应力应变曲线分析

仪器信息网应力应变曲线分析专题为您提供2024年最新应力应变曲线分析价格报价、厂家品牌的相关信息, 包括应力应变曲线分析参数、型号等,不管是国产,还是进口品牌的应力应变曲线分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合应力应变曲线分析相关的耗材配件、试剂标物,还有应力应变曲线分析相关的最新资讯、资料,以及应力应变曲线分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

应力应变曲线分析相关的厂商

  • 400-860-5168转2244
    上海傲谱分析仪器有限公司成立于2007年,公司致力于火焰光度计的设计,开发,应用,销售于一体 ,是国内一家专业的火焰光度计生产商。本公司位于上海漕河泾开发区松江高科技园莘砖公路518号3幢702室,邻近地铁莘庄站,主要生产火焰光度计,持有上海市质量技术监督局颁发的计量器具许可证。2008年公司开发了适合水泥行业碱含量测定的FP650型火焰光度计,获得了水泥行业的一致好评。2009年公司根据行业需求又开发了一款AP系列高端的火焰光度计,AP系列火焰光度计功能强大可于电脑联机,多元素的测定(可测定钾、钠、锂、钙、钡)液晶显示,带数字键操作触摸面板提供了三种曲线标定模式 :分段法、直线方程、二次曲线拟合法(将二次曲线拟合法数字模型应用于火焰光度计,而且效果良好,并解决了火焰光度计原先在测量高浓度样品时线性关系较差的难题。)设置了曲线校准功能(简化了操作过程 ,提高了测试速度),内置RS232接口并可连接USB接口可选配打印机或软件。现本公司已有10款不同型号的火焰光度计,可满足不同行业的用户。我们的宗旨是“以专业的仪器、专业的服务对待专业的客户”正是这一宗旨是我们上海傲谱分析仪器有限公司在短短几年间已经发展成为国内主要的火焰光度计供应商,市场占有率也逐渐上升。我们相信在我们的努力下,傲谱品牌一定会成为您的选择!
    留言咨询
  • 400-860-5168转0264
    环球分析测试仪器有限公司(UATIL)成立于1982年,总部设在香港,是国外多家知名的高新科技仪器生产制造商在中国的独家总代理。主要产品电化学仪器:电化学工作站、光电化学测试设备 化学合成仪器:全自动反应系统、反应量热仪、超声波结晶系统、平行合成仪、高温高压釜、流动化学系统 萃取及纯化仪器:超临界萃取仪、快速制备色谱、固相萃取、溶剂蒸发仪、气体纯化系统 生命科学仪器:生物反应器、发酵罐、冷冻干燥机、移液工作站、离心浓缩仪 乳品分析仪器:乳品成分分析仪、体细胞计数器、奶牛生产性能测试仪 材料测试仪器:网格应变测试仪、杯凸试验机 惰性环境仪器:手套箱 微流控仪器:单细胞测序、细胞包裹、微流控芯片、微流泵、液滴微流控系统、3D芯片打印机
    留言咨询
  • 无锡智泰柯云传感科技有限公司是专业的光纤传感类产品制造商,集研发、生产、销售、安装、服务于一体的技术型企业。公司由国内10年以上的光纤传感器研发、销售团队组建。研发团队是国内第一代从事光纤传感产品的创业者与南京工业大学土木工程学院的研究学者联合成立,并具有专业产品安装的服务团队。同时与南京工业大学、南京信息工程大学、中科院安光所、东南大学、重庆交通大学建立长期合作关系。团队一直以来致力为客户提供精确、可靠、易用的光纤传感器产品及解决方案,在桥梁、隧道、隧道、高铁、管廊、边坡、石化、电力、古建筑等行业得到了广泛的应用。聚焦客户需求和光电智能科技,提供有世界级竞争力的产品和最佳服务,无锡智泰坚持产品和服务差异化,以“更准确、更稳定、更可靠”为不懈追求,持续为客户创造最大价值。已研制并投入市场的产品有:分布式布里渊应变应力监测系统(DTSS)、光纤光栅传感器及产品(FBG)、分布式光纤测温产品(DTS)、接地电流监测产品、基于视觉技术动态挠度及模态识别监测产品。分布式布里渊应变应力监测系统(DTSS):用于基坑、隧道等方面的结构健康监测;光纤光栅传感器及产品(FBG):用于桥梁、隧道、边坡、古建筑等结构健康监测;分布式光纤测温产品(DTS):用于新能源、电力电缆等大空间的温度监测;接地电流监测产品:用于电缆接地电流监测;基于视觉技术动态挠度及模态识别监测产品:用于桥梁、隧道扰度、模态、高层建筑、古建筑等结构健康监测。
    留言咨询

