当前位置: 仪器信息网 > 行业主题 > >

外观缺陷自动检测

仪器信息网外观缺陷自动检测专题为您提供2024年最新外观缺陷自动检测价格报价、厂家品牌的相关信息, 包括外观缺陷自动检测参数、型号等,不管是国产,还是进口品牌的外观缺陷自动检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合外观缺陷自动检测相关的耗材配件、试剂标物,还有外观缺陷自动检测相关的最新资讯、资料,以及外观缺陷自动检测相关的解决方案。

外观缺陷自动检测相关的资讯

  • 涂魔师在线漆层检测|复杂外形工件表面非接触漆膜膜厚自动检测系统
    涂魔师在线漆层检测|复杂外形工件表面非接触漆膜膜厚自动检测系统测量平坦表面涂层厚度并不容易,对复杂几何表面结构的涂层厚度的测量更加困难。传统的单点接触测量往往无法满足客户需求,这种方法通常是相当不准确的,而且只适用于固化后的涂层厚度测量,无法支持在生产工艺过程中进行涂层厚度测量。为了实现对复杂几何表面结构的涂层厚度,涂魔师在线漆膜测厚仪基于先进的ATO光热法技术,研发了一款利用涂层与底材之间的热性能差异进行涂层厚度的非接触无损测量系统。涂魔师漆膜膜厚自动检测系统适用于粉末喷涂,能精确检测粉末涂层厚度,稳定喷涂工艺质量;适用于湿膜和干膜应用,能精确检测固化前湿膜涂层即时得到干膜厚度,节省时间和稳定质量等。通过调研,50%的人在固化或干燥工艺后手动测量涂层厚度,43%的人是在有质量保证的实验室中手动测量涂层厚度,21%的人在选择在固化干燥工艺前手动测量涂层厚度,然而,没有人使用自动化仪器进行涂层厚度测量并优化喷涂工艺。从调研结果上看,大部分的人选择在生产线后期使用接触式涂层测厚仪,手动测量固化后的涂层厚度,然而,无论是湿膜还是干膜,在生产线末端进行涂层厚度测量已经太晚了,如果此时测量效果不好,则会产生大批量的次品,需要进行返工,这将导致更多的资金、人力、物力的消耗。涂魔师非接触无损测厚系统能够在生产线早期阶段进行涂层厚度测量,为您和您的客户记录涂装工艺过程的连续数据,为优化工艺、更换耗材提供依据;能减少物料消耗;提供高精度的生产条件,及时分析膜厚数据,及时发现喷枪堵塞等失效问题,协助调整工艺参数。涂魔师在线漆膜测厚系统如何实现在固化前测量涂层厚度?涂魔师在线漆膜测厚系统使用ATO光热法原理,通过计算机控制光源以脉冲方式加热待测涂层,其中内置的高速红外探测器从远处记录涂层表面温度分布并生成温度衰减曲线。表面温度的衰减时间取决于涂层厚度及其导热性能。最后利用专门研发的算法分析表面动态温度曲线计算测量待测的涂层厚度。涂魔师漆膜膜厚自动检测系统产品系列介绍涂魔师漆膜膜厚自动检测系统有FLEX手持式,Inline在线式,Atline实验室,3D整体膜厚成像系统这4种。涂魔师手持式涂层测厚仪FLEX是一款功能齐全的高精准的非接触式无损测厚系统,无需进行整合,操作方便,校准简单,无需严格控制测试距离和角度,无需等到涂层固化后才进行涂层厚度测量,能有效节省材料和避免涂层缺陷问题,十分适用于生产车间现场,且自动记录数据及生产全过程。使用手持式涂层测厚仪FLEX在产线上监控喷粉膜厚后,调节出粉量后节省30%的粉末。特别是对于小批量,产品未出炉已喷完,所以无法根据干膜调整膜厚。而涂魔师在开始喷涂的几分钟内就调整好出粉量,减少返工,降低成本。涂魔师3D整体膜厚成像系统,通过3D成像检测技术,轻松非接触精准测量形状复杂零部件的膜厚分布情况,测试点的数据与工件被测部份一一对应,实时高效监控膜厚真实情况。为什么需要测量整体的涂层厚度?通过使用涂魔师3D整体膜厚成像系统测量涂层厚度,可以使涂层分布清晰可见,连续实时检测产线的移动工件膜厚,无需严控测量条件,对于摇摆晃动、外形复杂(曲面、内壁、立体、边缘等部位)、各种颜色(不受白色等浅色限制)的工件也能精准测厚。通过SPS等接口实现涂装线的自动化控制,能将涂魔师3D整体膜厚成像系统轻松高效集成到现有涂装线上,集成成本低。涂魔师3D整体膜厚成像系统测量复杂几何表面工件涂层厚度,能够在半秒内获得复杂形状工件表面大约十万个测量点的信息,这使得复杂表面涂层厚度的测量变得简单,并通过对测量结果的记录归档及时调整工艺,实现对喷涂工艺质量的有效控制。翁开尔是涂魔师漆膜膜厚自动检测系统中国总代理,欢迎致电咨询涂魔师漆膜膜厚自动检测系统更多产品信息和技术应用案例。
  • 我国金属管在线自动检测成套装备打破国外垄断
    日前,国内检测直径涵盖最广、检测精度最高的金属管在线自动检测成套装备在山东省科学院激光研究所通过鉴定。该装备的研发成功,打破了国外对金属管材无损检测设备的垄断局面,且同等指标的设备价格仅为进口设备的一半、替代进口优势明显,其应用可助推国产金属管材走向高端市场,受到国内各大钢铁企业的关注和欢迎。  我国是世界上最大的金属管材生产国,有大小金属管企业 2000多家,年产量近亿吨,其中近三成出口。由于国内没有成熟的检测技术和设备,而价格高昂的国外设备又往往不适应国内复杂的生产环境,致使国产管材大部分为低附加值的结构管和低压流体管,很难进入国际高端市场。国家发改委提出我国钢铁产业要提升发展质量,由钢管生产大国向钢管生产强国转变,研发适合国情的在线无损检测综合技术和成套装备成为行业急需。  山东省科学院受到省自主创新成果转化重大专项的支持,自主研发出的这一成套装备,利用涡流、超声检测技术实现对金属管表面和内部缺陷的高速在线检测,可检测直径从 5mm-1200mm ,基本涵盖了目前国产金属管的全部规格,检测精度达到或超过API、 ASME 、 GB 等国际国内标准,解决了自动在线检测技术难题,达到国际领先水平并具有完全自主知识产权。  专家认为,该装备的研发推广,将带动整个行业检测技术的进步,增加国产管在高端领域,如核电管、高压锅炉管、航空航天管材、石油天然气管等领域的国际竞争力和应用,提高产品质量和附加值,促进产业升级。同时,金属管材质量的提高,可降低因开裂、泄漏、爆炸引发的高风险场合的事故发生率,提高经济运行质量。对于应用企业,还可通过这一装备的实时检测,分析金属管、棒的伤残原因,及时调整生产设备,提高产品合格率,节约大量能源和原材料,节本效益显著。  激光所所长、研究员徐华告诉记者,正是由于这些良好的应用特性,该装备一经推广就受到国内各大钢铁企业的关注和欢迎。该成套装备通过国际招标成功应用到上海宝钢,后又推广到包钢、攀钢、大唐电力等十多个省份的 120多家企业,并在江苏振达钢管集团有限公司和临沂盛源无缝钢管有限公司建成示范工程。目前累计已推广约200台套,每台设备年检金属管材25000吨,检测后每吨售价可增加千元以上,每年为应用企业新增直接经济效益50多亿元,节约原材料和能源近亿元,产品供不应求。
  • 日立UH4150三款自动检测系统重磅发售
    日立紫外/可见/近红外分光光度计UH4150自问世以来,以其性能之高、应用之广、发展之快,受到业界专业人士的极高重视与关注。对于在实际固体样品检测方面需要高质量数据的用户,例如半导体开发、光学样品和新材料领域的用户而言,UH4150无疑是最佳的选择。 为满足客户的更高要求,提供更加智能、省时的解决方案,三款UH4150搭配的自动检测系统:自动角度可变检测系统、自动偏振检测系统、自动X-Y样品台检测系统,通过全自动化测样,大幅优化测量数据的重现性,同时缩短测量时间,提高作业效率。目前,三款自动检测系统已正式面向中国市场开售!自动角度可变检测系统可连续自动测定任意设置条件(偏振器角度、入射开始/结束角度、角度移动间隔)的透射、漫透射、反射以及漫反射光谱可自动检测绝对反射率(5°~60°)每个样品1)的作业时间可缩短约96%1)5~70°(每步进5°)、波长300~800 nm、反射光谱共测定28次(S、P偏振光)时 自动偏振检测系统正交位置检测功能:以0.01°为最小步进值,自动检测最低透射率的正交状态,使测定结果重现性更加优异。色度分析功能:可计算出色彩(X、Y、Z)、L*,a*,b*、L,a,b、L*,u*,v*、色度坐标x,y、偏光率。内置消偏振器,可降低仪器与光源自带的偏振效应,减小系统误差。 自动X-Y样品台检测系统可自动检测入射角为5°的相对反射光谱和入射角为0°的透射光谱。可连续测定预设样品点位。可节省装样时间,大幅提高作业效率2)。2)测定25个点位时,人工操作时间缩短了92%。日立UH4150分光光度计仪器详情,请见:http://www.instrument.com.cn/netshow/SH102446/C185793.htm关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 分子光谱新技术:口腔癌自动检测
    台湾科研团队近日在国际期刊《自然》旗下的《科学导报》上刊登一项新近研究成果:以分子光谱研发自动检测口腔癌组织分析方法,通过光谱分辨正常和病变组织协助诊断病情,此项研究可有效应对台湾逐年增加的口腔癌患者。  有调查表明:口腔癌高居台湾男性肿瘤死亡原因第4名,近10年患者增加2倍,每年确诊5400多人,且出现年轻化趋势。  台湾交通大学应用化学系暨分子与科学研究所讲座教授滨口宏夫和阳明大学生医光电研究所教授邱尔德,指导阳明大学生医光电所博士生陈柏熊,并与研究室团队成员及台中荣民总医院合作组成科研团队。  研究团队表示,分子的“拉曼光谱”可视为每个分子独有的分子指纹,如同每个人都有自己专属的指纹。团队利用拉曼光谱技术,结合多变数分析法,进一步定量、比较角蛋白分子组成成分在正常组织与病变组织的纯度,结果显示癌化口腔组织中的角蛋白分子成分纯度较高。  研究团队指出,未来病理师若使用携带型拉曼仪器检测组织,搭配软体分析,只需按下检测按钮,即可分辨正常组织与病变组织,操作方法简易又准确。未来在人体试验与临床应用上,可用于协助临床医师诊断病情,提升手术精准度。
  • 南京研发机动车外廓尺寸自动检测系统
    金陵晚报讯(记者 李有明 通讯员 王成磊 张玫玲)爬梯子、钻车肚、拉皮尺&hellip &hellip 这是中大型机动车外检常规动作,以前检测一辆车,需要两三名查验员花20分钟才能完成,去年,由南京车管所牵头研发的&ldquo 机动车外廓尺寸自动检测系统&rdquo 研制成功,将这一测量过程精简到只要一个人花30秒就能完成。  据介绍,&ldquo 机动车外廓尺寸自动检测系统&rdquo 采用激光雷达技术扫描车辆外廓尺寸,测量精准度可达毫米,去年9月已在一家检测站进行测试使用,目前使用对象主要为大中型机动车。  南京车管所检验科科长李婷介绍,以前对车辆外形检测全靠人工测量,要两三个人花近半个小时才能测完一辆车,而现在,大中型车辆只要通过检测装置,各项外廓尺寸数据就会同步存入系统,并生成检测报告,整个过程不超过30秒。  截至目前,试点的&ldquo 机动车外廓尺寸自动检测系统&rdquo 共检测大中型机动车5600余辆,效果良好,接下来将会在全市推广。
  • 网络研讨会|白色家电涂层工艺漆膜膜厚自动检测
    涂魔师漆膜膜厚自动检测系统非接触无损测量白色家电涂层厚度涂魔师漆膜膜厚自动检测系统能够精准控制涂层厚度,保证产品质量,非常适合白色家电生产制造商和涂装商。粉末涂料喷涂由于其优越的机械性能和无溶剂涂料的应用,在工业领域发挥越来越重要的作用。但只有当涂层厚度保持在一定的容差范围内,粉末涂料喷涂才能发挥其优势,因此喷涂工艺的重点必须放在粉末涂料的有效使用和控制上。对白色家电喷涂涂层工艺的优化不仅仅适用于大型工厂流水线上,而且也适用于小型的涂装生产线,甚至是人工涂装线,在这些生产线上,每小时的工作或每公斤的清漆对企业的盈亏起到决定作用。在白色家电的生产环境中,涂层工艺的另一个挑战是搪瓷!搪瓷就是在金属表面覆盖一层无机玻璃氧化涂层,涂层最主要的作用是保证金属材质不被氧化和腐蚀。烤箱和炊具的所有零部件(马弗炉、柜台门、风扇罩、锅等)进行搪瓷,主要是为了提高这些家电的耐用性和耐高温性,同时也使得这些家电易于清洁,保证卫生。本次网络研讨会,涂魔师专家Francesco Piedimonte将介绍涂魔师漆膜膜厚自动检测系统,演示涂魔师漆膜厚度检测仪先进的ATO光热法原理,以及使用涂魔师非接触无损测厚仪实时在线自动测量粉末、湿膜/干膜和搪瓷涂层厚度。涂魔师漆膜膜厚自动检测支持连续测量生产过程中流水线上的移动部件。马上发邮件到【marketing@hjunkel.com】,备注【9月9号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。涂魔师漆膜膜厚自动检测系统工作原理ATO光热法介绍涂魔师采用ATO光热法专利技术;该项技术采用氙灯安全光源代替激光束进行激发,并以脉冲方式短暂加热待测涂层,内置高速红外传感器将记录涂层表面温度分布并生成温度衰减曲线,最后利用专门研发的算法分析表面动态温度曲线计算待测涂层厚度。通常,涂层厚度越大,反应时间越长(例如1-2秒);涂层厚度越小,反应时间越短(例如0.02-0.3秒),如图所示。相比于传统非接触式测厚仪,涂魔师ATO漆膜膜厚自动检测系统明显降低了仪器维护成本,而且涂魔师能更加快速精准和简单测厚,无需严格控制样品与测厚仪器之间的测试角度和距离,即使是细小部位、弯角、产品边缘、凹槽等难测部位也能精准测厚,并且对操作人员的专业要求低。另外,涂魔师容易集成到涂装系统中,与机械臂或其他移动装置配合使用能方便精准测量工件膜厚,实现不间断连续膜厚监控,提高生产效率。涂魔师漆膜膜厚自动检测系统优势涂魔师漆膜厚度检测仪可以测湿膜直接显示干膜厚度,在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等;涂魔师漆膜膜厚自动检测系统采用先进的热光学专利技术,无需接触或破坏产品表面涂层,在允许变化角度和工作距离内即可轻松测量膜厚;涂魔师漆膜膜厚自动检测允许允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域);涂魔师漆膜厚度检测仪100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况。翁开尔是瑞士涂魔师中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • 先河大气复合污染高精度自动检测仪项目通过验收
    日前,由河北先河环保科技股份有限公司承担的国家国际科技合作项目&ldquo 大气复合污染高精度自动检测仪及系统集成联合研发&rdquo 顺利通过了受科技部国际合作司委托,河北省科技厅组织的专家组的验收,并得到了省内外技术专家的高度评价。  针对近年来我国雾霾天气日趋严重,而国内大气复合污染监测技术相对落后的现状,河北先河环保科技股份有限公司与澳大利亚ECOTECH公司开展国际科技合作,引进了外方大气复合污染自动监测技术,经过消化吸收,研制开发了适合我国国情的各种大气复合污染物自动监测仪器,包括痕量气体自动监测仪(高精度二氧化硫监测仪、高精度氮氧化物监测仪、高精度一氧化碳监测仪)、温室气体自动监测仪(二氧化碳监测仪、甲烷监测仪)和霾的光散射特性监测仪浊度仪。大气复合污染物自动监测仪已经通过河北计量院的检测,各项指标达到国际同类产品的先进水平。仪器经成都市环境监测中心站等国内6个站点长期试运行,系统运行稳定,无人值守时间长,维护量小,操作简单,可以全面反映当地大气复合污染状况。  通过本次国际科技合作,先河公司还开发了大气复合污染监测平台软件,可以通过集成PM2.5、PM10、能见度、臭氧监测仪等环境监测仪器,形成完整的大气污染监测平台,可实现对以灰霾为主的区域大气复合污染进行及时、准确的监测和预测预报,为环境管理达到&ldquo 测得准、说得清、管得好&rdquo 的目标提供技术支持,促进我国环境管理水平的提升。
  • 质检总局发布氨氮自动检测仪检定规程
