当前位置: 仪器信息网 > 行业主题 > >

一动态同步激光仪

仪器信息网一动态同步激光仪专题为您提供2024年最新一动态同步激光仪价格报价、厂家品牌的相关信息, 包括一动态同步激光仪参数、型号等,不管是国产,还是进口品牌的一动态同步激光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合一动态同步激光仪相关的耗材配件、试剂标物,还有一动态同步激光仪相关的最新资讯、资料,以及一动态同步激光仪相关的解决方案。

一动态同步激光仪相关的资讯

  • “麦奇克Sync”首款同步激光粒度粒形分析仪发布
    p  strong仪器信息网讯/strong 3月21日,北京富力万丽酒,大昌华嘉(DKSH)成功举办颗粒表征技术应用暨新品发布会。本次会议安排了内容丰富的激光粒度仪在材料表征研究中的应用报告,同时发布一款美国麦奇克同步激光粒度粒形分析仪。全国颗粒表征与分检及筛网标准化技术委员会秘书长侯长革出席会议并致开幕辞,100多名各行业专家与会。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/41037f70-02dd-4862-8e1b-1e5d61aed179.jpg" title="侯长革.jpg" style="width: 400px height: 286px " width="400" vspace="0" hspace="0" height="286" border="0"//pp style="text-align: center "  侯长革会议致辞/pp  大昌华嘉(DKSH)科学仪器部总经理林波、美国麦奇克有限公司市场与销售副总裁Paul Cannon携手为Microtrac Sync干湿两用激光粒度粒形分析仪在中国的首发揭幕。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/139542d7-e5b9-49d9-88b2-b13cb537651e.jpg" title="揭幕.jpg"//pp style="text-align: center "  林波(左一)和Paul Cannon(左二)为Microtrac Sync揭幕/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/06b0fb05-0247-4bdd-8659-3294b9dfbb18.jpg" title="会场2.jpg"//pp style="text-align: center "  会议现场/pp style="text-align: center "  strongSync:粒度和粒形同步测量/strong/pp  在粒度分析全球市场中,中国占比已经超过10%,其中激光粒度仪占据很大市场份额。对材料研发人员来说,材料特性不仅受粒度的影响,粒形也影响材料的特性 材料供应商也希望在产品指标上提供粒度之外的更多丰富信息。因此,越来越多的电池、水泥、医药等行业用户希望同时了解粒度之外的丰富的粒形信息。激光粒度仪技术已经非常成熟,激光衍射技术已经为工业提供了最常用和可靠的粒径分析方法 但想要了解颗粒的更多信息,比如粒形,用户需要运用不同的技术来测量。通常采用两种仪器或测试技术,用户可以分别测量得到其粒度、粒形信息,但会消耗额外的费用和时间等资源,且这仅仅是代表测试不同样品的粒度、粒形信息。/pp  麦奇克是全球粒度分析市场的重磅玩家,始终站在激光粒度分析技术发展的前沿。2003年推出经典的S3500系列激光粒度分析仪 与挪威图像处理公司AnaTec合作,2013年推出S3500SI激光粒度粒形分析仪,在S3500的基础上添加粒形测试功能,为用户提供了通过一台仪器、两个样品池串联的方式实现测试颗粒粒度、粒形信息的能力 随即,麦奇克收购了AnaTec,在硬件和软件两个层面全面融合,实现了激光衍射法和动态图像法的同步测量,完美继承了S3500的优点,于2018年推出“Sync干湿两用激光粒度粒形分析仪”。“Sync”就是指实现粒度和粒形同步测量——一台仪器,同一样品,一个样品池,一次运行,同时得到粒度和粒形结果。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/83351043-84cd-4c10-8f87-5640518e75b6.jpg" title="Paul.jpg" style="width: 400px height: 286px " width="400" vspace="0" hspace="0" height="286" border="0"//pp style="text-align: center "  麦奇克市场与销售副总裁Paul Cannon/pp style="text-align: center "  strong更多的材料信息为材料企业或研究者们提供更高的商业价值/strong/pp  从发布会现场了解到,为实现在一个样品池上同步进行激光衍射和动态图像测量的目标,麦奇克用了6年的时间,克服了巨大的挑战,开发出在非常有限的空间里同时摆放相机、激光器的专利技术,克服了由空间限制导致光学干扰方面的困难。Sync实现了在一个样品池上,同时测得样品的粒度、粒形信息,给出球形度、长宽比、凹凸度等30多项形态参数,包括独有的长厚比等3D形态参数。/pp  对材料研发人员来说,材料特性不仅受粒度的影响,粒形也影响材料的特性,球形、锥形??不同的形状会影响产品的性能,例如,在粒径分布相同的情况下,不同的粒形会影响颗粒的流动性。激光衍射法已经是很多工厂来料和成品输出粒度的质量控制标准,在设定QC指标的时候,通常都是粒度分布的指标。Sync给用户提供一个机会,同时观察样品的粒度、粒形信息,帮助研发人员、QC更好地生产出符合性能要求的产品,如果原来是用2-3个数据指标来表达产品的性能,那么现在可以增加更多的数据指标。从现场采访的听众中了解到,作为材料生产企业,现在产品仅标注粒度指标,如果能添加丰富的粒形指标,将会让材料用户更好地接受其产品的可靠性,提高企业的商业价值!/pp  此外,由于Sync集成了激光衍射和动态图像测量,同时获得该样品的两个测试结果,用户可以把两者的测量结果进行相互验证,很好地保障测量结果的准确性。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/86dccb36-e776-4c98-947e-3d2eac0c56e3.jpg" title="Mike.jpg" style="width: 400px height: 286px " width="400" vspace="0" hspace="0" height="286" border="0"//pp style="text-align: center "  麦奇克研发经理Mike Cunningham详细介绍Sync技术特点/pp style="text-align: center "strong  为中国用户提供充分验证的应用测试能力/strong/pp  麦奇克是世界上著名的激光应用技术研究和制造厂商,在中国地区,大昌华嘉(DKSH)为麦奇克的独家代理。2006年大昌华嘉接手麦奇克在中国的业务,相当于从零开始 2013年,Paul Cannon加入麦奇克成为全球市场与销售副总裁。2017年,麦奇克达到一个新的高峰,全球市场表现非常好 Paul Cannon说到:“亚洲市场对麦奇克来说非常关键,尤其是我们在中国取得巨大成功,DKSH作为麦奇克长期合作伙伴,有着非常优越的表现。”林波表示,面对中国粒度仪巨大的市场空间,希望在2-3年内,麦奇克在中国市场的销售台数赶上并超越麦奇克激光粒度仪在日本市场的表现。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/331f9fa7-6f65-443b-97c1-fce6488aa8a8.jpg" title="林波2.jpg" style="width: 400px height: 286px " width="400" vspace="0" hspace="0" height="286" border="0"//pp style="text-align: center "  大昌华嘉(DKSH)科学仪器部总经理林波/pp  Paul Cannon谈到,DKSH作为我们非常重要的合作伙伴,在Sync的研发过程中贡献了很多有价值的意见、建议。林波表示,大昌华嘉在2018年会加强北区应用试验室的建设,扩大售前及售后团队 进一步拓展制药,新能源,新材料等新的应用领域。“当前最重要的一件事,就是在正式发货之前进行各种样品的测试,与S3500、竞争对手产品的测试结果进行比对,帮助麦奇克在正式发货之前做出所有的改进,确保用户拿到这台仪器已经经过充分的应用测试验证。”林波说到。/pp  会仪还特别邀请中国标准化研究院实验中心技术负责人李坤威作《激光粒度仪数据质量保证》报告、北京农林科学院副研究员张超作《激光粒度仪在果蔬加工中的主要应用》报告,中国食品发酵工业研究院高级工程师侯占群作《激光粒度分析仪在食品饮料中的应用》报告、中国医学科学院药物研究所副研究员杨德智作《粒度与晶型研究在药物研发中的意义》报告。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/efbaa271-081c-4698-a128-aec16b556c49.jpg" title="报告人.jpg"//pp style="text-align: center "  精彩学术交流/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/3e78d101-8ac6-418d-9b25-5beaee5e2dc7.jpg" title="抽奖.jpg"//pp style="text-align: center "  幸运观众领取抽奖奖品/p
  • 上海光机所在SEL-100PW激光装置前端精密光同步方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在SEL-100PW激光前端精密光同步方面取得进展。科研团队基于自主建设的时间同步系统实现了超快强激光飞秒级同步。相关研究成果以Timing fluctuation correction for the front end of a 100-PW laser为题,发表在《高功率激光科学与工程》(High Power Laser Science and Engineering)上。高精度时间同步是促进超快强激光装置与加速器光源等大科学装置协同工作和融合发展的关键技术之一。“硬X射线自由电子激光装置”是我国在建的科技基础设施项目。该项目将建设一台100PW超强激光和一台硬X射线自由电子激光,通过泵浦-探测实验研究极端条件下真空量子电动力学、高能量密度物理等基础科学问题。由于超强激光和X射线激光的脉冲宽度均在20fs量级,两者之间的飞秒级同步是泵浦-探测实验成功开展的基础。科研团队发展了激光同步技术,对激光装置前端作了高精度时间抖动测量和实时反馈,实现了复杂强激光系统的飞秒级同步。激光装置前端结构如图1所示。该研究利用平衡光学互相关测量、时间延迟反馈等技术,分别对种子源系统、预放大系统作了时间抖动的测量和校正(结果如图2所示)。基于自主搭建的时间同步系统,种子源系统的同步精度达到1.82fs,预防大系统的同步精度达到4.48fs,实现了百太瓦级激光系统的飞秒级同步。该研究为超强激光及同类大科学装置的同步系统建设奠定了技术基础,并为基于超强激光和自由电子激光的联合实验研究提供了条件。研究工作得到硬X射线自由电子激光装置项目、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。图1. 100PW激光装置前端同步系统示意图。图2. 时间同步结果。(a)(d)分别为预防大和种子源系统时间同步结果;(b)(e)分别为开环状态下两系统时间漂移情况;(c)(f)为对应环境温度波动。
  • Life Tech 双色激光新产品9月全球同步上市
    蓝色/红色双激光配置Attune 声波聚焦流式细胞仪  新产品2011年9月全球同步上市销售 Attune 声波聚焦流式细胞仪蓝色/红色双激光配置新产品现在上市销售了,该新产品和已经销售的蓝色紫色双激光声波聚焦流式细胞仪具有相同的数据准确性和高灵敏度。您可以在该新款蓝色/红色双激光Attune流式细胞仪上采用您已经熟悉的蓝红荧光标记流式试剂进行流式细胞分析,您可以在任何其他流式细胞平台无法相比的高流速下进行高精度流式细胞分析。精准的高流速分析,而不影响CVs快速流式分析:稀有细胞检测快10倍以上操作简单:不需裂解不需洗脱全血样品流式细胞分析方法,避免细胞损失您可以根据您的实验需要,选择相应的激光配置。了解更多产品信息 Life Technologies 中国区办事处销售服务信箱:sales-cn@lifetech.com 技术服务信箱:cntechsupport@lifetech.com客户服务热线:800-820-8982400-820-8982www.lifetechnologies.com FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE.© 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes.
