜花卉 竞争性谈判文件(定稿).doc943.3K
  • 680万!北京大学极低温强磁场扫描隧道显微镜采购项目
    项目编号:BMCC-ZC22-0255项目名称:北京大学极低温强磁场扫描隧道显微镜采购预算金额:680.0000000 万元(人民币)采购需求:包号名称数量预算金额是否接受进口产品01极低温强磁场扫描隧道显微镜1套680万元是注:1.交货时间:合同签订后390日内交货并安装完毕。2.交货地点:北京大学用户指定地点。3.简要技术需求及用途:通过将射频、微波等高频信号与极端条件下的原子扫描探针相耦合,发展融合扫描隧道显微学和量子相干操控技术的新型仪器,从而有能力对单原子、单分子级自旋态进行相干操控,同时探索对电子核量子态、分子振动态等单量子态的极限探测和操控。 合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 仪器进国博,中科院首台扫描隧道显微镜入藏国家博物馆
    p style="text-indent: 2em text-align: justify "提到中国国家博物馆,大家首先就会想到馆藏的历史文化珍宝,其中的“后母戊鼎”和“四羊方尊”更是通过小学的历史课本深深的印刻在中国人民的心中。但谁能想到,科学仪器可以被国家博物馆收藏呢?/pp style="text-indent: 2em text-align: justify "昨日,我国自主研发的首台扫描隧道显微镜CSTM-9000设备入藏了中国国家博物馆,中科院化学研究所向国家博物馆捐赠了这台设备。/pp style="text-indent: 2em text-align: justify "据了解,CSTM-9000是在1987年、由我国科学院院士白春礼主持研制的,是我国第一台计算机控制、有数据分析和图像处理系统的数字化扫描隧道显微镜,这台仪器当时达到国际先进水平。CSTM-9000的研制成功,获1990年国家科技进步二等奖。更为重要的是,它使我国当时在探索物质表界面研究领域迈入了世界先进水平的行列,同时也开拓和促进了多个学科领域尤其是纳米科技的研究和发展。/pp style="text-indent: 2em text-align: justify "“CSTM -9000的研制成功,使我国当时在探索物质表界面研究领域迈入了世界先进行列。今天来看,它的性能与最新设备已经无法相提并论,但其彰显当代中国科技发展、留于后人思考的历史意义却十分重大。”中科院化学研究所副所长范青华说道。/pp style="text-indent: 2em text-align: justify "中国国家博物馆副馆长陈成军表示,科技创新事业,是当代中国不断改革发展进步的重要动力,也是实现中华民族伟大复兴光辉历程不可或缺的组成部分。扫描隧道显微镜的入藏,丰富了国家博物馆在当代科技实物领域的馆藏,中国国家博物馆在拓展征集领域、积累新中国科技史馆藏过程中具有重大意义。/pp style="text-indent: 2em text-align: justify "中国国家博物馆馆长王春法表示,国博和中科院两家单位将以此次捐赠为契机,进一步在当代中国科技发展物证的收藏、展览和研究等领域开展深入、多元的合作,共同记录当代中国科技工作者奋进创新的历史,为民族存史,为时代画像。/pp style="text-indent: 2em text-align: justify "中国国家博物馆馆长王春法向中科院化学研究所副所长范青华颁发了收藏证书。/p
  • 如何储存3D 打印丝?无需担心水分损坏——干燥器助您安心储存
    近几年来,3D打印这个名词从陌生到熟悉,逐渐走向人们的生活和工作中,但仍有很多人对3D打印不够了解,今天就和大家浅谈一下3D打印及如何储存3D打印丝。3D打印(3DP)即快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印通常是采用数字技术材料打印机来实现的。形象来讲,普通的打印机是将2D图像或图形数字文件通过墨水输出到纸张上;3D打印机则是将实实在在的原材料输出为一薄层(物理上具有一定的厚度),然后不断重复一层层叠加起来,最终变成空间实物。因此,3D打印在输出某一分层时,过程与喷墨打印是相似的。就像盖房子,是通过一块一块砖所累积而成,而3D打印的物品是通过原材料的一粒一粒所累积而成。[1]图1:3D打印(3DP)图2:某种意义上糖画也算一种3D打印【来源:视觉中国】而其中可粘合材料也是决定3D打印成品质量的重要因素,用于3D打印的常见长丝材料包括尼龙、聚碳酸酯和PETG。这些材料具有吸湿性,暴露在空气中会吸收环境中的水分。因此,合适的存储方式可减少水解的风险,对保持材料质量有重大作用。3D打印所面临的挑战环境中的水分会影响3D打印线材的质量示例:Jeff最近注意到他的3D打印产品质量下降,这些产品很脆并且有气泡。经过一番研究,他发现质量问题是由于打印丝存放在不受控制的环境中,并且随着时间的推移从空气中吸收水分。解决方案Secador® 4.0立式自动干燥器图3:Secador® 4.0立式自动干燥器Secador® 4.0立式自动干燥器型号:F42074-1118、F42074-1228Secador® 4.0立式自动干燥器允许用户在湿度受控的环境中存储打印丝。每20分钟自动干燥循环和可再生的二氧化硅干燥剂,保证环境湿度无需频繁检查%Rh水平。Secador® 4.0干燥器中最多可存储9卷打印丝,上面列出的型号为琥珀色,以保护对紫外线敏感的打印丝。其他颜色(用于非紫外线敏感打印丝)和尺寸的干燥器也可满足您的需求。图4:打印丝
  • 慧淘限时特惠 | SP Bel-Art SECADOR柜式自动干燥器
    慧淘科仪商城 • SmartLab Hub 一站式科研用品采购平台当需要无尘储存或收纳对湿度敏感的产品(比如珍贵的试剂或电子产品)时,干燥器是确保干燥环境最经济可靠的工具之一。选择最适合实验、空间要求和要存储的物品的干燥器尺寸、形状和控制结构,可以优化适当的存储条件。一般来说干燥器可分为四种基本类型:标准型、自动型、气体吹扫型和真空型。 点击可放大表格查看如何选择合适的干燥器?首先决定哪种干燥器类型更符合你的需要。每种方法都有其独特的优点和利弊。 - 标准干燥器通常使用干燥剂筒,而且经济实惠,但需要监控,根据需要更换干燥剂筒,以保持持续干燥的环境。 - 自动再生干燥器需要最少的监测,无需担心样品受到损害,但通常比标准的干燥剂更昂贵。- 真空干燥器使用室内实验室真空或真空泵去除空气和水分,打开后可轻松恢复真空;真空干燥器也可用于脱气技术,真空维持的时间因型号而异。气体端口干燥器可用于干燥气体,如氩气和氮气,以实现超干燥的环境。 本期超值购 慧淘精选 SP Bel-Art SECADOR柜式自动干燥器 自动监控防紫外线 低/至/五/折促销优惠至9月20日使用 Secador 自动干燥器可以轻松保护贵重的湿度敏感物品,例如试剂或电子产品。获得*的电子干燥剂再生模块每 20 分钟为干燥剂充电一次。与每4-6小时再生一次的其他自动干燥器相比,Secador 自动干燥器在启动时就可以达到较低的相对湿度(%rH)水平并始终保持低湿度,尤其是在频繁打开干燥器时。Durastar 共聚酯结构可阻挡 99% 的紫外线,并能抵抗染色、开裂和化学侵蚀琥珀色型号将可见光穿透率降低 50% 以上;非常适合储存光敏材料,如试剂、分析标准和研究化合物自动除湿和干燥剂模块再生循环每20分钟连续运行一次干燥剂再生模块内的彩色指示硅胶可快速观察确认干燥剂状态带有数字湿度计的门可尽可能大限度地进入内部空间;包括用于挂锁或防篡改密封的*密封设计、拉片闩锁和安全环;从右向左打开带有孔隙的搁板可促进干燥空气的循环34.1W x 41.4cmD (13.4 × 16.3”) 占地面积,可节省空间,最多可堆叠 2 个单元从 100、120 或 230V(CE 标志)型号的多种尺寸、款式和颜色中进行选择,供全球使用可更换搁板;4.0 款可以通过转动干燥器和订购适当数量的货架从垂直配置转换为水平配置,反之亦然可更换的Secador 自动干燥器模块干燥剂珠(F42074-0020)U.S. Patents: 6,772,534 6,834,920 7,114,266 7,318,630 and D474,6 点击可查看大图关于SP Bel-ArtSP Bel-Art隶属于SP Scientific集团,公司坐落于美国新泽西州,自1946年创立以来,以开发、生产广泛应用于制药、生命科学、生物技术、教育、食品、医疗保健与石化行业的实验室设备和消耗品、玻璃制品为己任,现有产品超过10,000种,为客户提供全面的选择,产品广泛销往美洲、欧洲、亚洲、非洲、澳洲等多个国家和地区。