    近日,质检总局发布了《氨氮自动监测仪检定规程》等9个国家计量技术法规的公告,公告全文如下:  计量技术法规的公告  质检总局关于发布JJG631-2013  《氨氮自动监测仪检定规程》等9个国家  计量技术法规的公告  根据《中华人民共和国计量法》有关规定,现批准JJG631-2013《氨氮自动监测仪检定规程》等9个国家计量技术法规发布实施。 编 号名 称批准日期实施日期备注JJG631-2013氨氮自动监测仪检定规程2013-08-152014-02-15代替JJG631-2004JJG825-2013测氡仪检定规程2013-08-152014-02-15代替JJG825-1993JJG853-2013低本底&alpha 、&beta 测量仪检定规程2013-08-152014-02-15代替JJG853-1993JJG1087-2013矿用氧气检测报警器检定规程2013-08-152013-11-15 JJF1261.9-2013家用燃气快速热水器和燃气采暖热水炉能源效率标识计量检测规则2013-08-152013-11-15 JJF1261.10-2013家用和类似用途微波炉能源效率标识计量检测规则2013-08-152013-11-15 JJF1261.11-2013家用太阳能热水系统能源效率标识计量检测规则2013-08-152013-11-15 JJF1261.12-2013微型计算机能源效率标识计量检测规则2013-08-152013-11-15 JJF1424-2013氨氮自动检测仪型式评价大纲2013-08-152013-11-15   特此公告。  质检总局  2013年8月20日
  • COD max III化学需氧量在线自动检测仪
    COD max III化学需氧量在线自动检测仪哈希公司END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 【综述】碳化硅中的缺陷检测技术
    摘要随着对性能优于硅基器件的碳化硅(SiC)功率器件的需求不断增长,碳化硅制造工艺的高成本和低良率是尚待解决的最紧迫问题。研究表明,SiC器件的性能很大程度上受到晶体生长过程中形成的所谓杀手缺陷(影响良率的缺陷)的影响。在改进降低缺陷密度的生长技术的同时,能够识别和定位缺陷的生长后检测技术已成为制造过程的关键必要条件。在这篇综述文章中,我们对碳化硅缺陷检测技术以及缺陷对碳化硅器件的影响进行了展望。本文还讨论了改进现有检测技术和降低缺陷密度的方法的潜在解决方案,这些解决方案有利于高质量SiC器件的大规模生产。前言由于电力电子市场的快速增长,碳化硅(SiC,一种宽禁带半导体)成为开发用于电动汽车、航空航天和功率转换器的下一代功率器件的有前途的候选者。与由硅或砷化镓(GaAs)制成的传统器件相比,基于碳化硅的电力电子器件具有多项优势。表1显示了SiC、Si、GaAs以及其他宽禁带材料(如GaN和金刚石)的物理性能的比较。由于具有宽禁带(4H-SiC为~3.26eV),基于SiC器件可以在更高的电场和更高的温度下工作,并且比基于Si的电力电子器件具有更好的可靠性。SiC还具有优异的导热性(约为Si的三倍),这使得SiC器件具有更高的功率密度封装,具有更好的散热性。与硅基功率器件相比,其优异的饱和电子速度(约为硅的两倍)允许更高的工作频率和更低的开关损耗。SiC优异的物理特性使其非常有前途地用于开发各种电子设备,例如具有高阻断电压和低导通电阻的功率MOSFET,以及可以承受大击穿场和小反向漏电流的肖特基势垒二极管(SBD)。性质Si3C-SiC4H-SiCGaAsGaN金刚石带隙能量(eV)1.12.23.261.433.455.45击穿场(106Vcm−1)0.31.33.20.43.05.7导热系数(Wcm−1K−1)1.54.94.90.461.322饱和电子速度(107cms−1)1.02.22.01.02.22.7电子迁移率(cm2V−1s−1)150010001140850012502200熔点(°C)142028302830124025004000表1电力电子用宽禁带半导体与传统半导体材料的物理特性(室温值)对比提高碳化硅晶圆质量对制造商来说很重要,因为它直接决定了碳化硅器件的性能,从而决定了生产成本。然而,低缺陷密度的SiC晶圆的生长仍然非常具有挑战性。最近,碳化硅晶圆制造的发展已经完成了从100mm(4英寸)到150mm(6英寸)晶圆的艰难过渡。SiC需要在高温环境中生长,同时具有高刚性和化学稳定性,这导致生长的SiC晶片中存在高密度的晶体和表面缺陷,导致衬底和随后制造的外延层质量差。图1总结了SiC中的各种缺陷以及这些缺陷的工艺步骤,下一节将进一步讨论。图1SiC生长过程示意图及各步骤引起的各种缺陷各种类型的缺陷会导致设备性能不同程度的劣化,甚至可能导致设备完全失效。为了提高良率和性能,在设备制造之前检测缺陷的技术变得非常重要。因此,快速、高精度、无损的检测技术在碳化硅生产线中发挥着重要作用。在本文中,我们将说明每种类型的缺陷及其对设备性能的影响。我们还对不同检测技术的优缺点进行了深入的讨论。这篇综述文章中的分析不仅概述了可用于SiC的各种缺陷检测技术,还帮助研究人员在工业应用中在这些技术中做出明智的选择(图2)。表2列出了图2中检测技术和缺陷的首字母缩写。图2可用于碳化硅的缺陷检测技术表2检测技术和缺陷的首字母缩写见图SEM:扫描电子显微镜OM:光学显微镜BPD:基面位错DIC:微分干涉对比PL:光致发光TED:螺纹刃位错OCT:光学相干断层扫描CL:阴极发光TSD:螺纹位错XRT:X射线形貌术拉曼:拉曼光谱SF:堆垛层错碳化硅的缺陷碳化硅晶圆中的缺陷通常分为两大类:(1)晶圆内的晶体缺陷和(2)晶圆表面处或附近的表面缺陷。正如我们在本节中进一步讨论的那样,晶体学缺陷包括基面位错(BPDs)、堆垛层错(SFs)、螺纹刃位错(TEDs)、螺纹位错(TSDs)、微管和晶界等,横截面示意图如图3(a)所示。SiC的外延层生长参数对晶圆的质量至关重要。生长过程中的晶体缺陷和污染可能会延伸到外延层和晶圆表面,形成各种表面缺陷,包括胡萝卜缺陷、多型夹杂物、划痕等,甚至转化为产生其他缺陷,从而对器件性能产生不利影响。图3SiC晶圆中出现的各种缺陷。(a)碳化硅缺陷的横截面示意图和(b)TEDs和TSDs、(c)BPDs、(d)微管、(e)SFs、(f)胡萝卜缺陷、(g)多型夹杂物、(h)划痕的图像生长在4°偏角4H-SiC衬底上的SiC外延层是当今用于各种器件应用的最常见的晶片类型。在4°偏角4H-SiC衬底上生长的SiC外延层是当今各种器件应用中最常用的晶圆类型。众所周知,大多数缺陷的取向与生长方向平行,因此,SiC在SiC衬底上以4°偏角外延生长不仅保留了下面的4H-SiC晶体,而且使缺陷具有可预测的取向。此外,可以从单个晶圆上切成薄片的晶圆总数增加。然而,较低的偏角可能会产生其他类型的缺陷,如3C夹杂物和向内生长的SFs。在接下来的小节中,我们将讨论每种缺陷类型的详细信息。晶体缺陷螺纹刃位错(TEDs)、螺纹位错(TSDs)SiC中的位错是电子设备劣化和失效的主要来源。螺纹刃位错(TSDs)和螺纹位错(TEDs)都沿生长轴运行,Burgers向量分别为0001和1/311–20。TSDs和TEDs都可以从衬底延伸到晶圆表面,并带来小的凹坑状表面特征,如图3b所示。通常,TEDs的密度约为8000-10,0001/cm2,几乎是TSDs的10倍。扩展的TSDs,即TSDs从衬底延伸到外延层,可能在SiC外延生长过程中转化为基底平面上的其他缺陷,并沿生长轴传播。Harada等人表明,在SiC外延生长过程中,TSDs被转化为基底平面上的堆垛层错(SFs)或胡萝卜缺陷,而外延层中的TEDs则被证明是在外延生长过程中从基底继承的BPDs转化而来的。基面位错(BPDs)另一种类型的位错是基面位错(BPDs),它位于SiC晶体的平面上,Burgers矢量为1/311–20。BPDs很少出现在SiC晶圆表面。它们通常集中在衬底上,密度为15001/cm2,而它们在外延层中的密度仅为约101/cm2。Kamei等人报道,BPDs的密度随着SiC衬底厚度的增加而降低。BPDs在使用光致发光(PL)检测时显示出线形特征,如图3c所示。在SiC外延生长过程中,扩展的BPDs可能转化为SFs或TEDs。微管在SiC中观察到的常见位错是所谓的微管,它是沿生长轴传播的空心螺纹位错,具有较大的Burgers矢量0001分量。微管的直径范围从几分之一微米到几十微米。微管在SiC晶片表面显示出大的坑状表面特征。从微管发出的螺旋,表现为螺旋位错。通常,微管的密度约为0.1–11/cm2,并且在商业晶片中持续下降。堆垛层错(SFs)堆垛层错(SFs)是SiC基底平面中堆垛顺序混乱的缺陷。SFs可能通过继承衬底中的SFs而出现在外延层内部,或者与扩展BPDs和扩展TSDs的变换有关。通常,SFs的密度低于每平方厘米1个,并且通过使用PL检测显示出三角形特征,如图3e所示。然而,在SiC中可以形成各种类型的SFs,例如Shockley型SFs和Frank型SFs等,因为晶面之间只要有少量的堆叠能量无序可能导致堆叠顺序的相当大的不规则性。点缺陷点缺陷是由单个晶格点或几个晶格点的空位或间隙形成的,它没有空间扩展。点缺陷可能发生在每个生产过程中,特别是在离子注入中。然而,它们很难被检测到,并且点缺陷与其他缺陷的转换之间的相互关系也是相当的复杂,这超出了本文综述的范围。其他晶体缺陷除了上述各小节所述的缺陷外,还存在一些其他类型的缺陷。晶界是两种不同的SiC晶体类型在相交时晶格失配引起的明显边界。六边形空洞是一种晶体缺陷,在SiC晶片内有一个六边形空腔,它已被证明是导致高压SiC器件失效的微管缺陷的来源之一。颗粒夹杂物是由生长过程中下落的颗粒引起的,通过适当的清洁、仔细的泵送操作和气流程序的控制,它们的密度可以大大降低。表面缺陷胡萝卜缺陷通常,表面缺陷是由扩展的晶体缺陷和污染形成的。胡萝卜缺陷是一种堆垛层错复合体,其长度表示两端的TSD和SFs在基底平面上的位置。基底断层以Frank部分位错终止,胡萝卜缺陷的大小与棱柱形层错有关。这些特征的组合形成了胡萝卜缺陷的表面形貌,其外观类似于胡萝卜的形状,密度小于每平方厘米1个,如图3f所示。胡萝卜缺陷很容易在抛光划痕、TSD或基材缺陷处形成。多型夹杂物多型夹杂物,通常称为三角形缺陷,是一种3C-SiC多型夹杂物,沿基底平面方向延伸至SiC外延层表面,如图3g所示。它可能是由外延生长过程中SiC外延层表面上的下坠颗粒产生的。颗粒嵌入外延层并干扰生长过程,产生了3C-SiC多型夹杂物,该夹杂物显示出锐角三角形表面特征,颗粒位于三角形区域的顶点。许多研究还将多型夹杂物的起源归因于表面划痕、微管和生长过程的不当参数。划痕划痕是在生产过程中形成的SiC晶片表面的机械损伤,如图3h所示。裸SiC衬底上的划痕可能会干扰外延层的生长,在外延层内产生一排高密度位错,称为划痕,或者划痕可能成为胡萝卜缺陷形成的基础。因此,正确抛光SiC晶圆至关重要,因为当这些划痕出现在器件的有源区时,会对器件性能产生重大影响。其他表面缺陷台阶聚束是SiC外延生长过程中形成的表面缺陷,在SiC外延层表面产生钝角三角形或梯形特征。还有许多其他的表面缺陷,如表面凹坑、凹凸和污点。这些缺陷通常是由未优化的生长工艺和不完全去除抛光损伤造成的,从而对器件性能造成重大不利影响。检测技术量化SiC衬底质量是外延层沉积和器件制造之前必不可少的一步。外延层形成后,应再次进行晶圆检查,以确保缺陷的位置已知,并且其数量在控制之下。检测技术可分为表面检测和亚表面检测,这取决于它们能够有效地提取样品表面上方或下方的结构信息。正如我们在本节中进一步讨论的那样,为了准确识别表面缺陷的类型,通常使用KOH(氢氧化钾)通过在光学显微镜下将其蚀刻成可见尺寸来可视化表面缺陷。然而,这是一种破坏性的方法,不能用于在线大规模生产。对于在线检测,需要高分辨率的无损表面检测技术。常见的表面检测技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、光学显微镜(OM)和共聚焦微分干涉对比显微镜(CDIC)等。对于亚表面检测,常用的技术包括光致发光(PL)、X射线形貌术(XRT)、镜面投影电子显微镜(MPJ)、光学相干断层扫描(OCT)和拉曼光谱等。在这篇综述中,我们将碳化硅检测技术分为光学方法和非光学方法,并在以下各节中对每种技术进行讨论。非光学缺陷检测技术非光学检测技术,即不涉及任何光学探测的技术,如KOH蚀刻和TEM,已被广泛用于表征SiC晶圆的质量。这些方法在检测SiC晶圆上的缺陷方面相对成熟和精确。然而,这些方法会对样品造成不可逆转的损坏,因此不适合在生产线中使用。虽然存在其他非破坏性的检测方法,如SEM、CL、AFM和MPJ,但这些方法的通量较低,只能用作评估工具。接下来,我们简要介绍上述非光学技术的原理。还讨论了每种技术的优缺点。透射电子显微镜(TEM)透射电子显微镜(TEM)可用于以纳米级分辨率观察样品的亚表面结构。透射电镜利用入射到碳化硅样品上的加速电子束。具有超短波长和高能量的电子穿过样品表面,从亚表面结构弹性散射。SiC中的晶体缺陷,如BPDs、TSDs和SFs,可以通过TEM观察。扫描透射电子显微镜(STEM)是一种透射电子显微镜,可以通过高角度环形暗场成像(HAADF)获得原子级分辨率。通过TEM和HAADF-STEM获得的图像如图4a所示。TEM图像清晰地显示了梯形SF和部分位错,而HAADF-STEM图像则显示了在3C-SiC中观察到的三种SFs。这些SFs由1、2或3个断层原子层组成,用黄色箭头表示。虽然透射电镜是一种有用的缺陷检测工具,但它一次只能提供一个横截面视图,因此如果需要检测整个碳化硅晶圆,则需要花费大量时间。此外,透射电镜的机理要求样品必须非常薄,厚度小于1μm,这使得样品的制备相当复杂和耗时。总体而言,透射电镜用于了解缺陷的基本晶体学,但它不是大规模或在线检测的实用工具。图4不同的缺陷检测方法和获得的缺陷图像。(a)SFs的TEM和HAADF图像;(b)KOH蚀刻后的光学显微照片图像;(c)带和不带SF的PL光谱,而插图显示了波长为480nm的单色micro-PL映射;(d)室温下SF的真彩CLSEM图像;(e)各种缺陷的拉曼光谱;(f)微管相关缺陷204cm−1峰的微拉曼强度图KOH蚀刻KOH蚀刻是另一种非光学技术,用于检测多种缺陷,例如微管、TSDs、TEDs、BDPs和晶界。KOH蚀刻后形成的图案取决于蚀刻持续时间和蚀刻剂温度等实验条件。当将约500°C的熔融KOH添加到SiC样品中时,在约5min内,SiC样品在有缺陷区域和无缺陷区域之间表现出选择性蚀刻。冷却并去除SiC样品中的KOH后,存在许多具有不同形貌的蚀刻坑,这些蚀刻坑与不同类型的缺陷有关。如图4b所示,位错产生的大型六边形蚀刻凹坑对应于微管,中型凹坑对应于TSDs,小型凹坑对应于TEDs。KOH刻蚀的优点是可以一次性检测SiC样品表面下的所有缺陷,制备SiC样品容易,成本低。然而,KOH蚀刻是一个不可逆的过程,会对样品造成永久性损坏。在KOH蚀刻后,需要对样品进行进一步抛光以获得光滑的表面。镜面投影电子显微镜(MPJ)镜面投影电子显微镜(MPJ)是另一种很有前途的表面下检测技术,它允许开发能够检测纳米级缺陷的高通量检测系统。由于MPJ反映了SiC晶圆上表面的等电位图像,因此带电缺陷引起的电位畸变分布在比实际缺陷尺寸更宽的区域上。因此,即使工具的空间分辨率为微米级,也可以检测纳米级缺陷。来自电子枪的电子束穿过聚焦系统,均匀而正常地照射到SiC晶圆上。值得注意的是,碳化硅晶圆受到紫外光的照射,因此激发的电子被碳化硅晶圆中存在的缺陷捕获。此外,SiC晶圆带负电,几乎等于电子束的加速电压,使入射电子束在到达晶圆表面之前减速并反射。这种现象类似于镜子对光的反射,因此反射的电子束被称为“镜面电子”。当入射电子束照射到携带缺陷的SiC晶片时,缺陷的带负电状态会改变等电位表面,导致反射电子束的不均匀性。MPJ是一种无损检测技术,能够对SiC晶圆上的静电势形貌进行高灵敏度成像。Isshiki等人使用MPJ在KOH蚀刻后清楚地识别BPDs、TSDs和TEDs。Hasegawa等人展示了使用MPJ检查的BPDs、划痕、SFs、TSDs和TEDs的图像,并讨论了潜在划痕与台阶聚束之间的关系。原子力显微镜(AFM)原子力显微镜(AFM)通常用于测量SiC晶圆的表面粗糙度,并在原子尺度上显示出分辨率。AFM与其他表面检测方法的主要区别在于,它不会受到光束衍射极限或透镜像差的影响。AFM利用悬臂上的探针尖端与SiC晶圆表面之间的相互作用力来测量悬臂的挠度,然后将其转化为与表面缺陷特征外观成正比的电信号。AFM可以形成表面缺陷的三维图像,但仅限于解析表面的拓扑结构,而且耗时长,因此通量低。扫描电子显微镜(SEM)扫描电子显微镜(SEM)是另一种广泛用于碳化硅晶圆缺陷分析的非光学技术。SEM具有纳米量级的高空间分辨率。加速器产生的聚焦电子束扫描SiC晶圆表面,与SiC原子相互作用,产生二次电子、背散射电子和X射线等各种类型的信号。