当前位置: 仪器信息网 > 行业主题 > >

馏分燃料冷滤定仪

仪器信息网馏分燃料冷滤定仪专题为您提供2024年最新馏分燃料冷滤定仪价格报价、厂家品牌的相关信息, 包括馏分燃料冷滤定仪参数、型号等,不管是国产,还是进口品牌的馏分燃料冷滤定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合馏分燃料冷滤定仪相关的耗材配件、试剂标物,还有馏分燃料冷滤定仪相关的最新资讯、资料,以及馏分燃料冷滤定仪相关的解决方案。

馏分燃料冷滤定仪相关的资讯

  • 检测馏分燃料、柴油发动机燃料等需要用的仪器---冷滤点测定仪
    当代科学技术发展的主要特征是高度分化和高度综合,分析化学也不例外。分析化学是四大化学之一,包括两大范畴化学分析和仪器分析。化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。仪器分析是以物质的物理性质和物理化学性质为基础建立起来的一种分析方法,常常需要使用比较复杂的仪器。 现代仪器分析速度快,适于批量试样的分析,许多仪器配有连续自动进样装置,采用数字显示和电子计算机技术,可在短时间内分析几十个样品,适于批量分析。有的仪器可同时测定多种组分。A2030冷滤点测定仪符合SH/T 0248,适用于测定馏分燃料包括含有流动改进剂或其它添加剂的柴油发动机燃料、民用取暖装置使用燃料的冷滤点。仪器特点**压缩机制冷系统确保达到要求的制冷深度。内置式真空泵和电子精密压力平衡系统维护吸滤压力自动平衡在设定值。自动控制冷却介质与被测试样的温差,维护降温速度受控且均匀稳定。内精密微机定时,确保判断结果的准确性。技术参数温度范围:-70~50℃分辨率:0.1℃压力范围:0~2kPa(200mmH2O)分辨率:1mm工作冷槽:单槽二浴,二浴等温测温元件:PT100(德国JUMO公司测温传感器)制冷方式:压缩机制冷(法国Danfoss)计  时:60s 分度1s环境温度:5℃~40℃相对湿度:≤85%工作电源:AC220V±10%,50Hz功率消耗:900W外形尺寸:主 机:600mm×450mm×450mm     抽滤器:250mm×150mm×380mm重  量:主 机:50kg     抽滤器:5kg
  • 馏分燃料油氧化安定性测定仪依据SH/T0175、 ASTM D2274
    A2040馏分燃料油氧化安定性测定仪是依据SH/T0175、 ASTM D2274标准设计制造的,用于测定初馏点不低于175℃,90%回收温度低于370℃的中间馏分燃料油的固有安定性能,即在不存在水或者活性金属表面以及污物等环境因素的情况下,试样暴露于大气中抗变化的能力。仪器特点5英寸TFT彩色触摸屏显示,图像清晰、操作方便。仪器自动记录时间,并有报警。通过操作,仪器可计算最终结果。6路样品可同时实验。各通道流量独立控制。技术参数测量范围:室温~100℃分辨率:0.1℃控温精度:0.2℃测试孔槽:6孔环境温度:≤30℃相对湿度:≤85℃储运温度:(-25~55)℃工作电源:AC220V±10%,50Hz功 率:2.4 kw外形尺寸:500mm x550mm x1600mm(主机)暗箱尺寸:350mm x250mm x1000mm(暗箱)
  • 新增一项气相色谱在清洁燃料领域的国际标准
    近日,中国石油石油化工研究院提出的标准项目“喷气燃料中抗氧剂和防冰剂含量的测定”顺利通过ASTM(美国材料与试验协会)石油产品和润滑剂技术委员会的投票,正式由立项阶段进入制定阶段。这是中国石油首次在清洁燃料领域主导制定国际标准。喷气燃料即喷气发动机燃料,又称航空涡轮燃料,是一种轻质石油产品,主要由原油蒸馏的煤油馏分经精制加工,有时还加入添加剂制得,也可由原油蒸馏的重质馏分油经加氢裂化生产。抗氧剂和防冰剂含量是衡量喷气燃料产品质量的重要技术指标。以往,国际标准规定的检测方法每次只能单独测定其中一类的含量,给喷气燃料产品标准实施及产品质量监管带来了困难。针对这一问题,石油化工研究院采用固相萃取-气相色谱技术方案,可同时测定3种防冰剂和7种抗氧剂,且完全满足喷气燃料国际标准和国家强制性标准对防冰剂、抗氧剂含量测定的要求,填补了相关标准领域的空白。这一突破不仅有效提升了喷气燃料质量监管水平,助力生物航煤新技术开发,而且在国际舞台展示了中国石油的科研实力和形象。“喷气燃料中抗氧剂和防冰剂含量的测定”项目从提出、培育到制定共历时4年。下一步,项目组将与ASTM加强沟通合作,联合国内外技术专家推动标准制定及推广应用,为清洁燃料标准体系建设贡献更多中国智慧和中国方案。
  • 埃尔特发布德国埃尔特红外碳硫分析仪ELTRA CS-d新品
    可靠的碳硫分析 适用于任何样品新的埃尔特ELTRA ELEMENTRAC CS-d是一台可靠,精准,耐用的燃烧法碳硫元素分析仪。红外检测池配置灵活,C,S测量范围宽泛,从ppm级一直到100%。ELEMENTRAC CS-d针对有机和无机样品中C,S的测量,一台仪器整合了两种炉体,即高频感应炉和电阻炉。ELTRA埃尔特 ELEMENTRAC CS-d的典型样品:钢,铁,铸铁,铜,陶瓷,土壤,燃料,油,煤,焦炭埃尔特先进分析技术新的ELEMENTRAC CS-d配备了电阻炉用于有机样品的燃烧分析和高频感应炉用于无机样品的燃烧分析。电阻炉和高频感应炉可以分开独立使用,可以用于碳和硫的准确分析且不需要对硬件进行调整。常规的测试模块主要是由4个独立镀金的红外检测池构成。这也保证了宽广的测量范围,镀金层也保证了检测池不会受到卤素和酸的侵蚀。ELEMENTRAC CS-d的ELEMENTS 软件结构清晰,分析工作快速高效,具有多种独特的安全功能,保证关键样品的顺利分析。新的ELEMENTRAC CS-d 创新的双炉设计特点,支持安全、可靠、准确的碳硫分析。碳硫分析方法重复性极佳为了保证测量的碳、硫含量不会偏低,ELEMENTRAC CS-d设计了一个带加热的恒温粉尘过滤器,同时新设计了可控温的催化炉。粉尘过滤器大幅降低了冷凝水和硫酸的形成,而催化剂炉也保证了一氧化碳的充分氧化。电阻炉模式也可以用催化炉,因为在低温下电阻炉中可能会有大量的一氧化碳生成,通过催化炉之后,全部转化为二氧化碳。高频感应炉■ 快速的碳和硫的分析(40S)■ 几乎不需要样品前处理■ 可以分析各种形态样品(块状,线状,粉状等)电阻炉的分析方法ELEMENTRAC CS-d的电阻炉配备了陶瓷管,工作温度范围是从600度到1550度。ELEMENTS软件中的温度可以以1度为基本单位进行调节。通过陶瓷短管供氧,然后吸走样品以确保完整燃烧并且没飞溅损失。配备可以开关可视窗的加样槽使得对于低浓度碳含量测量更加准确,因为其能够防止环境当中的二氧化碳对测量影响。电阻炉■ 电阻炉的工作温度从600度到1550度■ 可以一次分析大量样品(如,350mg的煤)■ LED指示灯可以引导正确加样■ XXL应用加样台,可以用于放置待测样品舟智能供氧模式根据样品材料及特性,ELEMENTRAC CS-d允许在感应燃烧阶段对供氧进行调整。对于块状样品分析时,氧枪将所有的氧气释放于坩埚中心位置,保证样品中的碳/硫分都可以被充分氧化。对于一些粉末样品,氧枪会向燃烧腔内供氧,为了防止样品的飞溅和损失。这种供氧方式有利于一些密度较低样品的分析(SiC)。另外高频感应炉还配备了功率调整的功能。一些低熔点的样品(锡,镁)可以使用低射频功率,而铸铁分析时可以使用高功率进行分析。同时逐渐升温的功能也能使整个燃烧过程更加平滑。选配件■ 载气净化炉■ 用于预热坩埚和反应舟的马弗炉■ 高频感应炉可配备吸尘器(配备HEPA过滤器)■ 经济的单碳或单硫测试通道■ 36位自动进样器(高频感应炉)■ 配备有机碳模块用于测试酸洗过后的有机碳含量创新点:新的德国埃尔特碳硫元素分析仪ELTRA CS-d是一台可靠,精准,耐用的燃烧法碳硫元素分析仪。红外检测池配置灵活,C,S测量范围宽泛,从ppm级一直到100%。ELEMENTRAC CS-d针对有机和无机样品中C,S的测量,一台仪器整合了两种炉体,即高频感应炉和电阻炉。新的德国埃尔特红外碳硫分析仪ELTRA CS-d配备了电阻炉用于有机样品的燃烧分析和高频感应炉用于无机样品的燃烧分析。电阻炉和高频感应炉可以分开独立使用,可以用于碳和硫的准确分析且不需要对硬件进行调整。德国埃尔特红外碳硫分析仪ELTRA CS-d
  • 守卫先锋!手持式XRF光谱仪保障火电厂燃料安全有一套!