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。  该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。  此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。  为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。  科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 146万!天津大学环境学院激光粒子动态分析仪等采购项目
    项目编号:TDZC2022J0267项目名称:天津大学环境学院激光粒子动态分析仪、激光粒子处理器采购方式:竞争性磋商预算金额:146.5000000 万元(人民币)采购需求:激光粒子动态分析仪、激光粒子处理器:1套。本项目接受进口产品参与磋商,具体要求详见本项目用户需求书。本项目不接受联合体磋商并不得分包转包。合同履行期限:合同签订后180天内交货及完成安装调试并具备验收条件等。(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • 天津地勘院研发移动式三维激光扫描系统
    近期,天津市地质工程勘测设计院研发了一套移动式三维激光扫描系统,最高运行速度可达5公里每小时,点云分辨率最高可达2 mm,具备开展轨道交通结构大范围快速检测的技术能力,技术水平全国领先。同时,基于移动式三维激光扫描系统,科研团队联合外部技术团队研发了一种非接触式快速检测技术,可快速获取地铁隧道、车站、轻轨高架等结构表面的海量点云数据。根据点云数据所包含的坐标数据、图像灰度值等信息进行深入的处理、分析,能够获得诸如隧道内壁影像、隧道收敛直径、管片错台、限界入侵、渗漏水、结构裂缝等有效信息,实现对目标区间的结构尺寸、变形大小、病害点位等进行检测目的。检测区域隧道点云漫游图目前,移动式三维激光检测技术已成功用于工程项目中,累计检测里程达5公里,实现了目标区域全要素点云数据获取,完成了对隧道结构尺寸、病害分布、管片状态的检测分析。
  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laser interferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 德国attocube公司IDS3010皮米精度激光干涉仪荣获iF设计大奖
    德国attocube公司推出的皮米精度激光干涉仪IDS3010凭借其特的设计原理、超高的稳定性并且可在端环境中使用的特点,获得了全球工业设计奖项之一的“iF设计奖”。图1:德国attocube公司IDS3010皮米精度激光干涉仪“iF Design Award”由德国设计协会创立,与德国“Red dot奖”、美国“IDEA奖”并称为三大设计奖。这个让人梦寐以求的奖项次授予了激光位移传感领域,具有非常重大的意义,这也是对IDS3010皮米精度激光干涉仪这一颠覆性产品的认可。IDS3010皮米精度激光干涉仪分辨率高达1pm,采样速率达到10MHz,样品大移动速度2m/s,小激光探头为1.2mm。广泛应用于闭环扫描器校准、纳米精度位移标定、无损测量振动频率及轴承误差、精密仪器制造、角度测量以及同步辐射光路准直等领域。图2:IDS3010皮米精度激光干涉仪应用领域:计量学研究、显微镜控制、超精密加工、同步辐射应用、真空/低温系统、加工机床校准值得指出的是,IDS3010皮米精度激光干涉仪获得了德国PTB的认证,大程度地保证了其测量的可靠性和准确性。图3:德国PTB计量证书德国attocube公司的皮米精度激光干涉仪IDS3010在国内已经拥有清华大学、天津大学、中国计量科学院、中科院高能物理研究所、中科院应用物理研究所、南方科技大学等用户,并在国际上受到广泛青睐,用户包括哈佛大学、斯坦福大学、耶鲁大学等科研单位。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 激光跟踪仪:在大尺寸高端装备中大显身手
    导语:激光跟踪仪作为大尺寸空间几何量精密测量仪器,由于具有较高的技术门槛,国内企业又缺乏深厚的经验积累,导致该产品长期被国外垄断。历经十余年的研发与实践,中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队终于在激光跟踪仪的技术领域有了与国际先进技术比肩的突破性进展。本文将带您了解这个研发团队的激光跟踪仪和它在精密制造中扮演的关键性角色。说起激光跟踪仪,高端装备制造企业对它大概并不陌生,它是一种大尺寸空间几何量精密测量仪器,是大型高端装备制造的核心检测仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点。检测的装备体积越大越能显示出此类产品的优越性,所以它更多出现在航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域等先进制造领域。激光跟踪仪是激光干涉测距技术、激光绝对测距技术、精密测角技术、光电探测技术、精密机械技术、精密跟踪技术、现代数值计算理论等各种先进技术的集大成之作,需要突破百米的测量范围、毫秒级的测量时间、微米级的测量精度以及动态实时跟踪测量等各项技术难点,技术门槛非常高,需要长期的经验积累,几乎不存在弯道超车的可能性。目前,世界范围内主要有美国FARO、美国API、瑞士Leica三家公司生产销售激光跟踪仪,我国当前尚无成熟的激光跟踪仪产品销售。因此,攻克关键技术难点实现激光跟踪仪国产化迫在眉睫。组建团队 攻关激光跟踪仪技术壁垒由于激光跟踪仪的重要性、特殊性和不可替代性,国家层面高度重视激光跟踪仪的自主研发。中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)一直致力于实现激光跟踪仪的国产化。该团队激光跟踪仪的研发历史已有十余年,并阶段性取得骄人成绩:(1)2011年中科院微电子研究所 (原中科院光电研究院激光跟踪仪研发团队)在国内率先开展激光跟踪仪整机研制;(2)2013年推出国内首台原理样机,初步形成具有一定规模的、专业稳定的整机开发团队,引领国内激光跟踪仪的整机与系统关键技术发展,积极追赶国际前沿;(3)2017年推出国际首台三自由度飞秒激光跟踪仪样机,从技术层面上实现了跨越式发展;(4)2021年研制成功国内第一台六自由度激光跟踪仪样机,并通过技术指标测试;(5)2021年三自由度激光跟踪仪进入到产业化阶段,立足海宁集成电路与先进制造研究院,组建了数十人的激光跟踪仪产业化团队,建立激光跟踪仪小批量生产线。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利32项(已授权21项),软件著作权6项,发表研究论文60余篇。2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果荣获中国机械工业技术发明特等奖和中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图1所示。除此以外,该团队还可以根据用户的要求定制解决方案,更加贴近客户的使用需求,解决用户的“非标”问题。图1 ICAM-LT-3DOF型激光跟踪仪图2 ICAM-LT-6DOF型激光跟踪仪干货满满 技术原理深度剖析当三自由度激光跟踪仪工作时,如图2所示,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图3 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,如图3所示,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。图4 六自由度激光跟踪仪原理图多项技术突破 跻身国际先进该团队历经10余年的垂直深耕,在激光跟踪仪领域相继突破了高速激光干涉测距、高精度绝对测距、精密跟踪转台设计、高精度测角、动态伺服跟踪、目标快速识别锁定、多源融合姿态测量、系统误差检测与补偿等多项关键技术,在80m范围内,跟踪测量速度大于4m/s,具有良好的目标快速识别锁定能力,测量精度达到15μm+6ppm,技术性能跻身国际先进行列。优势突出 大尺寸精密测量显身手在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,在实践中可以为为航空航天、汽车制造、重型机械制造、重工与船舶、科学研究、能源、医疗等领域等行业提供可靠的技术保障。(1)航空航天领域在航空航天制造领域,飞行器具有外形尺寸大、外部结构特殊、部件之间相互位置关系要求严格等特点,飞行器的装配通常是在各部件分别安装后再进行总体装配,在部装的某些环节和总装的整个过程中都需要进行严格的几何检测。激光跟踪仪测量的现场性和实时性以及它的高精度可以满足飞机型架和工装的定位安装、飞机外形尺寸的检测、大型零部件的检测以及飞机维修等工程测量需求。例如,测量一架大型飞机的内外形尺寸,首先要确定整架飞机的空间坐标,保证所测量的外形尺寸空间点都在同一坐标系中,可以布置足够的激光跟踪仪测站,这些测站保证了飞机上、下、左、右、前、后等整个外形都在激光跟踪仪测量范围内。其次要保证飞机处于静止状态,测量过程中不能产生移动。激光跟踪仪在每个测站测量某一个区域的飞机外形坐标点,将各个测站下的飞机外形坐标连接起来就构成整架飞机的外形尺寸坐标,对这些点进行处理可形成飞机外形的数字模型。激光跟踪仪扫描范围大,采集数据速度快,数据采集量大,精度高,大大提高了飞机测量的工作效率。(2)汽车制造领域在汽车制造领域,激光跟踪仪用于车身检测、汽车外形测量、汽车工装检具的检测与调整。通过激光跟踪仪采集汽车不同部位的点云数据,再进行拼接得到完整的汽车曲面点云数据,利用三维造型软件得到汽车三维模型。另外,汽车生产线需要以最高级别的自动化程度和准确性进行定期检测,以进行重复性和适产性测试。激光跟踪仪这种移动坐标测量设备适合工业现场使用,在检测工程中使汽车生产的停工期大幅缩短。(3)重型机械制造领域在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪仪。在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸一致,同时将零部件物理模型迅速数字化,得到的数字化文件可以用各种方法处理从而得出测量结果。