Bel-Art产品经过反复的实践检验,以高质量的标准为全球广大用户提供全方位的产品和技术服务。作为SP旗下的一个成员,Bel-Art致力于为客户提供更多创新性、更有价值的产品。SP Bel-Art主打产品细胞过滤器保存小体积样品,避免流式细胞仪堵塞安瓿瓶开瓶器杜绝试剂污染,安全方便开启安瓿瓶无菌取样工具FDA级别适用于生物制药行业,伽马射线灭菌,无需进行昂贵的清洁验证生物危害处理高压灭菌处理生物危害垃圾干燥器款式丰富,合理化实验室空间磁力搅拌子种类繁多,适用于各种搅拌实验常用管架试管架、离心管架等温度计涵盖各种玻璃液体、电子和双金属温度计比重计波美计、密度比重计、酒精比重计等试剂瓶带GHS标签的安全洗瓶、试剂瓶等移液器和附件各种款式移液产品生命科学相关产品磁珠分离架、96孔PCR板、研磨器、克隆环等
  • 先进检测仪器助力隧道“体检” 获隧道界“奥斯卡”奖
    昝月稳在颁奖礼上  西南交通大学教授昝月稳团队凭借“高效快速检测隧道衬砌结构状态车载探地雷达新技术”,获得国际隧道与地下空间协会(ITA)颁发的2015年度技术创新奖。  这一被誉为隧道界“奥斯卡”的奖项今年吸引了全球103个项目参评,最终8个项目获奖。昝月稳团队的参评项目是中国今年获得的唯一奖项,也是ITA颁发的首个年度技术创新奖。这项检测技术,被ITA赞为“解决了国家铁路网隧道安全检查的重大问题,具有显著的社会效益”。  历时14年,研制出隧道新型“体检设备”  随着交通日益发达,地铁、公路隧道、穿山铁路隧道等地下交通在我们的生活中占有越来越大的比重。  不过,这些隧道开始运营之后,就像人体一样,会产生生老病死等各种问题,随之出现的落石、漏水、开裂等等,会对交通和安全产生不可估量的危险。因此,需要经常对这些隧道进行“体检”。但是,目前的体检方式还依赖于人工,检测人员操纵笨重的机器一步步的检测,有时仅仅一公里的隧道,一天都检测不完。  11月19日,国际隧道与地下空间协会在瑞士举行了一场颁奖典礼,由西南交通大学教授昝月稳、李志林等申报的“高效快速检测隧道衬砌结构状态车载探地雷达新技术”项目获得了年度技术创新大奖。这也是我国获得的唯一奖项。  这种车载探地雷达系统大大颠覆了现在的隧道检测技术,不仅解放了人力,还将检测成本至少降低了一半。而今年10月,这种检车方法已经在成都铁路局所属的达成铁路上应用了。  对比  老方法  检测人员手举天线一公里隧道一天都检测不完  “目前,隧道的运行周期是一百年,它会不断地老化,会产生各种问题。”12月18日上午,在西南交大,昝月稳教授介绍起了他的这项研究。  他说,隧道老化很正常,但列车在隧道运行的时候,最害怕的就是隧道掉块、漏水,掉块砸到列车,被迫停车,封锁线路十几个小时的事情都是有的。为了减少这种状况的发生,就需要经常对隧道进行体检。  而现在平常检查隧道的方法比较“原始”,主要依靠人工,拿着手电筒在隧道走上一遍,照一下重点方位,靠人判断是否有状况发生。  每隔一段时间,还会进行全面“体检”,通常用的是“探地雷达”,趁着列车行进的间歇,把机器开进隧道,由人工压着天线紧贴隧道墙壁,探头通过天线发射电磁波,检测人员再通过回波探测出墙下结构,分析墙面状况。这种人工检测的方法约莫需要七八个工作人员同时工作,检测时速在5公里左右,需要来回五次才能把整个隧道检测完毕。“因为检测必须在列车行进间歇进行,有时候一公里的隧道,一天都检测不完,”昝月稳说道。  新成果  6个探头安在列车尾部成都到西安一晚就能完成检测  同传统人工检测使用一个探头不同,昝月稳研究的“车载探地雷达设备”是安装在一节列车车厢的尾部,上方和左右两侧共有6个探头同时探测,与此同时,它的最高时速可以高达175km,只需要两名工作人员监控系统,就可以在正常的列车运行条件下完成整条线的检测。  “以前人工检测必须紧贴着墙壁,你看这个,安装在列车上的探头,距离墙壁的最远距离多达2.25米。”昝月稳指着图示解释说,以前的人工探测就像是照相机,而他的“车载探地雷达设备”就像是摄像机,列车一路行走,探头就能完成记录整个过程中的地质状况。“而为了保证质量,目前我们检测时列车运行时速为80公里。从成都到西安,坐在车上不用动,一晚上就可以完成整条线的检测。”  从间歇式的5公里/时到目前的80公里/时,从原来的紧贴墙壁到现在可透过空气检测,从原来的单线检测到现在的6个探头同时检测,不仅减少了人力,还把检测费用降低到了原有的一半,昝月稳的“车载探地雷达设备”彻底地改变了国家铁路网隧道病害不能普查和定期体检的现状。这项技术不仅节省了人力成本,还降低了检测费用。2015年,这项技术在西安铁路局全面推广并在成都铁路局达成铁路上应用。  应用  2002年开始测试今年已应用在成都线路上  这项技术是以昝月稳为主的科研团队从2002年开始研制,2012年,西南交通大学以此项技术申报国家发明专利,2014年4月获得国家发明专利权。  2013年1月,这项科研项目通过铁道部科技司课题验收,2015年,这项检测技术开始在西安铁路局所管辖的线路上进行全面推广,并进行了所有线路的检测。今年10月,在成都铁路局所管辖的达成线上完成检测。  “其实,这项技术不仅仅可以用在铁路隧道上的检测,在地铁隧道和公路隧道上,也具有广阔的应用前景。”这不,今年10月,这个项目还在广州地铁上进行了检测,测试效果也非常好。  背后故事  14年潜心研究  曾背着主机显示屏徒步10公里去测试  一个科研项目的成功,背后当然凝聚着研究人员的心血,而这项“车载探地雷达设备与技术”的成功,昝月稳整整用了14年的时间。  2002年,作为某单位里的唯一一名博士,他辞掉安稳的科长职务,开始专心研究车载探地雷达技术。当时,研究人员少、资金短缺,他就和几个科研人员背着显示器、计算机主机、探头、天线等一整套的探测雷达系统,走上10多公里的小路,到大山中的隧道中去探测。科研经费短缺,他就自己边赚钱边研究。  昝月稳说,因为需要跟着列车走,几天几夜吃住在车上的事情都是常有的。冬天内蒙古冷到零下28℃,那时候他就知道了手摸到铁皮要粘起来的感受。新隧道检测,里面全部是粉尘,他们就用被单把列车的车门、窗户全部蒙起来。  不过,这些苦还不是最大的挑战。最让他们焦心的是,研究过程中机器设备的耗损,一不小心就会坏掉,三更半夜到了车站,来不及休息,就到处敲门找人去修,“没办法呀,不修好所有数据都没了,这一趟真的是白跑了,那时候半夜去敲门的状况还是很多的。”最让昝月稳印象深刻的是一次事故,列车到了陕南的一小站,山间容易起雾,设备都是放在露天的车站,早上五六点发车,一启动,接收器全部都烧了,没有办法,只能白跑一趟,回去再全部重新定做机器。  昝月稳说,隧道的一般病态有漏水、断裂、腐蚀老化、掉块等,为保证运输隧道安全,需要对其进行病害普查,特别要对老龄隧道进行定期检查。该项目就是为铁路隧道提供“体检”的新设备与技术。
  • 干货锦囊 | 灭菌隧道降低细菌污染风险