    用于火力发电厂的手持式XRF光谱仪火力发电厂火力发电厂简称火电厂,是利用可燃物(例如煤炭)作为燃料产生电能的工厂。其运作原理为在燃料燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,将热能转换成机械能;汽轮机再带动发电机旋转,将机械能转化成电能。在火电厂的运行过程中,为了将对环境的影响最小化的同时保障设施运行的效率,确保燃煤原料的质量是至关重要的。如何评估燃煤的质量?在火力发电厂中,了解煤燃烧过程中会产生的灰分量以及煤中的硫含量至关重要。燃煤中的灰分指的是,其在彻底燃烧后所剩下的残渣,灰分分为2类,一类是外在灰分,可以通过洗煤除去;而内在灰分由形成煤炭的原始植物本身所含的无机物决定,内在灰分越高,煤的可选性越差。而硫分指的是燃煤中含有硫的总含量。 选用高灰分高硫分的燃煤不仅会排放大量烟尘及二氧化硫,深化环境污染,而且对于火力发电厂的日常运维也有负面的影响。使用奥林巴斯手持式X射线荧光(XRF)分析仪对燃煤进行分析,可使工程师快速、准确地评估灰分含量(灰分产量)和硫分等关键元素。这些信息可用于大幅减少停工情况,并提高维护效率。燃煤的灰分和硫含量的检测方法在燃煤的过程中, 形成的富含硫和磷的灰分会粘在炉壁上,导致加热性能下降。同时高硫的灰分会导致炉壁受到腐蚀。使用Vanta手持式XRF光谱仪可以快速估算煤中的成灰物质,并且可以直接对煤炭原料进行检测,不需要进行额外的样品制备,快速、准确地评估煤炭的:灰分含量(灰分产量)硫含量利用这些信息,发电厂可以完成以下工作:通过制定更合适的混煤策略,减少工厂停工的频率通过提前规划维护工作来提高生产效率,因为工程师可以利用进煤的成分数据来预测何时需要停工和维护Vanta分析仪自动计算成灰物质的含量,因此用户可以近乎实时地快速估算出煤的产灰量奥林巴斯XRF分析仪可以检测轻元素组合(Mg + Al + Si + P + S+ Ti + K + Ca + Fe),准确评估灰分含量(灰分产量)。数据由BEES UNSW大学提供:ACARP项目编号C24025。手持式XRF光谱仪(X轴)测得的硫含量与标样的数值(Y轴)之间具有很好的相关性。Vanta 手持式XRF光谱仪的优势特性发电厂可能处于高温多尘的环境中。奥林巴斯Vanta XRF光谱仪可以在条件恶劣的工作环境中正常工作,其特性如下:可以在温度高达50ºC的环境中持续工作符合IP55/IP54评级标准,可以抵御污垢、灰尘和雨水的侵袭机身结构坚固耐用,通过了4英尺坠落测试(MIL‑STD-810G),可避免仪器受到损坏使用奥林巴斯的科学云可以实现云数据存储,并可实时以远程方式查看数据
  • 安东帕冷滤点测定仪荣获德国勃兰登堡创新奖
    2014年11月20日,安东帕集团旗下ProveTec公司凭借全新推出的Callisto100 冷滤点测定仪,夺得德国勃兰登堡创新产品奖,以表彰其对柴油等燃料冷滤点检测的创新方法。小巧的单机版全自动冷滤点测试仪 Callisto 100 可测量柴油、生物柴油、混合油和燃气油的低温操作性能。Callisto 100 配备了新开发的先进帕尔帖 元件概念,可连接无甲醇冷却系统。确保了冷却夹套卓越的均一性,对于正确的冷滤点值测量是至关重要以及决定性的参数。优点概览 无故障检测 操作简单且直观 高样品通量 便捷的清洁程序易于操作 使用无接触的红外检测技术可轻松检测整个过滤单元 即使移液管外壁结霜也能保证卓越的检测性能。 可从菜单中选择预置的标准测试方法,以便于立即开始测试 大屏彩色显示屏可实时显示样品和夹套的温度 抽吸和回流时间的图像信息遵循样品的温度特性 根据测试方法统计评估测试结果的最小值/最大值/平均值 自动提示温度和真空校准程序步骤 可启动自动清洁程序定制用户灵活性也适用于手动浊点和倾点测量 关于安东帕ProveTec产品事业部安东帕ProveTec产品事业部由德国Petrotest公司演变而来,它是世界著名的石油产品分析仪器专业厂家,于1873年由Mr.Berthold Pensky宾斯基先生(注:宾斯基—马丁闭口闪点仪发明人之一)创办,至今已有近140年历史。Petrotest公司于1994年荣获ISO9001质量体系认证证书,其开发研制的全自动油品分析仪具有世界先进水平,分析结果精确可靠,使用操作安 全简便。符合ASTM(美国试验与材料协会标准),ISO(国际标准),DIN(德国国家标 准),IP(英国石油学会标准),FTM(美国联邦标准),及其它各种等小标准。在全世界拥有无法计数的广大用户。 2012年3月1日,Petrotest公司正式成为安东帕公司的全球第十七个子公司,并改名为ProveTec GmbH,A company of Anton Paar, 同时由安东帕公司全面负责Petrotest公司产品在国内的相关业务。目前安东帕ProveTec产品涵盖闪点测试、馏程测定、燃料油检测(胶质、氧化 安定性测定、蒸汽压测定、铜片腐蚀等),润滑油测定(抗乳化性能、泡沫特性、防锈测定、摩擦磨损等),沥青测定(软化点、延度、脆点、针入度等),针、锥 入度测定等。依托于安东帕公司精湛的制造工艺,以及一贯的研发投入,广大石油及石化行业用户将会在今后享受到更优质的产品和服务。
  • 苏州大学附属第一医院890.00万元采购流式细胞仪,馏分收集器
    基本信息 关键内容: 流式细胞仪,馏分收集器 开标时间: 2021-09-06 13:30 采购金额: 890.00万元 采购单位: 苏州大学附属第一医院 采购联系人: 张永刚 采购联系方式: 立即查看 招标代理机构: 苏州市卫康招投标咨询服务有限公司 代理联系人: 周依雯 代理联系方式: 立即查看 详细信息 苏州大学附属第一医院关于关节镜及科研设备一批的招标公告 江苏省-苏州市-姑苏区 状态:公告 更新时间: 2021-08-16 苏州大学附属第一医院关于关节镜及科研设备一批的招标公告 2021年08月16日 16:27 公告信息: 采购项目名称 关节镜及科研设备一批 品目 货物/专用设备/医疗设备 采购单位 苏州大学附属第一医院 行政区域 姑苏区 公告时间 2021年08月16日 16:27 获取招标文件时间 2021年08月16日至2021年08月23日每日上午:08:30 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥.03 获取招标文件的地点 苏州市干将西路120号3号楼四楼(苏州市卫康招投标咨询服务有限公司) 开标时间 2021年09月06日 13:30 开标地点 苏州市卫康招投标咨询服务有限公司会议室 预算金额 ¥890.000000万元(人民币) 联系人及联系方式: 项目联系人 周依雯、齐一豪 项目联系电话 0512-69165616 采购单位 苏州大学附属第一医院 采购单位地址 苏州市姑苏区平海路899号 采购单位联系方式 0512-67780793 代理机构名称 苏州市卫康招投标咨询服务有限公司 代理机构地址 苏州市干将西路120号3号楼四楼 代理机构联系方式 0512-69165616 项目概况 关节镜及科研设备一批招标项目的潜在投标人应在苏州市干将西路120号3号楼四楼(苏州市卫康招投标咨询服务有限公司)获取招标文件,并于2021年9月6日13点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SZWK2021-Z-G-087号 项目名称:关节镜及科研设备一批 预算金额:890万元 最高限价:无 1.采购需求: 标段 序号 名称 数量 预算金额(万元) 一 1 关节镜 1套 400 二 1 在线放射性同位素检测器 1台 130 2 微孔板计数器 1套 130 三 1 流式细胞仪 1台 130 四 1 二元超高效馏分收集器 1台 100 第一标段关节镜:全高清影像系统要求,非一体机设计,具有独立的同品牌摄像主机系统、冷光源系统、工作站系统、全高清显示器、刨削动力系统和手术器械、体位架等。 第二标段在线放射性同位素检测器:主要用于药代研究、放射性药物质控等,是在HPLC系统高效分离、分析的基础上,定量检测药物代谢物各组份中的放射性活度等。 第三标段流式细胞仪激光配置:均采用高功率固态激光器,激光配置:488nm(激光功率≥50mW),638nm(激光功率≥50mW),405(激光功率≥80mW); 第四标段二元超高效馏分收集器:由两部分组成:前端分离系统及自动馏分收集系统,保证联机稳定性。 2.售后服务要求:所有产品整体免费保修≥3年。接到维修通知后有专职的技术服务人员上门服务,保证2小时响应,8小时内需完成维修。如无法修复正常运行的须提供备用机以保证正常使用。 3.合同履行期限:合同签订后60天内送货到位并完成安装调试。 4.本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 具有医疗器械经营资格(仅第一标段); 三、获取招标文件 时间:2021年8月16日至2021年8月23日,每天上午08:30至11:30,下午13:00至17:00(北京时间,法定节假日除外)。 地点:苏州市干将西路120号3号楼四楼(苏州市卫康招投标咨询服务有限公司)。 方式: 提供以下材料现场获取 (1)营业执照副本复印件; (2)法人授权委托书; (3)医疗器械经营资格证明材料复印件(第二、三、四标段可不提供); 上述材料每页均须加盖单位公章。 售价:工本费人民币叁佰元整,售后不退。 四、提交投标文件截止时间、开标时间和地点 时间:2021年9月6日13点30分(北京时间) 地点:苏州市卫康招投标咨询服务有限公司会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本次采购的有关信息将在以下网站上发布:江苏政府采购网、中国政府采购网。 2.未依照采购公告要求依法获取采购文件的供应商,视为未参加该项政府采购活动,不具备对该政府采购项目提出质疑的法定权利。但因供应商资格条件或获取时间设定不符合有关法律法规规定等原因使供应商权益受损的除外。 3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:苏州大学附属第一医院 联系人:张永刚 联系电话:0512-67780793 地址:苏州市姑苏区平海路899号 2.采购代理机构信息 名称:苏州市卫康招投标咨询服务有限公司 地 址:苏州市干将西路120号3号楼四楼 联系人:周依雯、齐一豪 联系方式:0512-69165616、69165625 3.项目联系方式 项目联系人:周依雯、齐一豪 电 话:0512-69165616、69165625 苏州市卫康招投标咨询服务有限公司 2021年8月16日 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:流式细胞仪,馏分收集器 开标时间:2021-09-06 13:30 预算金额:890.00万元 采购单位:苏州大学附属第一医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:苏州市卫康招投标咨询服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 苏州大学附属第一医院关于关节镜及科研设备一批的招标公告 江苏省-苏州市-姑苏区 状态:公告 更新时间: 2021-08-16 苏州大学附属第一医院关于关节镜及科研设备一批的招标公告 2021年08月16日 16:27 公告信息: 采购项目名称 关节镜及科研设备一批 品目 货物/专用设备/医疗设备 采购单位 苏州大学附属第一医院 行政区域 姑苏区 公告时间 2021年08月16日 16:27 获取招标文件时间 2021年08月16日至2021年08月23日每日上午:08:30 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥.03 获取招标文件的地点 苏州市干将西路120号3号楼四楼(苏州市卫康招投标咨询服务有限公司) 开标时间 2021年09月06日 13:30 开标地点 苏州市卫康招投标咨询服务有限公司会议室 预算金额 ¥890.000000万元(人民币) 联系人及联系方式: 项目联系人 周依雯、齐一豪 项目联系电话 0512-69165616 采购单位 苏州大学附属第一医院 采购单位地址 苏州市姑苏区平海路899号 采购单位联系方式 0512-67780793 代理机构名称 苏州市卫康招投标咨询服务有限公司 代理机构地址 苏州市干将西路120号3号楼四楼 代理机构联系方式 0512-69165616 项目概况 关节镜及科研设备一批招标项目的潜在投标人应在苏州市干将西路120号3号楼四楼(苏州市卫康招投标咨询服务有限公司)获取招标文件,并于2021年9月6日13点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SZWK2021-Z-G-087号 项目名称:关节镜及科研设备一批 预算金额:890万元 最高限价:无 1.