当前位置: 仪器信息网 > 行业主题 > >

电子数显深度卡尺

仪器信息网电子数显深度卡尺专题为您提供2024年最新电子数显深度卡尺价格报价、厂家品牌的相关信息, 包括电子数显深度卡尺参数、型号等,不管是国产,还是进口品牌的电子数显深度卡尺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子数显深度卡尺相关的耗材配件、试剂标物,还有电子数显深度卡尺相关的最新资讯、资料,以及电子数显深度卡尺相关的解决方案。

电子数显深度卡尺相关的资讯

  • 从卡尺到三坐标测量机——消失的工具折射“智造”之变
    游标卡尺、显微镜、墨斗……在位于湖南长沙雨花经济开发区的三家中小制造企业,记者看到一些传统生产工具正在被自动化测量设备、视觉识别设备、激光导航设备等新型生产工具取代,生产制造变得“更顺滑、更高效、更精准”。  今年以来,各地大力推进新型工业化,掀起发展新质生产力的热潮。科学技术的发展和应用,使新型生产工具不断涌现,这正是新质生产力的一个重要方面。一件件消失的工具,折射中国“智造”大变迁。  从卡尺到相机 产品加工更顺滑  湖南晓光汽车模具有限公司小机加车间里,一边是传统生产线,几台机床独立放置,1名工人管两台设备;一边是两条5G工业互联网生产线,机床、原料、机械臂等互联互通,22台机床一个班次只需4名工人。  几步之遥,有什么差别呢?  一个游标卡尺可以“以小见大”。晓光模具小机加工车间主任曾腾飞从工具箱里拿出不常用的卡尺对记者说,过去,工人用游标卡尺测量工件毛坯尺寸,用百分表、千分表“找”原料和机床的位置关系,将误差控制在0.01毫米以内,靠的是经验。  在5G工业互联网生产线,游标卡尺等传统工具没了用武之地。工人将一块块原料和托盘放到生产线入口的三坐标测量机上,设备自动找正。三坐标测量机将位置数据“告诉”机床,确保实物位置和机床加工位置匹配,不仅精度提高到0.005毫米,而且放歪了也没有关系。  除了游标卡尺,纸质的工艺流程卡也不见了。在制造企业,工艺流程卡是工人的操作指南。以汽车模具生产为例,工艺步骤多达40多个,工人按卡上的要求放置原料、安装刀具、输入数据、调用程序,然后才能启动机床。  “流程多了就容易犯错。”参与5G工业互联网生产线建设的精密加工组组长许杰说,以前经常出现工人拿错刀具、输错数据、调错程序的问题,80%的产品质量异常来自人工操作失误。  如今,晓光模具车间里,工艺流程卡上的内容全部进入信息系统。工人只要把原料放到交换台,接下来的工作都交给“大脑”——中控系统,由中控系统将指令发送给机械臂、机床等硬件。  少了一些“卡”,生产更顺滑。  现在,5G工业互联网生产线上的机床全部联网且自动更换刀具,系统识别哪台“有空”、哪台“忙碌”,及时“呼叫”机械臂将工件运送给“有空”的机床。单台机床的有效切削时间由原来的55%提高到90%以上。  曾腾飞说,公司订单情况很好,机床除了每周一次的检修、清洁,可以做到24小时不停机作业。产品合格率也由“手工时代”的80%至85%,大幅提升到99.95%。  在晓光模具车间,由“卡”到“顺”的迭代升级还在继续。工程师在5G工业互联网生产线上安装、测试工业相机,相机自动拍摄工件位置并传输数据,进一步提高了自动化水平。  从显微镜到电子眼 质量把关更高效  湖南普斯赛特光电科技有限公司是一家主要从事半导体发光器件(LED)研发和生产的高新技术企业。穿上鞋套和防静电服,通过风淋间,记者进入焊线、外观检测、包装等各条产线。  负责制造和运营的副总经理涂世聪介绍说,全国从事LED封装的企业可能有上万家,作为一家中小企业,要想在市场上立足,必须敏捷应对。  这家工厂的转变,得从一瓶眼药水说起。  事情是这样的——LED封装有一个外观检测环节。只有米粒大小的明黄色灯珠,密密麻麻排列在支架上,以前工人只能靠肉眼或者借助显微镜观察杂质、破损等缺陷,每人每天检测的灯珠数以十万计。  “太费眼睛了,我们得随身带着眼药水。”说起曾经的工作内容,当过外观检测员的女工杜建华连连摇头。  由于“废眼睛”,加之工作单调、枯燥,很多人不愿从事外观检测。涂世聪说,尽管有岗位补贴,工人的年度流失率也接近100%,这意味着第二年又要大量重新招聘、培训。  相比于用工难题,更加棘手的是品质控制。涂世聪说,肉眼可以发现80%的外观问题,但对于隐藏较深的小杂质、气泡等缺陷就有些无能为力了。这导致之前LED封装厂接到的客户投诉中,外观问题占比超过30%。  如果还靠传统工具和“人眼战术”,企业注定会被市场淘汰。  2021年起,普斯赛特光电公司陆续添置自动光学检测设备。工人很轻松地将物料放入自动光学检测设备,“电子眼”快速完成外观检测工作,灯珠源源不断地从出口“吐”出来。工位上,眼药水和显微镜早已不见踪迹。  自动化水平提升,让企业运转更高效。涂世聪说,普斯赛特光电公司去年逆势增长40%,人均产值超过100万元。“如果没有自动化设备,要承接这么多订单是无法想象的。”  为了满足市场需求,普斯赛特光电公司持续加大投资。在长沙市雨花区机器人产业园,这家企业的智能工厂已完成一期建设,并于近期开始批量生产。“产能将增长40%,人均产值将提高30%。”涂世聪满怀期待地说。  从墨斗到北斗 车间导航更精准  “你可能想不到,几年前我们还要使用墨斗。”带着记者参观工厂,湖南驰众机器人有限公司项目经理龙太棚颇为神秘地说。  墨斗,是年轻人并不熟悉的物件。作为传统木工行业里的必备工具,它由墨仓、线轮、墨线、墨签组成,多用于木工和建筑行业。  而湖南驰众机器人有限公司是湖南最大的工业移动机器人AGV生产商。AGV是指具有物料搬运等功能的自动导引运输车,主要用于智能化、自动化产线。  在智能制造工厂,为何存在如此古老的工具?  龙太棚紧接着揭晓了答案:AGV有磁条导航、二维码导航等多种导航方式,这都需要在车间地板上画线,并按照设计路径张贴磁条和二维码,简单的墨斗也就有了用处。  为了给记者演示,龙太棚在仓库里翻了半天,才找到一个改良版的自动收放线墨斗——传统的木制或竹制墨斗已经遗失了。工人小心翼翼地倒入墨汁,合上盖子,贴着地板扯出线,用手轻轻一弹,便在地板上“印”出一条笔直的黑线。  驰众机器人公司产品服务部施工经理陈智诚曾经用过传统木制墨斗。他说,如果AGV要和机械臂对接,精度一般控制在5至10毫米,靠墨斗画线就有点力不从心。实际操作中,工程师只能不断调整AGV运行轨迹,“有时得调试10多次,才能达到精度要求”。  麻烦事还不止于此。有的新能源电池工厂是无尘车间,不允许将墨斗带进去弹线;有的汽车发动机库房有上千个库位,如果都在地上画线、贴磁条,既不方便也不美观。  如今,随着激光导航、视觉导航等新技术发展,驰众机器人公司员工已经很少使用墨斗,而是一个个端着笔记本电脑,对AGV进行线路设计和调试。龙太棚说,公司有160多名员工,工业机器人、机电一体化、机械设计、智能物流等专业的工程师占了二分之一。  记者看到,在这家公司的设备调试场地,工程师在电脑上“建图”,操控激光导航AGV自动行走,运行轨迹的精度可以达到5毫米。地板上不用墨斗画线,也没有磁条和二维码。  驰众机器人公司项目经理王佳说,最新款AGV还与5G、卫星导航等技术结合。在一家钢铁厂,他们生产的AGV在室外依靠基于北斗的卫星导航,再通过5G无线网络将数据传输到中控室,工作人员可实时查看AGV运行位置和状态。  从墨斗到北斗的“智造”之变,仿佛穿越了工业化的悠悠时空……
  • 美国男子吃遍上海52家小笼包店 用科学仪器研究包子皮
    卡维什在掰开小笼包测量的一些数据用精确到0.01克的电子秤、能够测量0.01毫米的电子测径仪和一把剪刀,像在实验室里一样,美国美食作家克里斯托弗· 卡维什这么对上海小笼包进行了分析。卡维什这下可火了,被《洛杉矶时报》、CNN等全球媒体争相报道,但他的美食写法也引发了广泛讨论。34岁的卡维什到中国前曾在迈阿密等地做过10年厨师。他从2013年12月开始,花16个月吃遍上海52家小笼包店,以寻找理想的小笼包,研究指标包括皮的厚度、汤汁的多少和馅料的重量。近日,他因此研究迅速爆红网络。16个月吃7.243公斤吃到43家店实在吃不下去了卡维什花了16个月去了52家小笼包馆子,用科学的方法来研究小笼包,才写成这篇《上海小笼包索引》。卡维什解释称,从技术上看,小笼包索引是&ldquo 对小笼包构成通俗标准的数字化解释&rdquo 。生活在上海的人一般都能列举出一系列关于小笼包的标准,比如皮薄、汁多、馅大、肉鲜。而现在,这些标准被数字化了,我有一套专用的公式来专门给售卖小笼包的餐馆打分。卡维什说:&ldquo 在过去的16个月里,我总共吃了7.243公斤的小笼包。我的数据搜集过程包括:在电子秤上称每单个小笼包的重量,然后分解,再分别称汤和馅的重量,最后是用数显卡尺测量皮的厚度。从项目开始近一年,也就是在吃过了43家店的小笼包之后,我就实在吃不下去了,我只能吃一些,然后剩下的就完全用来做实验。&rdquo 研究过程精确量化每家店随机选6个小笼包测量卡维什是如何研究小笼包的呢?他精心挑选了52家小笼包馆子,每去一家店,他都会点上一笼,随机抽取6个小笼包进行测量,然后取它们的平均值,以保证客观。他先用一台精确到0.01克的电子秤称了汤包碟子的重量,随后,捏起一只小笼包放在碟子里,称了总重量,&ldquo 总重量减碟子重量,得出单个小笼包重量&rdquo 。然后,他拿起一把140毫米的理发剪刀,小心翼翼地将小笼包的皮剪开一个口子,再依次把里面的汤汁和肉馅倒入小碟子里,分别测量出它们的重量。最后,非常小心地用一把精确到0.01毫米的电子卡尺测量小笼包底部皮的厚度。他设计了一个定量的公式:[(馅料重量+汤汁重量)/皮的厚度]× 100,来计算小笼包的结构分数。他说:&ldquo 因为&lsquo 皮薄汁多馅多肉鲜&rsquo ,是上海人评判小笼包好吃与否的重要标准。得12分以上的小笼包为A类,6.75分以下的为C类,介于两者之间的是B类。&rdquo 至于整个研究的费用,都是卡维什自己出的钱。他说:&ldquo 事实上,小笼包的费用是最便宜的,根据我的数据,我花了712.50元在小笼包上,但如果算上印刷、网站等等,轻而易举地就超过10000元了。&rdquo 做到可视化呈现&ldquo 一个汤包是两股力量的博弈&rdquo 卡维什写道,《上海小笼包索引》是本次研究的最终成果,是上海小笼包差异的可视化呈现。这一索引以电子表格的形式,记录了小笼包中汤、馅、皮的比率,专门论述了正在变得越来越薄的上海小笼包。卡维什说,一个汤包基本上是两股力量的博弈&mdash &mdash 尽可能薄的皮(用处是包裹住肉和汤)和尽可能多的馅。小笼包的优雅体现在它的姿态上,厨师需要掌握好皮的厚度,以防止热汤流出。小笼包是阴柔的。生煎&mdash &mdash 一种半熟的、加酵母发酵的包子,能够在煎锅中依然保持自身的馅和汤,则是阳刚的。它们的制作原理完全不一样。上海大妈怒了&ldquo 你怎么这样吃小笼包?&rdquo 测试过程中,卡维什的特殊&ldquo 吃法&rdquo 也遭遇了不少人的不理解,甚至笑话。卡维什承认,2013年12月的某天,他第一次去搜集数据时,其实是非常紧张的。&ldquo 带着一把精确到0.01克的称和一把测量范围在0至150毫米的电子卡尺,我到了店里,在桌子上摆弄着包子,不时地还四处看看可疑的人。但是,事实上,没有人在意我的举动。&rdquo 卡维什说:&ldquo 只有在前程酒家(音译),有人注意到了我的存在。当时,整个店里除我之外只有另一个近60岁的上海阿姨。正当我用手从蒸笼里拿出一个样本准备分解的时候,她回头看了看我。我一边测量一边吃。首先是汤,然后是肉馅,再是皮。正当我进行到第五个包子的时候,她忍不住站了起来,生气地对我喊道:&lsquo 你知道怎么吃小笼包吗?你不能这样吃!这是错的!错的!&rsquo 她很无奈地走开了,一边还摇着头,她肯定觉得这样吃包子很残忍,还带着剪刀。&rdquo 网友热议老外下笨功夫精确研究美食,值得吗?卡维什透露,今后将继续研究上海美食,下一个目标可能是生煎包。在未来,他希望可以在中国开办一个小型的烹饪学校,专门聘请中国厨师来教外国厨师烹饪中国美食。卡维什的行为值得学习吗?见仁见智。但这种下笨功夫,科学研究式地写美食,似乎中国人还很少见,甚至被人认为太&ldquo 轴&rdquo 。有网友赞扬称,&ldquo 老外的认真和精细会提高做事的效率和精确度,这一点是值得我们学习的&rdquo 。媒体评论称,&ldquo 西方老外讲求精确,这点不假。因此一旦得到数据,就可以全面复制,这也是为何麦当劳可以在全球开店而不走味儿,而中餐馆,全凭师傅手艺高低,不能稳定地在全球按照规定数据保证质量。中医中药,也是同样的问题,全凭医师和配药师傅的经验,难以具体量化指标&rdquo 。
  • 三大产品线全力升级 东方晶源引领国内电子束量测检测发展
    电子束量检测是半导体量检测领域的主要技术类型之一,在半导体制程不断微缩,光学检测对先进工艺图像识别的灵敏度逐渐减弱的情况下,发挥着越来越重要的作用。电子束量检测设备对于检测的精度、可适用性、稳定性、吞吐量等要求很高,其研发和设计非常具有技术挑战性。作为布局该领域最早的国内企业之一,东方晶源已先后成功推出电子束缺陷检测设备EBI,关键尺寸量测设备CD-SEM(12英寸和6&8英寸),电子束缺陷复检设备DR-SEM,占据电子束量测检测三大主要细分领域,产品多样化和产品成熟度走在前列。同时,经过持续的迭代研发,三大产品线全力升级、性能指标进一步提升,引领国内电子束量测检测产业高速发展。EBI:历时三代焕新,检测速度提升3-5倍EBI(电子束缺陷检测设备)是集成电路制造中不可或缺的良率监控设备。其基本原理是结合扫描电镜成像技术、高精度运动控制技术、高速图像数据处理和自动检测分类算法等,在集成电路制造关键环节对晶圆及集成电路的物理缺陷和电性缺陷进行检测,避免缺陷累积到后续工艺中。东方晶源早在2019年就成功研发并推出的SEpA-i505是国内首台电子束缺陷检测设备,可提供完整的纳米级缺陷检测和分析解决方案,在2021年便进入28nm产线全自动量产。经过数年研发迭代,新一代机型SEpA-i525在检测能力和应用场景方面得到进一步拓展。在检测速率方面,新款EBI产品可兼容步进式和连续式扫描,连续扫描模式适用于存储Fab,结合自研探测器的性能优化,较上一代机型能带来3倍-5倍的速度提升;新开发的电子光学系统可支持negative mode检测方式和40nA以上的检测束流;同时引入多种wafer荷电控制方案,降低荷电效应对图像的影响。在应用场景方面,东方晶源的EBI设备也从逻辑Fab领域延伸至存储Fab,可以为客户解决更多的制程缺陷问题。此外,东方晶源EBI设备基于DNA缺陷检测引擎,采用图前台与运算后台低耦合,支持同步online/offline inspection。集成多种先进缺陷检测算法(D2D、C2C等),可以满足用户不同应用需求,有效提高Capture Rate,降低Nuisance Rate。采用的自动缺陷分类(ADC)引擎,其Model-Based ADC模块基于深度学习、自动特征选取、融合置信度的聚类算法,可以有效提升自动缺陷分类的Purity和Accuracy;Rule-Based ADC模块则保留了人工经验的灵活性,在小样本的场景下可以快速创建。CD-SEM:面向6/8/12英寸产线全面布局CD-SEM(关键尺寸量测设备)主要是通过对于关键尺寸的采样测量,实现对IC制造过程中,光刻工艺后所形成图形尺寸进行监控,以确保良率。