    监管机构更倾向于对注射药物进行灌装后灭菌。但是对于某些产品,例如生物药品,无法进行灌装后灭菌,因为这会对产品产生不利影响。在这些情况下,必须在100级或ISO-5环境中对产品进行无菌灌装。样品瓶必须清洗以去除颗粒,然后在填充之前进行灭菌处理。从历史上看,如果对产品进行灌装后灭菌,通常的做法是将西林瓶从清洗机中直接转移到灌装室。但是,2018年4月发布的《ISPE基线指南第3卷无菌产品制造设施1》中建议对所有西林瓶进行灭菌处理,即使产品会进行灌装后灭菌也是如此。灭菌是从西林瓶表面去除热原的过程,包括消除细菌内毒素。有几种不同的方法可以对西林瓶进行灭菌处理。非常常见和有效的方法之一是使用烘烤干燥。将样品瓶暴露于250°C以上的温度会破坏热原。大多数灭菌过程被设计为至少使内毒素减少至千分之一,甚至百万分之一。灭菌的两种最常见方法是灭菌烘箱和灭菌隧道(见图1),但是这两种方法的风险水平不同。使用灭菌隧道所涉及的风险主要来自隧道内气流的控制。用烘箱灭菌有关的风险包括手动操作西林瓶以及灭菌与灌装之间的停留时间。本文讨论了这些风险和解决方案。 图1 灭菌隧道灭菌隧道与灭菌烘箱灭菌烘箱或灭菌隧道(见图1)都可以完成样品瓶的灭菌工序。在使用灭菌烘箱过程时,在准备区域(通常为C级或ISO-7洁净室)中清洗西林瓶,放在托盘上,然后手动装入烘箱。烘箱位于准备区域和灌装线之间。设计良好的灭菌烘箱有两道门,一道通往准备区,另一道通往灌装线隔离器或无尘室。灭菌过程完成后,西林瓶需要手动转移到灌装线上。灌装工序可能需要几个小时后才能开始。Haag2(2011)的论文中强调了在灌装过程中由于容器内表面暴露在空气中而造成污染的风险,并论证了开口西林瓶与污染风险增加的相关性,即使在A级无菌环境中也是如此。但是在高效的灭菌通道中处理的西林瓶,经过约15分钟的冷却过程,就会自动送入灌装机,污染的风险大大降低。举例说明:我们现在考虑每批生产10,000瓶样品,生产线速度为每分钟50个(假定生产效率为80%)。在常见的商业灌装线上,从开口的西林瓶离开灭菌通道开始,到开始加塞的时间大约为8分钟。但是对于灭菌烘箱,相同批次的最末尾一个西林瓶从烘箱中出来的时间算,暴露时间可能长达250分钟甚至更久。更长的暴露时间使污染风险增加了30倍,这还不包括操作人员手动操作带来的相关污染风险。Rick Friedman(FDA / CDER科学与法规政策副主任)在2019年ISPE无菌会议上的开幕词中,谈到了做出积极选择以最、大的程度降低污染风险,并评论说“所有新的无菌灌装线设计均应采用灭菌隧道而不是灭菌烘箱。”预灭菌西林瓶可能产生的风险购买预先消毒的西林瓶是厂内灭菌工艺的替代方法。在这种情况下,西林瓶的清洗和消毒在另外的地方进行,然后将西林瓶装进双层袋中,然后运到生产现场。供应链复杂性的增加带来了不可避免的风险。比如说,必须对西林瓶供应商进行监控,以确保其在整个灭菌和包装过程中均遵循一定的质量标准。用于包装的薄膜尽量是无颗粒的,并且洗涤,灭菌和包装过程是自动化的,以减少人工操作。下一个要考虑的风险来自运输过程,在运输过程中,玻璃瓶之间的摩擦和碰撞会产生难以清除的玻璃颗粒和碎屑。操作员在手动开包的过程中需要遵循特殊的消毒程序,以确保外部包装上的污染物不会转移到西林瓶中。灭菌隧道相关的质量评估对于大批量生产,灭菌隧道是个显而易见的*选择。但是,从降低风险的角度出发,对于较小的生产规模,也应考虑使用灭菌隧道。专门为小批量应用设计的西林瓶清洗机和灭菌隧道组合占用的空间极小,仅占8英尺(2.5m)。灭菌隧道的主要目的是实现内毒素的对级降低。在选择隧道制造商时,至关重要的是评估制造商的气流设计,以确保洁净室和盥洗室内的压力波动不会影响灭菌过程。对空气质量要求最严格部分是灌装部分。相对于空气质量要求较低的的区域,该区域应始终处于较高的气压下,以防止空气倒流。但是,例如在开关门时,空气处理系统的调节有滞后性,这个时候气压水平会发生波动。这种压力波动可能会影响设计不当的灭菌隧道的性能。一些隧道设计使气流从灌装区到清洗区进行分级流动(见图2)。灌装区域气压的波动会使得冷空气更多从寒冷区域进入热区域,消耗了高温灭菌所需要的热量。图2:从洁净室到热区的级联空气。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域更复杂的隧道设计会对隧道的加热灭菌区加压,从而西林瓶能够始终暴露于适当的温度下(见图3)。西林瓶传送带下方设计了一个气体返回装置,能够形成从冷却区直接到进料区的空气通道。此外,有些设计还配有风扇,可将新鲜空气从制备室通过预过滤器带入热区。对此气流进行严密监视,并精确调节风扇速度以抵消灌装室压力的任何变化。设计*的隧道,在热区加压的情况下,可以控制70Pa的灌装级联过程,而复杂程度较低的装置通常只能控制10-15Pa。热区加压的第二个好处是自然温度梯度,当热区空气与相邻区域的较冷空气混合时会出现自然温度梯度。这样可以提供逐渐变化的温度,从而将因温度剧变引起碎瓶的风险降低。图3:经过加压的热区。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域隧道设计中要考虑的另一个问题是穿过西林瓶传送带的空气速度。空气速度与温度成正比,因此从质量的角度来看,重要的是要尽量小化加热过程中的温度变化。对传送带上的风速进行统一控制的隧道,能够实现更好的过程控制和批次均一性。在隧道两侧都带有回风的隧道(与单侧回风相反)通常在整个传送带上的空气速度变化较小(见图4)。 图4 (左)两侧回风;(右)单侧回风一些单面回风隧道设计结合了气流控制,可以补偿压力梯度,并在传送带的整个宽度上产生非常一致的气流(见图5)。这样的设计能够产生极优结果,消除温度过低的位置,并提供一致的灭菌效果。 图5 速度补偿后的单侧回风 其次,应考虑对灭菌隧道中无法清除的颗粒数量进行原位监测。大多数灭菌通道的设计可在进料区和冷却区进行颗粒计数。但是,迄今为止,只有一家制造商提供了监视加热灭菌区中西林瓶颗粒数量的功能。从热区收集的空气通过热交换器流向颗粒计数器(以避免损坏传感器)。该过程通常记录冷区(灌装区)5秒钟的颗粒计数,再记录5秒钟的热区(加热灭菌区)颗粒计数,再记录5秒钟的进料区颗粒计数,然后在整个生产过程中重复该循环。该解决方案可对所有三个区域进行全面的原位颗粒监控,以实现极其*的过程中质量控制。总结生产注射药物时,必须始终将患者安全放在首位。药品的生产和包装过程很复杂,但是制药行业在降低产品污染风险方面已经取得了重大进展。操作人员是无菌过程中最常见的颗粒和污染物来源。自动化生产极大降低了人员污染的风险。自动化设备很容易用于大规模生产过程。但是,传统上较小规模的生产更多地是通过是手动过程进行的,因此受到污染的风险更高。随着生物药品的发展以及更多定制化药品的出现,药品每批次生产的数量随之降低,设备供应商也相应作出改变,提供机器人灌装设备为这类产线服务。在为小规模生产选择清洗和灭菌设备的时候,必须考虑质量控制问题。现在可以使用自动洗瓶机和灭菌隧道来适应这些高价值的小批量应用。在选择设备时,尺寸、处理量,还有气流设计,都是提供无菌和无颗粒物保证的关键考虑因素。SP隶属于SP Industries.Inc., 是一家知名的科学设备供应商,品牌包括SP VirTis,SP FTS,SP Hotpack,SP Hull,SP Genevac,SP PennTech,SP i-Dositecno等。涉及的产品包括冻干,无菌灌装生产线,离心浓缩,低温循环水浴,玻璃器皿清洗机,恒温恒湿箱等。SP的产品服务于制药,科学研究,工业,航空,半导体和医疗保健等行业。总部位于宾夕法尼亚州的沃明斯特(Warminster),在美国,西班牙和欧洲的英国设有生产工厂,提供遍布全球的销售和服务网络,并提供包括培训和技术支持在内的全面产品支持。参考文献 1.Baseline Guide Vol 3: Sterile Product Manufacturing Facilities, April 2018, ISPE. 2.Mattias Haag, 2011, Calculating And Understanding Particulate Contamination Risk. Pharmaceutical Technology Europe,Volume 23, Issue 3
  • 隧道检测仪器保障地铁安全运营