输出信号对应的SEM图像显示了表面缺陷的特征外观,有助于理解SiC晶体的结构信息。但是,SEM仅限于表面检测,不提供有关亚表面缺陷的任何信息。阴极发光(CL)阴极发光(CL)光谱利用聚焦电子束来探测固体中的电子跃迁,从而发射特征光。CL设备通常带有SEM,因为电子束源是这两种技术的共同特征。加速电子束撞击碳化硅晶圆并产生激发电子。激发电子的辐射复合发射波长在可见光谱中的光子。通过结合结构信息和功能分析,CL给出了样品的完整描述,并直接将样品的形状、大小、结晶度或成分与其光学特性相关联。Maximenko等人显示了SFs在室温下的全彩CL图像,如图4d所示。不同波长对应的SFs种类明显,CL发现了一种常见的单层Shockley型堆垛层错,其蓝色发射在~422nm,TSD在~540nm处。虽然SEM和CL由于电子束源而具有高分辨率,但高能电子束可能会对样品表面造成损伤。基于光学的缺陷检测技术为了在不损失检测精度的情况下实现高吞吐量的在线批量生产,基于光学的检测方法很有前途,因为它们可以保存样品,并且大多数可以提供快速扫描能力。表面检测方法可以列为OM、OCT和DIC,而拉曼、XRT和PL是表面下检测方法。在本节中,我们将介绍每种检测方法的原理,这些方法如何应用于检测缺陷,以及每种方法的优缺点。光学显微镜(OM)光学显微镜(OM)最初是为使用光学和光学放大元件近距离观察样品而开发的,可用于检查表面缺陷。该技术能够在暗场模式、明场模式和相位模式下生成图像,每种模式都提供特定的缺陷信息,并且这些图像的组合提供了识别大多数表面缺陷的能力。当检测灯照射在SiC晶圆表面时,暗场模式通过表面缺陷捕获散射光,因此图像具有深色背景,排除了未散射的光以及指示缺陷位置的明亮物体。另一方面,明场模式捕获未散射的光,由于缺陷的散射,显示带有深色物体的白色背景图像。相位模式捕获相移图像,这些图像由SiC晶圆表面的污染积累,显示相差图像。OM的散射图像在横向分辨率上具有优势,而相差图像主要针对检查晶圆表面的光滑度。一些研究已经有效地利用光学显微镜来表征表面缺陷。PeiMa等人发现,非常薄的胡萝卜缺陷或微管缺陷太小,无法通过光学相干断层扫描(OCT)进行检查,但由于其在横向分辨率方面的优势,可以通过光学显微镜进行检查。Zhao等利用OM研究了多型夹杂物、表面凹坑和台阶聚束的成因。光学相干断层扫描(OCT)光学相干断层扫描(OCT)是一种光学检测技术,可以提供所研究样品的快速、无损和3D地下图像。由于OCT最初用于诊断许多疾病,因此其大部分应用都是解析生物和临床生物医学样本的图像。然而,由于可见光和红外波长的先进光学元件的发展,OCT的分辨率已提高到亚微米级,因此人们对应用OCT检测SiC晶圆缺陷的兴趣日益浓厚。OCT中使用的光源具有宽带光谱,由可见光和红外区域的宽范围频率组成,因此相干长度很小,这意味着轴向分辨率可以非常高,而横向分辨率取决于光学器件的功能。OCT的原理基于低相干干涉测量,这通常是迈克尔逊型设置。OCT的光源分为两个臂,一个参考臂和一个检查臂。照射到参考臂的光束被反射镜反射,而照射到检测臂的光束被碳化硅晶圆反射。通过在参考臂中移动反射镜,两束光束的组合会产生干涉,但前提是两束光束之间的光程差小于相干长度。因此,探测器获取的干涉信号包含SiC晶圆的横截面信息,通过横向组合这些横截面检测,可以实现OCT的3D图像。然而,OCT的检测速度和横向分辨率仍无法与其他二维检测技术相媲美,工作光谱范围内表面散射和吸收损耗的干扰是OCT成像的主要局限性。PeiMa等人使用OCT分析胡萝卜缺陷、多型夹杂物、晶界和六边形空隙。Duncan等人应用OCT研究了单晶SiC的内部结构。微分干涉对比(DIC)微分干涉对比(DIC)是一种将相差引入表面缺陷图像的显微镜技术。与OM相比,使用DIC的优点是DIC的分辨率远高于OM的相位模式,因为DIC中的图像形成不受孔径的限制,并且DIC可以通过采用共聚焦扫描系统产生三维缺陷图像。DIC的光源通过偏振片进行线偏振,然后通过沃拉斯顿棱镜分成两个正交偏振子光束,即参考光束和检查光束。参考光束撞击碳化硅晶圆的正常表面,而检测光束撞击有缺陷的碳化硅晶圆表面,产生与缺陷几何形状和光程长度改变相对应的相位延迟。由于两个子光束是正交偏振的,因此在检测过程中它们不会相互干扰,直到它们再次通过沃拉斯顿棱镜并进入分析仪以生成特定于缺陷的干涉图案。然后,处理器接收缺陷信号,形成二维微分干涉对比图像。为了生成三维图像,可以使用共聚焦扫描系统来关闭偏离系统焦点的两个子光束,以避免错误检测。因此,通过使共聚焦系统的焦点沿光轴方向移动,可以获得SiC晶圆表面的三维缺陷图像。Sako等人表明,使用CDIC在SiC外延层上观察到具有刮刀形表面轮廓的表面缺陷。Kitabatake等人建立了使用CDIC的综合评估平台,以检查SiC晶圆和外延薄膜上的表面缺陷。X射线衍射形貌(XRT)X射线衍射形貌(XRT)是一种强大的亚表面检测技术,可以帮助研究SiC晶片的晶体结构,因为X射线的波长与SiC晶体原子间平面之间的距离相当。它用于通过测量由于缺陷引起的应变场引起的衍射强度变化来评估SiC晶圆的结构特性。这意味着晶体缺陷会导致晶格间距的变化或晶格周围的旋转,从而形成应变场。XRT常用于高通量、足分辨率的生产线;然而,它需要一个大规模的X射线发射装置,其缺陷映射能力仍然需要改进。XRT的图像形成机理基于劳厄条件(动量守恒),当加热灯丝产生的电子束被准直并通过高电势加速以获得足够的能量时,会产生一束准直的X射线,然后将其引导到金属阳极。当X射线照射到SiC晶片上时,由于X射线从SiC的原子间平面以特定角度散射的相长干涉和相消干涉,形成具有几个狭窄而尖锐峰的独特衍射图,并由探测器进行检查。因此,晶体缺陷可以通过衍射峰展宽分析来表征,如果不存在缺陷,衍射光谱又窄又尖锐 否则,如果存在缺陷引起的应变场,则光谱会变宽或偏移。XRT的检测机理是基于X射线衍射而不是电子散射,因此XRT被归类为光学技术,而SEM是一种非光学技术。Chikvaidze等人使用XRT来确认SiC样品中具有不同堆叠顺序的缺陷。Senzaki等人表明,扩展BPDs到TED的转变是在电流应力测试下使用XRT检测的三角形单个Shockley型堆垛层错(1SSF)的起源。当前的在线XRT通常用于识别缺陷结构,而没有来自其他检测技术(如PL和OM)的可识别检测信号。光致发光(PL)光致发光(PL)是用于检测晶体缺陷的最常用的亚表面检测技术之一。PL的高产量使其适用于在线批量生产。SiC是一种间接带隙半导体,在约380nm波长的近带边缘发射处显示PL。SiC晶片中在贯穿缺陷水平的重组可能是辐射性的。基于UV激发的PL技术已被开发用于识别SiC晶片内部存在的缺陷,如BPDs和SFs。然而,没有特征PL特征或相对于无缺陷SiC区域具有弱PL对比度的缺陷,如划痕和螺纹位错,应通过其他检查方法进行评估。由于发射能量根据缺陷的陷阱能级而变化,因此可以使用具有光谱分辨率的PL图像来区分每种类型的缺陷并对其进行映射。由于SF诱导的量子阱状能带结构,多型SF的PL光谱在350–550nm的波长范围内表现出多峰光谱。每种类型的SF都可以通过使用带通滤光片检查它们的发射光谱来区分,该滤光片滤除单个光谱,如图4c所示。Berwian等人构建了一种基于UV-PL的缺陷发光扫描仪,以清楚地检测BPDs、SFs和多型夹杂物。Tajima等人使用具有从深紫外到可见光和近红外等各种激发波长的PL来检测TEDs、TSDs、SFs,并检查PL与蚀刻凹坑图案之间的相关性。然而,一些缺陷的PL图像是相似的,如BPDs和胡萝卜缺陷,它们都表现出线状特征,使得PL难以区分它们,因此其他结构分析工具,如XRT或拉曼光谱,通常与PL并行使用,以准确区分这些缺陷。拉曼光谱拉曼光谱在生物学、化学和纳米技术中具有广泛的应用,用于识别分子、化学键和纳米结构的特征。拉曼光谱是一种无损的亚表面检测方法,可以验证SiC晶片中不同的晶体结构和晶体缺陷。通常,SiC晶圆由激光照射,激光与SiC中的分子振动或声子相互作用,使分子进入虚拟能量状态,导致被检测光子的波长向上或向下移动,分别称为斯托克斯拉曼散射或反斯托克斯拉曼散射。波长的偏移提供了有关SiC振动模式的信息,对应于不同的多型结构。研究表明,在实测的拉曼光谱中,200和780cm−1处的特征峰表示SiC的4H-多型,而160、700和780cm−1处的特征峰表示SiC的6H-多型。Chikvaidze等人使用拉曼光谱证实了2C-SiC样品中存在拉曼峰约为796和971cm−1的3H-SiC多型。Hundhausen等人利用拉曼光谱研究了高温退火过程中3C-SiC的多型转化。Feng等人发现了微管、TSDs和TEDs的峰值中心偏移和强度变化,如图4e所示。对于空间信息,拉曼映射的图像如图4f所示。通常,拉曼散射信号非常微弱,因此拉曼光谱需要很长时间才能收集到足够的信号。该技术可用于缺陷物理的详细分析,但由于信号微弱和电流技术的限制,它不适合在线检测。缺陷对设备的影响每种类型的缺陷都会对晶圆的质量产生不利影响,并使随后在其上制造的器件失效。缺陷和设备故障之间的劣化与杀伤率有关,杀伤率定义为估计导致设备故障的缺陷比例。每种缺陷类型的杀伤率因最终应用而异。具体而言,那些对器件造成重大影响的缺陷被称为杀手缺陷。先前的研究表明,缺陷与器件性能之间存在相关性。在本节中,我们将讨论不同缺陷对不同设备的影响。在MOSFET中,BPDs会增加导通电阻并降低栅极氧化层的可靠性。微管限制了运行电流并增加了泄漏电流,而SFs,胡萝卜和多型夹杂物等缺陷降低了阻断电压,表面上的划痕会导致可靠性问题。Isshiki等人发现,SiC衬底下存在潜在的划痕,包括复杂的堆垛层错和位错环,导致SiC-MOSFET中氧化膜的台阶聚束和介电强度下降。其他表面缺陷(如梯形特征)可能会对SiCMOSFET的沟道迁移率或氧化物击穿特性产生重大影响。在肖特基势垒二极管中,BPDs、TSDs和TEDs增加了反向漏电流,而微管和SFs降低了阻断电压。胡萝卜缺陷和多型夹杂物都会降低阻断电压并增加泄漏电流,而划痕会导致屏障高度不均匀。在p-n二极管中,BPD增加了导通电阻和漏电流,而TSDs和TEDs降低了阻断电压。微管限制了工作电流并增加了泄漏电流,而SF增加了正向电压。胡萝卜和多型夹杂物会降低阻断电压并增加漏电流,而表面上的划痕对p-n二极管没有直接影响。Skowronski等人表明,在二极管工作期间,SiC外延层内的BPDs转化为SFs,或者允许SFs通过导电沿着BPDs延伸,导致电流退化,从而增加SiCp-n二极管的电阻。研究还证明,SFs可能产生3C-SiC多型,导致SiCp-n二极管的少数载流子寿命缩短,因为3C-SiC多型的带隙低于4H-SiC多型,因此SFs充当量子阱,提高了复合率。此外,在PL表征下,单个Shockley型SFs膨胀,导致结电位发生变化,进而降低SiCp-n二极管的导通电阻。此外,TSDs会导致阻断电压下降,TEDs会降低SiCp-n二极管的少数载流子寿命。在双极器件中,BPD会降低栅极氧化层的可靠性,而TSD和TED会降低载流子寿命。微管限制了工作电流,而SF缩短了载流子寿命。胡萝卜和多型夹杂物会降低阻断电压,增加泄漏电流,并缩短载流子寿命。SiC中的点缺陷(空位)会缩短器件的载流子寿命,导致结漏电流并导致击穿电压降低。尽管点缺陷对电子设备有负面影响,但它们也有一些有用的应用,例如在量子计算中。Lukin等人发现,SiC中的点缺陷,如硅空位和碳空位,可以产生具有合适自旋轨道属性的稳定束缚态,作为量子计算的硬件平台选择。缺陷对不同器件的影响如图5所示。可以看出,缺陷会以多种方式恶化器件特性。虽然可以通过设计不同的设备结构来抵消缺陷的负面影响,但迫切需要建立一个快速准确的缺陷检测系统,以帮助人们观察缺陷并进一步优化过程以减少缺陷。请注意,分析SiC器件的特性以识别缺陷的类型和存在可能被用作缺陷检查方法(图6、7)。图5缺陷对不同设备的影响图6人工智能辅助的缺陷检测和设备性能评估图7利用激光减少制造过程中缺陷的方法高效的缺陷检测系统需要能够同时识别表面缺陷和晶体缺陷,将所有缺陷归入正确的类别,然后利用多通道机器学习算法显示整个晶圆的缺陷分布数据映射。Kawata等人设计了一种双折射图像中n型SiC晶圆位错对比度的自动检测算法,并以较高的精度和灵敏度成功检测了XRT图像位错对比度的位置。Leonard等人使用深度卷积神经网络(DCNN)机器学习进行自动缺陷检测和分类,方法是使用未蚀刻晶圆的PL图像和相应蚀刻晶圆的自动标记图像作为训练集。DCNN确定的缺陷位置和分类与随后刻蚀刻的特征密切相关。Monno等人提出了一种深度学习系统,该系统通过SEM检查SiC衬底上的缺陷,并以70%的准确率对其进行分类。该方法可以在不出现线性缺陷不一致的情况下组合多个瓦片,并能对126个缺陷进行检测和分类,具有很好的精度。除了检测缺陷外,降低缺陷密度也是提高SiC器件质量和良率的有用方法。通过使用无微管种子或基于溶液的生长,可以降低微管和TSD的密度。为了减少机械过程引起的表面缺陷,一些研究指出,飞秒激光可用于提高化学-机械平坦化的效率和切割质量。飞秒激光退火还可以提高Ni和SiC之间的欧姆接触质量,增加器件的导电性。除了飞秒激光的应用外,其他一些团队还发现,使用激光诱导液相掺杂(LILPD)可以有效减少过程中产生的损伤。结论在这篇综述文章中,我们描述了缺陷检测在碳化硅行业中的重要性,尤其是那些被称为杀手级缺陷的缺陷。本文全面综述了SiC晶圆生产过程中经常出现的晶体学和表面缺陷的细节,以及这些缺陷在不同器件中引起的劣化性质。表面缺陷对大多数器件都是有害的,而晶体缺陷则对缺陷转化和晶圆质量有风险。在了解了缺陷的影响之后,我们总结了常见的表面和亚表面检测技术的原理,这些技术在缺陷检测中的应用,以及每种方法的优缺点。破坏性检测技术可以提供可观察、可靠和定量的信息 然而,这些不能满足在线批量生产的要求,因为它们非常耗时,并且对样品的质量产生不利影响。另一方面,无损检测技术,尤其是基于光学的技术,在生产线上更适用、更高效。请注意,不同的检测技术是相辅相成的。检测技术的组合使用可能会在吞吐量、分辨率和设备复杂性之间取得平衡。未来,有望将具有高分辨率和快速扫描能力的无损检测方法集成到能够同时检测表面缺陷和晶体缺陷的完美缺陷检测系统中,然后使用多通道机器学习算法将所有缺陷分配到正确的类别,并将缺陷分布数据的映射图像显示到整个SiC晶圆上。原文链接:Defect Inspection Techniques in SiC | Discover Nano (springer.com)
  • 哈希在线水质分析仪器为山东省环境自动检测监控联网系统助力
    日前,山东省内所有的重点污染源都已经安装了全省联网的环境自动检测监控系统。 该类系统在山东省共设立了1300多个,覆盖全省100多家城镇污水处理厂、1047家重点监管企业,城市主要水源地、60条河流的116个河流断面、17个城市的空气质量也全部被纳入到监测系统中,这意味着山东省90%以上的污染源排污情况和水气环境质量都得到了实时监控。与此同时,依托省、市、县三级数据传输网络,监测数据可以直接传输到省环境监控中心,接受各级环境监管部门的监督检查。 哈希公司的水质分析仪器在中国已经有超过20年的成功应用,此次作为在线水质分析仪器的供应厂家, 共向山东省各个环境监测点提供了数百套符合国家标准方法的CODmax铬法COD分析仪、AmtaxTM Compact 氨氮分析仪等在线水质分析仪器产品。系统运行以来,凭借运行可靠、运营成本低、测量精确、操作简单的优良性能得到了众多环境监测站好评。 在很多大型项目中,各个环节都是紧密相连,如有一个环节出现问题,将可能会导致整个项目停滞。这就要求在线水质检测仪器的安装、调试乃至培训都必须要做到快速响应,按照客户要求在最短的时间内解决问题。哈希公司本地化服务模式在此次山东省环境自动检测监控联网系统项目中&ldquo 再显身手&rdquo 。以&ldquo 快速响应,高质高效&rdquo 的服务标准,在规定时间内完成了项目要求,赢得了客户的满意。 哈希公司将凭借着最先进的水质监测解决方案以及完善的服务和技术支持网络,在各个行业中扮演着不同的角色,为各行业用户的应用提供最佳的解决方案,守护着水质与人类的健康! 关于哈希 哈希公司是美国财富500强企业之一&mdash &mdash 丹纳赫集团下属的一级子公司,总部位于美国科罗拉多州的拉夫兰市。哈希公司是致力于设计和制造水质分析、监测仪器及其试剂的科研生产企业,产品涵盖实验室定性/定量分析、现场分析、流动分析测试、在线分析测试,能够广泛应用于自来水、市政污水、工业循环水、污染源排放口、地表水、地下水、半导体超纯水、制药、电力及饮料等多个领域。生产线分别分布于美国、瑞士、德国、法国和英国。
