当前位置: 仪器信息网 > 行业主题 > >

阻尼胶阻尼系量仪

仪器信息网阻尼胶阻尼系量仪专题为您提供2024年最新阻尼胶阻尼系量仪价格报价、厂家品牌的相关信息, 包括阻尼胶阻尼系量仪参数、型号等,不管是国产,还是进口品牌的阻尼胶阻尼系量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阻尼胶阻尼系量仪相关的耗材配件、试剂标物,还有阻尼胶阻尼系量仪相关的最新资讯、资料,以及阻尼胶阻尼系量仪相关的解决方案。

阻尼胶阻尼系量仪相关的资讯

  • IMCE发布高温动态弹性模量和阻尼分析系统新品
    仪器简介:比利时IMCE公司是一家专业的测试弹性模量和阻尼内耗分析仪器的生产厂家, 仪器基于共振频率动态测量方法, 应用完全非破坏性测试技术, 适用于陶瓷及金属等多种材料的生产(质量控制)及科学研究领域, IMCE公司是目前世界上唯一能在1750C高温和气氛控制条件下, 利用目前最先进的软件评估及研究, 精确测定共振频率、弹性模量、剪切模量和阻尼内耗等相关技术指标。 公司主要产品有:1、弹性模量和阻尼内耗分析仪 型号:RFDA MF Professional 2、高温炉: 型号:RFDA-HT1700 型号:RFDA-HTVP1700C 型号:RFDA-HTVP1600 HT1600, HT650. HT1050 3、软件 型号:RFDA MF Software 在中科院沈阳金属研究所高性能陶瓷与复合材料重点实验室及测试中心有该公司2套先进的高温测试系统。 技术参数:1、共振频率。 10Hz ~ 130KHz2、阻尼或内耗(10ˉ5-----0.1) 3、弹性模量 4、剪切模量 5、泊松比率 6、温度:室温--1750C。 7、气氛控制8,真空系统,激光检测主要特点:1、动态法测试(线性或非线性) 2、样品完全非破坏性测试符合ASTM-E-1876-99方法创新点:双样品高温弹性模量仪HT1700,在原有HTVP1700基础上,简化结构,去掉真空组件,增加了双样品支座及测试系统;性能上除了不能做真空及密封外,其它指标同HTVP1700相同,并且可以在普通空气下实验,可以同时测试2个样品,设备体积减小,提高测试效率一倍,价格降低一半!目前世界上同类设备中温度最高,双样品结构独一无二!高温动态弹性模量和阻尼分析系统
  • 科研人员构建“分子阻塞”超分子机制高阻尼凝胶材料
    近年来,凝胶材料因其灵活可调的力学特性和丰富的功能,受到了各领域研究者的极大关注。然而,凝胶材料往往因溶剂的迁移而具有较低的稳定性,容易溶胀或干燥变形,已经成为制约凝胶材料深入应用的瓶颈难题。尽管已经开发了多种策略来提高凝胶的稳定性,然而,从热力学角度来看,如果凝胶中溶剂的含量偏离了聚合物的平衡溶胀状态,溶剂将不可避免的发生迁移。因此,若要准确控制凝胶中的溶剂含量,保持高稳定性,需要有效抑制溶剂迁移的动力学过程。基于“分子阻塞”超分子机制的有机凝胶构建思路。(论文课题组供图)机械互锁作用通过分子结构中的几何关系将不同的分子连接起来,这使得非共价连接的分子,能够保持稳定的聚集状态。西安交通大学化学学院“智能高分子”团队吴宥伸副教授和张彦峰教授,从机械互锁超分子原理中汲取灵感,提出了“分子阻塞”超分子机制,利用溶剂分子与交联网状结构之间的尺寸差异带来的阻滞,有效抑制溶剂在凝胶内的迁移。通过设计和合成分子尺寸超过1.4 nm的液态支链柠檬酸酯(branched citrate ester, BCE),并将这种大体积分子作为溶剂与交联聚脲原位聚合,制备获得系列新型“分子阻塞”凝胶。“分子阻塞”凝胶具有与普通聚合物或弹性体相媲美的卓越稳定性,可储存10个月而无任何形貌或力学性能改变,并能耐受高温烘烤,保持质量和性能的稳定。特别是“分子阻塞”凝胶的杨氏模量能够在1.3 GPa至30 kPa的大范围内连续调控,变化幅度达到创纪录的43000倍,有效覆盖了现有交联树脂、塑料、弹性体和凝胶的范围。同时,“分子阻塞”效应作为一种非共价耗散机制,赋予了凝胶材料独特的粘弹性力学特性,使其具有高阻尼,达到和超过了商业化的聚氨酯和聚脲材料。上述研究成果,近期发表于《先进材料》,西安交通大学化学学院为第一单位,西安交通大学生命学院为合作单位。论文第一作者为化学学院吴宥伸副教授,论文通讯作者为化学学院副院长张彦峰教授。这一研究受到了国家自然科学基金和西安交通大学分析测试中心的支持。
  • 【定制产品】上海百若——阻尼器疲劳试验台PLW
    p style="text-align: center "/pp style="text-align: center"img style="width: 335px height: 500px " src="http://img1.17img.cn/17img/images/201710/insimg/3c79e2a4-8698-4355-bfa0-58a9e6aa4a50.jpg" title="0.jpg" height="500" hspace="0" border="0" vspace="0" width="335"//pp style="text-align: center "strong阻尼器疲劳试验台PLW/strongbr//pp strong 1.生产厂商/strong/pp  上海百若试验仪器有限公司/pp  strong2.采购单位/strong/pp  成都博瑞精信科技有限公司/pp  strong3.主要功能/strong/pp  阻尼器、助力器耐久性能测试 /pp  加载波形正弦运动规律,编程循环嵌套不低于3层 /pp  对阻尼器、助力器进行力——位移功量图绘制,力——位移——时间曲线图绘制 /pp  产品具有轴向疲劳加载、侧向同时加载的功能 /pp  strong4.产品技术特点/strong/pp  1) 采用高集成度、强大的控制、数据处理能力、高可靠性控制测量系统。/pp  2) 采用基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统,实现力、变形、位移全数字三闭环控制,各控制环间可自动切换,并在各方式间切换时实现无冲击平滑过渡。/pp  3) 可进行定位移、定速度、定应变、定应变速率、定负荷、定负荷速率等多闭环控制模式。/pp  4) 高精准24Bit数据采集系统,高分辨率,可扩展至8路AD采集。/pp  5) 试验过程中实时显示滞回环曲线。/pp  6) 试验过程中显示负荷、位移峰值谷值变化情况。/pp  7) 试验过程中显示动态波形加载曲线。/pp  8) 加载波形具有多层循环嵌套,且不低于3层。/pp  strong5.产品技术参数/strong/pp  最大试验力:动态± 60kkN /pp  负荷示值准确度:± 1% /pp  加载频率:0.01-50Hz /pp  振幅:4.3Hz时± 6.5mm /pp  横向力:2000N/pp strong 6.产品应用介绍/strong/pp  产品主要应用于阻尼器、助力器的动刚度测试,在进行动态加载时设备具有恒定侧向负载的加载能力,以模拟阻尼器实际工况,并按阻尼器轴向受力情况进行模拟,正弦波加载,按照一定的规律进行循环内置3层以上的嵌套循环控制。控制功能上并增加按照阻尼器的运动谱模拟控制功能。产品采用伺服电机油源进行疲劳动力加载,有效地降低能耗及噪音。在设备工作时,根据试验要求,系统会根据设定的频率和振幅,自动耦合电机转速,输出合适的流量,不产生多余的流量,系统不发热。转速低,噪音也低。作动器采用液压静压轴承油膜密封方式进行密封,活塞杆由高压油膜支撑,可以承受一定的侧向力,保证了伺服作动缸的高动态性和高寿命等特性。这种无粘阻现象的特性可以在高动态下确保对试样实施高灵敏的轴向力控制以及试验所需直线运动的高精度位移控制。中文软件界面,符合客户的操作习惯。系统的高响应,低噪音,多循环嵌套控制运动谱,符合客户对这一领域试验的需求。/p
  • 浙江计量院完成阿联酋电力计量仪表WTO/TBT通报评议工作
    近日,受国家标准技术评审中心委托,省计量院牵头完成《阿拉伯联合酋长国G/TBT/N/ARE/552计量仪表》WTO/TBT通报文件的技术评议任务,为浙江省电力仪表产品进军阿联酋等一带一路沿线国家扫清技术壁垒,助推国内、国际国内双循环高质量发展之路。   近年来全球各国正在全方位推进智能电网的建设,大幅拉动了一带一路发展中国家智能电表市场需求。据2021年统计,我国向亚洲各国出口电能表产品出口金额超过30亿元人民币,出口金额和数量在全球各洲排名中均位居首位,其中浙江省出口金额占比超过60%。   在省局计量处大力领导和支持下,省计量院联合国网浙江省电力有限公司营销服务中心,积极组建包含检测机构、电力用户以及电能表生产企业等多方代表组成的评议专家工作组,克服阿拉伯语言障碍,圆满完成技术草案的各项技术评议,针对文件中C级电能表阻尼振荡波技术要求高于我国标准要求部分,依托国家电能表产品质量检验检测中心开展充分的验证分析,针对各电流之间比例关系等不合理之处,给出参照我国现行标准修改建议,评议专家组一致认为该文件不会对我国的电能表出口阿联酋造成技术壁垒。   在国家新发展格局和浙江省以创新驱动高质量发展理念下,省计量院将充分认识开展C级等高端电能表技术再创新的重要作用,加大研发投入、持续改进产品工艺,不断提升我国高端电能表产品品质,在消除贸易技术壁垒的同时,积极将高质量产品、高品质服务延伸到阿联酋等一带一路沿线国家。   WTO/TBT通报评议是指在《技术性贸易壁垒协议》(TBT协议)的框架下,一国在规定时间内针对WTO其他国家发出的通报中不符合TBT协议的内容提出意见和问题。开展WTO/TBT通报评议,对于我国打破技术性贸易壁垒、保护国家和出口企业利益具有重大意义。
  • 热分析技术在橡胶行业的应用
    热分析技术是表征材料的性质与温度关系的一组技术,它在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。一、常见的热分析方法包括以下几项:  1、DSC是在程序控制温度下,测量样品的热流随温度或时间变化而变化的技术。因此,利用此技术,可以对样品的热效应,如熔融、固-固转变、化学反应等,进行研究。  2、TGA是在一定的气氛中,测量样品的质量随温度或时间变化而变化的技术,利用此技术可以研究诸如挥发或降解等伴随有质量变化的过程。如果采用TGA-MS或TGA-FTIR的联用技术,还可以对挥发出的气体进行分析,从而得到更加全面和准确的信息。  3、TMA可以测量样品在一定应力下的位移变化。利用DMA,则可以在很宽的频率范围内,对材料的粘弹性进行研究,从而得到材料的机械模量和阻尼行为。  目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。二、热分析技术对于橡胶材料可提供如下性能指标的测试:DSCTGATMADMA玻璃化转变组成分析热稳定性,氧化稳定性,降解粘弹性能,弹性模量阻尼行为填充剂含量,炭黑含量蒸发,汽化,吸附,解吸软化温度膨胀,收缩,溶剂中的溶化硫化熔融,结晶反应焓添加剂的表征三、应用介绍:1、利用TGA进行组成分析  TGA经常用来进行组成分析,利用它,可以观察样品由于蒸发、高温分解、燃烧等引起的重量变化。失重台阶的大小与挥发组分(如增塑剂、溶剂等)和分解产物的含量直接相关。在对橡胶进行分析时,当聚合物高温分解后,把气氛从惰性气氛变化为氧化气氛,炭黑就会燃烧,在残渣中就剩余了无机物和灰烬。对于高聚物的混合物,如果各组分的分解温度范围不同的话,则可以利用TGA来确定各个组分的含量。下图所示为几种的包含有天然橡胶的弹性体,第二聚合物组分分别为EPDM(A),BR(B)或SBR(C)。从TGA曲线的失重台阶上,可以清楚的看到各组分的含量,其中(1)为挥发性组分,(2)为天然橡胶(NR),(3)为相应的第二聚合物组分,(4)为炭黑。残渣中为无机化合物。由此曲线分析得到的结果与理论值非常吻合。2、利用DSC进行聚合物的鉴别  如果在高聚物的混合物中,各个组分的高温分解温度相近,那么用TGA进行分析时,就只能得到总的聚合物的含量而不能将各个组分区分开了。但是,借助DSC,就可以根据它们玻璃化转变的不同而对各组分加以区分。玻璃化转变温度Tg表征了聚合物的类型,而玻璃化转变台阶的高度△Cp则反映了聚合物的含量。例如,对于NBR/CR混合物,CR和NBR的玻璃化转变可以清楚的分离开来。台阶高度的比例约为1:1,这与方程式中24.4%含量的NBR和24.4%含量的CR的理论结果相当一致。从结果分析中可以看出,对于其他弹性体的结果分析不是很,这是因为第二个玻璃化转变峰与焓松弛峰或熔融峰重叠的缘故。3、利用DMA进行机械性能分析  DMA可以为我们提供材料的宏观粘弹行为和微观性能。这可以用下面的不同硫化度的SBR来进行说明。在玻璃化转变过程中,贮存模量G’下降约3个数量级,而损耗模量G’’则呈现出一个峰。随着硫化度的增加,玻璃化转变移向较高的温度。在材料处于橡胶态时,G’依赖于硫化度的大小。由于粘性流动,随着温度的升高,硫化度比较小的SBR1的贮存模量G’减小。在交联密度比较高时,G’随着温度线性增大。由此,我们就可以根据材料在橡胶态时的模量来确定它的交联密度,其交联密度k可以根据等式k=G/(2RTρ)进行估算。经计算得到,SBR3的交联密度为1.07×10-4mol/g,SBR4的交联密度为2.03×10-4mol/g。这两个数值的比值与二种材料中硫含量的比值一致。4、利用真空条件下的TGA测试来进行峰的分离  有时候,增塑剂的蒸发与聚合物的分解会彼此重叠。在这种情况下,在较低的压力(真空)下进行TGA测试,往往可以使两个过程得到较好的分离,这当然就相应的增加了结果分析的准确性。5、利用TMDSC增加测试准确度  利用温度调制DSC(TMDSC)技术可以得到更加准确的结果。使用此技术后,焓的松弛效应以及熔融过程对测得的热容曲线的影响明显减小。  利用TMDSC方法对NR/SBR和EPDM/SBR混合物进行了测试,通过对所得曲线的分析,可以看出△Cp的比值与组分中的实际值一致。6、利用DMA进行蠕变性能测试  利用DMA测试,可以了解聚合物与添加剂之间的相互作用,并且可以看出材料的应力与应变之间保持线性关系的范围。  我们对不同炭黑添加量的EPDM弹性体在橡胶态时的性能进行了测试。结果发现,未用炭黑填充的EPDM的贮存模量为0.5Mpa,并且这个值不随着位移振幅的变化而变化。而随着炭黑含量增大,其模量也增大。但是,对于同一炭黑含量的样品来说,当剪切位移的振幅增大时,其模量减小,因此其应力与应变曲线之间就呈现出非线性的关系,这是由于炭黑簇的可逆性破坏造成的。四、结论:  热分析技术能为表征材料的性能提供十分全面 、有用的信息:对于日常的质量控制和保证,单独的质量技术指标的控制可以选择单独的热分析技术就可以完成;而对于材料的研究开发则需要综合运用多种热分析技术,对材料的性能进行全面的研究和评估。
  • 热分析耄耋老人钱义祥:DMA曲线激荡之美
    DMA曲线激荡之美热分析耄耋老人 钱义祥引言:“DMA曲线激荡之美”是一篇短文。短文诠释(解读)了黏弹性材料的DMA曲线的显信息以及蕴含在DMA曲线中的滞后圈。展现了黏弹性材料在正弦交变应力作用下的激荡之美。近日,和耐驰公司市场与应用副总经理曾志强博士切磋热分析中的美学问题。曾志强博士语出金句:热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡!妙 ! 我将他的金句镶嵌进“热分析中的美学”论文中,增辉!今以DMA曲线激荡之美为题,撰写了以下短文:一.试样在振动中呈现激荡之美激荡是汉语词语,是指事物受到激发而动荡。强迫非共振法DMA以设定频率振动,使试样处于振动状态,呈现激荡之美。二.激荡的DMA曲线蕴含的信息1. 显信息和隐信息强迫非共振法DMA就是测量应力—应变(同频正弦信号)信号的相位差,其滞后圈即为李萨如图形。由试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算得到储能模量、损耗模量、损耗角正切等性能参数。DMA测量应力—应变(同频正弦信号)信号的相位差,但在DMA曲线中并没有显现相位差信息,它是DMA曲线的隐信息。 DMA曲线中显现的储能模量、损耗模量、损耗角正切等性能参数是显信息。它由试样在振动中的应力与应变幅值以及应力与应变之间的相位差直接计算得到。非晶高聚物的DMA曲线(温度谱)非晶高聚物的DMA曲线(频率谱)2. 一个震荡周期的滞后参数DMA实验要设定振动频率,让试样在一定的频率下振动。一个振动周期即为一个实验点。无数个振动周期构成了DMA曲线。DMA曲线中,每一个振动周期的应力-应变曲线相位差、Tanδ、滞后圈和能量损耗是不一样的。一个震荡周期得到的滞后参数如下图: 3. 损耗角正切Tanδ蕴含的信息:DMA曲线中的Tanδ线如图所示: 损耗角正切Tanδ反映材料的阻尼特性,是DMA曲线的显信息。Tanδ中δ是一个震荡周期的相位差,是DMA曲线的隐信息。从三角函数表中由Tanδ值得到相位差δ。DMA曲线中,损耗角正切Tanδ蕴含哪些信息呢? 1) 显信息Tanδ以DMA曲线形式显现黏弹性材料的阻尼特性,可以从DMA曲线上直接读出每个振动周期的Tanδ。Tanδ表示每周期振动所消耗的能量与最大应变能的比值,是能量损耗和阻尼能力的直接量度。2) 潜信息-相位差相位差:DMA是测量应力—应变(同频正弦信号)信号的相位差。相位差无量纲,用弧度rad表示。李萨如滞后圈:李萨如滞后圈是隐藏在Tanδ曲线内的应力-应变曲线,单位是焦耳j。3)关联Tanδ和简谐振动的能量损耗。4. 诠释DMA曲线:DMA曲线显现显信息,潜藏隐信息。下图诠释了DMA曲线的显信息、隐信息:三.滞后圈的变化美滞后圈的形状多种多样,变化无穷,具有变化之美!黏弹性材料的应力-应变曲线,由于粘性的作用形成滞后圈。DMA计算的理论基础是线性粘弹性,要求施加在试样上的动态应力或动态应变落在应力-应变曲线的初始线性范围内。当试样是线性粘弹性材料(处于线性粘弹性区域),施加的应力是正弦波,则滞后圈为一椭圆形。滞后圈的形状在直线和圆之间变化,如图: 如果是非线性粘弹性材料(处于非线性粘弹性区域),滞后圈的形状是不规则的,如图所示: 滞后圈变异反映了材料的特性,不是怪异,不是丑,而是变化之美!滞后圈变异已经广泛应用于阻尼材料的振动疲劳特性、应力—时间疲劳测试曲线、位移—时间疲劳测试曲线、振幅对阻尼材料的振动疲劳的影响、温度对阻尼材料振动疲劳的影响、频率对阻尼材料振动疲劳的影响、长周期振动的疲劳性能等方面。从滞后圈上可以获得的信息:1. 储能模量、损耗模量、损耗角正切等性能参数。强迫非共振法DMA以设定的频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算实验得到储能模量、损耗模量、损耗角正切等性能参数。2. 滞后圈形态封闭回线:粘弹性阻尼材料滞后圈是应力、应变所经过的路径形成的封闭回线。滞后圈的形状有椭圆形和不规则图形。椭圆形:如果是线性粘弹性材料(区域),施加的应力是正弦波,则滞后圈为一椭圆形。椭圆的变形:圆形—δ越大,链段运动越困难,越跟不上应力的变化,椭圆越圆;扁形—δ越小,应变落后越小,椭圆越扁。椭圆长轴的斜率等于复模量。不规则图形:如果是非线性粘弹性材料(区域),滞后圈的形状是不规则的。3. 滞后圈面积阻尼材料的动态变形生热现象。由于滞后的存在,每一循环周期中都有能量的损耗,即内耗。消耗的功以热能形式散发,内耗越大,吸收的振动能也越多。 滞后圈面积只表示振动循环一个周期的能量损耗。一个周期中能量收支不平衡,其差值就是椭圆面积 ,表示能量的耗损ΔW,ΔW为阻尼大小的量度。滞后圈面积的变化:振动疲劳试验中,滞后圈随阻尼性能下降而变小。由滞后圈面积的变化得到不同疲劳周期的能量损耗和阻尼衰减特性。4. 损耗因子曲线下的面积:5. 疲劳破坏的周数当材料内部出现疲劳裂纹时,滞后圈发生突变或无法对试样继续加载试验应力,疲劳试验就此终止。结束语:材料的动态力学行为是指材料在交变应力(或应变)作用下的应变(或应力)响应。试样在正弦交变应力作用下呈现材料动态的激荡之美。致谢:曾志强博士提出热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念, 绝妙! “DMA曲线的激荡之美”一文是受曾志强博士的美学理念启迪撰写而成,特此致谢!2023-01-06