在工件模具生产中,激光跟踪仪对工件模型进行扫描测量后建立数据模型,由数据模型生成可被加工中心识别的加工程序,从而加工出模具。三维管片和模具测量系统也是激光跟踪仪的典型工程应用之一,通过跟踪测量成品管片各个表面上的空间点坐标,经过坐标系转换和纠正将表面数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,便可判断成品的质量是否合格。与传统的检测方法相比,激光跟踪仪测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,不仅工作效率高,而且大大节省了人力物力。(4)重工与船舶领域在造船工业领域中,激光跟踪仪常用于舰船外形尺寸检测、重要部件安装检测与逆向工程等。例如,船舶制造公司对于甲板都有着极高的要求,每一个拼接块的连接点都必须恰好能够和另外一片拼接块严丝合缝对接,且甲板外侧的外观必须与船体形状严格吻合,如此才能体现船舶的质量和性能。激光跟踪仪能够实时地对长度以及横向曲率进行测量,代替笨重的模板进行现场装配与检测,可使生产时间节约60%-70%,大大提高了船舶的生产效率。(5)能源领域在能源领域,激光跟踪仪常用于大型零部件的高精度加工、尺寸检测和辅助维护。例如,水力发电站中,新的涡轮发电机投入工作之前,必须获得精确的涡轮机转子形状,以便后续的勘测;当进行水力发电站的检测时,需要对在役涡轮机转子开展数字化测量,从而确定涡轮转子的磨损情况。在风力发电站中,对大型风电轮毂叶片外形尺寸进行高精度测量是保证风电轮叶片正常工作的关键。激光跟踪仪能够完成定轴轴径、同轴度、轮毂连接孔位置度的高精度测量,并且仪器轻便灵活、精度高、测量范围大、能够现场测量,已成为风电行业的必然选择。(6)科研领域在科研领域中,激光跟踪仪在粒子加速器的定期检测与调整、重要核心部件安装检测以及机器人制造校准中发挥了重要作用。例如,机器人在工厂机械安装、马达驱动安装、夹具重组等整个生产周期过程中必须保持规定的精度,才能称为高性能工业机器人。机器人设计尺寸与实际生产尺寸的偏差往往较大,主要是由于机械公差和部件安装误差所引起的。在校准机器人的实际应用中,一般有两个工作测量组,一组负责装配机器人,一组则负责检测校准安装部件,激光跟踪仪安置在这两个测量组之间。操作人员通过计算机控制定位,激光跟踪仪可以监测两个工作小组的测量工作。在一组操作人员利用激光跟踪仪检测机器人配件的同时,另一组工作人员负责装配经过检测的工件,装配后再利用激光跟踪仪进行校准。这样,大幅提高了机器人生产安装的工作效率,也节省了人力物力。(7)医疗领域在医疗领域中,质子医疗机在治疗时最重要的是需要准确定位患者体内癌细胞位置,通过控制治疗床移动,将患者需要治疗的部位送到有效的治疗区域内,才能够进行准确有效的治疗。因此医疗机在安装调试时,要求系统能够控制机械臂,将末端工装精确地移动到理论位置。这对测量方案提出了更高标准的要求:能够准确调整病灶中心的位置,X、Y、Z方向偏差要求小于0.1 mm;能够调整连接法兰的姿态精度,RX、RY、RZ要求小于0.1°,同时检测、分析效率要尽可能高。在质子医疗机安装调试过程中,激光跟踪仪可以提供简单便捷的应用方案。首先通过测量固定在墙体上的定位点,建立离子源坐标系,在软件中将机器坐标系定位到离子源坐标系统;通过坐标转换得出病灶中心与工装上定位孔的坐标关系,解算出定位孔的坐标。其次,将反射球放置在定位孔上,通过监视窗口功能查看当前位置偏差,实时调整工装,使偏差逐渐缩小至公差要求。该团队研发的激光跟踪仪已在卫星天线变形与位姿测量技术、飞机大型部件装配测量技术、船舶分段对接测量技术、高能加速器准直调节测量技术、工业机器人现场校准技术等领域开展了一系列应用研究,并取得了良好的社会效益。制造业中的智能装备、复杂结构制造、高精密制造和装配的兴起,对于测量系统提出了精度更高、智能化程度更高、适应性更强的要求。激光跟踪仪作为最先进的三坐标及姿态精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。由于激光跟踪仪应用范围广、测量效率高、测量精度高,该仪器在高端制造领域扮演的角色越来越重要。激光跟踪仪的国产化,对于我国的制造业,尤其是高端制造领域,具有十分重大的意义。借势而起 稳扎稳打培育市场目前,国家政策一直在主张推进仪器的国产化,实现国产仪器与进口仪器的同台竞争。中国仪器仪表行业协会与中国和平利用军工技术协会在此方面做了大量的工作,这对国产激光跟踪仪的市场化推进是极大的政策性优势。在国防军工行业,激光跟踪仪的应用主要在导弹的测量、潜艇的测量、战斗机的装配、军舰的测量、天线的装配及外形检测,大型结构件测量检测等。由于进口的高端激光跟踪仪含有摄像头装置,这对我国国防军工行业造成了安全隐患。另外,由于进口激光跟踪仪不对我国展示源代码,不排除进口激光跟踪仪含有潜在的功能,这对我国部分商业秘密也带来了风险。如此种种安全隐患更是急需国产激光跟踪仪技术的开发与产品的应用。这是提供给国内企业的机会更是挑战。该团队也将借助他们国际领先的技术优势、可靠的数据链优势,以及强有力的价格优势和维修服务优势,不遗余力的为客户提供高质量的定制化产品和服务。结束语随着中国先进制造业和高端装备的飞速发展,以激光跟踪仪为代表的高精度、数字化、智能化的精密检测设备已经成为这些领域企业占领行业制高点的制胜法宝。一方面,激光跟踪仪在先进制造和高端装备领域的关键作用日益凸显,成为制造行业的核心仪器,国内对激光跟踪仪的需求量激增,国产化呼声高涨;另一方面,近年来西方对我国的技术限制和打压,使激光跟踪仪的采购和售后具有一定的不确定性,这将影响我国高端装备的发展,所以国家对激光跟踪仪等关键核心仪器的国产化大力支持。显而易见,未来激光跟踪仪的产业化具有极为光明的市场前景。
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • 950万!中国科学院宁波材料技术与工程研究所特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪、激光共聚焦显微拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:OITC-G240270057项目名称:中国科学院宁波材料技术与工程研究所特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪采购项目预算金额:550.000000 万元(人民币)最高限价(如有):525.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪1是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G240270059项目名称:中国科学院宁波材料技术与工程研究所激光共聚焦显微拉曼光谱仪采购项目预算金额:400.000000 万元(人民币)最高限价(如有):328.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1特殊环境原位动态评价表征系统-真空拉曼光谱仪1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月02日 至 2024年01月09日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院宁波材料技术与工程研究所     地址:浙江省宁波市镇海区中官西路1219号        联系方式:范老师0574-86324529      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、王琪010-68290502/0523            3.项目联系方式项目联系人:窦志超、王琪电 话:  010-68290502/0523
  • 2020年度激光粒度仪中标盘点:市场逐季回暖 国产占比提升
    回首2020年,受新冠疫情影响,中国经济呈现出急剧下跌—持续恢复的态势。其中,第一季度经济增速为负,创近几十年新低;第二季度随着疫情好转开始转负为正,并持续向好。仪器信息网对2020年激光粒度仪中标数据整理发现,激光粒度仪中标市场与我国经济增长呈现“同步性”趋势。本文将详细分析2020年激光粒度仪中标情况,以飨读者。本文统计的粒度仪类型主要包括激光粒度仪、纳米粒度仪及zeta电位仪、粒度粒形分析仪、喷雾激光粒度仪等。值得注意的是,招中标数据主要反映激光粒度仪在科研领域的市场变化,不足以反映其工业市场动态。(注:本文数据统计来源于公开招中标信息平台,不包括非招标形式采购及未公开采购项目,结果仅供定性参考。)中标市场逐季回暖从时间维度来看,激光粒度仪中标市场活跃度随疫情发展持续变化:第一季度受疫情冲击较大,中标数量创近年来新低;第二季度随着各地复工复产有序进行,市场开始回暖,中标数量翻倍;第三季度随着高校科研院所的复苏,中标数量再次大幅攀升,远超2019年同期水平;第四季度市场活力继续回升,中标数量达全年高峰。此外,据业内人士反馈,激光粒度仪工业市场也在第一季度经历了低谷,并于第二季度开始稳步复苏。广东领衔 新建实验室采购需求旺盛2020年激光粒度仪采购用户单位类型2020年激光粒度仪采购地区分布从招标采购单位类型来看, 2020年大专院校/科研院所用户占比高达72%,政府机构占比17%,企业研发/检测中心占比11%,各项占比与2019年相若。但从采购地区分布来看,2020年广东采购量赶超北京,位居第一,江苏、山东、浙江、福建等东部沿海地区紧跟其后。众所周知,广东省近年来致力于打造科技创新强省,实验室建设风起云涌,仪器采购需求旺盛,据中标数据统计,2020年,季华实验室将3台国产激光粒度仪一次性收入囊中,佛山仙湖实验室同批次购入一套进口纳米粒度及自动计数仪,先进能源科学与技术广东省实验室则购置了马尔文帕纳科最新上市的Zetasizer Advance系列之Zetasizer Lab。由此看来,广东省新建实验室为科学仪器市场带来不少商机,值得激光粒度仪厂商持续关注。国产品牌占比提升 无缘高端市场2020年进口/国产品牌中标数量占比2020年激光粒度仪各品牌中标数量占比分布在国内外品牌竞逐的激光粒度仪招标市场中,国产品牌正在崛起。