  • 热轧带肋钢筋的全自动检测技术
    由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将于2023年8月16日召开。届时,武汉钢铁有限公司质量检验中心理化检验高级工程师刘明辉将在线分享报告,介绍一种全自动检测技术在热轧带肋钢筋检测领域中的应用实践案例:通过集成重量偏差测试仪与拉伸试验机、六轴机器人、弯曲试验机、反向弯曲试验机、试样架等设备设施,并优化各设备设施的布局结构,再与实验室管理系统(LIMS)进行通讯,实现检测数据的传输,顺利实现热轧带肋钢筋常规检测项目重量偏差、室温拉伸试验、弯曲试验、反向弯曲试验四个项目全流程集成自动化,成为钢筋检测领域全流程自动化检测的经典案例,实现了国产试验机在自动化检测领域的重大突破。欢迎业内人士报名听会,交流试验技术。关于第二届试验机与试验技术网络研讨会为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/testingmachine2023
  • FLIR A700热像仪+载人飞机,光伏缺陷检测成本可降低 80%!
    太阳能是目前使用比较多的可持续清洁能源之一,在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,也是最受瞩目的项目之一。但维修和监控太阳能电池板的成本有时高得令人望而却步。今天,小菲就来给大家说一个德国政府选用FLIR热像仪,验证空中高效检查电池板的有效性和商业可行性的真实案例!Teledyne FLIR在德国的高级合作伙伴——TOPA GmbH,率先采用空中检查电池板的创新检测方法。TOPA GmbH是一家专业的高质量测量技术和热成像行业集成商。作为FLIR和EXTECH产品的主要分销商,它专门提供FLIR技术,用于各种具有挑战性的应用。本次它与专门从事有人驾驶和无人驾驶飞机中使用安全关键技术的工程公司AID GmbH合作开发一个基于人工智能的系统,该系统将确保无人机飞行中捕获的图像完全具有地理参考性,可自动检测和分类太阳能电池板上的缺陷。具体是如何操作的呢?一起来瞧瞧~集成FLIR热像仪,实现快速检测在政府资助的支持下,AID和TOPA正在使用FLIR热成像技术来降低大规模检测太阳能电池板的成本和时间限制。手动地面检查可能需要数月时间来排查太阳能发电场,而无人机检查只需要数周时间,但效率仍然较低。因此,在高速飞行的飞机上进行空中检查效率更高,但准确检查将成为一项挑战。那么该如何解决这个问题呢?设计一套具有完全自主的人工智能解释和地理参考功能,以及实时缺陷检测功能的系统就变得很重要。在试验中,一架在300米高空飞行的载人飞机与FLIR A700配对,来高速捕捉太阳能电池板的精确热读数。然而,以30m/s的速度行驶会面临图像模糊和失真的问题,因为热像仪需要8-10毫秒才能捕捉图像。为了解决这一问题,并确保图像清晰且数据可用,AID用几何原理设计了一个巧妙的解决方案,从而确保图像清晰,数据可用且信息丰富。FLIR A700FLIR A700固定安装式红外热像仪具有精确检测和识别制造和工业等过程中热问题所需的强大监控能力。其能提供多视场角镜头选项、同时查看多个图像流、电动调焦控制,可选通过 Wi-Fi 传输压缩辐射测量图像流。A700机身小巧,符合GigE Vision和GenICam标准,能简化与现有监控系统的集成。这种正在开发的高速检测方法每小时可覆盖2平方公里,使其能够在短短几个小时内获得大规模太阳能发电场的准确读数。高效率的检测,可以让电力公司节省了80%的成本!精准定位故障单元,帮助企业节约成本TOPA和AID开发系统中的AI通过FLIR A700获取读数,然后通过监测记录的温度和检测结果来分析计算哪些面板过热或有过热的危险。有故障的单元比正常运行的单元件的温度高得多,因为热量无法消散并继续在故障面板内积聚。更糟糕的是,这可能会导致周围设备接连老化。因此,及早找到有故障的太阳能电池板对于保护资产和最大限度地减少进一步损害至关重要。系统内的人工智能会整理所有检测的热成像数据,并为每张图像绘制出一个具备地理参考的位置,从而可以从源头上尽快根除有故障的设备,最大限度地减少人工和维护成本。AID Innovation董事总经理Alexander Prendinger表示:“我们很高兴能够开发一个旨在提高太阳能电池板效率的系统,为全球应对气候变化做出贡献。FLIR A700是此次试验的完美搭档。它是高性价比和功能性强的完美结合,既能提供富有洞察力的热图像,又足够轻,可以与万向节设置完美配合。我们对Teledyne FLIR的产品和服务都非常满意,这是我们选择与他们长久合作的主要原因之一。”FLIR A700在内的Axxx系列热像仪可灵活搭配监控、检测方案快速准确地识别出设备故障点便于您预防故障的发生营造更安全、更高效的工作环境
  • 昆明出台文明施工新规:必须设置PM10自动检测装置
    近日,昆明市政府办公厅印发《关于进一步加强主城区建设工地文明施工管理的通知》,提出施工“8个必须”新规,其中要求,施工现场必须设置PM10自动检测装置。  去年昆明市曾对施工工地作出过“6个100%”要求,在此基础上,今年又提出了“8个必须”新要求,包括必须推行远程视频监控系统的安装使用、必须设置喷淋降尘系统和“三池一设备”、必须设置PM10自动检测装置等。  通知要求,各区(管委会)、各部门在实施建设工地文明施工督查检查过程中,必须严格按照“6个100%”和“8个必须”的要求进行督查检查。同时在政府(部门)门户网站公布投诉举报电话,可实行有奖举报,具体实施细则由昆明市住建局制定。  对违法违规的建设、施工、监理、渣土运输企业等相关单位,除予以行政处罚外,视情节还将采取取消评先评优资格、暂扣资格证书、吊销相关资质等措施。违规行为将记入昆明市建设领域“黑名单”并向媒体曝光。  “8个必须”  1 施工单位必须编制文明施工专项实施方案,并报建设单位和监理单位审核   2 建设单位必须将经过审核的文明施工专项实施方案提交属地住建行政主管部门备案   3 施工工地现场必须公示建设、监理、施工等单位及负责人的信息和污染防治措施   4 必须推行远程视频监控系统的安装使用   5 必须设置喷淋降尘系统和“三池一设备”,规范排水(泄洪)系统,污水达标外排   6 必须设置PM10自动检测装置   7 施工工地现场进出口必须安装门禁系统   8 必须设置围墙(围挡)并进行美化。  “6个100%”  1 施工现场100%标准化围蔽   2 未清运建筑垃圾(工程弃土)100%覆(苫)盖   3 工地路面100%硬化   4 施工现场100%洒水降尘   5 出工地车辆100%冲洗干净,同时遮蔽严密   6 施工现场长期裸露地面100%覆盖或绿化。
  • 浙江省计量科学研究院预算628万元购买压力仪表气候环境影响自动检测装置等多台仪器
    3月30日,浙江省计量科学研究院公开招标,购买压力仪表气候环境影响自动检测装置、PCR荧光检校系统等多台/套设备,预算628万元。  项目编号:ZJ-2140597  项目名称:浙江省计量科学研究院2021年第一批仪器设备  采购需求:  标项一  标项名称: 压力仪表气候环境影响自动检测装置  数量: 1  预算金额(元): 600000  简要规格描述或项目基本概况介绍、用途:压力仪表气候环境影响自动检测装置,详见采购文件第三部分。  标项二  标项名称: 压力变送器长期稳定性自动检测装置  数量: 1  预算金额(元): 550000  简要规格描述或项目基本概况介绍、用途:压力变送器长期稳定性自动检测装置,详见采购文件第三部分。  标项三  标项名称: PCR荧光检校系统  数量: 1  预算金额(元): 450000  简要规格描述或项目基本概况介绍、用途:PCR荧光检校系统,详见采购文件第三部分。  标项四  标项名称: 正压法活塞式气体流量标准装置等  数量: 1  预算金额(元): 1500000  简要规格描述或项目基本概况介绍、用途:正压法活塞式气体流量标准装置1套、恒流量耐久性试验装置1套、流量计耐久试验装置1套,详见采购文件第三部分。  标项五  标项名称: DN32-DN50质量法水表试验装置等  数量: 1  预算金额(元): 1800000  简要规格描述或项目基本概况介绍、用途:DN32-DN50质量法水表试验装置1套,DN15-DN25水表综合性能试验装置1套,DN15-DN25水表耐久试验装置1套,详见采购文件第三部分。  标项六  标项名称: 转速标准装置、限速器标准装置  数量: 1  预算金额(元): 680000  简要规格描述或项目基本概况介绍、用途:转速标准装置、限速器标准装置1套,详见采购文件第三部分。  标项七  标项名称: 手持式三维扫描仪  数量: 1  预算金额(元): 250000  简要规格描述或项目基本概况介绍、用途:手持式三维扫描仪1套,详见采购文件第三部分。  标项八  标项名称: 100N静重式力标准装置和10kN静重式力标准装置  数量: 1  预算金额(元): 450000  简要规格描述或项目基本概况介绍、用途:100N静重式力标准装置1套,10kN静重式力标准装置1套,详见采购文件第三部分。  合同履约期限:标项 1、2、3、4、5、6、7、8,按采购文件要求。  本项目(否)接受联合体投标。  开标时间:2021年04月20日 09:00(北京时间)2021年第一批仪器设备公开招标文件(电子招投标方式)(定稿).pdf
  • 聚焦第三次全国土壤普查,有机质和阳离子交换量全自动检测方案出台
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。土壤有机质全自动检测方案:全文下载:土壤有机质全自动检测方法研制报告土壤阳离子交换量自动检测方案:全文下载:土壤阳离子交换量全自动检测方法验证报告
  • 晶圆表面缺陷检测方法综述【下】
    上接:晶圆表面缺陷检测方法综述【上】4. 基于机器学习的晶圆表面缺陷检测机器学习主要是将一个具体的问题抽象成一个数学模型,通过数学方法求解模型,求解该问题,然后评估该模型对该问题的影响。根据训练数据的特点,分为监督学习、无监督学习和半监督学习。本文主要讨论这三种机器学习方法在晶圆表面缺陷检测中的应用。机器学习模型比较如表2所示。表 2.机器学习算法的比较。分类算法创新局限监督学习KNN系列对异常数据不敏感,准确率高。复杂度高,计算强度高。决策树-Radon应用Radon以形成新的缺陷特征。过拟合非常熟练。SVMSVM 可对多变量、多模态和不可分割的数据点进行高效分类。它对多个样本不友好,内核函数难以定位。无监督学习多层感知器聚类算法采用多层感知器增强特征提取能力。取决于激活函数的选择。DBSCAN可以根据缺陷模式特征有选择地去除异常值。样本密度不均匀或样本过大,收敛时间长,聚类效果差。SOM高维数据可以映射到低维空间,保持高维空间的结构。目标函数不容易确定。半监督学习用于增强标记的半监督框架将监督集成学习与无监督SOM相结合,构建了半监督模型。培训既费时又费时。半监督增量建模框架通过主动学习和标记样本来增强模型性能,从而提高模型性能。性能取决于标记的数据量。4.1. 监督学习监督学习是一种学习模型,它基于该模型对所需的新数据样本进行预测。监督学习是目前晶圆表面缺陷检测中广泛使用的机器学习算法,在目标检测领域具有较高的鲁棒性。Yuan,T等提出了一种基于k-最近邻(KNN)的噪声去除技术,该技术利用k-最近邻算法将全局缺陷和局部缺陷分离,提供晶圆信息中所有聚合的局部缺陷信息,通过相似聚类技术将缺陷分类为簇,并利用聚类缺陷的参数化模型识别缺陷簇的空间模式。Piao M等提出了一种基于决策树的晶圆缺陷模式识别方法。利用Radon变换提取缺陷模式特征,采用相关性分析法测度特征之间的相关性,将缺陷特征划分为特征子集,每个特征子集根据C4.5机制构建决策树。对决策树置信度求和,并选择总体置信度最高的类别。决策树在特定类别的晶圆缺陷检测中表现出更好的性能,但投影的最大值、最小值、平均值和标准差不足以代表晶圆缺陷的所有空间信息,因此边缘缺陷检测性能较差。支持向量机(SVM)在监督学习中也是缺陷检测的成熟应用。当样本不平衡时,k-最近邻算法分类效果较差,计算量大。决策树也有类似的问题,容易出现过度拟合。支持向量机在小样本和高维特征的分类中仍然具有良好的性能,并且支持向量机的计算复杂度不依赖于输入空间的维度,并且多类支持向量机对过拟合问题具有鲁棒性,因此常被用作分类器。R. Baly等使用支持向量机(SVM)分类器将1150张晶圆图像分为高良率和低良率两类,然后通过对比实验证明,相对于决策树,k-最近邻(KNN)、偏最小二乘回归(PLS回归)和广义回归神经网络(GRNN),非线性支持向量机模型优于上述四种晶圆分类方法。多类支持向量机在晶圆缺陷模式分类中具有更好的分类精度。L. Xie等提出了一种基于支持向量机算法的晶圆缺陷图案检测方案。采用线性核、高斯核和多项式核进行选择性测试,通过交叉验证选择测试误差最小的核进行下一步的支持向量机训练。支持向量机方法可以处理图像平移或旋转引起的误报问题。与神经网络相比,支持向量机不需要大量的训练样本,因此不需要花费大量时间训练数据样本进行分类。为复合或多样化数据集提供更强大的性能。4.2. 无监督学习在监督学习中,研究人员需要提前将缺陷样本类型分类为训练的先验知识。在实际工业生产中,存在大量未知缺陷,缺陷特征模糊不清,研究者难以通过经验进行判断和分类。在工艺开发的早期阶段,样品注释也受到限制。针对这些问题,无监督学习开辟了新的解决方案,不需要大量的人力来标记数据样本,并根据样本之间的特征关系进行聚类。当添加新的缺陷模式时,无监督学习也具有优势。近年来,无监督学习已成为工业缺陷检测的重要研究方向之一。晶圆图案上的缺陷图案分类不均匀,特征不规则,无监督聚类算法对这种情况具有很强的鲁棒性,广泛用于检测复杂的晶圆缺陷图案。由于簇状缺陷(如划痕、污渍或局部失效模式)导致难以检测,黄振提出了一种解决该问题的新方法。提出了一种利用自监督多层感知器检测缺陷并标记所有缺陷芯片的自动晶圆缺陷聚类算法(k-means聚类)。Jin C H等提出了一种基于密度的噪声应用空间聚类(DBSCAN)的晶圆图案检测与分类框架,该框架根据缺陷图案特征选择性地去除异常值,然后提取的缺陷特征可以同时完成异常点和缺陷图案的检测。Yuan, T等提出了一种多步晶圆分析方法,该方法基于相似聚类技术提供不同精度的聚类结果,根据局部缺陷模式的空间位置识别出种混合型缺陷模式。利用位置信息来区分缺陷簇有一定的局限性,当多个簇彼此靠近或重叠时,分类效果会受到影响。Di Palma,F等采用无监督自组织映射(SOM)和自适应共振理论(ART1)作为晶圆分类器,对1种不同类别的晶圆进行了模拟数据集测试。SOM 和 ART1 都依靠神经元之间的竞争来逐步优化网络以进行无监督分类。由于ART是通过“AND”逻辑推送到参考向量的,因此在处理大量数据集时,计算次数增加,无法获得缺陷类别的实际数量。调整网络标识阈值不会带来任何改进。SOM算法可以将高维输入数据映射到低维空间,同时保持输入数据在高维空间中的拓扑结构。首先,确定神经元的类别和数量,并通过几次对比实验确定其他参数。确定参数后,经过几个学习周期后,数据达到渐近值,并且在模拟数据集和真实数据集上都表现良好。4.3. 半监督学习半监督学习是一种结合了监督学习和无监督学习的机器学习方法。半监督学习可以使用少量的标记数据和大量的未标记数据来解决问题。基于集成的半监督学习过程如图 8 所示。避免了完全标记样品的成本消耗和错误标记。半监督学习已成为近年来的研究热点。图8.基于集成的半监督学习监督学习通常能获得良好的识别结果,但依赖于样本标记的准确性。晶圆数据样本可能存在以下问题。首先是晶圆样品数据需要专业人员手动标记。手动打标过程是主观的,一些混合缺陷模式可能会被错误标记。二是某些缺陷模式的样本不足。第三,一些缺陷模式一开始就没有被标记出来。因此,无监督学习方法无法发挥其性能。针对这一问题,Katherine Shu-Min Li等人提出了一种基于集成的半监督框架,以实现缺陷模式的自动分类。