采购需求: 标段 序号 名称 数量 预算金额(万元) 一 1 关节镜 1套 400 二 1 在线放射性同位素检测器 1台 130 2 微孔板计数器 1套 130 三 1 流式细胞仪 1台 130 四 1 二元超高效馏分收集器 1台 100 第一标段关节镜:全高清影像系统要求,非一体机设计,具有独立的同品牌摄像主机系统、冷光源系统、工作站系统、全高清显示器、刨削动力系统和手术器械、体位架等。 第二标段在线放射性同位素检测器:主要用于药代研究、放射性药物质控等,是在HPLC系统高效分离、分析的基础上,定量检测药物代谢物各组份中的放射性活度等。 第三标段流式细胞仪激光配置:均采用高功率固态激光器,激光配置:488nm(激光功率≥50mW),638nm(激光功率≥50mW),405(激光功率≥80mW); 第四标段二元超高效馏分收集器:由两部分组成:前端分离系统及自动馏分收集系统,保证联机稳定性。 2.售后服务要求:所有产品整体免费保修≥3年。接到维修通知后有专职的技术服务人员上门服务,保证2小时响应,8小时内需完成维修。如无法修复正常运行的须提供备用机以保证正常使用。 3.合同履行期限:合同签订后60天内送货到位并完成安装调试。 4.本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 具有医疗器械经营资格(仅第一标段); 三、获取招标文件 时间:2021年8月16日至2021年8月23日,每天上午08:30至11:30,下午13:00至17:00(北京时间,法定节假日除外)。 地点:苏州市干将西路120号3号楼四楼(苏州市卫康招投标咨询服务有限公司)。 方式: 提供以下材料现场获取 (1)营业执照副本复印件; (2)法人授权委托书; (3)医疗器械经营资格证明材料复印件(第二、三、四标段可不提供); 上述材料每页均须加盖单位公章。 售价:工本费人民币叁佰元整,售后不退。 四、提交投标文件截止时间、开标时间和地点 时间:2021年9月6日13点30分(北京时间) 地点:苏州市卫康招投标咨询服务有限公司会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本次采购的有关信息将在以下网站上发布:江苏政府采购网、中国政府采购网。 2.未依照采购公告要求依法获取采购文件的供应商,视为未参加该项政府采购活动,不具备对该政府采购项目提出质疑的法定权利。但因供应商资格条件或获取时间设定不符合有关法律法规规定等原因使供应商权益受损的除外。 3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:苏州大学附属第一医院 联系人:张永刚 联系电话:0512-67780793 地址:苏州市姑苏区平海路899号 2.采购代理机构信息 名称:苏州市卫康招投标咨询服务有限公司 地 址:苏州市干将西路120号3号楼四楼 联系人:周依雯、齐一豪 联系方式:0512-69165616、69165625 3.项目联系方式 项目联系人:周依雯、齐一豪 电 话:0512-69165616、69165625 苏州市卫康招投标咨询服务有限公司 2021年8月16日
  • LUMEX红外用于测定生物燃料FAME脂肪酸甲酯含量-阿曼燃料实验室
    2018年2月 - 塞拉莱,阿曼苏丹。 阿曼事世界上最大的燃料储存地之一,燃料储存过程需要密切进行监控。 Mina 集团的阿曼国石油实验室选购并使用LUMEX公司IR红外分析柴油中脂肪酸甲酯(FAME)含量监控,根据欧盟标准EN 14078:2014液体石油产品中的中间馏分油的脂肪酸甲酯( FAME)的含量的测定使用傅里叶红外光谱仪InfraLUM FT-08进行测定,可靠的产品质量和用户友好的操作方式受了客户的好评。生物柴油的主要成分是脂肪酸甲酯(FAME),是一种无毒、能生物降解、基本无硫和芳烃的优质清洁柴油,作为绿色环保的替代燃料,在欧洲和美国得到大力推广,是近年来世界能源领域的一个发展热电。欧盟各国对生物柴油的应用结果表明,生物柴油起动 性能与石油柴油无区别,可直接以100%浓度用于柴油发动机。柴油或加热燃料中的FAME含量测定有效鉴别燃料,可用于监控FAME对发动机或加油系统的影响。 LUMEX生物柴油解决方案提供可靠的FAME含量监控,可从0.05%(V / V)的最低浓度水平进行有效监控。仪器内置简单便捷的定量分析模块,集成到软件SpectraLUM中,可以即时以百分比的形式获得FAME测定结果,而无需额外的操作。Mina 石油公司实验室每月测定多次FAME含量以便进行工艺或过程控制,使用InfraLUM FT-08可以在几分钟内获得结果,极大提高了检测速率,降低了成本。 Lumex分析仪器还根据其他标准为柴油燃料的红外测试提供解决方案,例如ASTM D7371。针对石油天然气及燃料提供成套解决的方案,包括炼油、储存、运输等过程监控环节。 LUMEX公司自1991年成立以来一直致力于新产品和先进的技术方法的开发,现已拥有100多种分析方法,为全球用户提供相应行业解决方案,现产品和方法用户遍布全球80多个国家。 (来源:LUMEX公司)
  • 发布弗莱德FISA-2000燃料油品综合分析仪新品
    产品详细说明FISA-2000 油品综合快速分析仪油品分析利器随着石油化工生产技术的不断进步,石油化工装置正朝着大型化、一体化、智能化和清洁化等方向发展,传统企业生产过程控制系统正随之发生了改变,建设智能化炼厂已成为炼化企业升级转型的重要目标。实时在线优化(RTO)是实现炼厂装置智能化控制的重要基础,而快速、高效、准确、低成本的在线分析和现场分析技术则是实施RTO的基本单元。可检测原油到馏分油不同组分产品:柴油:十六烷值、多环芳烃、凝点......汽油:辛烷值、芳烃、烯烃、笨...... 进厂原料:石脑油PONA、调和组分辛烷值......原油:原油快评、原油详评仪器优点:快、多、优、省、稳、准优点解析:快:操作便捷,1min完成检测 多:一次出具多项检测指标 优:常温下工作,绿色、环保安全 省:节省人力,仪器免维护,低运行成本 稳:专利动态准直技术,工作状态稳定 准:国际仪器品牌,保证数据准确性创新点:1、1分钟出汽油、柴油、乙醇汽油多项指标,出具用户指定的全指标检测单2、无耗材,无操作人员要求3、与实验室数据对比,数据准确可靠,4、仪器适用于实验于及车载环境,可配于油品检测车中使用5、应用于加油站、油库等市场监管、;炼化企业;环保;公安等多部门以此仪器做为验证仪器的山东省快检标准已于2019年8月6日发布实施,配套此仪器的本公司的油品快检车已在山东省内加油站展开全覆盖检测。弗莱德FISA-2000燃料油品综合分析仪
  • 诺德泰科发布车载紫外荧光硫分析仪CTS6160新品
    一直以来,加油站油品的检测中,都是采用的“现场取样→实验室分析→出具检测报告→工商根据检测报告处罚”方式。这种方式问题在于,由于从采样到出具报告需要一定的时间,在这个时间中,不合格的油品已经销售出去了,已经造成了事实上的污染和损害。有没有一种仪器,可以现场快速给出结果,并且属于不引起争议的仲裁方法呢。CT6160就是这样一台设备,可以方便的放在检测车上,成为流动的分析工作站,特别适用于质检部门以及第三方检测部门,配合气体以及LPG附件,还可以用于天然气以及液化石油气的现场快速检测。其主要技术创新点在于:★催化燃烧无需钢瓶气★整机防震保证绝对安全★快速升温技术节省分析时间符合标准:CTS6160车载紫外荧光硫分析仪,采用硫元素检测的仲裁方法——紫外荧光法测定硫含量,符合石化行业标准及相关国家标准。GB/T 34100——轻质烃及发动机燃料和其他油品中总硫含量的测定 紫外荧光法SH/T 0689——轻质烃及发动机燃料和其他油品的总硫含量测定法(紫外荧光法)SH/T 11060.8——天然气 含硫化合物的测定 第8部分:用紫外荧光光度法测定总硫含量技术特点:不一样的燃烧方式传统的紫外荧光硫分析仪采用的是空管燃烧方式,CTS6160创新性地采用了催化燃烧方式,在燃烧管中填充适当的催化剂,在催化剂的作用下,仅仅利用干燥空气中的氧气就可保证样品完全燃烧转化。不一样的载气和助燃气传统的紫外荧光硫分析仪需要采用Ar作载气,O2作助燃气。由于CTS6160采用了催化燃烧方式,使用合成空气同时作为载气和助燃气,可使用用空气发生器替代,完美地解决了车载紫外荧光硫用气的问题。仪器特点:整机防震● 仪器自带防震隔垫● 零部件均采用防震设计● 适应颠簸、坑洼等特殊路况小巧的空间体积● 优化的空间设计方案● 全新设计的炉体(18.5×287×223)● 除电源开关外其它均有电脑控制方法的进样系统● 固定位快速进样● 进样过程语音提示● 分析时间3-4min/样准确的分析结果● 催化燃烧保证完全转化● 质量流量计精确控制流速● 高灵敏度紫外荧光检测器● 媲美实验室的分析数据结果主要技术参数:检测方法:紫外荧光法符合标准:SH/T0689、GB/T34100燃烧方式:催化燃烧所需气体:空气(发生器替代)进样方式:手动进样进样量:最大50ul测量范围:0.5-1000mg/L分析时间:3-5min/样标准偏差:≤3%除水方式:免维护膜式干燥器防震方式:整机防震重量:约35kg尺寸:47 × 45 ×47cm电源:220±10V, 50/60HZ, 0.8kW创新点:1.国内第一台车载紫外荧光硫分析仪,仲裁方法2.采用催化燃烧方式,使用空气发生器来替代传统的钢瓶Ar和O2,解决了紫外荧光硫的用气问题3.整机防震,无惧颠簸路况车载紫外荧光硫分析仪CTS6160
  • 基于岛津C2P系统的甾体化合物纯化馏分自动粉末化处理
    制备液相色谱所收集馏分的后处理方式一般常用的有减压旋转蒸发和低温冷冻干燥,两种方法各有特点,但都需要消耗大量的时间和人力,另外还具有样品污染、样品损耗等风险,在处理大规模样品数量时将尤为明显。 岛津的全自动纯化系统,即Crude2Pure 系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。 本实验使用提供了快速、安全、有效的全新分离制备后处理方法的岛津Crude2Pure 系统,对某甾体化合物进行了溶剂回收及固体粉末化处理,实验可在3小时内快速完成,同传统的样品分离纯化后处理方法相比,节省处理时间3倍以上;粉末直接生成于标准的样品瓶中,减少转移操作,避免了相互污染的产生,最终得到高纯度的化合物粉末,为合成产物的制备纯化后处理操作提供一种简便、实用和可靠的方式。本实验中所涉及的甾体化合物是含有环戊烷骈多氢菲母核的一类中等极性化合物,多数会含有多个羟基,从极性和疏水性考虑,在上样和补偿液均含有一定比例的有机相以增大溶解性防止捕集过程中析出损失;由于分离纯化过程中往往在流动相中加入了甲酸等挥发性酸来改善峰形和分离度,在溶剂回收和粉末化时以纯水洗除流动相中的添加剂,获得高纯度目标样品。 有关详情,请点击《应用C2P 系统对某甾体化合物纯化馏分的自动粉末化处理》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 低碳燃料标准制定全面启动