东方晶源的CD-SEM分为12英寸和6&8英寸兼容两个产品系列,均已进入用户产线,可支持Line/Space、Hole/Elliptic、LER/LWR等多种量测场景,满足多种成像需求。12英寸CD-SEM新一代机型SEpA-c430经过2年的迭代,在量测性能和速度上实现全面提升,目前也在多个客户现场完成验证。该产品的量测重复精度达到0.25nm,满足28nm产线需求;通过提升电子束扫描和信号检测,产能提高30%;新推出的晶圆表面电荷补偿功能,可以提高光刻胶量测的能力。新机型还增加了自动校准功能,可确保较高的量测一致性,为产品的大规模量产做好了准备。除12英寸产品外,东方晶源6&8英寸CD-SEM产品相较国际大厂新设备的交期长、价格高具有更高的性价优势。面向第三代半导体市场推出的SEpA-c310s,不仅实现了6&8 英寸兼容,同时还可兼容不同材质的晶圆(例如GaN/SiC/GaAs),兼容不同厚度的晶圆(例如350um,1100um)。该产品已在多个头部客户实现了量产验证。值得一提的是,2022年底东方晶源ODAS LAMP产品已正式发布。ODAS LAMP全称为Offline Data Analysis System, Large Scale Automatic Measurement Purpose产品,中文名称为大规模CD量测离线数据处理系统。ODAS LAMP作为CD-SEM量测设备的配套工具,目的在于方便CD-SEM用户利用设计版图离线创建和修改CD-SEM recipe,并且提供对CD-SEM量测结果的review功能,也可以在CD-SEM图像上进行离线再量测,提升机台利用率。DR-SEM:瞄准新需求,开拓新领域DR-SEM(电子束缺陷复检设备)是东方晶源最新涉足的细分领域。根据SEMI数据,2024年12英寸产线DR-SEM需求量约为50台。未来3-4年,12英寸产线DR-SEM设备总需求量约为150台,具有广阔的市场空间。2023年东方晶源推出首款SEpA-r600,目前已经出机到几个头部客户进行产线验证。在设备开发过程中,得益于公司前期的技术积累,开发进程得以显著缩短。图像质量已达到客户需求,CR95%,接近成熟机台水平。在辅助光学系统复检OM的研发方案选择中,东方晶源独立开发出一套全新光学窗口成像系统。借助于这套系统,目前已完成对unpatterned wafer的光学复检功能的开发,实现了auto bare wafer review的功能,满足客户对70nm左右defect的复检需求。也就是说,东方晶源的DR-SEM设备不仅能够进行pattern wafer auto review ,也能够进行unpattern wafer review功能,并附带缺陷元素分析。另外,DR-SEM的高电压电子枪能够满足客户对浅层缺陷的分析,同时对较深的孔底部也能够有明显的信号。根据针对客户需求深度拆解,这款DR-SEM设备还引入了全彩OM,能实现色差调整,以满足不同film内部color defect的检测,为客户提供更多的表征手段。未来,东方晶源新一代DR-SEM设备将结合下一代自研EOS,搭配深紫外DUV辅助光学检测系统,预期可满足更先进制程全流程的defect复检需求。从2021年6月EBI设备通过产线验证进入全自动量产以来,东方晶源加快研发步伐,先后又成功推出12英寸CD-SEM、6&8英寸兼容CD-SEM、DR-SEM多款产品,并持续通过迭代升级提升设备性能和效率,解决了国产半导体发展中的关键难题,领跑国内相关领域发展。未来,东方晶源将围绕集成电路良率管理继续深耕,为产业带来更多的硬件和软件产品,推动行业发展和进步。
  • 创建军民深度融合的西安模式 建设创新引领的现代产业体系
    centerimg alt="" src="http://epaper.xiancn.com/newxarb/res/2018-03/02/07/res03_attpic_brief.jpg" height="272" width="400"//centerp  西安军民融合产业创新发展的“西安模式”正在加速成型。/pcenterp style="text-align:center"img style="width: 400px height: 565px " title="" alt="" src="http://epaper.xiancn.com/newxarb/res/2018-03/02/07/res07_attpic_brief.jpg" height="565" hspace="0" border="0" vspace="0" width="400"//p/centerp style="text-align: center "strong  漫画中国/东方IC/strong/pp  春节期间一部《红海行动》在全国燃爆,热爱军事的影迷们更是从影片中领略到了无人机在现代战场上的风采。我市的潘祈帆是一名90后小伙子,受到不少军迷们的询问,因为他的公司曾参与了我军几款无人机的研发工作。“不能泄密是前提,但无人机作战的基本原理还是能给朋友们分享的。”/pp  我市80后的女创业者刘晓雅则早在2015年的九三阅兵时便激动地拍下阅兵视频发了朋友圈:“我们做的,我骄傲。”她作为联合创始人的诺维北斗,早已成为我市“民参军”企业的代表之一。/pp  西安,这座军工实力雄厚的城市,如今不仅拥有航空、航天、船舶、兵器、军工电子等优势军工主导产业,“军转民”、“民参军”也逐渐形成了全要素、多领域、高效益的发展格局,军民融合产业创新发展的“西安模式”正在加速成型。/pp  随着西安获批建设国家中心城市,深化军民融合,辐射带动地方经济发展,打造以西安为中心、横贯关中平原的军民融合产业带,建设创新引领的现代产业体系,成为西安的新使命,也为军民融合深度发展指明了方向。/pp  strong勇担国家使命 军民融合的西安实践/strong/pp  早在2015年,西安就成为全国8个全面创新改革试验区域之一,这为我市建设发展提供了新的契机与动力。根据国务院批复的《西安市系统推进全面创新改革试验方案》,相关重点任务就包括以特色产业基地(园区)为平台,建设国家军民深度融合创新示范区。/pp  肩负着军民深度融合发展的国家使命,西安的确有着自身的先天优势。国家发改委新闻发言人孟玮就认为“建设军民融合创新高地”是关中平原城市群发展规划中的一大亮点。因为从发展基础看,关中平原城市群工业体系完整、产业聚集度高,科教资源、军工科技等位居全国前列,航空航天、新材料、新一代信息技术等战略性新兴产业发展迅猛,是全国重要的装备制造业基地、高新技术产业基地、国防科技工业基地。而西安更是其中的龙头。/pp  综观西安发展的诸多重大机遇,军民融合是国家赋予西安最鲜明的改革试验任务。我市要在军民融合体制机制创新、军民资源开放共享、军工科技成果转化、军民融合服务体系、军民融合产业发展等方面形成“西安模式”,加快建设国家军民深度融合示范城市。为不辱使命,将先天优势转化为现实动力,市第十三次党代会报告提出,建设国家军民深度融合示范城市。/pp  为统筹我市军民融合发展,加强顶层设计和战略规划,我市成立了军民融合领导机构、常设办事机构。并出台了《西安市军民融合产业标准化项目扶持管理办法》、《西安市军工资源共享管理暂行办法》等一系列政策措施。同时,开展与本地军工企业、科研院所的干部交流。事实证明,人才的互动促进了信息交流、资源融合和项目合作,为全市军民融合的深度发展营造了良好的氛围。/pp  为鼓励军民融合创新发展,在空间承载上,我市构建以高新区军民融合产业园、经开区军民融合装备制造园、西安国家民用航天产业基地、西安兵器工业科技产业基地等为基础的“两园四基地”。在公共服务上,西安科技大市场搭建了军民融合信息服务平台,汇聚了各类军工和国防类科技资源,吸收“军转民”“民参军”等企业超过350家,吸纳数以百计的科研院所开放共享大型仪器设备,积极促进“产—学—研—用”合作和协同配套。在政府综合配套支持上,我市试行军品研制生产单位政策普惠,帮助“民参军”企业申请预研资金、科研经费,以及技术改造等优惠政策。/pp  经过全市共同努力,西安军民融合在体制机制、承载空间、公共服务、政府配套和主体活力等方面得到了明显优化。在军民深度融合的多个领域寻求重点突破,培育了一批重大创新平台、龙头工程、创新示范企业和新兴产业。/pp  strong发挥三大基地优势 军民融合引领大西安现代产业体系构建/strong/pp  “聚焦‘三六九’,振兴大西安”。盘点西安在军民融合行业中的产业亮点,西安依托西安装备制造业基地、高新技术产业基地、国防科技工业基地优势,不断深化军转民与民参军,军民融合产业园区功能日渐完善,带动作用愈发明显,基本形成了“以军带民、以民促军、军民融合”的多元化、集群化发展格局,创新引领着大西安现代产业体系的构建。据今年的市政府工作报告披露,我市民参军企业达到400家,军民融合产业营业收入突破2000亿元。/pp  在以装备制造为代表的工业领域,我市六大千亿级产业集群加速壮大,汽车产业迈入千亿级。百亿级工业企业总数达到11家。规模以上先进制造业总产值3167.7亿元、增长20.6%。我市创建“中国制造2025”试点示范城市通过国家评估。国家通用航空产业综合示范区已经获批。特别是在航空制造业领域,我市重点发展大型运输机、新舟系列飞机、无人机等整机制造 在航天领域,将加紧实施新一代运载火箭、卫星测控等重大项目 在兵器领域,将重点发展装备制造、新材料、新能源等产业 在电子信息领域,将重点发展通信、集成电路等产业 在船舶领域,将重点发展水中兵器、舰船动力等产业 在核技术领域,将重点发展民用核技术、核燃料、核电设备等产业。以新能源汽车和航空制造等为主的万亿级先进制造业正在积极构建。/pp  我市提出的重点打造“3+1”万亿级支柱性产业,除上述万亿级先进制造业,还包括“以电子信息为主的万亿级高新技术产业”。依托的也正是西安的科教资源优势和国防科技产业优势。/pp  科教资源优势,历来是西安的重大优势,据统计陕西和西安各类科研机构达到1176家,各类高等院校116所,国家级重点实验室22个,国家级工程技术研究中心7个等。其中大量为国防科工院所。国防科技产业更是西安的传统优势产业。我市已经云集军工单位超过110家,从业人员超过20万人,行业门类齐全,基本涵盖了航空、航天、兵器、船舶、电子信息、核技术6大领域,国防科技工业研发和生产能力居全国前列。其中,航天科研生产力量占全国近1/3,航空产业资产规模、人才总量和科技成果占全国近1/4,被称为中国的“航天动力之乡”和“航空城”,拥有集科研、试验、生产于一体的完整军工产业链,具有发展军民融合产业的“先天优势”。“构建科技产业园区、创新基地、公共研发平台、加速器、孵化器、众创空间等多层次、全体系的创新创业载体”被写入了我市“十三五”规划纲要,大量科技创业者在西安的开放沃土上耕耘收获。在高新技术产业中,以人工智能、航空航天、光电芯片、新材料、新能源、智能制造、信息技术、生物医药等为代表的硬科技“八路军”在我市蓬勃兴起,这些既是优势产业关键领域的创新方向,也正是战略性新兴产业的发展方向,是军民融合的重点产业领域。/pp  军民融合的深度发展正在推动传统优势产业转型升级,构建出富有竞争力的现代产业体系,为大西安乃至关中平原城市群追赶超越夯实产业基础。/pp  strong新使命新征程 军民融合发展的 西安模式正在推向深入/strong/pp  雄关漫道真如铁,而今迈步从头越。《关中平原城市群发展规划》提出,以西安全面创新改革试验为牵引,统筹推进军工、科研创新机制改革,做大做强航空、航天、船舶、兵器、军工电子等五大优势主导产业,创新军民融合发展路径,打造军民深度融合发展示范区,努力在创新驱动发展方面走在全国前列。/pp  要打造以西安为中心、横贯关中平原的军民融合产业带,先要做强自身。将建设国家中心城市的使命扛在肩上的西安,在军民深度融合发展的创新之路上加快了脚步。/pp  前不久,《西安市军民融合补短板促发展实施方案》出台,从加大体制机制改革力度、加快推进“军转民”步伐、支持军民融合公共服务平台建设、引进培育军民融合人才等9个方面发力。/pp  刚刚结束的两会上,市政府工作报告指出,要加快推进“两区”建设。聚焦统筹科技资源、深化军民融合两大改革任务,坚持复制推广改革经验与深化提升创新成果同步推进,体现西安特色,形成“西安模式”,2018年我市将积极拓展科技大市场功能,推广“一院一所一校”改革经验,实现全市技术合同交易额达到 850亿元,就地转化率超过30%,研发投入占生产总值比重保持在5%以上的目标。同时,扎实推进国家知识产权强市和运营试点城市建设,支持建好国家知识产权军民融合运营平台和中国(西安)高端装备制造产业保护中心。推动军工企业混合所有制改革和军工科研院所事转企改革,统筹抓好军民融合“两园三基地”建设,积极创建“国家军民融合标准化试点城市”。全年军民融合产业营业收入达到2500亿元以上,民参军企业数达到430家以上。支持高新区自创、自贸“双自联动”发展,打造引领创新发展、支撑开放合作的“双示范”样板区。/pp  为实现这一系列目标,我市计划在金融服务领域,围绕打造丝路国际金融中心的目标,加快建设科技、文化、军民融合3个金融示范区的建设,鼓励发展创业投资、私募股权投资、产业投资等基金,吸引更多境内外金融机构和高层次金融人才向西安聚集。在空间聚集上,坚持产业“特而强”、功能“聚而合”、形态“小而美”、机制“新而活”,突出生产、生活、生态“三生融合”,重点围绕硬科技、文化旅游、军民融合等优势资源,重点加快建设50个左右特色小镇。在产业规划上,推动物联网、虚拟现实、增强现实等新技术与实体经济深度融合。积极发展众创、众包、众扶、众筹等新模式,支持人工智能、增材制造、大数据等新产业聚集发展。/pp  深化军转民民参军,发展五大产业,搭建军民深度融合新平台,以西安全面创新改革试验为契机,建立多层次对接协调机制,创新军民融合发展路径……/pp  面对国家赋予西安的新使命,如今的西安已经在新的征程上,奋力奔跑,勇敢前行!/p
  • 关注“新能源”锂电安全 | 深度分析锂电池鼓胀气体