应力应变曲线分析相关的仪器

  • JHDY动态应力应变检测仪应用范围1.适用于测点相对集中,被测物理量快速变化的试验中。2.主要用于动态应力分析及动载荷研究中测量结构及材料任意点的动态应力应变测量。3.接入不同的传感器,可完成应力应变、振动(加速度、速度、位移)、冲击、温度、压力、流量、力、扭矩等各种物理量的测量。4.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、旋转构件等结构动载荷测试,疲劳测试。5.可用于实验性测量,也可用于长期监控测量。JHDY动态应力应变检测仪特点1.模块化设计,自选通道数,可扩展仪器集桥路和采集通讯为一体,无需各类适配器和平衡箱,结构紧凑简洁,采用模块化结构,可根据客户要求搭载通道数为8的倍数的采集模块,单机最多64通道,软件可同时控制多台仪器并联使用,可达数百通道,并保持同步。2.全数字电路,抗混滤波,精度高,稳定性好仪器采用全数字电路,每通道独立AD、独立MCU,采用了先进的DDS数字频率合成技术,保证了多通道采样速率的同步性、准确性和稳定性。所有通道同步采样,采样频率软件设置,不随通道数递减,最高可达10KHz。采用独特的硬件隔离技术,系统具有极强的现场抗干扰能力。系统精度高,可以达到0.2%±1με。3.低电压,低功耗,低噪声电路设计仪器采用高精度进口元器件,采用低电压,低功耗,低噪声电路设计,确保了仪器长时间测量稳定性,显示精度可达0.1。同时在加装锂电后,可长期待机测量。4.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测量,操作简单方便。5.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、软件多种补偿方式,稳定性好。尤其是软件补偿方式,可方便快捷的选择模块上所有通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。6.仪器连接简单,设置方便,操作快捷,海量存贮仪器与计算机usb接口连接,即插即用。仪器与各类传感器通过航插连接,方便可靠。可连接各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。可进行不间断长时间在线测量,数据存储量取决于计算机硬盘大小。7.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,具有通讯和电量指示,每个模块的状态高亮指示灯闪烁指示,一目了然。8.具有标准模拟量电平输出,可与其他控制采集单元互联9.具有远程同步触发控制端口,可各种仪器实现同步采样控制10.具有掉电自动保存测量数据功能JHDY动态应力应变检测仪软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,触发类型,完成信号的实时采集、处理、分析等功能,具有多种显示方式,可实时在线进行频谱分析和应力计算。2.多通道同时实时显示曲线,可直接显示所需物理量多通道实时显示时域曲线和频域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。无需复杂的变换计算。3.测量数据高度实时同步,自动保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、频谱分析、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.根据测量需求灵活设置参数,满足不同的测试需求可根据不同需要对各通道参数独立设置工程单位、测量类型、控制参数等。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。
    留言咨询
  • 符合技术规范《基桩高应变动力检测的标准试验方》法ASTM D4945-08《建筑基桩检测技术规范》JGJ 106-2014《基桩动测仪规范》 JG/T 3055-1999《港口工程桩基动力检测规程》 JTJ 249-2001《公路工程基桩动测技术规程》 JTG/T F81-01-2004《建筑桩基技术规范》 JGJ 94-2008产品介绍CAPWAP 高应变动测曲线拟合软件不仅应用于各种桩(打入桩)基础的动力载荷试验,同时适用于各种干法或者湿法施工的灌注桩测试信号。该软件实测的力与速度曲线进行拟合分析,在此基础上可进行很多工作,可计算桩单元的静土阻力、量级及分布桩端静阻力桩身任意位置的应力值,可模拟拉压状态下的静载荷试验,可预测试验桩的瞬间载荷位移表现。
    留言咨询
