当前位置: 仪器信息网 > 行业主题 > >

共聚焦拉曼光谱仪

仪器信息网共聚焦拉曼光谱仪专题为您提供2024年最新共聚焦拉曼光谱仪价格报价、厂家品牌的相关信息, 包括共聚焦拉曼光谱仪参数、型号等,不管是国产,还是进口品牌的共聚焦拉曼光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合共聚焦拉曼光谱仪相关的耗材配件、试剂标物,还有共聚焦拉曼光谱仪相关的最新资讯、资料,以及共聚焦拉曼光谱仪相关的解决方案。

共聚焦拉曼光谱仪相关的论坛

  • 【原创大赛】激光共聚焦显微拉曼光谱仪使用心得

    【原创大赛】激光共聚焦显微拉曼光谱仪使用心得

    [align=center]激光共聚焦显微拉曼光谱仪使用心得[/align][align=center]NQI研发中心 徐婧婧 [/align]拉曼散射效应是印度物理学家拉曼在1928年首次发现的,随后在法国和苏联也被观察到。拉曼散射是当光通过透明介质时,由于入射光与分子运动相互作用而引起频率的变化。在透明介质的散射光谱中,频率与入射光频率υ[sub]0[/sub]相同的成分称为瑞利散射;频率对称分布在υ[sub]0[/sub]两侧的谱线或谱带υ[sub]0[/sub]±υ[sub]1[/sub]即为拉曼光谱。拉曼散射光频率与入射光频率之差(即拉曼位移)反映了分子振动和转动能级的情况,并且激发光频率对此没有影响,此外在一定条件或状态下不同的物质分子具有独一无二的分子结构,因此拉曼效应可用于鉴别物质。此外,拉曼信号强度正比于分子振动与转动强度,因此也可用作定量分析。如今,拉曼光谱早已是一项成熟的非接触式无损检测技术,并在食品检测、环境监测、珠宝文物鉴定等领域有着广泛的应用。在拉曼光谱测量仪中显微共聚焦激光拉曼光谱仪以其极高的灵敏度成为现代研究工作中一种先进测试手段,其具有对样品无损伤、无需样品制备、分析速度快、信息精确、高灵敏度、高分辨率、高重复性等诸多优点,非常适合各种物质的快速测定和分析,在众多研究领域的材料结构分析中是不可替代的设备。显微共聚焦激光拉曼光谱仪的检测原理为:激光器发出的激光光束通过激光光路传递到显微镜,通过显微镜聚焦到被测样品,激发出频率发生改变的非弹性拉曼散射信号,经过信号光路,并光栅进行分光,然后采用高效光信号采集及处理系统获得全光谱范围内的拉曼散射信号,研究分子的振动能级,从而反应物质的结构信息。还可对选定区域进行点、线、面扫描,从而确定不同物质的成分分布状况。激光共聚焦显微拉曼光谱仪目前的生产厂商主要以进口厂家为主,主要有HORIBA Scentific、Renishaw、Thermofisher等厂家。不过高精度的拉曼光谱仪特别是激光共聚焦显微拉曼光谱仪价格昂贵,为了能够更好的发挥拉曼光谱仪的使用价值,使用时要格外注意操作规范并且在闲置时要对其进行合理的保养。主要注意以下几点:1.为防止仪器受潮而影响使用寿命,拉曼仪器所在实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。2.实验室里的CO[sub]2[/sub]浓度会对仪器寿命造成很大影响,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。3. 为减少化学试剂对测定的影响,用于拉曼光谱分析仪的化学试剂应为光学试剂级,至少也要分析纯级。如发现化学试剂出现结块的现象,则应重新加热干燥。4.实验完毕后需要定期对机身进行保养,主要注意清除大颗粒灰尘、清洁镜头、机身。清洁过程中一定要注意使用合适的力道,太轻可能会导致清理不干净,太重又可能不慎损坏机身。以下是实验过程中利用激光共聚焦显微拉曼光谱仪测试的一些数据:[align=center][img=,690,467]https://ng1.17img.cn/bbsfiles/images/2019/09/201909160934496173_6576_3048281_3.jpg!w690x467.jpg[/img][/align][align=center]图1不同激光强度下4-巯基苯甲酸的拉曼光谱图[/align][align=center][img=,690,467]https://ng1.17img.cn/bbsfiles/images/2019/09/201909160935033673_5943_3048281_3.jpg!w690x467.jpg[/img][/align][align=center]图2尼尔蓝与4-巯基苯甲酸的双标记纳米粒子拉曼光谱图[/align]