    低碳燃料标准制定全面启动 两项“低碳燃料”国标草稿 预计8月前报批  低碳燃料一般指与传统化石燃料(如柴油、汽油、航空煤油)相比,单位能量能源具有更低的碳强度(或者说温室气体排放强度),这种比较是建立在燃料生命周期评价的基础上。也就是说,燃料的碳强度应从能源原料的获取开始计算,包括开采(种植)、生产、运输以及最后汽车发动机燃烧,整个过程的温室气体排放都应包括在燃料碳度内,并不是只考虑汽车发动机的燃烧排放。而且,温室气体的排放可能因其中任何环节的改变而产生较大的变化,同一种燃料的碳强度是可以通过工艺改进、技术创新来降低的。从国内外研究成果来看,废弃油生物柴油、纤维素乙醇、可再生电力等具有更低的碳强度和减排潜力,被认为是低碳燃料。  那么,我国应如何实现交通燃料的低碳化呢?中国标准化研究院资源与环境标准化研究所的陈亮博士指出:“要摸清家底,开展交通燃料生命周期温室气体排放评价,首先要具备一套标准的评价方法学。”据悉,由中国标准化研究院、能源与交通创新中心、中粮集团等七家单位共同研究起草的两项“低碳燃料”国家标准。  其中,《交通燃料生命周期温室气体排放评价 原则和要求》已经完成了广泛征求意见稿并在广泛征求意见中 《交通燃料生命周期温室气体排放 报告与审核》处于标准起草阶段,有望于7月初完成标准征求意见稿。两项“低碳燃料”国家标准草稿计划于8月前报批国家标准化委员会。这两项国家标准不仅可以帮助企业评价交通燃料生命周期温室气体排放,也可以帮助各级政府决策部门根据评价结果制定相关的政策法规。  国家发改委相关人士表示,低碳燃料的研究工作能从定量角度对如何降低碳排放做了有益的探索,提出了思路。同时,还可以用科学的方法对当前的一些热点作出判断,不能说开发的产品是低碳的,就认定整个产业链就是低碳的。
  • 安东帕发布Diana 700常压蒸馏分析仪
    p style="text-align: justify text-indent: 2em "近日,奥地利安东帕发布了一款新型常压蒸馏分析仪——Diana 700。该仪器能在常压下自动执行高精度的蒸馏范围分析,可分析的典型样品包括石化产品、芳烃以及其他挥发性有机液体,是客户宝贵反馈意见和安东帕先进技术的结合体。易用、高效、安全是生产商为Diana 700标贴的“仪设”。/pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/201811/uepic/d60db9db-8129-412e-b84a-31592da51a07.jpg" title="123.jpg" alt="123.jpg"//pp/pp style="text-align: center text-indent: 0em "strongDiana 700 常压蒸馏分析仪/strong/pp style="text-align: justify text-indent: 2em "strong可靠性结果自动化得出/strong/pp style="text-align: justify text-indent: 2em "为了简化准备工作流程的复杂性,Diana700将必要的人工处理步骤实现了全自动化,由智能状态监测系统进行控制。只有在每一个处理步骤都成功完成后,蒸馏任务才能开始执行,避免了生疏的用户因为设置不正确或不合标准而导致重复误差。该仪器的自动化程度还体现在采用了全自动加热器和防护罩升降装置。当蒸馏烧瓶安装到加热器上之后,防护罩会立即自动地向上升起,识别正确的烧瓶和烧瓶支撑板。使用这款仪器,未经训练的用户可以按照说明书步骤完成自动化实验,而对于有经验的用户,也可以快速启动高级模式。/pp style="text-align: justify text-indent: 2em "strong便捷性与高效性相结合/strong/pp style="text-align: justify text-indent: 2em "Diana700的多用插头组合了蒸发温度传感器和烧瓶定位支架。这使得仪器的操作体验更流畅,可用性更强,只用一只手,就可以在几秒钟内将125毫升或200毫升的烧瓶安装在正确的位置。Diana 700的回收室也非常容易操作。由于采用了紧固管套设计的量筒,回收室可以保证样品和量筒温度的出色稳定性。/pp style="text-align: justify text-indent: 2em "Diana 700的冷凝器和回收室还采用了帕帖尔技术,能够在ASTM D86不同的蒸馏组别之间快速切换,并在5分钟内达到所需的温度。仪器还采用了接触式图像传感器技术(CIS),可在整个蒸馏过程中实现对样品体积的精确连续测定。另外,在测试开始之前,仪器会测量体积,如果有必要,可校正为100%体积。/p
  • 新品推荐! 英飞思便携式石油汽油柴油快速硫氯分析仪Compass4294 plus
    新品推荐! 英飞思便携式石油汽油柴油快速硫氯分析仪Compass4294 plus一、仪器创新点1、便携式油品硫氯分析仪,内置真空泵,铬靶一体化微型光管2、准确,快速,无损、同时分析硫和氯含量、紧凑、便携的XRF光谱仪技术3、基于真空的系统以提高性能、高灵敏度,低检出限、符合ASTM和ISO国际硫测定标准二、仪器特点及优势&bull 便携、坚固、紧凑的设计,用于完全无损分析&bull 一次校准——适用于宽动态范围内的多种石油基质&bull 低检测限&bull 高速度和准确性&bull 常规分析培训仅需几分钟&bull 无需消耗任何气体,日常分析成本低三、 仪器背景硫自然存在于所有原油样品中,因此出现在精炼燃料样品中。硫燃烧产物的污染影响以及催化系统的中毒使得硫浓度的持续降低至关重要氯化物总是存在于粗原油中,它们的浓度差异很大。根据来源、运输方法和工艺条件,氯化物浓度可能会在很短的时间内飙升,并导致整个炼油厂发生破坏性腐蚀事件使用 EDXRF 测定石油或燃料中的硫和氯是现代分析的行业标准方法。四、仪器介绍Compass 4294 能量色散 X 射线荧光 (EDXRF) 系统提供最新的创新用于石油产品中硫和氯的现场测量,浓度范围从 2 ppm 到 10%。为了检测荧光 X 射线,使用了带有珀尔帖冷却的高分辨率大面积快速硅漂移检测器 (SDD)。 SDD 的光谱分辨率 (FWHM) 达到 130eV (Mn Kα),输入计数率可达 500,000 cps硫范围国际标准、标准方法、硫范围、汽油种类ASTM D4294 17 mg/kg 至 4.6 质量 % 高硫ISO8754 0,03 %-5,00 % IMO 硫含量上限 2020ASTM D7220-12 3 – 942 mg/kg Euro VIISO 20847 30 – 500 mg/kg 高硫五、仪器的应用关键应用船用柴油中硫含量分析燃料油、煤油、喷射 A、真空瓦斯油 (VGO) 和原油的烃类样品分析船用燃料中 Cl、Mg 和 K 的分析避免燃油发动机故障的催化剂分析便携一体化设计满足最苛刻的现场测试要求真空测试环境,有效提高灵敏度超低检出限一键启动和一键测试轻松完成对以下标准的油品质量控制,符合以下国标GB/T 17040-2008 中国石油和石油产品中硫含量测定GB/T 17060-1998 中国原油中硫含量测定GB/T 380-1977 中国石油产品硫含量测定GB/T 17411-2015 船用燃料油SH/T 0253-1992 轻质石油产品中总硫含量测定及ASTM和ISO国际标准ASTM D4294, ISO 8754, ISO 20847, IP 336, ASTM D6445,IP496, ASTM7220ASTM D4929测试谱图:六、仪器性能研究6.1样品准备ASTM D4929C设计用于测量原油中的残留有机氯化物。粗样品是首先通过蒸馏和洗涤来制备,以除去H2S和无机氯化物。蒸馏后洗净用C部分方法通过XRF分析得到的石脑油馏分的Cl含量。这石脑油馏分通常稳定且含量低于1000 mg /g。XRF校准是使用矿物进行的石油校准标准品,作为矿物油模拟石脑油的X射线响应6.2准确性研究为了研究Compass 4294的准确性,对市售的含100 ppm氯的石油参考材料进行了十次测量。 100 ppm氯的测试性能Unit:ppmTest Time: 200 secondsTest NumberCalibration CurveChlorine(ppm)1Lubricant96.52Lubricant97.13Lubricant98.04Lubricant95.75Lubricant99.06Lubricant102.17Lubricant99.98Lubricant96.19Lubricant101.010Lubricant102.611Lubricant97.112Lubricant98.213Lubricant99.014Lubricant101.015Lubricant102.016Lubricant95.617Lubricant96.118Lubricant98.0419Lubricant101.020Lubricant102.1Certified Standard Chlorine Value100 ppmAverage Test Chlorine Value byCompass429498.7 ppm标定曲线七、精密度研究为了研究Compass 4294的精度,分析了两个含氯量分别为1000ppm和300ppm的认证值的氯样品。下面显示的结果表明,指南针4294可对各种烃样品进行精确测量。XRF设备的另一个重要参数是分析的可重复性。这在一段时间内对样品进行了5次测量。氯含量的平均,标准偏差(Std Dev)和相对标准偏差(RSD)由以下数据计算得出1000ppm和300ppm氯的测试性能Unit:ppmTest Time: 200 secondsNo.Calibration CurveChlorine1000ppmstandard sampleChlorine300ppmstandard sample1Crude Oil10363042Crude Oil10473123Crude Oil10443014Crude Oil10443085Crude Oil1055302Certified Standard Chlorine Value(ppm)1000300Test Chlorine Value by Compass4294(ppm)1045.2305.4Sn (Standard Deviation)6.834.56Error (ppm)45.25.4RSD (Relevant standard deviation)0.65%1.49%结论对于世界各地的炼油厂和独立实验室而言,使用ASTM D4294和ISO 8754进行的硫分析仍然是一项重要的测量。针对低硫燃料的全球法规趋势表明,需要一种快速,精确的分析解决方案。根据上面获得的测试结果,证明Compass 4294能够测量符合最严格标准的机油或燃料样品中的硫。船上燃料油管理是防止操作问题和硫磺不合规的重要因素。即使接收到的燃料油不合规,船上燃料油不当处理也可能导致不符合MARPOL要求。凭借紧凑便携的设计,指南针4294成为进行船上硫磺油质量控制的重要工具。如您对 石油测硫仪感兴趣,可通过仪器信息网400-860-5168转5890和我们取得联系,
  • 2011年上半年上市仪器新品:碳硫分析仪