    “从1969年10月1日北京地铁一号线试运行至今已经历50多年,我国地铁里程不断攀升。据中国城市轨道交通协会最新统计,2020年我国地铁运营总里程6200多公里,在建5000多公里,总历程达到超过一万公里。当前,我国北、上、广、深等特大城市,轨道交通里程处于世界前五的水平。”近日,北京交通大学副教授王耀东接受采访时说。  而地铁隧道病害与表面状态检测则是保障安全运营的重要内容之一。“否则,地铁隧道一旦发生事故,将会给生命财产带来巨大损失。”在4月22日举行的聚焦2021年北京地区广受关注学术成果报告会上,王耀东说。随着隧道病害检测技术的快速发展,他和团队正在尝试将机器视觉、先进传感等技术引入相关检测,让这一过程变得更加高效、智能。  隧道“体检”,从人工巡检到机器检视  地铁交通极大方便了城市居民的出行,但是地铁隧道中出现的各种“病害”,如隧道裂缝、渗漏水、沉降、衬砌剥落、掉块等,给电客车安全运营带来挑战。  以隧道裂缝为例,王耀东表示,其形成原因比较复杂,岩层性质、岩土压力、混凝土收缩、结构移位变形、侵蚀破坏、施工遗留等都是潜在诱因。别是南方的过江过河隧道或地下水较丰富区域的隧道,如果产生裂缝产生就会产生渗漏水,影响地铁运行的安全。因此需要定期巡检,及时养护、维修。  王耀东还记得2012年回国之初跟随地铁巡检人员做现场数据采集的情形。“凌晨1点到4点,夜深人静,地铁停运,才会开始人工巡检,要用肉眼观察、手写记录。”  他表示,尽管传统的超声波检测法、声发检测法、电磁波检测技术等不断提高检测精度,但速度低、效率慢,难以满足现代轨道交通快速发展的需求。而信息技术的发展,多维传感、机器视觉检测技术的使用则为这项检测工作的提速、高效提供了新的契机。  “机器视觉的特点是效率高、可移动、非接触,特别是信息处理自动化、智能化、数字化,也是隧道巡检的发展方向。”王耀东说。他和同事在不断尝试把机器视觉技术、图像处理技术、多维感知、人工智能等技术,应用在隧道病害检测当中,这些智能巡检技术可以逐步代替人工,完成隧道基础设施的自动检测。  裂缝识别,让机器拥有“人眼”和“大脑”  “裂缝检测智能巡检技术主要分两个步骤,第一步是图像裂缝采集,利用高速相机和特制的辅助光源,保证采集到高质量的隧道图像 第二步是裂缝病害图像处理,对所有原始图像进行预处理,包括:匀光处理、连通区域分块化、噪声滤波等,提取纹理目标进行特征判断,最后识别裂缝区域,为后续速调维护提供技术支持。”王耀东介绍。  这些听起来似乎很简单,但如何让机器像人眼一样,全面、精细采集图像,并像人脑一样准确地识别裂缝种类呢?每一步做起来都不简单,都需要精细化的算法研究和关键技术的攻克。  例如,他们研发了图像采集系统样机引入了线阵相机(进行连续拍摄形成二维图像,避免图像重叠和数据冗余)、面阵相机(针对隧道中照明不佳,进行大面积强光源补光)、定向运动设备(对隧道进行扫描式图像采集降低漏检率),来获得高质量的图像。他们还开发出一套表面裂缝图像的批量识别软件,设计出核心算法进行图像处理。  经过近十年的“磨剑”,王耀东及团队成员克服各种挑战,2018年在发表于《铁道学报》的论文研究中,首次报告了基于局部图像纹理计算的隧道裂缝视觉检测技术。他们研发的一套图像采集系统实验样机,将线状激光光源、高速线阵相机、激光发生器、图像采集卡,安装在可调节移动式视觉检测平台上,可在隧道中进行巡检。然后将高分辨率裂缝图像分成子区域,针对性地进行算法研究,完成最后的检测。  “这种智能巡检技术有助于解放人力,服务地铁运维。”王耀东说。他坦言,从综合指标看,目前这种技术对于背景简单的普通隧道裂缝识别率比较高,可以达到84%以上。但对于比较复杂环境下的裂缝,识别率还有待提高。”。  2018年至今,随着深度学习卷积神经网络深入发展,对海量隧道图像的计算性能有了数十倍的提升,识别率也有较大提高。然而,王耀东表示,对于复杂恶劣环境下,肉眼难以观察的微小缺陷仍然很难检测到。  增强自主创新,助力交通强国建设  王耀东希望,在未来检测算法上,加强对不同类型纹理噪声的识别,提高图像处理的计算效率,进一步提高隧道病害检测效率。  为此,他们建立了隧道病害样本库,基于深度学习,对隧道表面病害图像多分类智能识别。为了更好地采集图像,他们还对采集系统进行了模块化研发,并研制了隧道巡检机器人,对隧道裂缝、三维形变、沉降进行检测。  目前,他们还在研制多种类、移动式隧道检测平台,如低速便携手推式(0-10公里/小时)检测平台,到中速紧凑自主行走式检测平台(0-30公里/小时),再到高速车载式综合检测平台(0-100公里/小时)的,以及路轨两栖式综合平台(0-60公里/小时)。对隧道、轨道多维数据进行采集,并进行智能分析和大数据处理,最后生成区间报表提供给专业人员使用,用于隧道和轨道维护。  “目前,我国轨道交通运营里程已经位居世界第一位,智能运维也处于世界前列。”王耀东说,但仍然亟需加强自主创新。他举例说,我国轨道交通智能数据采集设备、高精尖传感器还需要从国外进口,这些设备有的一套系统单一功能,但因为技术被国外垄断,报价却达到数百万元,甚至上千万元。  “我们科技工作者还要继续努力,推动基础研究创新,将主动权掌握在自己手中。”他说,2035年我们国家要基本建成交通强国,这将推动我国城市轨道交通进一步向大数据、智能化、精准化方向去发展,让老百姓出行更安全、更便利,乘坐舒适性更高。
  • 第十一届扫描隧道显微学学术会议举办
    仪器信息网讯 2010年11月3日-5日,由中国科学院武汉物理与数学研究所承办的第十一届扫描隧道显微学学术会议在武汉举行。130余名来自全国高等院校、科研机构、企业的从事扫描探针显微学的专家学者参加了此次会议。仪器信息网作为独家支持媒体也应邀参会。会议现场  扫描隧道显微学学术会议是由白春礼院士发起的全国性会议,每两年一届。会议开幕式由中国科学院武汉物理与数学研究所曹更玉研究员主持,中国科学院武汉物理与数学研究所党委书记詹明生研究员致开幕词。  中国科学院武汉物理与数学研究所 曹更玉研究员  中国科学院武汉物理与数学研究所党委书记 詹明生研究员  本次会议内容主要包括:扫描隧道显微学(STM)与物理、扫描隧道显微学与化学和材料科学、扫描探针显微学(SPM)在生命科学中的应用、扫描探针显微学技术进展。会议展示了最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果。  扫描隧道显微学与物理学  报告人:中国科技大学 杨金龙教授  报告题目:Theoretical studies of inelastic electron tunneling phenomena in STM  杨金龙教授介绍了课题组近几年在STM非弹性扫描隧道谱方面的理论研究工作:1. 非弹性电子在扫描隧道显微镜的应用中产生的许多现象;2.在常规的程序包中增加程序,并用于理论非弹性隧道谱和模拟实验的比较;3.研究非弹性电子在扫描隧道显微镜实验中所产生的表面分子化学运动,如旋转、激发、断键等;4.非弹性电子引起的 “分子开关”效应。  报告人:合肥微尺度物质科学国家实验室 董振超教授  报告题目:STM诱导的分子光电新现象  董振超教授指出扫描隧道显微镜不仅可以用来观察和操纵纳米世界的单个原子和分子,而且其高度局域化的隧穿电流可以激发隧道结发光,他介绍了自己如何通过分子光子态调控来实现分子隧道结的新光电效应。  报告人:中国科学院物理研究所 肖文德研究员  报告题目:Ru(0001)上外延生长单层石墨烯的电子结构和振动模式的STM研究  肖文德研究员介绍说虽然光电子能谱、拉曼光谱、红外光谱等技术可对石墨烯的电子和声子特性进行研究,但是这些技术通常获得的是样品表面较大范围的平均信息。而石墨烯通常都呈现一定的起伏和皱,应用高分辨扫描隧道显微镜的扫描隧道谱和非弹性隧道谱法,实现了对Ru(0001)上外延生长单层石墨烯不同区域的电子结构和振动模式的研究。  此外,来自合肥微尺度物质科学国家实验室的张汇博士介绍了利用扫描隧道显微镜研究Si(111)表面In原子链上的一种孤子,并利用第一性原理的计算得到了这种孤子的精确结构。大连理工大学吴永宽博士利用原子力显微镜对室温沉积的Ge2Sb2Te5薄膜进行实位温控成像研究。