  • 【求助】受限液体膜的共聚焦拉曼散射

    [em09511]我在北京一所高校,要做受限液体膜的拉曼散射,具体来说就是要测试被限制在很薄的晶体之间的10纳米左右的聚合物液体膜的分子排列方向问题。由于是新手,在论坛上浏览了一些帖子,似乎要用共聚焦拉曼透过晶体照射到液体膜上,请问按照目前的共聚焦拉曼光谱仪,晶体的厚度大概是多少呢?另外,感觉光谱仪价格比较贵,各位前辈能否推荐北京哪个地方做这个强,中科院物理所?最后请教各位做过共聚焦拉曼散射的高手,被测物质的分子排列方向怎么表征,在使用光谱仪的过程中有什么技术问题需要注意?欢迎广大的前辈高手指教。

  • 共聚焦显微拉曼光谱

    拟购买一套共聚焦显微拉曼光谱系统,现主要参考的厂家有JY、Renishaw等几个厂家,不知道这些哪个比较好?各自有什么优缺点?现在哪个厂家的份额比较多?

  • 【资料】共聚焦显微拉曼光谱的应用和进展

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=57672]共聚焦显微拉曼光谱的应用和进展[/url]共聚焦显微拉曼光谱是近期发展较快的一门学科,传上一篇文章供大家参考。文章写的说实在的……,但总算是对国内的情况有所了解。

  • 便携/拉曼光谱仪的潜在应用市场在哪里?

    随着技术的发展以及实际应用需求的变化,小型化已经成为分析仪器的发展潮流之一,这一点在拉曼光谱仪领域表现的尤其活跃。据SDI报告的数据显示,近年来拉曼光谱仪器的市场以两位数在不断增长,而可以“拿出去”、应用到各行各业的便携拉曼光谱仪市场规模更大。资料显示,目前便携拉曼光谱仪器全球市场规模约为2.5亿美元,而且未来的增长更是不可限量。  正是看好了这样的市场商机,很多厂商已经开始了相关产品的布局。海洋光学、必达泰克、赛默飞、布鲁克、岛津、TSI、万通等很多厂商都已经推出了便携/手持式的拉曼光谱仪,仪器市场竞争日益加剧。手持式拉曼光谱仪由于其使用方便,价格便宜而受到不少单位的青睐。不过,也有很多老师反映相比于大型共聚焦拉曼仪器,便携/手持式拉曼仪器的灵敏度等还有一定的局限性,其应用还受到一定的限制。  不管怎样,目前,各大仪器厂商已经在加紧进行相关应用方法及解决方案的开发与推广。您如何看待便携/手持拉曼光谱仪潜在的应用市场?欢迎发布您的精彩观点