  • LM-12 应力检测仪【设备简介】本仪器主要采用盲孔法进行各种金属材料的残余应力分析和研究,还可作为在静力强度研究中测量结构及材料任意点变形的应力分析。如果配用相应的传感器,也可以测量力、压力、扭矩、位移和温度等物理量。盲孔法应力检测仪属于有损检测,既在被测构件上打一个直径1.5mm深度1.0-2.0mm的小盲孔,利用应变片的感应进行测试和分析。使用方便,操作简单。【设备功能】1、采用高速ARM9单片机作为中央处理机,可同时运行四线程固化程序,保证设备流畅运行。2、选用高精度测量放大芯片,可自动化测出残余应力值的大小及方向3、测量过程中数码管可直接显示ε1、ε2、ε3(0°、45°、90°)的应变值和计算后的残余应力值δ1、δ2及主应力方向的夹角度数θ,可通过按键任意切换查看。 4、设备自设清零键,确保钻孔之前因外部因素造成的零点漂移5、设备采用三方向独立数据采集和计算的方式,并通过数字滤波及硬件滤波等综合抗干扰技术,确保打孔时测量数据的准确及稳定。 6、本仪器配有一台微型热敏打印机,可现场打印出三个方向的应变值及计算后的残余应力值及主应力方向的夹角度数。 7、可以根据被测工件的弹性模量、泊松比、应变花的灵敏度系数、中心R,设置相应的释放系数A、B值,(出厂时释放系数默认为:A=0.250,B=-0.720) 【技术参数】、测量点数:单点测。 2.、应变测量范围:0~±32767με。 3.、分辨率:1με/字。 4.、适用应变片阻值:120Ω±0.5 5.、供桥电压:直流2.0V,交流纹波小于0.1mv 6.、基本误差限:≤±0.1%±1με 7.、稳定性:(约2分钟) a) 零点漂移:= ±2με/h b) 读数值变化:≤±0.1%+3/h。 c) 温度变化: 温度对零点漂移的变化:≤±1με/℃。 温度对读数值的变化:≤+0.02%F.S/℃。 8.、电阻平衡范围:≥0.5%(应变片灵敏度系数为2.08,使用120Ω应变片)。 9、显示方式为八位数码管显示(其中5位整数位,2位小数位),显示应变值时 无小数位。 10.、电源:交流 50HZ 220V±10% 。 11.、工作环境: 温度:-20~40℃ ,相对湿度:42%~92%。【配套打孔设备 ☞ 三种可随机选择】①实验室专用多功能台钻优点:体积小、重量轻、功率大、整体稳定性高,适合各种金属材料钻孔配置专用工作台和平口钳,操作灵活性高3、六档速度调节,应对各种工作环境。4、双重刻度参考,钻孔深度任意控制重量:≈8kg 功率:680W 转速:0-4500r/min 钻孔直径:1.5-6mm对中精度:0.025mm 打孔深度: 随机调节②钻孔装置钻孔直径:¢1.0~¢3.0mm对中精度:0.025 mm打孔深度: 随机调节1、采用60度、90度、120度可调钻孔装置可以在不同构建的平面、曲面、角焊缝、对接焊缝、拐角等处方便灵活的进行钻孔2、配置高倍显微镜使对中精度精确到1‰3、钻孔转速可调节,转速快慢可任意控制。4、强磁吸附,完全代替了普通钻孔装置胶水粘贴的麻烦包含配件:手电钻1台、磨光机1台、钻孔支架 3套(三选一)、显微镜1套、深度控制片3种、定位套1个、万向节1个。③高精度微型打孔机【LM-12应力检测仪备件清单】1、控制系统 1台2、测量线 1根3、补偿线 1根4、应变花 20 片5、打印纸 2卷6、电源线 1根7、钻孔设备(三种任意选择) 1台8、钻头 10根9、贴片工具 1套10、说明书 1本11、合格证 1份12、保修卡 1份【应力检测的基本步骤】1、在工件上选定残余应力测量点,一般是选择工件上残余应力值最大的点或工件在使用过程中承力最大的点。2、将被测点表面打磨到粗糙度Ra0.8左右。3、用炳酮或酒精将打磨面清洗干净。4、用502胶将应变花粘贴在适件上。5、应变花周围用透明胶带做绝缘处理。6、将应变花上的引线与残余应力检测仪的测量线通过接线端子连接起来。7、将应力检测仪修正清零。8、在应变花上十字处打一个直径1.5mm、深约1.5-1.8mm的盲孔。9、打完孔10秒左右,按打印键,打印释放的应变值,自动计算出的应力值和应力的方向。【运输方式】本产品用专用的航空箱包装好,由顺丰快递的方式运输至需方指定地点【售后与服务】1、整机保修期为1年,保修期期间出现故障的,接到用户来电后,在5分钟内作出实质性响应,如需配件的、可用快递直接邮寄到用户现场,如需上门维护的,省内不迟于24个小时、跨省不超过48小时内到达用户现场进行维修,直至故障完全排除,设备完全恢复正常为止。2、保修期内,供方将定期回访需方,回馈产品使用情况,帮助需方解决使用上维护上的技术问题。3、质保期后所需零部件按优惠价格供应。4、自验收合格之日起,保修期内凡因制造不良等引起的一切故障,供方全部免费修理。【应用案例】
    留言咨询