    碳硫元素分析仪用于对金属和非金属材料中的碳和硫元素进行定量分析,广泛应用于冶金、铸造、机械、车辆、泵阀、矿石、环保、质检等行业和领域,可以方便快捷的进行原料验收、炉前分析、成品检验等阶段的分析测试。目前,国内外主要的碳硫元素分析仪供应商有美国力可(LECO)、日本堀场(Horiba)、德国艾尔特(Eltra)、德国布鲁克 上海德凯、无锡金义博、北京纳克、四川旌科(德阳)、上海宝英、北京时代利和(万联达)、无锡英之诚、南京麒麟等。  碳硫元素分析仪,通过将试样放在高温炉中(如管式炉、电弧炉、高频感应燃烧炉)通氧燃烧,使试样中的C,S元素转化为CO2、SO2气体, 然后测定CO2和SO2的含量,再换算出试样中的碳硫含量。  一般测定CO2和SO2的含量的方法有红外光度法、容量法、重量法、电导法等。红外光度法具有准确、快速、灵敏度高、高低碳硫含量均适用的特点,而且采用该方法的仪器自动化程度高,是目前仪器厂商采用较多的一种方法。容量法,作为传统的测定方法,尤其是气体容量法测定碳、碘量法测定硫,具有快速准确的特点,能够满足大多数场合的需求。重量法的优点是准确度高,至今被国内外作为标准方法推荐,适用于标准实验室和研究机构,缺点是分析速度慢,很难用于生产现场的碳硫分析。电导法适用于低碳、低硫的测定。  在钢铁及有色金属中,碳硫的两种元素含量多少将对其材料的性能特点影响极大,近年来随着冶金、机械制造等行业高速发展,促进了碳硫元素分析方法及分析仪器的快速发展。2011年上半年,就有五家仪器公司推出了最新的碳硫分析仪。  各类产品更多详细内容见如下各分类,排名不分先后。南京华欣分析仪器制造有限公司HX-3型金属材料元素分析系统  上市时间:2011年1月    该仪器通过高频感应炉燃烧样品,红外分析法测定C、S元素的含量,通过光电比色法测定Mn、P、Si、Cr、Ni、Mo、Cu、Ti、V、Al、W、Nb、Mg、稀土总量等元素的含量。主要应用于测定普碳钢、高中低合金钢、生铸铁、灰铸铁、球墨铸铁、合金铸铁、各种铁合金、硅铁、锰铁、镍铁、铬铁、稀土金属、焦炭、煤,炉渣、催化剂、矿石等各种材料中元素的测定。  创新点:  1.该系统由PC机控制,系统程序的编制采用目前时尚的可视化编程语言,系统的功能强大,界面友好。系统在分析过程中,动态显示分析过程中碳硫的各项数据和释放曲线。  2.采用最新计算机和单片机技术实现程序控制和数据处理。能快速、准确地测出钢铁中多元素的含量,自动化程度高,由PC机进行辅助定标,保证了测量精度。  3.测试软件功能齐全,能完全替代传统化验室的各项手工书写工作,并可根据各单位实际需求,任意设置检测报告格式,并可输入任意检测条件查询历史数据 各元素检测报告一次性打印,不需将碳硫的检测结果分开打印。南京联创分析仪器有限公司LC-CS5A型高速碳硫分析仪  上市时间:2011年1月  该仪器采用气体容量法全自动定碳、碘量法全自动定硫。主要应用于冶金、铸造、机械制造及加工等工矿企业。  创新点:  1.工作过程全自动操作,彻底消除了人为误差,测量准确 。  2.单片机控制电路,性能稳定可靠,操作简单方便 。  3.进口精密传感器检测数据,测量结果数显直读自动打印,便于保存 。南京京诺高速分析仪器厂NJQ-4B碳硫高速分析仪  上市时间:2011年3月  该仪器采用气体容量法、差压法液体吸收定碳,吸收液可长期使用,不需要频繁更换 碘量法定硫,并采用高精度光敏元件控制自动滴定。主要用于对钢、铁、矿石、焦碳以及其它材料中碳硫元素的精确定量分析。  创新点:  1.与电子天平联机可不定量称样,微机根据样品重量自动换算测试结果。减少因定量称样所耗费的时间,从而提高分析速度。  2.进口优质宽程传感器,微机和传感技术相结合,测量过程自动完成。南京麒麟分析仪器有限公司QL-HW2000Q高频红外碳硫分析仪  上市时间:2011年3月  该仪器采用高频感应炉燃烧样品,红外分析法测定C、S元素的含量,专用于矿石、粉末、稀有金属、焦炭煤及其他金属、有色金属和非金属材料,适用于各种特殊材料中碳、硫检测要求。  创新点:  1.适用于各种特殊材料中碳、硫检测要求,超微孔金属粉末过滤装置,高精度流量准确恒压恒流,分析数据稳定可靠   2.感应线圈自带冷却系统,表面加有保护层,可长期使用   3.开机2分钟即可进入测试,无需通过燃烧样品加热   4.红外系统排除吸附,间隔或连续测试同样稳定   5.测量池:测碳两池体,测硫一池体(根据客户配置)   6.高频电路优化设计,功率可调,碳硫转化率达到100%。布鲁克G4 ICARUS红外碳硫分析仪  上市时间:2011年4月  该仪器采用高频感应炉燃烧或管式炉加热方式,实现样品的完全分解,红外光度法测定C、S元素的含量,可分析金属、矿石和陶瓷等样品中碳和硫元素的含量。  创新点:  1. 在仪器至关重要的高频发生器部分,采用了最新的电子管技术,该电子管具有频率稳定性好,寿命长等特点。  2. 高频炉功率可以连续调节,从而应对不同的样品应用,具有最佳的燃烧效果。  3. 在高频炉设计和供氧技术上,摈弃了传统的氧枪设计理念,采用独特的侧向供氧技术,该技术在保证样品充分燃烧的同时,避免了粉尘在炉头的大量累积,同时专门设计的大尺寸气流出口防止了粉尘的堵塞,在载气的作用下,粉尘被自动带离炉头位置,并在专用的粉尘收集罐中进行收集,该设计大大降低了操作者在炉头位置的维护清洁时间。  4. 在红外光源的信号处理上,采用的是最新的电子频率控制方式,从而没有传统的切光马达所导致的信号噪声。检测器具有内置的线性化数学处理芯片,可以自动实现信号的线性化处理,避免了其它同类仪器必须采用大量标样进行线性化拟合的繁琐过程。G4 ICARUS对于碳硫两个元素均采用了双量程红外检测器,从而覆盖了金属、矿物等高低含量的检测需求。  请访问仪器信息网新品栏目,了解更多新品。  请访问仪器信息网碳硫分析仪专场,了解更多碳硫分析仪。  关于申报新品   凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示 一些申报材料齐全、有特色的新品还将被推荐到《仪器快讯》杂志上进行刊登 越早申报的新品,将获得更多的展示机会。
  • 绿色革新:高频红外碳硫分析仪助力电池回收,共创绿色未来
    在追求可持续发展的今天,电池回收已成为环保领域的重要议题。随着电动汽车、智能手机等电子产品的普及,废旧电池的数量急剧增加,如何高效、环保地处理这些废旧电池,已成为摆在我们面前的一大挑战。幸运的是,高频红外碳硫分析仪的出现,为电池回收行业带来了创新的变化。精准检测,高效回收高频红外碳硫分析仪以其独特的红外光谱分析技术,能够精准测定电池材料中的碳、硫含量。在电池回收过程中,这些元素的含量是评估电池材料再利用价值的重要指标。通过高频红外碳硫分析仪的检测,我们可以快速了解电池材料的成分,为后续的回收处理提供科学依据。环保先行,绿色制造电池回收不仅关乎资源的再利用,更与环境保护息息相关。废旧电池中含有的重金属等有害物质如果处理不当,将严重污染环境。高频红外碳硫分析仪的应用,使得我们能够更加精准地控制回收过程中的杂质含量,减少环境污染的风险。同时,通过对回收材料的再利用,我们可以降低新电池的生产成本,实现绿色制造,为环保事业贡献力量。技术领先,创新驱动高频红外碳硫分析仪凭借其先进的技术和卓越的性能,在电池回收领域赢得了广泛的认可。它不仅能够快速、准确地检测电池材料中的碳、硫含量,还具备高度的自动化和智能化水平,提高了回收处理的效率和准确性。同时,随着技术的不断创新和升级,高频红外碳硫分析仪的性能将得到进一步提升,为电池回收行业带来更多的可能性。共创绿色未来高频红外碳硫分析仪的应用,让我们看到了电池回收行业的巨大潜力和广阔前景。它将继续引领电池回收行业的发展方向,推动环保事业的进步。让我们携手共进,共同创造一个绿色、美好的未来!在这个充满挑战和机遇的时代,高频红外碳硫分析仪以其卓越的性能和广泛的应用前景,成为了电池回收行业的得力助手。让我们共同期待它在未来发挥更大的作用,为环保事业贡献更多的力量!高频红外碳硫分析仪锐意5s高精度、宽量程、高可靠性及优异的长期稳定性多气室联合检测模块,保证全量程含量的精准检测:全新固态光源,长期稳定性更优异全新数字压力控制技术,提升了气路流量的稳定性全新数字功率控制技术,精准控制样品加热温度:具有自动气密性检测功能可选紫外波段检测SO2,屏蔽水汽干扰可选远程诊断功能。工作原理:经过净化后的纯净氧气进入燃烧室,通过高频炉感应加热,使得样品中的碳(C)、硫(S)在富氧条件下转化成CO2和SO2、所生成的CO2和SO2通过除尘除水净化装置后进入到相应的光学检测单元进行检测,检测信号通过数据处理后即可得到碳、硫元素的百分含量,含有CO2、SO2和O2的残余气体经过吸收装置后由专用管路排出。
  • 大亚湾核电站燃料棒轻微破损 放射物质未进环境
    记者从国家核安全局获悉,大亚湾核电站二号机组反应堆中的一根燃料棒包壳出现微小裂纹,其影响仅限于封闭的核反应堆一回路系统中,放射性物质未进入到环境,未对环境造成影响和损害。  国家核安全局有关负责人介绍说,为保证工作人员、公众、社会和环境的安全,核电站按照纵深防御原理设计了核燃料包壳、一回路压力边界和安全壳三道实体屏障,以防止放射性物质释放到环境。核电站按照运行技术规范的要求,对一回路放射性进行连续监测。2010年5月23日,大亚湾核电站二号机组正处于正常的功率运行状态,一回路放射性水平例行监测中,发现核反应堆一回路放射性碘核素及放射性气体活度异常上升,经研究判断为一根燃料棒包壳出现微小裂纹,其影响仅限于封闭的核反应堆一回路系统中。核反应堆一回路压力边界和安全壳完整性良好,确保放射性物质不会进入到环境。核电站设置的监测仪器显示厂房内和厂房周围环境的放射性水平无异常变化,环境保护部在大亚湾核电站周围设置的放射性监测点的独立监测也未发现异常变化。  这位负责人指出,大亚湾核电站二号机组核反应堆一回路冷却剂放射性水平虽然较往常有异常升高,但仍低于正常运行限值的十分之一,满足核电站运行技术规范的要求,不影响核电站的正常运行。大亚湾核电站二号机组反应堆中有四万多根燃料棒,个别燃料棒出现破损,属于正常运行工况。我国核电站燃料棒的可靠性与国际水平相当,在核电站的设计中考虑了正常运行时允许有一定的燃料棒破损率,世界上和我国核电站的实际运行中也出现过极少量燃料棒的破损,只要反应堆一回路放射性水平控制在规定限值内,核电站仍允许运行,燃料棒破损不会对环境造成影响和损害。目前该机组一回路冷却剂放射性水平已下降并趋于稳定,机组仍然在正常运行中。  这位负责人说,国家核安全局将继续关注此事进展,督促大亚湾核电站认真进行原因分析,采取有效措施,确保核电站运行安全。
  • 我国已发布40项燃料电池国家标准
    p style="text-align: center "strong我国已发布40项燃料电池国家标准/strong/pp style="text-align: center "strong有力推动了燃料电池汽车等产业发展/strong/pp  截至目前,我国已经发布燃料电池国家标准40项,其中采标(采用国际标准)国家标准13项,我国自主制定国家标准27项(占总标准数量约67.5%)。这是9月23日,中国工程院院士、中科院大连化学物理研究所研究员、全国燃料电池及液流电池标委会主任委员衣宝廉在北京举行的2015年燃料电池技术与标准化国际研讨会上透露的。/pp  据悉,燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置,将燃料和空气分别送进燃料电池,就能生产出电能。从外表上看,燃料电池有正负极和电解质等,像一个蓄电池,但实质上不能“储电”,而是一个“发电厂”。作为一种无污染、高效的发电方式,燃料电池应用领域广泛,既可用于军事、空间、发电厂领域,也可应用于电动车、移动设备及居民家庭领域,被认为是终极的发电方式。/pp  2015年被业内人士认为是燃料电池的产业化元年,燃料电池汽车投放市场、燃料电池固定式发电进入商业化运营模式以及不断开拓燃料电池在便携式、微型领域的商业化发展道路,而标准规范成为其产业化发展路上至关重要的一环。目前,无论是日本、韩国等亚洲国家,还是美国、德国等欧美国家,都十分重视燃料电池,加大马力进军这一产业,尤其是积极抢占标准这一产业制高点。IEC(国际电工委员会)专门成立了IEC/TC105(国际电工委员会燃料电池标准化技术委员会),负责燃料电池的国际标准制定,现任主席来自日本,秘书处设在德国。/pp  我国早在2008年就成立了全国燃料电池标准化技术委员会,后在2012年更名为全国燃料电池及液流电池标准化技术委员会(SAC/TC342),主要负责燃料电池和液流电池技术领域的标准化工作。“我国一直积极参与该领域的国际标准化工作,已有十几位专家加入IEC/TC105各个工作组参与相关工作。2012年提出的低温冷启动测试方法国际标准提案已被合并入《聚合物燃料电池单电池测试方法》国际标准中。去年,我国专家齐志刚博士成为了WG1(术语标准工作组)的召集人,实现了在此领域的新突破。”全国燃料电池及液流电池标准化技术委员会(SAC/TC 342)秘书长卢琛钰介绍说。/pp  同时,我国的燃料电池标准体系建设也在不断完善。目前已经发布的40项国家标准中,形成了基础标准、FC模块、固定式FC发电系统、便携式FC发电系统、微型FC发电系统、驱动辅助动力用FC发电系统等组成的燃料电池标准体系框架。尤其值得一提的是,在燃料电池的产业应用中,燃料电池汽车正成为新能源汽车的宠儿之一。我国很早就对燃料电池汽车进行了探索,并在2008年北京奥运会、2010年上海世博会上推出了示范产品。截至目前,我国先后有200余辆燃料电池电动车示范运行,累计运行里程十余万公里,产品性能与国际水平接近,但成本、耐久性等方面亟待改善。/pp  在我国已经发布的国家标准中,燃料电池汽车成为重要的组成部分,包括《燃料电池电动汽车燃料电池堆安全要求》《汽车用燃料电池发电系统 技术条件》《乘用车用燃料电池发电系统测试方法》等10余项标准都与其相关。“我国在车用燃料电池和燃料电池车方面已取得较好进展,今后将在耐久性与低成本燃料电池技术方面继续开展研究工作,促进燃料电池车示范与应用。燃料电池标准化工作已有良好开端,今后应加强国际合作,促进燃料电池技术与标准化工作向深入发展。”衣宝廉说。/p