  • 【参数解读总结篇】拉曼光谱仪的技术参数解读与使用

    【参数解读】拉曼光谱仪的技术参数解读与使用http://bbs.instrument.com.cn/shtml/20131206/5096242/拉曼(Raman)光谱与红外吸收光谱同为研究物质的分子振动能级来分析物质的组成,但相对于红外吸收光谱,拉曼光谱的谱线通常较为简单且有独特性,而且被测物不需进行前处理,因此在判读物质的组成成分时有明显的优势, 然而以前拉曼光谱由于系统组成复杂庞大且昂贵,只有极少数的专家有能力购买与驾驭,从而限制了其应用的推广。幸运的是,近年来由于元器件(全息陷波滤光片,科学级CCD探测器等) 的革命性发展,使得Raman光谱的测量不再昂贵艰难,从而带动了拉曼光谱研究的热潮与普及。拉曼光谱仪可分为5个部分:激光光源、样品室、分光系统、光电探测系统、记录仪和计算机。http://img3.17img.cn/bbs/upfile/images/20131206/2013120622071955.jpg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆激光拉曼光谱仪适用于液体、固体样品的分析, 配有旨在减小杂散光的陷波滤波器。1、常用的激光器都是哪些?你的仪器配置几个?325,355,457, 488, 514, 532, 633, 785;一般的设备可以配置3个2、共焦显微镜拉曼光谱和激光拉曼光谱的仪器配置和应用区别在哪?共聚焦拉曼利用共聚焦孔pinhole提供非常高的空间分辨率;非常适合纳米材料领域的研究3、探测器都有哪些?前入射、背入射CCD,开放式ccd, EMCCD, InGaAs4、应该如何根据测试样品来选择仪器配置?考虑仪器配置时,激光波长的选择非常重要。拉曼光谱仪一般由以下五个部分构成。一、光源它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。目前拉曼光谱实验的光源己全部用激光器代替历史上使用的汞灯。对常规的拉曼光谱实验,常见的气体激光器基本上可以满足实验的需要。在某些拉曼光谱实验中要求入射光的强度稳定,这就要求激光器的输出功率稳定。二、外光路外光路部分包括聚光、集光、样品架.滤光和偏振等部件。(1) 聚光:用一块或二块焦距合适的会聚透镜,使样品处于会聚激光束的腰部,以提高样品光的辐照功率,可使样品在单位面积上辐照功率比不用透镜会聚前增强105倍。(2) 集光:常用透镜组或反射凹面镜作散射光的收集镜。通常是由相对孔径数值在1左右的透镜组成。为了更多地收集散射光,对某些实验样品可在集光镜对面和照明光传播方向上加反射镜。(3) 样品架:样品架的设计要保证使照明最有效和杂散光最少,尤其要避免入射激光进入光谱仪的入射狭缝。为此,对于透明样品,最佳的样品布置方案是使样品被照明部分呈光谱仪入射狭缝形状的长圆柱体,并使收集光方向垂直于入射光的传播方向。几种典型样品架的空间配置参见右图。(4) 滤光:安置滤光部件的主要目的是为了抑制杂散光以提高拉曼散射的信噪比。在样品前面,典型的滤光部件是前置单色器或干涉滤光片,它们可以滤去光源中非激光频率的大部分光能。小孔光栏对滤去激光器产生的等离子线有很好的作用。在样品后面,用合适的干涉滤光片或吸收盒可以滤去不需要的瑞利线的一大部分能量,提高拉曼散射的相对强度。(5) 偏振:做偏振谱测量时,必须在外光路中插入偏振元件。加入偏振旋转器可以改变入射光的偏振方向;在光谱仪入射狭缝前加入检偏器,可以改变进入光谱仪的散射光的偏振;在检偏器后设置偏振扰乱器,可以消除光谱仪的退偏干扰。三、色散系统色散系统使拉曼散射光按波长在空间分开,通常使用单色仪。由于拉曼散射强度很弱,因而要求拉曼光谱仪有很好的杂散光水平。各种光学部件的缺陷,尤其是光栅的缺陷,是仪器杂散光的主要来源。当仪器的杂散光本领小于10-4时,只能作气体、透明液体和透明晶体的拉曼光谱。四、接收系统拉曼散射信号的接收类型分单通道和多通道接收两种。光电倍增管接收就是单通道接收。五、信息处理为了提取拉曼散射信息,常用的电子学处理方法是直流放大、选频和光子计数,然后用记录仪或计算机接口软件画出图谱。欢迎大家参与讨论,补充自己想交流的参数,说说自己的认识或者提出自己的疑问!!!

  • 请教高手:溶液的显微拉曼如何聚焦?

    本人最近开始研究拉曼,实验室有一台DXR激光显微拉曼光谱仪,固体样品聚焦较容易,但是液体样品聚焦比较麻烦,很难聚焦得到一个清晰的图像。请问高手们,溶液样品如何才能聚焦?我需要操作的细节方面的指导,比如用什么盛放样品等谢谢