2019年激光粒度仪中标市场上,国产占比仅27%,可喜的是,2020年丹东百特增长势头强劲,中标占比由去年的11%上升至21%,拉动了国产品牌的整体占比;另外,老牌劲旅欧美克、济南微纳实力加持,中标数量占比分别提升2%和1%。在进口品牌中,马尔文帕纳科的霸主地位依旧不可撼动,以37%的占比遥遥领先其他进口品牌。其次,布鲁克海文以6%位列第二,贝克曼库尔特与安东帕以5%并列第三。其他表现亮眼的品牌还包括麦奇克、HORIBA、新帕泰克、美国PSS等。以上数据仅能从侧面反映各品牌激光粒度仪在科研领域的占比变化,并非激光粒度仪市场全貌;近日,德国新帕泰克中国区首席代表耿建芳博士的反馈也印证了这一点。据她介绍,新帕泰克的大部分订单来自厂矿企业,尤其是近年来炙手可热的医药、水泥、电池、金属粉体行业等。而新帕泰克通过公开招标获得的订单数非常少,反观在一些特殊应用、高端客户的粒度检测需求方面,该品牌的独特优势尤为明显,因此粒度仪公开招标的占比并不能代表各品牌在整个激光粒度仪市场中的份额。2020年激光粒度仪中标价格分布纵观整个中标价位分布,与2019年相差不大,国产品牌依旧占据中低端市场,进口品牌统领高端高地,尤其是20万以下的中标品牌皆为国产,而40万以上中标基本被进口品牌包揽。TOP10明星产品一览 以下为2020年招投标市场上最受欢迎的激光粒度仪型号,马尔文帕纳科与丹东百特分别领跑进口和国产品牌榜。其中,马尔文帕纳科有三款产品上榜,除了明星产品Mastersizer 3000与Zetasizer Nano ZSE一直备受用户青睐外,其2020年最新上市的纳米粒度电位仪Zetasizer Lab也在短时间内赢得市场高度认可,频传中标捷报。丹东百特拳头产品Bettersize2600凭借多项自主创新和优异的性能,一举超越进口品牌位列明星榜第二。仪器类型品牌型号激光粒度仪马尔文帕纳科Mastersizer 3000激光粒度仪丹东百特Bettersize2600纳米粒度及Zeta电位仪安东帕Litesizer 500纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Nano ZSE纳米粒度及Zeta电位仪布鲁克海文NanoBrook 90Plus PALS激光粒度仪贝克曼库尔特LS 13320纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Lab激光粒度仪济南微纳Winner802激光粒度仪欧美克TopSizer Plus激光粒度仪麦奇克S3500
  • 科技部科学仪器重大专项评审专家谈激光跟踪仪技术及应用
    激光跟踪仪技术及应用周维虎1,周培松2,石俊凯11. 中国科学院微电子研究所2. 海宁集成电路与先进制造研究院一、引言激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。目前,国际上主要有瑞士Leica、美国API和美国FARO三家公司生产销售激光跟踪仪。其中Leica公司凭借自身百年光学仪器制造优势,全球市场占有率最高,目前该公司主推产品型号为AT960,该仪器最大测量距离为80m,空间坐标测量精度为15μm+6μm/m,数据输出速率为1000点/秒;API公司激光跟踪仪小型灵巧,安装和校准快捷,移动方便,便于携带,目前主推产品为Radian系列,其中Radian Pro最大测量距离可达80m,三维坐标测量精度为为10μm+5μm/m;FARO公司财力雄厚,研发投入高,销售网络强大,目前主推产品为Vantage系列,其中VantageS6最大工作范围为80m,角度测量精度为为20μm+5μm/m,数据输出速率为1000点/秒。自1997年开始,国内天津大学、清华大学、中国科学院光电研究院等科研院所先后对激光跟踪测量技术及设备进行了相关研究,其中天津大学最先对单站式结构跟踪仪坐标测量系统进行了研究,并开展了测量功能实验,为激光跟踪仪的后续开发奠定了基础;清华大学对组合式多自由度跟踪测量系统进行了研究,基于三组跟踪测量系统构建空间位置姿态测量系统;中国科学院光电研究院团队(该团队于2018年划转至中科院微电子研究所)自2009年开始研究激光跟踪仪,在中科院装备项目、国家重大仪器设备开发专项、国家重点研发计划、装备发展部、国防科工局等项目的支持下,经过10余年研发和技术积累,实现了激光跟踪仪的自主研制,打破了国外技术封锁和垄断。当前,激光跟踪仪技术正向高精度、小型化、多功能、智能化等方向发展。激光跟踪仪是机器人校准的理想仪器,可以配合机器人实现高精度智能制造。高端激光跟踪仪含有大范围超清摄像头,用于测量过程断光后靶标的自动寻找和测量续接。除此之外,激光跟踪仪结合不同的测量靶标还可以实现隐藏点测量、工件局部形貌高密度扫描测量以及六自由度测量。随着激光跟踪仪在航空航天、舰船、核工业等大型装备制造中的重要性日益凸显,国内用户对仪器国产化的要求越来越高,随着中美贸易战的加剧和发达国家对我国高技术产品的打压,激光跟踪仪国产化替代势在必行。二、激光跟踪仪测量原理激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。2.1三自由度激光跟踪仪如图2.1所示,当激光跟踪仪工作时,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图2.1 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。2.2 六自由度激光跟踪仪图2.2 六自由度激光跟踪仪原理图六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。三、激光跟踪仪产业和市场分析随着我国制造业产业升级和科技领域的迅猛发展,高端制造、精密制造、智能化制造成为我国未来工业和科技领域的主流方向,激光跟踪仪等精密测量仪器具有巨大的应用前景。在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,激光跟踪仪应用领域主要包括航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域。根据国外市场研究机构,2017年全球激光跟踪仪市场规模为2.595亿美元,2020年全球激光跟踪仪市场规模为3.438亿美元,预计2023年有望达到5.216亿美元,2028年有望达到8.364亿美元,市场主要驱动力来自质量控制和检验、对准、逆向工程和跨行业校准的需求。按应用细分,质量控制和检验占据最大的市场份额。这是因为激光跟踪仪被越来越多地用于监控和测量跨行业的质量,如汽车、航空航天和国防。为确保客户的要求和规格,质量控制和检验是汽车、航空航天和国防工业的重要参数。为了做到这一点,这些行业主要依靠激光跟踪仪来检查和监测元器件、组装件和成品质量。激光跟踪仪在建筑产品测量、过程优化和通过快速精确测量提供解决方案方面具有精确度高和易便携等不可替代的优势。按行业细分,汽车、航空航天和国防有望引领整个激光跟踪仪市场。在航空航天和国防行业中,激光跟踪仪用于三维测量、逆向工程、武器系统、轴与导轨对准、雷达罩剖面图、飞行器传动装置,以及许多其他测量产品和服务。在航空航天行业中,激光跟踪仪最常应用于夹具部件检查和机翼部件装配。在汽车行业中,激光跟踪仪被用于自动化生产线校准、铰接线和车身部件对准、大型面板和装配主体面板测量、逆向工程、部件验证表面测量、工业机器人调整、变形和动态测量、质量控制和检验等。按地区细分,欧洲占据激光跟踪仪市场的最大份额。为了满足生产过程中的质量和安全要求,欧洲的原始设备制造商(OEMs)早已经开始使用激光跟踪仪。在汽车行业中,激光跟踪仪也得到了多种应用,例如质量检查、对准和校准。因此,日益增长的汽车行业对激光跟踪仪需求也在逐渐增加。德国、英国和法国有望成为欧洲激光跟踪仪市场的三大贡献国。亚太地区市场预计将获得最高的复合年增长率,该地区市场增长的关键驱动因素是市场参与者对新技术的日益关注和采用,这一地区已成为全球投资的焦点和业务拓展的机会。四、国产激光跟踪仪新成果及应用国内开展激光跟踪仪研发主要有中国科学院微电子研究所周维虎团队、深圳中图仪器公司、海宁集成电路与先进制造研究院等,近年来在国家和地方相关部门的支持下仪器研发取得了快速发展,主要体现在以下方面:1)与绝对测距技术相融合,提高仪器的测量精度和测量方便性。激光跟踪仪都是基于球坐标的测量系统,在没有绝对测距之前,没有测量信息冗余,测量过程中任意一个参数丢失,都直接影响测量数据的准确性。新一代激光跟踪仪都增加了激光绝对测距功能,这使得激光跟踪仪的测量信息有了冗余,保证了测量的精确性,在测量过程中丢失部分信息依然可以完成测量工作;同时,由于被挡光时不需要重回基准点复位,这也提高了使用方便性和测量效率。2)与视觉测量系统相结合,实现六自由度测量功能。激光跟踪仪与视觉测量系统相结合不仅能精确定位目标的三维位置,而且还能通过配合特定的靶镜对目标的空间三维姿态进行检测。不仅如此,视觉测量系统还可以识别目标靶镜,保证光路中断后可以通过视觉方式重建测量光路,且无需用户介入。3)测量靶镜多样化。针对三自由度、六自由度等测量需求需要提供不同的测量靶标,另外,仪器还配有隐藏点靶标、扫描测头等附件,使仪器具有隐藏点测量功能和局部区域扫描功能,不仅使仪器测量复杂结构的能力大大提高,还拓展了系统的通用性。4)自我诊断功能。精密测量要求仪器在各种测量环境下保证稳定的工作状态,所以仪器在测量中对自身状态的检测和诊断显得特别重要,自我诊断能在系统工作时实时显示系统的状态,排除微振、升温、光强不足等因素带来的影响。5)飞秒激光频率梳测距技术。飞秒激光频率梳绝对测距技术能够实现大量程、高精度和快速测量三者的完美统一,是激光测距领域的重大突破,有望为大型零部件外形测量、大型设备装配对接,尤其是未来空间任务提供新的技术支撑,在激光跟踪测距、高精度激光雷达测距、卫星编队位置测量、导航星间链路测距、深空探测、引力波测距等领域具有广阔的应用前景。6)组网协同测量技术。针对大型复杂设备装配测量中被测目标尺寸较大或者存在遮挡,单测站难以完成测量任务的难题,通过激光跟踪仪多次设站或者利用多台跟踪仪组网可实现对于大型复杂装备的测量。组网测量技术基于空间多公共点约束,建立激光跟踪仪多测站平差模型,利用平差的权重、约束条件等进行多测站空间位置和姿态的解算,同时求解出所有被测点的三维坐标,得到空间被测物体关键尺寸和特征信息的最优解。7)功能强大的测量软件。激光跟踪仪软件是测量系统的重要组成部分之一,系统软件通过TCP/IP通讯与硬件进行实时数据交互,对硬件上传的数据进行处理和分析,并控制硬件系统执行相应的测量等控制指令。