当前位置: 仪器信息网 > 行业主题 > >

标准热电偶显示仪

仪器信息网标准热电偶显示仪专题为您提供2024年最新标准热电偶显示仪价格报价、厂家品牌的相关信息, 包括标准热电偶显示仪参数、型号等,不管是国产,还是进口品牌的标准热电偶显示仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标准热电偶显示仪相关的耗材配件、试剂标物,还有标准热电偶显示仪相关的最新资讯、资料,以及标准热电偶显示仪相关的解决方案。

标准热电偶显示仪相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 产品信息:抗燃油自燃点测定仪符合DL/T706标准
    A1130自燃点测定仪是根据国家电力部行业标准DL/T706《电厂用抗燃油自燃点测定方法》研制的,用于测定30MW以上发电机组调速系统中抗燃油的自燃点温度。本仪器智能控温,加热均匀,布局合理,准确度好。使容器内部温度达到热平衡,利用反光镜观察抗燃油的燃点,本仪器外观美观,测试方便,性能稳定可靠。功能特点1.采用人工智能调节算法进行控温。2.LED数码显示,K型热电偶,主辅加热器自动切换使容器内部温度达到热平衡。3. 烧瓶内的顶部、中部、底部温度控制在1℃之内。4.万向观察镜监视燃点,性能稳定可靠。技术参数量程:室温~800℃精度:烧瓶顶部、中部、底部三点温差≤1℃环境温度:室温~50℃ 相对湿度:<80% 工作电源:AC220V±10% ,50Hz 控温准确度:±1℃功率 <2000W
  • 浅谈现有锂离子电池检测标准
    p  由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。/pp  strong1 电池安全性能检测标准简介/strong/pp  目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。/pp  应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3)/pp  和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。/pp  目前,国内外常用的锂离子电池标准列表归纳于表1。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title="003.jpg.png" alt="003.jpg.png"//pp  strong2 现有标准的侧重点分析/strong/pp  现行的主要标准可概括为以下几类:/pp  strong2.1 主要针对运输过程中的外部环境和机械振动/strong/pp  如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。/pp  strong2.2 主要针对设计和制造过程/strong/pp  如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。/pp  strong2.3 主要针对锂离子电池电性能和安全性/strong/pp  如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。/pp  strong3 现有标准的不足/strong/pp  过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。/pp  根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。/pp  迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。/pp  在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。/pp  strong4 结束语/strongbr//pp  安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。/pp  随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。/pp  span style="color: rgb(127, 127, 127) "i文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局)/i/span/p
  • 欧盟再次提高茶叶农残检测标准,赛默飞提供解决方案分忧解难(下)
    2014年9月4日,上海——针对8月25日欧盟再次提高对中国茶叶农药残留检测标准,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)不仅可以采用气相色谱质谱联用(GCMS)、液相色谱为业界提供了行之有效的解决方案(详见上篇),而且能够通过高分辨质谱、TSQ? 8000三重四极杆气质联用(GC-MS/MS)实现茶叶中农残的分析检测问题,让这些茶叶农残无处遁形。 Q-Exactive高分辨质谱是茶叶农残乃至食品安全分析领域的强大分析工具,采用Q-Exactive分析农残,无需方法开发,便可快速准确完成分析。高分辨率使分析复杂基质样品时具有高选择性,能消除基质干扰;ddms/ms自动触发二级质谱进一步提高了定性确认的准确性。简单的外标校准具有长时间的质量精度的稳定性,无需频繁内标校准,操作更加简便。 TSQ? 8000三重四极杆气质联用(GC-MS/MS)分析方法是农残检测中的又一利器,在农残检测中具备四大优势:1、高通量的特点使一针进样完成666种农残的分析检测成为现实。2、TSQ? 8000 是业内灵敏度最高的GC-MS/MS。3、高选择性可以更好地在复杂基质中屏蔽假阳性结果。4、不卸真空更换/清洗离子源,不卸真空更换色谱柱,仪器可以一直保持在真空状态,从而提高工作效率。以花茶中的农残检测为例,通过TSQ? 8000 GC-MS/MS系统可建立一种用于花茶中200多种农残的检测的方法。干的花茶样品用乙酸乙酯/环己烷提取,凝胶色谱净化、浓缩后,采用GC-MS/MS的多反应监测模式,以保留时间和离子对(母离子和子离子)信息来定性,以母离子和响应值高的子离子进行定量。方法的检测限为0.01mg/kg,200多种农残的相对标准偏差均低于10%。 欧盟不断提高农残检测标准,这在对检测界提出新挑战的同时,也在一定程度上促进了生态环境和食品安全的良性发展,赛默飞通过先进产品和技术,坚定不移地继续 “帮助客户使世界更健康、更清洁、更安全”的使命。 欲了解更多赛默飞食品安全解决方案,请查看赛默飞食品安全专题页面:http://www.thermo.com.cn/foodsafety 相关应用资料下载:1、Q-Exactive四极杆-静电场轨道阱高分辨质谱分析6种基质样品中的96种农残2、菊花茶中多农残的检测分析-GC-MS/MS法 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 钉是钉,铆是铆——符合AMS2750标准的试验箱
    AMS2750标准是美国宇航局现行使用的关于宇航材料高温测量法的规定,新版的AMS2750F在E版本上进行了经验和技术要求上的革新,涉及的板块有:温度传感器、仪表、热处理工艺设备、系统精度校验、炉温均匀性测量、试验炉、记录等方面,对校验的方法和频次也有了明确的规定,宏展科技是在AMS 2750F版基础上进行了经验汇集和技术革新,独立研发具有优良性能的试验箱,以适应不断变化的市场变化,在激烈的竞争中激流勇上!该标准是由美国波音公司提出的,现在被航天航空企业广泛采用,该标准的实施背景又有什么故事呢?2018年5月电影院上映了一部《中国机长》,电影讲述从重庆飞往拉萨的某航3U8633航班,在9800米的高空中,驾驶舱右座前风挡玻璃突然破裂脱落。在完全不适合人类生存的环境下,机长刘长健依然保持了冷静与专业,争分夺秒,紧急备降,飞机终安全抵达成都双流机场,所有乘客平安落地。这是一个真实故事改编的,故事很惊心动魄,结果很美好。截至2020年,全世界空难事故达到363起,每起空难都是九死一生,空难的事故可能是因为飞机零部件的质量问题、系统故障或外部的不可抗力因素等。正是因为AMS2750标准注重质量和法规遵从性,哪怕一颗铆钉都必须根据标准进行热处理工艺。那如何证明热处理是不是严格按照标准执行呢?标准规定零部件的热处理工艺数据必须是不可修改,要保存长达5年。除了这些数据外,AMS2750还定义了:1. 有效工作空间内的温度均匀性TUS。零部件必须放在热处理炉的有效空间内,炉内保持每一个面的温度受热均匀性,并规格受热相差范围。2. 仪器仪表种类。根据热处理工艺的要求,配置控制器、记录仪、热电偶等。3. 系统校准要求。仪表,热电偶,补偿导线必须经过有资质的第三方机构校验,并出具校验证书。4. 系统精度。仪表,热电偶,补偿导线的校验数据是否符合标准的规定。不同等级的热处理炉定义了不同的系统精度。5. 设备周期性检测校准及相应的记录。热处理炉需要根据等级和配置定期校验,不可中断。校验数据具有不可修改性,须保存5年。以上要求都可以在标准中一一找到。作为有着17年环境试验箱经验的宏展科技,在生产的环境试验箱中一直引用着高标准的要求严格要求自身和产品设备的研发。宏展科技研发中心在研发设计高温试验箱和热处理炉上按照AMS2750E的标准进行设计与研发,为新型材料的测试实验提供信赖的仪器设备,为客户提供便捷的环境试验箱。
  • 欧盟再次提高茶叶农残检测标准,赛默飞提供解决方案分忧解难(上)
    2014年8月26日,上海 —— 自今年8月25日起,欧盟法规EU87/2014在各成员国正式生效,这意味着欧盟再次提高了对中国茶叶农药残留检测的标准。相关法规对茶叶中啶虫脒、异丙隆、啶氧菌酯和嘧霉胺的限量要求是以前的一半,并对我国茶叶增加了对唑虫酰胺残留的检测。欧盟自2000年7月1日起实行新的茶叶农残限量标准后,几乎每年均有修订,且修订后的标准往往都是更加严格,这对出口企业和检测机构都提出了更高的要求。面对欧盟日趋严格的农残检测标准,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)为业界提供了行之有效的解决方案。 采用赛默飞最新ISQ系列气相色谱质谱联用(GCMS),在保证超高灵敏度和数据稳定性的同时,通过独有的定时选择离子扫描T-SIM,可轻松实现多残留的高通量分析;专利的真空锁定装置可实现不卸真空维护或更换离子源(EI与CI切换)。在GCMS分析中,可采取高选择性和高灵敏度的NCI电离方式,对多数菊酯类化合物的残留进行特征分析。改进的QuEChERS方法结合ITQ系列离子阱GC/MSn能够精确地检测出绿茶中杀虫剂残留。 液相色谱主要通过C18色谱柱和紫外检测器等对农药残留进行准确、快速、高效的痕量分析。茶叶提取物中咖啡因的含量以及茶叶中吡虫啉残留量均可用高效液相法实现测定,茶氨酸亦可通过高效液相色谱法,通过柱前衍生进行分析。 赛默飞一直注重食品安全领域的研发和实践工作,并一如既往地致力于为业界提供更全面的产品支持和更新的技术保障。相关应用资料下载:1、改进的QuEChERS方法结合离子阱GC/MSn分析绿茶中的农残2、大体积不分流进样技术分析菊花茶中的农药和多氯联苯3、农残数据库的建立及应用4、菊酯类化合物的GCMS分析5、液相色谱紫外检测器测定茶叶中的咖啡因6、液相色谱紫外检测器柱前衍生分析测定茶叶中的茶氨酸7、液相色谱紫外检测器分析测定茶叶中的吡虫啉残留 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 国家锂电测试测量标准全面革新 波及ICP-OES等大批仪器
    近日,为进一步加强锂离子电池行业管理,推动行业转型升级和技术进步,工业和信息化部电子信息司组织修订了《锂离子电池行业规范条件(2021年本)》(征求意见稿)和《锂离子电池行业规范公告管理办法(2021年本)》(征求意见稿),同时发布了7条锂电池相关的电子行业标准。锂电池相关的电子行业标准制修订序号标准编号标准名称标准主要内容公示截止期1. SJ/T 11792-2021锂离子电池电极材料导电性测试方法本文件描述了锂离子电池电极活性物质电子导电性的测试方法。2021年12月19日2. SJ/T 11793-2021锂离子电池电极材料电化学性能测试方法本文件规定了锂离子电池用电极活性物质的比容量、比能量、充放电效率、中值电压、平均电压、放电平台容量比、循环容量保持率、循环寿命、倍率性能等电化学性能的测试方法。2021年12月19日3. SJ/T 11794-2021锂离子电池正极材料游离锂的测试方法本文件规定了锂离子电池正极材料中游离锂含量的测定方法。2021年12月19日4. SJ/T 11795-2021锂离子电池电极材料中磁性异物含量测试方法本标准规定了锂离子电池电极材料中磁性异物含量的测试方法,包括术语和定义、测试方法提要、仪器和器具、试剂、环境要求、前处理、仪器分析、结果计算、精密度和报告。本标准适用于锂离子电池正极和负极粉体材料及其浆料,以及粘结剂、导电剂等辅料中磁性异物含量在10μg/kg~5000μg/kg之间的检测。本标准不适用于磷酸铁锂材料中磁性异物含量的检测。2021年12月19日5. SJ/T 11796-2021电子烟用锂离子电池和电池组通用规范本文件规定了电子烟用锂离子电池及电池组的术语和定义、标识、性能、安全等要求,描述了对应的试验方法。本文件适用于电子烟用锂离子电池和电池组。本文件对于电子打火机及类似产品使用的锂离子电池和电池组可参考使用。2021年12月19日6. SJ/T 11797-2021锂金属蓄电池及电池组总规范该标准适用于锂金属蓄电池和电池组。该标准规定了锂金属蓄电池及电池组的性能要求和安全要求,性能要求内容包括术语定义、外观及尺寸要求、电性能、试验方法、标志、包装、运输和储存等;安全要求规定了电池和电池组在包括正常使用、可预见的误操作和故障条件下的电安全、环境安全要求等。2021年12月19日7. SJ/T 11798-2021锂离子电池和电池组生产安全要求本文件规定了锂离子电池和电池组生产企业在建筑、设施、选材、设计、工序及管理的安全要求。本文件适用于锂离子电池或电池组制造企业的生产安全评估。设置有锂离子电池或电池组生产线的其他企业可参照执行本文件。22021年12月19日《锂离子电池行业规范条件(2021年本)》(征求意见稿)中提到,企业研发经费需不低于当年企业主营业务收入的3%,同时:1.锂离子电池企业应具有电极涂覆后均匀性的监测能力,电极涂覆厚度和长度的测量精度分别不低于2μm和1mm;应具有电极烘干工艺技术,含水量控制精度不低于10ppm。2.锂离子电池企业应具有注液过程中温湿度和洁净度等环境条件控制能力;应具有电池装配后的内部短路高压测试(HI-POT)在线检测能力。3.锂离子电池组企业应具有单体电池开路电压、内阻等一致性评估能力,测量精度分别不低于1mV和1mΩ;应具有电池组保护板功能在线检测能力。此外还对电池和电池组、正极材料、负极材料、隔膜、电解液等产品性能提出了要求:(一)电池和电池组1.消费型电池能量密度≥260Wh/kg,电池组能量密度≥200Wh/kg,聚合物电池体积能量密度≥600Wh/L。循环寿命≥600次且容量保持率≥80%。2.动力型电池分为能量型和功率型,其中能量型电池能量密度≥180Wh/kg,电池组能量密度≥120Wh/kg;功率型电池功率密度≥700W/kg,电池组功率密度≥500W/kg。循环寿命≥1000次且容量保持率≥80%。3.储能型电池能量密度≥145Wh/kg,电池组能量密度≥110Wh/kg。循环寿命≥5000次且容量保持率≥80%。(二)正极材料磷酸铁锂比容量≥150Ah/kg;三元材料比容量≥175Ah/kg;钴酸锂比容量≥170Ah/kg;锰酸锂比容量≥115Ah/kg;其他正极材料性能指标可参照上述要求。(三)负极材料碳(石墨)比容量≥335Ah/kg 无定形碳比容量≥250Ah/kg 硅碳比容量≥420Ah/kg 其他负极材料性能指标可参照上述要求。(四)隔膜1.干法单向拉伸:纵向拉伸强度≥110MPa,横向拉伸强度≥10MPa,穿刺强度≥0.133N/μm。2.干法双向拉伸:纵向拉伸强度≥100MPa,横向拉伸强度≥25MPa,穿刺强度≥0.133N/μm。3.湿法双向拉伸:纵向拉伸强度≥100MPa,横向拉伸强度≥60MPa,穿刺强度≥0.204N/μm。(五)电解液水含量≤20ppm,氟化氢含量≤50ppm,金属杂质单项含量≤1ppm。上文中提到的消费型锂离子电池主要包括但不限于应用于手机、相机、平板电脑、笔记本电脑等消费电子产品的锂离子电池。动力型锂离子电池主要包括但不限于应用于电动汽车、电动自行车、无人机、电动船舶、电动工具等动力装置的锂离子电池。储能型锂离子电池主要包括但不限于应用于新能源储能、通信储能、工商业储能等储能领域的锂离子电池。《锂离子电池行业规范条件(2021年本)》(征求意见稿)中提到了长度测量仪器、水分测定仪、温湿度测量监测记录、充放电测试仪器、拉伸试验机等仪器的测试测量规范。《SJ/T 11792-2021 锂离子电池电极材料导电性测试方法》等7条锂电池相关的电子行业标准则涉及电导率测试仪、电池性能测试仪、自动电位滴定仪、电感耦合等离子体发射光谱仪(ICP-OES)、热电偶温度测量仪、红外温度测量仪、(电压、电流、温度、时间、容量、质量)测量仪器等,以及可燃气体、粉尘浓度或氧气浓度报警装置、(加热、涂布、充放电、试验)设施等仪器的测试测量要求。锂电池相关的电子行业标准涉及的仪器品类标准名称涉及仪器《SJ/T 11792-2021 锂离子电池电极材料导电性测试方法》电导率测试仪《SJ/T 11793-2021 锂离子电池电极材料电化学性能测试方法》电池性能测试仪《SJ/T 11794-2021 锂离子电池正极材料游离锂的测试方法》自动电位滴定仪《SJ/T 11795-2021 锂离子电池电极材料中磁性异物含量测试方法》电感耦合等离子体发射光谱仪(ICP-OES)《SJ/T 11796-2021 电子烟用锂离子电池和电池组通用规范》热电偶温度测量仪、红外温度测量仪、电池性能测试仪《SJ/T 11797-2021 锂金属蓄电池及电池组总规范》电压、电流、温度、时间、容量、质量测量仪器等《SJ/T 11798-2021 锂离子电池和电池组生产安全要求》可燃气体、粉尘浓度或氧气浓度报警装置等,加热、涂布、充放电、实验设施等锂离子行业规范和行业标准的制修订规范了锂离子行业的测试测量标准,在未来一段时间内或将引发新一轮仪器采购潮;仪器厂商也应及时关注锂离子行业规范和标准的制修订,及时对仪器研制和宣传策略进行调整,以便于加速占领锂离子电池测试相关仪器市场。
  • 【瑞士步琦】冻干工艺精准操控,Lyovapor™ L-300实现全自动终点判定