    关注“新能源”锂电安全|深度分析锂电池鼓胀气体高丽LIBs锂离子电池(LIBs)因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能以及3C等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓胀,出现具有一定安全风险的失效,主要有热失控、胀气、膨胀形变等。因此,了解电池鼓胀气体的组成对于优化电解液的组成是至关重要的。三类成分电池在老化、放电等过程中会产生各种气体成分非常复杂。其中主要有三类成分:1)永久气体如氢气、甲烷、一氧化碳、二氧化碳等;2)短链碳氢化合物(C2-C5);3)其他可挥发性化合物。赛默飞气相色谱锂电池鼓胀气体分析方案锂离子电池鼓胀气体的常见产气成分有H2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体。表1.校正气体组成方案一:气密针进样某些小型LIBs在使用过程中只会产生几毫升的膨胀气体。针对气体量极少的这一类样品,赛默飞推出气密针进样,配置一个TCD和一个FID检测器,一根分析柱和一根预柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8的分析。图1.FID通道校正标样色谱图(方案一)(点击查看大图)图2.TCD通道校正标样色谱图(方案一)(点击查看大图)方案二:气密针/阀进样赛默飞推出气密针/阀进样,配置一个TCD和一个FID检测器。一根分析柱和一根预柱,一根毛细管分析柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8,i-C4H10,n-C4H10,i-C5H12,n-C5H12的分析。图3.TCD通道校正标样色谱图(方案二)(点击查看大图)图4.FID通道校正标样色谱图(方案二)(点击查看大图)完善的解决方案在锂电池产业链中,除了电池鼓胀气体成分分析,还需要围绕产品质量、原材料质控、或锂电池各种性能指标的研发工作进行一系列的理化测试,包括:元素分析、电解液、添加剂成分分析、石墨类负极材料有机物含量测试、电解液未知成分分析、SO42-、Cl-等阴离子及Si等非金属元素分析、电解液等原材料鉴别等。赛默飞在锂电子电池材料检测领域积累了丰富的经验,为广大用户提供完善的解决方案。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 上科大团队在磁子电子学研究中取得突破性进展
    近日,上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。研究中揭示的新型磁子强耦合物态,能极大改变铁磁单晶的电磁特性,为光子与磁子的纠缠提供新的思路,这对推动磁子在微波工程和量子信息处理中的应用具有重要作用。该成果发表于物理学领域旗舰期刊《物理评论快报》(Physical Review Letters)。   芯片的研发主要遵循着摩尔定律,即每18个月到两年间,芯片的性能会翻一倍。然而,随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。基于磁性材料发展建立的自旋电子学以及磁子电子学发展迅猛,为突破上述限制提供了出路。   宏观磁性的起源主要是材料中未配对的电子。电子有两个基本属性:电荷与自旋。前者是所有电子器件操控的对象。利用电子电荷属性发展的微电子器件,已经引发了信息产业的革命。   然而,面对难以抑制的欧姆损耗,以及信息产业对更高密度存储和先进量子计算的渴求,人们迫切希望进一步利用电子自旋作为信息载体,发展自旋电子学器件,进而继续推动信息技术的发展。   尤其是磁性绝缘体中的自旋,它们能够完全避免传导电子的欧姆损失,充分发挥自旋长寿命、低耗散的优势,因此对于开发自旋电子学器件意义重大。   磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。它不仅可以高效传递自旋流,还可以与不同的物理体系,例如声子、光子、电子等,发生相互作用,进而重塑材料的声光电磁等物性。   此外,磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。正是由于这些性质与应用潜力,近年来关于磁子的研究引起国际学界的高度关注,磁子电子学、量子磁电子学等新兴领域相继诞生。   铁磁绝缘体单晶球中的磁子态,最早于1956年由美国物理学家Robert L. White和Irvin H. Slot Jr.在实验中发现。根据他们的实验结果,同一年L. R. Walker给出了磁性块体空间受限磁子态的数学描述,称为Walker modes。   在随后长达70年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。陆卫教授团队的发现突破了这一范畴,发掘了新的磁子态。在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波(图(a)),该自旋波可被称为“光诱导磁子态(pump-induced magnon mode, PIM)”。   光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到(图(b))。   光诱导磁子态的有效自旋数受激励微波调控,因此当改变激励微波的功率时,耦合劈裂的大小会按照功率四分之一次方的关系变化(图(c)),展现出和常规Autler-Townes劈裂不一样的功率依赖关系。   此外,研究团队还发现光诱导磁子态具有丰富的非线性,这种非线性会产生一种磁子频率梳(图(d))。相较于微波谐振电路中产生的频率梳,这一绝缘体中产生的新型频率梳不存在电子噪声,因此有望在信息技术中实现超低噪声的信号转换。图(a)光诱导磁子态原理示意图,(b)光诱导磁子态的强耦合色散图,(c)强耦合劈裂随微波激励功率的幂次关系, (d)光诱导磁子非线性效应引发的纯磁子频率梳   “常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。这样的开放边界下的耦合态有望像乐高一样有序组合,获得丰富的功能性。”团队负责人陆卫教授表示,“频率梳就像是一把游标卡尺,能够精准的测量频谱上的风吹草动。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”   本项研究工作由上海科技大学、中国科学院上海技术物理研究所和华中科技大学三家单位共同完成,上海科技大学为第一完成单位。论文第一作者是上科大物质学院助理研究员饶金威,通讯作者是上科大物质学院陆卫教授、中科院上海技物所姚碧霂副研究员和华中科技大学于涛教授。
  • KLA推出全新突破性的电子束缺陷检测系统
    p2020年7月20日KLA公司宣布推出革命性的eSL10™ 电子束图案化晶圆缺陷检查系统。该系统具有独特的检测能力,能够检测出常规光学或其他电子束检测平台无法捕获的缺陷,从而加速了高性能逻辑和存储芯片的上市时间(包括那些依赖于极端紫外线(EUV)光刻技术的芯片)。eSL10的研发是始于最基本的构架,针对研发生产存在多年的问题而开发出了多项突破性技术,可提供高分辨率,高速检测功能,这是市场上任何其他电子束系统都难以比拟的。/ppKLA电子束部门总经理Amir Azordegan表示:“利用单一的高能量电子束,eSL10系统将电子束检测性能提升到了一个新水平。在此之前,电子束检测系统不能兼顾灵敏度和产能,严重限制了实际的应用。我们优秀的研发工程团队采用了全新的方法来设计电子束架构以及算法,研制出的新系统可以解决现有设备无法解决的问题。目前,KLA将电子束检测列入对制造尖端产品至关重要的设备清单。”/ppimg style="max-width:100% max-height:100% " src="https://www.semi.org.cn/img/news/sdfffdsffsd.jpg"//pp图:针对先进的逻辑、DRAM和3D NAND器件,KLA革命性的eSL10™ 电子束图案化晶圆缺陷检测系统利用独特的技术发现甄别产品中的关键缺陷。/ppeSL10电子束检测系统具有多项革命性技术,能够弥补对关键缺陷检测能力的差距。独特的电子光学设计提供了在业界相对比较广泛的操作运行范围,能够捕获各种不同制程层和器件类型中的缺陷。Yellowstone™ 扫描模式每次可以扫描收集100亿像素的信息,支持高速运行的同时不会影响分辨率,以在较大区域内也能高效地研究潜在弱点,实现缺陷发现。Simul-6™ 传感器技术可以通过一次扫描同时收集表面、形貌、材料对比度和深沟槽信息,从而减少了在具有挑战性的器件结构和材料中识别不同缺陷类型所需的时间。凭借其先进的人工智能(AI)系统,eSL10运用了深度学习算法,能满足IC制造商不断发展的检测要求,杜绝了对器件性能影响最关键的缺陷。/pp三维器件结构,例如用于内存应用的3D NAND和DRAM,以及用于逻辑器件的FinFET和GAA(Gate-All-Around)结构,都要求晶圆厂重新考虑传统的缺陷控制策略。eSL10与KLA的旗舰39xx(“ Gen5”)和29xx(“ Gen4”)宽光谱晶圆缺陷检测系统的结合,为先进的IC技术提供了强大的缺陷发现和监测解决方案。这些系统共同合作,提高了产品的良率和可靠性,将更快地发现关键缺陷,并能够更快地解决从研发到生产的缺陷问题。/pp新推出的eSL10系统平台具有独特的扩展性,可以延申到整个电子束检测和量测应用中。全球范围内先进的逻辑器件、存储器和制程设备制造商都在使用eSL10系统,利用该系统帮助研发生产过程,提升和监测下一代产品制程和器件的制造。为了保持其高性能和生产力表现,eSL10系统拥有KLA全球综合服务网络的支持。更多关于全新电子束缺陷检测系统的其他信息,请参见eSL10产品页面。/p
  • 2023 Q.C.China:无损检测行业盛会来啦~
    走过二十六载历程 相聚上海疫情搅局三年,线下观展应了一筹“莫展”的景,但守得云开见月明,疫情散去终相逢。这不,踏着后疫情时代经济全面复苏的热浪,我们乘风破浪而来。诚挚邀请地点:上海世贸商城一层(上海市兴义路99号)时间:2023年10月25-27日展品范围无损检测技术及设备超声波探伤仪器、电磁(涡流)检测仪器、磁粉探伤仪器、射线探伤仪器、渗透检验仪器、声成像与声全息设备、声发射设备、试块、试片、刻伤机、探头、耦合剂、磁粉、X光胶片、X光管、胶片干燥箱、冲洗药、观片灯、射线房、滤片、射线报警器、密度计、测厚仪、检漏仪、内窥镜、加磁器、磁悬液、反差增强剂物理测试与材料试验机图像分析处理系统、金相显微镜、电子显微镜、金相图相分析系统、微区分析仪器、材料结构分析仪器、环境测试仪器、电子探针、硬度计、抛光料(粉)、研磨机、破碎机、抛光机、切割机、筛分设备、金相砂纸、缺口拉削机、磨抛机、金相制样设备、镶样机、悬浮液、研磨膏、万能试验机、冲击试验机、硬度试验机、扭转试验机、疲劳试验机、拉伸试验机、动态冲击试验机、压力试验机、混凝土压力试验机、恒温恒湿试验机分析仪器与实验室设备光谱分析仪、气体分析仪、波谱分析仪、频谱分析仪、原子吸收仪、激光粒度仪、色谱仪、元素分析仪、质谱仪、电化学仪、热分析仪、表面分析仪、碳硫分析仪、分光光度仪、辅射测试仪、天平、坩埚、化学玻璃、各种标样、元素的标准液、各类实验室设备计量与测试技术几何量:量具(游标卡尺、内外径千分尺、百分表、千分表、大尺寸测量量具、长度和角度块规);量仪(测高仪、测长仪、水平仪、角度仪、投影仪、电感量仪、粗糙度仪、轮廓扫描仪、三坐标测量机、工具显微镜、影像测量仪、3D扫描、激光跟踪仪、圆度仪) 力学计量:质量计量、力值计量、硬度计量、容量与密度计量、转速与振动计量热工计量:温度计量、压力计量、流量与物位(液位)计量软件:各种计量与管理软件其他第三方检测、3D打印、五金工具组织机构主办单位上海材料研究所有限公司 支持单位中国机械工业联合会中国机械工程学会无损检测分会 中国机械工程学会理化检验分会 中国机械工程学会材料分会 全国无损检测标准化技术委员会 机械工业材料质量检测中心 机械工业无损检测中心支持媒体《无损检测》《腐蚀与防护》《造船技术》《中国测试》中缆在线《理化检验-化学分册》《无损探伤》《航空制造技术》《自动化仪表》QC检测仪器网《理化检验-物理分册》《中国特种设备安全》《钢结构》《现代科学仪器》郑州云同盟信息《机械工程材料》《压力容器》《分析仪器》材料与测试网联系方式上海材料研究所有限公司地址:上海市邯郸路99号邮编:200437电话:86-21-65555687、65556775-366传真:86-21-65526355E-mail:qc@mat-test.com联系人:王先生
  • 桂林电子科技大学采购100多台教学设备
    桂林电子科技大学委托广西科联招标中心就教学实验设备采购(GXZC2012-G1-20559-KL)发布招标公告,涉及10个包项,采购数量超过100台。详情如下:  根据《中华人民共和国政府采购法》、《政府采购货物和服务招标投标管理办法》等规定,经财政部门批准的政府采购计划(编号: 201206280014 )批准,现就桂林电子科技大学教学实验设备采购项目进行公开招标采购,欢迎符合条件的供应商前来投标:  一、项目名称:教学实验设备采购  二、项目编号:GXZC2012-G1-20559-KL  三、采购组织类型:部门集中采购  四、采购方式:公开招标  五、采购内容及数量:标项采购名称单位数量A水泥密度计1台,水泥细度负压筛析仪(抽屉拍灰式)3台,水泥净浆搅拌机2台,水泥净浆标准稠度及凝结时间测定仪3台,型雷氏全不锈钢沸煮箱2台,新标准水泥胶砂搅拌机2台,水泥胶砂流动度测定仪2台,水泥恒温水标准养护箱、水泥胶砂试体养护箱1台,砼加速养护箱1台,混凝土搅拌机2台,混凝土拌合物维勃稠度仪2台,混凝土水灰比测定仪2台,型混凝土磁力振动台1台,新标准砂石筛3套,新标准石子筛3套,耗材1批,非金属超声检测仪1台,全自动数字式回弹仪1台,电动钢筋试样标距划线机、打点机1台,微机控制电液伺服万能机1台,液压式微机控制恒应力抗折抗压试验机1台,理论力学多功能实验台2台。项1BGPS测量系统(1基准站+2流动站)2套,全站仪(1)1台,全站仪(2)6台,自动安平水准仪10台。项1C工程综合模拟实验室40节点。项1D三联单杠杆固结仪(中压)2 台,智能电动四联等应变直剪仪2台,数显液塑限测定仪4台,数控标准电动击实仪1台,数显电热恒温干燥箱2个,数显高频振筛机1台,红外线全自动沥青软化点测定仪2台,数显控温沥青延伸度仪(1.5米)2台,电脑全自动数显沥青针入度仪2台,数显恒温水浴2个,电子天平2台,MP100Kg大称量电子天平电动相对密度仪2台,土壤分析筛(圆孔FB-2)2个。项1E建筑垃圾专用破碎机1台,砌块成型机1型搅拌机1台,全自动压力试验机1台,切砖机1台,砖用卡尺3个,测砖回弹仪2台,立式砖冻融试验箱1个,砌墙砖爆裂蒸煮箱1个,砌墙砖收缩及膨胀变化量测定仪1台,砌墙砖碳化试验箱1个,自控砖瓦泛霜箱1个,砌体砂浆强度点荷仪1台,贯入式砂浆强度检测仪1台,自动式砂当量振动器1台,数显砂浆稠度测定仪1台,砂浆分层度测定仪1台,砂浆凝结时间测定仪1台,智能型砂浆搅拌机1台,砂浆回弹仪1台,砌墙砖收缩膨胀仪1台,MP100Kg大称量电子天平1台。项1F喷管实验装置1套,冰箱1台,制冷压缩机性能的测定实验装置2套,冷热泵循环演示装置1套,制冷制热试验台2台,气体定压比热测定仪2台,二氧化碳PVT关系仪2台,流体力学综合实验台2台,导热系数测试仪(双护热平板法)1台。项1G车辙仪(不含成型机)1台,岩石切割机1台,荧光显微镜1台,路面渗水仪4台,摆式摩擦仪4台,轻重两用标准提击仪2台,激光车速仪1台,红外线热成像仪2台。项1HDDS函数信号发生器19台,DDS信号源5台,台式数字万用表100台,数字存储示波器19台,数字示波器(逻辑分析仪)2台。项1I男性、女性外两性互换人体头颈躯干模型1套,男性、女性外两性互换肌肉内脏背面开放式头颈躯干模型1套,透明半身躯干附内脏模型1套,透明半身躯干附血管神经模型1套,人体头颈部横切面断层解剖模型1套,男性躯干横切面断层解剖模型1套,女性躯干横切面断层解剖模型1套,小型离心机2台,四维旋转混合仪2台,微孔板恒温振荡器(恒温、调速、定时)2台,烘箱2台,万向摇床(数显、定时、3D)2台,磁力搅拌器(温度数字显示)10台,搅拌机1台,微型台式真空泵2台,漩涡混合器2台,旋转培养器(数显、定时、调速)2台,电子天平10台,精密电子天平5台,冰柜2台,药品试剂冷藏箱1台,手动全支消毒可变容量手动移液器,十二道(套)1套,手动全支消毒可变容量手动移液器,单道(套)2套,多用热风焊台(热风枪+焊台+吸烟)15套,高档多功能电钻15套,电子制作工具箱套装15套。