  • 我国生物柴油调合燃料(B5)标准正式发布
    2010年10月底,国家质检总局、国家标准委在《中华人民共和国国家标准批准发布公告》(2010年第6号)中向社会发布了264项国家标准。该批国家标准中,制定190项,修订74项 强制性标准14项,推荐性标准250项。其中包括《生物柴油调合燃料(B5)》标准,编号为GB/T 25199-2010,实施日期为2011年2月1日。该标准是由中国石化石油化工科学研究院及中粮集团有限公司负责起草并完成的。  《柴油机燃料调合用生物柴油(BD100)国家标准》早在2007年已经颁布实施,但由于没有调合燃料的标准,生物柴油在实际应用中不够规范,在燃料市场中没有正式的身份,使国内生物柴油生产企业处境尴尬。B5标准的颁布和今后的实施,为国内生物柴油进入市场打开了大门。  生物柴油调合燃料B5国家标准的颁布、实施将为生物柴油的推广应用及行业发展奠定重要的基础。生物柴油BD100生产及生物柴油调合燃料B5生产、调合、销售企业应严格执行相关国家标准,保证产品质量。除标准外,从事生物柴油生产、调合、销售等有关企业应密切关注酸值、凝点、冷滤点、氧化安定性等几项重要指标。如有必要,建议供需双方根据当地气候条件及调合用常规柴油的实际质量情况确定BD100的供货指标及协议。  据悉,生物柴油调合燃料B7标准制订的基础工作目前已经展开,2011年BD100国家标准也将进行修订。生物柴油行业发展的技术条件已基本具备,只待国家行业政策东风的进一步推动。同时,生物柴油调合燃料标准实施后,国内必将迎来生物柴油产业的大发展,众多民营企业会乘势大举进入燃料市场。生物柴油事关国家的能源安全,能源工业是长期稳定的事业,希望生物柴油企业不受经济利益左右保证市场的稳定供应。
  • 德国ETAS氢燃料电池控制器HIL测试方案
    德国ETAS氢燃料电池HIL方案- FCU HIL测试方案(面向2020年最新版)ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。 EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系 统的客户,我们提供工程服务以保证系统调试可以正确进行。 线束的设计需要考虑各个信号类型与 LABCAR 的匹配,要根据信号的功率大小选择合适 的线径,不同信号的抗干扰等等因素也要被考虑在内。在线束设计完成后还需要进行 复查以尽量减少可能出现的错误。在这个环节 ETAS 需要得到系统所有要连接进入的 ECU 的引脚布置和外部电路图,对于特殊的信号还需要知道信号的详细描述,比如通 过传感器说明书的形式得到。线束的制作需要两端的连接器,客户需要提供所有 ECU 端的配套连接器,以及相应的 说明书。ETAS 将根据线束定义为买方加工制作线束,并在制作完成后进行测试。在线 束制作过程中会加入相应的内容从而使未来线束的修改和少量信号增加可以较容易的 完成,而不必完全制作新的线束。在后面的系统调试阶段,ETAS 将介绍所设计的线束,应用的原则等,这样用户可以将 线束设计的方法消化吸收,再通过对 LABCAR 系统的使用加深理解,从而可以在未来自 行为新版本的 ECU 设计线束。本方案将为客户共提供 1 套 ODU ECU 线束。 在车辆控制单元开发与测试领域,LABCAR 硬件在环系统(HIL)是 ETAS 工具系列的一 个核心部分,贯穿于 V-模型的所有阶段。测试既可以在给定模型在环(Model-in-the- Loop,MIL)上操作,在当前软件在环(Software-in-the-Loop, SIL),连接实体 ECU 硬件 在环(Hardware-in-the-Loop,HIL)上执行,也可以涉及附加测量标定步骤,对车载 ECU 数据标定产生影响。它具备灵活性能和全面合理的逻辑概念。 控制单元初期开发,硬件在环(HIL)测试系统为其提供了重要的质量保证。为了便于 在实验室对控制单元进行功能测试或诊断, 通过 DVE 模型的模拟仿真,任何虚拟行驶环 境测试可以在广泛范围内反复进行。另外自动化操作扩展了测试范围,而对驾驶者和 车辆毫无损害。LABCAR 的开放式结构支持与测量标定工具的集成,广泛的模型选择与信号质量优良是LABCAR 的两大经典优势。LABCAR 的另一重要特色,即基于 PC 的结构,赋予了其本身一项固有优势:可用计算 能力的升级更加简便、经济。多目标与多核应用实质上无限量地提高了仿真速度与同 步获取大量数据信息时的计算能力,智能信号管理,投资高度安全和系统整个服务周 期内的性价比更加优越。 同时 ETAS 是一个真正能为 V 模式开发提供完整工具链的供应商。产品系列可靠地涵盖 了 ECU 软件开发的每个步骤 (直到售后诊断), 他们分布到不同的应用领域,
  • 德国ETAS燃料电池FCU-HIL测试系统2020
    德国ETAS: FCU-HIL (LABCAR)系统优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。 EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系 统的客户,我们提供工程服务以保证系统调试可以正确进行。 线束的设计需要考虑各个信号类型与 LABCAR 的匹配,要根据信号的功率大小选择合适 的线径,不同信号的抗干扰等等因素也要被考虑在内。在线束设计完成后还需要进行 复查以尽量减少可能出现的错误。在这个环节 ETAS 需要得到系统所有要连接进入的 ECU 的引脚布置和外部电路图,对于特殊的信号还需要知道信号的详细描述,比如通 过传感器说明书的形式得到。线束的制作需要两端的连接器,客户需要提供所有 ECU 端的配套连接器,以及相应的 说明书。ETAS 将根据线束定义为买方加工制作线束,并在制作完成后进行测试。在线 束制作过程中会加入相应的内容从而使未来线束的修改和少量信号增加可以较容易的 完成,而不必完全制作新的线束。在后面的系统调试阶段,ETAS 将介绍所设计的线束,应用的原则等,这样用户可以将 线束设计的方法消化吸收,再通过对 LABCAR 系统的使用加深理解,从而可以在未来自 行为新版本的 ECU 设计线束。本方案将为客户共提供 1 套 ODU ECU 线束。 在车辆控制单元开发与测试领域,LABCAR 硬件在环系统(HIL)是 ETAS 工具系列的一 个核心部分,贯穿于 V-模型的所有阶段。测试既可以在给定模型在环(Model-in-the- Loop,MIL)上操作,在当前软件在环(Software-in-the-Loop, SIL),连接实体 ECU 硬件 在环(Hardware-in-the-Loop,HIL)上执行,也可以涉及附加测量标定步骤,对车载 ECU 数据标定产生影响。它具备灵活性能和全面合理的逻辑概念。 控制单元初期开发,硬件在环(HIL)测试系统为其提供了重要的质量保证。为了便于 在实验室对控制单元进行功能测试或诊断, 通过 DVE 模型的模拟仿真,任何虚拟行驶环 境测试可以在广泛范围内反复进行。另外自动化操作扩展了测试范围,而对驾驶者和 车辆毫无损害。LABCAR 的开放式结构支持与测量标定工具的集成,广泛的模型选择与信号质量优良是LABCAR 的两大经典优势。LABCAR 的另一重要特色,即基于 PC 的结构,赋予了其本身一项固有优势:可用计算 能力的升级更加简便、经济。多目标与多核应用实质上无限量地提高了仿真速度与同 步获取大量数据信息时的计算能力,智能信号管理,投资高度安全和系统整个服务周 期内的性价比更加优越。 同时 ETAS 是一个真正能为 V 模式开发提供完整工具链的供应商。产品系列可靠地涵盖 了 ECU 软件开发的每个步骤 (直到售后诊断), 他们分布到不同的应用领域,
  • 诚信加油万里行:抽检13个加油站车用柴油抽检合格率27.3%
    诚信加油万里行:抽检13个加油站车用柴油抽检合格率27.3%原创中国质量万里行2020-11-27 22:16:24文/中国质量万里行 雷玄油品是重要的工业血液,产品质量备受关注。11月中旬,“诚信加油万里行”活动抽样检测了山西省朔州市、长治市13家加油站油品,依据国家强制性标准GB 19147-2016《车用柴油》和GB 17930-2016《车用汽油》的要求进行检验。13份检测报告结果显示,车用柴油合格率为27.3%,车用汽油均合格,不合格项目主要涉及硫含量、闪点(闭口)两项质量指标。车用柴油重点围绕硫含量、润滑性 校正磨痕直径(60℃),凝点、冷滤点、闪点(闭口)、十六烷指数、密度(20℃)、馏程等10个检测项目进行检验。结果为车用柴油合格3个批次,不合格8个批次,合格检出率27.3%,不合格项目主要涉及硫含量、闪点(闭口)两项。检测结果显示,车用柴油抽样样本中,7个样本硫含量超标严重,检测结果分布在39.7-5267.6mg/kg,远超出国家强制性标准GB 19147-2016《车用柴油》“≤10 mg/kg”的质量指标 4个样本闪点(闭口)超标,检测结果分布在36-54℃,未达到“≥60℃”的质量指标。汽油产品方面,重点围绕辛烷值、硫含量、馏程、芳烃含量、烯烃含量、氧含量、甲醇含量等12个检测项目。检验结果均合格。全球汽车产业不断发展和壮大,我国的汽车产业也发展迅猛。随着汽车的普及,产生的机动车排放污染也在逐渐增加。为从根本上解决汽车尾气造成的污染,各国已纷纷开始制定严格的车用燃油标准 与此同时,中国的燃油标准也在不断提升。近年来我国对车用燃油的质量要求在不断提高,以硫含量为例,从国(Ⅲ)标准≤150mg/kg,调整到国(Ⅳ)标准≤50mg/kg,到目前执行的国(Ⅵ)标准≤10mg/kg。陕西省石油产品质量监督检验二站有限公司负责人介绍:“评价车用燃油对环境造成污染的过程中,燃油中的硫含量是核心影响因素之一,硫含量过高会直接影响油品品质,进而影响环境质量。”报告采用的SH/T 0689-2000《轻质烃及发动机燃料和其他油品的总硫含量测定法(紫外荧光法)》,该方法的检测原理是:将烃类试样直接注入裂解管或进样舟中,由进样器将试样送至高温燃烧管,在富氧条件中,硫被氧化生成二氧化硫 试样燃烧生成的气体在除水后被紫外光照射,二氧化硫吸收紫外光的能量转变为激发态的二氧化硫,当激发态的二氧化硫返回到稳定态的二氧化硫时发射荧光,依据荧光强度计算出试样的硫含量。据陕西省石油产品质量监督检验二站有限公司负责人介绍,“汽油中硫对排放的影响主要表现在两个方面:一是降低三元催化剂的使用效能,二是易使氧传感器失效产生错误的反馈信号,从而使空燃比控制出现偏差。柴油中的含硫及硫的衍生物在柴油机气缸中燃烧后生成硫的氧化物。将对柴油机组件产生腐蚀,而且还会对气缸壁上的润滑油和尚未燃烧的柴油起催化作用加速烃类的聚合反应,使燃烧室、活塞顶和排气门等部位的胶状物与积炭增加。同时燃料油中含有的硫及硫的衍生物,遇到水或水汽时,会生成亚硫酸和硫酸等,对金属有较强的腐蚀作用。”除此之外燃油中硫含量超标会导致排放的尾气中含硫化合物增加,排放到空中易形成酸雨,对环境造成非常严重的污染。因此,国家制定相关车用汽柴油质量标准来限制市场流通的汽柴油达到低硫,具有极其重要的意义。