首先,在标记数据上训练监督集成学习模型,然后通过该模型训练未标记的数据。最后,利用无监督学习算法对无法正确分类的样本进行处理,以达到增强的标记效果,提高晶圆缺陷图案分类的准确性。Yuting Kong和Dong Ni提出了一种用于晶圆图分析的半监督增量建模框架。利用梯形网络改进的半监督增量模型和SVAE模型对晶圆图进行分类,然后通过主动学习和伪标注提高模型性能。实验表明,它比CNN模型具有更好的性能。5. 基于深度学习的晶圆表面缺陷检测近年来,随着深度学习算法的发展、GPU算力的提高以及卷积神经网络的出现,计算机视觉领域得到了定性的发展,在表面缺陷检测领域也得到了广泛的应用。在深度学习之前,相关人员需要具备广泛的特征映射和特征描述知识,才能手动绘制特征。深度学习使多层神经网络能够通过抽象层自动提取和学习目标特征,并从图像中检测目标对象。Cheng KCC等分别使用机器学习算法和深度学习算法进行晶圆缺陷检测。他们使用逻辑回归、支持向量机(SVM)、自适应提升决策树(ADBT)和深度神经网络来检测晶圆缺陷。实验证明,深度神经网络的平均准确率优于上述机器学习算法,基于深度学习的晶圆检测算法具有更好的性能。根据不同的应用场景和任务需求,将深度学习模型分为分类网络、检测网络和分割网络。本节讨论创新并比较每个深度学习网络模型的性能。5.1. 分类网络分类网络是较老的深度学习算法之一。分类网络通过卷积、池化等一系列操作,提取输入图像中目标物体的特征信息,然后通过全连接层,根据预设的标签类别进行分类。网络模型如图 9 所示。近年来,出现了许多针对特定问题的分类网络。在晶圆缺陷检测领域,聚焦缺陷特征,增强特征提取能力,推动了晶圆检测的发展。图 9.分类网络模型结构图在晶圆制造过程中,几种不同类型的缺陷耦合在晶圆中,称为混合缺陷。这些类型的缺陷复杂多变且随机性强,已成为半导体公司面临的主要挑战。针对这一问题,Wang J等提出了一种用于晶圆缺陷分类的混合DPR(MDPR)可变形卷积网络(DC-Net)。他们设计了可变形卷积的多标签输出和一热编码机制层,将采样区域聚焦在缺陷特征区域,有效提取缺陷特征,对混合缺陷进行分类,输出单个缺陷,提高混合缺陷的分类精度。Kyeong和Kim为混合缺陷模式的晶圆图像中的每种缺陷设计了单独的分类模型,并通过组合分类器网络检测了晶圆的缺陷模式。作者使用MPL、SVM和CNN组合分类器测试了六种不同模式的晶圆映射数据库,只有作者提出的算法被正确分类。Takeshi Nakazawa和Deepak V. Kulkarni使用CNN对晶圆缺陷图案进行分类。他们使用合成生成的晶圆图像训练和验证了他们的CNN模型。此外,提出了一种利用模拟生成数据的方法,以解决制造中真实缺陷类别数据不平衡的问题,并达到合理的分类精度。这有效解决了晶圆数据采集困难、可用样品少的问题。分类网络模型对比如表3所示。表3. 分类网络模型比较算法创新Acc直流网络采样区域集中在缺陷特征区域,该区域对混合缺陷具有非常强的鲁棒性。93.2%基于CNN的组合分类器针对每个缺陷单独设计分类器,对新缺陷模式适应性强。97.4%基于CNN的分类检索方法可以生成模拟数据集来解释数据不平衡。98.2%5.2. 目标检测网络目标检测网络不仅可以对目标物体进行分类,还可以识别其位置。目标检测网络主要分为两种类型。第一种类型是两级网络,如图10所示。基于区域提案网络生成候选框,然后对候选框进行分类和回归。第二类是一级网络,如图11所示,即端到端目标检测,直接生成目标对象的分类和回归信息,而不生成候选框。相对而言,两级网络检测精度更高,单级网络检测速度更快。检测网络模型的比较如表4所示。图 10.两级检测网络模型结构示意图图 11.一级检测网络模型结构示意图表4. 检测网络模型比较算法创新AccApPCACAE基于二维主成分分析的级联辊类型自动编码。97.27%\YOLOv3-GANGAN增强了缺陷模式的多样性,提高了YOLOv3的通用性。\88.72%YOLOv4更新了骨干网络,增强了 CutMix 和 Mosaic 数据。94.0%75.8%Yu J等提出了一种基于二维主成分分析的卷积自编码器的深度神经网络PCACAE,并设计了一种新的卷积核来提取晶圆缺陷特征。产品自动编码器级联,进一步提高特征提取的性能。针对晶圆数据采集困难、公开数据集少等问题,Ssu-Han Chen等首次采用生成对抗网络和目标检测算法YOLOv3相结合的方法,对小样本中的晶圆缺陷进行检测。GAN增强了缺陷的多样性,提高了YOLOv3的泛化能力。Prashant P. SHINDE等提出使用先进的YOLOv4来检测和定位晶圆缺陷。与YOLOv3相比,骨干提取网络从Darknet-19改进为Darknet-53,并利用mish激活函数使网络鲁棒性。粘性增强,检测能力大大提高,复杂晶圆缺陷模式的检测定位性能更加高效。5.3. 分段网络分割网络对输入图像中的感兴趣区域进行像素级分割。大部分的分割网络都是基于编码器和解码器的结构,如图12所示是分割网络模型结构示意图。通过编码器和解码器,提高了对目标物体特征的提取能力,加强了后续分类网络对图像的分析和理解。在晶圆表面缺陷检测中具有良好的应用前景。图 12.分割网络模型结构示意图。Takeshi Nakazawa等提出了一种深度卷积编码器-解码器神经网络结构,用于晶圆缺陷图案的异常检测和分割。作者设计了基于FCN、U-Net和SegNet的三种编码器-解码器晶圆缺陷模式分割网络,对晶圆局部缺陷模型进行分割。晶圆中的全局随机缺陷通常会导致提取的特征出现噪声。分割后,忽略了全局缺陷对局部缺陷的影响,而有关缺陷聚类的更多信息有助于进一步分析其原因。针对晶圆缺陷像素类别不平衡和样本不足的问题,Han Hui等设计了一种基于U-net网络的改进分割系统。在原有UNet网络的基础上,加入RPN网络,获取缺陷区域建议,然后输入到单元网络进行分割。所设计的两级网络对晶圆缺陷具有准确的分割效果。Subhrajit Nag等人提出了一种新的网络结构 WaferSegClassNet,采用解码器-编码器架构。编码器通过一系列卷积块提取更好的多尺度局部细节,并使用解码器进行分类和生成。分割掩模是第一个可以同时进行分类和分割的晶圆缺陷检测模型,对混合晶圆缺陷具有良好的分割和分类效果。分段网络模型比较如表5所示。表 5.分割网络模型比较算法创新AccFCN将全连接层替换为卷积层以输出 2D 热图。97.8%SegNe结合编码器-解码器和像素级分类层。99.0%U-net将每个编码器层中的特征图复制并裁剪到相应的解码器层。98.9%WaferSegClassNet使用共享编码器同时进行分类和分割。98.2%第6章 结论与展望随着电子信息技术的不断发展和光刻技术的不断完善,晶圆表面缺陷检测在半导体行业中占有重要地位,越来越受到该领域学者的关注。本文对晶圆表面缺陷检测相关的图像信号处理、机器学习和深度学习等方面的研究进行了分析和总结。早期主要采用图像信号处理方法,其中小波变换方法和空间滤波方法应用较多。机器学习在晶圆缺陷检测方面非常强大。k-最近邻(KNN)、决策树(Decision Tree)、支持向量机(SVM)等算法在该领域得到广泛应用,并取得了良好的效果。深度学习以其强大的特征提取能力为晶圆检测领域注入了活力。最新的集成电路制造技术已经发展到4 nm,预测表明它将继续朝着更小的规模发展。然而,随着这些趋势的出现,晶圆上表面缺陷的复杂性也将增加,对模型的可靠性和鲁棒性提出了更严格的挑战。因此,对这些缺陷的分析和处理对于确保集成电路的高质量制造变得越来越重要。虽然在晶圆表面缺陷分析领域取得了一些成果,但仍存在许多问题和挑战。1、晶圆缺陷的公开数据集很少。由于晶圆生产和贴标成本高昂,高质量的公开数据集很少,为数不多的数据集不足以支撑训练。可以考虑创建一个合成晶圆缺陷数据库,并在现有数据集上进行数据增强,为神经网络提供更准确、更全面的数据样本。由于梯度特征中缺陷类型的多功能性,可以使用迁移学习来解决此类问题,主要是为了解决迁移学习中的负迁移和模型不适用性等问题。目前尚不存在灵活高效的迁移模型。利用迁移学习解决晶圆表面缺陷检测中几个样品的问题,是未来研究的难题。2、在晶圆制造过程中,不断产生新的缺陷,缺陷样本的数量和类型不断积累。使用增量学习可以提高网络模型对新缺陷的识别准确率和保持旧缺陷分类的能力。也可作为扩展样本法的研究方向。3、随着技术进步的飞速发展,芯片特征尺寸越来越小、越来越复杂,导致晶圆中存在多种缺陷类型,缺陷相互折叠,导致缺陷特征不均匀、不明显。增加检测难度。多步骤、多方法混合模型已成为检测混合缺陷的主流方法。如何优化深度网络模型的性能,保持较高的检测效率,是一个亟待进一步解决的问题。4、在晶圆制造过程中,不同用途的晶圆图案会产生不同的缺陷。目前,在单个数据集上训练的网络模型不足以识别所有晶圆中用于不同目的的缺陷。如何设计一个通用的网络模型来检测所有缺陷,从而避免为所有晶圆缺陷数据集单独设计训练模型造成的资源浪费,是未来值得思考的方向。5、缺陷检测模型大多为离线模型,无法满足工业生产的实时性要求。为了解决这个问题,需要建立一个自主学习模型系统,使模型能够快速学习和适应新的生产环境,从而实现更高效、更准确的缺陷检测。原文链接:Electronics | Free Full-Text | Review of Wafer Surface Defect Detection Methods (mdpi.com)
  • 焊接缺陷检测及延寿研究通过验收
    近日,中俄合作完成的“焊接结构缺陷检验、服役可靠性评估及延寿技术研究”项目,通过了黑龙江省科技厅组织的专家验收。专家认为,双方合作开发了噪声抑制新技术、合成孔径聚焦缺陷检测技术、缺陷三维成像检测技术等多种新技术,解决了结构焊接缺陷定量化检测可靠性低的难题,并在缺陷自动识别等方面取得了重要进展。  该项目由哈尔滨工业大学先进焊接与连接国家重点实验室与俄罗斯鲍曼国立技术大学合作承担,于2007年启动,其研究目标是建立一套基于声发射、超声波技术原理、压痕技术、电磁技术和光学技术原理的国际先进的焊接缺陷和焊接应力检测与剩余工作寿命评估系统。  据介绍,该研究突破了反映应力信息的超声信号提取和干扰去除策略方面的技术难点,开发出基于临界折射纵波焊接应力检测的技术设备,其平面构件表面应力测试误差仅为12%左右,技术设备已实现集成化和产品化,在高速列车、火箭燃料储箱等领域中应用。  同时,研究团队开发出随焊冲击碾压、双向预置应力焊接等多项新技术及配套装置,有效改善了焊接接头的残余应力状态,减少了焊接缺陷,并将焊接新工艺在高速列车承载焊接接头的制造中试用,获得显著成效。  据悉,项目执行期间,共申请发明专利12项,获得发明专利授权8项 获得软件著作权2项 发表论文93篇,其中SCI16篇、EI64篇 形成拥有自主知识产权的核心技术2项 开发新装置7台(套) 形成新工艺5项。同时,以该项目为基础筹建的“中国—俄罗斯—乌克兰国际焊接联合研究中心”已获科技部批准。
  • 为消费电子龙头检测表面缺陷,玻尔智造获数千万Pre-A轮融资
    36氪获悉,工业视觉方案提供商「玻尔智造」日前获数千万元Pre-A轮融资,领投方为浩澜资本,毅仁资本担任独家财务顾问。本轮融资资金将用于自主光学成像方案和AI技术进一步研发。玻尔智造成立于2020年,结合自研光学方案及AI算法,主要对消费电子产品进行表面缺陷检测。依靠核心技术与缺陷检测效果,如今玻尔智造已成为某消费电子龙头在外观缺陷检测领域的全球专项战略供应商。机器视觉检测此前多应用于面板、PCB、印刷等行业,主要针对单一均匀的二维平面。消费电子产品因存在异形、复杂的三维面等,外观缺陷检测仍主要由人工目检完成。这意味着相当数量的工人需要在高亮度灯光下近距离且长时间观察被检物件,既可能对人眼造成损伤,也存在准确性、稳定性、工作时长等限制。同时,消费电子产品外观缺陷检测存在诸多难点,包括需检测多种表面形态、不同材质、数百种缺陷类别等。以看似简单的手机充电器为例,不仅同时包含塑胶和金属材质,且有平面、弧面、球面等多种表面形态。其他产品如含充电仓的无线耳机等,更存在异形曲面等复杂结构。对此,玻尔智造选择结合自研自控的光学成像方案以及AI图像识别算法,进行整机集成。“打通光学和算法软件的搭配协作,整机才能灵活运用。”玻尔智造CEO&CTO陈志忠告诉36氪。其中,光学方案就像一双眼睛,面对不同材质、曲率、反射率的检测对象,需要综合打光弧度、光源波长等要素,通过光源、镜头、相机的组合应用,实现被检物品的清晰成像。完整的光学方案,需要具备一次成像能力,拍摄速度要跟上产线生产速度,并考虑设备生产和成本核算的可行性。图源企业玻尔智造团队所积累的视觉检测经验,能够在面对不同材质、结构的被检品时,短时间内提出有效的光学整体方案。对于一般方案中的缺陷成像难点,如磨砂面轻微划伤、金属麻点差异成像等,玻尔智造亦有独家技术解决,能够得到清晰、经增强的缺陷图像。基于光学方案得到的清晰影像,玻尔智造检测设备进一步通过AI图像算法对缺陷进行识别。针对部分产品及结构的检测,玻尔智造已与行业龙头客户达成独家量产合作,进一步在实际生产线中积累一手且海量的被检品图像数据库。对于集成了光学方案与软件算法的检测设备整机,玻尔智造采用了模块化设计,包括机械平台、算法平台、光学模块及机械模块。整机设备可根据实际需求对模块进行组合,配合不同产品、厂商的检测要求,以单台设备兼容多款产品检测。部分外观缺陷检测整机设备展示,图源企业面对多面、多材质、多缺陷种类的检测对象,玻尔智造设备能够在2s内完成运动、成像、识别等系列操作,相比30s标准人工工时,时长缩短至1/15。目前,玻尔智造在某龙头客户电源产品检测领域的市占率居于首位,并将拓展更多材质与结构检测,适应更多检测对象的需求。同时,结合客户的全球化布局,玻尔也将进一步开拓印度、越南市场。未来,玻尔智造计划以消费电子行业为根基,依托在中国台湾既有的资源积累,进一步向半导体领域探索,现已能完成10微米级的陶瓷基板检测。玻尔智造新的研发及组装中心将落地上海、诸暨等。玻尔智造团队研发人员占比超60%,CEO&CTO陈志忠为台湾省台湾大学化学所物理化学博士,有20余年集成视觉技术经验,拥有个人发明专利40+,发表SCI 15+,曾作为核心成员带领某台企上市,并曾任某上市工业视觉企业核心研发负责人。团队创始成员曾任职行业内全球五百强企业,具备开拓视觉检测供应商经历,拥有较强先进制造落地经验。投资方观点本轮领投方浩澜资本主管合伙人王曦表示:消费电子行业的缺陷检测,随着某龙头客户体系全面用外观缺陷检测设备取代过去的人力检测,正面临巨大的市场机会。玻尔智造作为该龙头客户战略供应商之一,在巩固消费电子行业头部位置的同时,更向半导体领域进行开拓和探索。公司积累多种材质的海量图像数据库, 更为公司技术的迭代和建立壁垒打下基础。浩澜资本会坚定持续地运用我们在先进制造和半导体行业的产业资源和资本能力,支持坚定自主创新,扎实商业落地的“硬科技”企业进入健康发展的快车道。诸暨经开区作为智能视觉“万亩千亿”新产业平台,全力支持智能视觉产业链科创企业的创新和发展,通过一系列专项政策让人才留得住、让优质项目发展得好。
  • 油气管道缺陷漏磁成像检测仪