上海交通大学分析测试中心的邹志强研究员利用超高真空STM对Mn及其硅化物薄膜在Si(111)衬底上的固相外延和反应外延生长进行了详细研究。  扫描隧道显微学与化学和材料科学  报告人:华南理工大学材料科学与工程学院 邓文礼教授  报告题目:设计合成有机分子的纳米构筑和仿生纳米制造探索  邓文礼教授设计合成了1,3,5-苯三氧十三酸乙酯等化合物分子,并了在大气环境条件下,利用扫描隧道显微镜分别研究了合成化合物分子在固态表面的吸附和自组装行为。  此外,邓文礼教授重点介绍了对于爬山虎吸盘粘附作用的研究,通过探究其表面结构、所含的天然成分、生长过程等实现纳米仿生粘附材料的研制,并期望可以在航空航天、医学、建筑等领域发挥作用。邓文礼教授研究小组是目前国内唯一的从事相关研究的课题组。 报告人:中国科学院武汉物理与数学研究所 于迎辉副研究员  报告题目:Cu-Al(111)合金及其表面氧化铝薄膜的物性研究  于迎辉研究员通过在Cu(111)中引入杂志Al形成α相的Cu-Al合金,进而在合金表面生长有序的氧化铝薄膜做为脱偶层。利用俄歇电子能谱表征Cu-Al合金表面的Al含量、低能电子衍射和低温扫描隧道显微镜检测Cu-Al(111)合金表面原子结构及电子分布。  扫描探针显微学在生命科学中的应用  报告人:吉林大学超分子结构与材料国家重点实验室 张文科教授  报告题目:AFM在核酸-蛋白质相互作用研究中的应用  张文科教授利用原子力显微镜(AFM)成像原位观测核酸与蛋白质之间的相互作用,研究了双螺旋DNA的AFM单分子力学指纹谱,并利用该力学指纹谱研究DNA结合蛋白与DNA的相互作用、外力诱导下DNA构象转变的本质。最后,张文科教授以烟草花叶病毒为例,探索了单分子力谱在研究复杂体系中核酸-蛋白质相互作用中的应用。  报告人:暨南大学 蔡继业教授  报告题目:扫描探针显微学结合量子点标记研究细胞表面分子  蔡继业教授介绍说单分子探测是目前的一个研究热点,但大部分集中在材料和化学研究中,对于细胞中单分子的研究比较少。扫描探针显微镜克服了共聚焦显微镜、扫描电镜在细胞研究中的缺点,量子点标记解决了荧光漂白的缺点。将扫描探针与量子点标记相结合实现了特异性识别细胞表面的抗原和抗体,并探测它们之间的相互作用力。  对于扫描探针显微学在生命科学中的应用,东南大学曹黎黎博士介绍了利用AFM研究小分子药物作用于环状双链DNA分子所引起的DNA结构和构象的变化。武汉大学林毅副教授提出一种基于轻敲模式原子力显微术成像原理的在成像同时测量压缩弹性模量通用方法,并应用于单根双链DNA径向压缩弹性模量的测量。东南大学巴龙教授设计了原子力探针的磁力驱动线圈,用于研究聚电解质多层微囊的动态力学性质及其与结构的关系。  扫描探针显微学技术进展  报告人:北京航空航天大学 钱建强教授  报告题目:原子力显微镜自激振调频检测成像模式的研究  钱建强教授介绍了自行研制的基于自激励振荡音叉探针的调频成像模式原子力显微镜。采用石英音叉探针作为力检测敏感原件,通过对其驱动电极施加正反馈,在自激振荡控制下使其在谐振频率下工作。由于不使用外部的探针振荡检测器和外部的探针激振器,系统结构简单并且易于操作。通过实验表明仪器能够满足频率调制模式成像要求。  此外,将具有高空间分辨率的STM与化学分析能力较强的拉曼光谱结合是一种新型的表征手段。中国科学院苏州纳米技术与纳米仿生研究所钟海舰博士采用自主研发的基于扫描探针显微镜和拉曼光谱仪的扫描近场光电探针测试系统,研究了化学气相沉积方法生长的石墨烯,可在获得样品表面形貌的同时,进行样品原位的局域电学性质研究和光谱测试。中国科学技术大学张瑞博士介绍了实验室组建的结合STM的具有超高真空、低温环境的TERS(针尖增强拉曼光谱)实验设备,利用该设备实现了Au(111)上分子薄膜、单个分子的TERS检测,并在Au(111)台阶处几个分子上得到了约4nm的TERS空间分辨率。  会议同期还设置了论文墙报展及小型仪器展览会。布鲁克、安捷伦、天美科技、岛津、SPECS、NT-MDT、汇德信科技等仪器厂商和仪器代理商参加了展会。论文墙报展   本届大会还评选了“青年科技奖”,用于表彰在扫描探针显微镜研究领域取得突出成就的青年学子,中国科学技术大学张汇博士、暨南大学李盛璞同学获此殊荣。中国科学院物理研究所徐文炎博士、厦门大学李纪军博士获得了本届大会的“优秀墙报奖”。据了解,第十二届扫描隧道显微学学术会议初步确定将由陕西师范大学承办。颁奖现场参会人员合影
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 一文看懂扫描隧道显微镜STM/AFM
    p  strong扫描隧道显微镜/strong(scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德· 宾宁及海因里希· 罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特· 鲁斯卡分享了1986年诺贝尔物理学奖。/pp  它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。/pp  它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持稳定的电流,依此来观测物体表面的形貌。/pp  换句话说,扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。/pp  strong原子力显微镜/strong(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。AFM测量的是探针顶端原子与样品原子间的相互作用力——即当两个原子离得很近使电子云发生重叠时产生的泡利(Pauli)排斥力。工作时计算机控制探针在样品表面进行扫描,根据探针与样品表面物质的原子间的作用力强弱成像。/pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100352076.jpg" height="210" width="459"//centerp style="text-align: center "strong世界上第一台原子力显微镜和发明人之一比宁/strong/pp  以一种简单的方式进行类比,如同一个人利用一艘小船和一根竹竿绘制河床的地形图。人可以站在小船上将竹竿伸到河底,以此判断该点的位置河床的深度,当在一条线上测量多个点后就可以知道河床在这条线上的深度。同样道理绘制多条深度线进行组合,一张河床的地形图就诞生了。与此类似,在AFM工作时的,原子力传感器相当于人和他手中的竹竿,探针顶端原子与样品原子间作用力的大小就相当于竹竿触及河底时水面下的长度。这样,在一艘小船(控制系统)的控制下进行逐点逐行的扫描,AFM就可以绘制出一张显微图像啦。/pp  /pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100358209.jpg" height="283" width="388"//centerp style="text-align: center "strong普通原子力显微镜的原理示意图/strong/pp  原理解释起来并不算十分复杂,但是AFM的发明、使用与改进汇聚了大批科学家们的辛劳努力和创造性思维。特别是拍摄到氢键实空间图像所使用的非接触式原子力显微镜,经过分子沉积、温度控制、防振、探针、真空、控制系统等多方面的摸索与改造才最终具有如此强大的分辨能力。/pp strong1 基本原理/strongbr//pp  原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。/pp  strong2 /strongstrong成像模式/strong/pp  原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。