    冻干工艺精准操控Lyovapor&trade L-300实现全自动终点判定冻干应用”1简介冷冻干燥是一个独立的过程,在这个过程中实时分析样品是比较困难的,特别是检测其残余水分含量。工艺优化,特别是获得干燥和稳定产品所需的工艺时间,通常依赖于反复试验的方法。在本文中,使用了不同过程分析技术的组合来确定实验室冷冻干燥机(Lyovapor&trade L-300)中甘露醇溶液一次和二次干燥的终点。在加热隔板上使用西林瓶,通过对样品参数的原位测量间接跟踪干燥过程,可以在运行的冷冻干燥循环中即时调整过程时间。它有助于根据产品所需的残余水分含量更快地优化参数。此外,这些分析技术为监测过程的再现性提供了必要的工具。2实验设备Lyovapor&trade L-300 Pro, BÜ CHI Labortechnik AG电容和皮拉尼压力计,Pt 1000 热电偶冷冻干燥瓶,标称体积 10.0 mL, Schott AGLyo 三角橡胶塞,Wheaton陶瓷板磁力搅拌器硼硅玻璃烧杯和量筒分析天平(精度±0.1 mg)实验室 -50°C 冷冻柜3试剂和耗材甘露醇 97,0 - 102,0 Ph. Eur. , USP, VWR Chemicals (25311.366) 去离子水4实验流程4.1 实验部分制备 100mg /mL 甘露醇去离子水溶液。使用容量分配移液管将甘露醇溶液装入120个冷冻干燥瓶(每瓶 5.0 mL)。在每个小瓶上放置一个三脚橡胶塞,以便在冷冻干燥过程中去除水蒸气。一个 Pt 1000 热电偶被放置在两个制备的冷冻干燥小瓶的“中心底部”。在室温下,将这些小瓶放在两个铝制框架的冷冻干燥隔板上(每个架子 60 个小瓶)。在每个隔板上,一个装有热电偶的小瓶被直接放置在隔板的中心。热电偶连接到各自的隔板上。隔板插入到 Lyovapor&trade L-300 的金属支架上。一个空的冷冻干燥隔板被放置在上层,西林瓶包括隔板,以确保两个样品隔板接收到同样的热量。将包含隔板和样品瓶的支架转移到 -50°C 的冷冻室预冻 24 小时。4.2 方法编程冷冻干燥按照表1设定的隔板温度、真空度和时间运行。表1. 详细的 Lyovapor&trade L-300 冷冻干燥工艺用于 50 mg/mL 甘露醇溶液的西林瓶冷冻干燥步骤_1234阶段加载初级干燥次级干燥持续时间_4h12h1h20min6h隔板温度℃-4020204040加热梯度℃/min_0.2500.250压力 mbar_0.10.10.10.1初级干燥采用温差试验、压差试验(比较压力测量)和升压试验三种自动终点试验。表2.初级干燥阶段终点确定的设置温差试验压差试验升压试验极限:1.0℃极限:0.05mbar极限:0.06mbar试验时长:30min试验时长:30min试验时长:30s*开始时间:12h*开始时间:12h**开始时间:11h55min__重复时长:60min**是否继续:是**是否继续:是**是否继续:是是否通知:是是否通知:是是否通知:是* 开始时间的值表示在初级干燥的程序阶段结束之前的测试开始。** 如果所有测试都成功,将自动启动第二阶段,并继续进行干燥过程。其中,温度和压差测试直接从初级干燥阶段的第 2 步开始(见表2)。升压测试的压力极限设置为 0.060 mbar,测试时间为 30 秒。第一次升压试验在初级干燥第 2 步进行 5 分钟后进行,每 60 分钟重复一次。表3. 次级干燥阶段终点确定设置温差试验压差试验极限:1.5℃极限:0.05mbar试验时长:30min试验时长:30min*开始时间:6h*开始时间:6h**是否继续:是**是否继续:是是否通知:是是否通知:是*时间,从干燥阶段结束开始。**如果所有测试都成功,将自动启动下一阶段(封塞、保持),并进行干燥过程。其中,在温差和压差测试中,测试时间设置为 30 分钟,从步骤 4 开始直接开始测试。5实验结果5.1 温差试验图1 和 图2 为小瓶甘露醇样品冷冻干燥的温度和压力曲线。在图1中显示了两个隔板上样品温度。热电偶测得初级干燥主要部分的产物温度在 -7℃ 左右。随着水分含量和升华速率的降低,产品温度升高,在初级干燥结束时达到隔板温度。经过16.0小时的干燥时间,达到了温差试验的标准。▲ 图1. 隔板(红色),样品 Pt 1000(蓝色,蓝绿色)和 Lyovapor&trade L-300 冰冷凝器(粉红色)的温度测量。相应的,在设定冷凝器压力为 0.100 mbar 时,电容式压力计测得的干燥室内实际压力平均值为 0.150 mbar,如 图2 所示。在冰升华过程中,由依赖气体的皮拉尼压力计获得的压力值比电容压力计测量的压力值大约1.6倍。随着冰含量和升华速率的降低,皮拉尼压力计的压力值接近电容压力计的测量值。▲ 图2. 外部电容(绿色)压力计和皮拉尼(红色)压力表以及内部压力计(黄色)测量的压力。▲ 图3. 电容式(绿色)压力计与皮拉尼式(红色)压力计的计算压差如 图2 所示。图3 显示了从两个外部压力表(皮拉尼压力计减去电容压力计)的值计算得出的数值差异。在大约15.5小时的干燥时间后,达到了压差测试的标准。升压试验结果如图1和图2所示。在皮拉尼和电容式压力计的曲线(图2)中可以看出,尽管中间阀关闭,干燥室内的压力上升是由于水蒸气的持续升华造成的。在冰升华过程中,最初的高压上升值在初级干燥结束时大幅下降(棕色尖峰)。初级干燥 16.3 小时后达到升压试验标准。相应的,从设定的隔板温度曲线可以看出图1中升压试验的时间点。每次进行升压试验时,架子的加热在试验期间自动暂停。由于最后一次初级干燥终点测试在 16.3 小时后成功,因此与最初设定的初级干燥时间相比,样品干燥状态的自动检测将初级干燥阶段延长了 0.3 小时(见 表1)。随着升压试验的完成,所有设定终点试验均顺利完成,冻干循环自动进入次级干燥阶段。这种原位跟踪防止了在所有冰升华之前过早过渡到二次干燥阶段。所有三种测试对终点的估计时间大致相似,约为 15.5 至 16.3 小时。在次级干燥阶段,从产品中去除未冻水导致皮拉尼计记录的压力值在干燥时间约 18 小时(红色曲线)增加,如 图2 所示。除水后,总干燥时间 22.5 小时,压力曲线接近电容式压力计测量值,满足压差试验标准。23.1 小时后,隔板温度曲线与样品温度曲线符合,温差试验也成功完成(见 图1)。最后,在冷冻干燥过程结束时,干燥循环自动进入保持阶段。在应用西林瓶冷冻干燥工艺中获得了具有可接受视觉外观的干粉。▲ 图4. 装有甘露醇的最终冻干瓶6实验结论本申请说明探讨了过程分析技术(PAT)在冷冻干燥过程中的适用性,重点是监测干燥室压力和样品温度,以评估样品的干燥状态。研究表明,这些过程分析技术与压差、压升和温度测试的自动端点确定设置相结合,可以在不中断样品水分含量分析过程的情况下估计实际干燥时间。通过防止过早过渡到下一个干燥阶段,如次级干燥或保持,提出的方法提高了工艺效率。这些端点测试的集成有助于干燥过程的精确控制和可靠性,从而获得所需的产品属性,如最佳干燥度和视觉外观。研究结果确定了在Lyovapor&trade L-300冷冻干燥机中使用单独或联合终点测试来准确确定终点的有效性。7参考文献本文档是与 TH Kö ln 的 Heiko Schiffter 教授合作创建。
  • 关注 | 13项国家计量技术规范批准发布
    市场监管总局关于发布《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范的公告 根据《中华人民共和国计量法》有关规定,现批准《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范发布实施,现予以公告。市场监管总局2022年12月29日《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范名录 序号编号名称批准日期实施日期备注1JJG 75—2022标准铂铑10-铂热电偶检定规程2022-12-272023-06-27代替JJG 75—19952JJG1190—2022超声波燃气表检定规程2022-12-272023-06-273JJG1191—2022车用尿素加注机检定规程2022-12-272023-06-274JJF 2012—2022超声波燃气表型式评价大纲2022-12-272023-06-275JJF 2013—2022车用尿素加注机型式评价大纲2022-12-272023-06-276JJF 2014—2022金属振子式速率陀螺仪校准规范2022-12-272023-06-277JJF 2015—2022单轴倾角传感器校准规范2022-12-272023-06-278JJF 2016—2022阻尼振荡波模拟器校准规范2022-12-272023-06-279JJF 2017—2022(20~150)kVX射线束半值层仪校准规范2022-12-272023-06-2710JJF 2018—2022电荷量测量仪校准规范2022-12-272023-06-2711JJF 2019—2022液体恒温试验设备温度性能测试规范2022-12-272023-06-2712JJF 2020—2022加油站油气回收系统检测技术规范2022-12-272023-06-2713JJF 1261.5—2022电饭锅能源效率计检测规则2022-12-272023-06-27代替JJF 1261.5—2017
  • 工信部报批89项行业标准 这些仪器分析方法在其中
    日前,工信部报批公示《化工固体物料输送泵技术条件》等65项化工行业标准、《炼钢转炉用耐火砖形状尺寸》等17项冶金行业标准、《医用环境空气净化器》等7项轻工行业标准及《钴光谱标准样品》等7项有色金属行业标准样品。公示日期截止至2017年10月18日。  《口腔护理用品中精氨酸含量的测定方法高效液相色谱法》、《牙膏中薁磺酸钠含量的测定高效液相色谱法》等仪器分析方法位列其中,详情如下:89项行业标准名称及主要内容序号标准编号标准名称标准主要内容代替标准采标情况化工行业1HG/T5220-2017化工固体物料输送泵技术条件本标准规定了化工固体物料输送泵的型式、型号与基本参数、要求、安全、试验与检验、标识、包装、运输和贮存。本标准适用于化工应用场合通过管线密闭输送高含固率、高磨蚀性的渣浆状或膏状无腐蚀性物料的输送泵。2HG/T2042-2017纯碱包装机技术条件本标准规定了纯碱包装机的基本参数与型号编制、包装机工作或计量条件、要求、试验方法、检验规则、标志、包装、运输与贮存。本标准适用于包装流动性良好的轻质纯碱、重质纯碱,包装材料为涂膜塑料编织袋的电子自动定量纯碱包装机。HG/T2042-19913HG/T5221-2017薄膜蒸发器本标准规定了薄膜蒸发器的结构型式、基本参数和型号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于化工、医药、轻工、食品、石油、环保等行业液体物料在真空条件下的蒸发浓缩、脱气脱溶、蒸馏提纯中使用的刚性结构转子的薄膜蒸发器。4HG/T5222-2017催化裂化用电液控制冷壁滑阀技术条件本标准规定了催化裂化用电液控制冷壁滑阀的分类、型式及型号、设计、要求、试验及试验方法、检验规则、涂饰、标志、包装及贮运。本标准适用于炼油催化裂化装置使用的电液控制冷壁单动滑阀和双动滑阀。5HG/T5223-2017高温硬密封单闸板切断闸阀技术条件本标准规定了高温硬密封单闸板切断闸阀的型式及型号、设计、要求、检测及试验、检验规则、涂饰、标识、包装、贮运。本标准适用于炼油催化裂化装置能量回收系统烟气管道上使用的高温硬密封单闸板切断型闸阀。6HG/T5224-2017蒸汽再压缩蒸发器本标准规定了蒸汽再压缩蒸发器的规格系列及主要工艺计算、要求、检测与试验方法、检验规则、包装、运输和贮存等。本标准适用于在蒸发浓缩、蒸发结晶或低温蒸发等操作过程中产生的二次蒸汽,经过蒸汽压缩机再压缩后,返回到加热室再持续循环利用的蒸汽再压缩蒸发器。本标准中涉及的蒸汽加热室适应于管壳式热交换器和板式换热器。7HG/T2370-2017不透性石墨制化工设备技术条件本标准规定了不透性石墨制化工设备的术语和定义、要求、检验和验收、设备出厂要求。本标准适用于不透性石墨制化工设备及零部件。不透性炭制化工设备和透性石墨制化工设备也可以参照使用。HG/T2370-20058HG/T5225-2017抗静电无卤阻燃超高分子量聚乙烯管材衬里专用料本标准规定了抗静电无卤阻燃超高分子量聚乙烯(PE-UHMW)管材衬里专用料的分类和标记、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于化工、矿山或其它工矿环境中供排水、压风、喷浆、瓦斯排放以及耐磨托辊等抗静电无卤阻燃超高分子量聚乙烯管材衬里专用料。9HG/T5226-2017浮球液位计本标准规定了浮球液位计的产品型式、参数、要求、试验方法、检验规则、包装、运输和贮存等内容。本标准适用于转角式浮球液位计。10HG/T5227-2017流态化催化裂化再生烟气激光气体分析仪本标准规定了流态化催化裂化再生烟气激光气体分析仪的要求、试验条件、试验方法、检验规则、标志、包装、质量保证期。本标准适用于化工行业使用可调谐半导体激光吸收光谱技术测量流态化催化裂化再生烟气的激光气体分析仪。11HG/T5228-2017化工装置用多点柔性铠装热电偶本标准规定了炼油、化工装置用多点柔性铠装热电偶的基本参数、性能要求、试验及试验方法、检验规则、标志、使用说明及包装。本标准适用于炼油、化工装置用多点柔性铠装热电偶。12HG/T5249-2017C.I.反应黄210本标准规定了C.I.反应黄210产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于C.I.反应黄210的产品质量控制。13HG/T5250-2017纺织染整助剂乙二胺四乙酸盐和二乙烯三胺五乙酸盐的测定本标准规定了采用气相色谱-质谱(GC/MS)法测定纺织染整助剂中乙二胺四乙酸及其盐类(EDTA)和二乙烯三胺五乙酸及其盐类(DTPA)含量的方法。本标准适用于气相色谱-质谱法对纺织染整助剂产品中EDTA和DTPA的测定。14HG/T5251-2017纺织染整助剂氨氮的测定本标准规定了氨气敏电极法测定纺织染整助剂中氨氮含量的通用方法。本标准适用于纺织染整助剂中氨氮含量的测定。15HG/T5252-2017纺织染整助剂二氢化牛脂基二甲基氯化铵的测定本标准规定了采用液相色谱—串联质谱仪(LC-MS/MS)测定纺织染整助剂中二氢化牛脂基二甲基氯化铵(DHTDMAC)残留量的方法。本标准适用于纺织染整助剂产品中二氢化牛脂基二甲基氯化铵的测定。16HG/T5253-2017纺织染整助剂锦纶抗酚黄变剂抗酚黄变效果的测定本标准规定了纺织染整助剂中锦纶抗酚黄变剂抗酚黄变效果的测定方法。本标准适用于锦纶抗酚黄变剂对锦纶抗酚黄变效果的测定。17HG/T5254-2017纺织染整助剂硬挺整理剂硬挺效果的测定本标准规定了纺织染整助剂中硬挺整理剂(简称:硬挺剂)的硬挺效果的测定方法。本标准适用于纺织染整助剂中硬挺整理剂(简称:硬挺剂)硬挺效果的测定。18HG/T5255-2017纺织染整助剂柔软整理剂类产品中硫酸二甲酯的测定本标准规定了柔软整理剂类纺织染整助剂产品中硫酸二甲酯的测定方法。本标准适用于各类柔软整理剂类纺织染整助剂产品中硫酸二甲酯的测定。19HG/T5256-2017锦纶低弹丝油剂本标准规定了锦纶低弹丝油剂的要求、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于锦纶低弹丝牵伸假捻生产(DTY)工艺用油剂产品的质量控制。20HG/T5285-2017苯胺基乙腈本标准规定了苯胺基乙腈的要求、采样、试验方法、检验规则以及标志、标签、包装、运输及贮存。本标准适用于苯胺基乙腈产品的质量控制。21HG/T5286-2017反应大红W-R本标准规定了反应大红W-R产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于反应大红W-R的产品质量控制。22HG/T5287-2017反应嫩黄WH8G本标准规定了反应嫩黄WH8G产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于反应嫩黄WH8G的产品质量控制。23HG/T5288-2017酸性棕ERC(C.I.酸性棕75)本标准规定了酸性棕ERC(C.I.酸性棕75)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于酸性棕ERC(C.I.酸性棕75)的产品质量控制。24HG/T5289-2017C.I.酸性红186本标准规定了C.I.酸性红186产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于C.I.酸性红186的产品质量控制。25HG/T5290-2017C.I.酸性黄250本标准规定了C.I.酸性黄250产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于C.I.酸性黄250的产品质量控制。26HG/T5291-2017分散黑WXF本标准规定了分散黑WXF产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于分散黑WXF的产品质量控制。27HG/T5292-2017间硝基氯苯本标准规定了间硝基氯苯的要求、安全信息、采样、试验方法、检验规则以及标志、标签、包装、运输、贮存。本标准适用于间硝基氯苯的产品质量控制。28HG/T5293-2017苯乙酸本标准规定了苯乙酸的要求、采样、试验方法、检验规则以及标志、标签、包装、运输及贮存。本标准适用于苯乙酸产品的质量控制。29HG/T3310-2017邻苯二胺本标准规定了邻苯二胺的要求、安全信息、采样、试验方法、检验规则以及标志、标签、包装、运输及贮存。本标准适用于邻苯二胺产品的质量控制。HG/T3310-199930HG/T5295-2017弱酸性红RN本标准规定了弱酸性红RN产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于弱酸性红RN的产品质量控制。31HG/T3727-2017荧光增白剂220(C.I.荧光增白剂220)本标准规定了荧光增白剂220(C.I.荧光增白剂220)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。本标准适用于荧光增白剂220的产品质量控制。HG/T3727-201032HG/T5296-2017对氯苯胺本标准规定了对氯苯胺的要求、安全信息、采样、试验方法、检验规则以及标志、标签、包装、运输及贮存。本标准适用于对氯苯胺产品的质量控制。33HG/T5257-2017硫化促进剂N-叔丁基-双(2-苯并噻唑)次磺酰胺(TBSI)本标准规定了硫化促进剂N-叔丁基-双(2-苯并噻唑)次磺酰胺(简称硫化促进剂TBSI)的技术要求、试验方法、检验规则及标志、包装、运输和贮存。本标准适用于由苯并噻唑或其衍生物为主要原料与叔丁胺在催化剂存在下制得的硫化促进剂TBSI。34HG/T5258-2017橡胶防老剂N,N' -双(1-甲基丙基)对苯二胺本标准规定了橡胶防老剂N,N’-双(1—甲基丙基)对苯二胺的技术要求、试验方法、检验规则、标志、包装、运输、贮存和安全。本标准适用于由1,4-二氨基苯(对苯二胺)与2-丁酮缩合烷基化反应而制得的橡胶防老剂N,N’-双(1—甲基丙基)对苯二胺。35HG/T2097-2017发泡剂偶氮二甲酰胺(ADC)本标准规定了发泡剂偶氮二甲酰胺(简称发泡剂ADC)的技术要求、试验方法、检验规则、标志、包装、运输、贮存和安全。本标准适用于以尿素、水合联氨为原料经缩合、氧化而制得的发泡剂ADC。HG/T2097-200836HG/T5259-2017聚醚酯消泡剂本标准规定了聚醚酯消泡剂的技术要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于以一种或多种酯化聚醚和增效剂等物质制成的聚醚酯消泡剂。本标准适用于造纸湿部工序用聚醚酯消泡剂。37HG/T5260-2017硫化促进剂二硫化四异丁基秋兰姆(TIBTD)本标准规定了硫化促进剂二硫化四异丁基秋兰姆(简称硫化促进剂TIBTD)的技术要求、试验方法、检验规则及标志、包装、运输和贮存。本标准适用于以二异丁胺、二硫化碳等为主要原料制得的硫化促进剂TIBTD。38HG/T5261-2017橡胶防老剂2-巯基-4(或5)-甲基苯并咪唑(MMBI)本标准规定了橡胶防老剂2-巯基-4(或5)-甲基苯并咪唑(简称橡胶防老剂MMBI)的技术要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于以3(或4)-甲基邻苯二胺、二硫化碳等为主要原料制得的橡胶防老剂MMBI。39HG/T5262-2017橡胶防老剂2-巯基苯并咪唑(MBI)本标准规定了橡胶防老剂2-巯基苯并咪唑(简称橡胶防老剂MBI)的技术要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于以邻苯二胺、二硫化碳等为主要原料制得的橡胶防老剂MBI。40HG/T5263-2017有机硅染色消泡剂本标准规定了有机硅染色消泡剂的技术要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于以聚硅氧烷、改性聚硅氧烷、白炭黑、分散剂和稳定剂等制成的有机硅染色消泡剂。本标准主要适用于纺织印染工序用有机硅染色消泡剂。41HG/T5264-2017卡丁车轮胎本标准规定了卡丁车轮胎的术语和定义、轮胎规格的表示方法、要求、检验规则、试验方法、标志、包装、运输和贮存。本标准适用于新的卡丁车充气轮胎。42HG/T5265-2017儿童车辆轮胎本标准规定了儿童车辆用轮胎的术语和定义、类型、要求、试验方法、标志、包装、运输和贮存。本标准适用于儿童自行车、儿童三轮车、儿童推车等儿童车辆用的充气轮胎。本标准不适用于非充气轮胎以及GB3565所规定的公路上骑行的自行车轮胎。43HG/T5266-2017生物化学试剂L-一水合半胱氨酸盐酸盐本标准规定了生物化学试剂L-一水合半胱氨酸盐酸盐的性状、规格、试验、检验规则和包装及标志。本标准适用于生物化学试剂L-一水合半胱氨酸盐酸盐的检验。44HG/T5267-2017生物化学试剂L-丙氨酸本标准规定了生物化学试剂L-丙氨酸的性状、规格、试验、检验规则和包装及标志。本标准适用于生物化学试剂L-丙氨酸的检验。45HG/T5268-2017生物化学试剂L-谷氨酸本标准规定了生物化学试剂L-谷氨酸的性状、规格、试验、检验规则和包装及标志。本标准适用于生物化学试剂L-谷氨酸的检验。46HG/T5269-2017生物化学试剂L-丝氨酸本标准规定了生物化学试剂L-丝氨酸的性状、规格、试验、检验规则和包装及标志。本标准适用于生物化学试剂L-丝氨酸的检验。47HG/T5270-2017生物化学试剂L-天冬氨酸本标准规定了生物化学试剂L-天冬氨酸的性状、规格、试验、检验规则和包装及标志。本标准适用于生物化学试剂L-天冬氨酸的检验。48HG/T5271-2017生物化学试剂硫酸铵本标准规定了生物化学试剂硫酸铵的性状、规格、试验、检验规则和包装及标志。本标准适用于生物化学试剂硫酸铵的检验。49HG/T5272-2017化学试剂六水合硝酸镁(硝酸镁)本标准规定了化学试剂六水合硝酸镁(硝酸镁)的性状、规格、试验、检验规则和包装及标志。本标准适用于化学试剂六水合硝酸镁(硝酸镁)的检验。50HG/T3488-2017化学试剂五水合四氯化锡(结晶四氯化锡)本标准规定了化学试剂五水合四氯化锡(结晶四氯化锡)的性状、规格、试验、检验规则和包装及标志。本标准适用于化学试剂五水合四氯化锡(结晶四氯化锡)的检验。HG/T3488-200351HG/T5273-2017化学试剂五水合硝酸铋(硝酸铋)本标准规定了化学试剂五水合硝酸铋(硝酸铋)的性状、规格、试验、检验规则和包装及标志。本标准适用于化学试剂五水合硝酸铋(硝酸铋)的检验。52HG/T3470-2017化学试剂硝酸铅本标准规定了化学试剂硝酸铅的性状、规格、试验、检验规则和包装及标志。本标准适用于化学试剂硝酸铅的检验。HG/T3470-200053HG/T5274-20174-氯-3,5-二甲基苯酚本标准规定了4-氯-3,5-二甲基苯酚的要求、试验方法、检验规则、标识、包装、运输和贮存和安全。本标准适用于以3,5-二甲基苯酚为原料用氯化法生产的4-氯-3,5-二甲基苯酚。