    table width="633" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="130" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="503" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"油气管道缺陷漏磁成像检测仪/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="130" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="503" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"清华大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="130" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="164" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"黄松岭/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="158" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="181" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"huangsling@tsinghua.edu.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="130" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="503" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="130" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="503" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 √合作开发 □其他/span/p/td/trtr style=" height:113px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="113"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/535b780e-209f-499c-8eac-4b2660e45d03.jpg" title="1.png" style="width: 400px height: 244px " width="400" vspace="0" hspace="0" height="244" border="0"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/66d725c7-b535-4688-a237-f7d2519803e6.jpg" title="2.png" style="width: 400px height: 267px " width="400" vspace="0" hspace="0" height="267" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"油气管道缺陷漏磁成像检测仪是由strong清华大学黄松岭教授科研团队/strong结合多年的管道电磁无损检测理论研究与工程经验,设计并研发的可strong针对不同口径/strong油气管道进行缺陷检测的系列化产品。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"油气管道缺陷漏磁成像检测仪采用本项目开发的先进的strong复合伸缩式柔性采集技术/strong,能够保证检测仪在强烈振动、管道局部变形等情况下与管道全方位有效贴合,在越障、管道缩径、过弯等特殊工况下表现出优异性能,并通过strong分布式磁路结构/strong优化和strong并行数字采集/strong单元实现了检测仪的轻型化、智能化。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"相比于国内外同类检测仪器,本项目油气管道缺陷漏磁成像检测仪在诸多关键技术指标上具有明显优势,检测仪能适应的管道strong最小转弯半径为1.5D/strong(D为管道外径),strong管道变形通过能力为18%D/strong,strong缺陷检测灵敏度为5%t/strong(t为壁厚),性能指标处于国际领先水平。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"检测仪还配套开发了strong数据自动分析智能专家系统/strong,能够对对管道缺陷及附属特征进行strong自动识别、量化、成像与评估/strong,支持先验判断和人工辅助分析,并基于管道压力评估和金属损失评估,提供在役管道评估维修策略。缺陷strong长度量化误差小于8mm、宽度量化误差小于20mm、深度量化误差小于10%t/strong。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"基于本项目的关键技术,已strong授权国内外发明专利112项/strong, 形成了完整的自主知识产权体系。开发的系列化油气管道缺陷漏磁成像检测仪已应用于西气东输、胜利油田、加拿大西部油气管道等国内外检测工程中,积累了丰富的仪器研发和工程检测经验,项目技术还可推广应用于铁路、钢铁、汽车、核能、航天等领域。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"油气管道缺陷漏磁成像检测仪适用于电磁无损检测领域,主要应用在石油和天然气输送管道的在线缺陷检测工程中,可及时发现油气管道的腐蚀缺陷以便采取积极措施进行修复,保障油气管道的正常运行、油气资源的安全输送。且本项目的关键技术成果还可推广应用于铁路、钢铁、汽车、核能、航天等领域的铁磁性构件的缺陷检测,如动车空心轴、金属管棒材、活塞杆、核电换热管、航空复合管等,对诸多行业的设备结构健康安全检测有积极的推动作用。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"经贸委于2000年发布《石油天然气管道安全监督与管理暂行规定》,要求“新建管道必须在一年内检测,以后视管道安全状况每一至三年检测一次”,相比于国外工程检测,本项目工程检测费用仅为国外检测费用的三分之一,具有较强的竞争优势。且本项目开发的系列油气管道缺陷漏磁成像检测仪已在西气东输、胜利油田、加拿大西部油气管道等众多油气管道检测工程中应用,积累了丰富的工程检测经验,缺陷识别准确率高、用户反馈良好。近年来,在“一带一路”战略框架下,我国将进一步加大与周边国家在油气领域的战略合作,这对油气安全输送与管道缺陷检测提出了更高的要求,且随着越来越多的油气管道投入运行和在役管道使用年限的增长,以及本项目开发的系列油气管道缺陷漏磁成像检测仪在检测性能、价格等方面的诸多优势,将拥有更多的工程检测需求和更广阔的市场应用前景。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"研发的油气管道缺陷漏磁成像检测仪具有自主知识产权,围绕油气管道检测理论研究及仪器研发核心关键技术,申请并授权了国内外发明专利112项,开展的相关项目获得多项省部级及行业奖项。/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"知识产权情况:/span/strong/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"中国发明专利:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"海底油气管道缺陷高精度内检测装置,ZL201310598517.0/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"一种全数字化高精度三维漏磁信号采集装置,ZL201310460761.0/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"油气管道缺陷内检测器里程测量装置,ZL201310598590.8/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"管道三维漏磁成像检测浮动磁化组件,ZL201410281568.5/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"浮动式管道内漏磁检测装置的手指探头单元,ZL201310598515.1/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"三维漏磁检测缺陷复合反演成像方法,ZL201510239162.5/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"管道三维漏磁成像缺陷量化方法,ZL201410799732.1/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"基于交直流复合磁化的漏磁检测内外壁缺陷的识别方法,ZL200810055891.5/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"基于三维有限元神经网络的缺陷识别和量化评价方法,ZL200610164923.6/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"管道腐蚀缺陷类型识别方法,ZL200410068973.5等/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"美国发明专利:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"IMAGING METHOD AND APPARATUS BASED ON MAGNETIC FULX LEAKAGE TESTING, US2016-0161448/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"AN INNER DETECTING DEVICE FOR SUBSEA OIL AND GAS PIPELINE/spanspan style=" line-height: 150% font-family:宋体",US2015-0346154/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"METHOD AND APPARATUS FOR QUANTIFYING PIPELINE DEFECT BASED ON MAGNETIC FLUX LEAKAGE TESTING, US2016-0178580/spanspan style=" line-height:150% font-family:宋体"等/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"英国发明专利:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"An inner detecting device for subsea oil gas pipeline, GB2527696/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"日本发明专利:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"海中の石油ガスパイプライン用の内部検出装置,JP6154911 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"加拿大发明专利:/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"AN INNER DETECTING DEVICE FOR SUBSEA OIL AND GAS PIPELINE/spanspan style=" line-height: 150% font-family:宋体",CA2,888,756/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2017/spanspan style=" line-height:150% font-family:宋体"年湖北省技术发明一等奖/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2014/spanspan style=" line-height:150% font-family:宋体"年北京市科学技术奖一等奖/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2014/spanspan style=" line-height:150% font-family:宋体"年国家知识产权局中国专利优秀奖/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2013/spanspan style=" line-height:150% font-family:宋体"年中国产学研创新成果奖/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2009/spanspan style=" line-height:150% font-family:宋体"年石油和化工自动化行业科学技术一等奖/span/p/td/tr/tbody/tablepbr//p
  • “测米神器”发明者竟是一群学生 深圳职业技术大学学生团队研发成果可同时检测米粒7种缺陷
    “粮食卫士”团队不断调试,确保检测准确性。 大米作为人们生活中的主食,其质量的保障非常重要。近日,深圳职业技术大学学生团队“粮食卫士”研发出国内第一款“360°米粒外观品质检测一体机”,可同时检测米粒的7种缺陷。目前,团队已申请核心专利4项,授权使用专利5项,软件著作权6项。该团队依托学校人工智能学院“现代农业视觉感知与智能技术联合实验室”和“工业视觉微缩实训中心”等资源,在深圳市农产品质量安全检测中心、深圳市粮食集团有限公司、深圳思谋科技有限公司等企业支持下,突破性地将近红外光测距系统,多相机光源触发响应的工业视觉集成技术,多模态检测算法巧妙融合,并基于深度训练籼米外观特定模型,开创性研发出具有自主知识产权的360°籼米外观品质检测一体机——粮食卫士。该产品具有检测精度高、检测速度快、检测成本低等特点,从根本上解决了人工检测和传统设备检测中易出现的漏检、检测速度慢、效率低问题,实现360°籼米外观品质检测并即刻生成可追溯性报告。“粮食卫士”项目负责人李秋贺表示,该款仪器可以同时检测米粒7种缺陷,包括互混米粒、发黄、圣白、病斑、留皮、留胚、碎米等。样机于2023年4月落地,并获得国家级软件测评中心出具的CNAS权威认证。目前,团队已申请核心专利4项,授权使用专利5项,软件著作权6项。人工智能学院院长杨金锋介绍说,该项目团队的学生通过学习、研究和实践,深入了解行业需求,提升技术水平和解决实际问题的能力。同时,通过与企业和产业界的紧密合作,学校也能更精准地掌握行业发展动态,为学生的就业和产业发展提供支持。“粮食卫士”团队不断推动教育创新,将课程与实践相结合:他们协助指导教师开发新工科与新农科交融课程,开展“农村科技特派员项目”,开展智慧农业实践项目,使学生在实践中掌握技能,培养创新意识和团队合作精神。据悉,该团队现已正式注册深圳市华稻农业科技有限公司,推动了我国大米产业的智能化、精细化和标准化质检,也为教育、就业和产业的融合提供了实践平台。
  • 自主研发无损检测线设备 让萝卜自动检测分级
    天津市西青区辛口镇小沙窝村投入资金自主研发的无损检测线设备进入试运营阶段。这将使沙窝萝卜通过设备检测自动分级,使萝卜按等级销售。   最近,记者来到辛口镇小沙窝村看到曙光沙窝萝卜合作社的生产车间里,有一个环形的检测线正开足马力工作着,这个小沙窝村村民自主研发的设备开始试运营。  检测线工作人员告诉记者:“从那边上来萝卜,一直往那头走,不合格的,直接探头就把它打下去了。合格的一直过来。过来到这边分四级。一级、二级、三级、四级。  记者在采访时看到,工作人员将一框框沙窝萝卜倒在检测线中,这些萝卜便开始沿着设备线进行检测。检测线采用的是声纳技术,通过一系列的检测,可以将种植出来的沙窝萝卜按照糖度、密度和色度进行区分。糖量方面,分为含糖量十以上,八到十,六到八和六以下四个等级。前三个等级按照由高到低的价格进行销售,第四个等级做成深加工产品。等级越高,沙窝萝卜的销售价格越高。如果达到了最高标准一级的话,每个沙窝萝卜的市场价格可以卖到三百元。等级较低的沙窝萝卜,将以甜点的方式销售。并冠以萝卜脆、萝卜糕、萝卜酥三种小包装休闲食品,推向超市、宾馆、咖啡厅、酒吧等场所。  小沙窝村党支部书记李树光告诉记者:“咱这检测线带来的影响和增收方面,没法衡量了。制定出来了标准,而且,它能达到这个标准。”  据了解,这个检测线投资四百多万元,最近半个月进入试运营阶段,二零一三年一月一日前后正式运营。  小沙窝村党支部书记李树光说:“科技是第一生产力,以后还得重视科技。人才必须重视。现在是一般的工作人员配齐了。下一步我要建立一个研发团队,从萝卜的附加值上有提升,现在只有三个专利,萝卜糕、萝卜酥、萝卜脆,下一步要在其他产品上还要研发。”