  • 日立仪器(上海)有限公司将参展“ 2016中国工业自动化在线展会”
    2016中国工业自动化在线展会展开创互联网+时代的展会新模式,提供一个实时高效的优质工业自动化品牌展示平台。同时为全球采购商和贸易商提供一个品牌汇集、信息全面的交流平台,足不出户即可在线完成供需无缝对接,找到销售线索和新商机。本次在线展中可以看到我司大部分仪器的介绍,可下载到XRF,TA相关的应用技术文件并可参与TA方面的专题讲座和在线问答等环节,诚邀您的光临。展会概要名称:2016中国工业自动化在线展会主办:OFweek中国高科技门户网站日期:2016年4月27日(星期三)~28日(星期四)展区:现代科学仪器展区 期间将举办在线语音研讨会,具体信息如下:主题:热分析相关粘弹性材料的疲劳特性研究时间:2016年4月27日15:30-16:30主题简介:本论文正对粘弹性材料的疲劳特性,利用动态热机械分析仪(DMA)测量了粘弹性阻尼材料的动态疲劳特性,模拟了材料在实际振动疲劳下的性能变化,并研究了应力/应变振幅、温度、频率和周次等因素对振动疲劳的影响。针对相应的Lissajous图形或滞后圈,将模量、阻尼、相位差以及单位体积和材料在每一循环中损耗的功联系在一起。还结合DMA的实时观察(Real View)系统,观察粘弹性材料在使用过程中的围观屈服现象:如剪切带、银纹、端口、成颈现象和泊松比。出展仪器介绍(部分)X射线荧光分析仪 EA1000AIII通过将可选项的精度管理型软件进一步升级,并使之成为标准配备,实现了低价格化。X射线镀层厚度测量仪 FT150使用新开发的X射线聚光用多毛细管。另外,以X射线检测结构为中心,对各类元件进行最佳优化,从而大幅提高了检测灵敏度,在不损失检测精度的前提下实现了的高处理能力。并且,对设备进行了重新设计,使得样本室的使用,以及对检测点的检查变得更为容易。热机械分析仪 TMA7000系列与传统的TMA相比,灵敏度提高了2倍。由于采用无形状制约的全膨胀方式,因此无论是薄膜或碎片样品均可测定。另外,只须更换探针就可以完成压缩、针入、拉伸等不同的测量模式。多样选择的冷却系统,将便利性和高精度测定结合在一起。关于该展会及涉及到的仪器,请联系:日立仪器(上海)有限公司 021-50273533 关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 央视曝光奔驰宝马豪车车内空气污染
    对于有一部分买了奔驰和宝马的车主来说,还要不要坐奔驰开宝马,真的成了一个头痛的问题。  据央视《每周质量报告》报道,国家质检总局3月15日刚刚公布的2012年汽车产品缺陷信息投诉情况显示,除了变速器、气囊、轮胎等质量问题之外,车内异味目前已经成为了车主投诉最为集中的问题之一。曾经有句俗话说“坐奔驰、开宝马”,奔驰和宝马这两大国际知名品牌,一直是高质量轿车的代表,然而,对于有一部分买了奔驰和宝马的车主来说,还要不要坐奔驰开宝马,真的成了一个头痛的问题。乘用车内空气质量检测 《乘用车内空气质量评价指南》于2012年3月1日起正式实施。之前我国一直没有针对车内环境的污染控制标准,此标准一出,立刻引发厂商和消费者的高度关注。针对车内空气污染情况,仪器信息网特推出“乘用车空气质量检测”专题。   车内异味持续两三年之久  从2012年9月份开始,北京、上海、南京、苏州、杭州、广州、深圳、成都等地陆续出现奔驰车主的集中投诉,车主普遍反映花了近四十万元购买的北京奔驰C系轿车,车内臭味难闻,而且有的车异味持续了两三年甚至更长时间。2012年10月,全国各地的奔驰车主自发成立了“奔驰C系异味问题维权”QQ群,截至目前共有超过450位维权车主,而且维权车主的数量还在不断增加。这些车主反映的问题一致指向了北京奔驰C系轿车车内长期存在刺鼻难闻的异味,车厢内空气污染严重。  在从去年10月至今长达五个月的调查中,记者注意到,除奔驰外,在多家知名汽车网站的论坛里,同样是高端豪华车品牌的宝马、奥迪也遭到了不少车主的投诉,投诉的问题同样是车里有着奇怪难闻的异味,有车主怀疑是空调出了问题,但更多的车主怀疑他们的宝马、奥迪车里存在污染。  记者联系到了北京的宝马车主谢先生,他的宝马520i是2005年华晨宝马生产的第一批车。当时,他听说第一批国产的华晨宝马5系车质量能与进口车相媲美。然而,让人想不到的是,这辆总共花了50多万购买的豪华车,在使用至今的七年多时间里,持续释放着奇怪的臭味,家里人坐车后都感觉身体不适。经过与4S店多次沟通协商,查找原因,到后来甚至把全车的内饰件都一一拆除了,也没有找到车内异味的来源。  奔驰宝马车里刺鼻的臭味究竟来自哪里?  阻尼片等部件是异味元凶  在上海奔驰车主王先生和北京宝马车主谢先生提供的照片中,我们看到,虽然他们的车体内饰都已经拆得只剩下个外壳了,可是他们反映仍然会闻到怪异的臭味。  在一家汽修工厂的车间里,记者注意到一辆正在整修的奥迪事故车,后座被拆掉之后,座椅底下的钢板上粘着大片黑色的胶片,记者仔细闻了闻,黑色的胶片散发着明显的臭味。在车门的钢板内侧,同样贴着一块块黑色的胶片。汽修工人介绍,这样的胶片在不同的车里,会被喷成跟钢板相同的颜色,经销商告诉我们这个胶片叫作阻尼片。  记者咨询了汽车材料研究专家,这种被称为阻尼片的东西,贴在车体钢板壁上是为了起到减震降噪的作用。所有小轿车里都安装有阻尼片,奔驰、宝马也不例外。  中国重汽技术中心材料工艺所高级工程师周光亚说,奔驰、宝马和奥迪车上的阻尼片如果有臭味,就很有可能像汽车配件商所说的那样是沥青做的。沥青是指煤焦油或石油提炼后产生的残渣,因含有多环芳烃及硫、酚等多种对有害物质,世界卫生组织的国际癌症研究中心(IARC),早在1976年就将煤焦油沥青列为一类致癌物质。  专家指出,沥青可以持续挥发刺鼻的臭味,那么,奔驰、宝马和奥迪车里使用的阻尼片究竟是不是沥青做的呢?记者在汽车专家的帮助下,分别随机取样,送到北京化工大学分析测试中心进行成分检测。6个阻尼板样品分别取自北京奔驰C系车、E系车,华晨宝马3系车、5系车以及一汽奥迪的A6、Q5。这6辆取样车均为近3年内生产的新车。  北京化工大学分析测试中心主任吕超表示,他们从三个不同品牌的国产车取出不同的样品,用热分析仪进行分析,同时用70号沥青作为对照,可以清楚地看到,这三个品牌的国产车的热失重曲线与70号沥青是相吻合的。  检测结果显示,六个随机送检的阻尼片样品,奔驰C级、E级,宝马3系、5系,奥迪A6、Q5果然和专家推断的结果一致,均含有70号沥青成分。  以一辆车为例,需要贴这种阻尼片的部位有八到十二处,其中大多位于封闭的汽车驾驶室内,总面积约3平方米,沥青的总用量大约为十公斤。  周光亚说,车内阻尼片因为它是紧贴在钢板上的,夏季经过太阳的暴晒,钢板最高的温度有可能超过100度,阻尼片长期在这种状况下,有可能本身就促使了老化,经过老化以后,这个阻尼片本身就可能进行分解而放出有毒有害气体。  专家介绍,由于太阳暴晒及发动机散热,紧贴钢板的沥青阻尼片因受热极易分解释放有毒的多环芳烃气体,而且这是一个长期缓慢的释放过程。  解放军总医院呼吸科主任刘长庭说,多环芳烃中对人体影响最大的是苯并芘,是一种突变原,是一种致癌的物质,是一种脂溶性比较强的物质,吸入到体内,可以停留在肺的粘膜上,在这种情况下,可能发生细胞变异,那么这种变异到最后产生一些阴影,或者肿瘤的变化,是一个漫长的时间。  据汽车业内专家介绍,目前在欧美等汽车工业发达的国家,汽车阻尼片一般都使用高分子树脂材料,或者橡胶材料。作为原材料,这两种原材料都不会挥发有毒有害气体。专家指出,奔驰、宝马、奥迪这些进口品牌车国产后,之所以采用沥青而不采用树脂、橡胶等环保材料,一方面是因为目前我国没有关于汽车零部件和辅助材料的相关国家标准,另一方面,使用沥青可以降低企业的生产成本。以普通的三厢轿车为例,它在车里面的沥青阻尼片,如果以两毫米厚的话大概使用3个平方,它的价格,如果是沥青阻尼片,大约在50元到70元左右,用环保材料的话可能在成本上,每辆车增加150块钱到200块钱左右。  厂家仅为降低100多元成本  据专家测算,2012年全年,北京奔驰、华晨宝马和一汽奥迪三大品牌的轿车销售总量约65万辆,仅使用沥青阻尼片一项,一年即可产生总计9700万至1.3亿元的利润。  让周光亚更为担心的是,在一辆由两万多个零部件组成的汽车上,阻尼片不过是一种连零配件都称不上的汽车辅助材料。仅仅为了降低100多元的成本,厂家就选用可能对车内空气造成严重污染、危害人体健康的危险原材料。而对于车里其它同样可能造成空气污染的材料,我们无法一一进行检测,那么,阻尼片的沥青成分是不是车内有害气体的唯一来源、车里是否还存在其它污染源?这仍然是一个巨大的问号。  周光亚说,沥青是不是唯一的污染源?其实并不是,汽车里还有十几种各种的材料,例如内饰塑料件中的增塑剂以及人造皮革中揉革剂等,这些材料的助剂呢,都是对人体有害的,如果选用的是价格比较低廉的非环保材料,肯定也会对车内环境造成污染,像奔驰、宝马、奥迪这三大高端品牌为了省钱,在小小的阻尼片上都使用有污染的材料,那么我们有理由怀疑,其它材料是否也用了有污染的材料呢?这三大公司应该如实地给中国的广大车主一个负责任的说法。汽车不只是要追求驾驶的安全,车内空气质量也同样涉及到千家万户的健康安全,这同样也是个事关公共安全的大问题。
  • 赫西仪器推出2019新品胶水试管脱泡离心机
    导言:经常听到客户抱怨,胶水里面有气泡,那为什么会有气泡呢?因为罐装后胶水中会混入空气,形成气泡,怎么才能解决这个问题呢?赫西仪器的工程师团队想了一个办法就是,利用离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。在此背景下,离心脱泡机被发明了出来。经过多次反复试验,2019年6月开始赫西仪器正式对外推出胶水试管脱泡离心机该系列最新产品; 具体而言,脱泡离心机主要是将不同颗粒大小以及密度不同的物质进行分离和提纯,让物质能够在巨大离心力的作用下,出现不同程度的沉降,从而分离出需要的物质成分。在物质分离的过程中,有一项重要的因素不能忽视,那就是密度,尤其是在生物胶水的应用方面,密度是关键要素。 如果胶水中有密度相差很小的物质,且气泡很多,将会影响胶水的质量。脱泡离心机可以使物质在离心力的影响下,对胶水做同样速度的沉降运转,让物质更为融合,甩出气泡。 脱泡离心机应用: 在光电器件类高科技产品生产中,很多场合都需要使用胶粘剂,对胶粘剂的脱泡方法往往会影响到最终产品质量。有一些片材生产需要脱泡,例如以氧化锆作为基材在上面涂覆陶瓷浆料生产的片材,以其良好的热稳定性,化学稳定性,耐热冲击性在工业中具有广泛的应用。生产片材的浆料在配制过程会有大量的气泡产生,粘度越大,气泡将引起片材表面质量变差,结皮,开裂等,因此需要脱泡 。赫西脱泡离心机通常脱除胶水内气泡的方法有三种:离心法、加热、抽真空,离心方式相对较为理想。加热的方式可能有一定局限性,因为加热可能会使胶水性质变化。采用抽真空方式可能会将硬化剂中的易挥发成分抽走而使得最后的混合比例不对,抽真空还可能导致胶水表面形成一层膜而导致内部气泡无法跑出。利用离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。。下面给大家介绍一下胶水试管脱泡离心机dd5特性和参数:1.胶水试管脱泡离心机dd5,采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩交流无刷电机,运行稳定噪音低,提供舒适的实验室环境。 2.航空锻造铝转子(仅限角转子)及多种聚酰胺纤维适配器可选。 3.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。 4.tft-lcd真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用; 5.操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。6.胶水试管脱泡离心机dd5,后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。 7.采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。 8.dd5台式低速大容量离心机,10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。 9.具备cfda备案及cfda生产资质,通过了iso 9001(2015)认证及iso 13485(2016)认证。 10.脱泡离心机有大中小都能做水平式的,可订制不同规格大小及长度的胶水管脱泡.脱泡离心机适用于各厂家的点胶管进行各种注入筒胶管脱泡处理, 11.离心式脱泡功能,不用外界物质接触产品,不会改变产品的化学性质。主机技术参数产品型号dd5最高转速(r/ min)5000最大离心力(×g)4800最大容量4×500 ml定时范围1-99 min/连续/短时离心噪 音≤60 db电 源ac220v 50hz转速精度±50r/min功率1.8kw重 量65 kg外形尺寸(长×宽×高)630×500×420 mm适用材料:各种胶水、银浆、油墨、油脂、膏状物、药品、化妆品基材、工业制造使用的UV胶水(树脂),红胶,锡膏,硅油和散热膏等材料等;针筒容量:10/30ML/50ML/70ML/100ML; 针筒数量:客户指定,离心转子(角转子或水平转子);公司产品广泛用于大专院校、科学院所、生命科学、临床医学、军工、生物工程、农林科学、食品、化工、石油、中心血站、检验检疫、疾控制药和环保等教学生产科研领域。我们将竭诚为新老客户提供更专业的技术和更优质的服务。
  • 赫西发布胶水脱泡离心机DD5新品
    脱泡离心机的功能主要是脱泡,因为罐装后胶水中会混入空气,形成气泡,而离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。胶水试管脱泡离心机TDD5特性:1.胶水试管脱泡离心机,采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩交流无刷电机,运行稳定噪音低,提供舒适的实验室环境。2.航空锻造铝转子(仅限角转子)及多种聚酰胺纤维适配器可选。3.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。4.TFT-LCD真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用;5.操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。6.胶水试管脱泡离心机,后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。7.采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。8.10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。9.具备CFDA备案及CFDA生产资质,通过了ISO 9001(2015)认证及ISO 13485(2016)认证。 10.脱泡离心机有大中小都能做水平式的,可订制不同规格大小及长度的胶水管脱泡.脱泡离心机适用于各厂家的点胶管进行各种注入筒胶管脱泡处理,11.离心式脱泡功能,不用外界物质接触产品,不会改变产品的化学性质。主机技术参数产品型号脱泡离心机TDD5最高转速(r/ min)5000最大离心力(×g)4800最大容量4×500 ml定时范围1-99 min/连续/短时离心噪 音≤60 dB电 源AC220V 50Hz转速精度±50r/min功率1.8KW重 量65 Kg外形尺寸(长×宽×高)630×500×420 mm 转子参数: 适用材料:各种胶水、银浆、油墨、油脂、膏状物、药品、化妆品基材、工业制造使用的UV胶水(树脂),红胶,锡膏,硅油和散热膏等材料等;针筒容量:10/30ML/50ML/70ML/100ML; 针筒数量:客户指定,离心转子(可定制); 创新点:脱泡离心机的功能主要是脱泡,因为罐装后胶水中会混入空气,形成气泡,而离心机可以通过高速的旋转把胶水里存有的气泡甩出去,以便达到紧密组织的效果。
  • 科学岛团队研制高性能金属减振器助力“陆地探测四号01星”实现高分辨探测
    8月13日,长征三号乙运载火箭携载“陆地探测四号 01星”成功发射。中国科学院合肥物质院固体所研制的高阻尼孪晶型金属减振器作为关键减振件应用于“陆地探测四号 01星”,助力对陆资源调查监测。 此前,该减振器已应用在 “高分七号”卫星和“ 5米光学卫星 02星”上。 “陆地探测四号01星”是《国家民用空间基础设施中长期发展规划(2015-2025年)》中陆地探测四号星座计划中的首颗星,是全球首颗全天候、高时间分辨率、宽视场的高轨、高分辨率地球同步轨道遥感卫星。与传统低轨SAR卫星、光学卫星相比,“陆地探测四号01星”可将高轨观测重访周期短、成像幅宽大等优势与微波观测不受气候限制(全天候)、不受光照限制(全天时)的优势结合起来,实现对我国本土及周边区域进行全天候、全天时的观测,满足防灾、减灾与地震监测、国土资源勘察以及海洋、水利、气象、农业、环保、林业等行业的应用需求。   针对“陆地探测四号01星”中高精度定轨加速度计在轨服役中遭受的低频、微振动干扰问题,固体所高阻尼材料研究团队在葛庭燧院士发现并提出的晶界内耗研究基础上,基于“高密度孪晶界面运动耗能”的高阻尼材料设计原理,研制了兼有金属刚性和橡胶高阻尼特性的微振动抑制敏感型减振合金,并与航天五院总体部合作,成功将其研制为高精密加速度计用低频、微振动抑制敏感的减振构件,实现对低频振动能的抑制高于99%,创新性地拓展了高阻尼合金的航天应用范围。   2015年1月,固体所同航天五院总体部合作开展了高分卫星微振动减振效应研究。2018年1月,“陆地探测四号01星”用高阻尼减振构件研制任务正式启动。近5年来,经过多次的方案论证、优化,研究团队突破了材料减振性能、高低温适应性、表面防腐处理等关键指标及工艺技术难题,最终研制出各项性能指标及空间环境适应性均优于技术要求的材料及产品。在项目执行过程中,研制测试材料、阻尼构件共计300余件,实现产品初样、正样一次性交付,建立了完善的材料工艺体系和质量控制体系,有效地保证了减振器服役性能的可靠性、稳定性和一致性,保障了航天任务的顺利完成。   未来,研究团队还将在轻质、高强韧、极低温、宽温域、宽频谱等方面开展新型高阻尼材料的基础理论和工程应用研究,持续为我国航天及民用减振降噪领域做出努力和贡献。交付的高性能金属减振器
  • 舰船装备材料体系发展与需求分析