软件系统为用户操作提供人机交互接口,通过数据库管理可实现用户对测量数据的编辑和输入输出等操作,在此基础上通过三维显示操作可面向用户实现测量数据和拟合数据的直观显示和交互操作。为了进一步提升系统测量精度,激光跟踪仪软件系统利用误差补偿算法对激光跟踪仪测距、测角和几何误差进行实时修正,结合激光跟踪仪硬件系统实现大型复杂工件或设备的高精度测量。近年来由中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)致力于实现激光跟踪仪国产化。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利45项(已授权32项),软件著作权5项,发表研究论文130余篇。 2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果于2020年分别荣获中国机械工业技术发明特等奖、中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图4.1所示。图4.1(a) ICAM-LT-3DOF型激光跟踪仪图4.1(b) ICAM-LT-6DOF型激光跟踪仪ICAM-LT-3DOF型激光跟踪仪与ICAM-LT-6DOF型激光跟踪仪的主要技术指标如表4.1和表4.2所示。表4.1 ICAM-LT-3DOF型激光跟踪仪主要技术指标指标参数最大测量范围(半径)80m空间坐标测量精度15μm+6μm/m水平角测量范围±320°垂直角测量范围-45°~+60°数据采集速度1000 点/秒跟踪速度>4m/s表4.2 ICAM-LT-6DOF型激光跟踪仪主要技术指标指标参数空间坐标测量范围(半径)80m空间坐标测量精度15μm+6μm/m姿态测量范围(半径)25m姿态测量精度≤0.05°水平角测量范围±320°垂直角测量范围±145°角度测量误差≤1’’数据采集速度1000 点/秒跟踪速度>4m/s截至目前,该团队研制的国产激光跟踪仪已在航天五院514所、航空304所、武船公司、中科院高能所、中科院国家空间科学中心、航天科工集团三院三十一所等多个科研院所和企业进行了应用。1)航天领域应用图4.2 激光跟踪仪在航天五院514所应用激光跟踪仪在航天五院514所进行了如下应用:① 紧缩场结构测试:完成紧缩场实验室结构测量,测得最大反射面尺寸10m×15m,最大测量距离35m,最高公差1mm;② 卫星壳体焊接工装结构测量:完成典型零件测量,测得工件尺寸1.5m-3m,测量距离:10m,最高公差0.2mm。在上述测量工作中,使用激光跟踪仪突破了传统测距在测程、精度和测量速度方面难以协调的瓶颈,提高了卫星和空间有效载荷的制造及组装精度。2)航空领域应用图4.3 激光跟踪仪在航空304所应用激光跟踪仪在航空304所进行了如下应用:① 航空工装测试:坐标不确定度达0.05mm,满足航空制造对精度溯源要求;② 飞机水平飞控部件姿态测量:位置传感器测量精度在线校准精度达0.018mm。在上述测量工作中,使用激光跟踪仪主要解决了两个问题:① 解决了大尺寸航空工装测量问题,提供了可供溯源的依据和测量基准,为数字化制造提供了可靠的计量保证;② 解决了飞机水平飞控部件姿态测量问题,实现了飞机部件姿态高精度高效率数字化测量,为航空制造安全提供了保障。3)船舶领域应用图4.4 激光跟踪仪在武船公司应用在船舶领域中,激光跟踪仪在武船公司进行了如下应用:① 与API激光跟踪仪测试数据进行比对,验证本激光跟踪仪的准确性、可靠性、稳定性、可操作性等综合性能;② 对船台建造过程中的分段结构外形尺寸、装配尺寸、位置偏差等进行了测量,突破了大尺寸测量仪器三维坐标测量方法关键技术。根据应用结果,在船舶领域应用激光跟踪仪,建立了相应的应用方法/规程,可逐步推广到船舶建造其他阶段,为船舶建造精度控制提供新的方向。4)大科学装置应用在大科学装置方面,激光跟踪仪在中科院高能所进行了如下应用:① 对北京正负电子对撞机储存环部分设备进行了准直调整,调整精度达0.1mm;② 在中国散裂中子源建设过程中,对隧道控制网进行测量,相对点位测量精度0.08mm,绝对点位测量精度0.05mm。图4.5 激光跟踪仪在中科院高能所应用在上述测量测试工作中,使用激光跟踪仪主要解决了两个问题:① 利用标准杆进行空间测量,大跨度搭接测量控制网,提高了控制网测量精度和效率;② 采用边长法进行高精度设备标定,彻底消除了测角误差的影响,提升了大科学装置安装精度。此外,该团队研发的激光跟踪仪还广泛应用于机器人磨削、航天钻孔及铣削、机器人校准等场景中,如图4.6所示。图4.6 激光跟踪仪在机器人场景的应用机器人磨削(左),航天钻孔及铣削(中),机器人校准(右)随着现代工业技术的迅猛发展,高端制造业对设备尺寸及空间位置精度要求越来越严苛,激光跟踪仪作为最先进的三坐标精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。(点击图片查看专题)
  • Science:X射线激光器给生物分子拍部纳米电影
    威斯康星大学Milwaukee分校的研究团队,用X射线激光器以慢动作的形式展示了一个光敏性生物分子的快速动态。&ldquo 人们能够在这一技术的基础上,以原子水平的空间分辨率和超快的时间分辨率制作纳米世界的电影,&rdquo 领导这项研究的Marius Schmidt教授说。  研究人员将PYP蛋白(photoactive yellow protein)作为模式系统,PYP是一种蓝光感受蛋白,在特定细菌的光合作用中起作用。PYP蛋白捕获蓝光光子之后,会经过一系列中间结构获得光子的能量,然后再回到初始状态。PYP光循环的绝大多数步骤已经被人们研究过了,是验证新方法的理想模型。  为了获得PYP的动态快照,研究人员制造了微小的PYP晶体,这些晶体的直径大多小于0.01毫米。他们在LCLS(目前最强的X射线激光器)系统中喷射这些微晶体,并用精确同步的蓝光脉冲启动它们的光循环。LCLS生成了极短极密集的X射线快照,捕捉到了PYP在光循环不同阶段的形态改变,分辨率达到了前所未有的0.16纳米。随后研究人员将自己获得的快照组成视频,展示了慢动作的PYP光循环。  这项研究再现了PYP光循环的所有已知过程,验证了这个新技术的可靠性,同时还揭示了PYP光循环的更多细节。这一技术的时间分辨率非常高,能揭示不到1皮秒的分子活动,这是以前无法想像的。  &ldquo 这是一个真正的突破,&rdquo 文章的共同作者Henry Chapman教授说。&ldquo 我们现在可以在原子水平上对动态过程进行时间分辨研究。&rdquo   与其他方法相比,X射线激光器在研究超快分子动态时有着更多的优势。该技术能生成世界上最明亮的X射线,提供飞秒级别的时间分辨率。X射线激光器成像时使用新鲜样本,样本中不会积累辐射伤害,而且特别适合研究非常小的晶体。实际上,一些很难结晶的生物分子只能用X射线激光器进行研究。另外,晶体小也有助于分子的同步,使人们能更灵敏的检测到分子发生的改变。换而言之,X射线激光器能够揭示其他方法无法企及的分子动态。
  • 激光与X射线期待完美相遇
    在人类科技史上,激光和X射线都是物理学上伟大的发明和发现。激光源自物质“受激”辐射,具有亮度高、准直性和相干性好等特点,但一般处于红外线和可见光波段。而来自于高速电子强烈加速或撞击的X射线,特别是硬X射线,具有很高的能量和原子尺度的波长,其穿透力和分辨率都大大增强,但准直性和相干性远不如激光。  能不能将这两种高性能的光结合起来呢?近日,香山科学会议以“硬X射线自由电子激光的现状与对策”为题召开了第432次讨论会。与会专家一致认为,硬X射线自由电子激光(HXFEL)将在更广范围、更深层次并以更高的效率给结构生物学、凝聚态物理、超快化学、能源材料等领域带来革新。  无法比拟的优势  会议执行主席、中科院院士陈佳洱介绍,随着加速器技术的发展,自由电子激光在高平均功率及短波长方面取得了巨大进展。  而在所有波段的X射线自由电子激光(XFEL)中,能量最高的硬X射线自由电子激光受到格外关注。2009年4月,世界上第一个HXFEL装置在美国SLAC国家加速器实验室诞生,最短工作波长达到0.15纳米,标志着X光光源已经开始更新换代。  中科院上海应用物理研究所所长赵振堂向《中国科学报》记者介绍:“和上一代光源相比,HXFEL具有卓越的先进性能,可谓更高、更快、更强了。”  首先,HXFEL具有超高的峰值亮度,比上一代光源高出10亿倍左右。其次,脉冲宽度是上一代光源的万分之一,这意味着激光脉冲速度快、功率高,能达到更高的时间精度。再次,HXFEL中光子相位一致,如同一支训练有素的部队,具有极强的“战斗力”,这被物理学家称为“全相干”。激光专家、英国伦敦帝国理工学院教授约翰蒂施曾评价:“HXFEL具有其他任何光源都无法比拟的优势。”  期待“新科学”产生  纵观多年诺贝尔奖会发现,历史上已有20次诺贝尔奖颁给了和X射线研究相关的科学家,10次颁给了与激光有关的研究。当激光遇上X射线,各领域科学家们都期待革命性的“新科学”产生。  中科院高能物理所研究员董宇辉表示:“HXFEL是蛋白质结构解析研究人员梦寐以求的技术。”目前,解析蛋白质结构的困难之一便是生长大尺寸、高质量的单晶。HXFEL对纳米尺度的晶体开展测量会给膜蛋白、蛋白质复合物结构提供极大便利。  中科院院士范福海是X射线衍射分析的“忠实用户”。他向《中国科学报》记者表示:“有了HXFEL,测定膜蛋白的晶体结构就可能不用再培育所谓的‘优质大单晶’了。”  同时,动态X射线结构分析也受到化学家的关注。“HXFEL能以极小的原子尺度、在时间极短的飞秒时段给物质结构‘拍’一张三维‘快照’。”范福海解释。基于此,化学家有望对化学反应过程进行实时动态观测。  当然,HXFEL的用户们也为新工具的制造提出了条件。董宇辉指出,在解析单分子结构上,主要的问题在于目前HXFEL的脉冲强度还不够高,离原子分辨率还有一定距离。  尽快抢占科技制高点  不过,现阶段,我国还没有建设波长更短的HXFEL的计划,只在能量稍弱的紫外和软X射线波段取得进展。  在我国科学大装置“上海光源”项目中,上海应用物理研究所技术团队完成“高增益谐波产生自由电子激光放大饱和”实验,使我国成为继美国后世界第二个掌握这项技术的国家。最近,“上海X射线自由激光”项目获批,拟建总长为300米的XFEL装置,最短工作波长为9纳米。中科院上海应物所研究员王东对《中国科学报》记者说:“这些工作为建设HXFEL打下了坚实的基础,我国建HXFEL已没有任何技术障碍。”  考虑到在现有客观条件下,HXFEL的立项还将经历较长过程,国际合作成为尽快发展HXFEL的良好模式。最近,中科院与瑞士保罗谢勒研究所共同提议在“瑞士自由电子激光(SwissFEL)”装置上建设一条“中国硬X射线自由电子激光光束站”,预计中方投入经费约1.5亿元人民币。据悉,该方案我国只需用十二分之一的投资便能获得六分之一的使用机时。会议执行主席、中科院物理所研究员、北京凝聚态国家实验室首席科学家丁洪评价说:“更重要的是,这足以使我国几乎与世界同步拥有自己的硬X射线自由电子激光实验平台。”  与会专家呼吁,目前,我国应尽快发展HXFEL,以抢占这一领域的科技制高点。