应力应变曲线分析相关的资讯

  • 纳米压痕仪NHT³ | 焊接的应力应变研究
    焊接质量一般是通过焊缝质量好坏来做评定,而焊缝质量取决于所焊接的物体、焊接填充物以及所选用的焊接工艺及参数。为了更好地去优化和改善焊接工艺,对于焊缝及其热影响区进行力学性能表征是极其有意义的。对局部弹塑性特性的兴趣导致了一种新检测技术的发展,该技术使用球形压头对焊缝及其热影响区进行局部应力应变性能表征,加载期间使用振动的压痕允许非常局部地确定试验材料的代表性应力-应变曲线。简单的应力应变分析在Anton-Paar压痕软件中实现。该方法可适用于焊缝及其附近不同区域的局部力学性能的表征。01焊缝裂纹尖端附近的弹塑性行为研究纳米压痕仪 NHT3通过展示仪器化纳米压痕测试方法获得低合金钢焊缝中裂纹尖端附近区域和远离裂纹尖端区域的应力应变行为。焊缝出现裂纹通常是由焊接过程中焊缝快速凝固产生的热应力引起的,或由内部显微结构的发生改变所引起的,导致硬度和屈服强度增加,但抗断裂性降低。为了了解局部区域的应力应变行为,仪器化纳米压痕法是能够提供此信息的少数方法之一,局部应力应变测量的目的是帮助理解焊缝开裂的原因。图1 : 靠近或远离焊缝裂纹尖端局部区域的仪器化压痕测试使用Anton-Paar纳米压痕仪NHT3搭载半径为20 µm球型针尖对两个已经存在焊缝裂纹的样品进行测试,以获得局部的应力应变行为;与传统的静态测试方法不同的是,在这次的应用案例中将采用在加载过程增加正弦波加载方式的动态测试方法 (Sinus),选取最大载荷为500 mN,加载卸载速率为1000 mN/min,动态加载振幅为50 mN,频率为5 Hz。图2:载荷位移曲线图3:应力应变曲线图2和图3显示了动态加载测试下获得的压痕曲线,以及从两个区域的压痕曲线中获得的应力应变曲线。可以看出裂纹尖端附近区域的屈服强度远高于远离裂纹尖端的区域。屈服强度的增加通常与延展性的降低有关,这可能对焊缝的抗断裂韧性产生至关重要影响。在外部荷载作用下,靠近裂纹尖端的材料屈服强度增加,往往会出现比基材更早断裂的情况,因此在整个结构中是个力学薄弱点。焊缝中的断裂会导致整个部件失效,因此应该去调整焊接参数,使裂纹尖端附近的材料具有较低的屈服应力和较高的抗断裂性。02焊接铝合金的应力应变行为研究仪器化纳米压痕测试方法中应力应变分析的另一个经典应用是研究金属焊缝周围的弹塑性,尤其是软金属,例如铝合金。铝合金比钢对高温更敏感,因此,研究铝合金的焊接热效应尤为更重要。在本应用所提及的研究中,在加载过程中使用正弦波动态加载模式,利用球形纳米压痕针尖的特性对两种不同的铝合金焊缝附近的弹塑性行为进行局部表征。球形纳米压痕针尖用于确定靠近焊缝(区域A)且距离焊缝约2mm(区域B)的应力应变特性。图4:对比距离焊缝近的区域A和距离焊缝2mm处区域B的应力应变行为使用NHT3纳米压痕仪搭载半径20µm球型针尖作为表征手段,选取的最大载荷为300 mN、加载卸载速率为600 mN/min。在加载过程中采用正弦波的动态加载模式,振幅为30 mN,频率为5 Hz。图4展示了区域A和区域B的应力应变曲线的比较。两个区域表现出相类似的弹塑性行为,屈服应力约为0.3 GPa。这表明焊接过程中加热和冷却对材料的弹塑性性能的影响可以忽略不计。然而,并非所有情况下都是如此,焊接区域的局部应力应变行为仍然是优化焊接参数的重要信息。03搅拌摩擦焊接铝合金的应力应变研究搅拌摩擦焊(FSW)通常是铝合金焊接工艺更好地选择,而传统电弧焊由于铝的高导热性而容易产生较大的热影响区。FSW中的焊接温度远低于中心接触点,因此热效应的传导不如弧焊中明显。在这种情况下,将两种不同的铝合金AA6111-T4(T4)和AA6061-T6(T6)焊接在一起,并在距离熔核中心位置的1.1 mm、2.2 mm和3.3 mm处研究硬度、弹性模量和屈服应力。以下参数用于压痕:最大载荷300 mN,加载速率600 mN/min,动态加载模式下选取振幅30 mN,频率5 Hz。图5的结果表明随着距熔核距离的增加,所表现出的应力应变行为大致一样,仅存在微小差异。在所有的三个区域的屈服应力大约为0.33 GPa(两种基材中的屈服应力大约为0.27 GPa,图中未显示)。母材的硬度为0.8 GPa(T4合金)和1.1 GPa(T6合金)。所有三个区域(距焊缝熔核1.1 mm、2.2 mm和3.3 mm)的硬度均为1.1 GPa,这证实焊缝附近的弹塑性能并没有发生显著变化。图5:距熔核不同位置的应力应变曲线Aoton-Paar自研自产的纳米压痕仪能非常好地去胜任微观局部的应力应变分析,新一代的检测手段的开发有助于焊接行业的进一步发展。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 热分析耄耋老人钱义祥:DMA曲线激荡之美
    DMA曲线激荡之美热分析耄耋老人 钱义祥引言:“DMA曲线激荡之美”是一篇短文。短文诠释(解读)了黏弹性材料的DMA曲线的显信息以及蕴含在DMA曲线中的滞后圈。展现了黏弹性材料在正弦交变应力作用下的激荡之美。近日,和耐驰公司市场与应用副总经理曾志强博士切磋热分析中的美学问题。曾志强博士语出金句:热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡!妙 ! 我将他的金句镶嵌进“热分析中的美学”论文中,增辉!今以DMA曲线激荡之美为题,撰写了以下短文:一.试样在振动中呈现激荡之美激荡是汉语词语,是指事物受到激发而动荡。强迫非共振法DMA以设定频率振动,使试样处于振动状态,呈现激荡之美。二.激荡的DMA曲线蕴含的信息1. 显信息和隐信息强迫非共振法DMA就是测量应力—应变(同频正弦信号)信号的相位差,其滞后圈即为李萨如图形。由试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算得到储能模量、损耗模量、损耗角正切等性能参数。DMA测量应力—应变(同频正弦信号)信号的相位差,但在DMA曲线中并没有显现相位差信息,它是DMA曲线的隐信息。 DMA曲线中显现的储能模量、损耗模量、损耗角正切等性能参数是显信息。它由试样在振动中的应力与应变幅值以及应力与应变之间的相位差直接计算得到。非晶高聚物的DMA曲线(温度谱)非晶高聚物的DMA曲线(频率谱)2. 一个震荡周期的滞后参数DMA实验要设定振动频率,让试样在一定的频率下振动。一个振动周期即为一个实验点。无数个振动周期构成了DMA曲线。DMA曲线中,每一个振动周期的应力-应变曲线相位差、Tanδ、滞后圈和能量损耗是不一样的。一个震荡周期得到的滞后参数如下图: 3. 损耗角正切Tanδ蕴含的信息:DMA曲线中的Tanδ线如图所示: 损耗角正切Tanδ反映材料的阻尼特性,是DMA曲线的显信息。Tanδ中δ是一个震荡周期的相位差,是DMA曲线的隐信息。从三角函数表中由Tanδ值得到相位差δ。DMA曲线中,损耗角正切Tanδ蕴含哪些信息呢? 