  • 高温共聚焦显微镜

    高温共聚焦显微镜

    http://ng1.17img.cn/bbsfiles/images/2013/12/201312100936_481428_2810587_3.jpg 本系统由含多项技术专利的高温加热炉和激光共聚焦显微镜两大部分组成。 常温下可以对试样的表面进行实时的三维观察、记录和存储。 高温下可实现对材料组织结构变化(熔融、凝固、结晶等)的实时、原位以及高清晰观察与分析,不需对试样进行预先处理(导电、非导电试样均可直接观察、测定,不需繁杂的事先处理,同时避免了试样预处理造成的失真)。特点:◆ VL2000DX为紫色激光,波长为408nm。它可以实现最快120桢/秒的高速扫描;◆ 真空度可达 10-2Pa;◆ 最高加热温度可以达到1750 ℃;◆ 加热速度快,可以达到1000℃/min,◆ 采用He气急冷时最快可以达到-100℃/sec的急速冷却;◆ 温度控制精度0.1℃;◆ 鲜明模式:增强对比度低的材料(如陶瓷等)的对比度,更清晰地观察;◆ 具备系统拓展功能(可根据需要,拓展高温拉伸/压缩/三点弯曲等高温机械性能的观察功能)。应用:★ 可用于金属材料研究: ※可实时观察金相组织的变化; ※实时观察金属材料的熔融凝固过程; ※可用于夹杂物的分析研究。★ 可用于耐火材料和陶瓷烧结的研究;★ 本系统可供拓展,如添加高温拉伸/压缩、三点弯曲等功能,可配置高温拉曼光谱仪、差热分析DTA装置 ;★ 常温时可做三维测量: ※断口观察; ※表面粗糙度测量 ※表面金相组织观察等。

  • 简谈激光共聚焦显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。

  • 【讨论】关于激光共聚焦显微镜版

    最近观察了一段时间激光共聚焦显微镜版,人气不是很旺。当初是我提出来要将激光共聚焦显微镜单独开版,主要是考虑到国内激光共聚焦显微镜的用户日益增多,而且激光共聚焦显微镜的应用领域与光学显微镜有一定差异,所以作为一个新的设备,应该有很多可以讨论和交流的。但是目前讨论交流确实存在一些问题。激光共聚焦显微镜的用户大头在生物医学研究所和大型医院,似乎这些用户群体不太愿意在论坛上交流,另一个应用领域在材料上,但是国内材料研究领域拥有激光共聚焦显微镜还是少数,所以真正活跃的用户不多。有感于此,建议将激光共聚焦显微镜版划到我的光学显微镜版作为一个子版,我来管理。

  • 【求助】激光共聚焦的使用

    我利用激光共聚焦观察GFP蛋白的定位由于本身我们的样品有红色荧光,我在目镜下看到的是略带黄色的荧光,但是利用共聚焦看的时候就收集不到绿色荧光的信号了这是什么问题呢?如何解决?谢谢

  • 软件去模糊与激光共聚焦

    工业用激光共聚焦相对比荧光共聚焦简单得多,因为是单反射, 不涉及波长问题,且是单个通道的信号处理. 因此用软件计算的计算量相对荧光要小几个数量级, 在共聚焦价格居高不下的情况下, 软件去模糊成为了一个卖点. 特点是成本相对要低得多,通常只要在显微镜的Focus机构改成精度高的电动部件与CCD就能满足要求,如果象Leica高级的配了CCD的电动调焦显微镜则不必添加其它硬件,免去了共聚焦的维护与激光高使用成本,并能达到甚至高于激光共聚焦的分辨率水平.唯一付出的是在可以忍受范围的时间等待,越几分钟时间.相关产品有Autodeblur等.