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10 Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 法如Faro激光跟踪仪让游乐装置生产商倍感安心
    作为全球领先的主题公园设施开发和生产公司之一,Heinrich Mack GmbH & Co在其生产过程中运用了FARO激光跟踪仪。 Mack生产和服务经理Thomas Kern先生的远见是:公司联机生产水平应该调整到零。这个决定是很有必要的,因为他们的部分设备始终需要外包组装。以前,这种生产方法花费颇高,包括脚手架成本。另外,66英尺(20米)的高空生产作业条件不够人性化,尤其是在冬季就更加突出。联机生产水平调整为零以后,轨道就可以按照目标规格进行测量,并在工厂大厅内进行生产。为了确保过程中的质量,使用FARO激光跟踪仪测量轨道,并将数据与目标规格进行对比。 Mack 集中采购/库存和物流经理Jens Hilbert解释说:&ldquo 购买FARO激光跟踪仪是为了对我们的生产过程进行重组,重组的主题是&ldquo 迎合未来需求&rdquo 。我们是利用相应的决策矩阵进行选择后才决定购买激光跟踪仪的。除了三家不同供应商的跟踪仪之外,我们还测试了其它测量设备,例如经纬仪和视距仪。一天结束后,主要出于服务和成本的考虑,我们最终选择了FARO。&rdquo Mack将激光跟踪仪不仅用于轨道生产,还用于车辆测量。由于这款移动式测量仪器也可以带到建筑工地上使用,Mack对于激光跟踪仪将来的其它应用充满期望。目前,激光跟踪仪及其CAM2软件主要用于方差比较、测试和动态测量。Jens Hilbert得出一个积极的结论:&ldquo 对于我们来说重要的是, 在零水平联机生产的基础上发展核心竞争力。FARO激光跟踪仪在这个过程中起到了重要作用。零水平联机生产可以缩短交付时间、提高质量标准,增强交付可靠性和交付能力。最终,我们可以为客户提供符合市场需要的产品。&rdquo 法如科技 FARO Technologies,Inc.地址:上海市桂林路396号3号楼1楼 邮编:200233Tel: 86-21-61917600 Fax:86-21-64948670网址:www.faroasia.com/chinae-mail: chinainfo@faro.com
  • 皮米精度激光干涉仪如何在众多前沿领域中大显神通?
    1.IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达中的应用自动驾驶是目前汽车工业为前沿和火热的研究,其中可靠和高分辨率的距离测量雷达的开发是尤为重要的。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010),该雷达测量系统在-3.9 um至+2.8 um之间实现了-0.5-0.4 um的超高精度。这种新型的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。更多信息请了解:S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019)图1.1 紧凑型FMCW传感器的照片图1.2 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果 2. IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通吐量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一种基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究由光压导致的形变特性。图2.1所示为测量装置示意图,测量装置是由5 x 5 共计25个M12/F40激光探头组成的网格,用于监测纳米的无轴承平面电机内部的移动器变形。实验目的是通过对无轴承平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544 nm,小形变量为110 nm(如图2.2所示)。更多信息请了解:Measuring the Deformation of a Magnetically Levitated Plate displacement sensor图2.1 左侧为5X5排列探头测量装置示意图,右图为实物图图2.2 无轴承磁悬浮机台形变量的测量结果,大形变量为544 nm 3.IDS3010在提高X射线成像分辨率中的应用在硬X射线成像中,每个探针平均扫描时间的减少对于由束流造成的损伤是至关重要的。同时,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。attocube公司的皮米精度干涉仪FPS3010(升后的型号为IDS3010),被用于测量及优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10 nm。更多信息请了解:Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)图3.1 实验得到的系统分辨率结果 4.IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在Nature上(doi:10.1038/nature25156)。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2 pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。更多信息请了解:Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)图4.1 实验中对对机械超材料微小振动的频率分析5. IDS3010激光干涉仪在快速机床校准中的应用德国亚琛工业大学(Rwth Aachen University,被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这又将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时且需要中断生产过程的安装和卸载校准设备变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪。其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较,六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性。值得指出的是,使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而在保持相同的精度水平下大的提高了生产率。更多信息请了解:Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)图5.1 自动校准激光探头安装示意图6.IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。几何测量系统是设计的锥束C-T系统的一大挑战。近期,瑞士联邦计量院(METAS)的科学家采用德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。该实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够进行样品台的角度误差分析。终实现非线性度小于0.1 um,锥束稳定性在一小时内优于10 ppb的高精度工业C-T。更多信息请了解:Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6.1激光干涉仪在系统中的测量定位示意图7.IDS3010激光干涉仪在增材制造3D打印中的应用微尺度选择性激光烧结(u-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。为满足导轨对定位精度高的要求,该系统采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。更多信息请了解:Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA 7.1系统示意图,其中激光干涉仪被用作位移的测量和反馈8. IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对系统稳定性提出了更高的要求。在整个实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,在40小时内表现出优于1.25 nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300 pm的分辨率。因此,IDS3010是对上述X射线显微镜装置的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40 nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45 nm。更多信息请了解:Characterizing a scanning fluorescence X ray microscope made with the displacement sensor 8.1荧光X射线显微镜的高分辨成像结果
  • IDS3010高精度皮米激光干涉仪在齿轮箱机械载荷试验运动跟踪上的全新应用!