54HG/T5275-2017工业用乙二醛水溶液本标准规定了工业用乙二醛水溶液的要求、试验方法、检验规则及标识、包装、运输和贮存。本标准适用于乙二醇经气相氧化而制备的工业用乙二醛水溶液。55HG/T5276-2017工业用L-八氢吲哚-2-羧酸本标准规定了工业用L-八氢吲哚-2-羧酸的要求、试验方法、检验规则、标识、包装、运输和贮存。本标准适用于以S-吲哚啉-2-羧酸为主要原料经氢化反应制得的工业用L-八氢吲哚-2-羧酸。56HG/T5277-2017工业用丙二醇单丁醚本标准规定了工业用丙二醇单丁醚的要求,试验方法,检验规则,标志、包装、运输和贮存以及安全。本标准适用于以正丁醇、环氧丙烷为原料经催化反应制得的工业用丙二醇单丁醚(1-丁氧基-2-丙醇)。57HG/T5278-2017对氯三氟甲苯本标准规定了对氯三氟甲苯的要求、试验方法、检验规则、标志、包装、运输、贮存和安全。本标准适用于以对氯甲苯、氯气、无水氟化氢等为原料,精制而得的对氯三氟甲苯。58HG/T2027-2017工业用氯化苄本标准规定了工业用氯化苄的要求、试验方法、检验规则、标识、包装、运输、贮存和安全。本标准适用于甲苯经氯化、精馏提纯而制得的工业用氯化苄。HG/T2027-199159HG/T5279-2017三氟乙酸(TFA)本标准规定了三氟乙酸(简称为TFA)的要求、试验方法、检验规则、标志、包装、运输、贮存和安全。本标准适用于以1,1,1-三氯三氟乙烷(CFC-113a)为原料,经三氧化硫(SO3)氧化水解后精制而得的三氟乙酸(TFA)。60HG/T2309-2017工业用新戊二醇本标准规定了工业用新戊二醇的要求、试验方法、检验规则、标识、包装、运输、贮存。本标准适用于以异丁醛、甲醛为原料,经歧化工艺或加氢工艺制得的工业用新戊二醇。HG/T2309-199261HG/T5280-2017工业用吲哚-2-甲酸本标准规定了工业用吲哚-2-甲酸的要求、试验方法、检验规则、标识、包装、运输和贮存。本标准适用于邻硝基甲苯和草酸二乙脂为主要原料制得的的工业用吲哚-2-甲酸。62HG/T5281-2017甲基封端烯丙醇聚醚本标准规定了甲基封端烯丙醇聚醚的结构式、命名、技术要求、采样、试验方法、检验规则及标志、包装、运输和贮存。本标准适用于由烯丙醇与环氧乙烷、环氧丙烷聚合生成烯丙醇聚醚后,再用甲基取代末端羟基活泼氢后而成的产品,主要用于聚氨酯泡沫匀泡剂、纺织助剂、油田破乳剂、乳化剂等。63HG/T5282-2017分散剂IW本标准规定了分散剂IW的技术要求、采样、试验方法、检验规则及标志、包装、运输、贮存。本标准适用于由十六到十八脂肪醇与环氧乙烷经缩合而制得的分散剂IW。该产品主要用于印染行业,亦可作为强分散剂,以制备各种有机物乳化液。64HG/T5283-2017匀染剂TAN本标准规定了匀染剂TAN的技术要求、采样、试验方法、检验规则及标志、包装、运输、贮存。本标准适用于十二烷基二甲基叔胺与氯化苄反应而制得的匀染剂TAN。主要作为阳离子染料对腈纶纤维染色时的匀染剂。65HG/T5284-2017静电防止剂P本标准规定了静电防止剂P的技术要求、采样、试验方法、检验规则及标志、包装、运输、贮存。本标准适用于八到十碳脂肪醇与五氧化二磷生成的酯化物,经中和而制得的静电防止剂P。主要作为合成纤维工业锦纶油剂中抗静电的重要组份之一。冶金行业66YB/T060-2017炼钢转炉用耐火砖形状尺寸本标准规定了炼钢转炉工作衬用耐火砖的术语和定义、分类、尺寸砖号、尺寸规格及尺寸特征以及双楔形砖砖环和球底砖环计算方法。本标准适用于炼钢转炉工作衬用耐火砖形状尺寸及计算方法,电炉工作衬也可参照使用。YB/T060-200767YB/T165-2017铝镁碳砖和镁铝碳砖本标准规定了铝镁碳砖与镁铝碳砖的术语和定义、牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存及质量证明书。本标准适用于钢包用铝镁碳砖和镁铝碳砖。YB/T165-199968YB/T2217-2017球顶耐火砖形状尺寸本标准规定了球顶耐火砖(或球底砖)的术语和定义、尺寸砖号表示方法、尺寸规格表示方法、尺寸和尺寸特征以及球顶(或球底)砖的计算方法。本标准适用于电炉、热风炉、转炉和铁水罐等工业炉窑球顶(或底)砌砖。YB/T2217-199969YB/T4120-2017中间包用挡渣堰本标准规定了中间包用挡渣堰的分类、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存及质量证明书。本标准适用于中间包用挡渣堰。YB/T4120-200470YB/T4121-2017中间包用碱性涂料本标准规定了中间包用碱性涂料的分类和牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存及质量证明书。本标准适用于中间包用碱性涂抹料和喷涂料。YB/T4121-200471YB/T4162-2017钢筋混凝土用加工成型钢筋本标准规定了钢筋混凝土用加工成型钢筋的术语和定义、分类、订货内容、技术要求、试验方法、检验规则、包装、标志、质量技术文件、储运及配送。本标准适用于混凝土用加工成型按设计要求所需要的钢筋加工成型单件制品和组合成型钢筋制品。本标准不适用于钢筋焊接网。YB/T4162-200772YB/T4190-2017工程用机编钢丝网及组合体本标准规定了工程用机编钢丝网及组合体的术语和定义、产品标记及示例、生产企业及原材料钢丝要求、成品网面技术要求、试验方法、检验规则、交货内容及包装、标志、贮存。本标准适用于各类岩土工程、水土保持、堤岸防护等工程建设领域的柔性安全防护系统用机编六边形双绞合钢丝网及组合体。YB/T4190-200973YB/T4636-2017高炉热风管系用耐火材料本标准规定了高炉热风管系用耐火材料的分类与牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存和质量证明书。本标准适用于高炉及热风炉热风管系用定形耐火制品。74YB/T4637-2017莫来石质流钢砖本标准规定了莫来石质流钢砖的术语和定义、牌号及形状尺寸、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存及质量证明书。本标准适用于冶金铸造用莫来石质流钢砖。75YB/T4638-2017顶燃式热风炉用耐火材料技术规范本标准规定了顶燃式热风炉用耐火材料的术语和定义、选择和配置、砌筑与验收、使用与维护。本标准适用于顶燃式热风炉。76YB/T4639-2017热风炉用红柱石砖本标准规定了热风炉用红柱石砖的定义、牌号及形状尺寸、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存及质量证明书。本标准适用于钢铁行业热风炉用红柱石砖。77YB/T4640-2017中间包、感应炉用耐火干式料本标准规定了中间包、感应炉用耐火干式料的分类、技术要求、试验方法、质量评定程序、包装、标志、运输、贮存及质量证明书。本标准主要适用于中间包、感应炉用振动(或捣打)的耐火干式料。78YB/T4641-2017液化天然气储罐用低温钢筋本标准规定了液化天然气(LNG)储罐用钢筋的定义、牌号、订货内容、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书等。本标准适用于制造液化天然气储罐用直径不大于50mm的低温钢筋。79YB/T4642-2017笔头用易切削不锈钢丝本标准规定了笔头用易切削不锈钢丝的术语和定义、订货内容、尺寸、外形及重量、技术要求、试验方法、检验规则、包装、标志和质量证明书。本标准适用于制造圆珠笔头用易切削不锈钢丝。80YB/T4643-2017制绳用异形钢丝本标准规定了制绳用异形钢丝的术语和定义、分类和标记、尺寸、外形及允许偏差、技术要求、检验方法、包装标志及质量证明书。本标准适用于制造密封钢丝绳所用异形截面的光面和镀层钢丝。81YB/T4644-2017测井电缆加强用镀锌钢丝本标准规定了测井电缆加强用镀锌钢丝的分类和标记,订货内容,尺寸、外形、长度及允许偏差,技术要求,检验方法,检验规则,包装、标志和质量证明书,贮存和运输。本标准适用于测井电缆加强用镀锌圆形碳素钢丝。82YB/T5137-2017高压用热轧和锻制无缝钢管圆管坯本标准规定了高压用热轧和锻制无缝钢管圆管坯的订货内容、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书。本标准适用于制造高压无缝钢管用公称直径50mm~400mm的热轧圆管坯和公称直径60mm~1000mm锻制圆管坯,直接制管的钢锭也可参照本标准。YB/T5137-2007轻工行业83QB/T5217-2017医用环境空气净化器本标准规定了用于医用环境的空气净化器的术语和定义、分类与标记、要求、试验方法、检验规则、标志、包装、运输、贮存。本标准适用于常温条件下工作的具有医用及类似用途的室内空气净化器。84QB/T5218-2017罐藏食品工业术语本标准规定了罐藏食品工业的一般术语、原料术语、容器术语、工艺术语、包装术语和质量术语。本标准适用于罐藏食品工业生产、科研、教学及其他相关领域。85QB/T5219-2017牙膏中薁磺酸钠含量的测定高效液相色谱法本标准规定了牙膏中薁磺酸钠含量测定方法的测定原理、试剂和材料、仪器与设备、分析步骤、结果计算、检出限、回收率和允许差。本标准适用于牙膏中添加薁磺酸钠的含量的测定。本标准薁磺酸钠检出浓度为0.15mg/L,定量浓度为0.5mg/L;当取样量为0.5g时,本方法的检出限为30mg/kg,定量限为100mg/kg。86QB/T5220-2017口腔护理用品中精氨酸含量的测定方法高效液相色谱法本标准规定了高效液相色谱法测定牙膏中精氨酸的方法要点、试剂与标准物质、仪器、分析步骤、结果计算、回收率、标准偏差和允许差。本标准适用于牙膏、漱口水、牙粉和精氨酸碳酸氢盐原料中精氨酸含量的测定。本标准精氨酸的方法检出浓度为0.5mg/L,定量浓度为2mg/L;若取样品0.2g,检出限为250mg/kg,定量限为1000mg/kg。87QB/T5221-2017牙膏中胡椒碱含量的测定方法高效液相色谱法本标准规定了检测牙膏中胡椒碱含量方法的方法原理、试验方法、精密度、准确度和检出限。本标准适用于添加功效原料成分胡椒碱的牙膏产品测定。本标准胡椒碱检出限为74ng/mL。88QB/T5222-2017口腔清洁护理用品牙膏用植酸钠(肌醇磷酸钠)本标准规定了植酸钠的要求、试验方法、检验规划、标志、包装、运输、贮存和保质期。本标准适于以用于米糠、玉米等植物为原料,用物理和化学方法提取、纯化、浓缩而成的牙膏用植酸钠固态和液体产品。该产品包括肌醇1-6磷酸钠,在口腔清洁护理用品行业主要用作美白剂、除垢剂、杀菌剂等。89QB/T5223-2017圆珠笔用低黏度油墨本标准规定了圆珠笔用低黏度油墨的术语和定义、分类、要求、试验方法、检验规则及标志、包装、运输、贮存。本标准适用于圆珠笔用低黏度油墨。7项有色金属行业标准样品目录序号标准样品编号标准样品名称有效期研制单位YSS094-2017钴光谱标准样品10年金川集团股份有限公司、兰州金川新材料科技股份有限公司YSS095-2017镍光谱标准样品10年金川集团股份有限公司、兰州金川新材料科技股份有限公司YSS096-2017铝合金2219铸态单点光谱标准样品15年东北轻合金有限责任公司YSS097-2017铝合金2A06铸态单点光谱标准样品15年东北轻合金有限责任公司YSS098-2017铝合金2A12铸态单点光谱标准样品15年东北轻合金有限责任公司YSS099-2017铝合金2A14铸态单点光谱标准样品15年东北轻合金有限责任公司YSS100-2017铝合金2A50铸态单点光谱标准样品15年东北轻合金有限责任公司
  • 陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕
    陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕 陕西师范大学导入创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3,已在该大学安装验收完毕。日本ADVANCE-RIKO公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。数据可靠性能稳定。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格)●温度设定范围 测温步数和温度采样测量步数:最大125步●测量方法 温差电动势:静态直流法 电阻率:四电极法●气氛 低压氦气●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大)●导线间距 4,6,8mm●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格)●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 步入式高低温湿热试验室的执行与满足标准
    p style="text-align: justify text-indent: 2em "步入式高低温湿热试验室适用于电工、电子、仪器仪表及其它产品、零部件及材料在高低温交变湿热环境下贮存、运输、使用时的适应性试验;是各类电子、电工、电器、塑胶等原材料和器件进行耐寒、耐热、耐湿、耐干性试验及品管工程的可靠性测试设备;特别适用于光纤、LCD、晶体、电感、PCB、电池、电脑、手机等产品的耐高温、耐低温、耐潮湿循环试验。      /pp style="text-align: justify text-indent: 2em "strong步入式高低温湿热试验室的结构特征  /strong    /pp style="text-align: justify text-indent: 2em "该设备主要由箱体、制冷系统、加热系统、加湿系统、空气循环系统以及控制系统组成。/pp style="text-align: justify text-indent: 2em "箱体的外壳为采用冷轧钢板静电喷塑,内胆采用不锈钢板,箱门中间设大面积观察窗,并配有观察灯,使用户可以清晰地看到试样的试验情况。外型整体美观大方。保温层为硬质聚氨脂发泡加上少量的超细玻璃棉,具有强度高,保温性有好等特点。/pp style="text-align: justify text-indent: 2em "设备主要温湿度控制仪采用智能数显温湿度控制仪,人性化设计的操作方法,易学易用,并且不同功能档次的仪表操作相互兼容。输入采用数字校正系统,内置常用热电偶和热电阻非线性校正表格,测量稳定。具备位式调节和AI人工智能调节功能,0.2级精度,多种报警模式。升温、降温、加湿、去湿独立,独特的BTHC平衡调温调湿方式。/pp style="text-align: justify text-indent: 2em "制冷系统采用全封闭进口压缩机组,机械式单级制冷或复迭低温回路系统,全自动控制与安全保护协调系统。加热采用不锈钢翅片加热管,加湿采用不锈钢加湿管,加湿方式为蒸汽加湿,水位自动控制。      /pp style="text-align: justify text-indent: 2em "strong步入式高低温湿热试验室执行与满足标准  /strong    /pp style="text-align: justify text-indent: 2em "1. GB/T10589-1989低温试验箱技术条件;/pp style="text-align: justify text-indent: 2em "2. GB/T10586-1989湿热试验箱技术条件;/pp style="text-align: justify text-indent: 2em "3. GB/T10592-1989高低温试验箱技术条件;/pp style="text-align: justify text-indent: 2em "4. GB2423.1-89低温试验Aa,Ab;/pp style="text-align: justify text-indent: 2em "5. GB2423.3-93(IEC68-2-3)恒定湿热试验Ca;/pp style="text-align: justify text-indent: 2em "6. MIL-STD810D方法502.2;/pp style="text-align: justify text-indent: 2em "7. GB/T2423.4-93(MIL-STD810)方法507.2程序3;/pp style="text-align: justify text-indent: 2em "8. GJB150.9-8湿热试验;/pp style="text-align: justify text-indent: 2em "9. GB2423.34-86、MIL-STD883C方法1004.2温湿度组合循环试验;/pp style="text-align: justify text-indent: 2em "10. IEC68-2-1试验A;    /pp style="text-align: justify text-indent: 2em "11. IEC68-2-2试验B高低温交变;/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "12. IEC68-2-14试验N。/span/pp style="text-align: justify text-indent: 0em "br//p
  • 170项国家标准2020上半年已实施 色质光居首
    170项国家标准2020上半年已实施色质光居首国家标准是规范行业的重要技术依据,更是科学仪器与检测试验领域健康发展的重要抓手。此前仪器信息网曾做过汇总,在2020年将有257项于2019年发布的国家标准将正式实施(下简称新施国标)。现在2020年日程过半,其中有170项新施国标已经实施。仪器信息网仪器信息网对这些新施国标进行了汇总分析,以飨读者。(注:本文涉及标准全部来源于国家标准权威公布平台)在这170项新施国标中,色质谱(含色质联用)的相关新施国标数量最多,一共有17项,光谱排名第二一共有15项,试验机相关的新施国标共有9项,占据第三位。详情如表1所示。表12020上半年(1-6月)新施国标类型数量前10名排行仪器类型相关新施国标数量色谱/质谱(含色质联用)17光谱15试验机9实验室常用设备8耗材配件6元素分析仪5X射线类仪器4测量/计量仪器4显微镜4环境试验箱3在这170项2020年上半年实施的新施国标中,最近一批是于5月1日正式实施,共有76项,也是2020年新施国标的第一个爆发期。