项1J实验台(含柜,台等)1套。项1  六、合格投标人的资格要求:  1、国内注册(指按国家有关规定要求注册的)生产或经营本次招标采购货物,具备法人资格的供应商。  2、符合《中华人民共和国政府采购法》第二十二条的规定。  七、招标文件的发售:  1、发售时间:2012年7月13日至2012年8月22日(工作日),上午8:00~12:00 下午15:00~17:30。  2、发售地点:广西桂林市中山北路25号三楼。  3、售价:招标文件工本费每套200元,售后不退。  八、投标保证金:  投标保证金金额:A分标为人民币肆仟元整 B分标为人民币肆仟元整 C分标为人民币贰仟元整 D分标为人民币壹仟叁佰元整 E分标为人民币贰仟贰佰元整 F分标为人民币贰仟伍佰元整 G分标为人民币贰仟叁佰元整 H分标为人民币伍仟叁佰元整 I分标为人民币壹仟伍佰元整 J分标为人民币贰仟叁佰元整。投标人应于2012年8月24日16时前将投标保证金以汇票、电汇、支票、现金和保函等形式交至广西科联招标中心桂林分部(收款单位名称)。  投标保证金交纳账号:  开户名称:广西科联招标中心桂林分部  开户银行:桂林银行芙蓉支行  银行账号:660010007045600010  九、投标截止时间和地点:  投标人应于2012年8月28日9时前将投标文件密封送交到广西科联招标中心桂林分部开标厅(桂林市中山北路25号五楼,逾期送达或未密封将予以拒收(或作无效投标文件处理)。  十、开标时间及地点:  本次招标将于2012年8月28日9时整在广西科联招标中心桂林分部开标厅(桂林市中山北路25号五楼)开标,投标人可以派授权代表出席开标会议(授权代表应当是投标人的在职正式职工,并携带身份证、社保缴费证等有效证明出席)。  十一、网上查询地址:  中国政府采购网(www.ccgp.gov.cn)、广西财政网(www.gxcz.gov.cn)、广西科联招标中心网(www.gxkl.com)。  十二、业务咨询:  1、广西科联招标中心:  购买标书联系人:胡小姐 联系电话:0773-2882646 传真:0773-2885706  技术联系人:曾永清 联系电话:0773-2832646  2、政府采购监督管理部门:  广西壮族自治区政府采购监督管理处  联系电话:0771-5331539  广西科联招标中心  2012年7月13日
  • 京都电子发布ALM-155数显酒精浓度计新品
    ALM-155数显酒精浓度计Digital Alcohol MeterALM-155数显酒精浓度计 适用范围:测定各类饮料酒的酒精度,如: 发酵酒/酿造酒(啤酒、葡萄酒、果酒、黄酒),蒸馏酒(白酒、白兰地、威士忌、伏特加/俄得克、朗姆酒、杜松子酒、奶酒、其他蒸馏酒),配制酒/露酒(植物类配制酒/植物类露酒、动物类配制酒/动物类露酒、动植物类配制酒/动植物类露酒、其它配置酒)的酒精度分析。注: 酒精度(乙醇含量): 系指在20°C时,100mL饮料酒中含有乙醇(酒精)的毫升数,即体积(容量)的百分数。ALM-155数显酒精浓度计 工作原理:数显酒精浓度计的测量,是酒类试样经直接加热蒸馏去除样品中的不挥发物,馏出物用水恢复至原体积,然后将酒样馏出液吸入数显酒精浓度计的U型振荡管,由于U型管中试样密度的变化会引起振动频率的改变,仪器可根据20°C时样品馏出液的振动频率自动计算得到馏出液的相对密度,仪器内置酒精水溶液相对密度与酒精度对照表,可直接测定试样中酒精含量的体积百分数。可取代酒精计法或密度瓶法之酒精度的试验方法。附注: 乙醇和水的二元混合物溶液,可以直接测量酒精浓度值。ALM-155数显酒精浓度计 主要特点:1. 高精确度、占地面积小、性能卓越的台式酒精浓度计。2. 酒精度的解析度为0.01%,密度的解析度为0.00001。3. 标配进样泵,一键启动进样和测量,样品量仅需8mL。4. 内置帕尔贴温控,温度固定20°C。仅需使用纯水校正。5. 可自动存储100组测量结果,数据可传输至U盘或电脑。6. 具酒精水溶液的相对密度与酒精度对照表,显示酒精度。7. 全范围酒精浓度测定,操作简单,精度高,测量速度快。ALM-155数显酒精浓度计 技术参数:测量范围: 酒精度0.00~100.00Vol%,密度0.69937~1.24887g/cm3,相对密度0.70000~1.25000。解析度: 酒精度0.01vol%,密度0.00001g/cm3,相对密度0.00001。重复性: 酒精度SD:0.05%vol%,密度SD:0.00005 g/cm3,相对密度SD:0.00005。测量温度: 20.00°C(固定)。酒精度对照表: 内建OIML和AOAC对照表。测量时间: 2~4分钟(使用标配蠕动泵)。最少样品量: 约8毫升(进样时间10秒)。显示: LCD液晶显示。进样方式: 使用蠕动泵进样或注射器进样。自动开始功能: 重复次数:2~100。校正方式: 使用纯水校正。电脑软件: SOFT-CAP(数据采集软件)。外接界面: USB(U盘或键盘),RS-232C(打印机和电脑)。数据输出: CSV格式至U盘。环境条件: 温度5~35°C,湿度85%RH以下。电源: 100~240V, 50/60Hz。耗电量: 约30W。尺寸: 270(宽)×402(深)×163(高)mm。重量: 约10kg。创新点:京都电子工业株式会社(KEM),从1978年开始生产U形管振荡式密度计,在技术方面有着宝贵的经验和悠久的历史。ALM-155的开发源自于清酒酒精度分析仪DA-155。DA-155多年来主要销售在日本的清酒酿酒厂。大多数清酒酿酒厂都是小型家族企业,他们对可靠的分析仪器需求非常强烈。KEM一直以合理的价格为他们提供简单易用、高性能的分析仪。ALM-155是一种专用的、小尺寸、高性能的台式数字密度计,主要用于分析葡萄酒、啤酒、白兰地、威士忌、伏特加等的密度、相对密度和乙醇浓度的测量。ALM-155的酒精度分辨率为0.01%,相对密度为0.00001。除了具备DA-155的特点外,另增加了密度值的显示、记忆100组测量结果、内置AOAC和OIML酒精度对照表、输出功能增加了USB串口,可利用U盘下载测量结果。在功能和数据储存输出上,更加提升。ALM-155数显酒精浓度计
  • 揭秘X-射线光电子能谱仪的应用
    随着对高性能材料需求的不断增长,表面工程也显得越来越重要。材料的表面是材料与外部环境以及与其它材料相互作用的位置,因此需要了解材料层表面处或界面处的物理和化学相互作用,才能解决与现代材料相关的问题。表面将影响材料的诸多方面,如腐蚀速率、催化活性、粘合性、表面润湿性、接触势垒和失效机理。表面改性可改变或改进材料性能和特性,使用表面分析能够了解材料的表面化学和研究表面工程的效果。从不粘锅涂层到薄膜电子学和生物活性表面,XPS成为表面材料表征的标准工具之一。XPS介绍XPS主要用于化学、材料、能源、机械等领域,可测试粉末、块状、纤维、薄膜等样品。其分析内容包括表面元素组成及化学态元素定性半定量分析、表面元素深度分析、表面元素分布分析等。例如用于钢铁表面钝化工艺评估,聚合物心脏支架表面药物元素的深度剖析,有机光电发光二级管(OLEDS)深度表征等。01XPS 原理用单色化射线照射样品,使样品中原子或分子的电子受激发射,然后测量这些电子的能量分布,通过与已知元素的原子或离子的不同壳层的电子的能量相比较,就可以确定未知样品表层中原子或离子的组成和状态。02仪器条件表面测试深度:金属:0.5-2nm,无机:1-3nm;有机:3-10nm元素测试范围:Li—U%元素检出限制:≥0.1at03样品要求1) 粉末:需要干燥,研磨均匀细腻;制样方法两种,胶带法需要样品20-30mg,压片法需要样品2g;块状:标清楚正反面,长宽高一般小于5*5*3mm;薄膜:标清楚正反面,注意保护好样品表面,长宽高一般小于5*5*3mm;2) 样品通常用自封袋送样,这样实际上并不好,容易出现污染,可以用离心管或者锡箔纸;3) 超高样品:需要切薄;4) 液体:最好涂敷在Si片上干燥后送样,注意有基底干扰,需要测试空白样;5) 磁性样品:有些机器无法测(磁透镜),一定注明是否有磁性;6) 空气敏感样品:手套箱制样;7) 生物细胞类:冷冻干燥后或在冷冻条件下测试;8) 样品禁忌:样品必须充分干燥,不接受低熔点或易分解的样品;磁性样品要消磁后测试;样品中不能含有卤素,易挥发性物质案例分析01 表面元素定性半定量测试每种元素都有各自的特征谱线,具有指纹特性,从而用于定性分析;通过灵敏度因子法计算峰面积,可以获得定量信息,然而元素灵敏度因子受很多因素影响,因此XPS测试结果为半定量结果;结合XPS分析软件可以轻松完成上述分析。案例:太阳能电池板小颗粒异物元素分析。由于样品很少(仅肉眼可见),EDS测试不能区分其中微量元素是锆或磷。后续采用XPS测试后,确认样品在EDS的出峰是磷元素而不含锆元素。02 价态分析(无机及金属材料)由于结合能反映元素的指纹信息,当原子周围的化学环境发生变化,元素内层电子结合能会随之变化。因此可根据结合能变化推测元素的化学结合状态,即元素及化学态的定性分析。03 有机官能团分析(有机材料)对客户关注有机官能团及其对应的元素,进行可能存在的官能团进行客观分析。值得注意的是,样品的有机官能团信息需由客户提供。案例:样品为石墨烯负载钼粉末,通过XPS对其中可能存在的有机物官能团团信息进行分析。04 深度剖析(纳米级膜厚度测试)通过Ar+枪对样品进行轰击,边轰击边测试,可以分析出元素成分在不同深度下的结果,并得到元素成分、价态随着深度变化的规律。05 UPS-XPS+UV(能带间隙分析)紫外光电子能谱 (UPS) 的操作原理同 XPS 一样,唯一的区别是 UPS 使用几十 eV 的电离辐射来诱导光电效应,而 XPS 则使用高于 1 keV 的光子。在实验室中,使用气体放电灯来生成紫外光子。气体放电灯通常填充氦气,但也可使用其它气体填充,如氩气和氖气。氦气发射的光子能量为 21.2 eV (He I) 和 40.8 eV (He II)。由于使用了更低能量的光子,UPS 不能获取大多数核心能级的光电发射,因此谱采集仅限于价带区域。使用 UPS 能进行两种类型的实验:价带采集和电子逸出功测量。案例:样品为半导体热压多晶发光材料,想通过XPS及相关性能测试样品的能带间隙大小,从而来表征半导体材料的性能:06 成像(元素XPS二维成像)XPS 不但能用于识别表面的点或微小特征区,还能用于样品表面成像。这对了解表面的化学状态分布很有帮助,可用于发现污染的限值以及检测超薄膜涂层的厚度变化情况。
  • 电子标准院与天津光电签署战略合作协议
    2023年8月10日,中国电子技术标准化研究院(以下简称“电子标准院”)与天津光电通信技术有限公司(以下简称“天津光电”)在北京签署战略合作协议。电子标准院副院长刘贤刚、天津光电总经理张俊辉代表双方出席签约仪式。刘贤刚表示,建院60年来我院在标准化领域不断创新,牵头起草了中文编码字符集、便携式电子产品用锂电池、音视频、信息技术和通信技术设备等强制性国家标准,对促进产业高质量发展发挥了重要的标准化支撑作用。本次战略合作关系的建立,相信是一个全新的起点,指引双方共同开拓创新,持续在标准研制、试验检测、计量校准、工业节能与绿色低碳等领域开展深度合作。   张俊辉充分肯定了合作30年来我院的专业性和权威性,并表示基于本次战略合作,天津光电将与电子标准院一道,在打印机信创、电磁兼容、计量、商用密码应用等关键技术领域展开深入合作。   电子标准院认证中心、安全中心、电磁技术研究中心、计量中心负责人及有关同志一同参加了签约仪式。
  • X射线光电子能谱(XPS)的原理及应用
    01 原理XPS是利用 X 射线辐射样品,使得样品的原子或分子的内层电子或者价电子受到激发而成为光电子,通过测量光电子的信号来表征样品表面的化学组成、元素的结合能以及价态。X 射线光电子能谱技术作为一种高灵敏超微量的表面分析技术,对所有元素的灵敏度具有相同的数量级,能够观测化学位移,能够对固体样品的元素成分进行定性、定量或半定量及价态分析,广泛地应用于元素分析、多相研究、化合物结构分析、元素价态分析。此外在对氧化、腐蚀、催化等微观机理研究,污染化学、尘埃粒子研究,界面及过渡层研究等方面均有所应用。02 应用1 XPS在木质材料中的应用XPS 技术成为木质材料分析、应用领域的重要手段。XPS 对木材领域的分析不仅可以获得材料本身的元素组成和物质结构,而且对木材的修饰、应用等方面的研究有重要意义。运用 XPS的表层与深层分析,在木材加工、合成、防护等领域都有着重要作用,在测得材料成分的含量与性质后,也可以得知涂饰性能、风化特性、硬度、抗弯度等基本性质,再对木材分类以进行定向加工,这将极大提高木材的利用效率,扩大应用领域。2 XPS在能源电池中的应用麦考瑞大学黄淑娟和苏州大学马万里等人报道了在钙钛矿表面沉积同源溴化物盐以实现表面和本体钝化以制造具有高开路电压的太阳能电池的策略。与先前工作给出的结论不同,即FABr等同源溴化物仅与 PbI2反应在原始钙钛矿之上形成大带隙钙钛矿层,该工作发现溴化物也穿透大部分钙钛矿薄膜并使钙钛矿中的钙钛矿钝化。通过吸光度和光致发光 (PL) 观察到的小带隙扩大;在飞行时间二次离子质谱 (TOF-SIMS) 和深度分辨 X 射线光电子能谱 (XPS) 中发现溴化物元素比例的增加。各种表征证实了钙钛矿器件中非辐射复合的明显抑制。使用同种溴化物钝化的非封装器件在环境储存2500 小时后仍保持其初始效率的97%,在85°C下进行520小时热稳定性测试后仍保持其初始效率的59%。该工作提供了一种简单而通用的方法来降低单结钙钛矿太阳能电池的电压损失,还将为开发其他高性能光电器件提供启示,包括基于钙钛矿的串联电池和发光二极管 (LED)。3 XPS的表面改性物质表面的化学组成改变和晶体结构变形都会影响材料性能,如黏附强度、防护性能、生物适应性、耐腐蚀性能、润滑能力、光学性质和润湿性等。一种材料可能包含几种优良性能。XPS 分析技术广泛应用于材料的表面改性,主要有以下几点原因:(1) XPS对表面测量灵敏度高,用其进行表面改性是一种有效方法;(2) 由于 XPS分析技术可以获得相应的化学价态信息,因此通常用来检测改性时的表面化学变化;(3) 由于 XPS 只能检测样品表面 1~10 nm 的薄层,故 XPS 可以测量改性表层的化学组成分布情况。4 XPS在生物医学中的应用XPS 逐渐被应用在生物医学研究以及生物大分子的组成、状态和结构等方面。由于生物试样在制备过程中有一定难度,因此 XPS在医学上的应用仍处于探索阶段。03 来源文献[1]杨文超,刘殿方,高欣,吴景武,冯均利,宋浅浅,湛永钟.X射线光电子能谱应用综述[J].中国口岸科学技术,2022,4(02):30-37.[2]Homologous Bromides Treatment for Improving the Open-circuit Voltage of Perovskite Solar Cells[J]. Advanced Materials, 2021.