    研究背景 驱动工程行业中的部件需要测试多种机械特性,例如,需要检查齿轮箱的长期平滑度、同步性、齿隙、扭转刚度、摩擦行为和机械弹性[1,2]。测试实验室通常配备各种测试台,以便于在接近真实世界的条件下分析齿轮,确定并确保其技术特性。 WITTENSTEIN alpha是attocube母公司WITTENSTEN SE的战略业务部门,负责精度需求超高的机电伺服驱动系统的开发和机械生产。WITTENSTEIN在垂直线性运动测试台上使用了attocube的皮米精度激光干涉仪-IDS3010。IDS3010能够提供皮米分辨率,1MHz的数据输出,可有效帮助测试齿轮齿条传动系统中行星齿轮箱机械参数的长期稳定性。 实验装置 试验台包含沿垂直轴移动的400 kg负载质量。该负载与齿轮齿条系统相连,齿轮齿条系统由WITTENSTEIN alpha齿轮箱和伺服电机驱动组成。传统的玻璃标尺在精度、灵活性和检测高频振动方面十分受限,无法收集该测试台所需的所有数据。为了更好地了解变速箱的性能,需要精度更高且易于集成到现有装置中的设备。皮米精度激光干涉仪-IDS3010具有皮米级精度、紧凑的传感器头和模块化设计、通过光纤传输激光等特性,工程师将其集成到装置中并实现了快速安装和快速对齐。在开始整合两小时内,使用IDS3010在整个0.747米的工作范围内完成了测量。图1显示了测试台,包括安装在400 kg重量上的角锥棱镜和M12/C7.6准直传感器头,同时以1 MHz带宽从IDS3010读取模拟Sin/Cos数据。 Figure 1: Test bench for mechanical load tests of a gearbox 测试结果分析 图2显示了工作范围内几个周期的位移数据。如下图(a)所示,循环结果接近正弦曲线;图(b)是运动的转折点放大的曲线数据。高分辨率位移数据为同步和传动误差的齿轮箱行为提供了新证据。探索纳米级细节的能力为频率和运动分析提供了新的机会。通过IDS3010和进一步优化,可以可视化完成行星齿轮箱中单齿的影响。此外,如图(e)所示,两种方法的差异表明,玻璃尺读数提供的测量数据准确性较差。两个信号之间差异的周期性明显,表明不是由于噪声或变化造成的数据误差,而是因为玻璃尺编码器位于远离感兴趣的测量点和玻璃刻度不精确。此外,IDS3010及其光学组件具有更明显的优点,例如紧凑的传感器头和质量可忽略的角锥棱镜。 Figure 2: Displacement data of the weight moved by the gearbox. (a) shows the position of the mass that was measured with the IDS3010. (b) is a 160 000 times magnified segment of a) to show the precision of the interferometric measurement. (c) is the speed measurement of the weight movement obtained from the data of a). (d) is the same measurement as a) but with an optical linear encoder – which looks similar until one looks at the detail of the difference – as seen in plot (e).结论 综上所述,IDS3010提高了测试台的精度和分辨率。基于激光的测量和小型化组件对无限接近感兴趣的点进行测量成为可能,且不会影响整个装置的运动行为。这使得测试和开发工程师能够确定更多无法使用玻璃尺检测到的机械和摩擦现象。此外,IDS3010紧凑的设计、易于安装和快速对准的特性,允许在一个实验室内的多个测试台上灵活应用和集成。由于IDS3010可测量长达5米的工作距离,多达三个的光轴,因此干涉仪也可用于更大的测试台。 References [1] R. Russo, R. Brancati, E. Rocca: “Experimental investigations about the influence of oil lubricant between teeth on the gear rattle phenomenon”, Journal of Sound and Vibration, Volume 321, Issues 3-5, 2009, Pages 647-661.[2] Y. Chen, A. Ishibashi: “Investigation of the Noise and Vibration of Planetary Gear Drives”, GEAR TECHNOLOGY, Jan/Feb 2006.相关产品1、皮米精度激光干涉仪-IDS3010
  • 捉拿大气“隐藏犯”,贵州“大气环境溯源研究移动实验室”启用
    暑期的贵阳热闹非凡,人们纷纷来到避暑之都乘凉纳爽,在川流不息的街头,有一辆头顶天线,外形独特的“小白车”引人注目。“小白车 黑科技”“这个小白车我们看到好几次了,打羽毛球的和跳舞的时候都看到过。”在贵阳生活的廖阿姨说。阿姨口中的小白车,实际上是贵州首个可同步实现170余种大气参数观测,为全省大气环境管理、突发环境事件处置以及相关科学研究等提供数据和理论支撑的“大气环境溯源研究移动实验室”。一个名副其实的“黑科技”大气监测装置。群山连绵,溯源困难,是贵州省大气污染研究的痛点,尤其近年来PM2.5、臭氧污染、“蓝天也是幸福”成了百姓关注的热门话题,打好大气污染防治攻坚战是全社会共同责任。在贵州高原山地复杂气象条件和人为排放源的作用下,大气环境质量成分十分复杂,深入开展大气环境溯源研究,科学精准提出污染防治措施成了亟待解决的关键问题。自2020年以来,贵州省内有部分高校、研究院所采用传统人工离线采样分析对贵州省部分城市大气环境进行了初步研究,但传统大气环境样品采样分析手段不仅耗时长,人力、物力、财力投入大,不能实现关联高分辨率同步观测,与大气环境瞬息万变复合污染的特征不相适应。在贵州省生态环境厅安排指导下,省环境科学研究设计院历时2年,斥资1270万元,建成了具备大气颗粒物、大气臭氧及其前体物在线监测与源解析功能的“大气环境溯源研究移动实验室”。“宝藏”设备 内藏乾坤一瞬间,电脑屏幕上呈现出一系列数据翔实的表格——实验室舱内,工作人员轻点鼠标,周围170余个大气环境参数监测报告、溯源成因分析报告便一键生成。“移动实验室集结了质子转移飞行时间质谱、等离子体质谱、离子色谱、激光雷达等20余台大气环境监测精密仪器和辅助设施,分别对大气环境颗粒物的多类组分、挥发性有机污染物成分以及常规环境质量指标进行动态监测,可同步实现亚秒级时间分辨率和亿万分之一浓度分辨率的指标分析。”贵州省环境科学研究设计院大气与应对气候变化研究所所长黄代宽介绍。据了解,贵州大气环境溯源研究移动实验室集成了在线ICP-MS、WAGA-IC、PTR-TOF-MS、GC-FID/MS等20余台大气环境监测精密仪器。可同步开展常规大气环境质量6参数,气象5参数、117种挥发性有机物、24种无机元素、12种可溶性离子、有机碳/无机碳等170个参数指标的观测。可获取亚秒级至小时级时间分辨率以及从ppt至ppm级别浓度分辨率的参数指标数据。此外,实验室重点围绕臭氧和细颗粒物,集成了高时间分辨率质子转移飞行时间质谱(PTR-TOF-MS)、高时间分辨率全自动气相色谱质谱(GC-MS)、在线挥发性有机物气相色谱火焰离子仪(GC-FID)、在线挥发性有机物气相色谱火质谱(GC-MS)、臭氧激光雷达、颗粒物无机元素在线等离子体质谱(ICP-MS)、大气水溶性组分阴阳离子分析仪(WAGA-IC)、大气有机碳元素碳分析仪(OC/EC)、大气环境质量6参数、气象5参数等9套关键设备及其辅助装备,同步实现170余种大气参数观测,开发集成了智慧化的数据解析展示平台,具有较为全面的臭氧和细颗粒物动态精准溯源判别功能。通过移动或固定点连续监测、地面监测与地基垂直测、常规监测与高技术手段监测相结合,实现了空气质量多参数、高时间分辨率的立体监测,以此极大提高了工作效率和研究的全面性,是实现贵州省大气污染防控“问题精准、时间精准、区域精准、对象精准、措施精准”的利器。走进实验室,系统还配备了综合面板、数据分析、数据管理、运维管理、智能简报、走航观测等功能为一体的“大气环境溯源研究移动实验室数字平台”,通过大数据、物联网和大气环境的融合运用,实时精准辅助完成臭氧和细颗粒物污染成因分析和来源。在实现海量监测数据的快速深度挖掘和成果产出的同时,还满足了地域广、城市多、污染源情况的综合作业要求,可以将多个兴趣点大气污染溯源排查研究相串联,进行灵活的调度,为大气环境环境管理、应急救援处置、相关科学研究提供精准支撑。“结合各地大气环境现状和管理需求,近期我们会到各市(州)中心城市开展具体研究工作,运用移动实验室,打破时间、空间限制,摸清各地大气环境污染成因和污染源,这将为贵州省持续深入打好大气污染防治攻坚战提供数据和理论支撑。”黄代宽说。据悉,在8月即将举行的2023年澳门国际环保合作发展论坛及展览,以及首届贵州科技节上,“贵州大气环境溯源研究移动实验室”将作为贵州省环保“黑科技”代表进行展示,充分展现生态环境保护的“贵州智慧、贵州方案、贵州实践”。
  • 捉拿大气“隐藏犯”,贵州“大气环境溯源研究移动实验室”启用