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 【原创大赛】数数当前市场上的研究级拉曼光谱仪

    【原创大赛】数数当前市场上的研究级拉曼光谱仪

    拉曼光谱技术具有准确性高,信息量大,谱图容易辨认,差异性区分明显,拉曼位移与入射频率无关,分析速度快,可进行微量、微区、原位的非破坏性检验,维护费用低,和红外光谱互补等特点,在许多领域都有其独特的应用。  目前市场上的拉曼光谱仪可分为研究级拉曼光谱仪和便携式拉曼光谱仪两个大类。本文将先和广大版友探讨研究级拉曼光谱仪主要供应商的产品组成和特点。  当前主要的研究级拉曼光谱仪供应商有:雷尼绍,HORIBA Jobin Yvon,赛默飞,PerkinElmer,布鲁克,国内的生产商主要有天津港东和北京卓立汉光,另外天瑞仪器和天津拓普也有相关产品。  雷尼绍拉曼光谱产品主要为inVia系列,inVia系列拉曼光谱仪于2003年推出,该系列产品配置灵活,用户可根据自己的需求选择不同的功能模块,及相应的自动化程度,其最高配置型号为inVia Reflex。雷尼绍的产品主要针对高端的研究级拉曼光谱产品,虽然一直没有新的型号推出,但在仪器的成像功能和联用技术研究方面,一直在不断的改进。从逐点绘图成像到StreamLine Plus超高速成像技术,以及最新的三维(3D)拉曼成像技术。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271503_407617_2086240_3.jpg  在联用技术方面,雷尼绍研发高效光学效率的接口使inVia显微拉曼可与Bruker、NT-MDT以及Nanonics Imaging公司的扫描探针显微镜直接耦合。inVia还支持新的针尖增强拉曼散射技术(TERS)以及近场光学显微技术(NSOM/SNOM)。  HORIBA Jobin Yvon目前主要的拉曼光谱产品主要由两个系列型号:LabRAM和XploRA。  LabRAM系列主要有LabRAM Aramis全自动激光拉曼光谱仪和LabRAM HR Evolution新长焦长拉曼光谱仪。  LabRAM Aramis全自动激光拉曼光谱仪于2005年在上海大学召开的全国光散射会议上首次于国内展出,该仪器设计将方便用户操作放在首位,所有的功能只需要点击软件即可实现。系统由膨胀系数几乎为零的合金型材制作框架,仪器核心部件都刚性地固定于一个整体性机箱内和机箱上。  LabRAM HR Evolution新长焦长拉曼光谱仪,是目前市场上焦长最长的单级共焦拉曼光谱仪,焦长达到800mm。该仪器更多的关注仪器的高性能和多功能性。可根据用户需求同时配置三个探测器,CCD、iCCD、EMCCD、InGaAs、PMT等用于扩展光谱范围及特殊应用。可与AFM、TERS、光致发光(PL)、样品加热冷却及其他联用。采用HORIBA Scientific的新版光谱分析软件包-LabSpec 6。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271504_407618_2086240_3.jpgLabRAM HR Evolution新长焦长拉曼光谱仪  XploRA系列主要包括两款产品:XploRA精巧型全自动显微共焦拉曼光谱仪和XploRA INV智能型倒置显微拉曼光谱仪。  XploRA具有灵活的可移动性特点,其优势在于是目前市场上最精巧的有显微共焦功能的拉曼光谱仪。另外全自动也是该款仪器突出宣传的一个特点,仪器拥有3个内置激光器和4块光栅,,激发波长与光栅可以完全自动切换,可自由选择多种光谱分辨率。另外,在这款仪器当中HORIBA Jobin Yvon首次使用中文软件操作界面。  XploRA INV在继承了XploRA高自动化和结构紧凑的基础上,增加了倒置显微镜的分析功能。在仪器设计当中采用了开放性结构,确保可以自由添加和使用倒置显微镜的所有附件或其它附加装置。还可以选择性集成一些特有的模块和技术,如DuoScan扫描技术和3D共焦快速荧光成像模块。据介绍,该仪器还可以与AFM联用及进行TERS(针尖增强拉曼光谱)分析。  赛黙飞世尔科技分子光谱部(原尼高力仪器公司)主要有以下几种类型型号:Almega激光拉曼光谱仪、DXR智能拉曼光谱仪。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271505_407619_2086240_3.jpgAlmega XR激光显微拉曼光谱仪  2001年赛黙飞世尔科技推出全自动Almega XR激光显微拉曼光谱仪,具有大容量样品仓和显微镜,自动化程度高,采样方式灵活;共聚焦设计拉曼显微镜可获得不同深度样品的真实信息,可提供目前数量最多超过20000张的无机与有机拉曼谱库。  2008年中旬,在 ALMEGA 系列基础上又推出了新型DXR 智能激光拉曼光谱仪,实现了仪器的高度智能自动化。光谱仪设计采用模块化单元组合,同时采用智能精确锁定技术,确保光路高稳定与检测结果高精确度与重复性。软件智能识别激光器、光栅与瑞利滤光片序列号与种类,并自动识别它们之间兼容性。  珀金埃尔默的主要型号是RamanStation 400 系列拉曼光谱仪,其主要宣传点是全球唯一的运用中阶梯光栅及二维面阵CCD检测器组合成的二维色散型拉曼光谱仪,和传统的获取高分辨率图谱所惯用的多块一维排列的闪耀光栅分别测量出特定谱带,再对测量所得的多个不同谱带进行光谱拼接的方法不同,该仪器可在一秒钟内获取覆盖整个波段的高分辨率的拉曼光谱图。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271505_407620_2086240_3.jpg  布鲁克拉曼光谱仪主要有MultiRAM 独立式傅立叶拉曼光谱仪和RamII附件式拉曼光谱仪两个型号。  布鲁克推出了世界上第一台商品化的傅立叶拉曼光谱仪,MultiRAM 独立式傅立叶拉曼光谱仪中采用了布鲁克专利的RockSolidTM干涉仪,MultiRAM可以安装2个激光器和检测器,并且可选配自动偏振附件、光纤探针等附件,系统可以配置室温InGaAs检测器和高性能液氮冷却的Ge检测器。  RamII是世界上第一台全数字化的附件式傅立叶变换拉曼光谱仪,可同Brukr公司的Vertex系列高级研究级红外光谱联用。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271506_407621_2086240_3.jpgMultiRAM 独立式傅立叶拉曼光谱仪  卓立汉光的主要拉曼光谱型号是:UVRaman100紫外共振拉曼光谱系统。该仪器由中国科学院大连化学物理研究所中国科学院李灿院士及其研究小组自行研制,是我国第一台紫外共振拉曼三联光谱仪。2008年和北京卓立汉光仪器有限公司合作进行产业化。该仪器采用了紫外激光激发可以很好的避免拉曼光谱分析中荧光本底的干扰问题;紫外激光激发拉曼信号效率更高;共振拉曼可以提供很高的共振增强因子,从而大幅度提升检测极限;由于采用的是三联单色仪滤除瑞利散射,而非陷波滤波器,设备可以测试地低到到几个波数的拉曼光谱。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271507_407622_2086240_3.jpg  天津港东的拉曼光谱产品主要有两个型号:LRS-2/3激光拉曼光谱仪和LRS-5微区激光拉曼光谱仪。  LRS-2/3激光拉曼光谱仪采用半导体激光器作为光源,配有旨在减小杂散光的陷波滤波器,用高灵敏度、低噪声单光子计数器做接受系统。  LRS-5微区激光拉曼光谱仪在LRS-2/3的基础上配置了Olympus公司生产的显微镜作为激光会聚和拉曼光收集系统,可以进行微区分析。接收系统釆用的是Andor公司生产的面阵CCD