2020年1-6月新施国标的完整名单汇总如表2所示:2020年1-6月新施国标完整名单标准编号标准名称涉及主要仪器代替标准号实施日期GB/T11826-2019转子式流速仪转子式流速仪GB/T11826-20022020/1/1GB/T14318-2019辐射防护仪器中子周围剂量当量(率)仪中子周围剂量当量(率)仪GB/T14318-20082020/1/1GB/T37543-2019直流输电线路和换流站的合成场强与离子流密度的测量方法直流合成强测量仪——2020/1/1GB/T15076.3-2019钽铌化学分析方法第3部分:铜量的测定火焰原子吸收光谱法原子吸收光谱仪GB/T15076.3-19942020/1/1GB/T37500-2019肥料中植物生长调节剂的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37544-2019化妆品中邻伞花烃-5-醇等6种酚类抗菌剂的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37545-2019化妆品中38种准用着色剂的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37628-2019化妆品中黄芪甲苷、芍药苷、连翘苷和连翘酯苷A的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37638-2019塑料制品中多溴联苯和多溴二苯醚的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37640-2019化妆品中氯乙醛、2,4-二羟基-3-甲基苯甲醛、巴豆醛、苯乙酮、2-亚戊基环己酮、戊二醛含量的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37641-2019化妆品中2,3,5,4' -四羟基二苯乙烯-2-O-β-D-葡萄糖苷的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37644-2019化妆品中8-羟基喹啉和硝羟喹啉的测定高效液相色谱法液相色谱仪——2020/1/1GB/T37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定液相色谱-串联质谱法液相色谱-三重四级杆质谱联用仪——2020/1/1GB/T37649-2019化妆品中硫柳汞和苯基汞的测定高效液相色谱-电感耦合等离子体质谱法液相色谱-电杆耦合等离子体质谱联用仪——2020/1/1GB/T37760-2019电子电气产品中全氟辛酸和全氟辛烷磺酸的测定超高效液相色谱串联质谱法液相色谱串联质谱联用仪(配有喷雾离子源)——2020/1/1GB/T23901.2-2019无损检测射线照相检测图像质量第2部分:阶梯孔型像质计像质值的测定像质计GB/T23901.2-20092020/1/1GB/T23901.5-2019无损检测射线照相检测图像质量第5部分:双丝型像质计图像不清晰度的测定像质计GB/T23901.5-20092020/1/1GB/T13336-2019水文仪器系列型谱水文系列仪器GB/T13336-20072020/1/1GB/T37631-2019化学纤维热分解温度试验方法热重分析仪——2020/1/1GB/T37633-2019纺织品1,2-二氯乙烷、氯乙醇和氯乙酸的测定气相色谱-质谱仪——2020/1/1GB/T37639-2019塑料制品中多溴联苯和多溴二苯醚的测定气相色谱-质谱法气相色谱质谱-联用仪——2020/1/1GB/T37757-2019电子电气产品用材料和零部件中挥发性有机物释放速率的测定释放测试舱-气相色谱质谱法气相色谱仪——2020/1/1GB/T37629-2019纺织品定量化学分析聚丙烯腈纤维与某些其他纤维的混合物(甲酸/氯化锌法)密度计——2020/1/1GB/T37630-2019纺织品定量化学分析醋酯纤维或三醋酯纤维与某些其他纤维的混合物(盐酸法)密度计——2020/1/1GB/T37632-2019化学纤维二氧化钛含量试验方法可见分光光度计——2020/1/1GB/T2293-2019焦化沥青类产品喹啉不溶物试验方法恒温水浴器、天平、筛子GB/T2293-20082020/1/1GB/T11828.1-2019水位测量仪器第1部分:浮子式水位计浮子式水位计GB/T11828.1-20022020/1/1GB/T13747.6-2019锆及锆合金化学分析方法第6部分:铜量的测定2,9-二甲基-1,10-二氮杂菲分光光度法分光光度计GB/T13747.6-19922020/1/1GB/T37667-2019煤灰中铁、钙、镁、钾、钠、锰、磷、铝、钛、钡和锶的测定电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪——2020/1/1GB/T37487-2019岩土工程仪器测斜仪测斜仪——2020/1/1GB/T6525-2019烧结金属材料室温压缩强度的测定试验机GB/T6525-19862020/1/1GB/T37673-2019煤灰中硅、铝、铁、钙、镁、钠、钾、磷、钛、锰、钡、锶的测定X射线荧光光谱法X射线荧光光谱仪——2020/1/1GB/T37746-2019草鱼呼肠孤病毒三重RT-PCR检测方法PCR扩增仪——2020/1/1GB/T37355-2019活性炭脱汞催化剂脱汞率试验方法转子流量计;湿式气体流量计——2020/2/1GB/T37355-2019活性炭脱汞催化剂脱汞率试验方法转子流量计;气体流量计——2020/2/1GB/T6730.55-2019铁矿石锡含量的测定火焰原子吸收光谱法原子吸收光谱仪GB/T6730.55-20042020/2/1GB/T37354-2019活性炭脱汞催化剂化学成分分析方法原子吸收分光光度计——2020/2/1GB/T1724-2019色漆、清漆和印刷油墨研磨细度的测定试验筛GB/T1724-1979,GB/T6753.1-20072020/2/1GB/T37359-2019钯炭催化剂活性试验方法色谱仪——2020/2/1GB/T37360-2019铑炭催化剂活性试验方法色谱仪——2020/2/1GB/T37321-2019石膏及石膏制品中形态硫化学分析方法离子色谱仪、液相色谱仪——2020/2/1GB/T38216.2-2019钢渣氟和氯含量的测定离子色谱法离子色谱仪——2020/2/1GB/T37385-2019硅中氯离子含量的测定离子色谱法离子色谱仪——2020/2/1GB/T351-2019金属材料电阻率测量方法凯尔文电桥;惠思登电桥GB/T351-19952020/2/1GB/T37382-2019光学功能薄膜液晶显示背光模组用薄膜高温高湿老化性能测定方法恒温恒湿老化箱——2020/2/1GB/T38113-2019分析仪器物联规范分析仪器——2020/2/1GB/T37280-2019荧光增白剂产品中微生物的测定分析天平;PH计;显微镜——2020/2/1GB/T23981.1-2019色漆和清漆遮盖力的测定第1部分:白色和浅色漆对比率的测定反射计、分光光度计、分析天平GB/T23981-20092020/2/1GB/T38233-2019含铁尘泥铅和锌含量的测定电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪——2020/2/1GB/T13448-2019彩色涂层钢板及钢带试验方法磁性-涡流测厚仪;色差仪;放大镜GB/T13448-20062020/2/1GB/T37361-2019漆膜厚度的测定超声波测厚仪法超声波测厚仪——2020/2/1GB/T37306.1-2019金属材料疲劳试验变幅疲劳试验第1部分:总则、试验方法和报告要求试验机——2020/2/1GB/T38007-2019桑蚕天然彩色丝鉴别试验方法紫外可见分光光度计——2020/3/1GB/T37847-2019同位素组成质谱分析方法通则质谱仪——2020/3/1GB/T37849-2019液相色谱飞行时间质谱联用仪性能测定方法液相色谱-质谱联用仪——2020/3/1GB/T18251-2019聚烯烃管材、管件和混配料中颜料或炭黑分散度的测定显微镜、切片机GB/T18251-20002020/3/1GB/T32671.2-2019胶体体系zeta电位测量方法第2部分:光学法显微镜、zeta电位仪——2020/3/1GB/T9444-2019铸钢铸铁件磁粉检测无损检测GB/T9444-20072020/3/1GB/T2294-2019焦化固体类产品软化点测定方法温度控制仪GB/T2294-19972020/3/1GB/T37852-2019玻璃容器以容器底部作基准的高度和口部不平行度试验方法通过性测试仪——2020/3/1GB/T21242-2019烟花爆竹禁限用物质定性检测方法天平、恒温水浴锅GB/T21242-20072020/3/1GB/T3903.33-2019鞋类内底和内垫试验方法吸水率和解吸率天平GB/T3903.33-20082020/3/1GB/T38016-2019纺织品干燥速率的测定特制干燥仪器——2020/3/1GB/T37837-2019四极杆电感耦合等离子体质谱方法通则四极杆电感耦合等离子体质谱仪——2020/3/1GB/T25104-2019原油水含量的自动测定射频法射频自动测定系统GB/T25104-20102020/3/1GB/T3903.42-2019鞋类帮面、衬里和内垫试验方法颜色迁移性色度计GB/T3903.42-20082020/3/1GB/T37843-2019地毯耐酸性食物颜色沾色性能的测定色差测量设备——2020/3/1GB/T38020.2-2019表壳体及其附件金合金覆盖层第2部分:纯度、厚度、耐腐蚀性能和附着力的测试扫描电镜、X射线荧光光谱仪等——2020/3/1GB/T37848-2019水中锶同位素丰度比的测定热电离同位素质谱仪——2020/3/1GB/T37840-2019电子电气产品中挥发性有机化合物的测定气相色谱-质谱法气象色谱仪、热解析装置——2020/3/1GB/T38006-2019纺织品织物经蒸汽熨烫后尺寸变化试验方法平板争气压烫机——2020/3/1GB/T37838-2019纸浆铜乙二胺(CED)溶液动力粘度的测定毛细管粘度计——2020/3/1GB/T37861-2019电子电气产品中卤素含量的测定离子色谱法离子色谱仪——2020/3/1GB/T3903.41-2019鞋类帮面和衬里试验方法耐折性能冷柜、立体显微镜、光学放大器GB/T3903.41-20082020/3/1GB/T37984-2019纳米技术用于拉曼光谱校准的频移校正值拉曼光谱仪——2020/3/1GB/T18809-2019空气离子测量仪通用规范空气离子测量仪GB/T18809-20022020/3/1GB/T37969-2019近红外光谱定性分析通则近红外光谱仪——2020/3/1GB/T3903.34-2019鞋类勾心试验方法纵向刚度夹具GB/T3903.34-20082020/3/1GB/T37854-2019广口玻璃容器封合面平面度偏差试验方法厚度规——2020/3/1GB/T37841-2019塑料薄膜和薄片耐穿刺性测试方法厚度测量仪——2020/3/1GB/T3903.7-2019鞋类整鞋试验方法老化处理烘箱GB/T3903.7-20052020/3/1GB/T38009-2019眼镜架镍析出量的技术要求和测量方法烘箱——2020/3/1GB/T18476-2019流体输送用聚烯烃管材耐裂纹扩展的测定慢速裂纹增长的试验方法(切口试验)管材静液压试验设备GB/T18476-20012020/3/1GB/Z6113.3-2019无线电骚扰和抗扰度测量设备和测量方法规范第3部分:无线电骚扰和抗扰度测量技术报告干扰测量仪GB/Z6113.3-20062020/3/1GB/T25217.7-2019冲击地压测定、监测与防治方法第7部分:采动应力监测方法采动应力监测系统——2020/3/1GB/T3903.43-2019鞋类帮面、衬里和内垫试验方法缝合强度拉力试验机GB/T3903.43-20082020/3/1GB/T3903.39-2019鞋类帮面试验方法层间剥离强度静力单轴试验机GB/T3903.39-20082020/3/1GB/T37983-2019晶体材料X射线衍射仪旋转定向测试方法X射线衍射仪——2020/3/1GB/T3323.1-2019焊缝无损检测射线检测第1部分:X和伽玛射线的胶片技术X射线系统、丝型像质计GB/T3323-20052020/3/1GB/T37930-2019无损检测仪器汽车轮毂X射线实时成像检测仪技术要求X射线实时成像系统——2020/3/1GB/T9443-2019铸钢铸铁件渗透检测——GB/T9443-20072020/3/1GB/T38298-2019固体化学品自动点火温度的试验方法热电偶、环境试验箱、温度数据采集仪——2020/4/1GB/T38301-2019可燃气体或蒸气极限氧浓度测定方法管式装置或球式装置——2020/4/1GB/T1634.1-2019塑料负荷变形温度的测定第1部分:通用试验方法弯曲试验机GB/T1634.1-20042020/4/1GB/T24583.3-2019钒氮合金氮含量的测定蒸馏-中和滴定法蒸馏装置GB/T24583.3-20092020/5/1GB/T1815-2019苯类产品溴价和溴指数的测定振荡器、滴定管GB/T1815-19972020/5/1GB/T14353.19-2019铜矿石、铅矿石和锌矿石化学分析方法第19部分:锡量测定氢化物发生原子荧光光谱法原子荧光光谱仪——2020/5/1GB/T14353.21-2019铜矿石、铅矿石和锌矿石化学分析方法第21部分:砷量测定氢化物发生原子荧光光谱法原子荧光光谱仪——2020/5/1GB/T4698.17-2019海绵钛、钛及钛合金化学分析方法第17部分:镁量的测定火焰原子吸收光谱法原子吸收光谱仪GB/T4698.17-19962020/5/1GB/T4698.21-2019海绵钛、钛及钛合金化学分析方法第21部分:锰、铬、镍、铝、钼、锡、钒、钇、铜、锆量的测定原子发射光谱法原子发射光谱仪GB/T4698.21-19962020/5/1GB/T38243-2019橡胶硬度计的检验与校准硬度计——2020/5/1GB/T37560-2019阻燃化学品氰尿酸三聚氰胺盐中三聚氰胺和氰尿酸的测定液相色谱仪——2020/5/1GB/T26792-2019高效液相色谱仪液相色谱仪GB/T26792-20112020/5/1GB/T38203-2019航空涡轮燃料中脂肪酸甲酯含量的测定高效液相色谱蒸发光散射检测器法液相色谱仪——2020/5/1GB/T37561-2019难熔金属及其化合物粉末在粒度测定之前的分散处理规则研磨仪、筛子——2020/5/1GB/T37908-2019基于光学椭偏成像的无标记蛋白质芯片分析方法通则芯片检测器——2020/5/1GB/T3654.3-2019铌铁硅含量的测定重量法天平GB/T3654.3-19832020/5/1GB/T37623-2019金属和合金的腐蚀核反应堆用锆合金水溶液腐蚀试验天平——2020/5/1GB/T38231-2019金属和合金的腐蚀金属材料在高温腐蚀条件下的热循环暴露氧化试验方法特制热电偶设备——2020/5/1GB/T38240-2019无损检测仪器射线数字探测器阵列制造特征双线像质计——2020/5/1GB/T38201-2019航天器常压热性能试验方法试验箱——2020/5/1GB/T38064-2019球磨粉磨系统矿物物料易磨性试验方法试验筛、球磨机——2020/5/1GB/T1431-2019炭素材料耐压强度测定方法万能材料试验机GB/T1431-20092020/5/1GB/T13477.13-2019建筑密封材料试验方法第13部分:冷拉-热压后粘结性的测定试验机GB/T13477.13-20022020/5/1GB/T38074-2019手动变速箱润滑油摩擦磨损性能的测定SRV试验机法试验机——2020/5/1GB/T38094-2019搪瓷制品和瓷釉缺陷检测及定位的低电压试验试验电极——2020/5/1GB/T38119-2019邵氏硬度计的检验邵氏硬度计——2020/5/1GB/T13247-2019铁合金产品粒度的取样和检测方法筛子GB/T13247-19912020/5/1GB/T30430-2019气相色谱仪测试用标准色谱柱色谱柱GB/T30430-20132020/5/1GB/T37564-2019浸胶帘线蠕变性能试验方法蠕变性能试验装置——2020/5/1GB/T38092-2019搪瓷制品和瓷釉流动性的测试熔流试验球磨机——2020/5/1GB/T38234-2019航空涡轮燃料中脂肪酸甲酯含量的测定气相色谱-质谱法气象色谱-质谱联用仪——2020/5/1GB/T12688.1-2019工业用苯乙烯试验方法第1部分:纯度及烃类杂质的测定气相色谱法气相色谱仪GB/T12688.1-20112020/5/1GB/T20975.30-2019铝及铝合金化学分析方法第30部分:氢含量的测定加热提取热导法脉冲加热-热导测氢仪或高频加热-热导测氢仪——2020/5/1GB/T8293-2019浓缩天然胶乳残渣含量的测定离心机GB/T8293-20082020/5/1GB/T38250-2019金属材料疲劳试验机同轴度的检验试验机——2020/5/1GB/T25217.3-2019冲击地压测定、监测与防治方法第3部分:煤岩组合试件冲击倾向性分类及指数的测定方法材料试验机、动态电阻应变仪——2020/5/1GB/T8721-2019炭素材料抗拉强度测定方法材料试验机GB/T8721-20092020/5/1GB/T21839-2019预应力混凝土用钢材试验方法材料试验机GB/T21839-20082020/5/1GB/T38138-2019纤维级聚己内酰胺(PA6)切片试验方法卡尔费休水分仪——2020/5/1GB/T37616-2019铝合金挤压型材轴向力控制疲劳试验方法材料试验机——2020/5/1GB/T224-2019钢的脱碳层深度测定法金相显微镜GB/T224-20082020/5/1GB/T8022-2019润滑油抗乳化性能测定法加热浴、分液漏斗GB/T8022-19872020/5/1GB/T20975.28-2019铝及铝合金化学分析方法第28部分:钴含量的测定火焰原子吸收光谱法火焰原子吸收光谱仪——2020/5/1GB/T4333.10-2019硅铁碳含量的测定红外线吸收法红外线吸收定碳仪GB/T4333.10-19902020/5/1GB/T24583.4-2019钒氮合金碳含量的测定红外线吸收法红外线吸收定碳仪GB/T24583.4-20092020/5/1GB/T6040-2019红外光谱分析方法通则红外光谱仪GB/T6040-20022020/5/1GB/T37619-2019金属和合金的腐蚀高频电阻焊焊管沟槽腐蚀性能恒电位试验与评价方法恒电位仪——2020/5/1GB/T38245-2019光学和光学仪器激光器和激光相关设备激光光学元件吸收率测试方法光学仪器——2020/5/1GB/T4333.7-2019硅铁硫含量的测定红外线吸收法和色层分离硫酸钡重量法高频红外碳硫测定仪GB/T4333.7-19842020/5/1GB/T14506.34-2019硅酸盐岩石化学分析方法第34部分:烧失量的测定重量法分析天平、马弗炉——2020/5/1GB/T8086-2019天然生胶杂质含量的测定分析筛GB/T8086-20082020/5/1GB/T4333.6-2019硅铁铬含量的测定二苯基碳酰二肼分光光度法分光光度计GB/T4333.6-19882020/5/1GB/T13747.5-2019锆及锆合金化学分析方法第5部分:铝量的测定铬天青S-氯化十四烷基吡啶分光光度法分光光度计GB/T13747.5-19922020/5/1GB/T20975.29-2019铝及铝合金化学分析方法第29部分:钼含量的测定硫氰酸盐分光光度法分光光度计——2020/5/1GB/T20975.31-2019铝及铝合金化学分析方法第31部分:磷含量的测定钼蓝分光光度法分光光度计——2020/5/1GB/T24583.5-2019钒氮合金磷含量的测定铋磷钼蓝分光光度法分光光度计GB/T24583.5-20092020/5/1GB/T24583.7-2019钒氮合金氧含量的测定红外线吸收法定氧仪GB/T24583.7-20092020/5/1GB/T24583.2-2019钒氮合金 氮含量的测定惰性气体熔融热导法定氮仪GB/T24583.2-20092020/5/1GB/T19289-2019电工钢带(片)的电阻率、密度和叠装系数的测量方法电阻率仪GB/T19289-20032020/5/1GB/T14353.20-2019铜矿石、铅矿石和锌矿石化学分析方法第20部分:铼量测定电感耦合等离子体质谱法电感耦合等离子体质谱仪——2020/5/1GB/T223.88-2019钢铁及合金钙和镁含量的测定电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪——2020/5/1GB/T23524-2019石油化工废铂催化剂化学分析方法铂含量的测定电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪GB/T23524-20092020/5/1GB/T14506.31-2019硅酸盐岩石化学分析方法第31部分:二氧化硅等12个成分量测定偏硼酸锂熔融-电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪——2020/5/1GB/T14506.32-2019硅酸盐岩石化学分析方法第32部分:三氧化二铝等20个成分量测定混合酸分解-电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪——2020/5/1GB/T38145-2019高含量贵金属合金首饰金、铂、钯含量的测定ICP差减法电感耦合等离子体发射光谱仪GB/T21198.4-20072020/5/1GB/T38161-2019钯合金首饰钯含量的测定钇内标ICP光谱法电感耦合等离子体发射光谱仪GB/T21198.3-20072020/5/1GB/T38162-2019高含量银合金首饰银含量的测定ICP差减法电感耦合等离子体发射光谱仪GB/T21198.5-20072020/5/1GB/T7739.13-2019金精矿化学分析方法第13部分:铅、锌、铋、镉、铬、砷和汞量的测定电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪——2020/5/1GB/T38130-2019铂合金首饰铂含量的测定钇内标ICP光谱法电感耦合等离子体发射光谱仪GB/T21198.1-20072020/5/1GB/T12688.5-2019工业用苯乙烯试验方法第5部分:总醛含量的测定滴定法滴定管、分析天平GB/T12688.5-20112020/5/1GB/T24583.1-2019钒氮合金钒含量的测定硫酸亚铁铵滴定法滴定管GB/T24583.1-20092020/5/1GB/T38200-2019太阳电池量子效率测试方法单色仪——2020/5/1GB/T37566-2019圆钢超声检测方法超声检测仪——2020/5/1GB/T13634-2019金属材料单轴试验机检验用标准测力仪的校准测力仪GB/T13634-20082020/5/1GB/T37617-2019纳滤膜表面Zeta电位测试方法流动电位法Zeta电位仪——2020/5/1GB/T16597-2019冶金产品分析方法X射线荧光光谱法通则X射线荧光光谱仪GB/T16597-19962020/5/1GB/T21114-2019耐火材料X射线荧光光谱化学分析熔铸玻璃片法X射线荧光光谱仪GB/T21114-20072020/5/1GB/T25917.2-2019单轴疲劳试验系统第2部分:动态校准装置用仪器DCD仪器——2020/5/1GB/T24583.8-2019钒氮合金硅、锰、磷、铝含量的测定电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱仪GB/T24583.8-20092020/5/1需要相关标准请到仪器信息网资料库https://www.instrument.com.cn/download/。
  • 实验室仪器的校准目的、校准周期如何确定?