    pstrong  1 前言/strongbr//pp  由于关系到舰船服役安全性以及技战术水平,舰船材料的研发考核环节众多,周期较长,一般需要经过实验室研究、工业试制、综合性能评价、应用研究考核、模型结构考核及解剖、上舰考核等极为复杂的研制流程,往往从实验室到型号应用需要10 年以上的时间,甚至超过了很多型号的研制周期。目前全世界只有少数工业化强国具备从材料研发、生产、到应用的整体系列配套能力。因此,“材料先行”、“材料体系构建”是各海洋强国都十分重视的基本理念。/pp  舰船材料按照平台类型分,有舰船结构材料、动力机电系统材料、水中兵器用材料。按照材料类型分为结构材料、结构/功能一体化材料、特种功能材料3 大类。结构材料又分为船体结构钢、轮机及其他结构钢、耐热钢、高温合金、不锈钢、特殊性能钢( 防弹、低磁等)、焊接材料、铝合金、铜合金、钛合金等 结构/功能一体化材料分为树脂复合材料、金属复合材料、阻尼降噪材料等 特种功能材料分为涂料和涂层、阴极保护材料、电解防污材料、有源声学材料、隐身材料( 吸波、吸声等)、密封材料及胶粘剂、装饰材料、橡胶、耐火及绝缘材料等,共有22 个材料类别约1 000 个牌号。/ppstrong  2 国内外舰船材料的发展现状/strong/pp  2.1 国外舰船结构钢发展现状/pp  船体结构钢是现代舰船建造最关键的结构材料,也是用量最大的材料,其性能优劣直接关系舰船技战术性能的提高。船体结构钢作为船体结构材料,必须具有足够的强度和韧性、良好的工艺性及耐海水腐蚀性能。第二次世界大战后,世界各军事强国为了满足舰船装备的发展需求,研究开发了系列高强度舰船用钢。/pp  美国从第二次世界大战开始发展舰船用钢至今,其舰船船体钢的发展经历了多个阶段。先后选用过碳素船体钢、HTS、HY80、HY100、HSLA80、HSLA100 等多个型号的钢种。其研制应用大致可以分为4 个阶段[1 - 3]:/pp  第一阶段 二战期间,美国水面舰船主要选用HTS、A、B、D、E 等高强度及一般强度级别的结构钢作为主船体选材。该阶段钢的主要特点是强度级别不高,合金元素少、碳当量低,故成本低、焊接性好,但其韧性较低、抗弹性差、耐蚀性一般,且钢板厚度较大,但在当时也基本满足了美国水面舰船的使用要求。/pp  第二阶段 20 世纪60 年代以后,为了满足发展大型航母和新一代潜艇的需求,在Ni-Cr 系STS 防弹钢的基础上开发出了强度更高、韧性更好的HY 系列高强度结构钢,包括HY80、HY100 及强度更高的HY130 钢。HY 系列钢种为调质型Hi-Cr-Mo 系钢,其主要特点是:①高强度,HY80、HY100 分别为550 MPa、690 MPa 级别 ②Ni、Cr、Mo 等合金元素含量较多,碳当量高,焊接性差,建造成本高 ③钢板规格齐全,水面、水下舰艇结构通用 ④碳含量及碳当量较高,故焊接性差。/pp  表1 为20 世纪80 年代美国海军HTS /MS 钢和HY 钢在舰船方面的应用情况。可以看到,HTS /MS 钢在水面舰船上依然是主要且大量应用的钢,而潜艇则以HY80、HY100 钢为主。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/0190a421-9cfb-4310-aa7e-5cdc979d57be.jpg" title="111.jpg" width="419" height="168" style="width: 419px height: 168px "//pp style="text-align: center "  表1 美国海军舰船钢用量情况br//pp style="text-align: center "  Table 1 Consumption of ship building steel in U. S. Navy/pp  第三阶段 HY 系列钢虽然强度级别较高,但由于钢中的合金元素如Ni,Cr,Mo 等含量较高,导致该种钢成本高,且对焊接性能要求较高。20 世纪80 年代以后,为了改善海军舰船用钢焊接性能,节约舰船建造成本,又发展了HSLA80、HSLA100 新钢种,以替代对应强度级别的HY80、HY100 钢。图1 显示了690 MPa 级HSLA100 钢近年来在美国海军最新航母建造中的使用情况。可以看出,从CVN74 的少量试用,到CVN75、CVN76、CVN77 扩大采用,经过了10 多年时间。/pp  HSLA80、HSLA100 钢主要采取铜沉淀硬化型的强化机理,其主要特点是: ①碳含量及碳当量低,焊接性能好,建造成本低 ②Ni,Cr,Mo 含量较HY 系钢有了不同程度的减少,降低了材料成本。/pp  这一阶段的航母船体结构用型钢、铸锻钢及焊接材料仍然沿用了HY 系列的配套材料。为了充分发挥HSLA系列钢所具有的良好焊接性能,同时开发了配套材料。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/76c3e07d-6fe5-438a-842f-bf607a415fdd.jpg" title="112.png" width="344" height="176" style="width: 344px height: 176px "//pp style="text-align: center "  图1 HSLA-100 在美国航母上使用情况/t/pp style="text-align: center "Fig. 1 Utilization of HSLA-100 steel ( tons ) on theU. S. Navy aircraft carriers/pp  第四阶段 20 世纪90 年代以后,为了发展未来型航母,美国海军关注的焦点变为航母主船体重量越来越重,以及由此带来的航母机动性和有效载荷降低等突出问题。因此,美国海军又相继开发了HSLA65 和HSLA115及10Ni 钢。目前,美国航母主船体用钢主要是HTS、HY80、HY100、HSLA80、HSLA100 等5 种钢混用,并在非主要结构部位考核HSLA65 和HSLA115。/pp  美国在发展水面舰船用钢方面有以下4 个特点:①446 MPa强度以下的水面舰船用钢主要是Mn 系钢 ②注意改进现役钢种的质量及韧性 ③采用控轧控冷等现代冶金技术,发展新型船体钢,提高钢的强韧性及可焊接性 ④开展新钢种的研究,形成新的系列,旨在降低钢种本身成本及舰船制造成本。/pp  美国海军发展的HSLA65、HSLA80、HSLA100、HSLA115 系列易焊接、高强度舰船用钢, 逐步替代传统的HY 系列高强度舰船用钢,成为最新航母建造的主体材料,代表了航母用钢的发展方向。美军在现役航母上大胆考核下一代先进材料的做法, 使得其航母用钢研发和应用发展迅速,体系十分完备,可随时根据需求对设计做出调整。至此, 美国在舰船用钢方面基本形成了一套完整的体系, 以美国海军航母用钢为例, 其材料的发展替代历程如图2所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/2b02deda-1614-4b2d-8850-43f6c02997ab.jpg" title="113.png"//pp style="text-align: center "  图2 美国海军航母用钢的发展替代历程/pp style="text-align: center "  Fig. 2 Substitution progress of the steel for U. S. Navy aircraft carriers/pp  除美国外,俄罗斯、日本、法国、英国等国家也开发了系列高强度舰船用钢,如俄罗斯的AK 系列、АБ系列,日本的NS 系列,法国的HLES 系列等,其舰船材料的发展思路大致与美国相仿。国外舰船用钢的总体发展趋势可以概括为以下几点:/pp  高强度化 对潜艇来说,提高耐压壳体用钢的强度意味着减少艇体自重,增大下潜深度或增加储备浮力,可大大提高潜艇的技战术性能。对大型水面舰艇来说,提高船板强度意味着船体重量的减轻,可以为舰艇武备升级和全寿命维护节省出宝贵的重量,并显着降低造船成本。/pp  易焊接化 为满足航母和大型舰艇的建造需求,改善舰船钢焊接性能是另一个重要方向。如HSLA 系列钢利用微合金化、控轧控冷、时效硬化处理以及超低碳贝氏体组织来满足高强韧性、易焊接性要求,形成了0 ℃、室温焊接不预热等高强度舰船钢系列,显着降低了造船成本、提高了建造效率。/pp  现有钢种的改进与完善配套 为满足舰船用钢不断更新换代的要求,世界各国都对现有成熟钢种不断改进提高,进行深化完善的研究工作。如美国HY80 /100钢,自20 世纪50 年代研制成功以来一直在进行改进提高的研究工作,已修订标准11 次,对技术指标要求、冶金工艺方法、化学成份分档、钢板厚度规格、钢中夹杂元素及冶金质量控制等方面进行了深化完善。/pp  采用冶金新技术提高舰船用钢性能 舰船用钢的研制、开发和生产水平与一个国家的冶金工业基础密切相关。20 世纪80 年代后,随着超低碳、超纯净钢冶炼、连铸技术和控轧控冷等冶金技术的发展,舰船用钢也朝着高纯净化、高性能方向发展[4]。/pp  2.2 国外其他舰船材料发展现状/pp  舰船总体系统对关键材料技术的需求不仅限于高强度、易焊接的高性能结构材料,因此在发展船体结构钢材料的同时,国外也在大力推进其他高性能舰船材料的研发。/pp  钛及钛合金 钛及钛合金具有良好的断裂韧性、耐蚀性,高比强度和低磁性等特点,是优秀的海洋合金。俄罗斯在钛合金研制和应用上独树一帜,其技术水平、建造能力和规模在国际上处于领先地位,已基本形成用于船体、船机和动力装置的钛合金系列材料。美国用于舰艇的钛合金主要为中强可焊钛合金。美国将大量钛材用于通海系统的管、泵、阀换热器上,以解决海水腐蚀,从而提高其使用寿命与可靠性。/pp  铝合金 铝合金由于具有比重小,比强度、比模量高,耐腐蚀性能好,易加工成型,焊接性能好等优点,在舰船领域得到了广泛的应用,主要用于快艇、高速船、军辅船、航空母舰升降装置、大型水面舰船上层建筑、鱼雷壳体等,铝质船舶也从铆接、铆焊结构发展到全焊结构。多年来,世界各国对船用铝合金的研究与发展都非常重视,在美、日、英等发达国家,舰船用铝合金已成系列,品种配套、规格齐全,已成为海军舰船的主要结构材料之一。目前国外在船舶上应用的铝合金主要有以下几个系列: Al-Mg 系、Al-Mg-Si 系和Al-Zn-Mg系,其中以Al-Mg 系合金在舰船上应用最广泛[5]。/pp  铜及铜合金 铜及铜合金具有优异的耐海水腐蚀性、导热性、耐海生物污染性,优异的力学性能、良好的冷热加工性能及铸造性能等,广泛用于舰船螺旋桨,海水管系及其配件、泵、阀、轴套等零部件,潜艇螺旋桨用铜合金还应具备低噪音特性。20 世纪60 ~ 70 年代,英国斯通公司、俄罗斯、美国相继研制出了铸造阻尼Cu-Mn 合金,但使用性能不理想。英国斯通公司提出潜侧式噪音螺旋桨新方案,从精湛的设计技术、新型高阻尼合金和复杂桨叶形状精确制造3 个方面综合控制,共同提高潜艇的隐蔽性能。/pp  复合材料 复合材料包括树脂基与金属基复合材料,具有力学性能优良、耐腐蚀、大幅减重、优良的声、磁、电性能等特点,早期应用在小型巡逻艇和登陆舰上。近年来,随着低成本复合材料技术的提高,开始逐渐应用在大型巡逻艇、气垫船、猎雷艇、护卫舰以及上层建筑中。各国海军应用的复合材料制品还包括烟囱、舱壁、甲板、舵等次承载结构,这些材料可降低舰船的雷达信号特征,同时也降低了红外( 热) 信号特征,在结构减重方面所做的贡献非常显着。/pp  新型功能材料 除以上材料外,国外还大力发展了诸如防腐涂料、舰船隐身、减振降噪、隔热及其他特种功能材料等新型功能材料。其中防腐涂料: 主要用于舰船上层建筑、舰船内舱、舰船海水管路系统、船体及其附体如舵、减摇鳍、螺旋桨等部位。舰船隐身: 水面舰艇隐身技术的重点集中在雷达波隐身、红外隐身及减振降噪技术上 国外采取涂敷型吸波材料或结构型吸波材料解决雷达波隐身 采用特殊涂料解决红外隐身的研究工作正在进行。减振降噪: 减振降噪材料的主要类型包括吸声材料、隔声材料、阻尼材料。隔热材料: 主要用于舱室环境控制,它也是舰船舾装材料的重要组成部分,国外舰船用绝缘隔热材料有无机材料和有机泡沫材料两类。特种功能材料: 包括储氢材料、永磁材料、主动控振智能材料等。/pp  2.3 材料加工与成型新技术/pp  为更好地实现减免维护、降低维护成本这一航母腐蚀预防与控制的核心思想,目前美国海军在航母及其他新的舰艇建造和维护过程中,不断研发运用了一系列新材料、新工艺和新技术。/pp  新型铸造工艺 在HY-80 /100 钢铸造过程中,美国海军采用了新型压铸工艺以降低成本、提高铸件合格率。新工艺的运用每年可节省成本70 万美元,使大型铸件合格率提升至70% 以上,交货时间降至55 天。/pp  新型成型技术 美国海军采用闭塞冷锻技术( CDCF)制造的5 ~ 20 cmCVN-78 航母用Inconel 625 合金管弯头,使管道连接费用节省了约50 万美元。/pp  新型焊接技术 主要有远程焊接预热系统、轻型火焰钎焊技术、大功率电缆接头铝热焊技术、防涂层烧蚀焊接冷却技术。为避免焊接预热不均,提高焊缝质量,美国海军在航母CVN-78 建造过程中运用了新型的远程焊接预热系统 为克服人工钎焊造成的质量难以控制问题,在CVN-78 建造过程中,美军采用了轻型火焰钎焊技术,使每艘航母建造和大修成本节省了700 万美元 美军将新型铝热焊技术用于CVN-78 大口径电磁弹射器大功率电缆接头焊接,大大提高了焊接质量和可靠性,减少了焊接和维护工时 为防止已涂装区域在焊接过程中的烧蚀, CVN-78 建造过程中运用了焊接冷却技术[6 - 8]。/pp  2.4 国内舰船材料发展现状及特点/pp  2.4.1 发展现状/pp  我国舰船结构钢发展可以划分为4 个阶段[9 - 10]: 20世纪50 ~ 60 年代,主要是依赖原苏联进口和仿制 20世纪70 ~ 80 年代开始自行研制,当时受国内资源限制,立足于无镍合金钢,研制了我国第一代舰船用Mn 系无镍铬钢和低镍铬钢,如901、902、903 系列钢种,这些自行研制的舰船用钢在我国海军舰艇建造中得到了成功应用 进入20 世纪80 年代,海军装备有了很大发展,对舰船用钢也提出了更高的要求,第一代舰船用钢已满足不了现代海军的需求,开始研制综合性能更好的第二代舰船用钢及其配套材料,如390 MPa 级的907A 钢、440 MPa 级的945 钢、590 MPa 级的921A 系列钢、785 MPa级的980 钢等,至此,初步形成以4 大主力钢种为支撑的我国舰船结构材料体系 20 世纪90 年代后,改进提高和自主研发并举,特别是2000 年以后,在强度覆盖、品种规格及配套材料等方面有了长足的发展,为海军新型主战装备建设提供了强大的物质基础。/pp  在持续发展船体结构钢及其配套材料的同时,我国也加大了舰船用其他结构/功能一体化材料,以及特种功能材料的研发。/pp  钛及钛合金 我国舰船钛合金的研究始于1962 年,经过探索研究、自主研发、产业化及推广应用3 个发展阶段,研究水平有了很大的提高, 目前拥有包括Ti-B19、Ti91、Ti70、Ti80 等典型舰船钛合金,并形成了我国专用的钛合金系列,能批量生产板、管、锻件、中厚板、各种环材、丝、铸件等多种产品,基本满足国内舰船不同强度级别和不同部位的要求[11 - 12]。/pp  铝合金 我国舰船用铝合金的研究始于20 世纪60年代初。目前研制成功的船用铝合金结构材料主要有变形铝合金和铸造铝合金2 大类。变形铝合金包括铝合金板材、型材、管材、锻件及其配套焊丝,研制成功的船用变形铝合金牌号主要有Al-Mg 系的5A01、5A30、5A70 合金和Al-Zn-Mg 系的7A19 合金,铸造铝合金牌号主要有ZL305 和ZL115 合金等。自1979 年起,5A01、5A30、7A19、ZL305 和ZL115 等合金已广泛用于各种船舶及鱼雷壳体的建造等,5A70 合金已成功用于建造水撬模拟结构件。然而,我国舰船用铝合金的牌号、品种、规格却未能全面发展起来,我国用来制造高速舰船船体(包括军用快艇和高速客船) 的铝合金几乎都依赖国外进口,其中使用最多的是进口5083 铝合金。/pp  铜合金 我国对海水管系及其配件、泵、阀、轴套等零部件,舰船螺旋桨等用的铜合金研究相对薄弱。目前我国舰船海水管路系统主要采用以B10、B30 为主的铜镍合金。新研制了铸造铜镍铝合金ZCu7-7-4-2 及变形铜镍铝合金等,并发展了舰船用铜镍合金的焊接技术。/pp  复合材料 我国复合材料研发相对国外较晚,经历了由纤维增强复合材料、树脂复合材料到结构芯材的发展。其中,纤维增强材料由最初的玻璃纤维,发展为碳纤维、芳纶纤维、超高分子量聚乙烯纤维和连续玄武岩纤维等4 大高科技纤维 树脂复合材料中的树脂也经历了不饱和聚酯树脂、环氧树脂、乙烯基酯树脂、酚醛树脂等几大类别的发展过程 复合材料夹层结构船艇常用的轻质高性能结构芯材包括泡沫塑料、轻木以及各种蜂窝材等。我国复合材料在舰船的应用较少,典型应用是潜艇的艇艏声纳导流罩,部分已经安全应用20 年。在实艇应用方面,除透声复合材料获得了较多的应用外,隔声、吸声和阻尼复合材料还没有在型号中实现应用,工程应用经验不足,与国外差距较大[13]。/pp  新型功能材料 现代舰船是高新技术高度密集的综合系统,所用功能材料的种类很多,但其中大多数并不是舰船专用材料。在舰船上有独特应用的功能材料主要有电磁力推进用超导材料、吸收雷达波材料、舰船隐蔽用消声与减振材料、水声换能材料、燃料电池用贮氢材料、永磁电机用永磁材料等,其中有些还兼作结构材料,属结构/功能一体化材料,这一系列新型功能材料大多尚处于探索研究阶段。/pp  2.4.2 发展特点/pp  我国舰船材料的发展以海军装备发展对关键材料特性要求为依据,经历了从无到有、从仿制到自行研制的过程。已研制和生产的舰船材料基本满足了不同时期海军各型装备发展的需求。近期国内舰船材料的发展主要有以下几个特点: ①正在完善4 大主力钢种的规格系列。近年来,研发了907A 和921A 双球扁钢、921A 超长超宽板、921A 高效不预热焊接材料等结构材料,满足大型船舶主船体结构的建造需求 研发了厚度为80~ 120 mm 的980 厚板,满足潜艇的建造需求。②在低成本和耐蚀钢应用方面进行了探索。研发E36 军民通用船体结构钢,降低了成本,简化了建造工艺,满足护卫舰的建造需求 开展了B 级耐蚀钢的推广,用于大型辅助船舶主船体结构建造。③研发系列复合材料。系列复合材料的开发应用,实现了舰船用结构/功能一体化材料零的突破 复合材料上层建筑、指挥台围壳整体方案的制定,可实现船体结构减重30% ,为护卫舰、潜艇的减重需求提供了技术途径。④新型功能材料不断涌现。研制了航母飞行甲板防滑涂料以及应用于不同基材表面、不同期效的防腐及防污涂层等,使舰船涂料防腐能力从5 a 提高到8 a,防污能力从3 a 提高到5 a 开展了耐压壳体用阻尼隔声去耦材料、耐压阻尼吸声材料等研制工作。⑤在材料新工艺方面进行了大量探索。全面推广舰船结构及配套焊接材料的结构模型建造考核,通过各型舰艇的模型建造考核,进一步深化了应用研究,通过结构模拟、环境模拟和工艺模拟条件,实现舰船结构材料上舰前的考核验证,确保安全可靠应用。/pp  2.5 国内舰船材料发展中存在的问题/pp  随着海军战略转型,海军装备进入高速发展期,对舰船材料的发展提出了更新、更高的要求,同时也暴露出舰船材料发展方面存在的问题[8]。/pp  材料研发体制缺乏顶层沟通机制 舰船材料特别是船体结构钢属于国家重大战略资源,建设投入大、周期长,一般均由国家投资进行立项研制。例如在船体结构钢的研制和应用方面,按照渠道划分为国家立项支持船体结构钢的基础研制和军方立项支持船体结构钢的应用研究。