  • 西安交大-日本电子战略合作签约仪式暨球差电镜专题学术研讨会成功举办
    12月1日,“西安交大-日本电子战略合作签约仪式暨球差电镜专题学术研讨会”在创新港大型仪器设备共享实验中心召开。西安交通大学校长助理单智伟教授,日本电子中国区总经理杉本圭司出席签约仪式,并为“西安交大-日本电子创新技术联合实验室”揭牌。西安交通大学大型仪器共享实验中心主任高禄梅、日本电子中国区副总经理张晓露代表双方签约。西安交通大学大型仪器共享实验中心副主任、分析测试中心主任孟令杰教授主持签约及揭牌仪式。单智伟对嘉宾们的到来表示诚挚欢迎。他表示,西安交大坚持以国家战略需求为导向,以中国西部科技创新港为依托,探索产学研深度融合的路径,建立校企深度融合的联合研发中心;围绕产业链,布局创新链,汇聚创新资源、对接产业需求,加速科技成果转移转化。他指出,西安交大与日本电子签署战略合作协议,将有助于推动公共平台创新链、产业链、资金链、人才链的深度融合,为公共平台与企业的融合发展贡献智慧和力量。同时,大仪中心作为校级仪器设备共享平台,应当持续发挥引领与担当作用,继续促进研究团队与公共平台在技术创新研究与应用上协同发展,有力推动学科和团队高水平成果产出,为学校教学科研保驾护航。希望以此次双方签署战略合作协议为契机,充分发挥各自优势,不断丰富发展模式和路径,联合攻关“卡脖子”技术难题,为高质量发展提供强有力的科技支撑,书写合作共赢的新篇章。杉本圭司表示,西安交通大学与日本电子的合作源远流长,西安交通大学是国内最早购买日本电子公司设备的高校之一,目前已有超过20台日本电子设备在交大投入使用。本次战略合作以及创新技术联合实验室的成立,是日本电子公司与国内外优秀科研机构合作的重要成果,也是其积极探索新的科研模式,推动科研创新的重要尝试。本次合作能够实现资源的有效配置与共享,为公司的科研创新和发展提供强有力的支持,意义重大。杉本圭司表示在双方的共同努力下,联合实验室一定能取得更加辉煌的成绩。西安交通大学能动学院卢晨阳教授作为用户代表发言。卢晨阳结合自己的发展体会,认为自己的科研生涯与日本电子公司设备难以分割,众多设备支撑起了自身的科研工作。他对日本电子提供实验“利器”,对西安交通大学提供优质实验平台表示真诚感谢,相信本次合作对推动电子显微镜技术的应用与发展、促进材料及多学科领域研究的深化具有重要意义,期待这次合作能为科研团队带来更多的科研突破,为科学界贡献更多的创新成果。本次“球差电镜专题学术研讨会”邀请了国内多位电镜知名专家进行报告和技术交流。会议以“球差电镜应用技术与平台管理”为主题,分享各领域专家利用球差电镜开展高水平研究的最新应用成果,以及球差电镜平台建设管理经验,旨在促进高校球差电镜分析技术的应用与发展。单智伟围绕“金属材料变形与损伤起源的原位电子显微镜研究”介绍了研究团队在氢致材料变形与损伤领域的最新进展。清华大学谷林教授以“功能材料功能性起源”为题,从球差校正电子显微方法入手,讨论内积过程中对称性破缺下功能材料的精细结构与新奇物性。浙江大学余倩教授围绕合金强塑性的位错调控新机制,通过多尺度、原位透射电子显微镜表征,并结合三维显微结构断层成像和计算机模拟等,研究了多元复杂合金体系中的位错调控行为。武汉大学物理科学与技术学院、武汉大学电子显微镜中心主任王建波教授结合球差校正透射电子显微学和第一性原理计算,介绍了团队在纳米氧化物(ZnO和CuO)材料的原子尺度原位研究领域的最新进展。郑州大学程少博教授报告了第四代半导体金刚石材料中的构效关系研究,为金刚石-铁性材料界面反应的原子机制提供新见解,有利于提高金刚石基器件性能。太原理工大学郭俊杰教授报告了二维电催化材料可控构筑与精确表征,通过对纳米尺度的金属电催化材料进行原子尺度结构调控提升电催化性能。日本电子透射产品经理袁建忠以“时空的交汇—日本电子透射电镜进展”为题,介绍了目前最新的能够在更宽的加速电压范围内进行更高灵敏度的分析和更高空间分辨率成像的球差矫正显微镜技术,以及加入时间因素进行材料瞬间态和瞬时行为研究的最新技术。西安交通大学卢晨阳教授以“高熵合金的多级构筑抗辐照结构设计及核用前景”为题,介绍了如何利用先进的材料表征技术开展辐照效应研究。西安交通大学武海军教授报告了基于序参量短程有序化的电子功能材料,通过调控点缺陷实现长程序参量的短程化,优化了铁电/压电和热电材料的动态响应。西安交通大学大仪中心李娇工程师介绍了大仪中心球差电镜的功能配置,结合案例介绍球差电镜分析技术在材料科学领域中的应用。与会师生与报告嘉宾进行了热烈的互动和交流。会后,与会人员参观了西安交通大学大仪实验中心。
  • 赛默飞世尔科技K-Alpha X射线光电子能谱仪(XPS)获殊荣
    赛默飞世尔科技K-Alpha X射线光电子能谱仪(XPS)获殊荣 2007年 7月20日,Thermo Scientific 最新推出的K-Alpha被杂志提名为在去年进入全球市场的100项最具尖端技术的重要产品之一。 “R&D100”奖项设立于1963年,目的是在特定的一年之中,选出在市场上技术最突出的100件新产品。历经数年,“R&D100”奖项评选出了许多家喻户晓的获奖产品,例如:1975年的传真机,1986年的打印机,1991年的Kodak Photo CD,1993年的Taxol抗癌药物,以及1998年的HDTV。 得益于快速发展的X射线光电子能谱(XPS)技术,K-Alpha实现了对表面化学组成的快速、准确以及有效的定量化监测,同时提供了在无机、有机、生物、合金、半导体以及磁性固体等诸多材料的表层几个纳米厚度的化学性质表征。为大量的样品分析而设计的具有革命性的系统,使提供全程直至测试结果整理分析和报告的全自动数据采集过程成为现实。 传统的XPS是需要大型、昂贵仪器以及专业操作人员的一项技术,即使用于常规的分析也是如此。占地面积小和独一无二的Thermo Scientific K-Alpha能够在没有或者几乎无须使用者介入的情况下完成大多数的常规操作,使得操作者能够从平淡、重复的工作中解脱出来。最大化的样品分析通量以及增加报告自动产生这样的高效专业化功能对于当今实验室是十分重要的。独特的是K-Alpha在样品进入仪器后就无需手工操作,所有的仪器及数据处理都由基于Microsoft Windows的数据系统Avantage所操控。Thermo Scientific K-Alpha展现了高传输灵敏度的新型电子光学系统,这使得对传统材料和新兴的生物技术、纳米技术与药物应用方面中最复杂的表面化学的认识成为可能。新型一体化的离子源提供的深度剖析能力使三维分析真正变得容易,这种高通量、低能量散射模式结合轴向旋转产生具有极佳深度分辨率的深度剖析。K-Alpha还具有在仪器中设入恒定校正标准的特点,软件程序指令与标准样品的结合使得K-Alpha能够实现仅按一键即能自动校正,保证在任何时间仪器都处于最佳性能状态。仪器自动校正功能对分析、质量保证和过程控制等应用是必不可少的。 Thermo Fisher Scientific表面分析部的产品经理Richard G White博士说:“对于K-Alpha的新颖技术特点为R&D100评奖组所承认,我们感到非常自豪。这一奖项肯定了Thermo Fisher Scientific作为表面表征的领导者地位,同时也证明了我们整个团队在提供有力的分析手段上的奉献精神与卓越的专业技术水平,并使我们的客户在众多表面分析仪器的应用中体会到了真正的不同和方便。”
  • X射线光电子能谱仪(XPS)—全球首台PHI GENESIS 在伦琴实验室安装调试完成
    全球首台PHI GENESIS在近期已到达束蕴仪器(上海)有限公司的伦琴实验室并完成安装调试。伦琴实验室是国内专业从事X射线相关分析与开发的机构,提供多方位的X射线测试服务,以厂家应用实验室标准配置了新型设备。针对复杂材料和器件完成从晶体结构到电子结构的完善解析,以及从埃米到毫米的跨尺度表征。束蕴仪器的测试团队由应用专家领导,同时与Bruker,ULVAC-PHI等仪器制造商为深度合作伙伴。ULVAC-PHI于2022年7月推出了全球首台具备有独特多功能平台的X射线光电子能谱仪(XPS)- PHI GENESIS。该仪器集成了PHI历代XPS仪器重要的“GENE”所研发出的新型产品,具有50年技术传承的高度自动化和减少分析时间的传统,具有可扩展性,并在紧凑型外壳中提供压倒性的性能。PHI GENESIS可以应对从大面积到微区的分析需求,既可以表征表面成分,表面多层薄膜等,又可以对环境颗粒物、表面缺陷进行微区定位分析。这使得PHI GENESIS对于各种材料开发,材料剖析与失效机理的分析和研究具有不可替代的作用。PHI GENESIS的功能十分强大,包括双束中和且条件自动匹配、提供表面的元素成分、元素化学态信息、全谱图扫描定性分析各种样品表面元素组成 (Li~U)、窄谱(精细谱)扫描表征各种元素存在的化学态、半定量给出各个成分及化学态的百分比、线或面分析 (Line Scan & Mapping) 表征成分的水平分布、深度分析(Depth Profiling)表征成分的深度分布。此外,PHI GENESIS由ULVAC-PHI公司独力研发,该公司是超高真空表面分析仪器供应商。作为提供多方位(面)的高性能XPS、AES和SIMS表面分析仪器的一家供应商,向普遍高科技领域上的广大客户(包括纳米技术、微电子技术、存储介质、催化、生物材料、药品、基本材料如金属、矿物、聚合物、复合材料和涂料)提供完整的表面分析解决方案上,ULVAC-PHI多年来在表面分析领域中具有极其独特的地位。PHI CHINA总经理叶上远先生对于全球首台PHI GENESIS在束蕴仪器(上海)有限公司的伦琴实验室顺利完成安装调试表示祝贺。也表示ULVAC-PHI和PHI CHINA将对该设备(PHI GENESIS 500)提供持续性技术支持,希望双方未来继续深度合作,呈现华东地区一个新的面向全国用户的展示窗口。- 转载于PHI高德英特公众号
  • 一种有望替代电子束光刻的新技术
    目前光刻技术存在被美国“卡脖子”,不只是工业用的,包括科研用的电子束曝光机也只能购买到落后国外两三代的产品。而电子束曝光是由高能量电子束和光刻胶相互作用,使胶由长(短)链变成断(长)链,实现曝光,相比于光刻机具有更高的分辨率,主要用于制作光刻掩模版、硅片直写和纳米科学技术研究,是半导体微电子制造及纳米科技的关键设备、基础设备。3D纳米结构高速直写机的技术起源光刻技术严重制约着我国半导体工业及科研领域的发展。近年来,一种基于热扫描探针光刻技术的产品3D纳米结构高速直写机有望替代电子束曝光机。3D纳米结构高速直写机(NanoFrazor)的主要技术起源于上世纪九十年代,由诺贝尔奖获得者Binnig教授在IBM Zurich实验室所主导的千足虫计划。该计划原本的目标是用类似原子力显微镜探针的热探针达到1Gb/s的高速数据存储读写。图1为千足虫计划中,制备的热探针的扫描电子显微图像。[1]图1. 千足虫计划所制备的热探针的扫描电子显微图像。[1]2010年后,研究团队逐渐把研究热点从数据的高速读写逐渐转向了扫描热探针用于高精度灰度光刻技术(t-SPL)。随着t-SPL技术的逐渐成熟,2014年推出了首款商业化高精度3D纳米结构高速直写机,NanoFrazor Explore 图2b)。为满足市场的不同需求,2017年推出台式系统NanoFrazor Scholar,图2a)。[2]图2 不同型号的NanoFrazor。a)为台式NanoFrazor Scholar系统,b)为旗舰型NanoFrazor Explore。[2]随后,于2019年无掩模激光直写系统被成功地整合到了旗舰型NanoFrazor Explore系统中,实现了在NanoFrazor中从微米加工到纳米加工的无缝衔接。有望替代电子束光刻技术目前NanoFrazor的技术主要用于科研院所的高端纳米器件制备,已有集成激光直写的系统以加快大尺寸大面积微纳米结构的刻写。由10根探针组成的探针阵列已经在Beta客户端测试中。在和IBM苏黎世的合作项目中已经开始了用于工业批量生产的全自动系统的原型设计。。NanoFrazor的优势体现在以下几个方面。首先,NanoFrazor是首款实现3D纳米结构直写的光刻设备,其垂直分辨率可高达1nm。因此,此设备不仅可以制备在2D方向上高分辨率复杂图案的无掩模刻写,还可以制备3D复杂纳米结构,例如复杂的光学傅里叶表面结构,图3所示。[3]图3,用NanoFrazor制备的光学傅里叶表面结构。[3]第二,由于NanoFrazor的光刻原理是通过热探针直接在热敏胶上进行刻写,与热探针接触的胶体部分被直接分解,与电子束曝光(EBL)技术相比所制备的图案不会被临近场效应所影响。因此使用t-SPL技术制备的器件,光刻胶可以被去除的非常干净,从而改善半导体材料和金属电极的接触情况,提高电子器件的性能。图4为NanoFrazor工艺中所用的热敏胶和EBL工艺中所用的光敏胶在去胶工艺后的光刻胶表面残留情况。[4]图4 采用t-SPL技术和EBL技术去胶后光刻胶表面残留对比,图中比例尺为500nm。[4]第三, 由于NanoFrazor所采用的的t-SPL光刻技术,避免了电子注入对材料的损伤,特别适合电子敏感类材料相关器件的制备。与此同时NanoFrazor针尖虽然温度很高,但是和样品的接触面积只有纳米尺度,所以样品表面不会受到高温影响,样品表面温度升高小于50度。第四,传统光刻技术中,需要通过显影才能观察到光刻图案。而使用t-SPL技术进行光刻时,热敏胶直接被热探针分解,然后再通过同步成像系统可以立即得到刻蚀图案的形貌。同时使用闭环控制刻写深度,保证纵向1nm的刻写精度。在实际使用中,可以对样品表面已有的微结构成像,实时设计套刻图案进行刻写,非常适合科学科研和新品研发。此外,相比于传统的电子束刻蚀等技术产品,NanoFrazor可以在常温常压环境中使用,维护简单费用低。其主要耗材为热探针,耗材费用将低于目前通用的电子束刻蚀系统的耗材维护费用。科研领域的得力干将目前情况来看,国内和国外的主要用户都集中在科研院所。这一特点在推广尚属早期的国内市场尤为突出。QD中国正在尽全力把NanoFrazor和相关技术介绍给中国区的用户。NanoFrazor在国内的高精度3D光刻领域暂无竞争对手,在2D光刻领域与EBL存在着某些重叠。NanoFrazor产于中立国瑞士,受国际政治影响较小。热敏胶由德国AllResist公司生产销售,热探针目前仍然由IBM苏黎世供应,计划明年由德国IMS公司生产提供,不存在卡脖子问题。凭借强大的性能,NanoFrazor帮助科研人员在多领域中取得了一系列优秀成果。在光学方面,苏黎世联邦理工的Nolan Lassaline等人使用NanoFrazor制备了周期性和非周期性的光学表面结构。[3] 制备的多元线性光栅允许利用傅里叶光谱工程精确调控光信号。实验表面,使用NanoFrazor制备的任意3D表面的方法,将为光学设备(生物传感器,激光器,超表面和调制器)以及光子学的新兴区域(拓扑结构,转换光学器件和半导体谷电子学)带来新的机遇。该论文已于2020年经发表于Nature。在电子学方面,纽约城市大学的Xiaorui Zheng等人利用NanoFrazor制备了基于MoS2的场效应管。[4] 他们的研究结果表明,使用t-SPL技术制备的器件很好地解决了困扰EBL工艺的非欧姆接触和高肖脱基势垒等问题。器件的综合电子学性能也远优于传统工艺所制备的器件。该论文于2019年发表于Nature Electronics。在3D微纳加工方面,IBM使用NanoFrazor制备的纳米微流控系统控制纳米颗粒的输运方向,并成功分离不同大小尺寸的纳米颗粒,直径相差1nm的纳米颗粒可以用此方法进行分离[6]。该方法可以用于分离样品中的病毒等纳米物体。该论文于2018年发表于Science。IBM苏黎世研究院的Pires等人利用NanoFrazor的3D加工工艺,成功地制备出了高度仅为25nm的瑞士最高峰马特宏峰,如图5所示。[5] 后经吉尼斯世界纪录认证为世界上最小的马特宏峰。优于新颖的加工工艺和优异的3D加工精度,该论文与2010年发表于Science。图5 利用NanoFrazor制备的高度仅有25nm的世界最小马特宏峰。[5]在二维材料研究方面,NanoFrazor的热探针可以直接用于二维材料的掺杂[7],切割[8]和应力调制[9],开创了二维材料器件制备的新方法。论文于2020年发表于Nature Communications, Advanced Materials和NanoLetters等期刊上。目前国内用户对NanoFrazor在实验上的表现十分满意,已有国内用户在Advanced Materials等顶级期刊发表文章。关于QUANTUM量子科学仪器QUANTUM量子科学仪器贸易(北京)有限公司(以下简称QDC)是世界知名的科学仪器制造商——美国 Quantum Design International 公司(以下简称QD Inc.)在全世界设立的诸多子公司之一。QD Inc.生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为世界公认的顶级测量平台,广泛的分布于世界上几乎所有材料、物理、化学、纳米等研究领域尖端的实验室。同时QD Inc.还利用自己遍布世界的专业营销和售后队伍打造一个代理分销网络,与世界其他领先的设备制造商合作,为其提供遍布全球的专业产品销售和售后服务网络,2007 年QD Inc.并购了欧洲最大的仪器分销商德国 LOT 公司,使得QD Inc.全球代理分销和售后网络变得更加完整和强大。由于在华业务的不断发展,QD Inc.于2004年在中国注册成立了全资中国子公司QDC。经过10多年的耕耘发展,目前QDC拥有一支高素质的科学技术服务队伍,其中技术销售及售后技术支持团队全部由硕士学历以上人才组成(其中近70%为博士学历),多年来为中国的顶级实验室和科研机构提供专业科学仪器设备、技术支持、以及科技咨询服务。这些优秀的雇员都曾被派往美国总部及欧美日等尖端科研仪器厂家进行专业系统的培训,经过公司十多年的培养,成为具有丰富的科学实验仪器应用经验的专家。他们为中国的研究机构带来了最尖端的产品和最新的科技动态,为中国科研人员的研究工作提供了强有力的支持。