1) 显信息Tanδ以DMA曲线形式显现黏弹性材料的阻尼特性,可以从DMA曲线上直接读出每个振动周期的Tanδ。Tanδ表示每周期振动所消耗的能量与最大应变能的比值,是能量损耗和阻尼能力的直接量度。2) 潜信息-相位差相位差:DMA是测量应力—应变(同频正弦信号)信号的相位差。相位差无量纲,用弧度rad表示。李萨如滞后圈:李萨如滞后圈是隐藏在Tanδ曲线内的应力-应变曲线,单位是焦耳j。3)关联Tanδ和简谐振动的能量损耗。4. 诠释DMA曲线:DMA曲线显现显信息,潜藏隐信息。下图诠释了DMA曲线的显信息、隐信息:三.滞后圈的变化美滞后圈的形状多种多样,变化无穷,具有变化之美!黏弹性材料的应力-应变曲线,由于粘性的作用形成滞后圈。DMA计算的理论基础是线性粘弹性,要求施加在试样上的动态应力或动态应变落在应力-应变曲线的初始线性范围内。当试样是线性粘弹性材料(处于线性粘弹性区域),施加的应力是正弦波,则滞后圈为一椭圆形。滞后圈的形状在直线和圆之间变化,如图: 如果是非线性粘弹性材料(处于非线性粘弹性区域),滞后圈的形状是不规则的,如图所示: 滞后圈变异反映了材料的特性,不是怪异,不是丑,而是变化之美!滞后圈变异已经广泛应用于阻尼材料的振动疲劳特性、应力—时间疲劳测试曲线、位移—时间疲劳测试曲线、振幅对阻尼材料的振动疲劳的影响、温度对阻尼材料振动疲劳的影响、频率对阻尼材料振动疲劳的影响、长周期振动的疲劳性能等方面。从滞后圈上可以获得的信息:1. 储能模量、损耗模量、损耗角正切等性能参数。强迫非共振法DMA以设定的频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算实验得到储能模量、损耗模量、损耗角正切等性能参数。2. 滞后圈形态封闭回线:粘弹性阻尼材料滞后圈是应力、应变所经过的路径形成的封闭回线。滞后圈的形状有椭圆形和不规则图形。椭圆形:如果是线性粘弹性材料(区域),施加的应力是正弦波,则滞后圈为一椭圆形。椭圆的变形:圆形—δ越大,链段运动越困难,越跟不上应力的变化,椭圆越圆;扁形—δ越小,应变落后越小,椭圆越扁。椭圆长轴的斜率等于复模量。不规则图形:如果是非线性粘弹性材料(区域),滞后圈的形状是不规则的。3. 滞后圈面积阻尼材料的动态变形生热现象。由于滞后的存在,每一循环周期中都有能量的损耗,即内耗。消耗的功以热能形式散发,内耗越大,吸收的振动能也越多。 滞后圈面积只表示振动循环一个周期的能量损耗。一个周期中能量收支不平衡,其差值就是椭圆面积 ,表示能量的耗损ΔW,ΔW为阻尼大小的量度。滞后圈面积的变化:振动疲劳试验中,滞后圈随阻尼性能下降而变小。由滞后圈面积的变化得到不同疲劳周期的能量损耗和阻尼衰减特性。4. 损耗因子曲线下的面积:5. 疲劳破坏的周数当材料内部出现疲劳裂纹时,滞后圈发生突变或无法对试样继续加载试验应力,疲劳试验就此终止。结束语:材料的动态力学行为是指材料在交变应力(或应变)作用下的应变(或应力)响应。试样在正弦交变应力作用下呈现材料动态的激荡之美。致谢:曾志强博士提出热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念, 绝妙! “DMA曲线的激荡之美”一文是受曾志强博士的美学理念启迪撰写而成,特此致谢!2023-01-06
  • 【定制产品】上海百若——超纯水介质慢应变速率应力腐蚀试验机YYF
    p style="text-align: center "/pp style="text-align: center"img style="width: 345px height: 500px " src="http://img1.17img.cn/17img/images/201710/insimg/fed9f818-9b0d-4cf1-87d7-33b2037e3c09.jpg" title="1.jpg" height="500" hspace="0" border="0" vspace="0" width="345"//pp style="text-align: center "strong超纯水介质慢应变速率应力腐蚀试验机YYF/strongbr//pp strong 1.生产厂商/strong/pp  上海百若试验仪器有限公司/pp strong 2.采购单位/strong/pp  原子能科学研究院/pp strong 3.主要功能/strong/pp  阻尼器、助力器耐久性能测试 /pp  加载波形正弦运动规律,编程循环嵌套不低于3层 /pp  对阻尼器、助力器进行力——位移功量图绘制,力——位移——时间曲线图绘制 /pp  产品具有轴向疲劳加载、侧向同时加载的功能 /pp strong 4.产品技术特点/strong/pp  1) 采用高集成度、强大的控制、数据处理能力、高可靠性控制测量系统。/pp  2) 采用基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统,实现力、变形、位移全数字三闭环控制,各控制环间可自动切换,并在各方式间切换时实现无冲击平滑过渡。/pp  3) 可进行定位移、定速度、定应变、定应变速率、定负荷、定负荷速率等多闭环控制模式。/pp  4) 高精准24Bit数据采集系统,高分辨率,可扩展至8路AD采集。/pp  5) 试验过程中实时显示滞回环曲线。/pp  6) 试验过程中显示负荷、位移峰值谷值变化情况。/pp  7) 试验过程中显示动态波形加载曲线。/pp  8) 采用DCPD(直流电位法)在腐蚀介质系统中测量裂纹长度,进一步提供金属材料在腐蚀介质中的裂纹扩展速率指标。/pp strong 5.产品技术参数/strong/pp  最大试验力:50kN/pp  试验力测量范围:1%~100%/pp  加载头移动速度:10mm/s~1x10-6/s/pp  疲劳加载波形:正弦波,三角波/pp  工作最大压力:20MPa/pp  试验釜内温度:350℃/pp  加载头位移分辨率:0.05μm/pp strong 6.产品应用介绍/strong/pp  采用YYF-50客户进行金属材料在环境诱导下的腐蚀、应力腐蚀、腐蚀疲劳失效的检测及评价。在整个核电材料领域,材料服役性能的评价、表征等贯穿于核电站设计、建设和运行的整个阶段。基于材料服役性能评价,明确材料应力腐蚀、环境疲劳等失效规律,预测材料的服役性能,评价关键部件的服役安全性,制订关键材料的服役、失效的预防与缓解提供了重要的技术测试平台。采用YYF-50慢应变速率应力腐蚀试验机,客户根据服役的条件,在水化学回路系统上调节PH值,溶解氧DO,电导率等参数,并设置应变或应力控制模式,加载波形及加载频率等参数,试验机即可按规定参数进行试验加载,水化学回路循环,高压釜加热等工作,最终检测出材料在腐蚀环境下的裂纹扩展速率等参数。客户在使用这台设备期间,完成了相关材料的应力腐蚀及腐蚀疲劳的评价。/p