    1、设备定期校准的主要目的 实验室对设备进行定期校准的主要目的有:1)建立、保持和证明设备的计量溯源性;2)改善设备测量值与参考值之间的偏差及不确定度;3)提高设备不确定度的可信性;4)确定设备性能是否发生变化,该变化可能引起实验室对之前所出具结果的准确性产生怀疑。 2、设备初始校准周期如何确定 设备初始校准周期的确定应由具备相关测量经验、设备校准经验或了解其它实验室设备校准周期的一个或多个人完成。确定设备初始校准周期时,实验室可参考计量检定规程/校准规范、所采用的方法和仪器制造商建议等信息。此外,实验室可综合考虑以下因素:1)预期使用的程度和频次;2)环境条件的影响;3)测量所需的不确定度;4)最大允许误差;5)设备调整(或变化);6)被测量的影响(如高温对热电偶的影响);7)相同或类似设备汇总或已发布的测量数据。 3、设备校准周期的调整 ISO/IEC 17025:2017 中 6.4.7 规定:【实验室应制定校准方案,并进行复审和必要的调整,以保持对校准状态的信心】实验室制定校准方案后,应在后续使用中结合设备的使用情况和性能表现作出必要的调整。设备的校准周期以及后续校准周期的调整一般应由实验室(或设备使用者)确定,并以文件化的形式规定。如果设备的校准证书中给出了校准周期的建议,实验室可根据自身情况决定是否采用。 4、设备后续校准周期调整需考虑的因素 设备后续校准周期的调整,一般应考虑以下因素:1)实验室需要或声明的测量不确定度;2)设备超出最大允许误差限值使用的风险;3)实验室使用不满足要求设备所采取纠正措施的代价;4)设备的类型;5)磨损和漂移的趋势;6)制造商的建议;7)使用的程度和频次;8)使用的环境条件(气候条件、振动、电离辐射等);9)历次校准结果的趋势;10)维护和维修的历史记录;11)与其它参考标准或设备相互核查的频率;12)期间核查的频率、质量及结果;13)设备的运输安排及风险;14)相关测量项目的质量控制情况及有效性;15)操作人员的培训程度。
  • 最详细!测温仪器大盘点
    温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。在工业领域、在日常生活中,温度与我们息息相关。在医药、食品、电气、化工、航空、航天等领域中,温度都是一个重要参数。温度测量以及对这些温度传感器和测温仪的准确性的检定校准显得尤为重要。随着科学技术的发展和现代工业技术的需要,温度测量技术也在不断完善提高。随着温度测量范围越来越广,根据不同的要求生产出有所不同需求的温度测量仪器。小编特对测温技术与仪器进行盘点,以供读者参考。膨胀式温度计膨胀式温度计是利用物体受热膨胀原理制成的温度计,主要有液体膨胀式、固体膨胀式和压力式温度计三种。液体膨胀式温度计中最常见的液体膨胀式温度计是玻璃管式温度计。压力式温度计是利用密闭容积内工作介质的压力随温度变化的性质,通过测量工作介质的压力来判断温度值的一种机械式仪表。最常见的液体膨胀式温度计是玻璃管式温度计,主要由液体储存器、毛细管和标尺组成。根据所充填的液体介质不同能够测量-200~750℃范围的温度。玻璃管液体温度计由于其直观、测量准确、结构简单、造价低廉等优点,被广泛应用于工业、实验室和医院等各个领域及日常生活中。但其不能自动记录、不能远传、易碎,且测温有一定延迟。压力式温度计压力式温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值。这种温度计具有温包体积小,反应速度快、灵敏度高、读数直观等特点,几乎集合了玻璃棒温度计、双金属温度计、气体压力温度计的所有优点,它可以制造成防震、防腐型,并且可以实现远传触点信号、热电阻信号、0-10mA或4-20mA信号。是目前使用范围最广、性能最全面的一种机械式测温仪表。压力式温度计适用于工业场合测量各种对铜无腐蚀作用的介质温度,若介质有腐蚀作用应选用防腐型。压力式温度计广泛应用于机械、轻纺、化工、制药、食品行业对生产过程中的温度测量和控制。防腐型压力式温度计采用全不锈钢材料,适用于中性腐蚀的液体和气体介质的温度测量。电阻温度计电阻温度计,也称为电阻温度探测器(RTDs),其是一种根据导体电阻随温度而变化的规律来测量温度的温度计。最常用的电阻温度计都采用金属丝绕制成的感温元件,主要有铂电阻温度计和铜电阻温度计,在低温下还有碳、锗和铑铁电阻温度计。铂是一种贵金属,在最大温度范围内具有最稳定的电阻—温度关系。镍元素的温度范围有限,因为在温度超过300°C时,每个温度变化的电阻变化量变得非常非线性。铜具有非常线性的电阻—温度关系 然而,铜在中等温度下会氧化,不能在低于150°C的温度下使用。因此,电阻温度计几乎无一例外地由铂制造而成,电阻温度计也常被称为铂电阻温度计。精密的铂电阻温度计是最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计。我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计。如今,在许多低于600℃的工业应用场合,铂电阻温度计正逐渐地取代热电偶。热敏电阻温度计热敏电阻温度计是一种可量度体温和室温的温度计,它有一个安培计/电流计和电源。当温度升高时,电热调节器(温度计的探测器)所探测到的电流会增加,电阻会减少。电流增加表明温度在升高;而电阻增加则表示温度在降低。不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物。两者也有不同的温度响应性质,电阻温度计适用于较大的温度范围;而热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90~130℃。铂电阻温度计的优点是线性好,其分度表很容易计算出来。但是其温度系数较小。热敏电阻器温度系数大,但曲线是非线性的,需要拟合。热敏电阻的材料决定了其一致性差,但是温度灵敏度高,可对微小的温度变化产生灵敏的反应,可以小型化,加工性强,测量一般热电偶和RTD无法测量的位置,如生物医药应用。热电偶温度计热电偶温度计是以热电效应为基础的测温仪表。由于其结构简单、测量范围宽、使用方便、测温准确可靠,信号便于远传、自动记录和集中控制,因而在工业生产中应用极为普遍。热电偶温度计由三部分组成:热电偶(感温元件);测量仪表(动圈仪表或电位差计);连接热电偶和测量仪表的导线(补偿导线)。热电偶是工业上最常用的一种测温元件,它是由两种不同材料的导体焊接而成。两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。液晶温度计液晶是一类有机化合物,在一定的温度范围内,它呈现出介于液体和晶体之间的状态,它既具有液体的流动性,又具有晶体的各向异性,其光学上的特异性能尤其引人注目。可利用液晶材料的温一色效应,根据液晶颜色变化来测定物体表面的温度分布。这种方法已成功地用于医学上的肿瘤部位诊断、末梢血管的功能检查和体温测量工业中的无损探伤、微波场及超声波场的测试,生化、微生物实验研究等众多领域。对于某些特殊的应用场合,例如,对只产生微量热效应的生化、微生物反应的观察和测定,对于不允许测温元件对被测对象的温度场造成干扰和希望测温元件的热容量降至最小的场合,以及只允许测温元件与其表面接触的生物体温度的测量等,液晶测温有其明显的优点。液晶温度计可用于多种应用,从读取患者的体温到化学实验室或啤酒厂中精确测量液体和空气温度范围。液晶温度计的低成本以及精确测量各种温度范围的能力,使该温度计成为许多制造和医疗过程不可或缺的一部分。随着环境温度的升高和降低,基于类胆固醇的胆甾醇型液体的颜色会沿着试纸条变化。要读取液晶温度计,用户只需注意温度计的颜色变化即可。在某些情况下,温度计还会在温度上标出数字标记,以提高读数的准确性。当今使用的一种最常见的液晶温度计类型是一条胶粘带,该胶粘带附着在瓶子或实验室设备的外表面上,可以准确地读取容器的温度。对于啤酒的微酿造等操作,液晶温度计可精确测量酿造容器中的温度范围。虽然测量的精度不如浸入液体中的激光温度计或传统温度计,但液晶温度计产生的结果对于必须保持在特定温度范围内而不是特定目标的反应具有足够的精度温度。饲养热带鱼或外来宠物(如爬行动物和两栖动物)的爱好者也将液晶温度计安装在水族箱的外表面,以准确测量内部水或空气的温度范围。这些温度计易于更换且成本低廉,与传统的水银温度计可能会对水箱中的动物或鱼类造成伤害不同,液晶式温度计不易破裂和释放有害化学物质。在实验室中,液晶温度计可用于测量温度变化和传输模式。液晶温度计的基于类胆固醇的液体可用于通过对流,辐射和传导有效地跟踪热量的传递。通过加热温度计,然后跟踪液体通过蒸发或浸入降低温度计温度的速度,也可以使用相同的原理来显示液体的冷却特性。辐射温度计辐射温度计属非接触式测温仪表,是基于物体的热辐射特性与温度之间的对应关系设计而成,主要涉及到的理论定律是黑体辐射定律,更为具体一点说则是运用了普朗克定律。其特点为:测温范围广,原理结构复杂;测量时,感温元件不与被测对象直接接触,不破坏被测对象的温度场;通常用来测定1000℃以上的移动、旋转或反应迅速的高温物体的温度或表面温度;但不能直接测被测对象的真实温度,且所测温度受物体发射率、中间介质和测量距离等因素影响。辐射温度计主要包括三个种类:光学高温计、辐射高温计、色比温度计。这三种温度计都能够做到不直接接触被测物体,弥补因高温而造成的人工测温的局限性,是我国目前最广泛应用的温度计种类。在传统的观念中,对于物体温度的概念就是其热辐射的情况,然而实际上对于一定量的热辐射来说,其温度并不是固定值,所以依据热辐射来判断物体温度是极为不准确的。在辐射测温学说当中,为弥补热辐射测温的漏洞,就有了表观温度的概念,其主要包括亮度温度、辐射温度和颜色温度,三种辐射温度计也是依据这一概念产生的。(1)光学高温计,也称光学高温计,是根据物体单色辐射亮度跟随温度变化原理而制成的非接触式温度测量仪表。光学高温计运用的主要原理是普朗克公式。一般情况下,对于亮度的测量会使用平衡法来完成,就是用人的肉眼来比较被测主体的在一定温度下的灯泡亮度来判定被测主体当前的温度,灯丝的电流即是测量结果的主要参数,再将电流与温度上的刻度表进行对应比较,就是光学高温计的传统工作方式。这种传统的光学高温计的优势在于其结构简单、便于使用,可测量的范围较为宽泛,精度也较为准确,但是其缺点在于仅靠人的肉眼来进行比较,就容易造成测量数据的误差,所以新型的光学高温计采用光电敏感元件来代替人眼,数据准确性大大提高。(2)辐射高温计是根据物体在整个波长范围内的辐射能量与其温度之间的函数关系设计制造的。辐射高温计属于透镜聚焦式的感温器,运用热辐射效应的原理,聚焦在热敏元件上,继而转变成电参数,它可以依据测温的实际需要进行拆卸,并可形成被测物体的影像。辐射高温计属于相对简易的非接触性测温仪表,由于其运用热辐射原理工作,被广泛运用于冶金、机械、化学工业等领域,主要用于显示和自动调节被测温度。(3)色比温度计是一种非接触式的红外温度计,主要根据被测物体发射出的颜色温度的红外辐射来进行测量。色比温度计测温的主要依据是被测主体发射的红外能量之比来实现温度测量的,其是将红外能量通过滤波器送到探头,再由探头转换成电信号,最后由温度计刻度显出。其常用的测温环境为 600-3000 摄氏度,常搭配观测管使用,有效减少周遭环境的干扰而获得较为精准的数据。我国的工业生产水平越来越高,发展脚步也越来越快,这对工业生产的各个环节提出的要求也就随之越来越高,尤其是在对生产设备的温度控制上,将温度控制在一个合理的范围之内,对于生产的产品质量和提高生产效率来说都是十分重要的,测温仪器的重要性正日益凸显。
  • 热分析仪器的基本结构单元
    p  热分析技术根据被测物理量的物理性质来分共有九大类、17种方法。所组成的热分析仪器就更多了。通常热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其框图如图所示。/pp/pp style="text-align: center "img width="400" height="370" title="热分析仪器框图.jpg" alt="热分析仪器框图.jpg" src="https://img1.17img.cn/17img/images/201808/uepic/50c889b4-1faf-48a2-a5d8-4f834ac222d1.jpg"//pp style="text-align: center "strong热分析仪器框图/strong/ppstrong一、程序温度控制器/strong/pp  它是使试样在一定温度范围内进行等速升温、降温和恒温。通常使用的升温速率为10℃/min或20℃/min。而程序温度速率可为0.01~999℃/min。近代程序温控仪大多由微机完成程序温度的编制、热电偶的线性化、PID调节以及超温报警等功能。/ppstrong二、炉体部分/strong/pp  它是使试样在加热或冷却时得到支撑。炉体部分包括加热元件、耐热瓷管、试样支架、热电偶以及炉体可移动的机械部分等。炉体的温度范围最低为-269℃(液氦制冷),最高可达2800℃(在高真空下用石墨管或钨管加热,用光学高温计测温)。炉体内的均温区要大,试样放在均温区中。因为试样各部分的温度是否均匀对热分析的结果有一定的影响。/ppstrong三、物理量检测放大单元/strong/pp  热分析仪器必须能随试样温度的变化及时而准确地检测试样的某些物理性质。span style="color: rgb(255, 0, 0) "由于绝大多数被测物理量是非电量,它们的变化往往又是很微小的,为了及时而准确地检测它们,需要把这些非电量转换成电量,加以放大,再通过定标计算出被测参数。/span差示测量方法可以提高测量的span style="color: rgb(0, 176, 240) "灵敏度/span和span style="color: rgb(0, 176, 240) "准确度/span,因此应用得很普遍。span style="color: rgb(255, 0, 0) "非电量转变为电量可以通过各种传感器来完成。/span例如span style="color: rgb(0, 176, 240) "称重传感器、位移传感器、光电传感器、热电偶传感器、声电传感器/span等。物理量的检测系统是各种热分析仪器的span style="color: rgb(255, 0, 0) "核心/span,也是区分各种热分析仪器的本质部分,它的性能是衡量热分析仪器水平的一个重要标志。/ppstrong四、微分器/strong/pp  它是把非电量传感器的放大信号经过一次微分(导数),从微分(对时间)曲线中可以更明显地看出放大信号的拐点、最大斜率等。/ppstrong五、气氛控制器/strong/pp  热分析仪器对试样所处的气氛条件有各种要求,因此,大多热分析仪器备有气氛控制系统。热分析对气氛条件的要求有如下原因。/pp  高温下试样可能在空气中被氧化而完全改变原来的特性,故要求在真空或惰性气氛下升温,或在某种反应气氛下升温。/pp  热分析与其他分析技术联用时,要求把热分析过程中所产生的气相产物利用流动载气送出。/pp  要求有适当的气路把热分析过程中所产生的腐蚀性气体或有毒气体排出。/pp  相当的热分析课题是研究气氛的种类、压力、流动速率以及活性程度等对热分析结果的影响。热分析仪器按气氛条件可分为高真空型、低真空型、常压型、高压型、静态型和流动型等。/ppstrong六、计算机数据处理系统/strong/pp  近年来,由于计算机的快速发展、软件的不断完善,大大推动了数据处理系统。首先把采集来的数据进行各种方法的滤波平滑 然后,应用软件对标准物质进行温度校正和焓变校正、长度校正、质量校正以及基线背景线的扣除等。应用软件求取试样的焓变值、熔点、晶相转变温度、玻璃化转变温度、试样成分的组成、膨胀系数等。还有一些软件需要对数学公式进行分析、简化,适合于热分析应用。例如动力学参数的求取、药品纯度的求取。/ppstrong七、显示和打印/strong/pp  它是把热分析曲线及其处理结果在显示屏上显示出来,并用彩色喷墨机或激光打印机打印出来。同时在显示屏上用鼠标进行各种操作。/p
  • 智能恒温电热套现货促销
    智能恒温电热套现货促销,ZNHW-Ⅱ型智能恒温电热套该电热套采用PID智能操作控制,热电偶感温,可控硅控制输出,单键快速升降温度设定模式,设定、控制双排数字显示,并设有断偶保护功能。ZNHW-Ⅱ型智能恒温电热套当设定好所需温度后,微电脑将根据温度差自动调整升温速度,通过间断供电,比例调节,快速达到最佳升温效果,使之无温冲,400℃内± 1℃平衡加温,该电热套还设有内外热电偶转换器件,可精确显示控制电热套温度,转换后又可精确显示控制瓶内溶液温度。ZNHW-Ⅱ型智能恒温电热套,ZNHW-II 10000该电热套除具有ZNHW型功能外,又增加了自整定功能,当启动自整定功能后,将使控温在同一条件下升温速度最快,精度更加准确。但当改变被加热介质时需重新自整定.ZNHW-II 20000,ZNHW-II 30000,ZNHW-II 50000PTHW型普通恒温电热套该系列型电热套根据联合国教科文组织&ldquo 环境与人类&rdquo 赠于我国的英国产品改进而成,它用无碱玻璃纤维作绝缘材料,将镊铬合金丝簧状置于其中为加热源,用轻质保温棉高压定形的半球形保温体保温,外壳用一次性高温塑料制成,上盖采用静电喷塑工艺,用大功率可控硅控温,具有外形美观、重量轻、恒温控制,形状标准,经久耐用的特点。TYHW型调压恒温电热套ZNHW-II 250该电热套除具有PTHW型的加热性能外,更具有热利用率高的特点,它是用大功率可控硅调压,继电器控制线路,与接点式温度计相配可达到调温恒温效果。BXHW型表显恒温电热套 ZNHW-II 500该电热套采用集成电路控制,热电偶感温,指针表式显示温度,可先设定所需温度,电热套在达到所需温度时即保持恒温加热,该产品可交替显示控制电热套内温度、瓶内溶液温度,具有控温精确,温度显示直观的特点。ZNHW型智能恒温电热套ZNHW-II 1000该电热套采用PID智能操作控制,热电偶感温,可控硅控制输出,单键快速升降温度设定模式,设定、控制双排数字显示,并设有断偶保护功能。当设定好所需温度后,微电脑将根据温度差自动调整升温速度,通过间断供电,比例调节,快速达到最佳升温效果,使之无温冲,400℃内± 1℃平衡加温,该电热套还设有内外热电偶转换器件,可精确显示控制电热套温度,转换后又可精确显示控制瓶内溶液温度。ZNHW-Ⅱ型智能恒温电热套ZNHW-II 2000该电热套除具有ZNHW型功能外,又增加了自整定功能,当启动自整定功能后,将使控温在同一条件下升温速度最快,精度更加准确。但当改变被加热介质时需重新自整定。ZHQ型电热套ZNHW-II 3000该电热套是专供实验室在磁力搅拌器上做加热搅拌用的电热套。多孔电热套ZNHW-II 5000可生产两孔、四孔、六孔、调温、表显、数显型电热套,加热板及来图加工异形产品。公司名称:上海昨非实验室设备有限公司电 话:021-51872183传 真:021-61249232