/pp  1)strong接触模式/strong/pp  在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,扫描过程时保持探针偏转不变来使其探针和样品表面的作用力保持恒定。/pp  2)strong非接触模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/5/5d/AFM_noncontactmode.jpg" height="291" width="350"//centerp style="text-align: center "strong原子力显微镜非接触模式/strong/pp  在这种模式下,悬臂上的探针并不接触样品表面,而是以比其共振频率略高的频率振动,振幅通常小于几纳米。范德华力在探针距离表面样品1~3纳米时最强,它与其他在表面上的长程力会降低悬臂的振动频率。/pp  通过调整探针与样品间的平均距离,频率的降低与反馈回路一起保持不变的振动频率或振幅。测量(x,y)每个数据点上的探针与样品间的距离即可让扫描软件构建出样品表面的形貌。/pp  在接触模式下扫描数次通常会伤害样品和探针,但非接触模式则不会,这个特点使得非接触模式通常用来测试柔软的样品,如生物组织和有机薄膜 而对于坚硬样品,两个模式得到的图像几乎一样。然而,如果在坚硬样品上裹有一层薄膜或吸附有流体,两者的成像则差别很大。接触模式下探针会穿过液体层从而成像其下的表面,非接触模式下则探针只在吸附的液体层上振动,成像信息是液体和下表面之和。/pp  动态模式下的成像包括频率调制和更广泛使用的振幅调制。频率调制中,振动频率的变化提供探针和样品间距的信息。频率可以被非常灵敏地测量,因此频率调制使用非常坚硬的悬臂,因其在非常靠近表面时仍然保持很稳定 因此这种技术是第一种在超高真空条件下获得原子级分辨率的原子力显微镜技术。振幅调制中,悬臂振幅和相位的变化提供了图像的反馈信号,而且相位的变化可用来检测表面的不同材料。 振幅调制可用在非接触模式和间歇接触领情况。在动态接触模式中,悬臂是振动的,以至悬臂振动悬臂探针和样品表面的间距是调制的。[来源请求]振幅调制也用于非接触模式中,用来在超高真空条件下使用非常坚硬的悬臂和很小的振幅来得到原子级分辨率。/pp  strong3)轻敲模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg/285px-Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg" height="215" width="190"//centerp style="text-align: center "strong在不同的pH的溶液环境中使用轻敲模式得到的高分子单链的原子力显微镜图(0.4 nm 厚)/strong/pp  通常情况下,绝大部分样品表面都有一层弯曲液面,为此非接触模式下使探针足够靠近样品表面从而可以测试短程力,但是此时探针又容易粘贴到样品表面,这是经常发生的大问题 动态模式就是为了避免此问题而发明的,又叫做间歇接触模式(intermittent contact)、轻敲模式(tapping mode)或AC模式(AC Mode)。在轻敲模式中,悬臂通过类似于非接触下的装载在探针上的微小的压电元件做来上下振动,频率在其共振频率附近,然而振幅则远大于10纳米,大概在100~200纳米间。当探针越靠近样品表面时,探针和样品表面间的范德华力、偶极偶极作用和静电力等作用力会导致振幅越来越小。电子自动伺服机通过压电制动器来控制悬臂和探针间的距离,当悬臂扫描样品表面时,伺服机会调整探针和样品间距来保持悬臂的预设的振幅,而成像相互作用力则得到原子力显微镜轻敲模式图像。轻敲模式减少了接触模式中对样品和探针和损伤,它是如此的温和以致于可以成像固定的磷脂双分子层和吸附的单个高分子链。比如液相的0.4纳米厚的合成聚合物电解质,在合适的扫描条件下,单分子实验可以在几小时内保持稳定。/pp  strong3 优点与缺点/strong/pp  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。他就像盲人摸象一样,在物体的表面慢慢抚摸,原子的形状很直观的表现。/pp  和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。/p
  • mini扫描隧道显微镜系统研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="123"p style="line-height: 1.75em "成果名称/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "Mini 扫描隧道显微镜系统研制/p/td/trtrtd width="123"p style="line-height: 1.75em "单位名称/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="123"p style="line-height: 1.75em "联系人/p/tdtd width="177"p style="line-height: 1.75em "郇庆/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="123"p style="line-height: 1.75em "成果成熟度/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="123"p style="line-height: 1.75em "合作方式/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/f0bed8ec-b171-4a82-9bae-a0e07ed68bd1.jpg" title="mini STM.jpg" width="400" height="294" border="0" hspace="0" vspace="0" style="width: 400px height: 294px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 这是一款工作在超高真空环境下的扫描隧道显微镜(STM)系统,具备样品的退火和溅射清理功能,并可以在原位情况下沉积各种有机/无机材料。可在从液氦温区( 10K)到室温范围内工作,降温/升温速度快,特别适合材料及相关研究人员快速表征样品。同时,该系统具有很好的稳定性,具备稳定的原子分辨能力并可获得一阶和二阶电流微分谱,经扩展后可具备与光路连结的可能和AFM功能。其主要技术指标为: br/ 背景气压:≤ 1x10-10Torr br/ 工作温度范围:8K~350K br/ 原位沉积: 是 br/ 扫描范围: br/ 4.0μmx4.0μmx0.6μm @ RT br/ 1.0μmx1.0μmx0.15μm @ 8K br/ 分辨率:原子分辨 br/ 灵敏度: br/ XY: ≤200Å /V Z:≤30Å /V @ RT br/ XY: ≤ 50Å /V Z:≤ 7.5Å /V @ 8K br/ 恒温器类型:连续流 br/ 降温时间(室温至≤10K): ~2小时/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 纳米表征和研究的重要工具,国内每年需求量在数十台。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 201510468456.5 br/ 发明专利:200810114537.5和201410165949.7/p/td/tr/tbody/tablepbr//p
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 德科学家开发一种磁冷却扫描隧道显微镜:用于量子效应研究!