由于缺乏顶层的沟通机制,军方主导作用受到制约,导致基础研究和应用研究结合不紧密,需求和投入结合度不高。一方面,造成对材料的先期投入不足,难以实现“材料先行” 另一方面,易出现材料研制滞后问题,影响型号建造进度。/pp  材料及配套体系构建不完整 舰船关键材料及配套材料的现有体系( 如船体结构钢) 基本能满足现有舰船装备的要求,但距离战略转型后的海军装备发展需求还存在材料种类、规格缺失等问题,影响了现有装备建设进程及发展,急需开展相关研究,补充完善,同时加强舰船材料顶层规划的研究工作。/pp  材料应用工艺技术成熟度不够 船体结构用铝合金材料至今仍依赖进口,就是典型的材料加工技术成熟度不够的问题。船体结构钢也同样存在类似问题。舰船结构建造工艺包括焊接、火工矫正、水火弯板、冷成型等,种类多、工艺复杂。特别是舰船作为一个巨大的焊接结构,焊接工时占全船建造工时的30 ~ 40% ,焊接效率直接影响舰船的建造进度,焊接质量直接影响舰船结构的整体质量,因此舰船的焊接管控至关重要。921A 钢需焊前预热,980 钢需焊前预热、焊后后热,对施工环境条件要求苛刻,如果焊接工艺执行不严、焊接工艺更改的验证试验不充分,易出现如角焊缝裂纹等焊接质量问题,容易影响舰船建造质量。另外,先进高效的焊接工艺应用较少。/pp  关键材料技术性能落后甲板飞行涂料、液舱防腐蚀涂料、船体防污涂料、减振降噪材料、隐身材料等关键材料指标性能落后,不能满足舰船装备发展需求。/pp  舰船材料是海军装备发展的重要物质基础,“一代材料、一代装备”。“材料先行”是国内外武器装备建设的共识,应当结合生成技术的进步,动态地改进、提高舰船材料研制应用技术水平,实现舰船材料持续、协调、体系化发展。/ppstrong  3 舰船装备发展对材料的需求/strong/pp  由于国家发展战略和军队发展重点的要求,与国内其他兵种和国际海军装备发展大势相比,国内海军装备发展速度长期缓慢。随着海军转型要求,赋予了海军新的历史使命,对海军装备提出更高、更快、更强的要求,但材料问题成为制约海军装备快速发展的短板。在未来20 年,海军将会有更多的舰艇型号立项、研制、交付使用,对先进材料的需求将会以几何级数增长,舰船装备材料技术领域将会面临前所未有的压力和机遇。/pp  3.1 海军装备发展对先进材料的需求特征/pp  根据世界各国海军装备的特点,海军舰艇装备的发展趋势可概括为“深、大、远、高、低”,即: 下潜深度更深,大吨位舰船更多,走向更远海域,高航速、高机动性、高负载、高隐身性、高防护能力、高在航率等,低成本。因此对舰船装备材料也提出了更高的要求,可概括为以下几点: ①提高潜艇的潜航深度可以提高潜艇的隐蔽性、机动性和生存能力。未来海军潜艇下潜深度会更深,要求耐压壳体承受压力更大、耐压壳体材料强度更高、规格更厚、更耐腐蚀、焊接性能更好 但耐压壳体增厚会带来重量、重心变化等总体设计问题,因此耐压装备材料需要更新换代,需要发展轻质非耐压壳体材料。②航母、大型驱逐舰、两栖攻击舰等大型舰船以及气垫船、舰载机以及新型特种装备给材料技术提出更多特殊的要求。航母结构庞大、复杂,其艉轴架、动力轴等铸锻件尺寸远远超过一般水面舰船 飞机上舰要求研制弹射起飞、阻拦降落等关键设备,这些装备的关键材料需要强大的技术储备,需要开展相关大尺寸材料的制造工艺技术研究和新材料研制。③海军舰艇在海洋中服役,必然会面临腐蚀与海洋生物污损问题,远海航行对先进材料的耐蚀性、可靠性、安全性的要求更高。海军是材料腐蚀问题最为突出的兵种。海军装备逐步从近海走向远洋,腐蚀环境更为恶劣,对装备的可靠性、长寿命要求越来越高。提高坞修间隔期和在航率,才能充分发挥海军装备的作战能力,这要求舰船材料具有良好的耐蚀性。整体提高舰船结构材料、结构功能一体化材料、电子功能材料的耐蚀性以及重要装备的防腐蚀能力是迫切需要研究的课题。随着舰员在舰上生活、工作时间越来越长,以及国际上对海洋环保要求越来越高,舱室环境居住性和对海洋的友好要求越来越严格,长寿命、绿色环保防腐防污材料需求将更为突出。④隐身性是未来舰艇最突出的技术特征和有效作战最重要的技战术指标。海军装备高隐身性、高防护性能对先进的结构/功能一体化材料特性提出了高要求。主要体现在水面舰艇以雷达隐身、潜艇以声隐身等为重点,应发展并应用新型耐压阻尼材料、主动阻尼材料、水声材料、多频谱隐身涂料等技术,同时探索研究磁、红外、尾迹等其他隐身技术,加强舰船自身防护安全结构和材料研究、研制发展舰艇用轻型防护装甲材料,进一步提高关键结构材料的抗打击防护性能。⑤无论潜艇还是水面舰船,航速越高、机动性越好,越能在海战中赢得主动。另一方面,潜艇与水面舰船配备的武器装备及弹药越多,在海战中战斗力越强。而要实现高航速、高机动性与高负载,则要求舰艇的结构重量小,并尽量降低结构重心,这对先进材料的种类和性能提出了长远要求。钛合金、铝镁合金、复合材料等轻质材料的规模化应用是解决舰艇减重、增加有效载荷和提高航速的关键途径。⑥就单个装备比较,舰船相对其他兵种的装备要大得多、重得多,材料成本占装备经费比例非常高,控制材料成本意义重大。特别是在未来20 年海军装备处于大发展时期,大吨位舰船会越来越多,许多型号要批量建造、长时间保留。急需探索民用船体钢替代技术,发展低成本钛合金技术、低成本复合材料技术、先进高效焊接技术等。/pp  3.2 舰船装备发展对材料的需求分析/pp  材料技术是装备发展的三大支柱之一,先进材料制造技术的发展与核心军事装备的发展密切相关,新材料的探索研究并达到应用水平应早于新装备的探索研究和立项研制。根据海军装备体系建设的需要,并结合目前的舰船材料体系发展现状,舰船装备发展主要需要解决以下几个方面的需求。/pp  3.2.1 现实迫切需求/pp  在较短时间内我国舰船将有大量新型号立项研制,国内设计、研制、生产的材料中尚有大量的关键材料及技术急需突破。①在高性能结构材料技术方面,优先发展潜艇用钢及配套材料系列化研究,包括开展大规格980 厚板研制及相关模型结构考核 开展大规格980 双球扁钢研制 开展980 钢窄间隙焊接工艺研究,以及TIG 焊丝和金属粉芯焊丝的研制 开展40 MPa 高压气瓶用钢研制 开展通海系统、排烟管系以及专用关键设备与结构材料换代研究 开展潜艇阻尼材料/功能/结构的一体化设计及应用技术研究。另外围绕水面舰船优先发展921A、907A 双球扁钢的研制 690 MPa 级易焊接钢板及配套焊接材料的研制 上层建筑用高强抗弹装甲结构的研制 大尺寸铸锻件工艺研究。同时,还应开展对低雷达反射截面、抗腐蚀、具有优异的电磁屏蔽性能的先进材料制备技术的研究。围绕气垫船设计制造,针对耐蚀铝镁合金材料性能不稳定、可靠性差的问题,开展工艺优化研究、微弧氧化等表面处理技术应用优化设计理论及使用评价方法研究 开展空气螺旋桨材料和制造技术、焊接及连接技术、铝合金抗腐蚀技术等各种关键设备的材料和制造技术的研究。②针对隐身材料,包括电磁波隐身材料、阻尼降噪材料、磁隐身材料等结构/功能一体化材料技术方面,重点开展纳米隐身涂层材料研究 宽温宽频高性能阻尼材料的研究 高性能、耐高压(6. 0 MPa)、隔声量大的阻尼隔声材料的研究 主动阻尼控制技术、阻尼材料技术的集成应用及综合评定等。应用于舰船不同部位的复合材料及结构设计技术研究 复合材料上层建筑和潜艇指挥台围壳材料/结构/功能一体化设计和评价技术 舰船桅杆、烟囱用复合材料的应用研究 新型隔热绝缘配套材料研究等。③在特种功能材料应用技术方面,优先研究长效防腐防污涂层材料技术 高性能电极材料技术 舰船非钢质船体长效无毒防污材料 飞行甲板防滑涂料工程应用技术 防腐防污技术的智能化、集成化技术以及寿命快速评估预测技术 高温超导材料应用集成技术等。/pp  3.2.2 共性长期需求/pp  除以上迫切需要解决的现实需求外,舰船装备发展对先进材料提出了更长期的发展需求,主要包括:/pp  舰船材料腐蚀监检测与评估评价技术 腐蚀是影响装备可靠性最主要、最普遍的危害。应重点研究对关键部位、关键设备的在线监检测技术、涂层性能无损快速检测技术及相关的设备研制,并在此基础上形成评估专家系统、远程诊断系统,同时开展舰船装备材料使用评价方法、抗失效技术及评估理论研究。/pp  轻质材料及材料结构/功能一体化技术 对复合材料、钛合金以及高强度铝合金材料与结构( 如波纹夹芯板)均有长期的需求,对作战能力要求高( 搭载武器电子装备多、弹药多)、续航时间长( 自载燃油、淡水量大)、航速高( 重量小) 和抗风浪等级高( 重心低、稳性好)的作战舰艇尤其如此,需要大量采用轻质材料,对降低结构重心、增加有效载荷、提高机动性有重要意义。/pp  隐身材料技术 重点研究宽频、有效、可大面积应用、可操作性强的舰用雷达隐身材料 电磁屏蔽材料与技术 雷达兼容热红外等一体化舰用隐身材料 玻璃钢结构舰用隐身材料 舰用雷达伪装网 舰用多频谱伪装网 超高内耗阻尼材料、宽工作温度区间和宽频带范围高阻尼材料及结构/功能一体化高阻尼材料等。/pp  先进水声换能材料及换能器制造技术 对潜艇来说,需要突破低频大功率水声换能器性能,要研制满足大潜深要求的水声换能器,要重点解决大尺寸新一代磁致伸缩水声换能器制备关键技术。/pp  低成本材料制造及应用技术 舰船的特点是结构庞大、复杂,所需材料品种多、数量多、重量大,材料所占装备经费比例高。低成本钛合金、复合材料制备技术是舰艇装备发展的共性需求。另一个方面是材料的低成本应用技术。突出例子是高强度钢的焊接,要求预热焊接,工艺复杂,造成船体制造成本大幅度增加。如何在材料技术以及应用技术上创新,简化焊接工艺,对于降低成本具有重要意义。/pp  舰船材料性能退化抑制技术 舰船服役寿命要求长,一般在30 a 以上,航母甚至要求达到50 a。舰船服役环境苛刻,金属材料耐腐蚀表面处理技术及复合材料、非金属材料老化抑制技术是必须面对的问题。提高金属材料与复合材料的耐腐蚀性能,提高防腐防污材料的防护期效和服役寿命,是舰船装备长期的共性需求。例如复合材料的老化、阻尼材料阻尼性能下降。/pp  绿色安全材料技术 舰船装备既要执行战斗任务,还要执行和平使命,这就要求舰船防腐防污涂料是环境友好型的,包括舰船上的排放物。同时,海军官兵长期在舰船上居住生活,更要求舰船舱室内所用的材料是绿色环保、阻燃无毒的,保证官兵的健康,并在发生火灾的情况下保证官兵的安全。因此,舰船装备的发展,对绿色安全材料有共性需求。/pp  新型隔热材料技术 目前,各型舰船的隔热材料、绝热材料都相对落后。需要加强新型隔热材料———聚酰亚胺泡沫的应用研究和现用隔热材料升级换代,以及隔热绝缘配套材料研究。/pp  舰船材料全寿命支持数据库及信息系统 目前已经建立有“舰船用钢数据库”,应进一步扩大和加强舰船材料数据库的开发,使之涵盖舰船结构钢、舰船动力系统材料、复合材料、船用功能材料等,逐步建立起“舰船材料全寿命支持数据库及信息系统”,服务于舰船材料决策、研发、采购、建造、维护流程,有效支持舰船装备信息建设化的进程。/ppstrong  4 舰船装备材料未来发展方向/strong/pp  现代高新技术的发展使舰船装备的面貌产生了深刻的变化,成为其战斗力的主要标志,而先进材料又是舰船上高新技术实现的物质基础。先进材料的研发直接关系到舰船整个系统的运行、维护和安全,开发高性能的先进材料能为增强舰艇作战能力和降低服役期的成本提供有力保障。/pp  当前舰船材料研究与应用的总趋势是,由以结构材料为重点转向以结构/功能一体化材料、特种功能材料等高性能材料为重点。就用量而言,传统结构材料在未来的舰船建造中仍占绝对的多数 但就发挥功能而言,高技术新材料则占有更重要的地位。整体来看,舰船装备材料未来的发展方向可以从以下几个方面进行说明[14 - 15]:/pp  4.1 结构材料/pp  传统结构钢材料 鉴于传统舰船用高强度结构钢的不可替代优势,研发高性能的结构钢及相关配套材料仍将是我国舰船装备材料技术的主要发展趋势之一。我国舰船装备用高强度钢未来主要向提高加工制造工艺性、高性能化、低成本、建立材料技术设计基本理论和方法等方面发展。/pp  新型结构材料 对于某些特殊的结构( 如表面效应船、混合式水翼船、深潜器、大深度鱼雷等的壳体结构),要求使用高比强度的材料,以减轻壳体的重量,提供合理的有效载荷,必须发展如钛合金、铝合金、铜合金等新型结构材料,其中钛合金是未来新型结构材料发展的主力材料。我国船用钛合金品种、规格不完善,加工和制造技术也相对落后,目前仅局限应用于声呐导流罩、舷侧阵透声窗、进排气管路、少量阀门及管路附件等专用结构的制造。研究和应用钛合金材料,将进一步提高我国舰船装备的作战性能,提高舰船的生命力和使用寿命,是我国舰船装备的重要发展趋势之一。我国钛合金材料技术未来主要向提高综合性能、低成本、可靠焊接性、复杂制造、推广应用、完善材料体系等方向发展。/pp  4.2 结构/功能一体化材料/pp  鉴于复合材料的巨大优势,国外海洋强国不断加强舰船复合材料研制和应用,且逐渐由非承力结构向主/次承力结构发展,从局部使用向大规模应用扩展。我国舰船装备复合材料研制和应用水平起步较晚,仅在声呐导流罩、雷达天线罩、水雷壳体、桅杆等专用构件有所应用,因此加大复合材料的研发和应用力度,将对我国舰船装备的总体性能提高具有重大意义。我国舰船装备用复合材料未来主要向低成本、高性能化、多功能型、优化连接、长寿期、安全可靠等方面发展。/pp  舰船装备隐蔽性能的提高,离不开隐身材料技术的发展和支撑。舰船装备,尤其是潜艇的隐蔽性能,已日益成为其最突出的性能指标之一,而反潜技术的发展对潜艇的隐蔽性又提出了新的更高要求。我国舰船装备的隐蔽性能与国外存在差距,研发和应用先进的新型隐身材料技术,将是提高我国舰船装备,尤其是提高潜艇隐蔽性能的重要举措之一。未来主要向多功能化、主动减振、智能化、低成本化等方面发展。/pp  此外,探索纳米结构/功能一体化、仿生结构/功能一体化、智能结构/功能一体化材料等新概念材料的新特性、新方法也是结构/功能一体化材料技术发展的重要方向。/pp  4.3 特种功能材料/pp  无论是防护效果,还是防护材料的使用寿命,我国的防护材料技术水平均落后于国外发达国家。因此,开发和应用更先进、综合防护性能更好的防护材料,是提高我国舰船装备防护水平的必然选择。我国舰船装备防护材料(包括防腐、防污、防滑、耐高温密封防漏、舱室装饰等材料)未来主要向高效、低成本、可靠、环保、安全检测及控制等方面发展。在发展特种功能材料技术的同时,还应开展高性能储氢材料、永磁材料、电极材料、水声换能材料、高温超导材料等特种功能材料的探索研究。/pp  在发展以上材料的同时,应加大探索对舰船装备发展有重大影响和有重大军事应用前景的前瞻性材料,如生物材料、纳米材料等 同时,还应加强对先进制造与成型技术的探索。/ppstrong  5 结语/strong/pp  目前我国舰船材料整体技术水平和行业管理能力与船舰装备建设跨越式发展的要求还存在一定差距,针对以上存在问题,在今后工作中,应力争在不同层面和不同方面取得发展和提升。主要研究重点有以下几点: ①加强舰船装备先进材料技术的发展战略研究,制定相应的新材料发展规划 ②加强舰船装备先进材料研发过程中的顶层设计管理,确保研发效率和产品质量 ③尽快完成适应我国舰船装备发展的材料体系建设 ④加大舰船用前瞻性材料研究,建立新材料上舰应用有效模式。/pp  参考文献 References/pp  [1] Cheng Xin' an( 程新安) . 国外舰船用钢的回顾与展望[J]。/pp  Development and Application of Materials( 材料开发与应用) ,1997,12(2) : 46 - 48./pp  [2] Wu Shidong(吴始栋)。 美国舰艇用结构钢的开发与应用研究[J]。 Shanghai Shipbuilding(上海造船),2006,(4): 57 - 59./pp  [3] Yin Shike( 尹士科) ,He Changxian( 何长线) ,Li Yalin( 李亚琳) . 美国和日本的潜艇用钢及其焊接材料[J]。 Developmentand Application of Materials( 材料开发与应用) ,2008,(2) :/pp  61 - 62./pp  [4] Ma Heng( 麻衡) ,Li Zhonghua( 李中华) ,Zhu Xiaobo( 朱小波) ,et al. 航空母舰用厚钢板的发展现状[J]。 ShandongMetallurgy( 山东冶金) ,2010,32(2) : 8 - 11./pp  [5] Wu Shidong( 吴始栋) . 美海军开发舰船用高强度耐腐蚀铝合金[J]。 Torpedo Technology ( 鱼雷技术) ,2005,13 (5 ) :/pp  49 - 52./pp  [6] Wu Shidong( 吴始栋) ,Zhu Bingkun( 朱丙坤) . 国外新型金属材料及焊接技术的开发与应用[J]。 Torpedo Technology( 鱼雷技术) ,2006,14(5) : 6 - 11./pp  [7] Wu Shidong( 吴始栋) . 为美国新型航空母舰CVN 78 建造提供技术支撑的材料制造加工项目[J]。 Shipbuilding Scienceand Technology( 中外船舶科技) ,2011,1: 20 - 22./pp  [8] Pan Jingfu( 潘镜芙) . 国外航空母舰的发展和展望[J]。 ChineseJournal of Nature ( 自然杂志) ,2007, 29 ( 6 ) : 315- 322./pp  [9] Shao Jun( 邵军) . 舰船用钢研究现状与发展[J]。 AngangTechnology( 鞍钢技术) ,2013,(4) : 1 - 4./pp  [10] Wang Qihong( 王其红) ,Liu Jiaju( 刘家驹) . 舰船材料发展研究[J]。 Ship Science and Technology ( 舰船科学技术) ,2001,(2) : 12 - 15./pp  [11] Yang Yingli( 杨英丽) ,Su Hangbiao( 苏航标) ,Guo Dizi( 郭荻子) ,et al. 我国舰船钛合金的研究进展[J]。 The ChineseJournal of Nonferrous Metals( 中国有色金属学报) ,2010,20(1) : 1 002 - 1 006./pp  [12] Zhou Lian ( 周廉) , Zhao Yongqing ( 赵永庆) ,WangXiangdong( 王向东) ,et al. Development Strategy Study forChina Titanium Alloy and Application ( 中国钛合金材料及应用发展战略研究) [M]。 Beijing: Chemical Industry Press,2012: 30 - 32./pp  [13] Li Jiangtao( 李江涛) ,Luo Kai( 罗凯) ,Cao Mingfa( 曹明法) . 复合材料及其在舰船中应用的最新进展[J]。 Ship & Boat( 船舶) ,2013,24(1) : 10 - 16./pp  [14] Sun Jianke( 孙建科) . 建立舰船材料基本体系的顶层研究[J]。 Ship Science and Technology ( 舰船科学技术) ,2001,(2) : 9 - 11./pp  [15] Ma Yunyi( 马运义) ,Feng Yuqi( 冯余其) ,Yang Xionghui( 杨雄辉) ,et al. 我国舰船装备对材料的需求与应用探讨[J]。 Advanced Materials Industry ( 新材料产业) ,2013,(11) :11-16/pp文章作者:方志刚1,刘斌1,李国明2,李健1,3/pp  (1. 海军装备研究院,北京100161)/pp  (2. 海军工程大学,湖北武汉430033)/pp  (3. 中国钢研科技集团有限公司,北京100081)/p