随着车用燃油标准的更新以及对环保要求的不断提高,降低燃料油中的硫含量,虽然会给生产企业带来一定的压力,但在这些压力的背后,带来的是车用燃油产业的节能减排、低碳环保,生产企业还是应该以生产清洁燃油为核心来提升燃油品质。闪点是在规定试验条件下,试验火焰引起试样蒸汽着火,并使火焰蔓延至液体表面的最低温度,修正到101.3KPa大气压下。GB 19147-2016《车用柴油》规定车用柴油闪点(闭口)不低于60℃。柴油的闭口闪点既是控制柴油蒸发性的指标,也是保证柴油安全性的指标。闭口闪点低的柴油,其蒸发性好,但柴油的闭口闪点也不能过低。柴油闪点过低,一则是说明柴油含轻质馏分过多,使得柴油蒸发性过强,会使得气缸内混合气体燃烧过猛,气缸压力骤增而使柴油机工作过于剧烈。二则是柴油储运及使用中的安全,一些储罐、工程车及油罐车长期在露天工作,存在很大的安全隐患,尤其在夏季炎热高温条件下,低闪点使油品闪爆的概率大大增加,极易引发重大安全事故。近年来我国对车用柴油的质量要求在不断提高,以0号车用柴油闪点(闭口)为例,在GB 19147-2013中规定0号车用柴油闪点(闭口)“≥55℃”,而在2016年12月23日发布的GB 19147-2016中规定0号车用柴油闪点(闭口)“≥60℃”,由此可见柴油闪点的重要性。中国质量万里行提醒消费者,购买车用燃油应注意:车用汽油应选择汽车生产厂家推荐的汽油标号,车用柴油的选择与所使用的地区及季节有关。我国柴油是按其凝点的不同来划分牌号的,凝点为柴油在规定条件下冷却至液面停止移动时的最高温度 一般来说气温低时选择凝点低的柴油,反之则选择凝点高的柴油。具体的说0号车用柴油适于全国各地4~9月份使用,长江以南冬季亦可使用 -10号车用柴油适于长城以南地区冬季和长江以北地区严冬使用 -20号车用柴油适于长城以北地区冬季和长城以南、黄河以北地区严冬使用 -35和-50号车用柴油适于东北和西北地区极严寒使用。
  • 德国元素 | 钼粉及其合金中的碳硫分析解决方案
    钼是一种相当稀有的金属,主要作为钢中的掺杂材料。然而,对于非常具有极端温度挑战性的应用,相关部件的生产会使用钼及其合金,例如在航空航天工业或冶金行业。此外,钼可在石油工业中用作催化剂,主要负责去除油中的硫。因此,分析钼催化剂中的硫可以快速提供有关油的纯度以及其它信息。对于上述由钼制成的材料,碳和硫含量的测量至关重要,因为这两个元素含量会影响各种应用。这里采用了德国元素elementar的inductar CS cube红外碳硫仪对于钼粉末进行分析。实验部分实验样品:钼粉末实验方案:500毫克纯钼粉或130毫克钼合金与EXACC一起称量到ELCUP CS陶瓷坩埚中,加入WS钨/锡助熔剂(2勺/2克)和EXACC FE铁助熔剂(1勺/0.5克)。使用inductar CS cube进行碳分析和硫分析。每种材料测定三次。实验结果:inductar CS cube高频红外碳硫分析仪不仅简化了操作流程,还实现了高精度结果,完全满足钼的碳硫检测要求。实验仪器:inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护 以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
    为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)
  • 【标准解读】轻质油品中氯含量的测定 单波长色散X射线荧光光谱法
    X射线荧光光谱法是一个非常成熟的检测技术,它的原理是样品在X射线照射下产生元素特征X射线荧光,通过建立标准曲线来确定样品中元素浓度与强度的关系,在相同条件下测量未知样品,就可以得到样品的组成信息。XRF的优点是样品不需要前处理,分析速度快,可实现多元素的同时测量,但也有个缺点就是它的基体干扰严重。XRF在石化行业液体样品中测定方法的汇总NB/SH/T 0977-2019《轻质油品中氯含量的测定 单波长色散X射线荧光光谱法》标准规定了采用单波长色散X射线荧光光谱法(MWDXRF)测定轻质油品中氯含量的方法。本标准适用于汽油、柴油、石脑油、喷气燃料及馏分油等,也可用于测定氧质量分数小于5%的含氧汽油及生物柴油调和燃料。单色X射线激发去掉背景过程,简化基体校正,信噪比夜有所改善。氯含量测定范围为4.2mg/kg~430 mg/kg。另外与本标准中方法相同的标准还有NB/SH/T 0842-2017和NB/SH/T 0993-2019,分别是检测轻质液体燃料中硫的含量和汽油及相关产品中硅的含量。制定背景石油炼制过程中,油品中氯的存在会造成催化剂中毒;加工过程当中,氯的存在可能造成装置腐蚀,压缩机堵塞等;成品油使用过程中,氯的存在会造成储罐腐蚀、发动机磨损等。GB 17930-2016《车用汽油》规定,车用汽油中不得人为加入甲缩醛、苯胺类、卤素以及含磷、含硅等化合物,于是就需要一种快速、准确、灵敏的检测油品中氯含量的方法。现状分析国内外检测氯含量的标准方法方法1-5方法6-9检测样品含氯化合物转化为氯离子直接检测氯元素优点检测限较低无需前处理,操作简单方便缺点前处理复杂,使用大量试剂检测限较高制定过程标准在编制过程中主要参考了标准ASTM D7536-16,但又与有以下区别:1.适用范围从有芳烃类化合物扩大为轻质油品,包括汽油、柴油、石脑油、喷气燃料及馏分油等2.测定范围由0.7 mg/kg ~10.0 mg/kg变成了4.2 mg/kg~430 mg/kg3.按照GB/T 6683 给出了此方法的精密度公式4.增加了元素干扰适用范围参考以下标准,并结合精密度实验确定方法的适用范围。参考标准样品特点ASTM D7536芳烃类样品组成单一、馏分较窄,同时标样与样品的组成基本一致检出限为0.2 mg/kgASTM D7039轻质油品馏分较宽,样品组成相对复杂,杂原子较多,且标样与样品的组成并不完全一致测定下限为3.2mg/kgASTM D5808当氯含量小于5mg/kg时,优先选用库仑法(精密度更高)检测下限为0.5mg/kg采用XOS公司CLORA型号仪器在7个实验室对17个不同的样品(包括石脑油、汽油、馏分油、喷气燃料、柴油以及煤油)进行精密度实验,最终确定了测定范围是4.2 mg/kg -430 mg/kg,再分别对重复性和再现性进行测试,测试结果都在允差范围内。对不同类型的样品进行测定,回收率均在±10%以内;还与微库仑法进行了比对,相对偏差也在±10%以内。标准NB/SH/T 0977-2019主要内容仪器设备:分为MWDXRF、样品盒和样品膜。单波长色散X射线荧光光谱仪,包括 a)X射线源;b)入射光单色器;c) 光路;d) 固定道单色器;e)探测器。另外,样品盒建议一次性使用。要特别注意的是:建立标准曲线和测定样品时应在相同条件下进行。校准过程:建立标准曲线用工作溶液浓度应能涵盖待测试样的浓度,于是需要制定了高含量与低含量两条曲线。 试验过程:1.将试样从样品盒开口端倒入盒中,一般装入量为样品盒的3/4高度处,最小为5mm高度。2.将新的样品膜盖在样品盒开口端,并固定牢固。装好后要确保样品盒中的试样不渗漏,如有任何情况的渗漏均需重新制备样品。3.分析试样和用来建立校准曲线的标准工作溶液应使用相同批次的样品膜和样品盒。测定每一个样品都要使用新的样品膜,样品膜要绷紧,保证膜上没有气泡、褶皱,且保持干净,避免用手接触样品盒内壁、样品膜及仪器的X射线透光窗。4.试样倒入样品盒并用样品膜封好后,在样品盒上开一个小气孔以防止样品挥发造成样品膜弯曲。5.试样装入样品盒后,需立即分析。试样在样品盒中的存放时间越短越好。6.按照建立校准曲线的条件测定试样,得到试样氯荧光强度的总计数。用总计数值除以总计数时间,得到试样的Rs。元素干扰的考察:氧含量超过5%,干扰严重硫含量小于1%,无明显干扰氮含量小于2000mg/kg,没有明显干扰(作者:中国石化石油化工科学研究院 范艳璇工程师)
  • 氢风徐来-岛津Nexis SCD-2030助力燃料电池用氢气中硫化物在线分析
    我国 “双碳”目标的提出彰显负责任的大国形象,亦是可持续高质量发展的内在需求。在此宏观愿景下,“零碳排放”的氢能产业方兴未艾,燃料电池汽车作为氢能应用的重要场景,其能量供应体氢气质量的优劣至关重要。近期,中国测试技术研究院技术人员通过长期、深入、系统的研究,开发出一整套燃料电池用氢气中痕量硫化物的低温富集-GC-SCD在线分析系统,研发成果文章发表于Chinese Chemical Letters, 作为分析系统检测部分的核心,岛津的Nexis SCD-2030硫化学发光检测器大显身手。 氢燃料电池是很有前途的能源之一,它可以实现能源的循环生产,避免温室气体或污染副产品的排放。然而,即使在痕量水平(nmol/mol)的硫化物(SCs)也会导致催化剂不可逆的毒化作用,损伤并缩短燃料电池的寿命。此外,高反应活性的SCs可能会在复杂的环境中导致反应产生不同种类和浓度的SCs,为了更好地实时动态的监控SCs含量,在线分析系统至关重要。 在此背景下,研究人员开发了基于不同来源的氢气中9种典型SCs的低温富集与GC-SCD相结合的在线分析系统,结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析。图1. 低温富集-GC-SCD在线分析系统示意图 该系统由基准参考混合气体(PRGM)在线稀释、低温富集和GC-SCD三个主要部分组成,模块编号为1至14,分别代表1:压力传感器、2:开关阀门、3:临界流锐孔、4:H2纯化器、5:质量流量计MFC1、6:三通管、7:质量流量计MFC2、8:气泵、9:六通阀、10:低温捕集阱、11:GC、12:总硫分析用非保留色谱柱、13:形态硫分析用毛细管色谱柱、14:SCD检测器。 图2. 低温富集-GC-SCD在线分析系统数据示意图 混合气体标准物质的GC-SCD色谱图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5),浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol(从内到外)(左)并放大0.1、0.2,0.5和1 nmol/mol(右)。 表1. 某实际样品的数据分析结果表 实验结果表明,该在线分析系统可以实现快速在线、高灵敏度、精密度和准确度测定H2中SCs混合物。如上表实际样品分析案例所示,测定实际样品中的SCs,分析结果可低至0.09 nmol/mol,样品分析时间小于30分钟,证明该在线分析系统是快速、高效测定实际H2样品中痕量硫化物的理想解决方案。岛津新一代Nexis SCD-2030硫化学发光检测器
  • 智能碳硫分析仪
    智能碳硫分析仪 什么是智能碳硫分析仪? 智能碳硫分析仪采用中国国标测定(碳采用气体容量法、硫采用碘量法)原理设置而成,配备了电子天平实现了不定量称样测定,触摸式薄膜按键全中文菜单式操作,并可贮存四条工作曲线,检测结果大屏幕液晶显示并直接打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标。 智能碳硫分析仪能快速、准确地检测钢铁、其它金属以及非金属材料中碳硫两元素的质量分数。适用于钢铁、冶金、机械制造加工、铸造有色金属等行业化验室进行碳、硫质量分数检测的主要手段。是分析工作者检测碳硫的理想设备。智能碳硫分析仪广泛应用于冶金铸造、采矿、建筑、机械、电子、环保、卫生、化工、电力、技术监督等部门、可检测钢、铁、及铁合金、铝合金、铜合金、锌合金、钢铁氧化液及磷化液等材料中各种化学成份的含量。 智能碳硫分析仪主要技术参数: 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒(包含称样时间) 测量精度:符合GB223.69-2008,GB223.68-1997标准 智能碳硫分析仪主要特点: 采用单片机控制,全自动操作,零点自动调整彻底消除人为误差,性能可靠,抗干扰强; 配备电子天平实现不定量称样,提高了检测速度和精度; 采用国际先进的传感技术,使用进口传感器,测量结果可数字显示并自动打印测试结果; 高碳、低碳均可直接显示,不需换算; 采用气体容量法定碳、碘量法定硫。
  • 石油中胶质和沥青质怎样检测?