  • 造纸业、天然气等行业标准发布及实施日期公布
    中华人民共和国国家标准批准发布公告(2010年第3号),公布了163项工业行业标准的发布及实施日期,其中造纸业、天然气等行业与科学仪器相关的分析检测标准共有51项,现摘录如下。序号标准号标准名称代替标准号发布日期实施日期1GB/T 11060.1-2010 天然气 含硫化合物的测定 第1部分:用碘量法测定硫化氢含量 GB/T 11060.1-19982010-8-92010-12-12GB/T 11060.3-2010 天然气 含硫化合物的测定 第3部分:用乙酸铅反应速率双光路检测法测定硫化氢含量 GB/T 18605.1-20012010-8-92010-12-13GB/T 11060.4-2010 天然气 含硫化合物的测定 第4部分:用氧化微库仑法测定总硫含量 GB/T 11061-19972010-8-92010-12-14GB/T 11060.5-2010 天然气 含硫化合物的测定 第5部分:用氢解-速率计比色法测定总硫含量 GB/T 19207-20032010-8-92010-12-15GB 12476.10-2010 可燃性粉尘环境用电气设备 第10部分:试验方法 粉尘与空气混合物最小点燃能量的测定方法 2010-8-92011-8-16GB 12476.8-2010 可燃性粉尘环境用电气设备 第8部分: 试验方法 确定粉尘最低点燃温度的方法 2010-8-92011-8-17GB 12476.9-2010 可燃性粉尘环境用电气设备 第9部分:试验方法 粉尘层电阻率的测定方法 2010-8-92011-8-18GB/T 14633-2010 灯用稀土三基色荧光粉 GB/T 14633-20022010-8-92011-5-19GB/T 14634.1-2010 灯用稀土三基色荧光粉试验方法 第1部分:相对亮度的测定 GB/T 14634.1-20022010-8-92011-5-110GB/T 14634.2-2010 灯用稀土三基色荧光粉试验方法 第2部分:发射主峰和色度性能的测定 GB/T 14634.2-20022010-8-92011-5-111GB/T 14634.3-2010 灯用稀土三基色荧光粉试验方法 第3部份:热稳定性的测定 GB/T 14634.3-20022010-8-92011-5-112GB/T 14634.5-2010 灯用稀土三基色荧光粉试验方法 第5部分:密度的测定 GB/T 14634.5-20022010-8-92011-5-113GB/T 14634.6-2010 灯用稀土三基色荧光粉试验方法 第6部分:比表面积的测定 GB/T 14634.6-20022010-8-92011-5-114GB/T 14634.7-2010 灯用稀土三基色荧光粉试验方法 第7部分:热猝灭性的测定 2010-8-92011-5-115GB/T 16716.2-2010 包装与包装废弃物 第2部分:评估方法和程序 2010-8-92011-1-116GB/T 16716.3-2010 包装与包装废弃物 第3部分:预先减少用量 2010-8-92011-1-117GB/T 16716.4-2010 包装与包装废弃物 第4部分:重复使用 2010-8-92011-1-118GB/T 16716.5-2010 包装与包装废弃物 第5部分:材料循环再生 2010-8-92011-1-119GB/T 16781.2-2010 天然气 汞含量的测定 第2部分:金-铂合金汞齐化取样法 GB/T 16781.2-19972010-8-92010-12-120GB/T 23595.7-2010 白光LED灯用稀土黄色荧光粉试验方法 第7部分:热猝灭性的测定 2010-8-92011-5-121GB/T 24916-2010 表面处理溶液 金属元素含量的测定 电感耦合等离子体原子发射光谱法 2010-8-92010-12-3122GB/Z 24978-2010 火灾自动报警系统性能评价 2010-8-92010-12-123GB/Z 24979-2010 点型感烟/感温火灾探测器性能评价 2010-8-92010-12-124GB/T 24980-2010 稀土长余辉荧光粉 2010-8-92011-5-125GB/T 24981.1-2010 稀土长余辉荧光粉试验方法 第1部分:发射主峰和色品坐标的测定 2010-8-92011-5-126GB/T 24981.2-2010 稀土长余辉荧光粉试验方法 第2部分:相对亮度的测定 2010-8-92011-5-127GB/T 24982-2010 白光LED灯用稀土黄色荧光粉 2010-8-92011-5-128GB/Z 24987-2010 纸、纸板和纸浆 测试方法不确定度的评定 2010-8-92010-12-129GB/T 24990-2010 纸、纸板和纸浆 铬含量的测定 2010-8-92010-12-130GB/T 24991-2010 纸、纸板和纸浆 铅含量的测定 石墨炉原子吸收法 2010-8-92010-12-131GB/T 24992-2010 纸、纸板和纸浆 砷含量的测定 2010-8-92010-12-132GB/T 24993-2010 造纸湿部Zeta电位的测定 2010-8-92010-12-133GB/T 24994-2010 造纸湿部溶解电荷量的测定 2010-8-92010-12-134GB/T 24995-2010 铸涂原纸 2010-8-92010-12-135GB/T 24996-2010 纸张中脱墨回用纤维的判定 2010-8-92010-12-136GB/T 24997-2010 纸、纸板和纸浆 镉含量的测定 原子吸收光谱法 2010-8-92010-12-137GB/T 24998-2010 纸和纸板 碱储量的测定 2010-8-92010-12-138GB/T 24999-2010 纸和纸板 亮度(白度)最高限量 2010-8-92010-12-139GB/T 25001-2010 纸、纸板和纸浆 7种多氯联苯(PCBs)含量的测定 2010-8-92010-12-140GB/T 25002-2010 纸、纸板和纸浆 水抽提液中五氯苯酚的测定 2010-8-92010-12-141GB/T 24957-2010 冷冻轻烃流体 船上膜式储罐和独立棱柱形储罐的校准 物理测量法 2010-8-92010-12-142GB/T 24958.1-2010 冷冻轻烃流体 船上球形储罐的校准 第1部分:立体照相测量法 2010-8-92010-12-143GB/T 24959-2010 冷冻轻烃流体 液化气储罐内温度的测量 电阻温度计和热电偶 2010-8-92010-12-144GB/T 24960-2010 冷冻轻烃流体 液化气储罐内液位的测量 电容液位计 2010-8-92010-12-145GB/T 24961-2010 冷冻轻烃流体 液化气储罐内液位的测量 浮子式液位计 2010-8-92010-12-146GB/T 24962-2010 冷冻烃类流体 静态测量 计算方法 2010-8-92010-12-147GB/T 24967-2010 钢质护栏立柱埋深冲击弹性波检测仪 2010-8-92010-12-148GB/T 3780.14-2010 炭黑 第14部分:硫含量的测定 GB/T 3780.14-19952010-8-92011-5-149GB/T 6073-2010 LT 型高弹性摩擦离合器 GB/T 6073-19852010-8-92010-12-150GB/T 9345.5-2010 塑料 灰分的测定 第5部分:聚氯乙烯 GB/T 13453.3-19922010-8-92011-5-151GB/T 10682-2010 双端荧光灯 性能要求 GB/T 10682-20022010-8-92010-12-1
  • 创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3近期在新奥集团再次中标
    创元公司代理的日本advance-riko公司热电特性评价装置zem-3近期在新奥集团再次中标创元公司代理的日本advance-riko公司热电特性评价装置zem-3近期在新奥集团再次中标,日本advance-riko公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。所得数据非常可靠。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所,武汉大学等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格 ●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格) ●温度设定范围 测温步数和温度采样测量步数:最大125步 ●测量方法 温差电动势:静态直流法 电阻率:四电极法 ●气氛 低压氦气 ●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大) ●导线间距 4,6,8mm ●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格) ●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 市场监管总局(国家标准委)发布两项汽车行业强制性国家标准
    近日,国家市场监督管理总局(国家标准化管理委员会)批准发布《机动车玻璃安全技术规范》等16项强制性国家标准,其中包含两项汽车行业强制性国家标准,均由TC114(全国汽车标准化技术委员会)归口上报,339(工业和信息化部)执行,主管部门为工业和信息化部。序号标准编号标准名称代替标准号实施日期1GB 9656-2021机动车玻璃安全技术规范GB 9656-20032023-01-012GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2022-01-01一、《机动车玻璃安全技术规范》国家标准《机动车玻璃安全技术规范》起草单位为中国建材检验认证集团股份有限公司、中国汽车技术研究中心有限公司等。修订后的标准技术内容参考UN R43。无相关产品标准类的ISO标准可采用。部分项目的检验方法修改采用相关ISO标准。修订后标准与GB 9656-2003的变化对比见表1。表1 GB 9656-2021修订版与2003版对比No.项目2003版修订版水平分析1前言/强制条款部分条款强制全文强制——2范围只适用于汽车明确了适用的车的类别。根据实际应用对适用范围的车辆定义更清晰、准确。优于2003版3术语无增加18个术语使标准结构合理、使用方便。优于2003版4分类包括分类及应用部位说明删除应用部位说明,符合GB1.1要求。优于2003版5技术要求及试验方法总则对原片提出要求,将要求分为主要技术要求及一般技术要求删除原片要求及主要技术要求和一般技术要求的分类;将各种安全玻璃材料在不同应用部位需满足的要求以表格形式列出;提出钢化玻璃应用限制条件;增加了贴膜玻璃的要求。便于对各种安全玻璃材料的总体要求有全面的了解,使标准更便于。优于2003版6厚度对夹层玻璃、钢化玻璃、区域钢化玻璃及塑玻复合材料及中空安全玻璃的单片厚度偏差提出了要求。技术要求:1.根据最新浮法玻璃标准,修订单片玻璃的厚度偏差;2.增加刚性塑料;3.对中空玻璃总厚度提出偏差要求;4.修改了对夹层玻璃及塑玻复合材料厚度偏差的描述。5.删除了区域钢化的内容试验方法:增加HUD玻璃的内容针对所有安全玻璃材料分别提出了具体的要求,考虑了最新产品的需求,采用了最新原材料标准。优于2003版 7技术要求及试验方法可见光透射比按车型、视区规定了最低可见光透射比值技术要求:1. 增加对后风窗的要求;2. 修改视区;试验方法:对试验设备“接受器及配套指示仪器的线性”略有修改,删除“或在读数量程的±10%之内,选择小值”。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法规定更科学。优于2003版8副像偏离按车型、视区规定了最高副像偏离值技术要求:1. 修改视区;2.对不做检查区域进行补充规定;试验方法:1. 对于靶式光源仪,增加了单环靶的结果表达;2.对于准直望远镜,调整了装置图中样品方向;将“可先用靶式光源仪以简单快速的扫描方法检查安全玻璃”列为可选择的过程;将结果表达中设计试验程序的表述移到试验过程。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法表述符合GB1.1的要求。优于2003版9光畸变按车型、视区规定了最高光畸变值技术要求:1. 修改视区;2.对不做检查区域进行补充规定;试验方法:对光源进行了修订,改为:150W石英卤素灯(如果不使用滤光片)或250W石英卤素灯(使用绿色滤光片)。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法更具有可操作性。优于2003版10颜色识别对视区带色风窗提出的要求删除此项透射比不低于70%的视区带色前风窗玻璃不影响对交通信号颜色的识别。优于2003版11技术要求及试验方法抗磨性针对风窗及侧窗用夹层玻璃及塑玻复合材料技术要求:1.增加刚性塑料要求;2.增加该项目的适用部位试验方法:增加了对塑料材料的试验方法。使该要求更具合理性。优于2003版12人头模型冲击用于风窗及风窗以外部位的各种材料,钢化玻璃除外技术要求:1.删除前风窗以外夹层玻璃、塑玻复合材料的人头模型冲击要求;2.增加刚性塑料要求。3.对夹层玻璃冲击后状态要求表述更准确4.删除了区域钢化内容试验方法:增加了对刚性塑料的试验方法,包括对带减速装置人头模型冲击试验设备的校准方法。符合GTR6的要求,要求更明确。优于2003版13抗穿透性针对风窗用夹层玻璃及塑玻复合材料同2003版无变化14抗冲击性针对夹层玻璃、塑玻复合材料及钢化玻璃在高、低及常温下的冲击状态技术要求:1. 对夹层玻璃的称重要求进行修改;2.增加刚性塑料、HUD玻璃的要求;3.修改了前风窗以外夹层玻璃冲击后碎片剥落要求。试验方法:1.增加了对刚性塑料进行试验的内容;2.对冲击高度进行修改;3.增加了高、低温冲击试验的试验时机要求。要求更明确,试验方法更具可操作性。优于2003版 15碎片状态针对区域钢化及钢化玻璃技术要求:1. 对长条碎片的要求修订描述;2. 删除钢化玻璃的补做内容。3.删除了区域钢化内容试验方法:按曲率半径200mm对钢化玻璃的冲击点进行了修订。对长条碎片的要求更精准,对钢化玻璃的要求予以了加严。优于2003版 16技术要求及试验方法柔性无此项针对刚性塑料,新增项目。引入新材料。优于2003版17耐高温性针对夹层玻璃、塑玻复合材料技术要求:无变化。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.增加了对超温控制的要求。检验操作控制更严格。优于2003版 18耐辐照性针对夹层玻璃、塑玻复合材料技术要求:无变化。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.增加了辐照强度的要求。检验操作控制更严格。优于2003版 19耐湿性针对夹层玻璃、塑玻复合材料技术要求:1.原要求不变;2.增加了对刚性塑料的要求。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.修改了试验后样品状态评价时机的要求;4.增加刚性塑料内容。检验操作控制更严格,引入新材料。优于2003版 20耐温度变化性针对塑玻复合材料 技术要求:无变化。试验方法:增加样品放置要求。检验操作控制更严格。优于2003版 21技术要求及试验方法耐燃烧性针对塑玻复合材料技术要求:1.增加刚性塑料的要求;2.降低燃烧速度试验方法:无变化。加严要求,引入新材料。优于2003版 22耐化学侵蚀性针对塑玻复合材料技术要求:增加刚性塑料的要求。试验方法:根据刚性塑料增加负重法试验方法引入新材料。优于2003版 23耐模拟气候性无针对刚性塑料,新增项目。引入新材料。优于2003版 24挥发性有机物无针对贴膜玻璃,新增项目关注贴膜玻璃环保性能,优于2003版25检验规则对型式检验及认证检验的抽样规则进行了规定删除根据全文强制要求,删除此部分内容26判定规则写入试验方法条款以规范性附录的形式对每一项技术的判定进行了规定有利于标准整体框架的协调,简单扼要,便于使用,优于2003版27实施日期无根据强标使用特点,规定出过渡期使标准更具实施性28边缘应力有删除该项在2003版中针对钢化玻璃,为一般性技术要求,非强制项目29表面应力有删除该项在2003版中针对弯型夹层玻璃及塑玻复合材料,为一般性技术要求,非强制项目30耐模拟气候性有删除该项在2003版中该项目针对塑玻复合材料,为一般性技术要求,非强制项目31露点有删除该项在2003版中该项目针对安全中空玻璃,为一般性技术要求,非强制项目32加速耐久性能有删除该项在2003版中该项目针对安全中空玻璃,为一般性技术要求,非强制项目33太阳能特性该两项原计划在9656修订时应加入,针对目前汽车玻璃节能特性,是两个非常有现实意义的项目,也是申请9656修订目的之一,属于非强制性项目。但由于此次标准项目更改为安全技术规范,这两个项目也不能写入。34可见光反射比二、《汽车和挂车 制动器用零部件技术要求及试验方法》国家标准《汽车和挂车 制动器用零部件技术要求及试验方法》主要起草单位:中国第一汽车股份有限公司技术中心 、泛亚汽车技术中心有限公司 、浙江亚太机电股份有限公司 、浙江万安科技股份有限公司 、上海汽车制动系统有限公司 、烟台孚瑞克森汽车制动部件有限公司 、河北星月制动元件有限公司 、重庆红宇摩擦制品有限公司 、中国重型汽车集团有限公司 、长春一汽富晟特比克制动有限公司 。本标准主要包含术语和定义、试验相关要求、技术要求和试验方法、包装和标志、产品一致性等。本标准与UN R90的主要结构变化对比见表2。表2 本标准与UN R90主要技术要素对比本标准UN R90章节编号章节标题章节编号章节标题1范围1范围2规范性引用文件——3术语和定义2定义——3认证申请——4认证4试验相关要求——5技术要求5技术要求及试验6包装和标志6包装和标志——7换装零件的变更和扩展7产品一致性8产品一致性——9产品不一致性的惩罚——10产品完全停产——11有权进行认证试验的技术服务部门和型式认证权威机构的名称和地址——12过渡期规定根据我国标准化相关文件规定,本标准除采用我国对应的规范性引用文件替代UN R90的规范性引用文件外,还增加了5项规范性引用标准,本标准涉及的规范性引用标准与UN R90规范性引用文件对应情况见表3。