  • 晶圆表面缺陷检测方法综述【上】
    摘要晶圆表面缺陷检测在半导体制造中对控制产品质量起着重要作用,已成为计算机视觉领域的研究热点。然而,现有综述文献中对晶圆缺陷检测方法的归纳和总结不够透彻,缺乏对各种技术优缺点的客观分析和评价,不利于该研究领域的发展。本文系统分析了近年来国内外学者在晶圆表面缺陷检测领域的研究进展。首先,介绍了晶圆表面缺陷模式的分类及其成因。根据特征提取方法的不同,目前主流的方法分为三类:基于图像信号处理的方法、基于机器学习的方法和基于深度学习的方法。此外,还简要介绍了代表性算法的核心思想。然后,对每种方法的创新性进行了比较分析,并讨论了它们的局限性。最后,总结了当前晶圆表面缺陷检测任务中存在的问题和挑战,以及该领域未来的研究趋势以及新的研究思路。1.引言硅晶圆用于制造半导体芯片。所需的图案是通过光刻等工艺在晶圆上形成的,是半导体芯片制造过程中非常重要的载体。在制造过程中,由于环境和工艺参数等因素的影响,晶圆表面会产生缺陷,从而影响晶圆生产的良率。晶圆表面缺陷的准确检测,可以加速制造过程中异常故障的识别以及制造工艺的调整,提高生产效率,降低废品率。晶圆表面缺陷的早期检测往往由经验丰富的检测人员手动进行,存在效率低、精度差、成本高、主观性强等问题,不足以满足现代工业化产品的要求。目前,基于机器视觉的缺陷检测方法[1]在晶圆检测领域已经取代了人工检测。传统的基于机器视觉的缺陷检测方法往往采用手动特征提取,效率低下。基于计算机视觉的检测方法[2]的出现,特别是卷积神经网络等神经网络的出现,解决了数据预处理、特征表示和提取以及模型学习策略的局限性。神经网络以其高效率、高精度、低成本、客观性强等特点,迅速发展,在半导体晶圆表面缺陷检测领域得到广泛应用。近年来,随着智能终端和无线通信设施等电子集成电路的发展,以及摩尔定律的推广,在全球对芯片的需求增加的同时,光刻工艺的精度也有所提高。随着技术的进步,工艺精度已达到10纳米以下[5]。因此,对每个工艺步骤的良率提出了更高的要求,对晶圆制造中的缺陷检测技术提出了更大的挑战。本文主要总结了晶圆表面缺陷检测算法的相关研究,包括传统的图像处理、机器学习和深度学习。根据算法的特点,对相关文献进行了总结和整理,对晶圆缺陷检测领域面临的问题和挑战进行了展望和未来发展。本文旨在帮助快速了解晶圆表面缺陷检测领域的相关方法和技能。2. 晶圆表面缺陷模式在实际生产中,晶圆上的缺陷种类繁多,形状不均匀,增加了晶圆缺陷检测的难度。在晶圆缺陷的类型中,无图案晶圆缺陷和图案化晶圆缺陷是晶圆缺陷的两种主要形式。这两类缺陷是芯片故障的主要原因。无图案晶圆缺陷多发生在晶圆生产的预光刻阶段,即由机器故障引起的晶圆缺陷。划痕缺陷如图1a所示,颗粒污染缺陷如图1b所示。图案化晶圆缺陷多见于晶圆生产的中间工序。曝光时间、显影时间和烘烤后时间不当会导致光刻线条出现缺陷。螺旋激励线圈和叉形电极的微纳制造过程中晶圆表面产生的缺陷如图2所示。开路缺陷如图2 a所示,短路缺陷如图2 b所示,线路污染缺陷如图2 c所示,咬合缺陷如图2d所示。图1.(a)无图案晶圆的划痕缺陷;(b)无图案晶圆中的颗粒污染。图2.(a)开路缺陷,(b)短路缺陷,(c)线路污染,以及(d)图案化晶圆缺陷图中的咬合缺陷。由于上述晶圆缺陷的存在,在对晶圆上所有芯片进行功能完整性测试时,可能会发生芯片故障。芯片工程师用不同的颜色标记测试结果,以区分芯片的位置。在不同操作过程的影响下,晶圆上会产生相应的特定空间图案。晶圆图像数据,即晶圆图,由此生成。正如Hansen等在1997年指出的那样,缺陷芯片通常具有聚集现象或表现出一些系统模式,而这种缺陷模式通常包含有关工艺条件的必要信息。晶圆图不仅可以反映芯片的完整性,还可以准确描述缺陷数据对应的空间位置信息。晶圆图可能在整个晶圆上表现出空间依赖性,芯片工程师通常可以追踪缺陷的原因并根据缺陷类型解决问题。Mirza等将晶圆图缺陷模式分为一般类型和局部类型,即全局随机缺陷和局部缺陷。晶圆图缺陷模式图如图3所示,局部缺陷如图3 a所示,全局随机缺陷如图3b所示。全局随机缺陷是由不确定因素产生的,不确定因素是没有特定聚类现象的不可控因素,例如环境中的灰尘颗粒。只有通过长期的渐进式改进或昂贵的设备大修计划,才能减少全局随机缺陷。局部缺陷是系统固有的,在晶圆生产过程中受到可控因素的影响,如工艺参数、设备问题和操作不当。它们反复出现在晶圆上,并表现出一定程度的聚集。识别和分类局部缺陷,定位设备异常和不适当的工艺参数,对提高晶圆生产良率起着至关重要的作用。图3.(a)局部缺陷模式(b)全局缺陷模式。对于面积大、特征尺寸小、密度低、集成度低的晶圆图案,可以用电子显微镜观察光刻路径,并可直接进行痕量检测。随着芯片电路集成度的显著提高,进行芯片级检测变得越来越困难。这是因为随着集成度的提高,芯片上的元件变得更小、更复杂、更密集,从而导致更多的潜在缺陷。这些缺陷很难通过常规的检测方法进行检测和修复,需要更复杂、更先进的检测技术和工具。晶圆图研究是晶圆缺陷检测的热点。天津大学刘凤珍研究了光刻设备异常引起的晶圆图缺陷。针对晶圆实际生产过程中的缺陷,我们通过设备实验对光刻胶、晶圆粉尘颗粒、晶圆环、划痕、球形、线性等缺陷进行了深入研究,旨在找到缺陷原因,提高生产率。为了确定晶圆模式失效的原因,吴明菊等人从实际制造中收集了811,457张真实晶圆图,创建了WM-811K晶圆图数据集,这是目前应用最广泛的晶圆图。半导体领域专家为该数据集中大约 20% 的晶圆图谱注释了八种缺陷模式类型。八种类型的晶圆图缺陷模式如图4所示。本综述中引用的大多数文章都基于该数据集进行了测试。图4.八种类型的晶圆映射缺陷模式类型:(a)中心、(b)甜甜圈、(c)边缘位置、(d)边缘环、(e)局部、(f)接近满、(g)随机和(h)划痕。3. 基于图像信号处理的晶圆表面缺陷检测图像信号处理是将图像信号转换为数字信号,再通过计算机技术进行处理,实现图像变换、增强和检测。晶圆检测领域常用的有小波变换(WT)、空间滤波(spatial filtering)和模板匹配(template matching)。本节主要介绍这三种算法在晶圆表面缺陷检测中的应用。图像处理算法的比较如表1所示。表 1.图像处理算法的比较。模型算法创新局限小波变换 图像可以分解为多种分辨率,并呈现为具有不同空间频率的局部子图像。防谷物。阈值的选择依赖性很强,适应性差。空间滤波基于空间卷积,去除高频噪声,进行边缘增强。性能取决于阈值参数。模板匹配模板匹配算法抗噪能力强,计算速度快。对特征对象大小敏感。3.1. 小波变换小波变换(WT)是一种信号时频分析和处理技术。首先,通过滤波器将图像信号分解为不同的频率子带,进行小波分解 然后,通过计算小波系数的平均值、标准差或其他统计度量,分析每个系数以检测任何异常或缺陷。异常或缺陷可能表现为小波系数的突然变化或异常值。根据分析结果,使用预定义的阈值来确定信号中的缺陷和异常,并通过识别缺陷所在的时间和频率子带来确定缺陷的位置。小波分解原理图如图5所示,其中L表示低频信息,H表示高频信息。每次对图像进行分解时,图像都会分解为四个频段:LL、LH、HL 和 HH。下层分解重复上层LL带上的分解。小波变换在晶圆缺陷特征的边界处理和多尺度边缘检测中具有良好的性能。图5.小波分解示意图。Yeh等提出了一种基于二维小波变换(2DWT)的方法,该方法通过修正小波变换模量(WTMS)计算尺度系数之间的比值,用于晶圆缺陷像素的定位。通过选择合适的小波基和支撑长度,可以使用少量测试数据实现晶圆缺陷的准确检测。图像预处理阶段耗费大量时间,严重影响检测速度。Wen-Ren Yang等提出了一种基于短时离散小波变换的晶圆微裂纹在线检测系统。无需对晶圆图像进行预处理。通过向晶圆表面发射连续脉冲激光束,通过空间探针阵列采集反射信号,并通过离散小波变换进行分析,以确定微裂纹的反射特性。在加工的情况下,也可以对微裂纹有更好的检测效果。多晶太阳能硅片表面存在大量随机晶片颗粒,导致晶圆传感图像纹理不均匀。针对这一问题,Kim Y等提出了一种基于小波变换的表面检测方法,用于检测太阳能硅片缺陷。为了更好地区分缺陷边缘和晶粒边缘,使用两个连续分解层次的小波细节子图的能量差作为权重,以增强每个分解层次中提出的判别特征。实验结果表明,该方法对指纹和污渍有较好的检测效果,但对边缘锋利的严重微裂纹缺陷无效,不能适用于所有缺陷。3.2. 空间过滤空间滤波是一种成熟的图像增强技术,它是通过直接对灰度值施加空间卷积来实现的。图像处理中的主要作用是图像去噪,分为平滑滤镜和锐化滤镜,广泛应用于缺陷检测领域。图6显示了图像中中值滤波器和均值滤波器在增加噪声后的去噪效果。图6.滤波去噪效果图:(a)原始图像,(b)中值滤波去噪,(c)均值滤光片去噪。Ohshige等提出了一种基于空间频率滤波技术的表面缺陷检测系统。该方法可以有效地检测晶圆上的亚微米缺陷或异物颗粒。晶圆制造中随机缺陷的影响。C.H. Wang提出了一种基于空间滤波、熵模糊c均值和谱聚类的晶圆缺陷检测方法,该方法利用空间滤波对缺陷区域进行去噪和提取,通过熵模糊c均值和谱聚类获得缺陷区域。结合均值和谱聚类的混合算法用于缺陷分类。它解决了传统统计方法无法提取具有有意义的分类的缺陷模式的问题。针对晶圆中的成簇缺陷,Chen SH等开发了一种基于中值滤波和聚类方法的软件工具,所提算法有效地检测了缺陷成簇。通常,空间过滤器的性能与参数高度相关,并且通常很难选择其值。3.3. 模板匹配模板匹配检测是通过计算模板图像与被测图像之间的相似度来实现的,以检测被测图像与模板图像之间的差异区域。Han H等从晶圆图像本身获取的模板混入晶圆制造工艺的设计布局方案中,利用物理空间与像素空间的映射,设计了一种结合现有圆模板匹配检测新方法的晶圆图像检测技术。刘希峰结合SURF图像配准算法,实现了测试晶圆与标准晶圆图案的空间定位匹配。测试图像与标准图像之间的特征点匹配结果如图7所示。将模式识别的轮廓提取技术应用于晶圆缺陷检测。Khalaj等提出了一种新技术,该技术使用高分辨率光谱估计算法提取晶圆缺陷特征并将其与实际图像进行比较,以检测周期性2D信号或图像中不规则和缺陷的位置。图7.测试图像与标准图像之间的特征点匹配结果。下接:晶圆表面缺陷检测方法综述【下】
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。 缺陷检查和复检 随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。 传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。 众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。 原子力显微镜 通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。 使用原子力显微镜自动缺陷复检 基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。 AOI和ADR-AFM的比较 图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。 ADR-SEM和ADR-AFM的比较 除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。
  • 科学家开发仪器检测系统 自动识别食品生产线异物
    我国是水果生产与消费大国,我国水果不但品种丰富,而且以水果为原料的食品如罐头、果冻等加工产业也颇具规模。然而,在水果果料的加工过程中可能会不经意地混入诸如毛发、纤维丝、纸屑、金属、油漆等异物,从而对产品质量和消费者心理造成不良影响。目前大多数食品生产企业还是采用人工裸眼检测加工过程中在制品是否沾染异物,存在效率低、漏检率高、劳动量大等缺点。  据《农业工程学报》报道,我国科学家已开展对果冻、罐头生产线上灌装前切割成块状的多种水果果料进行图像监控、自动判断是否沾有异物的应用研究,并取得一定成果。  人们吃到甚或看到食品中有异物总是很恶心,为此而向销售、生产商索赔的事件不时发生。生产商为确保食品中无异物,需要在生产中设置多道检测工位,绝大多数是人工裸眼目检。人的眼脑手配合具有高度智能和柔性,能够识别和提出各种异物缺陷,然而视觉疲劳、生理和主观因素会带来工作质量的差异和效率低下。利用机器视觉技术来代替人工检测,是现代化生产的发展趋势。  随着提高产品质量的要求和劳动力成本日益升高的形势,企业迫切希望应用机器视觉技术实现工业生产自动化检测。但是在农产品质量和食品加工质量方面,国内外原有研究成果主要只针对完整且表面相对干燥的果体进行大小、形状、成熟度、表面损伤与缺陷等的检测与分级,而在异物检测方面,只有针对单一品种果料如桔瓣上的某种异物进行检测的研究。  罐头、果冻等产品加工中,为了方便灌装,果肉一般分割成块状,但各种水果分割后的形状和大小不同,而异物形状、大小也多样,如毛发、纤维丝为细长型,油漆、金属屑等为块状 各品种水果颜色多样,如苹果为淡黄色、橘瓣为深黄色、椰果为白色,而各种异物的颜色也多样,如头发为黑色、油漆和纤维丝多为彩色、铁屑为银白或黑色。各种异物和果肉之间的尺度、色度差异情况很不相同,这些特点给异物自动识别带来了巨大挑战。  “基于机器视觉的果肉多类型异物识别方法”一文作者针对罐头、果冻生产中的多品种、多规格、湿态反光果肉上各种可能出现的异物,研究开发了一套基于机器视觉技术的多类型异物自动检测系统。利用机械装置将果料自动单层排布在传送带上,安装在适当位置的工业相机对传送中的果料进行监视拍照,将采集到的果料图像输送到计算机中,由图像处理软件对其进行分析判断。根据果料与异物的颜色和亮度差异特点,将各品种果料分成两大类,分别采用不同的图像处理策略识别异物。  对颜色比较丰富的果料如黄桃、菠萝等根据果肉与异物的颜色进行分割识别异物 对颜色为白色或透明的果肉如椰果、明胶等根据异物的边缘轮廓识别异物。经过大量试验验证,该系统能够有效地检测出多品种果料输送线上的多类型异物并将含有异物的果料剔除,为企业自动化生产与检测提供了技术支撑。  此研究报告刊登在《农业工程学报》2011年第3期,题为“基于机器视觉的果肉多类型异物识别方法”,第一作者为华南理工大学机械与汽车工程学院全燕鸣教授。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。缺陷检查和复检随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。使用原子力显微镜自动缺陷复检基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术中半导体器件尺寸的不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM测量的自动化简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础,在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI,AFM的高垂直分辨率有助于可靠的三维缺陷分类。非接触式测量模式确保了无创伤表面表征,并防止AFM针尖磨损,从而确保在许多连续测量中能够维持高分辨率。作者:Sang-Joon Cho, Vice President and director of R&D Center, Park Systems Corp.Ilka M. Hermes, Principal Scientist, Park Systems Europe.