  • CISILE2013新品聚焦:试验机
    仪器信息网讯 2013年5月15日,CISILE 2013在北京隆重召开。此次展会展出的产品涉及分析测试仪器、光学仪器及设备、实验室设备及耗材、生化仪器、生命科学仪器、材料性能试验设备、计量仪器、环境与工业仪器等,其中试验机是用来测试材料力学性能的一类特殊仪器,那么试验机行业最新的技术进展,最新的应用领域究竟是什么?带着这些疑问,仪器信息网编辑走访了试验机厂商展台。  在CISILE 2013展会上,笔者了解到,去年试验机行业的市场容量达到70-80亿元,其中材料试验机的市场容量可达20-30亿元。此外,笔者走访的多家试验机厂商均指出汽车、复合材料、碳纤维、风力发电、地震是现在试验机行业需要重视的新领域。在此次展会上,美斯特工业系统(中国)有限公司(MTS)、上海百若试验仪器有限公司、深圳瑞格尔试验机有限公司等都展出了各自的试验机新产品,部分产品如下:美特斯工业系统(中国)有限公司Exceed系列电子万能试验机  据美特斯工业系统的相关负责人介绍,Exceed 40系列电子万能试验机集合了原新三思和MTS的领先技术,配备美国原装进口数字控制器,数据采集率及闭环控制速率达到1000Hz,并且在5N到300kN范围内实现力控、位移控或应变控的试验 该试验机的2个模拟信号输出通道,可以将负荷、引伸计、伺服控制、位移等以模拟电压的信号输出,供客户外接其它仪器 该试验机具有可调的试验机宽带,用户可以从0.1到1000HZ根据不同的材料选择不一样的带宽 此外试验机软件不仅具备开放源代码编程语言的灵活性,还支持机电、静液压和伺服液压等多种试验技术,让用户能够创建可在整个实验室或全世界反复使用的解决方案。上海百若试验仪器有限公司FCC-50多功能裂纹扩展速率试验机  据上海百若试验仪器有限公司的负责人介绍,该试验机是和上海交通大学合作研制的,于2012年推出,目前用户已有5、6家。FCC多功能裂纹扩展速率试验机用于腐蚀环境下对材料进行腐蚀疲劳加载与裂纹扩展长度测量,其中裂纹扩展测量采用DCPD法,可在腐蚀介质环境下应用。此外,该负责人还指出该试验机可连接的腐蚀环境有:高温高压纯净水,含微量碱性、酸性、盐类的水环境,也可用于较高浓度的NaOH等介质腐蚀环境。深圳市瑞格尔仪器有限公司R-9002D电子疲劳试验机(左)、R-9002电液伺服疲劳试验机(右)  据瑞格尔相关负责人介绍,R-9002D电子疲劳试验机,主要用于生物、弹性体、小试件等动静态和耐疲劳性能试验,该试验机具有自检定、自调零、自动复位功能、控制精准等特点 试验频率范围宽,可实现0.01Hz~200Hz的宽频测试。  此外,R-9002电液伺服疲劳试验机主要用于材料和零部件动态、静态力学性能试验,可实现拉伸、压缩、低周和中高周疲劳、疲劳裂纹扩展、断裂力学及模拟实际工况的力学试验 该试验机采用全封闭式静音液压油源,配置了共轭内啮合齿轮泵,零泄漏、无污染 其直线作动器采用单元化、模块化、标准化开发理念设计制造,采用多级柔支撑组合导向机构,具有低阻尼、高响应、高寿命、无间隙设计的特点,启动压力小于0.05MPa,无爬行现象,试验频率范围:0.01Hz~100Hz,动态控制精度值为0.5%FS。 以下是CISILE 2013上部分试验机厂商的展位:美特斯工业系统(中国)有限公司长春机械科学研究院有限公司济南时代试金仪器有限公司深圳市瑞格尔仪器有限公司济南天辰试验机制造有限公司天水红山试验机有限公司威海市试验机制造有限公司济南联工测试技术有限公司撰稿:邓雅静
  • 日立全新产品:NEXTA DMA200热分析仪-卓越的力学性能与使用效率
    中国-日立分析仪器公司是日立高新技术集团旗下的一家全资子公司,从事分析和测量仪器的制造与销售。2023年11月15日,公司现已推出NEXTA系列的新产品NEXTA DMA200-一款用于先进材料开发和产品质量控制的动态热机械分析仪(DMA)。业界不断追求具有新功能的高性能复合材料,使用热分析进行深入评估的需求也在相应增长。例如,汽车、飞机和电子等行业越来越需要DMA分析来了解碳纤维增强塑料及粘合性能和其他性能。DMA技术用于测量材料的粘弹性能,主要关注玻璃化转变检测。此外,这种技术可以评估次级转变、材料刚度、固化水平和阻尼特性。这款多功能工具广泛应用于应用研究和研发的机械表征,包括复合材料、塑料、橡胶和薄膜材料。作为日立分析仪器热分析系列的新成员,高规格的NEXTA DMA通过简单的故障排除、无缝数据交换和夹具轻松更换,提供更高的力学性能上限和内置效率。日立的Real View ® 实时试样观察系统和软件的“指导模式” 有助于DMA新手操作,而电子冷却系统则消除了对液氮的需求。为先进材料分析提供优秀的力学性能与日立先前推出的同类分析仪型号相比,DMA200的加载力上限升级到20N,使其力学性能增加了两倍。这让客户可以在其试样上施加更高的应力水平,从而让其成为表征需要巨大形变力的材料的理想选择。这项提升对于处理刚硬样品(例如碳纤维复合材料)的客户尤其有益,这会让他们能够获得精确可靠的材料表征。从航空航天应用到尖端汽车技术,DMA200的强化力学性能有助于更深入地探索各种材料的机械性能。“凭借NEXTA DMA200的高力学性能,我们为研究人员探索先进材料分析方面提供新的可能性,从而实现刚性材料的精确表征,并推动各行各业的创新。”日立分析仪器董事总经理Dawn Brooks。前沿Real View ®技术实现可视化分析DMA200在系统的核心部分配备经过升级的Real View ® 高分辨率相机。这有助于在广泛温度范围内测量时更好地观察试样,实时捕捉与DMA信号直接相关的图像。经证明,这种技术在使用DMA200进行研究、教学、故障排除和测量试样局部尺寸变化时十分合适。Real View ®系统集成了色彩分析(RGB、CMYK和L*a*b*)并且能够创建结果视频。尤其是在进行故障分析、颗粒异物分析和调查异常结果时,这有助于识别物理性能变化,同时DMA输出中增加的视觉信息简化了相关解读过程。高效电子冷却系统DMA200提供三种冷却系统选项:空气冷却系统、液氮冷却系统和电子冷却系统。因为电子冷却系统只需电源即可运行,无需液氮等外部资源,所以其独特优势在于简单性和简易性。这种简化的冷却过程使DMA200更易于使用,从而确保材料分析的轻松高效运行。软件更新和新照明系统使用方便“指导模式”是一种直观的软件功能,旨在通过提供系统、逐步测量和分析说明来协助缺乏既往DMA经验的客户。从方法概述到公布的结果,该模式都支持国际标准方法,并且能够根据个人需求进行定制。该模式简单易学,方便教学,并且可适应多任务的工作人员,是繁忙实验室的理想选择。此外,新集成的照明系统增强了测量夹具和试样可互换性,从而在分析过程中提供效率和便利。日立分析仪器热分析仪产品经理Olivier Savard表示:“DMA200是为应对我们客户所处苛刻环境而设计的产品,具有注重效率的先进功能和性能,必定会对各行各业产生重大影响。我们确信,这款动态热机械分析仪将赋予研究人员和专业人士推动创新并发现宝贵见解的能力。”
  • 胶水脱泡离心机的作用和产品特点
    工业制造使用的UV胶水(树脂),红胶,锡膏,硅油和散热膏等材料在使用的时候经常会发现有气泡的存在,从而影响其使用效果,如 UV胶在点胶前有气泡,点胶后经过UV光固化,气泡仍然存在,会对产品质量有极大的影响,这就要求点胶前的UV胶是均匀而无气泡的。那怎样才可以去掉UV胶的气泡呢? 答案是:使用胶水试管脱泡离心机。胶水试管脱泡离心机DD5使用脱泡离心机对UV胶的作用:使用脱泡离心机可有效去除UV胶等材料的气泡,其可以调节转速及脱泡时间,一般脱泡机,绝大多数胶水在2000转速3分钟内便可轻易完成脱泡工作。一般点胶前胶水都会灌装在工业用针筒里,目前市面上的工业针筒为分日式和美式两种,常规使用的容量有:3cc,5cc,10cc,30cc,50cc或55cc,赫西仪器脱泡离心机无论是日式或者美式针筒都适合使用,一次可以放多支进行脱泡。有专门针对不同容量的针筒而设计的管架。 胶水试管脱泡离心机原理:将装有胶水之针管放置在转头得孔内,电动机带动转头高速旋转,产生的相对离心力有效地将装有胶水针管内的空气(属称气泡)分离出管内,以避免针管内有气泡造成点胶时出现空点(漏点)或其他不良,相对离心力的大小取决于转速。胶水脱泡离心机的主要作用是将不同颗粒大小以及密度不同的物质,进行分离和提纯。让物质在巨大的离心力下,出现不同程度的沉降而分离出需要的物质成分。其实脱泡离心机还有个功用,就是将不同的物质均匀的混合在一起。 赫西胶水试管脱泡离心机产品性能概述:1.采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩交流无刷电机,运行稳定噪音低,提供舒适的实验室环境。2. 操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。3.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。4.TFT-LCD真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用;5. 采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。。6.后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。7. 10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。脱泡离心机产品用途:胶水脱泡离心机是针对10—30CC针筒脱泡所设计。经过高速离心作用,能够将针筒内的胶水充分脱泡,避免点胶时产生气泡。针筒包装的红胶/环氧树脂/ 紫外线UV固化胶以及生物学、化学、医学、药物学、工业生产等厂家和实验室。赫西脱泡离心机,工作稳定、容量大、噪音低、温升小、操作方便、安全等优点,可广泛应用于针筒包装的各类胶水。 脱泡离心机适用材料:高粘度胶材的脱泡。AB胶及UV胶的脱泡。银膏及锡膏的脱泡。环氧树脂及合成树脂的脱泡。药品及齿模基材的脱泡。各式胶材、膏类、油墨、漆泡。
  • “技”往开来 -- 浅谈4D-蛋白组学技术发展史(一)
    截至目前,人类蛋白质组计划收录的质谱数据可覆盖人类约90%的蛋白,同比可映射至其他物种的蛋白。尽管如此,复杂体系单针蛋白组学鉴定深度依旧受限于液相分离能力、质谱扫描速度和灵敏度等因素。近些年,基于离子大小和结构在气相中进行分离的技术成为质谱领域的关注焦点。该技术不仅在高效性和便捷性上点燃了大众对离子淌度的兴趣,更因其能结合传统液相 (LC) 和质谱 (MS) 的技术优势而备受瞩目。为了能将基于新型捕集离子淌度的4D-蛋白质组学技术讲清楚,我们将通过一系列的文章,携各位共同回顾捕集离子淌度结合飞行时间质谱的发展历程和前沿的进展。01TIMS和PASEF技术的发展离子淌度谱 (Ion mobility spectrometry, IMS) 是通过额外加入一维离子淌度从而将离子根据大小和形状在气相中分离。传统漂移IMS中离子受弱电场中惰性缓冲气体阻尼效应,与惰性气体分子的碰撞会延缓运动。离子穿过漂移管的迁移时间由离子与缓冲气体的碰撞频率决定。因此离子迁移时间与结构、大小、质荷比及缓冲气体性质相关,根据迁移时间即可换算出离子碰撞截面积值 (Collision cross sections,CCS),CCS值小的离子相较于CCS值大的离子能够更早的到达检测器。自1960年代起,IMS和MS检测器实现耦合,随后各种IMS方法被研发出来并不断更新。这其中包括漂移时间淌度谱(DIMS)、行波离子淌度谱(TWIMS)和捕集离子淌度谱(TIMS)等。尽管IMS在毫秒级的分析时间尺度增加了其在蛋白组学研究中的应用潜力,但仪器和数据的复杂度高及灵敏度低限制了IMS的广泛应用。目前,布鲁克专注于TIMS (trapped ion mobility spectrometry, TIMS) 和PASEF (parallel accumulation-serial fragmentation, PASEF) 联合技术。尽管从离子淌度发展的悠久历史来看,TIMS和PASEF兴起于十年前,属于相对新颖的技术,但新一代技术能够大幅增加离子传输效率和扫描速度,具有应用于蛋白质组学研究的无限潜力。2011年TIMS的推出 (Fernandez-Lima,et al. 2011) 颠覆了传统IMS技术,用气体吹动离子逆电场迁移并根据离子淌度将其分批释放。这种设计使离子淌度分辨率可不受设备物理尺寸限制大幅提升从而实现空间紧凑设计,也可在比常规低一个数量级的电压下运行。目前商业配置的设备拥有双TIMS配置,第一个TIMS具有10cm的离子通道主要用于离子捕集,而与其串联的第二个TIMS负责离子的分批释放。由于双TIMS能够将离子捕集和释放周期形成闭环,从而提升离子利用率至100%。在100ms极短时间内TIMS可对特定淌度区间的离子富集并将其压缩至1~2ms半峰宽的淌度峰,这就为TIMS结合TOF质量分析器实现快速检测提供了可能性。impact II平台配备了一个TIMS,成为新一代timsTOF仪器的前身。02TIMS和PASEF技术原理TIMS将离子捕获在一个电动通道中,通道从入口到出口充斥着2~3 mbar的气流 (图二A)。气流对各离子产生的吹力会因其空间横截面积产生差异,横截面积越大则受到的吹力越大。这种气流吹力促使离子往前运动,而沿通道增强的直流电场阻力方向则恰好相反,当受到的气体吹力和反向电场力相等时,离子将会稳定淌度管在这一特定位置,即离子被捕集住。由于相同离子淌度离子会稳定在相同位置上,这就使得在离子源区域和传输过程中呈现发散状态的离子实现时间和空间上的聚焦,有利于提高仪器灵敏度和扫描速度。分析过程中,通过逐渐降低电场强度将离子在淌度维度上逐级洗脱,离子受到气体推力不变,而随着电场力下降,离子就由大到小分批释放。电场强度的调节是通过保持出口电压不变,以恒定的用户定义的频率增加通道入口电压来实现。在相同累积时间的情况下,单TIMS会损失超过一半的离子,因为离子在释放的时候需要阻止离子源过来的离子进入淌度管,以免打乱其中离子分布稳态,而离子源端离子是持续存在的。因此,Silveira等人提出增加为双TIMS设计解决了该问题,该设计将整个通道分区为离子捕获区、离子传输区和TIMS分析区三个区域 (图二B)。这种双TIMS的配置将离子累积和释放划分在不同区域完成,也使得累积和释放能够实现时间上的并行。离子在捕获区被捕获累积,随后通过一步简单的传递将其转移至分析区进行离子淌度分析。同一时间,捕获区会再次被下一批离子填满,从而实现离子零浪费 (Silveira et al. 2017)。近些年,串联TIMS成为了发展趋势。PASEF的设计理念是利用离子累积和释放同步进行来提高MS/MS实验的效率。多肽离子通过捕集型离子淌度分析器进行分离,洗脱(~100ms)并在QTOF中检测,生成TIMS MS热图。在PASEF方法中,离子在淌度分析器中的分离和四级杆隔离同步进行,四级杆能快速切换到下一个母离子。timsTOF Pro采用了一种先进的分段四极质量过滤器,以提高离子传输和隔离效率。由于其超快的质量轴切换时间(1毫秒),使得PASEF技术达到更好的性能。采用平行累积连续碎裂技术(PASEF)技术,可以实现120Hz以上的的扫描速度,而且可以多次选取低丰度肽段进行二级分析,以提高其谱图质量。034D-蛋白质组学的诞生2018年12月01日,德国Max Plank Institute生化研究所的 Matthias Mann团队在新一期的《Molecular Cellular Proteomics》上在线发表了研究论文《Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer》,文章中对timsTOF Pro平台在蛋白质组学分析中的表现进行了详细评估,也让4D-蛋白质组学正式进入大众视野,超快的灵敏度、超高的采集速度和超好的稳定性,让人们印象深刻。离子淌度首次被引入到大规模蛋白质组学分析,这使得蛋白质组学进入了4D新时代。4D-蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图5),进而大幅度的提高峰容量、扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。相信到这里,大家对4D-蛋白质组学技术研发背景有了一个全面的了解。小编在这里也提前做一个预告,在的面的几期,我们将进一步对全4D的采集模式(dda-PASEF,dia-PASEFF,prm-PASEF)及其应用优势、4D-数据处理等方面进行详细的讲解。参考文献 Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018Florian Meier, et al.,Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Molecular & Cellular Proteomics, 2021Fernandez-Lima, et al., Gas-phase separation using a trapped ion mobility spectrometer. Int.J. Ion Mobil. Spectrom. 2011
  • “技”往开来 -- 浅谈4D-蛋白组学技术发展史(一)