QDC作为引进先进技术设备进入中国的桥梁,靠着过硬的尖端产品、坚实的技术实力、一流的服务质量赢得了中国广大科研客户的赞誉。Quantum Design中国子公司还积极致力于发展与中国本地科学家的合作,并将先进的实验室技术通过技术转移进行商业化。目前Quantum Design中国子公司正立足于公司本部产品,积极致力于材料物理、纳米表征和测量技术、生物及生命科学技术领域的新业务。Quantum Design中国子公司已逐渐成为中国与世界进行先进技术、先进仪器交流的一个重要桥头堡。引用文献1. Eleftheriou, E., et al., Millipede-a MEMS-based scanning-probe data-storage system. IEEE transactions on magnetics, 2003. 39(2): p. 938-945.2. https://heidelberg-instruments.com/product/nanofrazor-explore/ .3. Lassaline, N., et al., Optical fourier surfaces. Nature, 2020. 582(7813): p. 506-510.4. Zheng, X., et al., Patterning metal contacts on monolayer MoS 2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2019. 2(1): p. 17-25.5. Pires, D., et al., Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science, 2010. 328(5979): p. 732-735.6. Skaug et al., Nanofluidic rocking Brownian motors. Science, 2018. 359: p. 1505-1508.7. Zheng, X, et al., Spatial defects nanoengineering for bipolar conductivity in MoS2. Nature Communications, 2020. 11:3463.8. Liu, et al., Thermomechanical Nanocutting of 2D Materials. Advanced Materials.9. Liu, et al., Thermomechanical Nanostraining of Two-Dimensional Materials. NanoLetters.关注Quantum Design中国官方微信公众号,了解更多前沿资讯!(Quantum Design 中国 供稿)
  • 两种表面分析技术对比:X射线光电能谱(XPS)和俄歇电子能谱(AES)
    一、概念1. X光电子能谱法(XPS)是一种表面分析方法,提供的是样品表面的元素含量与形态,而不是样品整体的成分。其信息深度约为3-5nm。如果利用离子作为剥离手段,利用XPS作为分析方法,则可以实现对样品的深度分析。固体样品中除氢、氦之外的所有元素都可以进行XPS分析。2. 俄歇电子能谱法(AES)作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析手段了。它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。俄歇效应虽然是在1925年时发现的,但真正使俄歇能谱仪获得应用却是在1968年以后。二、相似与区别:1.相同之处:它们都是得到元素的价电子和内层电子的信息,从而对原子化器表面的元素进行定性或定量分析,也可以通过氦离子对表面的刻蚀来分析原子化器近表面的元素,得到原子化器材料和分析物渗透方面的信息。2.相比之下,XPS通过元素的结合能位移能更方便地对元素的价态进行分析,定量能力也更好,使用更为广泛。但由于其不易聚焦,照射面积大,得到的是毫米级直径范围内的平均值,其检测极限一般只有0.1%,因此要求原子化器表面的被测物比实际分析的量要大几个数量级。AES有很高的微区分析能力和较强的深度剖面分析能力。现在最小入射电子束径可达30nm。但是文献还没有报道原子化器表面的俄歇电子象。另外,对于同时出现两个以上价态的元素,或同时处于不同的化学环境中时,用电子能谱法进行价态分析是比较复杂的。一、特点:X射线光电子能谱法的特点:① 是一种无损分析方法(样品不被X射线分解);② 是一种超微量分析技术(分析时所需样品量少);③ 是一种痕量分析方法(绝对灵敏度高)。但X射线光电子能谱分析相对灵敏度不高,只能检测出样品中含量在0.1%以上的组分。俄歇电子的特点是:① 俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。大多数元素和一些化合物的俄歇电子能量可以从手册中查到。② 俄歇电子只能从20埃以内的表层深度中逃逸出来,因而带有表层物质的信息,即对表面成份非常敏感。正因如此,俄歇电子特别适用于作表面化学成份分析。局限性:① 不能分析氢和氦元素;② 定量分析的准确度不高;③ 对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%;④ 电子束轰击损伤和电荷积累问题限制其在有机材料、生物样品和某些陶瓷材料中的应用;⑤ 对样品要求高,表面必须清洁(最好光滑)等。三、两者的应用X射线光电子能谱分析与应用1.元素(及其化学状态)定性分析方法:以实测光电子谱图与标准谱图相对照,根据元素特征峰位置(及其化学位移)确定样品(固态样品表面)中存在哪些元素(及这些元素存在于何种化合物中)。定性分析原则上可以鉴定除氢、氦以外的所有元素。分析时首先通过对样品(在整个光电子能量范围)进行全扫描,以确定样品中存在的元素;然后再对所选择的峰峰进行窄扫,以确定化学状态。2.在固体研究方面的应用对于固体样品,X射线光电子平均自由程只有0.5~2.5nm(对于金属及其氧化物)或4~10nm(对于有机物和 聚合材料),因而X射线光电子能谱法是一种表面分析方法。以表面元素定性分析、定量分析、表面化学结构分析等基本应用为基础,可以广泛应用于表面科学与工程领域的分析、研究工作,如表面氧化(硅片氧化层厚度的测定等)、表面涂层、表面催化机理等的研究,表面能带结构分析(半导体能带结构测定等)以及高聚物的摩擦带电现象分析等。Cr、Fe合金表面涂层——碳氟材料X射线光电子谱图X射线光电子能谱分析表明,该涂层是碳氟材料。俄歇能谱应用通过正确测定和解释AES的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等多种情报。1. 定性分析定性分析主要是利用俄歇电子的特征能量值来确定固体表面的元素组成。能量的确定在积分谱中是指扣除背底后谱峰的最大值,在微分谱中通常规定负峰对应的能量值。习惯上用微分谱进行定性分析。因此由测得的俄歇谱来鉴定探测体积内的元素组成是比较方便的。在与标准谱进行对照时,除重叠现象外还需注意如下情况:①由于化学效应或物理因素引起峰位移或谱线形状变化引起的差异;②由于与大气接触或在测量过程中试样表面被沾污而引起的沾污元素的峰。2. 状态分析对元素的结合状态的分析称为状态分析。AES的状态分析是利用俄歇峰的化学位移,谱线变化(包括峰的出现或消失),谱线宽度和特征强度变化等信息。根据这些变化可以推知被测原子的化学结合状态。3. 深度剖面分析利用AES可以得到元素在原子尺度上的深度方向的分布。为此通常采用惰性气体离子溅射的深度剖面法。由于溅射速率取决于被分析的元素,离子束的种类、入射角、能量和束流密度等多种因素,溅射速率数值很难确定,一般经常用溅射时间表示深度变化。4. 界面分析用 AES研究元素的界面偏聚时,首先必须暴露界面(如晶界面,相界面,颗粒和基体界面等等。一般是利用样品冲断装置,在超高真空中使试样沿界面断裂,得到新鲜的清洁断口,然后以尽量短的时间间隔,对该断口进行俄歇分析。 对于在室温不易沿界面断裂的试样,可以采用充氢、或液氮冷却等措施。如果还不行,则只能采取金相法切取横截面,磨平,抛光或适当腐蚀显示组织特征,然后再进行俄歇图像分析。5. 定量分析AES定量分析的依据是俄歇谱线强度。表示强度的方法有:在微分谱中一般指正、负两峰间距离,称峰到峰高度,也有人主张用负峰尖和背底间距离表示强度。6. 俄歇电子能谱在材料科学研究中的应用① 材料表面偏析、表面杂质分布、晶界元素分析;② 金属、半导体、复合材料等界面研究;③ 薄膜、多层膜生长机理的研究;④ 表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;⑤ 表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;⑥ 集成电路掺杂的三维微区分析;⑦ 固体表面吸附、清洁度、沾染物鉴定等。
  • 德国Greateyes全新平台Alex!全帧、深度制冷CCD 相机
    全帧转移,深度制冷,高性能科研级CCD 相机全新平台ALEX,这是德国greateyes为您提供的新平台 ,适用于在VUV,EUV,软X射线和硬X射线范围中的光谱和成像应用。ALEX集成了先进的低噪声电子设备和超深冷却技术,同时保持了紧凑的相机设计。可以选择多种读出速度,以支持从50KHz到5 MHz的像素速率。真正的18bit AD转换允许利用CCD传感器的全部动态范围,以实现高性能和SNR。ALEX非常适合用于探测弱信号,这种情况下低的本底噪声是非常重要的。ALEX为您的科学研究提供了前所未有的可能性。下图是由Max Born Institute的成像和相干X射线小组与柏林Helmholtz-Zentrum(BESSY)的X射线显微术部门合作,使用ALEX得到的硅藻在软X射线显微镜下纳米图像。主要特点• 超低温半导体制冷系统(-100°)产生极低的暗电流来达到更佳检测限• 千兆以太网GigE 及 USB 3.0 数据接口您可选择本地或远程进行操作• 高达 98% 的量子效率灵敏的传感器适合弱光应用• 用户可选择增益在优信噪比和动态范围间平衡传感器• 快速读取速度可达5MHz高帧率搭配低噪声电子系统• 灵活的软件选项多种 软件或各类开发包 SDK可选光谱应用成像应用ALEXsALEXiEUV光刻技术软x射线光谱近边精细吸收光谱等离子体发射光谱高谐波光谱共振非弹性x射线散射X射线断层扫描成像傅里叶变换全息术X光透射成像相干衍射成像叠层衍射显微光谱成像掠入射小角度x射线散射典型型号ALEXs系列ALEX1024x256ALEX 2048x512芯片种类FIFI DDBI UV1BI DDFIBIBI UV1像素规格1024 × 2562048 × 512感光区域26.6 mm × 6.7 mm27.6 mm × 6.9 mm像素尺寸26 μm × 26 μm13.5 μm × 13.5 μm(图片为4096x4096)ALEXi系列ALEX 1024 x1024ALEX 2048x2048ALEX4096x4096芯片种类FIBI/BI DDBI UV1FIBI/BI DDBI UV1BIBI UV1像素规格1024 × 10242048 × 20484096 × 4096感光区域13.3 mm × 13.3 mm27.6 mm × 27.6 mm61.4 mm × 61.4 mm像素尺寸13 μm × 13 μm13.5 μm × 13.5 μm15 μm × 15 μm量子效率曲线★ 可选/定制配置 ★01不同型号法兰02芯片倾斜角度/突出03快门等机械配置04软件及SDK特殊开发客户发表文章不断在勤奋、专业、精益求精和追求卓越的Greateyes团队的共同努力下,继发布适用于紫外-可见-近红外波段的全帧转移、深度制冷科研级CCD相机:ELSE系列和适用于在VUV,EUV,软X射线和硬X射线波段的全帧转移、深度制冷科研级CCD相机:Alex系列。同时我们相机在客户现场也表现卓越,仅仅在2020年初就主力了4片论文的发表。简要信息如下:1. Arikkatt, A., et al. "Spectral Investigation of Laser Plasma Sources for X-Ray Coherence Tomography." Acta Physica Polonica, A. 137.1 (2020).波兰军事科技大学光电子研究所的A. Arikkatt团队对于专用于X射线相干断层成像研究所的激光驱动高原子序数等离子源辐射的EUV和SXR光谱进行了研究。该源使用了4ns,650mj的激光器来驱动双气体靶的结构。坐着使用了三个光谱仪来表征1-70nm的辐射光谱:掠入射光谱仪用于测试1-5nm和10-70两个波、透射光栅光谱仪用于测试4-16nm波段。作者标定了光源适用于SXR和EUV相干断层层析实验的波段。整个实验装置非常紧凑,约1.5m*1.5m,非常适用于实验室环境。2. Varvarezos, Lazaros, et al. "Soft x-ray photoabsorption spectra of photoionized CH4 and CO2 plasmas." Journal of Physics B: Atomic, Molecular and Optical Physics 53.4 (2020): 045701.爱尔兰都柏林城市大学和波兰军事科技大学的研究团队对中性甲烷和二氧化碳分子及它们的光电离等离子体的软X射线的吸收光谱进行了测量。SXR是激光驱动双气体靶产生的。在低的软X射线强度下,吸收光谱中只有与中性分子有关的特征。另一方面,随着辐射强度的增加,我们在光谱的低量一侧观察到新的吸收特征。在这种情况下,中性和电离的分子、原子和原子离子等碎片对等离子体的吸收光谱有贡献。作者还提到,这是首次利用这种激光等离子体为基础的SXR源用于创建和探测分子等离子体。重点是确定片段种类和相应的转变。3. Wachulak, P., et al. "EXAFS of titanium L III edge using a compact laboratory system based on a laser-plasma soft X-ray source." Applied Physics B 126.1 (2020): 11.作者利用激光等离子体软x射线源建立的小型实验室系统,对钛在LIII吸收边缘附近的扩展x射线吸收精细结构(EXAFS)光谱进行了研究。使用激光激发氪气/氦气双流充气靶等离子辐射源,其光谱范围优化为200 ~ 700 eV。在EXAFS研究中,宽的SXR谱和高的光子通量是必不可少的。实验装置保证了同时获取参考光谱和吸收光谱。用掠入射平场谱仪记录了它们的光谱。薄(200纳米厚)钛样品的吸收光谱揭示了EXAFS区域的特征,可以相当准确地测定原子间的径向距离。结果与基于光电子波函数散射的数值模拟输出及同步加速器源的数据吻合较好。这证实了这种光源,在标准的EXAFS方法中的适用性。4. Baumann, Jonas, et al. "Toroidal multilayer mirrors for laboratory soft X-ray grazing emission X-ray fluorescence." Review of Scientific Instruments 91.1 (2020): 016102.作者报道了一种用应用于激光驱动等离子体(LPP)射线源的超环面多层膜镜片的设计,并对镜片进行了表征。将此种镜片与已有光源耦合后在热电掺杂金氧化铜纳米膜上实现了无扫描掠射x射线荧光测量。德国Greateyesgreateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。成立于2008年的greateyes,以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。About us:北京众星联恒科技有限公司作为Greateyes公司中国区授权总代理商(EUV-SXR-X ray range),为中国客户提供Greateyes所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的x射线产品及解决方案。
  • 院士专家共商智能影像技术趋势,推动产学研用深度融合