表3 本标准规范性引用文件与UN R90对应关系一览表序号本标准规范性引用文件UN R90规范性引用文件1GB/T 131-2006 产品几何技术规范(GPS) 技术产品文件中表面结构的表示法(ISO 1302:2002,IDT)ISO 1302:2002 Geometrical product specifications(GPS) - Indication of surface texture in technical product documentation2GB/T 228.1-2010 金属材料 拉伸试验 第1部分:室温试验方法(ISO 6892-1:2009,MOD)ISO 6892:1998 Metallic materials – Tensile testing at ambient3GB/T 231.1-2009 金属材料 布氏硬度试验 第1部分:试验方法(ISO 6506-1:2005,MOD)ISO 6506-1:2005 Metallic materials – Brinell hardness test – Part 1:Test method4GB/T 3398.2-2008 塑料 硬度测定 第2部分:洛氏硬度(ISO 2039-2:1987,IDT)ISO 2039-2:1987 Plastics – Determination of hardness – Part2:Rockwell hardness5GB/T 5620 道路车辆 汽车和挂车制动名词术语及其定义--6GB 5763 汽车用制动器衬片--7GB/T 7216-2009 灰铸铁金相检验(ISO 945-1:2008,MOD)ISO 945-1:2008 Microstructure of cast iron – Part1:Graphite classification by visual analysis8GB 126760-2014 商用车辆和挂车制动系统技术条件及试验方法UN No.13 Uniform provisions concerning the approval of vehicles of categories M,N and O with regard to braking9GB 21670-2008 乘用车制动系统技术要求及试验方法UN R13-H Uniform provisions concerning the approval of passenger car with regard to braking10GB/T 22309-2008 道路车辆 制动衬片 盘式制动块总成和鼓式制动蹄总成剪切强度试验方法(ISO 6312:2001,IDT)ISO 6312:2001 Road vehicles – Brake linings – Shear strength of disc brake pad and drum brake shoe assemblies – Test procedure11GB/T 22310-2008 道路车辆 制动衬片 盘式制动衬块受热膨胀量试验方法(ISO 6313:1980,IDT)ISO 6313:1981 Road vehicles – Brake linings – Effects of heat on dimensions and form of disc brake pads–Test procedure12GB/T 22311-2008 道路车辆 制动衬片 压缩应变试验方法(ISO 6310:2001,IDT)ISO 6310:2001 Road vehicles – Brake linings – Compressibility – Test procedure13QC/T 239-2015 商用车辆行车制动器技术要求及台架试验方法--14QC/T 556 汽车制动器温度测量和热电偶安装--15QC/T 564-2018 乘用车行车制动器性能要求及台架试验方法--
  • 得利特自燃点测定仪--三段控温,操作简单
    在环保监测领域,客户主要包括两大类型,一类是环保、市政、水利等具有环境监管职责或具有环境监测需求的政府部门和事业单位,监测对象涵盖地表水、地下水、环境空气、市政供水管网等,这部分客户的市场需求主要受环境监测体系的建设规模及相应财政预算规模的影响;第二类是需要进行环境监测监管的污染源企业,包括制药、造纸、化工等企业,这部分客户的市场需求主要受自身经营规模及政府环境监测监管执行力度的影响。因此,环境监测设备行业的市场需求具有明显的政策驱动型特征。从目前看,国家已将环境保护列为基本国策,政策变动的可能性非常小,随着环保政策的趋严,市场需求会越来越大。A1130自燃点测定仪是根据国家电力部行业标准DL/T706《电厂用抗燃油自燃点测定方法》研制的,用于测定30MW以上发电机组调速系统中抗燃油的自燃点温度。本仪器智能控温,加热均匀,布局合理,准确度好。使容器内部温度达到热平衡,利用反光镜观察抗燃油的燃点,本仪器外观美观,测试方便,性能稳定可靠。功能特点1.采用人工智能调节算法进行控温。2.LED数码显示,K型热电偶,主辅加热器自动切换使容器内部温度达到热平衡。3. 烧瓶内的顶部、中部、底部温度控制在1℃之内。4.万向观察镜监视燃点,性能稳定可靠。技术参数量程:室温~800℃精度:烧瓶顶部、中部、底部三点温差≤1℃环境温度:室温~50℃ 相对湿度:<80% 工作电源:AC220V±10% ,50Hz 控温准确度:±1℃最大功率 <2000WA1131自燃点测定仪符合DL/T706标准,参照德国DIN51794标准研制。用于测定30MW以上发电机组调速系统中抗燃油的自燃点。仪器采用先进的控温方式,三段温度自动控温,自动完成抗燃油自燃点的测定,具有到达预设置自燃点后自动恒温、自动计时、自动检测自燃点、自动换气。具有测量准确,重复性好,自动化程度高,稳定可靠,操作简单等优点。功能特点采用先进的AI人工智能调节算法进行控温LED数码显示,K型热电偶,主辅加热器自动切换使容器内部温度达到热平衡烧瓶内的顶部、中部、底部温度控制在1℃之内万向观察镜监视燃点,性能稳定可靠技术参数操作方式:9.0英寸超大彩色触摸屏运行平台:Android操作系统控温范围:200~800℃控温精度:±0.1℃电源电压:交流220V±10% 50Hz±10%环境温度: 5℃ ~ 40℃相对湿度:≤85% 功 率:2000W外形尺寸:580mm×350mm×690mm重 量:33.26kg
  • 先进简单的多功能过程校准器
    Allerød, Denmark –过程信号在各个行业中都是至关重要的,从控制阀、开关或灯,到测量管道中的压力,再到校准烘焙烤箱中的温度。随着如此重要的参数被广泛使用,确保这些过程信号保持准确是至关重要的。用户对他们使用的校准设备有多种选择,但最重要的因素之一是易用性。因为可能会使用多个过程信号,包括伏特、毫伏、安培或毫安,而每一个都可能有很大的量程差异,大多数用户转向多功能校准以满足所有情况。然而,随着期权的增加,该工具的复杂性也趋于增加。对于新手来说,看似简单的连接接线任务可能都是困难的。JOFRA ASC-400 先进的校准仪具有连接助手的功能。ASC-400现在包括一个内置的帮助功能,提供了一个图形解决方案,根据当前设置提供精确的连接图示。如果测量参数发生变化(例如从V变为mA),连接辅助界面也会发生变化。使用新功能可以显著减少错误和浪费时间。ASC-400多功能过程校验仪读取和输出RTD,热电偶,电流,电压,频率,电阻,脉冲序列等信号。它整合了诸如百分比误差计算、缩放、泄漏测试和开关测试校准等功能到一个手持校准器。大型全彩显示器、带有光标的数字小键盘和功能键有助于简化使用。ASC-400结合APM CPF压力模块实现压力校准. ASC-400结合Jofra干体炉实现温度校准。关于AMETEK STC and JOFRA AMETEK STC 在JOFRA和Crystal品牌下制造和供应温度、压力和过程信号的校准仪器。JOFRA温度校准器以其准确性、稳定性和可靠性闻名于世。
  • 赛默飞高分辨磁质谱 环境二噁英监控中的“金标准”
    赛默飞世尔作为二噁英检测行业领导者,一直致力于帮助广大用户提升检测能力和技术水平,2019年11月13日赛默飞世尔二噁英检测技术研讨会在无锡万豪酒店隆重举行,会议邀请中国科学院生态中心郑明辉研究员,国家食品安全风险评估中心李敬光研究员,国家环境分析测试中心齐丽副研究员、许鹏军高工以及来自全国数十家检测单位的七十余名客户共同对环境和食品中的二噁英检测技术现状与发展进行了深入探讨与交流。我国环境领域二噁英排放的监管情况我国对二恶英类的污染控制比工业发达国家晚了20年左右,但是近年来追赶势头强劲。目前主要管控精力放在对废弃物焚烧的控制和与焚烧相关的工业生产排放上,对相关行业的副产物二恶英类控制还需要加强。随着城市化进程的逐步推进,垃圾分类的逐步推广,由于垃圾填埋过度占用土地,符合减量化,无害化和资源化的垃圾焚烧逐渐成为垃圾处理的主流方向,但垃圾焚烧厂的新建也有可能加重二恶英类的污染,如不能及早采取行动,我国二恶英类的环境释放将有上升的势头。目前二恶英类监测技术在环保监测方法中还是属于难度大、费用高的检测项目,近年来第三方二噁英实验室的快速发展,检测费用逐步下降,二噁英监测从业人员也有了长足进步,这对二恶英排放的整体监管十分有利。2010年,颁布关于加强二恶英污染防治的指导意见。环保监管的逐年加力都对二噁英总量管控和监测领域带来利好。目前环境样品使用高分辨磁质谱用于二噁英检测的标准1. HJ 77.1-2008 水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法2. HJ 77.2-2008 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法3. HJ 77.3-2008 固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法4. HJ 77.4-2008 土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法二噁英排放限量标准的逐步完善2018年底至2019年,陆续颁布新的环境限量标准,包括l GB 36600-2018 土壤环境质量 建设用地土壤污染风险管控标准l GB 37823-2019 制药工业大气污染物排放标准l GB 37823-2019 涂料 油墨 胶黏剂工业大气排放标准而生活垃圾焚烧逐步取代垃圾填埋,成为常规的生活垃圾处理方式。而垃圾焚烧中的二噁英含量监测,是垃圾焚烧监测中的重中之重。2019年 我国生活垃圾年产量超过四亿吨从产业角度来看,垃圾是放错位置的资源,垃圾焚烧电场项目,在建的和已经建成的有418余家,当然在这之外还有167座正在建设,共有600家。江苏,山东和浙江排在垃圾焚烧的前三地区,区域二噁英监控任重道远。不同行业二噁英排放限量标准赛默飞高分辨磁质谱 环境二噁英监控中的“金标准”目前全球的二噁英监控都可以使用高分辨磁质谱,而且是全球公认的“黄金标准”。包括美国,欧盟,日本,中国。目前全球的二噁英检测的方法赛默飞高分辨磁质谱概述及其性能特点赛默飞高分辨磁质谱源于优良的德国制造,创立于上世纪20年代的MAT工厂,场址在德国北部小城不莱梅,工厂隔壁就是全球知名的飞机制造厂商“空中客车”。采用紧凑的反向nier-johnson结构,磁场在前,电场在后,这样有利于降低加速电压,从而设计更加紧凑而低能耗的磁场和电场。目前市场占有率已经高达90%以上。1.全球最灵敏的高分辨磁质谱 20fg 2378-TCDD 信噪比 高于200:12.先进的自动进样器技术,专利的RECO马达,底部探针技术,可以实现微量体积的准确进样。3. 多变的配置,单气相,双气相和Dual DATA,可以满足不同研究方向和大通量的样品需求随着2014年欧盟GCQQQ的食品安全指导文件的推出,我国二噁英领域内的专家们也在紧锣密鼓的开展一系列二噁英标准的制定和更新工作,在环境监测领域,生态环境部计划制定串联质谱检测二噁英的标准,但此标准定位还有待讨论,与此同行,生态环境部正在修订二噁英磁质谱的金标准,新的二噁英磁质谱标准也会出台。另一方面,食品安全领域的串联质谱标准也在制定中,但由于串联质谱检测方法仍需要进一步验证来评价其可靠性,目前该方法的使用受到一定限制。下期我们将继续为大家介绍赛默飞在GCQQQ以及二噁英样品前处理领域的全流程方案,敬请期待。
  • 30项仪表功能材料及检测方法国标发布
    近日,由全国仪表功能材料标准化技术委员会组织,重庆仪表材料研究所、成都光明光电股份有限公司、北京玻璃研究院、中国科学院光电技术研究所、重庆川仪金属功能材料分公司等单位负责制修订的30项热电偶丝、电阻合金、光学玻璃、复合带材等材料及测试方法国家标准经国家质量监督检验检疫总局和国家标准化管理委员会批准发布,分别于2011年5月1日和2011年6月1日起实施。标准文本由中国标准出版社印刷出版。  这30项国家标准分别于2006、2007年批准立项,全国仪表功能材料标准化技术委员会作为技术归口单位,组织完成了该批国家标准的起草工作,分别召开了标准起草工作会议,并以会议审查和函审的形式组织标委会委员及专家对标准进行了审查,于2009年完成了标准报批等工作。  各标准起草工作组在标准编制过程中,广泛采纳了专家、学者的意见和建议,经过反复论证、分析讨论,对标准多处细节进行了修订,分阶段完成了标准讨论稿、征求意见稿、送审稿和报批稿。使标准文本表述更加科学、规范、先进和更具指导性。  30项国家标准的各项技术指标先进、科学、合理,体现了行业的特点,符合我国国情,达到国内领先和国际先进水平,该批标准的制修订和贯彻实施,将对提高我国S、R、B、K、E型热电偶丝,锰铜、康铜精密电阻合金,滤光玻璃,无色光学玻璃,复合带材的质量,提高技术水平起到积极的促进作用。  至此,在全国仪表功能材料标准化技术委员会的周密组织下、在各标准起草单位的大力支持下、在标准起草人的共同努力下,全国仪表功能材料标准化技术委员会承担的2006年度国家标准制修订计划项目划上了圆满的句号。30项仪表功能材料国家标准的批准发布,标志着全国仪表功能材料标准化技术委员会自2008年 成立后,拥有了更大的国家标准制修订主动权和话语权。批准发布的30项仪表功能材料国家标准序号标准号标准名称代替标准号实施日期1GB/T 1598-2010铂铑10-铂热电偶丝、铂铑13-铂热电偶丝、铂铑30-铂铑6热电偶丝GB/T 1598-1998GB/T 2902-1998GB/T 3772-19982011-05-012GB/T 2614-2010镍铬-镍硅热电偶丝GB/T 2614-19982011-05-013GB/T 2904-2010镍铬-金铁、铜-金铁低温热电偶丝GB/T 2904-19822011-05-014GB/T 4990-2010热电偶用补偿导线合金丝GB/T 4990-19952011-05-015GB/T 4993-2010镍铬-铜镍(康铜)热电偶丝GB/T 4993-19982011-05-016GB/T 6145-2010锰铜、康铜精密电阻合金线、片及带GB/T 6145-19992011-05-017GB/T 6146-2010精密电阻合金电阻率测试方法GB/T 6146-19852011-05-018GB/T 6149-2010新康铜电阻合金GB/T 6149-19852011-05-019GB/T 16701-2010贵金属、廉金属热电偶丝热电动势 测量方法GB/T16701.1-1996GB/T16701.2-19962011-05-0110GB/T 7962.1-2010无色光学玻璃测试方法 第1部分:折射率和色散系数GB/T 7962.1-19872011-05-0111GB/T 7962.2-2010无色光学玻璃测试方法 第2部分:光学均匀性 斐索平面干涉法GB/T 7962.2-1987, GB/T 7962.4-19872011-05-0112GB/T 7962.3-2010无色光学玻璃测试方法 第3部分:光学均匀性 全息干涉法GB/T 7962.3-19872011-05-0113GB/T 7962.4-2010无色光学玻璃测试方法 第4部分:折射率温度系数GB/T 7962.22-19872011-05-0114GB/T 7962.5-2010无色光学玻璃测试方法 第5部分:应力双折射GB/T 7962.5-1987, GB/T 7962.6-19872011-05-0115GB/T 7962.6-2010无色光学玻璃测试方法 第6部分:杨氏模量、剪切模量及泊松比GB/T 7962.23-19872011-05-0116GB/T 7962.8-2010无色光学玻璃测试方法 第8部分:气泡度GB/T 7962.8-19872011-05-0117GB/T 7962.9-2010无色光学玻璃测试方法 第9部分:光吸收系数GB/T 7962.9-19872011-05-0118GB/T 7962.10-2010无色光学玻璃测试方法 第10部分:耐X射线性能GB/T 7962.10-19872011-05-0119GB/T 7962.11-2010无色光学玻璃测试方法 第11部分:可见折射率精密测试GB/T 7962.11-19872011-05-0120GB/T 7962.12-2010无色光学玻璃测试方法 第12部分:光谱内透射比GB/T 7962.12-19872011-05-0121GB/T 7962.14-2010无色光学玻璃测试方法 第14部分:耐酸稳定性GB/T 7962.14-19872011-05-0122GB/T 7962.15-2010无色光学玻璃测试方法 第15部分:耐潮稳定性GB/T 7962.15-19872011-05-0123GB/T 7962.16-2010无色光学玻璃测试方法 第16部分:线膨胀系数、转变温度和弛垂温度GB/T 7962.16-19872011-05-0124GB/T 7962.17-2010无色光学玻璃测试方法 第17部分:紫外、红外折射率GB/T 7962.17-1987GB/T 7962.18-19872011-05-0125GB/T 7962.18-2010无色光学玻璃测试方法 第18部分:克氏硬度GB/T 7962.21-19872011-05-0126GB/T 7962.19-2010无色光学玻璃测试方法 第19部分:磨耗度GB/T 7962.19-19872011-05-0127GB/T 7962.20-2010无色光学玻璃测试方法 第20部分:密度GB/T 7962.20-19872011-05-0128GB/T 15488-2010滤光玻璃GB/T 15488-19952011-05-0129GB/T 15489.6-2010滤光玻璃测试方法 第6部分:荧光特性GB/T 15489.6-19952011-05-0130GB/T 26330-2010银、银合金/铜、铜合金复合带材/2011-06-01  节选自中华人民共和国国家标准批准发布公告2010年第9号(总第164号)和2011年第2号。