    截至目前,人类蛋白质组计划收录的质谱数据可覆盖人类约90%的蛋白,同比可映射至其他物种的蛋白。尽管如此,复杂体系单针蛋白组学鉴定深度依旧受限于液相分离能力、质谱扫描速度和灵敏度等因素。近些年,基于离子大小和结构在气相中进行分离的技术成为质谱领域的关注焦点。该技术不仅在高效性和便捷性上点燃了大众对离子淌度的兴趣,更因其能结合传统液相 (LC) 和质谱 (MS) 的技术优势而备受瞩目。为了能将基于新型捕集离子淌度的4D-蛋白质组学技术讲清楚,我们将通过一系列的文章,携各位共同回顾捕集离子淌度结合飞行时间质谱的发展历程和最新的进展。01TIMS和PASEF技术的发展离子淌度谱 (Ion mobility spectrometry, IMS) 是通过额外加入一维离子淌度从而将离子根据大小和形状在气相中分离。传统漂移IMS中离子受弱电场中惰性缓冲气体阻尼效应,与惰性气体分子的碰撞会延缓运动。离子穿过漂移管的迁移时间由离子与缓冲气体的碰撞频率决定。因此离子迁移时间与结构、大小、质荷比及缓冲气体性质相关,根据迁移时间即可换算出离子碰撞截面积值 (Collision cross sections,CCS),CCS值小的离子相较于CCS值大的离子能够更早的到达检测器。自1960年代起,IMS和MS检测器实现耦合,随后各种IMS方法被研发出来并不断更新。这其中包括漂移时间淌度谱(DIMS)、行波离子淌度谱(TWIMS)和捕集离子淌度谱(TIMS)等。尽管IMS在毫秒级的分析时间尺度增加了其在蛋白组学研究中的应用潜力,但仪器和数据的复杂度高及灵敏度低限制了IMS的广泛应用。目前,布鲁克专注于TIMS (trapped ion mobility spectrometry, TIMS) 和PASEF (parallel accumulation-serial fragmentation, PASEF) 联合技术。尽管从离子淌度发展的悠久历史来看,TIMS和PASEF兴起于十年前,属于相对新颖的技术,但新一代技术能够大幅增加离子传输效率和扫描速度,具有应用于蛋白质组学研究的无限潜力。2011年TIMS的推出 (Fernandez-Lima,et al. 2011) 颠覆了传统IMS技术,用气体吹动离子逆电场迁移并根据离子淌度将其分批释放。这种设计使离子淌度分辨率可不受设备物理尺寸限制大幅提升从而实现空间紧凑设计,也可在比常规低一个数量级的电压下运行。目前商业配置的设备拥有双TIMS配置,第一个TIMS具有10cm的离子通道主要用于离子捕集,而与其串联的第二个TIMS负责离子的分批释放。由于双TIMS能够将离子捕集和释放周期形成闭环,从而提升离子利用率至100%。在100ms极短时间内TIMS可对特定淌度区间的离子富集并将其压缩至1~2ms半峰宽的淌度峰,这就为TIMS结合TOF质量分析器实现快速检测提供了可能性。impact II平台配备了一个TIMS,成为新一代timsTOF仪器的前身。02TIMS和PASEF技术原理TIMS将离子捕获在一个电动通道中,通道从入口到出口充斥着2~3 mbar的气流 (图二A)。气流对各离子产生的吹力会因其空间横截面积产生差异,横截面积越大则受到的吹力越大。这种气流吹力促使离子往前运动,而沿通道增强的直流电场阻力方向则恰好相反,当受到的气体吹力和反向电场力相等时,离子将会稳定淌度管在这一特定位置,即离子被捕集住。由于相同离子淌度离子会稳定在相同位置上,这就使得在离子源区域和传输过程中呈现发散状态的离子实现时间和空间上的聚焦,有利于提高仪器灵敏度和扫描速度。分析过程中,通过逐渐降低电场强度将离子在淌度维度上逐级洗脱,离子受到气体推力不变,而随着电场力下降,离子就由大到小分批释放。电场强度的调节是通过保持出口电压不变,以恒定的用户定义的频率增加通道入口电压来实现。在相同累积时间的情况下,单TIMS会损失超过一半的离子,因为离子在释放的时候需要阻止离子源过来的离子进入淌度管,以免打乱其中离子分布稳态,而离子源端离子是持续存在的。因此,Silveira等人提出增加为双TIMS设计解决了该问题,该设计将整个通道分区为离子捕获区、离子传输区和TIMS分析区三个区域 (图二B)。这种双TIMS的配置将离子累积和释放划分在不同区域完成,也使得累积和释放能够实现时间上的并行。离子在捕获区被捕获累积,随后通过一步简单的传递将其转移至分析区进行离子淌度分析。同一时间,捕获区会再次被下一批离子填满,从而实现离子零浪费 (Silveira et al. 2017)。近些年,串联TIMS成为了发展趋势。PASEF的设计理念是利用离子累积和释放同步进行来提高MS/MS实验的效率。多肽离子通过捕集型离子淌度分析器进行分离,洗脱(~100ms)并在QTOF中检测,生成TIMS MS热图。在PASEF方法中,离子在淌度分析器中的分离和四级杆隔离同步进行,四级杆能快速切换到下一个母离子。timsTOF Pro采用了一种先进的分段四极质量过滤器,以提高离子传输和隔离效率。由于其超快的质量轴切换时间(1毫秒),使得PASEF技术达到最好的性能。采用平行累积连续碎裂技术(PASEF)技术,可以实现120Hz以上的的扫描速度,而且可以多次选取低丰度肽段进行二级分析,以提高其谱图质量。034D-蛋白质组学的诞生2018年12月01日,德国Max Plank Institute生化研究所的 Matthias Mann团队在新一期的《Molecular Cellular Proteomics》上在线发表了研究论文《Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer》,文章中对timsTOF Pro平台在蛋白质组学分析中的表现进行了详细评估,也让4D-蛋白质组学正式进入大众视野,超快的灵敏度、超高的采集速度和超好的稳定性,让人们印象深刻。离子淌度首次被引入到大规模蛋白质组学分析,这使得蛋白质组学进入了4D新时代。4D-蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图5),进而大幅度的提高峰容量、扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。相信到这里,大家对4D-蛋白质组学技术研发背景有了一个全面的了解。小编在这里也提前做一个预告,在的面的几期,我们将进一步对全4D的采集模式(dda-PASEF,dia-PASEFF,prm-PASEF)及其应用优势、4D-数据处理等方面进行详细的讲解。参考文献 Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018Florian Meier, et al.,Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Molecular & Cellular Proteomics, 2021Fernandez-Lima, et al., Gas-phase separation using a trapped ion mobility spectrometer. Int.J. Ion Mobil. Spectrom. 2011
  • 一文了解|五大材料热性能分析方法
    | 热分析简介热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。| 材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。| 常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。Tp表示最大失重速率温度,对应DTG曲线的峰顶温度。峰的面积与试样的重量变化成正比。实战应用:热重法因其快速简便,已经成为研究聚合物热变化过程的重要手段。例如图3中聚四氟乙烯与缩醛共聚物的共混物的TG曲线可以被用来分析共混物的组分,从图1中可以发现:在N2中加热,300~350℃缩醛组分分解(约80%),聚四氟乙烯在550℃开始分解(约20%)。影响因素:(a)升温速度:升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。建议高分子试样为10 K/min,无机、金属试样为10~20K/min;(b)样品的粒度和用量:样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致;(c)气氛:常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。气氛不同反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响;(d)试样皿材质以及形状。(2) 静态热机械分析 (TMA)热机械分析,是指在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。应用范围:静态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的热膨胀系数;玻璃化转变温度;熔点;软化点;负荷热变形温度;蠕变等进行测试。实战应用:(a)纤维、薄膜的研究:可测定其伸长、收缩性能和模量及相应的温度,应力-应变分析、冷冻和加热情况下应力的分析;(b)复合材料的表征,除纤维用TMA研究外,复合材料的增强,树脂的玻璃化转变温度Tg、凝胶时间和流动性、热膨胀系数等性质,还有多层复合材料尺寸的稳定性、高温稳定性等都可以用TMA快速测定并研究;(c)涂料的研究:可了解涂料与基体是否匹配及匹配的温度范围等;(d)橡胶的研究:可了解橡胶在苛刻的使用环境中是否仍有弹性及尺寸是否稳定等。影响因素:(a)升温速率:升温速率过快样品温度分布不均匀(b)样品热历史(c)样品缺陷:气孔、填料分布不均、开裂等(d)探头施加的压力大小:一般推荐0.001~0.1N(e)样品发生化学变化(f)外界振动(g)校准:探头、温度、压力、炉子常数等校准(h)气氛(i)样品形状,上下表面是否平行应用(3) 差示扫描量热法(DSC)原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。差示扫描量热法有补偿式和热流式两种。试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。图4中展示了典型的DSC曲线。应用范围:(1)材料的固化反应温度和热效应测定,如反应热,反应速率等;(2)物质的热力学和动力学参数的测定,如比热容,转变热等;(3)材料的结晶、熔融温度及其热效应测定;(4)样品的纯度等。影响因素:(a)升温速率,实际测试的结果表明,升温速率太高会引起试样内部温度分布不均匀,炉体和试样也会产生热不平衡状态,所以升温速率的影响很复杂。(b)气氛:不同气体热导性不同,会影响炉壁和试样之间的热阻,而影响出峰的温度和热焓值。(c)试样用量:不可过多,以免使其内部传热慢、温度梯度大而使峰形扩大和分辨率下降。(d)试样粒度:粉末粒度不同时,由于传热和扩散的影响,会出现试验结果的差别。(4) 动态热机械分析(DMA)动态热机械分析测量粘弹性材料的力学性能与时间、温度或频率的关系。样品受周期性(正弦)变化的机械应力的作用和控制,发生形变。应用范围:动态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的玻璃化转变温度、负荷热变形温度、蠕变、储能模量(刚性)、损耗模量(阻尼性能)、应力松弛等进行测试。DMA基本原理:DMA是通过分子运动的状态来表征材料的特性,分子运动和物理状态决定了动态模量(刚度)和阻尼(样品在振动中的损耗的能量),对样品施加一个可变振幅的正弦交变应力时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角δ,如图5所示。DMA技术把材料粘弹性分为两个模量:一个储存模量E´,E´与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;而损耗模量E",E"与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性部分,表示材料的阻尼。材料的阻尼也成为内耗,用tanδ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E"与贮能模量E´。DMA采用升温扫描,由辅助环境温度升温至熔融温度,tanδ展示出一系列的峰,每个峰都会对应一个特定的松弛过程。由DMA可测出相位角tanδ、损耗模量E"与贮能模量E´随温度、频率或时间变化的曲线,不仅给出宽广的温度、频率范围的力学性能,还可以检测材料的玻璃化转变、低温转变和次级松弛过程。例如损耗峰能够代表某种单元运动的转变,图6为聚苯乙烯tg随温度变化的曲线,从图中可以推断峰可能为苯基绕主链的运动;峰可能是存在头头结构所致;峰是苯环绕与主链连接键的运动。影响因素:升温速率、样品厚度、有无覆金属层,夹具类型等(5) 动态介电分析(DETA)动态介电分析是物质在一定频率的交变电场下并受一定受控温度程序加热时,测试物质的介电性能随温度变化的一种技术。介电分析原理:具有偶极子的电介质,在外电场的作用下,将会随外电场定向排列。偶极子的极化和温度有关并伴随着能量的消耗。一般以介电常数(ε)表示电介质在外电场下的极化程度,而介电损耗(D)则表示在外电场作用下,因极化发热引起的能量损失。偶极子在外电场作用下的定向排列也会随外电场的去除而恢复杂乱状态。偶极子由有规排列回复到无规排列所需的时间称“介电松弛时间T”,按德拜理论:(其中:η介质粘度,a分子半径,K玻尔兹曼常数,T温度K)。松弛时间和分子的大小、形状以及介质的粘度有关。而式中tgδ损耗角正切,ε0静电场下介电常数;ε∞光频率下的介电常数。由此见,ε、tgδ都是和松弛时间τ有关的物理量,因此也和分子的结构、大小、介质粘度有关,这就是利用介电性能研究物质分子结构的依据。由(a)(b)两式可以证明,当时,ε´有极大值,f0称“极化频率”。即当外电场频率为极化频率时,介电损耗极大。应用范围:这一技术已被广泛地应用于研究材料电介质的分子结构、聚合程度和聚合物机理等。从应用对象讲,有聚丙烯酸甲酯、聚氯乙烯、聚酰胺、聚酰亚胺、聚苯乙烯、酚醛、环氧、聚蜡等热塑性和热固性树脂。此外还有耐高温树脂中的聚苯枫、聚苯并咪唑,生物化合物中的蛋白质等。其具体应用也包括增强塑料、模压材料、涂料、粘合剂、橡胶甚至玻璃、陶瓷等金属氧化物。在实验室中,DETA可作为粘弹性研究的有力工具,如动态机械性能和热机械性能测试。在工业生产中,它可应用于树脂制造、质量控制、预固化和固化程度控制等。| 结语该文针对热分析技术的概念入手分析,从五个方面:热重分析法、差示扫描量热法、静态热机械法、动态热机械分析、动态介电分析,简要论述了材料测试中几种典型的热分析方法。热分析已有百年的发展历程,随着科学技术的发展,热分析技术展现出新的生机和活力,不断发展进步。
  • 十四五能源科技创新规划:3项炼化技术重点攻关
    国家能源局、科学技术部近日联合印发了《“十四五”能源领域科技创新规划》。总体目标为:能源领域现存的主要短板技术装备基本实现突破;前瞻性、颠覆性能源技术快速兴起,新业态、新模式持续涌现,形成一批能源长板技术新优势;适应高质量发展要求的能源科技创新体系进一步健全;能源科技创新有力支撑引领能源产业高质量发展。炼化领域方面主攻特种专用橡胶技术、高端润滑油脂技术、分子炼油与分子转化平台技术三大关键技术,开展多产化工料或多产航煤兼顾化工料等传统炼厂转型升级示范。特种专用橡胶技术【集中攻关】开展氢化丁腈橡胶、梯度阻尼橡胶、长链支化稀土顺丁橡胶分子设计及制备技术研究,突破合成工艺及控制技术,研制耐油氢化丁腈橡胶复合材料、宽温域宽频率高阻尼消声瓦用复合材料,完成稀土顺丁橡胶高性能轮胎试制,形成氢化丁腈橡胶产品生产线、梯度阻尼橡胶稳产和长链支化稀土顺丁橡胶成套技术。高端润滑油脂技术【集中攻关】开展多元醇酯、烷基萘、硅烃、低聚抗氧剂等高端润滑材料构效关系和高选择性合成技术研究,研制硅烃基空间润滑油、高性能航空涡轮发动机润滑油、超宽温通用航空润滑脂等高尖端润滑油脂产品,为高端润滑油脂、多元醇酯、长链烷基萘等基础油工业级批量化试生产建立条件。分子炼油与分子转化平台技术【集中攻关】开展分子炼油机理研究,突破分子表征、先进分离、模拟放大、分子重构、智能控制等关键技术,构建产品结构灵活调整的石油分子转化平台,实现传统炼厂多产化工料或多产航煤兼顾化工料,增强传统炼厂产品结构调变能力炼化技术路线图
  • 岛津司小令大讲堂丨第二期 流动相中产生气泡所引起的问题
    《流动相脱气》特辑第一期《岛津配合防疫,开启线上学习司小令大讲堂!》为大家介绍了流动相中溶解空气引起的问题和形成气泡的机理,今天我们将讨论流动相中产生气泡所引起的问题。 第二期流动相中产生气泡所引起的问题。 1.流动相容器产生气泡的影响流动相容器中产生气泡主要是由于空气在流动相中超饱和,其原因如下: (1) 温度升高:贮存室与实验室之间的温差或早晨与中午之间的温差都可能使流动相温度升高。 (2) 吸热反应搅拌不足:某些溶剂混合时吸收热量,使温度降低,此时如不充分搅拌,随着混合溶剂温度上升至室温,同样会造成气体的过饱和而产生气泡。 当这些气泡通过吸液过滤器和管道进入泵头以后,导致泵的工作异常。首先,在进液口,随着吸液冲程泵头的压力降低,导致气泡膨胀(见图1)。此时泵吸进的溶剂由于气泡占取一定的空间而降低;其次,在排液冲程时压力增加,气泡又变小,从而使流动相的流量降低。更有甚者,由于气泡的产生和经过的途径、方式都是不规则的,因此不仅影响了流动相流量的准确度,而且影响流量的精度。是否有此种现象产生,可通过泵排液压力的监测加以确认(图2)。 当此种现象发生后,无论是保留时间或峰面积都不可能重现(图3),分析的可靠性也就无从谈起。图1 泵头进气泡的示意图 图2 排液压力波形的变化 图3 由于流量不规则形成的各种色谱 2.泵中形成气泡使液流波动即使溶剂在容器中,空气并未达到饱和的程度,但溶液进泵以前还有可能产生气泡。 (1) 低压混合梯度:如图4所示,图中虚线圈的部位其压力略低于大气压,因此溶剂在此混合更易产生气泡。低压梯度时,混合室多装在泵后(高压侧)但实际混合过程在低压侧便开始了,故低压梯度较之混合发生在泵后的高压梯度,更易产生气泡。 (2) 吸液过滤器的堵塞:当吸液过滤器有部分堵塞时,吸液的阻力增大,过滤器内的压力降低,容易形成气泡。吸液过滤器经常清洗,保养,否则易被尘土颗粒等堵塞,有时操作不当也易形成堵塞,例如,在使用缓冲溶液后未进行彻底的清洗,接着就使用盐类溶解度不大的有机溶剂,此时极易造成过滤器孔堵塞。堵塞不严重时,溶剂通过脱气即可。但最好要定时清洗。图4 低压梯度洗脱图5 吸液过滤器的清洗图6 吸液过滤器的清洗 3.柱中气泡形成和累积引起流动相绕流色谱柱中的压力一般较高,气体溶解度增大,一般在柱中不易产生气泡。然而,在接近柱的出口处,压力相对较低,此外由于柱箱升温,柱处于较高的温度,气泡也有可能在此形成,另一种可能性是从泵中排出的气泡经过色谱柱时滞留柱中。 一但气泡在柱中形成或滞留,如图7所示使流动相液流不稳并产生绕流。 口径较大的色谱柱,一但形成或滞留有气泡后就很难排除。因此,在HPLC实际应用中,HPLC柱的出口端向上,入口端向下,利用浮力尽可能使气泡不停留在柱中。图7 由于柱中的气泡导致绕流 4.泵中形成气泡使液流波动当柱箱或检测器池处于较高温度时,检测器池中易产生气泡。因为液流通过检测器时,温度升高而此处的压力反而较小。即使检测器池并未加温,但某些场合下也可能有气泡产生。例如高压梯度时,溶剂混合使气体过饱和,但在前一段流路中,由于压力较大气泡并未析出,一但到了压力接近大压的池中,气泡便会乘隙而出。 如果气泡形成于检测器池中,则将引起如图8所示的尖峰状、锯齿状的基线噪声,甚至于完全无法测定。这种情况下,分析者很难区别究竟哪些是色谱峰,哪些是尖峰状噪声,也无法正确地定义基线的位置,故无法正确地计算出峰面积。 图8 由于气泡形成和累积于柱中引起的噪声 在第三点和第四点的场合,如果使用的UV或电导检测器,由于这些检测器能经受较大的压力(约30Kg/cm2)故可在检测器的出口处加一个反压管,使检测器池和柱内的压力适当提高,防止气泡产生。一般反压管使用长2m左右,内径为0.3mm的不锈钢阻尼管。此时对1ml/min的水或甲醇将分别产生2或1Kg/cm2的反压。当然反压的大小与许多因素有关。如果阻尼管内的内径一定,液流是层流的话:(反压)μ(溶剂粘度)(流量)(阻尼管长) 制备色谱的流量较大,因此阻尼管应较短,内径较大(0.8mm)。另一方面,如果是半微量色谱,流量一般在0.1ml/min左右,上述反压阻尼管将不足以产生所需的压力,此时管径应较细(例如0.2mm),长度可增加至6m左右。 然而,对一些不能承受压力的检测器而言(见表1),则必须事先脱气而不能采用阻尼反压管的方法。 表1.检测器能承受的压力*电磁阀能承受的压力,池能经受7Kg/cm2**采用Ag/Agcl参比电极 至此,我们讨论了在流路中形成气泡所产生的问题。温度升高,压力降低和溶剂混合是形成气泡的主要原因,图9绘出了系统中温度和压力变化的概况,据此可以估计,在您所使用的系统中,哪些部位容易产生问题。 图9 HPLC系统中压力和温度的相对关系 下期预告溶解于溶剂中的空气会对不同检测器造成哪些严重的影响敬请期待!