    9月16日,以智能影像技术发展趋势及产学研用探讨为主题的2022年未来影像行业峰会在北京召开,峰会由智能图像处理北京市工程研究中心(以下简称“中心”)举办,邀请院士专家以及50余家企业的近百位行业精英,进行了12场专题分享。工程研究中心主任、小米集团高级副总裁曾学忠介绍了中心过去一年取得的成绩,并对未来影像技术在手机、机器人、汽车、XR(扩展现实)以及AIoT等多个行业出现的新需求做了深入分析,并提出对于未来影像的三个思考点:在多维传感,增强影像方向,拓宽影像传感的维度,突破视觉的限制;在AI赋能,计算摄影领域,用AI算法与硬件进行深入结合,突破硬件的限制;在影像互联,计算互通技术上,用互联互通的计算,打破影像采集以及计算的限制。中国工程院院士、中心专家委主任丁文华院士肯定了中心在影像行业的科研牵引作用,并指出影像多媒体领域对前端基础图像处理技术存在极大需求及市场空间,希望今后中心能够持续发挥平台作用,加深影像行业的产学研用协同创新的深度与广度,为产业的进一步发展起到示范带头作用。中心研究中心常务副主任、清华大学脑与认知科学院院长季向阳教授分享了计算影像的技术发展,介绍了计算影像在光谱成像,多传感器融合,光路编码等多个维度上的突破建议,后续将利用中心的平台创新科研机制,更好地将高校科研技术转化到行业。影像硬件技术企业豪威科技、丘钛微电子、奥比中光分别从图像传感器、相机模组、3D相机领域进行了专题分享。豪威科技总经理刘志碧梳理了当前各个行业对图像传感器的技术需求,并对全局快门、Hybrid EVS、微型化相机等行业新技术做了全面分享。丘钛微电子副总裁胡三木分享了相机模组硬件的发展趋势,并对大光圈、防抖、大推力马达、moding等模组工艺的演进进行了分析。奥比中光高级副总裁江隆业分享了3D视觉在各新兴行业的应用情况,并对3D视觉未来的技术发展方向进行展望。新型影像技术企业与光科技、灵明光子、普诺飞思分别从光谱相机、深度相机及动态相机的技术发展路线以及应用场景切入,进行了专题分享;与光科技CEO王宇认为小型化的光谱传感器是未来的技术趋势,并详细介绍了小型化光谱传感器在辅助色差还原、健康检测上的重要作用;灵明光子CTO张超阐述了dToF替代iToF在远距离深度探测场景的明确趋势,并介绍了dToF在汽车、消费、工业等多个领域的应用价值。普诺飞思中国区GM杨雪飞阐述了这种新型传感器相比于FBS相机的巨大优势,并介绍了DVS在超慢动作检测、边缘跟踪以及高级驾驶辅助等场景下的价值。北京邮电大学、极感科技、黑芝麻智能就影像算法进行了主题分享。北京邮电大学计算机学院执行院长马华东教授就视频处理各算法的发展状况做了介绍,并指出了AI视频算法模型轻量化的发展路径。极感科技高级总监林曦在深度计算和分割算法的现状和发展做了分享,提出了未来影像算法芯片化和工程化的方向。黑芝麻智能总监王超就视觉算法在自动驾驶上的应用做了技术分享,从低噪声、大动态、低延迟等场景举例,提出了视觉算法的需求方向。小米手机部副总裁、相机部总经理易彦博士分享了小米在手机、机器人、XR、智能汽车、智能制造五大主要应用场景中影像技术的深度积累,他表示,未来将依托中心持续加大资源投入,联合更多的上下游产业伙伴,围绕影像行业的系统性需求,做好产业协同,提升行业整体竞争力。据了解,智能图像处理北京市工程研究中心由小米集团牵头,联合清华大学等高校与企业于2021年共同组建,该中心的主要发展目标为联合上下游企业、高校和科研院所等机构,开展图像处理软硬件核心技术的开发、验证以及成果转化等全链路的创新,以推动行业共同发展。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 依科视朗推出用于CT系统的自动分析软件Dragonfly,赋能电池产品深度检测
    近日,在2023德国斯图加特质量控制测试及仪器仪表展览会(Control Show)上,Comet Yxlon(依科视朗)发布了一款全新的自动分析软件,这款软件可用于改善电池产品的质量控制。随着新能源汽车市场的崛起,电池制造市场在近几年中被带动并获得了巨大的增长潜力。同样,为了确保电池产品的性能和安全,对检测技术的需求则处于不断增长中,提高生产良率和提升电池制造商的产能变得越来越重要。X射线技术则是这一问题的最佳解决方案,尤其是计算机断层扫描(CT)技术,这一技术特别适用于检测分析电芯,模组,甚至是整个电池包的内部细节及潜在缺陷。为了确保复杂并且作为主要蓄能作用的电池单元能够正常发挥效能,在生产过程中则不能出现任何差错。有诸多因素会导致产品失效,如:断裂、气泡夹杂、异物、变形褶皱、极耳焊接缺陷,以及正负极极片对齐不良等。当发生极片对齐度不良缺陷时,可使阴阳极相互接触从而导致短路,电池将会变得非常危险,甚至导致自燃起火。安全问题在电池检测中始终是最重要的环节。因此,检查并测量极片对齐度是最优先的首要任务。客观、可靠、且可重复的检测结果通常在CT检测过程中的只能通过软件分析并实现。同时,软件的另一个优势则是可以稳定且持续的工作。依科视朗3D可视化图像分析软件——Dragonfly,可建立深度学习模型,在发现潜在缺陷方面具有极高的灵敏度。此外,该自动分析功能够适应不同生产商的具体需求。电池深度检测能够实现全自动的极片对齐度检测,在合适夹具的辅助下甚至可以实现整个产品批次性检测。检测报告同样会以自动的方式生成,提供有关每个电信的状态信息,所获取的大数据则能够被用于生成趋势统计,帮助优化生产工艺,大幅提高生产良率。
  • JEOL推出新款X射线光电子能谱仪 销售目标20台/年
    JEOL已经完成了JPS 9030 X射线光电子能谱仪的开发,并于2015年4月10日开始销售。  近年来,对于高质量、快速、操作简单的表面分析仪器,以及对任何水平的用户和任何种类的样品都可实现高重复性分析的表面分析仪器的需求越来越多。JPS-9030采用了新设计的用户操作界面,能够进一步提升可操作性,并采用了巧妙的、新的现代化的时尚外观设计。  JPS-9030采用新开发的Kaufman型蚀刻离子源可提供的蚀刻速率为1纳米/分钟至100纳米/分钟(SiO2),并允许宽范围的设置。它能够适用于任何应用的剖面分析,从要求精度的分析到需要速度的分析。  JPS-9030利用新开发的软件使得操作更加简便。SpecSurf Ver. 2.0现在采用了带状式的图形用户界面,在一个用户友好环境中,所有操作都只需动动鼠标就能完成。利用日本电子公司自有的自动定性分析功能,对多个采样点能够依次进行定性,定量和化学态分析。  JPS-9030支持如角分辨XPS(ARXPS)和全反射XPS(TRXPS)技术,并且能够对表层1nm深度进行超灵敏分析(标准测量方法为6nm以上)。  JPS-9030的销售量目标为每年20台。
  • 助力科研平台升级,复享光学深度光谱技术
    科技平台是支撑国家科技进步、凝聚高层次人才、保障现代科技发展的物质基础与条件,是国家科技创新体系的重要组成部分。加强平台的科技创新特别是原创性、颠覆性的科技创新,聚力攻关“卡脖子”技术,是实现国家高水平科技自立自强的基础保障。复享光学成立十余年来,深度参与科技平台及产业化建设,致力于与科学家共同解决科学研究、微电子、光电子、光子、能源等领域中遇到的关键光学计量检测问题,已成为中国先进光谱技术领导者。复享光学是第一家以光子技术为根基的光谱仪器企业,产品覆盖光谱仪/模组、光学量检测系统与各类光学计量子系统。我们致力于为市场提供更高效率、更低成本的光谱解决方案。集成光子芯片的相位表征应用领域:超表面、超透镜Metasurface/Metalens超透镜/超表面将会取代传统几何光学镜片成为下一代光学系统的关键器件,围绕其研发过程中的相位与光学性能表征需求,以及量产过程中的形貌、缺陷计量与检测需求,提供全面的光学量检测仪器与设备。推荐设备:超构透镜光学检测系统纳米激光器的性能表征应用领域:PCSEL/BIC 与纳米激光器PCSEL 以其高功率和高质量的光束而备受科研与产业的关注,围绕其研发阶段的光子能带与辐射模式的表征,以及量产阶段的激光特性表征,提供光学与光电量检测仪器。推荐设备:显微角分辨光谱仪集成光子器件的量检测平台应用领域:AR/VR 光学计量检测AR/VR 有望成为下一代人机交互平台,针对 AR眼镜中的关键光学器件——衍射光波导——研发过程中的绝对/相对衍射效率测量、高精度周期计量,以及量产过程中的表面形貌计量,提供桌面式与晶圆级的光学量检测设备。推荐设备:光栅衍射效率测量系统、晶圆级衍射光波导光学检测系统集成光子器件的表征平台应用领域:光子晶体、拓扑光子学与 BICBIC 是当前光子晶体研究的热点,通过动量空间的光子能带测量可以清晰地发现各个位置的 BIC,特别是通过表征本征态在动量空间的偏振态分布,可以发现 BIC 背后的拓扑机制——动量空间光谱测量对于 BIC 研究具有至关重要的作用。推荐设备:角分辨光谱仪、显微角分辨光谱仪有机半导体的光谱表征应用领域:有机光伏,有机晶体管,有机发光(OLED)面向有机光伏、有机晶体管和OLED等应用场景,提供分子取向测定、膜厚测量和原位共焦光谱表征等检测设备,推动材料优化、器件研发和量产。推荐设备:分子取向表征系统、膜厚检测仪、原位共焦光谱表征系统面向钙钛矿光伏电池从实验室到量产的全链条表征应用领域:钙钛矿光伏电池围绕钙钛矿光伏电池在实验室及中小试产线的制备、表征及计量需求,建立全链条的表征系统,可以全面了解钙钛矿光伏电池的制备过程和性能特征,为进一步提高钙钛矿光伏电池的性能、稳定性和可靠性提供科学依据。推荐设备:钙钛矿光伏电池组件整线解决方案及全链条表征平台面向大科学装置检测的高能光谱仪应用领域:半导体光刻机/厂设备客户Helios高能光谱仪服务于极紫外光源的质量检测:测量FEL的基频和谐波的EUV光谱,以诊断光束质量;测量高电荷态Sn离子的发射光谱,以诊断等离子体状态。推荐设备:高能光谱仪面向集成电路加工过程监控的方案应用领域:量测 metrology面向集成电路领域的薄膜量测和光学关键尺寸(OCD)量测设备,提供高性能的核心光谱检测模块。推荐设备:量测光谱仪应用领域:刻蚀终点检测 EPD&bull OES方案:针对Poly、SiNx、OX、PR、金属等有截止层刻蚀工艺提供终点检测&bull IEP方案:针对3D NAND台阶刻蚀、沟槽型SiC MOSFET凹槽刻蚀等无截止层刻蚀工艺提供终点检测推荐设备:终点检测方案材料元素分析平台应用领域:光学发射光谱测元素成分原子光谱提供了原子内部结构的丰富信息,可用于对元素的定性和定量分析。高分辨发射光谱仪是原子光谱测量表征的必备测量仪器。推荐设备:多通道光学发射光谱仪面向生物医学的检测平台应用领域:早期癌变的分子诊断拉曼光谱仪在分子水平上为组织中 DNA、蛋白质和脂类物质的结构变化提供无损、微区和深穿透的检测,是应用于肿瘤细胞和组织的早期筛查、病变分级的理想工具。推荐设备:拉曼光谱仪微塑料的定量分析应用领域:微塑料微塑料拉曼分析仪,基于对纳米塑料及微塑料的定性及定量检测,能为研究微/纳米塑料的产生机制、环境影响、人体监控影响等,提供有效手段。推荐设备:微塑料拉曼分析仪高压条件下的多模态光谱表征应用领域:极端环境高压原位多模态光电表征系统为研究材料的高压科学,探索新现象提供全面的光谱表征方案。推荐设备:高压原位多模态光电表征系统
  • 平行论坛合集丨labtech China Congress深度拆解可持续、智慧、安全实验室建设
    作为亚太实验室领域行业灯塔慕尼黑上海分析生化展(analytica China)在实验室规划、建设与管理方面的延伸,上海实验室规划建设与管理大会暨智慧实验室大会(labtech China Congress 2021)将于10月21-22日在上海浦东嘉里大酒店隆重开幕。大会四大平行论坛将围绕安全、智慧、可持续”三大核心词,与同济大学、国际实验室建设与测评、上海市质量和标准化研究院(SIS)、上海市临检中心、上海市浦东新区检验检测认证行业协会、上海市医学装备协会、北京戴纳实验科技有限公司分别从可持续实验室(1)——碳中和碳达峰目标下实验室运维与评价、实验室环境与安全、可持续实验室(2)—— 国际角度洞察可持续、实验室相关人员高级研修班——数字化与智能化,检验检测行业未来可期四大方向展开深入探讨,让从业者更关注实验室创新技术及行业趋势,掀起实验室规划建设与管理的新思潮。平行论坛一:可持续实验室(1)——碳中和碳达峰目标下实验室运维与评价“碳达峰、碳中和”是一场广泛而深刻的经济社会环境的重大变革。实现这一愿景,需要建立健全绿色低碳循环发展经济体系,促进经济社会发展全面绿色转型,实现可持续的发展体系,实验室建设亦是如此。本平行论坛主题设置旨在全面诠释2060碳中和下未来绿色实验室创新发展解读,从实验室运维与评价角度出发,深入“碳索”可持续实验室发展,达到降本增效与环保共赢。可持续实验室(1)平行论坛将聚焦实验室:低能效低碳能源管理与应用、近零碳/零能耗未来实验室展望、可持续实验室优秀人才培养与安全教育、新材料如何助力可持续实验室发展、绿色建筑重要评价体系LEED标准在实验室建设的重要角色等。平行论坛二:实验室环境与安全在全球新一轮科技革命与中国建设创新型国家的历史交汇期,实验室在科学前沿探索和解决社会重大需求方面发挥着愈显重要的作用,实验室环境与安全是实验室运行的基础条件,同时需要保障实验条件和人员健康。实验室是易燃易爆品、剧毒药品、放射性物品、生物危害等众多安全隐患扎堆的“聚集地”,也是科技成果的“孵化器”。我国的重大科技创新成果如纳米、新能源、生命科学等领域的成果均来源于实验室。不断发生的实验室事故暴露了实验室环境与安全方面的薄弱环节。本次平行论坛二环境与安全主题将致力于“既建之,则安之”,传递守护科研人员健康,人与实验室和谐发展的理念。实验室环境与安全平行论坛将聚焦实验室:化学品污染与职业健康、危险废物全生命周期管理、数据、设施与网络安全、规划、设计与建设。平行论坛三:可持续实验室(2)—— 国际角度洞察可持续labtech China Congress 2021对实验室可持续发展拆分为两个角度,平行论坛——可持续实验室(2)以国际角度洞察可持续为切入点,以“科研实验室”、“国际交流”、“绿色节能”、“抗疫”、“SmartLabs Toolkit”为关键词,旨在搭建实验室设计、建设、管理的信息交流共享平台,是具有高水平的实验室设计、建设论坛。论坛将邀请全球实验室领域专家,交流国际先进的设计、建设和管理理念,提高中国实验室设计与建设水平,促进国内科研、教育、环境监测、检测、医疗等实验环境的持续改善。平行论坛四:实验室相关人员高级研修班——数字化与智能化,检验检测行业未来可期实验室相关人员高级研修班——数字化与智能化,检验检测行业未来可期将以“政策与法规”、“标准解读与报告”、“实验室认可”、“智慧实验室的建设”、“智慧实验室的验收”为关键词,从国务院163号令的修订到检验检测机构政策法规的解读,从智慧实验室的建设、验收中重、难点的分析,到疫情常态下实验室认可中的远程评审,讲述了国家对检验检测机构的“放、管、服”政策下,检验检测机构将向有序、健康和可持续发展,检验检测机构未来可期。点击了解labtech China Congress 2021详情 • 如何报名方式1:点击链接 ,直接报名大会方式2:扫码即刻报名大会方式3:关注官方微信服务号“labtechChina” 报名大会• 大会门票 & 权益1、展区票:2021年免费参观(价值RMB 198元/人)1) 四大平行论坛 50+场前沿报告2) 20+场实验室精讲&培训3) 800+平米Live Lab&创新展区4) 自助茶歇*2场/天5) 会议资料礼包2、会议及展区通票:RMB 980元/人(截至10月15日享三人同行一人免单)免费申请会议及展区通票: 有实验室建设需求的专业观众,通过报名系统提交真实信息后,经主办方审核即可获取对应的免费名额。1) 两大主论坛 四大平行论坛 100+场前沿报告2) 20+场实验室精讲&培训3) 800+平米Live Lab&创新展区4) 自助茶歇*2场/天5) 会议资料礼包3、VIP通票:RMB 1980元/人 (截至10月15日享三人同行一人免单)免费申请VIP通票:有医疗/疾控/疫情等相关实验室建设需求的专业观众,可提交真实采购信息至Sydney.jin@mm-sh.com,经主办方审核即可获取对应的免费名额。1) 前排坐席预留2) 酒店豪华自助午餐*2天(RMB 888元)3) VIP精美礼包(RMB 398元)4) 两大主论坛 四大平行论坛 100+场前沿报告5) 20+场实验室精讲&培训6) 800+平米Live Lab & 创新展区7) 自助茶歇*2场/天8) 会议资料礼包如需了解“labtech China Congress”更多详情,请关注官方微信“labtechChina”。
  • 岛津发布岛津/Kratos X射线光电子能谱仪AXIS SUPRA+新品
    创新点岛津/Kratos公司的AXIS SUPRA+集样品全自动传输、全自动分析、智能数据采集处理于一体,体现了的超强的便捷性;拥有多种X 射线源、大半径双层能量分析器,杰出的荷电中和技术,使其获得了卓越的性能;通过丰富的硬件接口和灵活的软件接口,具备了多种功能附件和完善的表面分析技术。产品介绍岛津/Kratos公司的AXIS SUPRA+作为高端光电子能谱仪传承了上一代产品高度智能化的优点,将采谱、成像功能与自动化高度相融合,保证了高样品吞吐量和易用性,为用户提供了全新无人值守自动化体验。同时AXIS SUPRA+对产品硬件进行了相应的改进和扩展,一方面能够为用户提供仪器更优异的性能,另一方面也为用户提供了可选的多种拓展技术。 AXIS SUPRA+卓越的自动化技术无人值守自动进行样品传输和交换硬件自动化控制,实时监测谱仪状态和校准AXIS SUPRA+超强的表面分析能力具有大束斑高性能XPS分析、快速平行化学成像分析、小束斑微区分析利用角分辨、高能X射线源、深度剖析可以实现从超薄到超厚的深度分析多种功能附件(惰性气体传输器、高温高压催化反应池等)和可拓展多种表面分析技术,如紫外光电子能谱(UPS),离子散射谱(ISS),反射电子能量损失谱(REELS),俄歇电子能谱和扫描俄歇电子显微镜(AES和SAM)等等AXIS SUPRA+高效智能工作流程适合多用户环境高吞吐量、快速队列样品分析模式实现连续分析AXIS SUPRA+采用的通用表面分析ESCApe软件系统使用户与谱仪的交互简单化和智能化,可以进行谱仪的控制、数据的采集和分析。创新点:集样品全自动传输、全自动分析、智能数据采集处理于一体,体现了的超强的便捷性;拥有多种X 射线源、大半径双层能量分析器,杰出的荷电中和技术,使其获得了卓越的性能;通过丰富的硬件接口和灵活的软件接口,具备了多种功能附件和完善的表面分析技术。岛津/Kratos X射线光电子能谱仪AXIS SUPRA+
  • 电子束对样品的热损伤及应对方式——安徽大学林中清33载经验谈(16)