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    作者: Sang-Joon Cho, Park Systems Corp.副总裁兼研发中心总监、Ilka M. Hermes, Park Systems Europe 首席科学家利用原子力显微镜进行的自动缺陷复检,通过纳米级的分辨率在三维空间中可视化缺陷。因此,纳米级成像设备是制造过程的一个重要组成部分,它被视为当今半导体行业中最理想的技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行精确检测和准确分类。 与时俱进的光刻工艺使得生产的半导体器件越来越微小化。器件尺寸一旦减小,晶圆衬底上的纳米级缺陷就限制了器件的性能使用。因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征技术。由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,进而损害定量成像和随后的缺陷分类。而原子力显微镜 (AFM) 自动缺陷复检 (ADR)技术则有效地解决了该问题。该技术利用 AFM 常用的纳米分辨率,能够在三维空间中可视化缺陷,大大减少了缺陷分类的不确定性。因此,ADR-AFM 成为了当今半导体行业缺陷复检最理想的技术。缺陷检查和复检由于摩尔定律,半导体器件变得越来越小,需要检查的缺陷(DOI)大小也在减小。DOI可能会降低半导体器件性能的缺陷,因此对工艺良率的管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战。合适的表征技术必须能够在两位数或一位数纳米范围内以高横向分辨率和垂直分辨率对缺陷进行无创成像。一般来说,半导体行业的缺陷分析包含两个步骤。第一步:缺陷检测。利用吞吐量虽高但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,接下来需要依赖高分辨率技术进行缺陷复检。第二步:缺陷复检。利用高分辨率显微镜方法,如透射电子显微镜(TEM)或扫描电子显微镜(SEM)或原子力显微镜(AFM)。通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少检查的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,而非接触测量模式的AFM则有效地避免了该影响。它不仅可以无创地扫描表面,还有高横向和垂直分辨率对缺陷进行成像。因此,原子力显微镜能提供可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中可达到最高的垂直分辨率。除接触模式外,AFM还可以启用动态测量模式,即悬臂在样品表面上方振荡。由此,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。随着自动化原子力显微镜的更新发展,原子力显微镜的应用越来越广泛,从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正发展成为用于缺陷分析的新一代在线测量解决方案。使用原子力显微镜自动缺陷复检AFM 缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。基于此,用户最初会在 AOI 和 AFM 之间的附加步骤中,手动在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤不仅非常耗时还大大降低了吞吐量。另外,使用 AFM 的自动缺陷复检需要从 AOI 数据中导入缺陷坐标。而缺陷坐标的导入需要准确对准晶圆及精减AOI 和 AFM 之间的载物台误差。位置精度比AOI 更高的光学分析工具(例如Candela),可以有效减少中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。自动化的测量过程无需用户在场,吞吐量还增加了一个数量级。为了保持纳米级的针尖半径和连续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可有效防止探针针尖磨损并确保对缺陷进行精确地定量复检。△图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 在相同纳米级缺陷下所产生的不同缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 则通过机械直接扫描缺陷表面进行成像。除了横宽,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。可视化的缺陷三维形状确保了缺陷分类的可靠性和精确性,而这些是AOI无法实现的。当对比分别利用 AOI 和 ADR-AFM 确定缺陷的大小时,我们发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的 91 nm 尺寸的三分之一。在测量“pit”缺陷 5 和 6 时,我们观察到了 AOI 和 ADR-AFM 之间的最大偏差。AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。上述比较清楚地表明,仅用AOI不足以进行缺陷的成像和分类。△图2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM, ADR-SEM 也可以进行高分辨率的缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检。在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先需要通过ADR-SEM对晶圆的相同区域进行成像,然后通过ADR-AFM进行测量(图2)。AFM图像显示,ADR-SEM扫描的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可视性,图2a表明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术不断创新,半导体器件尺寸不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM自动化的测量简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础。在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI性能,AFM的高垂直分辨率有助于进行可靠的三维缺陷分类。非接触式测量模式确保了无创伤的表面表征,并有效防止AFM针尖磨损,从而确保在许多连续测量中能够依旧保持精准的高分辨率。
  • 【国产替代】正业科技加快半导体检测进程 推出全自动半导体X-RAY检测设备
    半导体产业是国民经济中基础性、关键性和战略性的产业。半导体检测从设计验证到封装测试都不可或缺,贯穿整个半导体制造过程,具有无法替代的重要地位。全球半导体检测设备市场呈现高集中的特点。目前绝大部分半导体设备依然高度依赖进口。科技竞赛不可避免 半导体检测设备国产化意义重大从以上SEMI数据,2021年中国(大陆)半导体设备销售额296.2亿美元,占全球市场的28.9%,同比2020年增长58%。半导体测试可以按生产流程可以分为三类:验证测试、晶圆测试、封装检测,晶圆测试和封装检测设备约占半导体设备比例20%,被海外公司垄断,国产替代率不足10%。国内成熟晶圆制造和封装测试检测设备市场存在较大的供应缺口。正是在这机遇下,本土“工业检测智能装备”提供商广东正业科技股份有限公司公司(简称,正业科技)迎来快速发展。国产替代势在必行 正业科技推出全自动检测方案在半导体领域正业科技自主研发的半导体分立元器件在线全自动X-RAY检测设备为半导体行业客户解决了检测效率的难题。该产品主要检测半导体内部缺陷,识别挑选良品与不良品,避免残次品流入半导体芯片成品市场,该款设备其漏判率为0%,误判率为3‰,可替代进口单机X光成像设备的人工目检方式。正业全自动X-RAY检测设备在效率上比同类国际品牌提升了2-3倍,仅需1人就可以操作多台设备,价格仅为国外品牌的一半,为企业提质增效。此款设备已经应用于某全球知名半导体企业,同时也在行业中受到广大客户的一致好评。同时公司也将针对半导体、电子元器件、SMT等推出2.5D X-RAY检测设备以及智能点料机等产品,丰富产品结构,逐步扩展市场应用领域。全自动半导体X-RAY芯片缺陷检测设备全自动半导体X-RAY芯片缺陷检测设备自适应7英寸、11英寸、13英寸料盘,通过算法对图像进行分析、判断,确定良品与不良品,同时通过虚拟复盘功能,实现不拆料盘自动检测IC内部异物及线性缺陷。该设备具有一套X-ray成像系统,四轴机器人上下料,可对接AGV小车自动上下料、自动读取包装单元的信息、对每粒芯片进行自动检测、标记并上传MES。检测项:1.线型坏品,如塌线、线摆、线紧、线弧高、线弧低、平顶、飞线、断线等;2.脚型坏品,如歪钉脚、翘钉脚、脚变形等;3.球型坏品,球大小、球走位、球畸形等;4.Die走位坏品;5.异物坏品,如金属丝、多余线、多余Die、断颈坏品等。半自动半导体X-RAY检测设备半自动半导体X-RAY检测设备具有一套X-ray成像系统,分为2D和2.5D检测,广泛应用于电子半导体、SMT和PCB板等领域,可检测分立元器件、功率元器件相关的IC、电容器、电阻、二极管、多层线路板等内部缺陷。为了满足不同客户的要求,我们做了以下三款不同的机型1.2D机型,主要针对可以平面检测的缺陷产品,如BGA的气泡检测、线宽检测、焊点大小检测、断线、漏焊等检测;2.2.5D机型,在2D的基础上又增加了线形、线高、变形量以及曲折检测,可以对产品的左右两侧面进行检测,其检测范围更广,适用能力更强;3.2.5D+360°旋转机型,通过产品的旋转达到对产品不同侧面的检测,这样可以完整的对一个产品或者位置点清晰的四周检测,达到3D检测效果。智能点料机智能点料机具有一套X-ray成像系统,抽屉式伸缩放料托盘,同时具有5组有无产品确认感应。主要针对半导体、SMT行业内的编带元件进行点数,可适应7英寸-15英寸料盘(厚度4-80mm)。可配备扫码枪、扫码CCD和打印机等工具,将检测结果上传MES系统,并将结果根据需求格式打印出来贴附于产品上。应用范围:薄膜电容、电阻、二极管、三极管和IC等常见物料,物料包装包含裸盘和防静电塑封包装等。其数据库持续更新、可以无缝对接ERP,MES等、支持任意格式SPC统计、图片和结果自动保存。目前,全球分立器件市场以MOSFET和IGBT为代表的功率半导体产品成为最大的热门,功率半导体器件广泛应用于各类电子产品,中国是全球最大的功率半导体消费国,伴随国内功率半导体行业进口替代的发展趋势,未来中国功率半导体行业将继续保持增长。在科技发展与国家战略双轮驱动的背景下,正业科技将专注于分立器件和功率半导体领域的检测产品开发,深耕科技研发,扩大市场规模,提升国产品牌影响力,力争率先进入国际分立器件检测的排头兵,将半导体器件的质量提升一个新高度。
  • 日立推出暗场晶圆缺陷检测系统DI4600,吞吐量提高20%
    日立暗场晶圆缺陷检测系统DI46002023年12月6日,日立高新宣布推出日立暗场晶圆缺陷检测系统DI4600,这是一种用于检测半导体生产线上图案化晶圆上颗粒和缺陷的新工具。DI4600 增加了一个专用服务器,该服务器提供了检测颗粒和缺陷所需的显著增强的数据处理能力,从而提高了检测能力。与之前的型号相比,通过缩短晶圆转移时间和改进晶圆检测期间的操作,系统的吞吐量也提高了约 20%。DI4600将实现半导体生产线中高精度的缺陷监测,这将有助于提高产量和更好的拥有成本,促进半导体产量持续扩大。发展背景在当前的社会环境中,DRAM和FLASH等存储器半导体设备,MPU和GPU等逻辑半导体不仅用于智能手机、笔记本电脑和PC,还用于生成人工智能(AI)计算和自动驾驶。随着半导体器件的萎缩和复杂性的发展,对制造过程清洁度和检测能力的要求也变得更加严格。半导体制造商不断努力提高竞争力,尤其是在性能和制造成本方面。图案化晶圆检查工具通过检查生产晶圆的表面是否有颗粒和缺陷,有助于产量管理,使工程师能够监测半导体处理工具的清洁度变化和趋势,因此对半导体器件的性能和制造成本有很大影响。关键技术1.高通量与现有型号相比,通过减少晶圆转移时间、改善晶圆检测期间的操作和优化数据处理顺序,吞吐量提高了约 20%。2.高精度检测由于增加了专用服务器,因此提高了检测精度,该服务器提供了检测颗粒和缺陷所需的显着增强的数据处理能力。
  • 工信部责令中国汽研整改油耗检测缺陷
    今年3.15期间,中国汽研旗下油耗检测中心被央视曝光,旗下长春与天津两家汽车检测机构存在油耗造假的现状。而涉及方之一的海马汽车,之前便发布公告称否认造假,称所有上市车型均达到国家相关技术标准,公司所有车型的油耗检测均按照《轻型汽车燃料消耗量试验方法》(GB/T19233-2008)的相关规定委托第三方检测机构进行检测 公司所有上市车型油耗均符合《乘用车燃料消耗量限值》(GB19578-2004)标准要求。  5月23日,中国汽研发布公告称,已经收到了工信部的责令整改通知书,对检测中心油耗检测质量控制存在的严重缺陷,责令检测中心自2014年6月1日起进行为期六个月的整改。整改期间,工信部将暂停受理检测中心有关检测报告。  自2009年起,工信部陆续出台了多项政策,强化对汽车油耗的管理,要求上市销售车型必须通过国家指定的第三方检测机构确认,其中《轻型汽车燃料消耗量标示管理规定》明确指出,要求车辆模拟市区、高速、市郊(包括公路)三种行驶工况油耗,在车辆中明确标示,以引导消费者购买。而中国汽研旗下的油耗检测中则处于该项检测的垄断地位。  中国汽研方面表示,由于公司所属检测中心个别部门管理不善,导致在本次油耗检测检查中出现质量控制缺陷,暴露出公司检测中心在内控管理方面存在问题。公司管理层对由此造成的影响深表歉意。而此次责令整改是由于公司所属检测中心个别部门管理不善造成,预计会对公司一定时期的相关业务产生影响。  瑞银证券方面表示,中国汽研在短期内可能面临下行风险,由于公司部分核心检测业务被勒令整改,这导致技术服务业务的估值和今年盈利都将面临向下调整的风险。虽然新订单应能弥补部分技术服务业务的下滑,但是程度可能有限。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制