    仪器信息网讯 扫描隧道显微镜(STM)能够以原子精度捕获材料图像,可用于操纵单个分子或原子。多年来,研究人员一直在使用这类仪器来探索纳米尺度世界。近日, 德国Jülich研究中心(Forschungszentrum Jülich)的物理学家开发了一种新方法,这种方法帮助使用STM来研究量子效应创造了新的可能性。由于该技术方法采用磁冷却,他们的扫描隧道显微镜无需任何移动部件即可工作,并且在低至 30 毫开尔文的极低温度下几乎无振动。该仪器可以帮助研究人员解锁量子材料的特殊特性,这对量子计算机和传感器的发展至关重要。物理学家认为接近绝对零度的温度范围是一个特别令人兴奋的研究领域。热波动降至最低,量子物理定律开始发挥作用,揭示材料的特殊性质。电流自由流动,没有任何阻力。另一个例子是一种称为超流体的现象:单个原子融合成一个集体状态,并在没有摩擦的情况下相互移动。Stefan Tautz 教授(左下)、Taner Esat 博士(左上)和 Ruslan Temirov 教授(右)与Jülich量子显微镜,图片自:Forschungszentrum Jülich / Sascha Kreklau研究和利用量子效应进行量子计算也需要这些极低的温度。全世界以及 Jülich研究中心的研究人员目前正在全速追求这一目标。在某些项目上,量子计算机可能远远优于传统的超级计算机。然而,发展仍处于起步阶段。一个关键的挑战是寻找材料和工艺,使具有稳定量子位的复杂架构成为可能。来自 Jülich 研究中心的 Ruslan Temirov 解释说:“我相信像我们这样的多功能显微镜是完成这项迷人任务的首选工具,因为它能够以多种不同方式在单个原子和分子的水平上对物质进行可视化和操作。”量子物理研究的一个典型对象:在中心,可以看到一个单一的分子,它是通过显微镜尖端分离出来的。在接近绝对零的温度下,没有干扰图像的噪声。图片来源:Forschungszentrum Jülich / Taner Esat, Ruslan Temirov经过多年的工作,他和他的团队为此装备了带有磁冷却的扫描隧道显微镜。 “我们的新显微镜与所有其他显微镜的不同之处类似于电动汽车与内燃机汽车的不同之处,”Jülich 物理学家解释说。到目前为止,研究人员一直依靠一种液体燃料,即两种氦同位素的混合物,将显微镜带到如此低的温度。 “在操作过程中,这种冷却混合物通过细管不断循环,这会导致背景噪音增加,”Temirov 说。另一方面,Jülich 显微镜的冷却装置则是基于绝热退磁过程。这个原理并不新鲜。它在20世纪30年代首次用于在实验室中达到低于 1 开尔文的温度。 Ruslan Temirov 说,对于显微镜的操作,它有几个优点:“通过这种方法,我们可以通过改变通过电磁线圈的电流强度来冷却我们的新显微镜。因此,我们的显微镜没有移动部件,几乎没有振动。”Jülich 科学家是有史以来第一个使用这种技术构建扫描隧道显微镜的人。 “新的冷却技术有几个实际优势。它不仅提高了成像质量,而且简化了整个仪器的操作和整个设置,”研究所主任 Stefan Tautz补充说,由于采用模块化设计,Jülich 量子显微镜也对技术进步保持开放态度,因为可以轻松实施升级。“绝热冷却是扫描隧道显微镜的真正飞跃。优势非常显着,作为下步计划我们现在正在开发商业原型机。”Stefan Tautz 解释说,量子技术是目前许多研究的焦点,这种仪器也势必会吸引许多相关研究学者的关注。这项研究发表在《Review of Scientific Instruments》上,DOI: 10.1063/5.0050532。mK STM 设置的示意图布局,包括 UHV 室、承载 mK 棒的 ADR 低温恒温器和高容量低温泵。 主 UHV 系统,包括负载锁、制备室 1 和 2 以及转移室,通过柔性波纹管连接到低温恒温器。 要将 mK 棒从真空中取出,低温恒温器和 UHV 系统必须在虚线标记的平面上分开。 右下角:插图显示了从 UHV 中提取 mK 棒的过程。 支撑 UHV 系统的框架在垂直于主图平面的方向侧向平移以进行提取。mK 棒的渲染 CAD 模型。 左:mK 棒全长 156.5 厘米。 箭头表示不同温度阶段的位置。 右上角:mK 棒的头部,其机制将其锁定到垂直操纵器,将其加载到低温恒温器中。 用于与温度传感器和 STM 压电元件建立电接触的两个接触板也是可见的。 建立同轴偏置和隧道电流触点的第三个接触板位于背面。 右下角:4K 载物台下方的 mK 棒的图像细节,无需布线。 左图:自制 STM 的分解图。 STM 的顶部通过蓝宝石板与 STM 主体电隔离。 STM 主体包含一个单独的压电管,用于 STM 尖端的粗略和精细运动。 右图:压电管的剖视图,显示粘滑粗调电机。
  • 国内首套太赫兹扫描隧道显微镜系统研发成功
    近日,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。THz-STM系统扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具,通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学教授Frank Hegmann,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等科研团队纷纷开展相关技术研究。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM)。该显微镜具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等领域。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科学技术厅、广州市、黄埔开发区等相关项目的资助。THz自相关脉冲和THz-STM电流信号硅重构表面原子分辨和金表面原子分辨
  • 突破!我国首台太赫兹扫描隧道显微镜系统研制成功
    2022年2月,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,为国内首套自主研制的太赫兹扫描隧道显微镜系统。扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具。通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域具有广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学Frank Hegmann教授,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等著名科研团队纷纷开展相关技术研究。但我国在该领域的研究一直处于空白。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM),具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等诸多领域,有望取得具有重要国际影响力的原创性科研成果。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科技厅、广州市、黄埔开发区等相关项目的资助。 THz-STM系统硅重构表面原子分辨(左),金表面原子分辨(右)
  • 扬州大学研制地铁隧道“体检仪”
    来自中国城市轨道交通协会的消息显示,2020年,我国内地累计有41个城市开通城轨交通线路7141.55公里。地铁已经成为城市日常出行必不可少的交通工具,但在地铁隧道中也会出现各种“病害”,威胁着人们的出行安全。  “当前,我国地铁隧道检测主要依赖人工检测和少量进口自动化设备,效率低、成本高,无法满足庞大的里程检测需求。”扬州大学信息工程学院(人工智能学院)副教授徐永安在接受采访时表示。  如何高效、准确、经济地检测出地铁隧道“病害”?在“科创导师”制的“牵线搭桥”下,扬州大学信息工程学院(人工智能学院)学生张雅欣等组建了大学生科技创新团队。由导师徐永安指导,团队研发了地铁隧道三维激光检测系统。“该系统检测速度可达国外同类设备的5倍以上。”张雅欣说。  将宝贝搬出实验室  在初中时期,受家人的影响,张雅欣萌生了创业的想法。2019年,正在上大二的她加入徐永安课题组,并组建了自己的大学生科技创新团队,选择了地铁隧道检测研究。  对张雅欣而言,导师不仅是科研路上的护航人,更是自己创业的榜样。记者获悉,在科技创新和科研成果转化路上,徐永安已经坚持了20多年。  1997年,在北京举办的中国国际机床展览会上,一个摆放着国外光学测量仪的展台被观众围得水泄不通,正在攻读博士学位的徐永安也是围观者之一。  从展会回来后,研制光学测量仪的想法一直萦绕在徐永安的脑海里。他随之改变了自己的研究方向,历经两年攻关,终于研制出国产光学测量仪。但在当时,他对科研成果转化还没有深刻的意识,便将这一宝贝成果“藏”在自己的实验室里。  “国外的设备那么贵,你有这么好的仪器,为什么不推向市场呢?”这样的声音越来越多,终于说服徐永安将宝贝搬出实验室。2011年,徐永安参与创办了一家公司,并将自主研发的光学测量仪设备推向市场。  当然,教书育人才是徐永安的本职工作。如何让学生在学习课本知识之外,学会创新思考,尝试自主研发技术并推动成果落地转化?20世纪90年代,扬州大学开启了“科创导师”制的探索之路,让学生在导师的指导下参与科技创新工作。  徐永安说:“过去,学生与导师的关系,主要是学生在导师的实验室开展科研,导师对学生的毕业设计进行指导。现在,导师不但要在科研上指导学生,还要带领学生开展科创工作。”  