  • 关注 | 13项国家计量技术规范批准发布
    市场监管总局关于发布《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范的公告 根据《中华人民共和国计量法》有关规定,现批准《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范发布实施,现予以公告。市场监管总局2022年12月29日《标准铂铑10-铂热电偶检定规程》等13项国家计量技术规范名录 序号编号名称批准日期实施日期备注1JJG 75—2022标准铂铑10-铂热电偶检定规程2022-12-272023-06-27代替JJG 75—19952JJG1190—2022超声波燃气表检定规程2022-12-272023-06-273JJG1191—2022车用尿素加注机检定规程2022-12-272023-06-274JJF 2012—2022超声波燃气表型式评价大纲2022-12-272023-06-275JJF 2013—2022车用尿素加注机型式评价大纲2022-12-272023-06-276JJF 2014—2022金属振子式速率陀螺仪校准规范2022-12-272023-06-277JJF 2015—2022单轴倾角传感器校准规范2022-12-272023-06-278JJF 2016—2022阻尼振荡波模拟器校准规范2022-12-272023-06-279JJF 2017—2022(20~150)kVX射线束半值层仪校准规范2022-12-272023-06-2710JJF 2018—2022电荷量测量仪校准规范2022-12-272023-06-2711JJF 2019—2022液体恒温试验设备温度性能测试规范2022-12-272023-06-2712JJF 2020—2022加油站油气回收系统检测技术规范2022-12-272023-06-2713JJF 1261.5—2022电饭锅能源效率计检测规则2022-12-272023-06-27代替JJF 1261.5—2017
  • Nature Communications|金属所在仿生材料结构优化设计方面取得新成果
    材料的强度和断裂韧性是保障构件安全服役至关重要的性能参数,但二者往往表现为相互制约关系,并且材料性能的持续优化也压缩了既有强韧化策略进一步发挥作用的空间。天然生物材料具有复杂巧妙的组织结构和优异的力学性能,可为材料强韧化设计提供重要启示。然而,在金属材料体系中设计构筑仿生结构面临两方面挑战:传统的制造加工方法(如熔炼、轧制、热处理等)很难在多级尺度上对金属材料的组织结构进行有效控制和精细调节;金属仿生材料的结构与性能之间关系尚不清晰,仿生材料结构的优化设计缺乏理论依据,更难以实现按需设计。 近日,中国科学院金属研究所在前期研制高阻尼镁基仿生材料的基础上(Sci. Adv. 6 (2020) eaba5581),通过模仿典型天然生物材料的微观三维互穿结构与空间构型,利用“3D打印+熔体浸渗”工艺制备了一系列新型镁-钛仿生材料,在金属体系中成功构筑了类似鲍鱼壳的“砖-泥”结构、螳螂虾壳的螺旋编织结构和紫石房蛤壳的交叉叠片结构(如图1所示),并在经典层合理论基础上建立了能够定量描述仿生材料结构与力学性能之间关系的力学模型,实现了其模量与强度的定量预测。研究成果发表在Nature Communications 13 (2022) 3247。 研究发现:在镁-钛复合材料体系中,仿生结构能够起到显著的强韧化作用,与组成相似但不具有仿生结构的复合材料相比,仿生材料的强度与韧性同步提高,其断裂能提升2-8倍,特别是交叉叠片结构因具有多级结构特征而表现出最佳的强韧化效果;仿生材料中镁、钛两相在三维空间相互贯穿,有利于促进它们之间的应力传递,并抑制各自相中的变形与损伤演化,减轻应变局域化程度,从而延缓仿生材料整体发生断裂,提高其拉伸强度与塑性;微观取向不断变化的特定空间构型能够诱导裂纹沿仿生结构发生偏转,增大裂纹面的面积,并且凹凸不平的裂纹面之间能够产生摩擦并形成桥连,有助于消耗外加机械能,实现高效增韧;不同类型的仿生结构均可通过提取结构中的最小重复单元,并考察其在三维空间的紧密堆积形式进行定量描述,进而将经典层合理论发展应用于仿生结构,能够建立仿生材料的结构与力学性能之间的定量关系,从而为预测仿生材料的性能以及优化设计仿生结构提供理论依据,如图2所示。 相关工作由中国科学院金属研究所材料使役行为研究部与轻质高强材料研究部以及加州大学伯克利分校的研究人员合作完成。博士研究生张明阳为文章第一作者,刘增乾研究员、张哲峰研究员和Robert O. Ritchie教授为共同通讯作者。相关工作得到了国家重点研发专项、王宽诚率先人才计划“卢嘉锡国际团队”及国家自然科学基金(51871216、52173269)项目资助。 图1:具有不同仿生结构的镁-钛复合材料及其与天然生物材料原型的比较图2:具有不同仿生结构的镁-钛复合材料中的裂纹扩展形貌、结构模型及其强度和模量与特征角度之间的定量关系
  • 【飞诺美色谱】如何让你的色谱实验更靠“谱”——液相篇
    告别了元旦小长假,实验人们又要投入到繁忙紧张的实验工作中了。如果许下一个新年愿望,不知道你的愿望清单里有没有“实验顺利”、“实验必过”、“柱柱顺利”、“鬼峰退去”这些四字箴言。其实,许多色谱故障的发生是可以通过日常维护和正确的排查方法有效避免。新年伊始,我们将按照液相色谱、气相色谱两部分专题为您整理部分色谱实验的常见故障排查方法指导,让您摆脱实验困境,新年不emo,人人都是色谱分离高手!高效液相色谱法的压力问题☞ 压力异常,通常意味着由于没有动力而没有流量,发生在泄漏或空气滞留在泵头,控制器设置有问题,或活塞损坏。如果有流量和压力,仪表或压力传感器可能需要更换。☞ 高背压通常是由流速设置过高引起的。也可能是由于堵塞在高效液相色谱柱块,高效液相色谱保护柱,注射器,或在线过滤器 使用了错误的高效液相色谱柱或流动相 低柱温度 或控制器故障。☞ 低背压通常是由流量设置过低引起的。使用不当的高效液相色谱柱、柱温设置过高、系统泄漏和控制器故障也会导致低背压。☞ 压力循环可能由泵内空气、故障阀门、系统泄漏、泵内密封失效、排气不足或使用梯度洗脱引起。高效液相色谱法泄漏问题——泄漏可能发生在HPLC的任何地方☞ 管件泄漏通常意味着如果管件被剥离或损坏,需要进行紧固、清洁或更换。其他问题还包括配件过紧或使用来自不同制造商的部件。☞ 泵的泄漏可能是由于连接件或阀门松动,必须紧固。也可能是混合器密封、泵密封、脉冲阻尼器或比例阀的故障,在这种情况下,故障部件需要维修或更换。☞ 注射器泄露,使用错误直径的注射器针头可能会导致注射器泄漏。转子密封的故障可能导致泄漏,需要维修或更换。堵塞可能发生在回路或废物管线,需要清洗或更换。若喷油器口密封松动,应拧紧。渗漏可能由于废管线虹吸而发生,这可以通过适当的斜度和保持在地面以上的废管线来纠正。☞ HPLC柱泄漏可能是由于需要紧固的末端配件松动造成的。☞ 检测器的泄漏可能是由于配件泄漏和需要拧紧,电池垫圈故障,需要修理或更换,破裂的电池窗口,需要更换,或堵塞的废管或堵塞的流量电池,需要更换这些部件。左右滑动查看更多高效液相色谱图问题☞ 峰拖尾,由于熔块堵塞、色谱柱空洞、样品与活性位点相互作用、干扰峰、流动相pH值错误或需要更换色谱柱而导致的峰尾。☞ 峰前延,由于温度过低,使用了错误的样品溶剂,样品超载,或需要更换不良的色谱柱。☞ 峰裂分,由于色谱柱入口或保护板上的污染或样品溶剂与流动相不兼容,导致色谱峰分裂。☞ 大峰变形,由于过载的样品,大的峰值变形。☞ 小峰变形,由于使用了错误的注射溶剂,导致小峰变形。☞ 额外的峰,由于柱外的问题,需要更小的体积检测器单元或系统的水管,导致早期峰值的滞后。☞ 容量因子(K’)增加导致的拖尾,尾随随着k '的增加而增加,这是由于次级留存效应的问题。☞ 酸性或碱性化合物的峰拖尾,由于缓冲不足导致酸性或碱性峰出现尾流。☞ 额外的峰,由于鬼峰的存在或之前注射的后期洗脱峰。☞ 保留时间漂移,由于温度或柱平衡或流动相变化控制不良。☞ 保留时间改变,保留时间因流量变化、泵内气泡或流动相不当而改变。☞ 基线漂移是由于流动相中存在污染物,柱温波动,柱平衡缓慢,流动相问题,样品中强烈保留的材料,或检测器设置不当造成的。☞ 基线噪声,由于泄漏、系统中的空气滞留、污染、流动相混合不完全、流动相脱气不充分、检测器问题、温度问题、泵的脉动或在同一线路上使用其他电子设备造成的基线噪声。☞ 宽峰是由于流动相、泄漏、柱或保护柱中的污染、温度问题、缓冲液浓度低、检测器设置问题、检测器时间常数高或柱入口空洞引起的。☞ 分离度低由于流动相污染,分析柱或保护柱阻塞,或需要更换色谱柱而导致分离度下降。☞ 峰面积太大或太小,由于检测器衰减、注入尺寸或记录器连接不当,峰值过大或过小。左右滑动查看更多
  • 《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定
    近日,全国电磁计量技术委员会在广西壮族自治区南宁市召开了全国电磁计量技术委员会年会暨国家计量技术规范审定会,来自计量、仪器仪表、电力等行业86个单位的代表200人参加了会议。北京市计量检测科学研究院电磁所张磊、谷扬和王跃佟三位同志参加了此次会议。会上,由北京市计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定。   由北京计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范,经过起草组成员一年多的认真筹备,多方听取专家意见,顺利通过了专家审定。专家一致认为,起草组广泛征集了全国各个地区高阻计校准工作中存在的问题,特别是针对不同温湿度条件下进行了大量的实验工作,进行归纳汇总后,制定出适用于全国范围内的高绝缘电阻测量仪(高阻计)校准规范。经过与会专家的充分讨论,对高阻计校准规范的编制工作给予了充分肯定,全票通过审定。   电磁所张磊同志作为电磁委员会委员,全程参与了七项计量技术规范审议工作,认真听取规范起草人的报告,对规范报审稿进行了逐条审查,并且提出了宝贵意见。   《高绝缘电阻测量仪(高阻计)》修订工作,结合了全国各个地区的实际使用和工作情况,规范了高阻计的校准项目和方法,澄清了原来检定过程中存在的一些模糊问题,使生产者、试验者有统一的规范可依。会议之余,北京市计量院同志和同行进行专业上交流,了解更多行业动态,为北京市计量院电磁计量工作的发展起到良好推动作用。
  • 何以称心?奥豪斯伴您:逆周期,共百年
    称重百年事,称心奥豪斯。随着2021年推出奥豪斯第一款IP69K防水台秤Defender 6000并热销,越来越多的用户开始记住它3mm厚316不锈钢防刀戳面板,可视化的三色LED点阵检重显示屏,红外无线感应器、无接触操作,还有长达一年的超长待机。称心,源于专业。时光回到1912年,奥豪斯"哈佛之旅"天平面世,它很快成为用来测评其它机械式天平的一个标准,这项标准一直保持到今天。两年后,奥豪斯获得了第一项专利,推出第一个专为粮食检测生产的设备。1950年代,高架三梁天平面世,到今天它在教育行业仍然不缺拥趸,如果说在美洲大陆上有祖孙三代使用过同一款天平,我们不会感到奇怪。1966年,Dial-O-Gram天平荣获《产品工程杂志》颁发的杰出设计大奖,因为美观和舒适的客户体验——我们的审美一直在线。也是在60年代,奥豪斯以低成本第一次结合了磁阻尼再装产品,获得更快的称量结果。性价比和务实的创新,一直刻在奥豪斯的基因里。如果您需要降本增效,我们是专业的选择。专业在于持续创新。80年代,奥豪斯第一个便携式实验室质量天平Port-O-Gram面世,辨析度达到1:20000,同期还推出了第一款水分仪。2000年,新的Ranger系列工业标准台秤进一步拓宽了OHAUS工业产品线。两年后,随着专为珠宝行业市场开发的天平推出,大众已经可以在很多行业,如珠宝店、咖啡店等近距离接触到奥豪斯产品,而不只是实验室。2007年,奥豪斯Defender 5000台秤就推出了“免标定”的概念,整秤使用航空接头连接,多重秤体与仪表可交叉配置,实现客户选择多样化。之后持续创新,更大更亮的屏幕,丰富的功能模式配合大容量数据存储,还有丰富的通讯端口、支持标签打印机等。看不见的创新就更多,各种型号的称重模块嵌套入不同的机械设备,助力制药、食品到锂电池和光伏晶片。专业在于对细节的尊重。每个行业对称重产品需求各有不同,食品行业需要符合NSF认证要求;Defender 6000无设计卫生死角、无裸露螺纹,易清洁,使用食品级材料316不锈钢;还有专为食品行业量身定制的Valor系列产品。制药行业要求符合CFR21 part 11相关要求,奥豪斯称重产品提供用户权限管理、电子签名、审计追踪等功能,Explorer系列分析和精密天平在这个行业的成功令人印象深刻。 专业在于量身定做的效率和随时待命的服务。奥豪斯高效率的内部工具及流程,专业的系统集成能力满足不同行业客户定制化需求。专业的售前及售后服务为客户提供近全天侯的服务。无论是食品、制药还是锂电行业客户对平台秤有特殊应用需求,都会第一时间组织产品经理、研发工程师、应用服务工程、质量部同事等成立临时项目组,高效地提供定制化解决方案。 专业在于更可靠的品质。早在1928年,奥豪斯就推出了自我校准玛瑙轴承,其设计原理可以减少磨擦力,增长天平的寿命——“用得住”至今仍是奥豪斯核心卖点之一,在中国举行的“寻找最老奥豪斯天平”活动中,超过20年的甚至排不进前三,最早的已经用了40年,依然运行良好。技术上不是谁都可以公开说“遥遥领先”的,但好的品质必然来自产品从设计层面开始进行的各种质量测试。奥豪斯提供的每一项产品参数都进行了严格的内部测试以保证产品性能,包括:50万次按键寿命测试、50万次疲劳加载、防尘防水等级测试、跌落测试、冲击测试、过载测试、EMC电磁兼容性测试、安规测试等。严格的供应链管理流程,LIMES制造系统保证所有参数符合生产标准,所有生产记录可追溯;ATM设备实现自动生产测流程,减少人为因素对质量造成的影响。 专业在于合规,在于对自己更高的要求。符合ISO等体系标准之外,奥豪斯严格遵守CPA要求及全球范围内的各项法规及安规认证例如(NTEP/MC、OIML/EC、UL、TUV、CE等),符合GWP/GMP要求,例如可保存时间日期等。至于绿色生产,减碳和零碳排放项目,奥豪斯同样在持续努力。 转眼百年,如今,哪家常春藤没台奥豪斯?还有制药、食品、化工、新能源和数之不尽的第三方检测实验室。称重百年,何以称心?奥豪斯:因为很努力,所以被选择。奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 当你收到一台柱后衍生仪,你可以做的有……
    德祥旗下Pickering品牌折扣活动已告一段落!除了活动中涉及的许多性价比试剂耗材,Pickering柱后衍生仪也是Pickering旗下的王牌产品之一,其优异性能深受广大客户青睐。那当客户将仪器拿到手后该如何定期对仪器进行正确维护保养能使其发挥更高的效能呢?本文德祥售后来教您如何独立完成仪器的排查维保。柱后衍生仪故障检修常规步骤● 全面检查系统, 处理漏液问题;● 对设置参数、缓冲液、试剂、阀等根据说明进行核实;● 特别核实所有所用试剂规格,标准品,有效期,是否过期变质;● 系统是否有改变;● 根据文献条件对比:标准样品、色谱柱、参数日志是否有变化;● 收集信息:观察信息、手册、书、技术支持;● 得出关于问题原因的结论;● 开始工作;● 在改变梯度、温度或其它操作条件之前, 针对同一问题至少连续得到两张色谱图。改变之后, 至少有两张色谱图显示了同样的改变效果。尤其是在优化梯度条件的时候。柱后衍生仪常见问题和解决方法试剂泵压力低可能原因 …● 试剂泵系统中存在气泡;● 试剂流速低;● 泵系统中有漏液处;解决方法 …● 检查泵系统中所有接头是否正确;● 重点检查试剂瓶盖处peek接头是否松动;● 检查泵头底部是否有漏液;● 检查泵头出口是否有液体流出;试剂泵压力高可能原因 …● 沉淀物堵塞流路;● 接头拧的过紧;● 检测器流通池的堵塞;● 0.5um过滤芯,10um过滤芯,脉冲阻尼器,限流管,加热反应器等部位是否堵塞;解决方法 …确定堵塞的精确位置,接下来一次断开一个位置, 从检测器废液管向前逐级断开检查,直到压力下降;若部分堵塞,清洗管路,若完全堵塞,更换配件;过压泻放阀打开可能原因 …● 加热反应器堵塞;● 检测器流通池堵塞;● 泄压阀处有异物堵塞;解决方法 …确定堵塞的精确位置,接下来一次断开一个位置, 从检测器废液管向前逐级断开检查,直到压力下降;若部分堵塞,清洗管路,若完全堵塞,更换配件。柱后衍生仪的维护保养不仅限于日常故障问题的排查,下面我们以Pickering的Vector PCX柱后衍生仪为例为大家介绍一下。Pickering Vector柱后衍生维护保养使用前维保注意事项● 检查压力开关进出连接管是否正确,并在运行HPLC压力最大时,检查是否有漏液;● 检查试剂瓶及管路洁净度,如需要充分清洗干净;● 连接好柱子出口至混合器1,环境反应器至检测器等接口;使用中维保注意事项● 运行中一直将界面显示在压力模式下,以便观察柱后运行情况;● 压力低:漏液(查找漏液处),进气泡(从试剂瓶-输液管-瓶盖-泵出入口-排空阀-压力传感器等);使用后维保注意事项Vector柱后衍生仪做完样品检测后,应及时清洗。因为衍生液都是含盐溶液,如果不及时清洗可能会有固体物质析出导致管路系统堵塞。所以每次测试完后,应及时用20%甲醇水溶液冲洗系统管路。具体操作流程如下:1. 将Vector衍生液瓶换成装有20%甲醇水溶液瓶,旋松排空阀,用注射器灌注泵前管路,一般抽出10ml左右液体即可,再旋紧排空阀;2. 启动Vector流速,一般默认流速是0.3 ml/min,设定流速冲洗管路后,可以同时将高温反应池温度设低(建议设置到50℃或以下),一边冲洗系统管路的同时让反应池温度降下来,建议反应池温度降至60℃或以下时再停流速,这时系统管路也冲洗好了;3. 如果只是短时间停机(一般3天或以下),按上面步骤冲洗好后关机即可,如果是长时间停机不用,建议用20%甲醇水溶液冲洗完后,再用纯甲醇冲洗一下系统管路再关机保存。使用Vector柱后衍生仪时,我们需要关注Vector的泵压力值,一般新机压力值是600-800psi的范围(使用厂家标配试剂包试剂),随着使用时长的增多,仪器相关的耗材上杂质的累积会越来越多,导致泵压有慢慢变高的趋势,所以当泵压上升到一定程度后,我们就要更换相关耗材。关于泵压升高的耗材更换注意事项导致泵压力升高的主要耗材如下:1. 0.5μm在线过滤器(PN 3102-9042),一般建议这个过滤器导致泵压力上升300psi左右更换;2.限流管(PN 1100-0161),一般建议限流器导致泵压力高至一定程度(压力值约到1200psi时)更换;3. 10μm在线过滤器(PN 3102-9040),一般建议这个过滤器导致泵压力上升300psi左右更换。同时建议Vector PCX柱后衍生仪使用一年后,做泵的维护保养,泵的PM维护包(PN 3106-1255)。密封组件* 每个密封套装包括:柱塞清洁布、密封圈嵌入/移除工具、密封圈、垫圈、O型圈、隔膜。如何维修泵?* 建议专业工程师进行维护维修● 试剂更换为80水/20甲醇;● 开启液相,设置相应的流速以开启柱后衍生仪;● 开启Vector,设置加热反应器为关闭状态 ;● 开启试剂泵,用水/甲醇冲洗系统至少30分钟;● 冲洗完成后,关闭液相泵,柱后衍生仪也会跟着关闭;● 关闭Vector电源,从试剂泵上拆卸下输液管路。如何拆除泵?● 将单向阀上的管路接头断开;● 移除柱塞清洗管;● 使用 5/32”内六角扳手松开位于泵头前方的两个螺丝。*注意:拆卸泵头时不要损坏柱塞杆,旋转泵头会导致柱塞杆损坏。如何移除泵?● 小心将泵头、自动清洗架拆下。拆卸时,保持水平拉出小心不要损坏柱塞杆;● 拆下O型圈;● 使用镊子将隔膜拆下。德祥售后服务德祥售后团队由一群具备专业技能及丰富经验的技术人员组成,拥有极强的解决问题能力及极快的响应速度。依托于德祥30多年的相关行业经验与百年技术厂家的合作支持,德祥售后可为客户提供专业贴心的全方位售后服务:如果您在仪器的排查维护过程中遇到任何问题,可拨打热线400-006-9696/售后专线020-32568787,德祥售后会在第一时间安排专业人员为您服务,关注“德祥售后服务”我们将会不定期分享仪器维保内容。Pickering促销活动虽结束618活动仍然在继续目前,Pickering旗下试剂耗材促销活动已结束,但是慧淘618活动中还有其他品牌的高性价比产品可供选择。同时,6月18日19点,还有专业主播教你如何选择最适合你的科研产品!德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 动态热机械分析仪原理简介