应力应变曲线分析相关的方案

应力应变曲线分析相关的资料

应力应变曲线分析相关的论坛

  • 拉伸试验,真实应力应变与工程应力应变曲线

    求助一下大家,客户要求提供真实应力应变曲线和工程应力应变曲线,现在我们用的是Zwick 10t的拉伸试验机,不知道如何让试验机绘制真实应力应变曲线,而且不知道能不能把这两个曲线弄到一张图上。

  • 真应力-应变曲线

    客户要求提供真应力-应变曲线,原来都是提供力-变形曲线的。真应力-应变曲线是否就是应力-应变曲线?

  • 车用PP高应变速率下的应力-应变曲线获得方法研究

    [back=#00b0f0][/back][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/dbcfe59c0b32483a9206d9b5264fd3c1?from=pc[/img][back=#f6f9fd]摘要:[/back][back=#f6f9fd]在通常的汽车碰撞CAE仿真分析中,需要用到应变速率从0.01~100 s-1全应变速率下甚至更高应变速率下的应力-应变曲线。当测试速率达到1 s-1甚至更高时,数据的获得就变得困难起来。通常有两种方法:采用方程拟合法 采用液压原理的高速拉伸试验机测试。结果表明,采用方程拟合的方法可以得到比测试得出的最高应变速率高出两个数量级的曲线及特征值;对于达到峰值应力后应力变化较小的曲线,方程拟合法准确性较好,对于达到峰值应力后应力降低或增加的材料,方程拟合法的准确度稍弱。[/back][align=center][/align]关键词:高速拉伸 方程拟合法 直接测试法 非接触式引伸计 CAE分析汽车在进行碰撞过程中,整个过程只有0.1~0.2 s,会产生大量的能量吸收与转移,而这个能量吸收与转移的能力与材料有关。然而困扰汽车设计的一大难题就是选材。现阶段,车用材料制备结构件需要前期进行更多的模拟试验,CAE动态分析是不可或缺的。而车用材料CAE分析面临着动态拉伸数据获得难的问题,也就是说高应变速率下(如应变速率大于1 s-1)的应力-应变曲线获得相当困难。需要材料在高应变速率下的拉伸数据。目前国际上针对非金属材料的高速拉伸测试方法主要有两个:采用ISO 18872:2007《塑料高应变速率下的拉伸性能测试》(由金发科技股份有限公司联合其他单位已经将其等效转化为国家标准发布,以下简称方程拟合法)和采用高速拉伸试验机直接进行测试——直接测试法。方程拟合法是针对塑料高速拉伸测试的标准,计算出塑料在高速下的力学性能。而直接测试法主要是指使用高速拉伸设备直接测试。[align=center][/align][color=#346eb7]01测试原理[/color]方程拟合法:依据ISO 527-2:2012,拉伸应力-应变曲线在0.1~100 mm/s选定速度下测试获得。同时,测量泊松比随应变的变化。由测试结果,可计算出各应变速率下的真实应力和真实塑性应变值。通过数学函数方程可对各应力-塑性应变曲线进行准确模拟。同时,也可以建模分析此函数中的参数随应变速率的变化,从而外推得出较高应变速率下的参数值。通过计算就可获得较高应变速率下的应力-应变曲线。直接测试法:通过设置应变速率或测试速度、接触力、数据采集频率等参数,使用高速拉伸试验机,沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量在这一过程中试样承受的负荷及其伸长。[color=#346eb7]02方程拟合法[/color][b][color=#ff8124]2.1 低速下特征数据的测试[/color][/b]1) 测试速度选择:试样在0.1,1,10 mm/s速度下进行测试。2) 测试样品:对于在屈服应变以下的性能测试(见ISO 527-2:2012),可使用ISO标准中的1A,1B或1BA试样。3) 测试设备选择:对设备的一般要求见ISO 527-1:2012。当测试速度达到10 mm/s以上时,通常要使用液压伺服式测试设备。为顺应大多数厂家的条件,测试时采用的设备为普通拉力机。[b][color=#ff8124]2.2 结果计算[/color][/b]在选定的测试速度0.1,1,10 mm/s下进行拉伸测试,得出达到屈服应变前的工程应力σ,工程应变ε、拉伸模量E和泊松比μ。根据式(1)计算各应变下的真实应力σT:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/66546996b6f5446cbe10899be29cb0b9?from=pc[/img][align=right](1)[/align]式中:σ为工程应力 μ是由工程应变计算的泊松比。根据式(2)计算真实应变εT:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/4b53cfd50166404c8b22f0fbf14e55b2?from=pc[/img][align=right](2)[/align]根据式(3)计算各应变下的真实塑性应变A:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/2a452345dabb46348dddd8b3f4ccb12c?from=pc[/img][align=right](3)[/align]式中:εe为弹性部分的应变,考虑到εe?1时不用再计算真实弹性应变,因此式(3)做了这样的近似处理。[b][color=#ff8124]2.3 应力塑性应变曲线建模分析[/color][/b][color=#ff8124]2.3.1 低速下参数拟合[/color]根据式(4)进行拟合。拟合模型派生出的参数σ0,σf,B,β的数值,从而使每一测试速度下的真实应力σT与计算得出塑性应变A能够很好地契合。[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/011433bece884a1db7393cae475e59dc?from=pc[/img][align=right](4)[/align]式中:σ0表示无塑性应变时的应力,其值取决于代表应力-应变曲线的线性段的斜率E,σf是高塑性应变时的极限应力。参数B和β决定平均塑性应变及应变范围,在这个范围内,真实应力随着真实塑性应变的增加而增加。[color=#ff8124]2.3.2 高速下方程参数拟合[/color]将参数σf(每一测试速度下)与塑性应变速率的对数作图。将数据进行最佳的线性拟合,并将直线外推至最大测试速率以上两个数量级的应变速率。在此范围内可通过图形或以下公式得出任一应变速率下的σf 的值:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/a84ed35824264686a35416f6ed88ff75?from=pc[/img][align=right](5)[/align]式中:C为应力轴上的截距 a为曲线斜率。