  • 【原创】用显微共聚焦拉曼光谱仪测样品选择激光光源条件的小技巧

    本人是2010届北京印刷学院本科应届毕业生芦同学,由于在做毕业设计,题目为常用颜料的拉曼光谱数据库建设。每天需要测量大量的常用颜料的拉曼光谱,在每天的重复工作时,我总结了一下选择激光种类以及参数的小技巧。在测量有机颜料时,一般可以先采用785的激光,10%的能量,5秒测量1次,先用这个条件尝试一下,然后转换回视频模式,看看有机颜料样品有没有被烧坏,有机样品在测量时特别容易被烧坏,大家在测量时一定要注意转换回视频模式看看,有的时候忘记看颜料是否被烧很可能测得的已经不是原样品的拉曼峰了。如果拉曼峰被激发出来了且颜料未被烧坏,则可以采用1%的能量,用长时间的测量来获得噪音比较低的光谱图。在测量无机样品时一般采用532的激光,也是10%的能量先测5秒一次。若为金属化合物的颜料则可以大胆的用10%能量的不同激光去尝试,且不必担心样品是是否被烧坏。这就是本人总结的一点点不成熟的经验。谢谢大家的指导,在这个论坛我学到了很多。同时我还想请大家把自己对拉曼光谱测量的一些小技巧告诉我。

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 激光共聚焦扫描显微镜图片集

    激光共聚焦扫描显微镜图片集

    提供照片出自OLYMPUS激光共聚焦扫描显微镜想了解本产品一切信息者可与本人联系:Olympus.zzq@126.com[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606021415_19451_1625155_3.jpg[/img]

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 激光扫描共聚焦显微镜应用技术

    激光共聚焦扫描显微镜是近代最先进的细胞生物医学分析手段之一。与传统荧光显微镜相比,共聚焦显微镜能得到更清晰的样品图像。它不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察

  • 有用过激光共聚焦的吗?