    p  动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。br//pp  DMA仪器的结构及重要部件如图所示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title="DMA结构.jpg" width="400" height="238" border="0" hspace="0" vspace="0" style="width: 400px height: 238px "//pp style="text-align: center "strongDMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构)/strong/pp style="text-align: center "1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器/pp  DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。/ppstrong驱动马达/strong—以设定的频率、力或位移驱动驱动轴/ppstrong试样夹具/strong—DMA依据所选用夹具的不同,可采用如图所示的不同测量模式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title="DMA测量模式.jpg" width="400" height="152" border="0" hspace="0" vspace="0" style="width: 400px height: 152px "//pp style="text-align: center "strongDMA测量模式/strong/pp style="text-align: center "1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩/ppstrong炉体/strong—控制试样服从设定的温度程序/ppstrong位移传感器/strong—测量正弦变化的位移的振幅和相位/ppstrong力传感器/strong—测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位/ppstrong刚度、应力、应变、模量、几何因子的概念:/strong/pp  力与位移之比称为刚度。刚度与试样的几何形状有关。/pp  归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度Lsub0/sub的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。/pp  在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。/pp  在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title="DMA-1.jpg"//pp可得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title="DMA-2.jpg"//ppFsubA/sub/LsubA/sub为刚度。所以测定弹性模量的最终方程为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title="DMA-3.jpg"//pp模量由刚度乘以几何因子得到。/pp  各种动态热机械测量模式及几何因子的计算公式见下表:/pp style="text-align: center "表1 DMA测量模式及其试样几何因子的计算公式/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title="DMA测量模式及其试样几何因子的计算公式.jpg" width="400" height="276" border="0" hspace="0" vspace="0" style="width: 400px height: 276px "//pp  注:表中b为厚度,w为宽度,l为长度。/ppstrongDMA测试的基本原理:/strong/pp  试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。/pp  测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。/pp  DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。/ppstrong复合模量、储能模量、损耗模量和损耗角的关系:/strong/pp  DMA分析的结果为试样的复合模量Msup*/sup。复合模量由同相分量M' (或以G' 表示,称为储能模量)和异相(相位差π/2)分量M' ' (或以G' ' 表示,称为损耗模量)组成。损耗模量与储能模量之比M' ' /M' =tanδ,称为损耗因子(或阻尼因子)。/pp  高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。/pp  复合模量Msup*/sup、储能模量M' 、损耗模量M' ' 和损耗角δ之间的关系可用下图三角形表示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title="复合模量三角形关系.jpg" width="400" height="191" border="0" hspace="0" vspace="0" style="width: 400px height: 191px "//pp  储能模量M' 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。/pp  模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。/pp 通常可区分3种不同类型的试样行为:/pp纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。/pp纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。/pp粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。/pp DMA分析的各个物理量列于下表:/pp style="text-align: center "表2 DMA物理量汇总/ptable border="1" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应力/span/p/tdtd width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "σ(t)=σsubA/subsinωt=FsubA/sub/Asinωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应变/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "ε(t)=εsubA/subsin(ωt+δ)=LsubA/sub/Lsub0/subsin(ωt+δ)/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量值/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "|M*|=σsubA/sub/εsubA/sub/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"储能模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’(ω)=σsubA/sub/εsubA/subcosδ/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’’(ω)=σsubA/sub/εsubA/subsinδ/span/p/td/trtrtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗因子/span/p/tdtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "tanδ=M’’(ω)/M’(ω)/span/p/td/tr/tbody/tablepstrong温度-频率等效原理/strong/pp  如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。/pp  运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。/ppstrong典型的DMA测量曲线:/strong/pp  DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。/pp  动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。/pp  等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。/p
  • 创业板上市!西测测试拟使用1.87亿元募资购置仪器设备
    近日,西安西测测试技术股份有限公司(简称“西测测试”)发布首次公开发行股票并在创业板上市发行公告,本次发行新股2,110.00万股,按本次发行价格43.23元/股,预计募集资金总额91,215.30万元。据西测测试2022年7月6日披露的招股意向书显示,公司拟募集资金40,054.74万元,分别用于西测测试西安总部检测基地建设项目、成都检测基地购置设备扩建项目、西测测试研发中心建设项目和补充流动资金,其中18,692.63万元用于各项目中的设备购置及安装。序号项目名称投资总额(万元)投入募资(万元)1西测测试西安总部检测基地建设项目21,328.4421,328.442成都检测基地购置设备扩建项目5,344.504,810.053西测测试研发中心建设项目3,916.253,916.254补充流动资金 10,000.0010,000.00合计40,589.1940,054.741、西测测试西安总部检测基地建设项目本项目围绕西测测试的主营业务扩建实验室、建设信息化管理系统,预计总投21,328.44万元,主要用于建设实验室、购置和安装设备、购置软件以及铺底流动资金等。西测测试表示,项目建成后将扩大公司的检验检测规模,扩展公司在大型装备环境试验、电子元器件可靠性试验、雷电直接效应试验、10米法电磁兼容性试验等方面的试验能力,实现实验室信息管理系统、办公自动化系统、人力资源管理系统、客户服务平台系统的互联互通,提高公司的管理水平。投资明细具体如下:序号项目投资金额(万元)占总投资的比例1建筑工程5,076.3923.80%1.1工程建设4,614.9021.64%1.2工程建设其他费用461.492.16%2设备购置及安装12,379.3458.04%3软件购置425.001.99%4项目预备费872.794.09%5其他费用159.550.75%6铺底流动资金2,415.3811.32%合计21,328.44100.00%2、成都检测基地购置设备扩建项目本项目围绕成都西测现有的主营业务扩建实验室,扩大成都西测的检验检测规模,扩展成都西测在热真空、电池组充放电等环境与可靠性试验的能力,军用装备和民用航空机载设备电磁兼容性、静电放电敏感度测试、电压跌落及工频磁场抗扰度测试、阻尼振荡波测试、电快速瞬变脉冲群试验等电磁兼容性试验的能力,实现电子元器件二次筛选全流程检测能力。本项目预计总投资5,344.50万元,主要用于建设租赁厂房装修、购置和安装设备、购置软件以及铺底流动资金等,投资明细具体如下:序号项目投资金额(万元)占总投资的比例1建筑工程652.2812.20%1.1场地装修592.9811.10%1.2工程建设其他费用59.301.10%2设备购置及安装3,863.2972.29%3项目预备费222.794.17%4其他费用10.000.19%5铺底流动资金596.1411.15%合计5,344.50100.00%3、西测测试研发中心建设项目本项目通过投入先进研发设备、配备优秀研发人才,研究环境与可靠性试验和电子元器件检测筛选领域的相关检测标准,建立相应的检验检测服务技术和流程,具体包括航空发动机零部件环境与可靠性测试技术研究、海洋综合环境试验领域技术研究、温度-湿度-振动-高度四应力综合试验技术研究及电子元器件国产化验证技术研究等。本项目投资总额为3,916.25万元,主要包括建筑费用、装修费用、软硬件购置费、工程建设其他费用等,投资明细具体如下:序号项目投资金额(万元)占总投资的比例1建筑工程1,177.0030.05%1.1工程建设1,070.0027.32%1.2工程建设其他费用107.002.73%2设备购置及安装2,450.0062.56%3软件购置100.002.55%4项目预备费181.354.63%5其他费用7.900.20%合计3,916.25100.00%4、补充流动资金项目西测测试表示,本次发行募集资金在满足上述项目资金需求的同时,拟使用不超过10,000.00万元募集资金补充流动资金及偿还银行贷款,满足公司业务快速发展对营运资金的需求并降低公司财务费用,增强公司的资金实力并提升公司的市场竞争力。关于西测测试西测测试是一家从事军用装备和民用飞机产品检验检测的第三方检验检测服务机构,为客户提供环境与可靠性试验、电子元器件检测筛选、电磁兼容性试验等检验检测服务,同时开展检测设备的研发、生产和销售以及电装业务。西测测试是工信部专精特新“小巨人”企业、陕西省博士后创新基地、陕西省中小企业创新研发中心、2019 年陕西省民营经济转型升级示范企业、西安市服务业综合改革试点单位、西安市科技服务业示范机构。参与制定了《试验和导则:大型试件砂尘试验》(GB/T2423.61-2018)和《电工电子产品成熟度试验方法》(GB/T 37143-2018)两项国家标准。2019至2021年,西测测试分别实现营业收入1.65亿元、2.02亿元、2.46亿元,净利润0.33亿元、0.50亿元、0.68亿元。2022年1-6月,西测测试预计营业收入约为12,100 万元-12,600万元,归属于母公司股东净利润为2,300万元-2,500万元。
  • IMCE 弹性模量和内耗分析仪在沈阳金属所安装完毕
    2006年9月3号到12号,比利时IMCE总经理BART BOLLEN先生亲临沈阳金属研究所技术支撑部,对所里使用此仪器的研究人员进行全面系统的培训。目前,主要负责人 张重远,杨菲老师已利用此仪器进行各种科学实验。IMCE 公司的高温弹性模量和内耗分析仪,主要用于涉及工业和航空等高端技术陶瓷,金属等力学性质的分析和研究。目前,此仪器在国内填补了此项技术分析的空白,它可以分析样品形状具有良好均匀性、弹性和等方性的陶瓷、金属样品,测量其弹性模量,剪切模量,泊松比率,阻尼等物理性质与温度或时间的关系曲线,给分析工作者提供了大量的有用科研信息
  • 北京航空航天大学研制成功高灵敏度石墨烯MOEMS谐振压力传感器
    由悬浮石墨烯制成的纳米机械谐振器对压力变化表现出高灵敏度。然而,由于受空气阻尼的影响,这些设备在非真空环境中表现出明显的能量损失,以及由于石墨烯的轻微渗透,参考腔内不可避免地出现微弱的气体泄漏。2023年6月12日,北京航空航天大学李成副教授团队在ACS Appl. Mater. Interfaces期刊发表名为“High-Sensitivity Graphene MOEMS Resonant Pressure Sensor”的论文,研究提出了一种利用微电子机械系统技术的新型石墨烯谐振压力传感器,其特点是将多层石墨烯膜密封在真空中,并粘附在带有凹槽的压敏硅膜上。这种方法创新性地采用了间接敏感的方法,在大气中表现出60倍的能量损失,并解决了基底和石墨烯之间长期存在的气体渗透问题。值得注意的是,所提出的传感器表现出1.7Hz/Pa的高压力灵敏度,比硅的同类产品的灵敏度高5倍。此外,全光封装腔结构有助于实现6.9×10-5/Pa的高信噪比和低温度漂移(0.014%/℃)。所提出的方法为使用二维材料作为敏感膜的压力传感器的长期稳定性和能量损失抑制提供了一个很好的解决方案。MOEMS石墨烯谐振压力传感器其特点是通过阳极键合实现10-3Pa的真空封装,大大降低了压力差下基底和石墨烯之间高空气阻尼和气体渗透造成的能量损失。总的来说,所提出的传感器为提高信噪比和实现二维材料谐振传感器的可靠使用提供了一个有前途的解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制