计算有效塑性应变速率A′ 时,可以通过计算峰值应力下的塑性应变随时间的变化速率,如没有峰值应力则采用屈服应力。通过在不同应变速率下的试验数据拟合式(4)的参数值,获得每一个参数的平均值,从而得出参数σ0,σf,B,β的单一数值。[b][color=#ff8124]2.4 高应变速率下材料的应力-应变曲线[/color][/b]根据方程拟合法的原理可知,采用方程拟合法得到高应变速率下的应力-应变曲线,需要用到式(4),而式(4)适合于带有屈服的样品的拟合。因此对于脆性材料便不适合应用此公式得到高应变速率下的应力-应变曲线。对于聚丙烯(PP)、聚碳酸酯(PC)韧性材料,可以采用方程拟合法得到高应变速率下的应力-应变曲线。根据测试所得数据,将某PP材料以及某PC材料使用式(4)以及式(5)进行拟合的各参数如表1所示。[align=center]表1 拟合得出的参数[/align][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/6117d354716a41d0b81e4ffbc7fa0588?from=pc[/img]根据上述拟合的参数,得出高应变速率下的PP,PC应力-应变曲线,如图1,2所示。图1,2中曲线1,3,5分别为0.1,1,10 mm/s速度下测试所得的结果,曲线2,4,6分别为0.1,1,10 mm/s速度下根据式(4)拟合的结果,曲线8,10为采用式(4)与式(5)拟合的结果。[color=#346eb7]03[/color][color=#346eb7]直接测试法[/color]通过设置应变速率或测试速度、接触力、数据采集频率等参数,使用高速拉伸试验机直接进行测试。测试设备应至少可以进行12 m/s速度下的拉伸测试。为实施此速度下的拉伸测试,设备应采用液压伺服式,实际测试速度允许偏差在±15%以内。可见测试装置的设计是非常重要的,使用高硬度的测力传感器(如压电式的)和轻质高刚度的部件是必要的。对于引伸计的选择,通常选择非接触式的引伸计。且引伸计的数据采集频率需要足够高。采用直接测试法得出PP,PC在100,1 000 mm/s测试速度下的结果(图1,2中曲线7,9)。测试设备:Zwick/Roell HTM 2512型高速拉伸试验机 设备测试速度范围:0.0001~12 m/s 引伸计:非接触式光学引伸计。[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/4789d25a65d94e5d87b5df466682d0b5?from=pc[/img][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/5899018541ef4d27915483314e45059a?from=pc[/img][align=center]图1 PP材料的真实应力-真实应变曲线[/align][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/13a12a741fe1467d8a9bb253abf2cafc?from=pc[/img][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/52d4386c1dca4fa5baef3cbe192b18f8?from=pc[/img][align=center]图2 PC材料的真实应力-真实应变曲线[/align][align=center][/align][color=#346eb7]04 分析与讨论[/color]两种方法均可以得出高应变速率下的应力-应变曲线,其在操作过程中差异明显,但在结果上,对于进行测试的两种材料而言,差异不大。由图1,2可见,采用方法拟合的曲线与采用直接测试得出的曲线在100,1 000 mm/s(高于最高测试速度两个数量级)时吻合情况尚可,对于CAE模拟所需的关键数据可以得出较准确的值。但是仔细观察两个曲线,发现对于PP材料而言,随着应变的增加,应力增加到最大值后变化幅度较小,而采用方程拟合法拟合时,由于方程本身的特性,达到屈服应力后,应力变化小,不会出现增加或降低很大的情况,与材料实际测试曲线吻合较好。而观察PC的测试曲线时发现,PC材料本身的应力达到最大值后,由于材料本身的原因塑性段会出现一个急速的力值降低再升高的过程,而式(4)本身描述的曲线确是塑性应变很小的,可见,对于曲线类似PC类(塑性段应力值降低)的材料采用式(4)很难达到很好的拟合效果,但是对于弹性段和应力的拟合是可以接受的。然而,在应力峰值出现后,受材料分子排布的刚性影响,真实应力随着应变增加或降低的材料也是较多的,如果真的要达到一致性较高的模拟,可以建议在式(4)的基础上加一个类似抛物线的参数项得到,即[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/5dbb3c6963c04605b96702b456bce8d1?from=pc[/img][align=right](6)[/align]其中,δ用来描述在应力出现峰值之后的应力下降,F为应力最小时的塑性应变值,H是高塑性应变时的极限应力。式(6)中的参数H仍然比式(4)中的σf稍大一些,因为要弥补由加入类抛物线参数项而引起地峰值之后的应力值降低。然而经过试验证明,即使是添加了类抛物线的参数项,仍然很难达到类似前文中PP材料拟合的一致性,对于达到应力峰值后应力增加或降低的材料,无论是哪种CAE软件中的本构关系,都很难达到一致性较高的拟合。因此,采用方程拟合法只能近似的模拟而不能完全替代高速拉伸测试仪给出的实际测试结果。[b][color=#346eb7]05 结论[/color][/b][color=#ff8124]经过理论分析与试验证实:[/color]1) 采用所述的方程拟合的方法可以得到比测试得出的最高测试速度(应变速率)高出两个数量级的测试速度下(应变速率下)的曲线及特征值。2) 对于选用的PP材料而言,采用方程拟合的方法得出的数据与实际采用高速拉伸测试仪得出的数据吻合情况较好,对于CAE模拟所需的关键数据可以得出较准确的值 但是对于选用的某PC材料而言,两种方法得出的数据有差异,且此差异可能会影响后续应用于CAE仿真分析的结果。经过多次验证,无论是采用哪种CAE软件中的本构关系,对于达到峰值应力后应力降低或增加的材料, 都很难得到实际测试曲线与拟合曲线结果一致性很高的曲线,乃至根据方程的缺陷做了一些改变,按照现有的技术,仍然很难得到一致性很好的拟合,可见采用方程拟合法最终只能近似的模拟而不能完全替代高速拉伸测试仪给出的实际的测试结果。3) 采用方程拟合法测量的材料性能数据精度还不能评估。欲使用方程拟合法获得高应变速率下的应力-应变数据时,建议低速下的拟合的精度尽量高。