    有用过激光共聚焦的吗?

    一般先BF用目镜聚焦,再上电脑软件点预览,这个时候因为光源不同,所以焦平面不同,必须还得再次调整焦距聚焦! 不知道最近为什么,再次聚焦的时候电脑图片刷新很慢(以前也慢,但还在可忍受的范围之内),导致长时间开激光以至荧光猝灭。 1、用目镜明场观察的时候太亮了,就算灯泡打到最小还是很亮,(很伤眼睛)是不是光路上的减光片少了。我就看见一个D片 ND片 。2、为什么图片刷新比以前慢了。特别是刚开机那会,猜测是不是激光不稳定?机器的cpu 内存都还有很多剩余,电脑的反应也很快,是不是显存不够?应该不会呀,以前还蛮好的。 显微镜是A1:http://ng1.17img.cn/bbsfiles/images/2014/02/201402140857_490148_2535415_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/02/201402140857_490149_2535415_3.jpg

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • WITec共聚焦拉曼快检技术在单细胞表型及生物医学领域的前沿应用

    [align=center][b][size=14pt]WITec共聚焦拉曼快检技术在单细胞表型及生物医学领域的前沿应用[/size][/b][/align][align=center][size=11pt]会议时间[/size][size=11pt]:[/size][size=11pt]2020年[/size][size=11pt]4[/size][size=11pt]月[/size][size=11pt]2[/size][size=11pt][font=等线]日[/font]1[/size][size=11pt]0[/size][size=11pt]:00[/size][/align][b][size=12pt]内容[/size][size=12pt]介绍:[/size][/b][size=10.5pt]德国[/size][size=10.5pt]WITec的高分辨率、高灵敏度、共聚焦快速拉曼成像系统能够实现多种成像技术联用以满足客户的多样化、个性化需求,广泛应用于材料、地质及生命科学等领域。[/size][size=10.5pt]本次会议将带来上海氘峰医疗科技有限公司针对单细胞表型的拉曼数据分享以及德国[/size][size=10.5pt]WITec公司共聚焦拉曼快速成像在生物医学领域的前沿应用,欢迎关注![/size][b][size=12pt]讲师[/size][size=12pt]介绍:[/size][size=11pt]罗艳君[/size][size=11pt]:[/size][/b][size=11pt][font=等线]上海氘峰医疗科技有限公司总经理,负责公司曰常运营及市场销售。硕士期间师从于单细胞拉曼技术的前沿研究者黄巍教授(现为牛津大学工程系教授,主要研究方向:合成生物学、单细胞拉[/font][font=等线]曼)。氘峰致力于单细胞拉曼技术在生物医学领域的推广和应用,提供专业的第三方单细胞拉曼表型数据解决方案,服务于生医领域科学家。[/font][/size][b][size=11pt]胡海龙[/size][size=11pt]:博士[/size][/b][size=11pt]:[/size][size=11pt][font=等线]毕业于新加坡南洋理工大学物理系。[/font]2005起年在吉林大学超分子结构与材料国家重点实验室攻读硕士学位,主要研究半导体纳米材料的表面增强拉曼效应。2008起在南洋理工大学攻读博士学位,研究方向涉及近场拉曼光谱,针尖增强拉曼光谱及金属表面等离子体光学等多领域,工作先后在Nano Letter, ACS Nano与Nanoscale等杂志发表。同时与高校及科研机构展开广泛合作,共同发表文章超过15篇。2013年度荣获中国自费留学生优秀奖(新加坡区) ,同年加入德国WITec公司,现负责中国区应用技术支持[/size][size=11pt]。[/size][size=10.5pt]报名地址[/size][size=10.5pt]:[/size][url=https://www.instrument.com.cn/webinar/meeting_12843.html][u][color=#0000ff]https://www.instrument.com.cn/webinar/meeting_12843.html[/color][/u][/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制