    【作者按】在进行扫描电镜测试时,最让测试者感到头痛的往往是电子束对样品的热损伤。因为一旦产生热损伤,那么样品的表面形貌信息将彻底的消失。热损伤和荷电现象都会带来形貌像的形变,因此很多人(包括不少专业人士)都将样品的荷电做为形成样品热损伤的原因之一。其实这是个误解,样品荷电现象虽然对形貌像有改变,但是它不会对样品形成破坏,在改变测试条件克服荷电影响后,还是可以得到完整形貌像。但是热损伤就不是这样了,一旦发生热损伤,则该样品细节将不复存在,此后无论采取何种方式都无法获取这些信息。热损伤是如何形成的?那些样品容易形成热损伤?又有哪些因素是造成样品热损伤的关键因素?该采取何种方法来减轻或消除电子束对样品热损伤,获得相对完整的样品信息?一、电子束对样品热损伤的形成当高能电子束轰击样品时,高能电子束会与样品原子之间形成能量交换,形成所谓的“非弹性散射”。交换的能量中只有很少的一部分用于激发样品的特种信息,二次电子、光电子等,大部分能量都将转换成热能而驻留在样品中,使得样品局部温度上升,达到一定程度,就会对该处细节形成破坏,也就是热损伤。高能电子束轰击样品形成局部温度上升,该处升温究竟能达到多少呢?关于这一点目前都是以Castang升温公式为参考。依据Castang升温公式:V0(kV) 加速电压,i(μA) 探针电流,d(μm) 电子束直径,K 材料热导(Wcm-1k-1)其中加速电压、束流及束斑大小是造成样品升温的主要外部因素。而样品本身的热导率是形成温度上升的主要内部因素。一般观点都认为,容易形成荷电的样品,其漏电性(普遍被称为是导电性,但个人认为这个定义不准确)都较差。漏电性较差的部位,其导热性也较差,因此该部位更容易形成高温造成的热损伤。但是温度的升高与形成热损伤并不形成完整的一一对应关系,还与该处的耐热性有关。如果该处的导热性差,但其耐热性好,也一样很难形成热损伤,所以容易形成荷电的样品,即便其导热性较差,也不一定会比不易荷电的样品形成热损伤的概率要大。形成样品局部升温的外部因素,如加速电压、束流以及束斑直径,往往被认为是测试时调整样品热损伤影响的主要着力点。依据以上升温公式可知加速电压及束流越大,则同等条件下某区域的升温也就越高,对样品的热损伤也就越严重,但会受到束斑面积增大等因素的制约,最终结果取决正、负因素竞争后引起质变的主导者。这是对测试条件进行改变的依据所在,将在下一节再详细探讨。不同类型的电子枪,由于结构设计的差异,会使得同样加速电压下对电子束加速的最终电场偏压出现一定的差异,造成电子束的电子能量出现些微不同,而使得其在同等条件下对样品的热损伤也会出现差别。一般来说,冷场电子枪最终形成电子束的电子能量会略低一些,所以其对样品的热损伤在同等条件下也会略好一些。由于热发射电子枪慢慢的被淘汰,而且其常规测试条件和目前占据主流地位的场发射电子枪不在一个水平线上,所以不具备对比的意义。下面将只对热场电子枪和冷场电子枪结构进行探讨。从以上热场和冷场电子枪的结构简图可见,加速电压都做为基准的负偏压以开路的形态加载在阴极(灯丝)上,以保证阳极为零电位。这一点热场和冷场都是一致的。但是热场电子枪在第一阳极和阴极之间加了一个栅极保护极,屏蔽热电子,该电极上加载的负偏压是叠加在阴极之上,故栅偏压比阴极偏压更低。因此在第一阳极拔出电子时给电子的加速就应该以一个更负的偏压基础来计算,也就是整个电场的偏压值会有所增加,从而使电子束中电子的能量会略大一些。由于电场的叠加作用并不是简单的一加一,所以电子束中电子能量的差别也不能采用简单的加减法来进行计算。该差异在高加速电压时,相对较小,据次要地位。但随加速电压值的降低,其在电子整体能量中的占比就会增加。加速电压达到100V后,该差异的影响就不得不考虑。冷、热场也会呈现出信息深度上的差异。低于100V,加速电压值基本无法代表电子的实际能量值。电子能量真低于100eV,能充分激发最高能量为50eV的二次电子?从以上两张原子力显微镜的图片可见,湿法膜结构为骨节状骨架表面有一薄膜层。膜层应该是非常的薄,估计只有几个纳米。扫描电镜采用极低的加速电压100V来观察可见如下结果:左图某冷场发射扫描电镜图,图像骨节状信息不清晰,明显感觉有膜状物裹挟。右图某热场发射扫描电镜图,骨节状的结构清晰可见,表层薄膜信息却较为的淡薄。加速电压相同,热场观察到的信息更深一些,这说明在同样加速电压下,热场电子束的能量是要大于冷场扫描电镜。但是这个能量差在加速电压较高时,相对较小,图像差异也就不明显了。当加速电压到500V的时候,电子束中电子能量的相对差距相比100V来说要低很多,图像呈现的信息几乎一致。正是电子束的能量存在些微差距,这就会使得冷场扫描电镜在相同条件下对样品的热损伤会相对轻微一些。枝晶MOF,容易被电子束热损伤左图 热场只能观察不易受热损伤的粗枝晶而无法观察到如右图的细枝晶右图 冷场即便观察更容易被热损伤的细枝晶也不存在问题电子束在样品上扫描区域的面积越小,电子束能量转换也就越集中,形成的热量密度也越大,相对来说对样品热损伤也会增强。这就是倍率越高,样品越容易受电子束热损伤的主要原因。增大束流,对样品的热损伤会加大,但是受到束斑尺寸的制约。依据Castang公式束流的影响综合表现为束流密度对升温的影响,束流密度冷场要高于热场,但是以上的事例呈现的结果却于此相反。因此个人认为:电子能量的大小对热损伤的影响似乎更为关键。二、如何应对电子束对样品的热损伤Castang的升温公式告诉我们,引起样品表面升温的因素来自两个方面:样品自身的导热性这是内因,而外因在于加速电压、束流和束斑尺寸的大小。这些因素也是我们改善电子束对样品热损伤的切入点。增加样品热导率,降低加速电压和束流,增加束斑尺寸及束斑离散度,都会减轻电子束对样品热损伤的程度。但这些改变都会对扫描电镜的测试结果带来负面影响,因此对“度”的掌控,找寻最合理的测试条件的综合解决方案,是应对电子束对样品热损伤的最佳选择。电子显微镜冷冻操作技术的发展,为应对样品的热损伤开拓了更大的空间。显而易见,降低样品温度会减少电子束对样品的热损伤,特别在液氮降温技术被成熟运用之后,效果极为明显。但冷冻技术的操作较复杂、成本较高且会带来样品仓室污染,影响仪器的分辨能力,目前运用的并不广泛。下面仅探讨常温下的热损伤解决方案。在探讨这一综合解决方案之前,将首先对以上单一解决方案的具体操作方式给予一一的描述。2.1 应对样品热损伤的内部因素调控改善样品性能应对电子束的热损伤,必须以尽量减少对表面形貌的破坏为先决条件。对于该项工作的实际操作方式,依据个人的实践经验可总结为:合理的样品老化,以便增加样品对热损伤的耐受力;适度的蒸金以提升样品表面的导热性。采用导电胶对样品的充分固定是进行以上操作的先期必要步骤,导电胶要涂至样品表面。在样品可耐受的温度范围内,对样品整体进行烘烤老化,一般需几个小时或过夜甚至更长时间,尽可能去除样品表面附着的挥发物。需要的话,可将样品在电镜中采用低剂量的电子束(较低的加速电压和束流)在低倍率下轰击直至稳定,这期间要监控样品在电子束的轰击下是否会出现形貌的变化,如果出现形貌的改变则必须将电子源能量进一步降低。如果样品老化效果不佳,则可以采用蒸金的方式以改善样品表面的导热能力,减少电子束对样品的破坏。样品表面蒸金须考虑以下几个影响样品形貌信息的事宜:①蒸金时对样品的热损伤。②蒸金量对样品形貌信息的覆盖。③镀层的均匀性,保证在较少蒸金量的情况下有更好的导热性。要满足以上三点,控制好电流和单次蒸金时间极为关键,个人认为单次蒸金时间最好不要超过20秒。低剂量的多次、短时间蒸镀是解决问题的最佳方案。具体蒸金量可通过实际观察效果予以调整。2.2 应对样品热损伤的外部因素调控依据Castang升温公式,较低的加速电压和束流强度,较大的束斑尺寸都会使得同等条件下样品观察区域的温度上升较小,对样品细节的热损伤也会较轻或基本不会形成热损伤。但过低的加速电压和束流,以及较大的束斑尺寸会影响图像质量并限缩样品形貌信息的获取,具体探讨可参见经验谈8《加速电压和束流选择》。要获取更充分的样品形貌信息必须扩大这些测试条件的选择范围。工作距离、图像倍率以及电子束扫描速度的选择都会对样品的热损伤产生较大的影响。而在对它们做出合理的选配之后将会极大的扩大加速电压、束流以及束斑尺寸的选择余地。工作距离越小,电子束的会聚角就会增大,电子束的束流密度将会增加,从而在同等条件下对样品的热损伤也会加大。样品的热损伤常常会出现在高倍率的调整过程中(如上图红框部)。表现为高倍率调整部位的细节与周边细节极度的脱节,被热损伤的部位细节明显的收缩并加粗,这些都显现在了左图采用1.7mm工作距离所获取的形貌像中。右图采用8.7mm工作距离所获取的形貌像在相同部位则与周边细节的变化完全的匹配,未受到电子束的热损伤。但是工作距离的过度拉大,会使得电子束斑的弥散加大,不利于获取高质量的高倍率形貌像。故测试时要取、舍得当,没有舍哪来取。依据个人经验,当工作距离达到15mm以后,由于电子束弥散较大,电子束对样品的热损伤会降低的极为明显。因此,对加速电压和束流的限制会下降很多,对它们的选择空间将明显加大。扫描电镜的放大倍率越低,电子束在样品上的扫描密度就越稀松。使得电子束在样品上产生的热量较为分散,局部温度降低的较为明显,对样品的热损伤也会减弱。在常规测试时,往往会发现电子束对样品的热损伤都是出现在高倍率的仪器调整(调焦及消像散)时。当电子束在样品上快速移动时,电子束在某点停留时间的减少,也会将单次能量的转换量降下来,同样也会减缓温度的提升并随电子束的快速移动而发散开来。大量的实践经验告诉我们,对样品某点的热损伤除了升温的高低之外,关键还在于驻留时间的长短。同等条件,驻留时间越短电子束对样品的热损伤越小。因此采用快速扫描获取样品的形貌像也是克服样品热损伤的有效方法。依据本人长期测试经验,应对样品热损伤,在外部因素的调控方面,选用较大的工作距离以及快速的扫描方式获取图像,对减缓热损伤的效果要远高于在加速电压、束流及束斑尺寸方面的选择。2.3 如何应对样品的热损伤以下内容为本人数十年,特别是近十年的经验总结,仅作参考。要充分应对样品的热损伤,样品的处理极为关键。而样品处理在2.1节已有较为详细地描述,这里要强调的是,固定是最先要做的基本工作,因为样品的整体固定不但是解决图像漂移的基础(容易热损伤的样品本身就不稳定)同时也为后期的导热提供通路。样品的老化和金属化(蒸镀金属材料)要采用低剂量的叠加方式尝试着来,随时观察判断并调整极为关键,否则很容易破坏样品的细节。对测试条件的选择,加速电压和束流的选择要以获取样品信息为准,兼顾其对样品热损伤的影响。对热损伤的处理主要交给工作距离和获取形貌像时的扫描速度来解决,这样效果反而更好。大工作距离有利于获取样品的大部分表面形貌信息,同时也有利于减弱电子束对样品的热损伤。快速的扫描模式虽然会影响形貌像的图像质量,但是并不会对形貌信息产生太大的影响,而加速电压和束流选择的不同对获取样品的细节信息,影响就要大很多。电子束对样品的热损伤最容易出现在高倍率情况下的像散和焦点调整,因为此时电子束会长时间的汇聚在某一区域。电子束的长时间驻留对样品热损伤要大于温度的影响,当然这都是在一定“度”的范围内。在进行调整操作时会形成样品热损伤,不一定在拍摄形貌像时也存在热损伤,关键是你要调整好拍摄形貌像时的电子束扫描速度。所以调焦和消像散应当采取“临近点调焦”的原则,利用多个临近点的对中、调焦和消像散来减轻拍摄点的热损伤现象。三、结束语扫描电镜测试时电子束对样品的热损伤是最让测试者头痛的问题。形成样品热损伤的因素有很多,依据Castang升温公式,加速电压、束流、束斑尺寸以及样品的热导率是导致样品温度上升的主要因素,也是形成样品热损伤的主要因素。对于样品来说,热导率是内因,其他都是外部因素。而要解决样品热损伤问题,着眼点就是对这几个因素进行调整。对内因的解决方案主要是样品的固定、老化以及金属化(蒸镀金属)。而对外因的解决方案就是降低加速电压和束流,增加电子束束斑尺寸。在实际测试过程中往往发现对上所述的外部因素进行大范围调整会带来样品信息的缺损。而借助于工作距离和拍摄图像时对电子束扫描速度的选择,将有助于扩大加速电压、束流的调整范围。大工作距离测试不仅能带来样品热损伤的减轻,还能获得许多小工作距离无法获取的样品信息,这在过去的经验谈中有充分的探讨。自然辩证法的三大规律告诉我们,任何条件的改变都会带来一定程度的负面因素。要避免负面因素成为主导,任何因素的改变都不能走向极端。多种因素配合使用,互相弥补各自所存在的缺陷,才能获得较为完美的结果。对样品热损伤的处理也是一样,要把以上对减轻样品热损伤的所有方法结合起来使用,才会获得最佳的效果。 参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 晶泰科技联手北大舒绍坤课题组,CRISPR+细胞表型+深度学习驱动肿瘤研究
    近日,晶泰创新中心与北京大学国际癌症研究院舒绍坤课题组宣布建立合作,双方将基于舒老师课题组的高通量 CRISPR 技术,整合晶泰科技的细胞高内涵 Cell Painting 成像技术与深度学习方法,通过多模态数据融合,共同开展疾病机理及药物作用机制研究。药物发现是理性设计与实验探索相结合的工作,其成功极大依赖于科学家对于疾病机理的深刻理解。随着人工智能和大数据技术的快速发展,已有多家研究机构和公司利用多种维度的生物大数据与机器学习结合,实现多模态数据融合(Multimodal data fusion),并取得长足的发展。该技术能从多个维度对疾病及药物在复杂生物体系内的作用机理进行深入的研究,特别是在靶点发现、苗头化合物发现、药物重定向、活性与毒性评估等领域,拥有巨大的应用前景。然而生物大数据维度与复杂度的提高,使得其对模型的数据处理能力要求也更高。数据采集和处理中的噪音问题,限制了数据利用效率和模型表现,为多模态数据融合的应用带来挑战。本次合作中,北大舒绍坤课题组与晶泰科技将利用各自的技术优势,将多模态数据融合与深度学习算法高效结合。舒绍坤老师及其带领的课题组在肿瘤药物机制研究领域有丰富的经验与独到的见解,可通过高通量的 CRISPR 技术对细胞形成大规模的基因编辑扰动;而晶泰科技自主建立的细胞研发平台 X-Map,能够大规模收集细胞扰动后的高内涵图像数据和转录组数据。两者结合,能基于真实世界的多维度数据获得细胞水平的精确观测,从而建立起不同生理学变化与基因、药物调控之间的对应相关性。这一研究方法相较于动物模型,通量更高、成本更低,可以针对特定的研究体系,快速获得包含更大信息量的高质量研究数据,进一步提高药物研发的效率和成功率。算法方面,晶泰科技在深度学习算法与流程开发、图像分析领域具备独到的优势。配合其全新建立的细胞表型平台,晶泰创新中心自主研发了一套基于 Transformer 架构的 X-Profiler 算法,能针对特定的下游任务进行有效信息的提取,良好应对例如高内涵成像中因为孔板边缘高度变化导致的失焦模糊等问题,剔除数据噪音对模型的影响,提高信噪比(signal-to-noise ratio, SNR),并根据任务自适应调节数据质量控制策略,从而显著提高模型性能。X-Profiler在药物机理研究、毒性评估等多项下游任务中取得突破性结果,相关研究成果的预印版已发表在 BioRxiv 上。双方合作的第一阶段将聚焦于肿瘤治疗新靶点及肿瘤耐药机制的研究,目前已经取得了初步的进展。下一步,相关成果将应用于抗肿瘤耐药性药物的研发,以期为癌症患者带来更加有效的治疗选择。晶泰创新中心聚焦前瞻性核心技术的开发与应用落地,目前已建立 X-Map 细胞研发平台,整合了包括 Cell Painting 在内的细胞影像、转录组建库、自主研发的 X-Profiler 深度学习建模算法等技术。晶泰创新中心将基于 X-Map 细胞研发平台,持续在机理研究、药物筛选、临床前药物评价等领域与药企、科研机构合作,共同开展课题研究与研发合作。晶泰科技联合创始人、首席创新官赖力鹏博士表示,“高质量数据与人工智能技术的结合将成为驱动药物创新的主要力量之一。舒绍坤老师课题组在基于 CRISPR 高通量基因编辑和多组学实验技术的肿瘤机理研究方面有丰富的经验。这些技术和经验将为合作提供宝贵的知识及数据。结合晶泰自身的 X-Map 细胞表型研发平台,我们期待基因编辑、细胞高内涵技术、深度学习方法能在本次合作中展现出突破性价值,带来更好的创新肿瘤治疗方案。”北京大学国际癌症研究院研究员、博士生导师舒绍坤博士表示,“通过高通量CRISPR技术、细胞表型 Cell Painting 平台技术、多组学技术和深度学习多模态融合技术相结合,解析药物靶点功能和机制,能够充分发挥生物大数据和深度学习大模型的优势,是我们课题组和晶泰创新中心十分看好的方向。晶泰创新中心具有开放的合作模式与明确的算法技术优势,深刻理解现有表型技术的优点和瓶颈,为项目提供了高质量的细胞 Cell Painting 图像数据与建模解决方案,为项目推进提供了重要保障。期待两支团队能够在肿瘤药物作用机理的研究合作中获得更多有价值的成果。”● 关于晶泰科技创新中心 ●晶泰创新中心(XtalPi Innovatioin Center) 依托晶泰科技在人工智能、科学计算、自动化方面的技术积累,致力于通过前沿计算与实验技术的融合,推动更多从0到1的行业革新,持续发展AI和自动化实验技术在生命科学、生物材料、农业、能源等相关领域的应用。同时,晶泰创新中心将坚持推动底层科学探索和应用技术突破,加速产学研联合下的商业转化,不断为行业与社会创造价值。
  • 清华站回顾 | 眼见为“实”的深度光谱应用课堂圆满结束!
    6月26日,复享光学深度光谱应用课堂清华篇在清华大学材料学院成功举办!本次活动由清华大学材料学院与复享光学联合主办,针对复享光学自主研发的显微角分辨光谱仪的原理和应用,以线下交流、线上同步答疑的形式为学校师生进行培训宣讲,并由复享光学应用专家提供设备操作教学,吸引了北京诸多著名高校老师学生前来交流学习。独出机杼,别出心裁;复享光学应用专家孙沛智博士以独到的见解和生动的比喻为大家阐述了显微角分辨光谱技术的科学背景及应用案例,大家纷纷表示“秒懂”、“已get”,并引发了在场师生们的广泛交流,针对复享光学显微角分辨光谱仪的强大功能产生了浓厚的兴趣,且对其广阔的应用领域进行了深入探讨。眼见为实,精密测量;在午后的上机演示环节,复享光学应用专家姜自敏博士详细介绍并演示了仪器的操作方法,系统性的讲述了相关应用的实验范例,让ARMS不再是学生们眼中“高冷”的测量仪器,许多同学对ARMS测量结果纷纷表示认可,相约测样。轻松驾驭,相约“顶刊”;复享光学一直以来致力于关注光子技术前沿,积极探索光谱技术的应用场景,通过结合多维光场的感知与关键物质特性的计算重构,再融合先进的深度学习技术,构建AI时代的全面深度光谱分析框架,为诸多先进制造应用场景提供强劲的光学分析引擎,并使之在科研创新、先进制造、薄膜光电和光子集成场景中得到应用普及。未来,复享光学将走进更多高校,与老师、学生们探讨各种专业光谱技术问题,交流最前沿的信息和成果,敬请期待我们的下一站吧~
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制