深入隧道后改变方法  谈及为什么选择地铁隧道检测研究,张雅欣告诉记者,目前,国内外地铁隧道自动化检测系统大多采用1个激光点绕隧道旋转的测量技术,检测速度慢。“好比一个电动机带着一个手电筒旋转,手电筒每次照射在物体表面时只能出现一个亮斑。这意味着每次只能采集一个点,效率太低。”  如何实现快速检测呢?经过一年多的攻关,以张雅欣为首的大学生科技创新团队研发出6条激光线扫描技术,360°环形激光线投射在隧道表面,8部每秒500帧高速数码相机实时采集隧道表面的激光线图像,并换算为隧道表面形状坐标。张雅欣解释道:“6条激光线同时工作,地铁隧道检测效率得到显著提高。”  然而,研发过程并非一帆风顺。在徐永安的指导下,张雅欣带领团队先后前往青岛、兰州、佛山等城市的地铁公司,深入地铁隧道,开展实践调研。团队在调研中发现,地铁公司对隧道快速检测系统有着迫切的需求。  在精准了解地铁隧道检测痛点后,张雅欣团队开始了与时间“赛跑”的测量工作。“我们只能在夜间12点到凌晨4点进入现场开展检测工作,因为这段时间地铁处于停运状态。另外,每天进入现场前的安检过程就要耗费半个多小时,实际的测量时间非常有限。”  经过近3个月的测量,张雅欣团队发现进展缓慢,于是做出了改变测量方法的决定,希望提高检测效率。经过徐永安的点拨,团队在实验室里自建了模拟隧道。“在模拟隧道里开展实验,不但提高了实验效率,缩短了研发周期,还解决了后期新冠疫情期间实地检测的困难。”张雅欣介绍说。  在解决了测量环境问题后,团队又遇到了由振动引起的测量误差问题。“测量车在轨道上运行会产生轻微振动,这种振动会带来一些误差。”张雅欣团队成员吴传昊告诉记者。为此,团队采用了基于特征面的方法对隧道测量数据进行纠偏,“这种方法可以大幅降低测量车振动对测量精度的影响,降低动态测量误差。”  “该系统检测速度最高可达每小时17.1公里,是国外同类设备的5倍以上,动态精度为±1.6毫米,检测密度小于2毫米,而价格只有国外设备的70%左右。”张雅欣表示,系统还可以根据用户需求制定检测速度、密度、精度。  徐永安透露,目前,该系统申请发明专利4项、登记软件著作权4项,通过了江苏省产品质量监督检验研究院质检,符合CMA中国计量认证标准。  大学生创业还需多磨砺  来自用户的消息显示,张雅欣团队研发的这套系统已在投入运营的地铁隧道进行了实地检测,在检测速度、精度以及密度方面均满足实际应用要求。目前,已有多家轨道交通公司与团队达成初步合作意向。  张雅欣表示,下一步团队将继续对产品进行优化设计,并计划注册成立公司。“地铁里程数较大的城市,可直接购买检测系统 地铁里程数小的城市,可购买检测服务。”  在张雅欣看来,虽然研发过程非常艰辛,但非常有意义。“一方面培养了我们解决问题的能力,另一方面还培养了我们团队建设、组织和管理的能力,对未来的创业起了铺垫作用。”  她感叹道:“大学生参与科创,要有顽强的毅力和勤奋刻苦的精神,对团队中不同的意见要善于倾听,脚踏实地攻克每一个难关。”  徐永安也指出,对于刚毕业的学生而言,如果没有成熟的技术积累和市场认知,可以先进入企业积累几年经验,对市场形成一定认知后再进行创业。  在他看来,高校“孵化器”应该实现良性循环,当政府和高校投入资金等支持后,若能实现良好的产出,投入的积极性也将越来越大,反之则可能陷入不良循环。“政府和高校还应进一步研究如何解决这一矛盾。”
  • 案例分享‖“深中牵手”成功!深中通道海底隧道顺利合龙
    6月11日凌晨,国家重大工程深中通道海底沉管隧道最终接头从E23管节顺利推出,与E24管节成功实现精准对接,标志着世界最长最宽钢壳沉管隧道正式合龙。最终接头长5.1米,宽46米,高9.75米,重约1600吨,套置于E23管节扩大段内,这种整体预制水下管内推出的结构装置为世界首创,进一步丰富了世界跨海沉管隧道的“中国方案”。该项目中要实现管道精准对接,首先要保证施工船舶稳定,船舶由于受到海面风浪的影响会不断地产生姿态变化,需要实时调节。同时施工船舶通过吊钩与沉管隧道连接,整个吊装、运输、下沉、对接过程,需要实时监测吊钩的应变应力以评估受力情况。某单位采用江苏东华测试DH59系列采集系统、表面式应变计、速度传感器,对吊钩进行应变应力实时监测以及施工船舶航向、转体、振动实时监测,为稳定船舶姿态、管道精准对接提供了技术保障。部分图文来源于网络
  • 武汉大学预算430万元购买1套超高真空扫描隧道/原子力显微镜系统
    4月29日,武汉大学公开招标购买1套超高真空扫描隧道/原子力显微镜系统,预算430万元。  项目编号:HBT-13210048-211202  项目名称:武汉大学超高真空扫描隧道/原子力显微镜系统采购项目  预算金额:430.0000000 万元(人民币)  最高限价(如有):430.0000000 万元(人民币)  采购需求:  超高真空扫描隧道/原子力显微镜系统(进口)1套。  合同履行期限:交货期为合同签订并图纸确认后10个月,质保期两年。  本项目( 不接受 )联合体投标。  开标时间:2021年05月21日 09点30分(北京时间)
  • 1000万!重庆大学极低温强磁场扫描隧道显微镜系统采购
    项目编号:CQU-SS-HW-2022-156项目名称:重庆大学极低温强磁场扫描隧道显微镜系统采购预算金额:1000.0000000 万元(人民币)最高限价(如有):980.0000000 万元(人民币)采购需求:序号产品名称(设备名称)※数量单位备注1极低温强磁场扫描隧道显微镜系统1套(核心产品)合同履行期限:中标人应在采购合同签订后18个月内交货,交货后30日内完成安装调试。本项目( 不接受 )联合体投标。重庆大学“极低温强磁场扫描隧道显微镜系统”采购项目-招标文件(挂网稿)-1205改.doc
  • 第十届全国扫描隧道显微学学术会议将在广州召开
    第十届全国扫描隧道显微学学术会议(STM&rsquo 10)将于2008年11月23-25日在美丽的花城广州召开。会议由暨南大学纳米化学研究所承办,在广东温泉宾馆举行,由中国科学院副院长白春礼院士担任本次学术会议主席。 扫描隧道显微学学术会议为全国性会议,迄今已成功举办了九届。1990年第一届全国扫描隧道显微学学术会议在北京举行,随后全国扫描隧道显微学学术会议每两年举办一次,最近几次分别在大连(2006)、天津(2004)、上海(2002)、厦门(2000)和合肥(1998)召开,在国内外同行中已形成良好影响。 本次会议是我国扫描探针显微学(SPM)研究领域同行的又一次聚会,探讨扫描探针显微学领域的国际发展新动向,交流扫描探针显微学理论、技术、仪器的最新进展和SPM技术应用的最新研究成果等。会议时间: 2008年11月23-25日 会议地点: 广东温泉宾馆 承办单位: 暨南大学纳米化学研究所 协办单位:暨南大学化学系 会议主题:交流近年来我国在扫描探针显微学以及相关领域的研究成果 会议语言及发表方式:会议语言为中文。交流方式包括邀请报告,口头报告和墙报。口头报告和墙报论文均享有同等学术地位。组织委员会根据本人愿望和议程的可能,确定安排口头报告或墙报论文。会议将出版摘要论文集(附全文光盘),高质量论文(全文)将推荐到《电子显微学报》发表。 征稿范围 1、SPM技术及相关应用 2、纳米级结构和功能材料 3、新型分子电子器件 4、单分子生物学 5、分子传感器 6、其他相关研究 摘要要求和截止时间:论文摘要不超过600字,加上参考文献为A4纸一个版面,排版格式见附件1。截止时间为2008年7月31日。 投稿信箱:stm10@126.com;stm10@yahoo.cn 会议网站:http://sky.jnu.edu.cn/stm10/index.htm 咨询信箱:stm10@126.com;stm10@yahoo.cn 会议注册费:注册费一般代表每人950元,研究生代表每人650元(凭学生证)。 联系电话:+86-20-85223569;传真:+86-20-85223569 联系地址: 广东省广州市暨南大学化学系(510632) 联系人:蔡继业(教授):Tel:+86-20-85223569;Fax:+86-20-85223569 胡明铅(秘书):Tel:13242864096 陈家楠(秘书):Tel:13631332225 具体的第一轮会议通知及征稿通知可在我公司资料中心下载,或直接访问本次大会官方网站 http://sky.jnu.edu.cn/stm10/index.htm 。 Veeco公司诚挚地邀请您参加本届STM&rsquo 10学术会议!
  • 【新闻快讯】公司中标上海交通大学太赫兹光耦合扫描隧道显微镜
    项目名称:上海交通大学太赫兹光耦合扫描隧道显微镜项目编号:0773-2341SHHW0045招标范围:设备名称: 太赫兹光耦合扫描隧道显微镜 数量:1套招标机构:中金招标有限责任公司招标人:上海交通大学开标时间:2023-06-20 09:30公示时间:2023-06-21 16:58 - 2023-06-25 23:59中标结果公告时间:2023-06-26 10:48中标人:束蕴仪器(上海)有限公司制造商:CreaTec Fischer & Co. GmbH制造商国家或地区:德国
  • 600万!天津大学理学院低温扫描隧道显微镜系统采购项目
    项目编号:1395-224TDZCJ0014(TDZC2022J0014)项目名称:天津大学理学院低温扫描隧道显微镜系统预算金额:600.0000000 万元(人民币)采购需求:低温扫描隧道显微镜系统 1台,本项目接受进口产品参与投标。合同履行期限:合同签订后540天内交货本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制