    石油中胶质和沥青质怎样检测??从煤油馏分中开始,随馏分沸点的升高,其含量不断增加,渣油中含量大,沥青质全部集中在渣油中。怎么检测出具体数据,山东盛泰仪器厂家家推出的SH8019实际胶质测定仪是专门用于测定航空汽油和车用汽油中实际胶质含量的仪器。适用于按GB/T 8019-2008《燃料胶质含量的测定喷射蒸发法》等效ASTM D381中规定的方法,对航空汽油和车用汽油进行实际胶质试验,配备专用的无油静音空压机。 [object Object]石化油品检测仪器系列全自动开口闪点仪全自动闭口闪点仪微量水分仪运动粘度仪破抗乳化仪自动酸值酸度仪全自动凝点倾点仪自动脱气震荡仪泡沫测定仪锈蚀腐蚀仪铜片腐蚀仪石油密度仪全自动水溶性酸碱仪气相色谱仪耐压测试仪油介损电阻率测试仪闪点仪运动粘度仪凝点倾点仪破抗乳化仪泡沫测定仪润滑油脂水分仪酸值仪锥入度仪滴点仪宽温滴点仪润滑脂相似粘度仪润滑油蒸发损失度仪润滑油氧化安定性仪(旋转氧弹)润滑油脂蒸发损失度仪润滑脂油铜片腐蚀仪抗水淋性仪空气释放值仪全自动四球机开口闪点仪闭口闪点仪量热仪定硫仪全自动酸值酸度仪全自动微量水分仪全自动冷滤点测定仪全自动凝点倾点仪饱和蒸汽压测定仪馏程测定仪沸程测定仪馏分燃料油氧化安定性仪实际胶质测定仪铜片腐蚀仪石油密度仪全自动汽油氧化安定性仪石油残炭测定仪机械杂质度仪十六烷值辛烷值仪石油色度仪硫含量测定仪石油产品苯胺点测定仪机械杂质度仪防冻液冷却液冰点仪全自动表观粘度仪发动机油泵送温度测定仪滚筒安定性试验仪油污颗粒度仪梯姆肯试验机十万次剪切试验机液压油热稳定性测定仪液压油过滤性测定仪液压油水解安定性试验仪绝缘油带电倾向性测定仪有机热载体氧化安定性测定仪内燃机油成焦倾向性测定仪全自动自燃点仪化学发光定氮仪石油产品硫醇硫测定仪体积电阻率测定仪润滑脂漏失量测定仪润滑油脂机械杂质度仪润滑脂合成橡胶试验仪全自动沸程仪盐雾腐蚀试验器石油产品灰分仪液体石油产品烃类测定仪润滑脂压力分油器润滑脂钢网分油器润滑脂粘附性测定仪润滑油脂防冻液仪器清单明细化学发光定氮仪SH0248C全自动凝点冷滤点仪SH128 全自动防冻液冷却液冰点仪SH0048B 全自动相似粘度仪全自动苯胺点测定仪SD262B全自动结晶点测定仪低温闭口闪点仪SRH12润滑油抗磨试验机减压馏程测定仪SD0165石油产品流程测定仪原油6孔水分仪康氏残碳测定仪油品烟点测定仪sd382高低温锥入度仪SD2801E喷气燃料银片腐蚀测定仪SH0023发动机冷却液腐蚀测定仪SH0085发动机冷却液沸点测定仪SH0089全自动机械杂志仪SH101B石油产品密度测定仪SH102A自动表面张力仪SH107自动酸值测定仪SH108B表面粘度测定仪SH110发动机冷却液泡沫倾向性测定仪SH126C润滑油高温泡沫测定仪SH126E润滑脂滚筒性测定仪SH129辛烷值和十六烷值测定仪SH131馏分燃料油氧化安定性测定仪SH0175自动选装氧化安定性测定仪SH0193C变压器油氧化安定性SH0206凝点倾点冷滤点测定仪SH0248自动碱值测定仪SH251石油产品酸值酸度测定仪SH258全自动水溶性酸碱测试仪SH259B润滑脂手动捣脂器SH269-1便携式油污颗粒计数器SH302A全自动油污颗粒计数器SH302B石油产品密封适应性指数仪SH305润滑脂氧化安定性SH325深色石油硫含量测定仪SH387石油产品硫氯测定仪SH409高温剪切测定仪SH417防锈油脂湿热试验箱SH601自动溴价溴值测定仪SH630发动机冷冻也与制冷剂相容性SH0669紫外荧光定硫仪SH706B 自动抗燃油自燃点测定仪固体自热实验仪石蜡熔点测定仪石油蜡含量测定仪液化石油蒸汽压测定仪原油蜡含量测定仪自动石油产品蒸气压测定仪石油产品蒸气压测定仪工业芳烃铜片腐蚀仪梯姆肯磨损试验仪石油产品酸值酸度试验仪润滑脂蒸发度仪发动机胶质测定仪抗水喷雾试验仪润滑脂防腐性测定仪全自动沸程仪沸程仪sd260b 双联石油水分仪SH607内燃机油成焦倾向性测定仪SH8018 汽油氧化安定性sd8022 齿轮油抗乳化仪SH107B 自动表面张力仪SH0209液压器油氧化安定性SH0325 B全自动润滑脂氧化安定SH606防锈油脂湿热试验箱SH706b自动自然点测定仪SH706c固体自然点测定仪全自动奥氏运动粘度仪平衡法低温闭口闪点仪SHD385B绝缘油带电度全自动测定仪
  • EYELA仪器应用在纺织品中的偶氮染料检测
    应用仪器:有机合成装置CCX-3200,试管浓缩装置TVE-1100,隔膜泵DTC-22,冷却水CCA-1112,真空控制器NVC-2300B 。 人们的生活水平在日益改善,消费意识也在不断加强,一些高质量、多功能的服装越来越受到消费者的青睐。偶氮染料(azo dyes,偶氮基两端连接芳基的一类有机化合物)是纺织品服装在印染工艺中应用最广泛的一类合成染料,用于多种天然和合成纤维的染色和印花,也用于油漆、塑料、橡胶等的着色。在特殊条件下,它能分解产生20多种致癌芳香胺,经过活化作用改变人体的DNA结构引起病变和诱发癌症,该类染料通常无色无味,不能通过人体的感觉器官感知,甚至不能通过洗涤等方式来减轻其危害。偶氮检测是国际环保要求的必检项目之一,标准规定被检产品中不得含有种偶氮染料中间体,若检测出其中一种即为不合格产品。 适用样品 ■服装、被褥、毛巾、假发、假眉毛、帽子、尿布以及其他清洁卫生用品、睡袋 ■鞋、手套、手表带、手提袋、各种钱包、公文包、椅子套 ■纺织或皮革玩具、带有纺织或皮革服装的玩具,合成染料有机化合物染料 ■消费者最终使用的织物和纱线 实验过程 1.1 取有代表性试样,取不同部位,剪一小块。 1.2 将剪下小块塞在冷凝管的底部磨口部位,将冷凝管连接于50ml的试管上,试管内含有25ml的氯苯。将试管置于铝块加热槽中(东京理化有机合成装置CCX-3200),加热至180℃、冷凝回流30min,通过不停的蒸发冷凝回流,将试样中的染料洗脱至试管中。 1.3 浓缩:将试管放置于浓缩装置中(东京理化试管浓缩装置TVE-1100,DTC-22,CCA-1112,NVC-2300B),进行减压浓缩。设定反应条件: 水浴温度60℃, 真空度60Pa 时间25-30min,抽干.抽干后用5ml甲醇对试管进行冲洗。 1.4 还原反应:往冲洗过的试管中加入1个还原剂(水溶液),进行30min的还原反应,使偶氮结构灭解,还原出芳香基产物,得到目标物。 1.5检测:气相色谱-质谱联用仪GC-MS-SIS方法,检测成分,分析图谱。 实验体会: 1、整个实验过程中,使用固定的一个的反应管,避免了更换反应管而引起的损耗。 2、在浓缩这个步骤,使用试管浓缩装置前使用的是旋转蒸发仪,通过两种方法的比较得出:试管浓缩装置的回收率较旋转蒸发仪低,但一次可以进行8只试管的浓缩,总体效率还是比旋蒸快。对于检测方面,样品数量多、容量小的非常适用。 3、关于铝块加热CCX-3200,由于使用的试管长度比较长,铝块加热只能包围住试管的4分之一部位,导致蒸汽还未到试样的部位(冷凝管的部位)就已经冷却回落,试样的染料未能充分洗脱,检测不理想。目前加热回流还是用单独的金属套,建议可以适当的加长铝块的长度。 试管浓缩装置:蒸发管太细,蒸发速率慢,是否可以加大管径;另外采用皱褶的管,容易残留,不易清洗。由于做检测,样品数量比较大,每只试管最好都能有单独的阀门可以控制真空,如旋转蒸发仪一样拆卸方便。 解决方案: 1、CCX-3200由于温度传感器测定的是铝块温度,不是试管内溶剂温度,此时溶剂温度还较低,蒸馏达不到冷凝管的高度,所以会冷凝回落,等待温度稳定后看是否可以改善。 2、每个试管能有单独的阀门进行控制是个很好的建议,今后可以针对不同规格和外形的试管开发更为通用、拆卸更加便捷的接口。
  • 环形燃料:结构革新牵引堆型发展
    p style="text-indent: 2em text-align: justify "值班长下达插燃料棒、提调节棒指令,堆芯功率慢慢上涨,大约几分钟过后,操作员再次调节,功率表指针稳定,堆芯达到临界状态。/pp style="text-indent: 2em text-align: justify "近日,国际首次环形燃料元件零功率物理实验在中核集团中国原子能科学研究院(以下简称“原子能院”)核临界安全中心顺利完成,标志着我国压水堆环形燃料研究进入工程化实验验证阶段。/pp style="text-indent: 2em text-align: justify "可同时提升核电经济性和安全性/pp style="text-indent: 2em text-align: justify "燃料元件被称为反应堆的“心脏”。长期以来,科研人员试图通过材料的革新来延长“心脏”的寿命。/pp style="text-indent: 2em text-align: justify "与关注材料研究的方向不同,环形燃料主要是通过改变结构形式提升燃料元件的整体性能,从而同时提升核电的经济性和安全性。/pp style="text-indent: 2em text-align: justify "“环形燃料是一种结构上完全革新的先进燃料元件。”原子能院堆工部主任杨红义告诉《中国科学报》记者,环形燃料是将燃料芯块制成环状,在芯块内、外表面加装包壳管,使得冷却剂可以从内、外两个流道同时对元件进行冷却,增加了传热面积、提高了换热效率。/pp style="text-indent: 2em text-align: justify "与现有压水堆相比,采用环形燃料组件代替传统燃料组件,若保持堆芯输出功率不变,燃料芯块和包壳的峰值温度更低,将显著提升堆芯的安全性;若维持现有的安全裕度不变,堆芯输出功率可以提升20%-50%,从而大幅提高了核电的经济性。/pp style="text-indent: 2em text-align: justify "由于环形燃料经济性和安全性的明显优势,美、韩等国相继开展了环形燃料的研发工作。只是,它们都因为种种原因而未能按计划推进。/pp style="text-indent: 2em text-align: justify "十年磨一剑/pp style="text-indent: 2em text-align: justify "我国环形燃料的研发始于2008年。作为总体技术单位,原子能院制定了我国压水堆环形燃料组件研发的技术路线图,并负责环形堆芯设计、组件设计及堆内外性能试验验证;中核北方核燃料元件有限公司(以下简称“中核北方”)负责环形燃料组件制造、组装和检测工艺研究,上海交通大学、哈尔滨工业大学等国内著名高校参与了环形燃料组件的研发工作。/pp style="text-indent: 2em text-align: justify "目前,原子能院已经基本建立了压水堆环形燃料堆芯和组件的设计能力,初步完成了先导组件考验堆芯以及先导组件的设计;联合中核北方掌握了环形燃料组件制造、组装和检测工艺,已研制出多套关键结构试验部件,环形燃料全尺寸试验组件完成交付;已成功实现环形燃料小组件在49-2堆的辐照考验,累积已考验6个辐照周期。/pp style="text-indent: 2em text-align: justify "“环形燃料从未在堆内应用,并且其堆芯物理计算分析方法与棒状燃料存在显著差别,原有堆芯物理计算程序需要验证。”原子能院堆工部副主任季松涛说,“国内和国际都没有环形燃料堆芯物理实验数据。只做了程序与程序之间的对比验证,其有效性和可靠性不能得到充分验证。”/pp style="text-indent: 2em text-align: justify "环形燃料零功率物理实验数据还将为计算程序检验提供最直接证明。季松涛告诉记者,环形燃料零功率实验采用96根环形燃料元件与136根棒状燃料元件构建混合装载堆芯,将陆续开展临界参数测量、功率分布测量、等温温度效应、控制棒微积分价值测量以及含钆棒反应性效应测量等一系列临界实验研究。/pp style="text-indent: 2em text-align: justify "只是第一步/pp style="text-indent: 2em text-align: justify "10年自主研发,环形燃料组件的整体研发工作已进入先导组件入堆前的关键技术攻关阶段。/pp style="text-indent: 2em text-align: justify "“目前研发工作进展顺利,未出现不可逾越的难题。但环形燃料在结构上完全革新,需不断解决研发中出现的关键技术问题,夯实基础。”季松涛说。/pp style="text-indent: 2em text-align: justify "后续,研发团队将开展环形燃料先导组件入堆设计,环形燃料、棒状燃料混合装载堆芯物理分析,百万千瓦级环形燃料堆芯设计,环形燃料模块化小堆堆芯设计,低温供热、海洋核动力等特殊用途环形燃料堆芯设计,环形燃料其他工程应用的模拟实验研究等。/pp style="text-indent: 2em text-align: justify "在中国工程院院士徐銤看来,作为一种结构上完全革新的先进燃料元件,环形燃料已成为压水堆先进燃料组件的重要发展趋势之一,但“最终还是要看应用得怎么样”。/pp style="text-indent: 2em text-align: justify "对此,杨红义表示,当前研发的环形燃料组件所有结构部件均为自主设计和制造,全部技术完全自主可控,制造及后处理工艺与现有燃料循环体系完全相容,因此,该燃料组件具有较高的工业技术成熟度,易于快速实现产业化。/pp style="text-indent: 2em text-align: justify "他表示,未来的工作将瞄准基于环形燃料组件的先进压水堆发展方向,开展新一代压水堆环形燃料堆芯的方案设计,以期早日建成世界领先水平的先进环形燃料压水堆。/pp style="text-indent: 2em text-align: left "“靠燃料自主研发和技术提升来牵引堆型的发展,这种核电发展的转变也是一种创新。”徐銤说。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制