应力应变曲线分析相关的耗材

  • 动态应力应变测试
    JHDY动态应力应变测试系统应用范围1.适用于测点相对集中,被测物理量快速变化的试验中。2.主要用于动态应力分析及动载荷研究中测量结构及材料任意点的动态应力应变测量。3.接入不同的传感器,可完成应力应变、振动(加速度、速度、位移)、冲击、温度、压力、流量、力、扭矩等各种物理量的测量。4.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、旋转构件等结构动载荷测试,疲劳测试。5.可用于实验性测量,也可用于长期监控测量。JHDY动态应力应变测试系统特点1.模块化设计,自选通道数,可扩展仪器集桥路和采集通讯为一体,无需各类适配器和平衡箱,结构紧凑简洁,采用模块化结构,可根据客户要求搭载通道数为8的倍数的采集模块,单机最多64通道,软件可同时控制多台仪器并联使用,可达数百通道,并保持同步。2.全数字电路,抗混滤波,精度高,稳定性好仪器采用全数字电路,每通道独立AD、独立MCU,采用了先进的DDS数字频率合成技术,保证了多通道采样速率的同步性、准确性和稳定性。所有通道同步采样,采样频率软件设置,不随通道数递减,最高可达10KHz。采用独特的硬件隔离技术,系统具有极强的现场抗干扰能力。系统精度高,可以达到0.2%±1με。3.低电压,低功耗,低噪声电路设计仪器采用高精度进口元器件,采用低电压,低功耗,低噪声电路设计,确保了仪器长时间测量稳定性,显示精度可达0.1。同时在加装锂电后,可长期待机测量。4.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测量,操作简单方便。5.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、软件多种补偿方式,稳定性好。尤其是软件补偿方式,可方便快捷的选择模块上所有通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。6.仪器连接简单,设置方便,操作快捷,海量存贮仪器与计算机usb接口连接,即插即用。仪器与各类传感器通过航插连接,方便可靠。可连接各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。可进行不间断长时间在线测量,数据存储量取决于计算机硬盘大小。7.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,具有通讯和电量指示,每个模块的状态高亮指示灯闪烁指示,一目了然。8.具有标准模拟量电平输出,可与其他控制采集单元互联9.具有远程同步触发控制端口,可各种仪器实现同步采样控制10.具有掉电自动保存测量数据功能JHDY动态应力应变测试系统软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,触发类型,完成信号的实时采集、处理、分析等功能,具有多种显示方式,可实时在线进行频谱分析和应力计算。2.多通道同时实时显示曲线,可直接显示所需物理量多通道实时显示时域曲线和频域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。无需复杂的变换计算。3.测量数据高度实时同步,自动保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、频谱分析、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.根据测量需求灵活设置参数,满足不同的测试需求可根据不同需要对各通道参数独立设置工程单位、测量类型、控制参数等。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。
  • 应变应力测量系统
    JHYC应变应力测量系统应用范围1.适用于测点相对集中,被测物理量缓慢变化的试验中。2.主要用于静态结构应力分析及静载荷强度研究中测量结构件及材料任意点的静态应力应变及残余应力。3.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、压力容器等结构静载荷测试、安全和健康状态测试。4.接入不同的传感器,可对力、荷重、压力、扭矩、位移、电压、电流等进行采集。5.可用于实验性测量,也可用于长期监控测量。JHYC应变应力测量系统功能特点1.全数字电路,精度高,稳定性好,具有极强抗干扰性能力仪器采用全数字电路,每通道独立AD、独立MCU,所有通道同步采样,仪器检定指标达到0.1级,显示精度0.1。采用独特的硬件隔离技术,系统具有极强的现场抗干扰性能力。2.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测测量,操作简单方便。3.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、公共,软件多种补偿方式,稳定性好。尤其是公共补偿方式,可方便快捷的对模块上10个通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。4.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,省掉一切不必要的端口,简化了测量接线难度。每个模块的状态和通道状态用高亮指示灯闪烁指示,一目了然。5.设置简单,操作方便快捷,海量存贮适合各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。应变片和仪器连接简单方便,主机与计算机usb接口连接,即插即用。可进行不间断或间断性长时间在线测量,数据存储量取决于计算机硬盘大小。6.具有掉电自动保存测量数据功能在测量过程中,如出现意外断电,仪器可自动保存断电前的所有测量数据,并自动形成测量文件,防止意外丢失测量数据。JHYC应变应力测量系统软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,完成信号的实时采集、处理、分析等功能,具有多种显示方式。2.应变实时显示,被测物理量直接显示多通道应变值实时显示,实时绘制时域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。3.数据实时保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.每个通道都可根据测量需求选择测量类型,简单方便可根据每通道接入的传感器类型,各通道选择不同的输入类型、工程单位、标定值、调零、补偿方式等。实现对不同物理量的实时同步测量。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。南京聚航科技是应变仪生产商,种类多样,型号齐全,欢迎广大客户咨询!
  • 静态应变测量与采集设备
    JHYC静态应变测量与采集设备应用范围1.适用于测点相对集中,被测物理量缓慢变化的试验中。2.主要用于静态结构应力分析及静载荷强度研究中测量结构件及材料任意点的静态应力应变及残余应力。3.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、压力容器等结构静载荷测试、安全和健康状态测试。4.接入不同的传感器,可对力、荷重、压力、扭矩、位移、电压、电流等进行采集。5.可用于实验性测量,也可用于长期监控测量。JHYC静态应变测量与采集设备功能特点1.全数字电路,精度高,稳定性好,具有极强抗干扰性能力仪器采用全数字电路,每通道独立AD、独立MCU,所有通道同步采样,仪器检定指标达到0.1级,显示精度0.1。采用独特的硬件隔离技术,系统具有极强的现场抗干扰性能力。2.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测测量,操作简单方便。3.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、公共,软件多种补偿方式,稳定性好。尤其是公共补偿方式,可方便快捷的对模块上10个通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。4.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,省掉一切不必要的端口,简化了测量接线难度。每个模块的状态和通道状态用高亮指示灯闪烁指示,一目了然。5.设置简单,操作方便快捷,海量存贮适合各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。应变片和仪器连接简单方便,主机与计算机usb接口连接,即插即用。可进行不间断或间断性长时间在线测量,数据存储量取决于计算机硬盘大小。6.具有掉电自动保存测量数据功能在测量过程中,如出现意外断电,仪器可自动保存断电前的所有测量数据,并自动形成测量文件,防止意外丢失测量数据。JHYC静态应变测量与采集设备软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,完成信号的实时采集、处理、分析等功能,具有多种显示方式。2.应变实时显示,被测物理量直接显示多通道应变值实时显示,实时绘制时域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。3.数据实时保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.每个通道都可根据测量需求选择测量类型,简单方便可根据每通道接入的传感器类型,各通道选择不同的输入类型、工程单位、标定值、调零、补偿方式等。实现对不同物理量的实时同步测量。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。南京聚航科技是应变仪生产商,种类多样,型号齐全,欢迎广大客户咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制