  • WIGGENS发布WIGGENS WH200加热磁力搅拌器新品
    WH200加热磁力搅拌器* 根据国际标准,研发生产的实验室加热磁力搅拌器* 先进的微电脑控制技术 , 保证设备工作性能的稳定可靠* 高亮清晰的 LED数字显示,可直接调节工作温度和转速* 自动记忆最后一次设定的工作参数 , 非常方便固定实验条件使用* 控制面板上方设计有导液槽 , 即使液体溅出 , 也不会损坏设备* 密封式外壳设计 , 关键部件隔离安装;适合实验室环境相对苛刻的条件* 当板面温度超过 50℃时 , 高温指示灯开始闪烁 , 提示使用者注意安全* 安全温度 (℃ ):超过加热板内板面设定温度 50 度或超过介质设定温度 50 度,设备报警E02技术参数:型号WH200WH210显示模式/ 控制方式LED 数字显示/ 旋钮操作LED 数字显示 / 旋钮操作加热盘最高温度 (℃ )250250样品最高温度( 配热电偶传感器) (℃ )200250控温精度(配热电偶传感器)(℃ )±2±2安全保护温度 (℃ )280280搅拌速度 (rpm)100~1500100~1500加热功率(W)300300最大搅拌量 (L)H2O22加热盘材质铝铝加热盘尺寸(mm)165x150180x145PID 参数1 套PID1 套 PID订货号400302400402创新点:1、新型号的搅拌器增加了先进的微电脑控制技术,保证了设备工作性能的稳定可靠2、具有高亮清晰的 LED数字显示,可直接调节工作温度和转速3、能够自动记忆最后一次设定的工作参数,非常方便固定实验条件使用4、体积更加小巧WIGGENS WH200加热磁力搅拌器
  • 赛默飞世尔再次延长戴安收购期限 等待欧盟批准
    赛默飞世尔再次延长戴安收购期限至5月13日 等待欧盟批准Lancaster Lab及Athena两项业务出售完成  2011年4月4日,赛默飞世尔宣布已经完成了Lancaster Lab业务的出售,并且继续延长其对戴安的收购要约。  周一(4月4日),赛默飞世尔宣布,其已再次延长对戴安的收购期限,延长至美国东部时间5月13日下午七时。此前,赛默飞世尔已两次延长其对戴安的收购期限(1月,赛默飞世尔科技延长戴安收购期限至2月16日;2月,赛默飞世尔科技再次延长戴安收购期限至4月7日)。  “该交易已经获得美国监管部门的批准,目前赛默飞世尔正在寻求其他地区反垄断机构的批准,”赛默飞世尔表示。今年2月赛默飞世尔已经就该交易向欧盟委员会提起申请,而本周一欧盟委员会已经接受该申请。  欧洲委员将在25个工作日,即5月13日前给出审查意见。赛默飞世尔表示,预计收购将在2011年第二季度完成。  同时,赛默飞世尔表示,“截止至4月1日,其已拥有超过770万股戴安公司的普通股,约占戴安全部发行股票的44%。”  2011年2月,赛默飞世尔宣布将旗下Lancaster Lab业务以2亿美元出售给欧陆分析(Eurofins Scientific)。周一(4月4日)早些时候,Quest Diagnostics公司表示,其已经完成了对赛默飞世尔Athena Diagnostics的收购。  Lancaster Lab位于宾夕法尼亚州,主要向制药、生物制药和环保领域的客户提供测试服务。 2010年,Lancaster Lab业务收入1.15亿美元,约1100名员工分别在美国和爱尔兰工作。赛默飞世尔并未表示是否Lancaster Lab的所有员工都将加入欧陆分析。  Lancaster Lab曾是赛默飞世尔生物医药服务业务的一部分,提供实验室产品和相关服务。
  • 适用于赛默飞 ICP-MS仪器调谐液和校准标准液
    适用于赛默飞 ICP-MS仪器调谐液和校准标准液—上海甄准ICP调谐液用于检查仪器及其参数是否具备分析样品的条件。上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,Inorganic Ventures公司是一家专门生产AA,ICP和ICP-MS的标准样品的专业技术公司。现已通过ISO9001,ISO17025,ISO GUIDE 34认证。 上海甄准生物提供可用于安捷伦、PE、 Spectro、赛默飞等仪器的仪器调谐液和仪器检测标准品。Inorganic Ventures产品优势:1、可追溯至NIST;2、ISO 9001认证;3、经过验证的;4、可接受定制。产品信息:1、THERMO-4AREV(对应Thermo Scientific-1323770)ICP-MS Tuning Solution – Tune B ICAPICP-MS仪器调谐液—调谐B ICAP规格: 500 mL 基质: HNO3 /HCl分析物浓度μg/L*分析物浓度μg/L*Ba1In1Bi1Li1Ce1U1Co12、THERMO-5A (对应Thermo Scientific-1323760)ICP-MS Tuning Solution – ICAPQICP-MS仪器调谐液— ICAPQ规格: 250 mL 基质: HNO3分析物浓度μg/L*分析物浓度μg/L*Ag6Mg10Al10Mn6Ba4Ni15Be35Rh3Bi3Sc8Ce3Sr5Co8Ta3Cs3Tb3Cu15Tl4Ga10U3Ho3Y3In3Zn20Li8*Parts per billion3、IV-STOCK-15 (可替代Thermo Scientific-1600635)ICP-MS Calibration StandardICP-MS校准标准品规格: 125 mL 基质: HNO3分析物浓度μg/mL分析物浓度μg/mLCa10Li10Fe10Na10K10 更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832电话:021-6840 4353传真:021-5897 9353客服手机/QQ:15800340161客服手机/QQ:13795317828客服手机/QQ:13512172575客服手机/QQ:13818641861客服手机/QQ:13917991872客服手机/QQ:13916577892技术支持热线/QQ:13651665725服务监督与投诉:18918753302官网:www.zzstandard.comE:yangshuyan@zzstandard.com
  • 得利特A1131自动自燃点测定仪新品上市
    为了更好的满足客户的使用需求。得利特(北京)科技有限公司引进专业技术人才研发一款自动自燃点测定仪。2020年该研发新品A1131自动自燃点测定仪全新上市。该产品的成功研发标志着国产自燃点测定仪又迈上了一个新的台阶。 得利特新品自燃点测定仪设计新颖,外观美观,测试方便,性能稳定可靠,适用于测定抗燃油及其它特种油类的自燃点。该仪器采用先进的微计算机技术和LED数码显示,采用先进的AI人工智能调节算法进行控温,自动完成自燃点的测定。功能特点1、采用先进的AI人工智能调节算法进行控温。2、LED数码显示,K型热电偶,主辅加热器自动切换使容器内部温度达到热平衡。3、烧瓶内的顶部、中部、底部温度控制在1℃之内。4、万向观察镜监视燃点,性能稳定可靠。技术参数• 操作方式:9.0英寸超大彩色触摸屏• 运行平台:Android操作系统•  控温范围:200~800℃ •  控温精度:±0.1℃• 电源电压:交流220V±10% 50Hz±10%• 环境温度: 5℃ ~ 40℃• 相对湿度:≤85% • 功 率:2000W• 外形尺寸:580mm×350mm×690mm• 重 量:33.26kg 创新点: 自动自燃点测定仪符合DL/T706标准,参照德国DIN51794标准研制,用于测定30MW以上发电机组调速系统中抗燃油的自燃点。仪器采用先进的控温方式,三段温度自动控温,自动完成抗燃油自燃点的测定,具有到达预设置自燃点后自动恒温、自动计时、自动检测自燃点、自动换气。具有测量准确,重复性好,自动化程度高,稳定可靠,操作简单等优点。
  • 大展发布南京大展 差示扫描量热仪 DSC-300新品
    技术参数 1. 温度范围: -180~600℃ (可选配风冷、半导体、机械制冷) 2. 温度分辨率: 0.01℃3. 温度波动: ±0.1℃4. 温度重复性: ±0.1℃5. 升温速率: 0.1~100℃/min6. 恒温时间:24小时7. 控温方式:升温,降温,恒温(全自动程序控制)8. DSC量程: 0~±600mW9. DSC解析度: 0.01mW10. DSC灵敏度: 0.01mW11. 工作电源: AC220V/50Hz或定制 12. 气氛控制气体:氮气、氧气(仪器自动切换)13. 气体流量:0-300mL/min 14. 气体压力:0.3MPa15. 显示方式: 24bit色,8寸 LCD触摸屏显示16. 数据接口:标准USB接口17. 参数标准: 配有标准物质(铟,锡),用户可自行校正温度18. 上位机为三合一操作软件,同时也适用于热重、同步仪器连用。19. 仪器有多组热电偶,一组测试样品温度,一组测试炉体温度,一组测试仪器内部环境温度创新点:全新金属炉体结构,基线更好,精度更高;USB通讯接口,通用性强,通信可靠不中断,支持自恢复连接功能;自动切换两路气氛流量,切换速度快,稳定时间短,同时增加一路保护气体输入;程序可以多段设置,任意设置。可以拓展半导体制冷、液氮制冷南京大展 差示扫描量热仪 DSC-300
  • PM2.5标准向西方看齐不现实
    世卫组织大气污染工作组唯一中国专家阚海东详解PM2.5争议始末  纷纷扰扰的PM2.5风波,似乎终于有了切实的进展。  2月2日,北京市首次公布PM2.5日均浓度,当日为23微克/立方米。与此同时,上海、广东、江苏等地也宣布将PM2.5监测工作纳入日程。  然而,公众对于PM2.5的疑问并未就此消失:暂定的年均值35微克/立方米、日均值75微克/立方米的国家标准,是不是太低了?2016年将PM2.5监测推广到全国,会不会太迟了?  就此相关问题,《中国经济周刊》专访了世界卫生组织全球疾病负担项目大气污染工作组的唯一中国专家、国家环境与健康专家咨询委员会委员、多年从事大气污染与居民健康研究的复旦大学公共卫生学院博士生导师阚海东教授。  “美国驻华使馆的数据有待科学解读”  PM2.5不是什么新鲜事儿,早在上个世纪90年代就有中国学者开始了相关研究。据阚海东介绍,2006年到2009年,他曾率领团队在国内三个城市对大气中粗、细颗粒物的健康危害进行统计分析。他们把可吸入颗粒物(PM10)分成两个类别,第一类是细颗粒物(粒径不超过2.5微米的,即PM2.5) 第二类是粗颗粒物(粒径介于2.5微米到10微米之间的颗粒,就是PM10-2.5)。统计结果显示,只有PM2.5有显著性的健康危害。“这些研究结果与发达国家基本一致”。  但最终引起社会广泛关注的,则是美国驻华大使馆公布的自测数据。2011年12月4日19:00,美国大使馆发布的监测数据显示,PM2.5浓度为522,超过了最高污染指数500,健康提示为“Beyond Index(指数以外)”,超出了污染最严重的等级。这引起了公众的极大关注。  “美国大使馆发布PM2.5数据,这件事本身对推动北京市空气环境质量改善,引起全社会对PM2.5的关注是好事。”阚海东向《中国经济周刊》分析道,“但从专业的角度来说,这个数据有待科学解读。首先,从监测方法来说,美国大使馆和我国环境监测常规方法有所不同,不同方法存在一定的系统误差。其次,监测点位的代表性 第三,空气质量指数(AQI)计算的合理性。北京总面积超过1.6万平方公里,有主城区、近郊区、远郊区以及远郊县。地理位置不同,空气质量显然不同。美国大使馆也称,‘整个城市的空气质量是无法通过单一空气监测站的数据得到的’。我们不能以点代面,以偏概全。与北京市环保局布置的40多个监测点相比,该监测点位的代表性有限。”  “美国大使馆每小时发布一次PM2.5浓度值和对应的空气质量指数,这是不合适的。美国环保署在其主办的网站(www.airnow.gov)规定,空气质量指数是根据日平均浓度计算得来的,也就是24小时的平均值得来的,而不是每小时计。譬如,上午10点钟,只能说这个时刻,这个点位的PM2.5浓度是多少,不能说,这个时刻的AQI指数是多少。空气质量指数针对的是时间段,而不是时间点。”  中国PM2.5标准并不低  在北京阳光明媚的日子里,经常会看到道路上空悬挂的指示牌显示:今天北京空气质量指数“优”。但如果将PM2.5纳入城市环境大气监测指标,也许这个“优”就变成了“良”。遗憾的是,中国大部分城市,都会遭遇这一尴尬。  根据环保部《环境空气质量标准》第二次征求意见稿,PM2.5被纳入国家监测范围,标准为“年均值35微克/立方米、日均值75微克/立方米”。有人质疑:世界卫生组织(下称“世卫组织”)的标准是10微克/立方米和25微克/立方米,为什么我国的标准设置得这么低?  据阚海东介绍,2005年,基于PM2.5对人类健康的危害,世卫组织首次向世界各国推出了指导值,即PM2.5年均值不能超过10微克/立方米,日均值不能超过25微克/立方米。同时,世卫组织还推出了三个阶段性的目标值(见下图)。中国采用的即为第一阶段目标值。他特别强调的是,世卫组织的指导值和阶段目标是供各国根据自己的情况自行选用,不是标准,不具有法律意义上的强制性。  阚海东向《中国经济周刊》坦言:“标准并非越高越好。按照目前中国空气质量的现状,要想达到第一阶段标准尚有难度,何况世卫更高要求的指导值?标准应该起到引领的作用。如果标准高不可攀,就失去了意义。标准应该是跳起来够得着,这才会有力地助推各地开展空气质量治理。尽管目前我们用的是第一阶段目标值,但随着治污力度的提升,中国将逐渐采用第二阶段、第三阶段乃至最终的指导值。”  PM2.5标准一下子向西方看齐,不太现实  据阚海东介绍,对PM2.5研究来说,无论是世卫组织的指导值还是美国的标准,最关键的基础性研究都是基于美国两个经典的前瞻性队列研究,即哈佛六城市研究和美国癌症协会(ACS)研究。  1973年底,哈佛大学在美国东部6个城市,选择了8000居民,对大气中PM2.5浓度对居民死亡的影响进行了14?16年的跟踪观测。后来,美国癌症协会研究人员收集了16年的资料,涉及50万美国人死亡原因风险的数据,发现空气中PM2.5每增加10微克/立方米,心肺疾病死亡率增加6%,肺癌死亡率增加8%。  可见,世卫组织指导值来源于美国研究,“尽管中国目前采用了世界卫生组织的建议值,但该建议值应用于我国存在一定的不确定性。”阚海东告诉《中国经济周刊》,“首先,中国大气中的PM2.5浓度和成分与美国存在一定差异 其次,中国居民对PM2.5的易感性(年龄结构、遗传差异等)也有差别,如欧美国家高龄老年人口较多,易感人群比例相应会高于中国。  “我们应该学习世卫组织制定指导值的方法,而不是简单地应用它的数值。我们要基于自己的PM2.5研究来制定适合中国版的PM2.5空气质量标准”。值得注意的是,美国人并没有采用世界卫生组织的指导值。2006年,他们修订了PM2.5的标准,即年均值和日均值分别为15微克/立方米和35微克/立方米,也未达到世卫组织的指导值。  “PM2.5事件表面上看是环境问题,但实际上也是经济问题,抑或是政治问题、社会问题和民生问题。总之,这是一个综合体,不再是单一问题。” 有经济专家向《中国经济周刊》分析,“从经济发展阶段来说,西方发达国家都处于后工业化时代,中国等新兴国家正处于工业化的发展时代,面临的环境压力要大得多。希望当今快速发展中的中国与西方发达国家有一样的PM2.5低浓度,似乎不太现实。”  中国完全有条件自主制定标准  “我们需要自主制定标准,但目前缺乏这种技术储备。”阚海东向《中国经济周刊》分析道,“原因有二:第一,我国尚未开展针对PM2.5的系统监测,PM2.5在大气环境中的底数不清。譬如,浓度是多少,成分是什么?主要来源是什么?我们需要弄清自己的国情,不能是一本糊涂账。第二,尽管中国已有部分学者进行了PM2.5的初步研究,但缺少类似于ACS的前瞻性队列研究,无法像ACS一样提供对健康产生显著影响的PM2.5浓度范围下限及对应的健康风险。”  在去年底召开的第七次全国环境保护工作大会上,环保部部长周生贤公布了PM2.5监测时间表,全国将分“四步走”,直到2016年推广到全国。也就是说,在“十二五”末,中国将全面铺开对PM2.5的监测。  阚海东表示,“只要统筹利用环保部门环境监测网络、卫生部门行为危险因素监测体系和死因登记系统,我国完全有条件开展自己的PM2.5前瞻性队列研究。同时,中国经济的快速发展也为此提供了强大的经济基础”。  阚海东通过《中国经济周刊》呼吁,“‘十二五’末,我们要铺开对全国的PM2.5浓度监测。希望‘十三五’期间启动我国大气污染健康影响的前瞻性队列专项研究,为未来自主制定PM2.5标准提供最重要的科学依据。否则若干年后,我们恐将面临自主制定PM2.5标准时缺少本土科学依据的尴尬局面”。  中国能否在PM0.1上占据先机?  “中国将PM2.5纳入空气质量监测范围的进程并不慢。” 阚海东表示,“美国早在上个世纪70年代开始了PM2.5研究,但真正成为国家标准则历经了20多年。而中国PM2.5研究则始于上个世纪90年代,到2012年纳入国标,进程也很快。”  “十一五”期间,空气污染治理中主要是“脱硫” “十二五”期间,将增加“脱硝”。阚海东告诉《中国经济周刊》:“脱硫和脱硝,都会降低PM2.5浓度。空气中污染物颗粒越细,治理难度越大。比如说建筑工地扬尘,通过各种管理措施就可以控制,但对PM2.5这样的细颗粒来说,控制起来难度就越大,需要我们环境科学技术的进一步提升。”  “PM2.5第一来源是化石燃料的排放燃烧,第二是机动车尾气排放。冬季北方供暖用煤将不可避免地产生PM2.5,像北京大部分采用天然气供暖就减少了这种污染。公众关注PM2.5的背后还是空气质量,但降低PM2.5浓度将是一个长期而艰巨的过程,但只要政府下决心就一定能做到。譬如,2008年,北京奥运会期间,北京PM2.5浓度下降了近一半”。  阚海东说:“最近,国际上又开始关注空气中更微小的污染物颗粒PM0.1。说不定过了8年、10年,这又是一个炒作的热点。我们最好做一些前瞻性的部署,开展其来源、时空分布、暴露特征、机体生物效应和健康危害的深入研究,以免重蹈PM2.5的被动局面。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制