    暑期的贵阳热闹非凡,人们纷纷来到避暑之都乘凉纳爽,在川流不息的街头,有一辆头顶天线,外形独特的“小白车”引人注目。  “小白车 黑科技”  “这个小白车我们看到好几次了,打羽毛球的和跳舞的时候都看到过。”在贵阳生活的廖阿姨说。  阿姨口中的小白车,实际上是贵州首个可同步实现170余种大气参数观测,为全省大气环境管理、突发环境事件处置以及相关科学研究等提供数据和理论支撑的“大气环境溯源研究移动实验室”。一个名副其实的“黑科技”大气监测装置。  群山连绵,溯源困难,是贵州省大气污染研究的痛点,尤其近年来PM2.5、臭氧污染、“蓝天也是幸福”成了百姓关注的热门话题,打好大气污染防治攻坚战是全社会共同责任。  在贵州高原山地复杂气象条件和人为排放源的作用下,大气环境质量成分十分复杂,深入开展大气环境溯源研究,科学精准提出污染防治措施成了亟待解决的关键问题。  自2020年以来,贵州省内有分高校、研究院所采用传统人工离线采样分析对贵州省部分城市大气环境进行了初步研究,但传统大气环境样品采样分析手段不仅耗时长,人力、物力、财力投入大,不能实现关联高分辨率同步观测,与大气环境瞬息万变复合污染的特征不相适应。  在贵州省生态环境厅安排指导下,省环境科学研究设计院历时2年,斥资1270万元,建成了具备大气颗粒物、大气臭氧及其前体物在线监测与源解析功能的“大气环境溯源研究移动实验室”。  “宝藏”设备 内藏乾坤  一瞬间,电脑屏幕上呈现出一系列数据翔实的表格——  实验室舱内,工作人员轻点鼠标,周围170余个大气环境参数监测报告、溯源成因分析报告便一键生成。  “移动实验室集结了质子转移飞行时间质谱、等离子体质谱、离子色谱、激光雷达等20余台大气环境监测精密仪器和辅助设施,分别对大气环境颗粒物的多类组分、挥发性有机污染物成分以及常规环境质量指标进行动态监测,可同步实现亚秒级时间分辨率和亿万分之一浓度分辨率的指标分析。”贵州省环境科学研究设计院大气与应对气候变化研究所所长黄代宽介绍。  据了解,贵州大气环境溯源研究移动实验室集成了在线ICP-MS、WAGA-IC、PTR-TOF-MS、GC-FID/MS等20余台大气环境监测精密仪器。可同步开展常规大气环境质量6参数,气象5参数、117种挥发性有机物、24种无机元素、12种可溶性离子、有机碳/无机碳等170个参数指标的观测。可获取亚秒级至小时级时间分辨率以及从ppt至ppm级别浓度分辨率的参数指标数据。  此外,实验室重点围绕臭氧和细颗粒物,集成了高时间分辨率质子转移飞行时间质谱(PTR-TOF-MS)、高时间分辨率全自动气相色谱质谱(GC-MS)、在线挥发性有机物气相色谱火焰离子仪(GC-FID)、在线挥发性有机物气相色谱火质谱(GC-MS)、臭氧激光雷达、颗粒物无机元素在线等离子体质谱(ICP-MS)、大气水溶性组分阴阳离子分析仪(WAGA-IC)、大气有机碳元素碳分析仪(OC/EC)、大气环境质量6参数、气象5参数等9套关键设备及其辅助装备,同步实现170余种大气参数观测,开发集成了智慧化的数据解析展示平台,具有较为全面的臭氧和细颗粒物动态精准溯源判别功能。  通过移动或固定点连续监测、地面监测与地基垂直测、常规监测与高技术手段监测相结合,实现了空气质量多参数、高时间分辨率的立体监测,以此极大提高了工作效率和研究的全面性,是实现贵州省大气污染防控“问题精准、时间精准、区域精准、对象精准、措施精准”的利器。  走进实验室,系统还配备了综合面板、数据分析、数据管理、运维管理、智能简报、走航观测等功能为一体的“大气环境溯源研究移动实验室数字平台”,通过大数据、物联网和大气环境的融合运用,实时精准辅助完成臭氧和细颗粒物污染成因分析和来源。  在实现海量监测数据的快速深度挖掘和成果产出的同时,还满足了地域广、城市多、污染源情况的综合作业要求,可以将多个兴趣点大气污染溯源排查研究相串联,进行灵活的调度,为大气环境环境管理、应急救援处置、相关科学研究提供精准支撑。  “结合各地大气环境现状和管理需求,近期我们会到各市(州)中心城市开展具体研究工作,运用移动实验室,打破时间、空间限制,摸清各地大气环境污染成因和污染源,这将为贵州省持续深入打好大气污染防治攻坚战提供数据和理论支撑。”黄代宽说。  据悉,在8月即将举行的2023年澳门国际环保合作发展论坛及展览,以及首届贵州科技节上,“贵州大气环境溯源研究移动实验室”将作为贵州省环保“黑科技”代表进行展示,充分展现生态环境保护的“贵州智慧、贵州方案、贵州实践”。
  • 大族激光透露第三代半导体设备最新动态
    近日有投资者在互动平台就大族激光是否有切割碳化硅的技术与设备,以及已量产的第三代半导体设备进行了提问。大族激光表示公司应用于第三代半导体的SiC晶锭激光切片机、SiC超薄晶圆激光切片机正在客户处做量产验证。有数据显示,大族激光今年上半年实现营业收入69.37亿元,营业利润6.82亿元;归属于母公司的净利润6.31亿元,扣除非经常性损益后净利润6.07亿元。其中半导体及泛半导体行业晶圆加工设备业务实现营业收入7.17亿元。今年5月份,大族激光的全资子公司大族半导体发布了激光切片(QCB技术)新技术,并同时发布了两款全新设备:SiC晶锭激光切片机(HSET-S-LS6200)、SiC超薄晶圆激光切片机(HSET-S-LS6210)。其产品性能非常优越,以切割2cm厚度的晶锭,分别产出最终厚度350um,175um和100um的晶圆为例,QCB技术可在原来传统线切割的基础上提升分别为40%,120%和270%的产能。据悉,我国计划把大力支持发展第三代半导体产业,写入“十四五”规划,计划在2021-2025年期间,在教育、科研、开发、融资、应用等等各个方面,大力支持发展第三代半导体产业,以期实现产业独立自主。第三代半导体材料是以碳化硅SiC、氮化镓GaN为主的宽禁带半导体材料,具有高击穿电场、高饱和电子速度、高热导率、高电子密度、高迁移率、可承受大功率等特点。以第三代半导体的典型代表碳化硅(SiC)为例,碳化硅具有高临界磁场、高电子饱和速度与极高热导率等特点,使得其器件适用于高频高温的应用场景,相较于硅器件,碳化硅器件可以显著降低开关损耗。 因此,碳化硅可以制造高耐压、大功率的电力电子器件,用于智能电网、新能源汽车等行业。
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。  对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。  一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。  项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。  强强联合  项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。  但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。  为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。  但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。  而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。  上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。  1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。  “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。  从“敢想”到“敢做”  据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。  位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。  针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。  据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。  在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。  据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 全新ScanFieldMonitor(SFM)激光焦点分析仪应用于3D打印技术
    激光光束测量专家德国PRIMES公司,推出了一款全新的激光扫描参数测量设备,该设备完美匹配选择性激光熔化(SLM)3D打印技术。ScanFieldMonitor(SFM)激光焦点分析仪是一款多功能一体化的激光光束诊断设备。该激光焦点分析仪(SFM)适用于任何激光光束和激光扫描设备的诊断分析,使用户能够轻松确定其激光光源的各种参数。ScanFieldMonitor(SFM)激光焦点分析仪具有独特的设计,旨在实现改进的工艺优化和系统认证,从而使用户能够更好地校准激光3D打印机,以进行工业3D打印。来自PRIMES公司销售工程师Stephan Holesch重点介绍了激光焦点分析仪(SFM)的特点:“它能在不到三秒钟的时间内,即可确定最重要的生产参数”。同时,“借助特殊的测量方案,还可以确定枕形失真、重叠扫描场的合并、焦点偏移以及激光的开启和关闭延迟。”激光焦点分析仪(SFM)可用于10W–1500W激光测量通过激光焦点分析仪(SFM)进行激光扫描仪参数测量PRIMES认为工业3D打印行业的质量保证体系落后于其他激光加工行业。与传统的激光焊接中已经成熟的激光光束诊断技术相比,选择性激光熔化SLM 3D打印仍然严重依赖于激光扫描系统的可靠性。随着越来越多的制造商将选择性激光熔化SLM集成到其工艺链中,需要复杂的激光扫描参数测量仪来制定质量标准并保证标准的验证。激光焦点分析仪(SFM)采用刻有一系列10~15微米厚测量线的玻璃板的专利技术对激光光束特性进行表征。当用户在该玻璃板上扫描激光光束时,光电二极管测量玻璃板上每个刻线的散射光。此过程可用于确定激光光束在激光焦点分析仪(SFM)上的路径、焦散和场平坦度。然后,结合集成光电二极管的采样率,激光焦点分析仪(SFM)能够计算激光从路径起点到终点的传播速度。由此,PRIMES特有的算法可以分析多种复杂的关系,例如枕形失真、重叠扫描场的合并,甚至是激光激活和关停的延迟。由于数据采集是在写入扫描矢量所需的时间(几毫秒)内完成的,因此该设备也适用于时间分辨分析,例如热透镜检查。为了在粉末床中将激光的融合轨迹进行精确定位,至关重要的是使激光的照射顺序与扫描镜的移动保持同步。因为激光焦点分析仪(SFM)可以提供绝对定位信息,因此该仪器最终可以用于校准这两个基本参数。根据玻璃板上测量线的散射光来确定激光束和扫描仪的参数是什么使激光焦点分析仪(SFM)如此与众不同?激光焦点分析仪(SFM)的主要特点是具有全功能性,因为它将多种测量功能融合到一台设备中。这使得该仪器与各种扫描仪兼容,从而能够表征任何基于激光的扫描系统。最终节省了用户的时间成本和金钱成本。也正因为激光焦点分析仪(SFM)的全功能性,消除了工艺流程对多种测量设备的需求,从而大大的降低了工艺流程的复杂性。该系统的尺寸为80 x 80 x 100mm,非常紧凑,可以放置在打印机构建区的任何位置。PRIMES甚至添加了以太网接口和WLAN模块,因此可以从3D打印机的外部远程控制激光焦点分析仪(SFM)。与传统的光束诊断设备不同,该系统能够以全功率分析光束,因此可以在实际操作条件下进行测量。激光焦点分析仪(SFM)的玻璃板
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制