超快速光电探测器

仪器信息网超快速光电探测器专题为您提供2024年最新超快速光电探测器价格报价、厂家品牌的相关信息, 包括超快速光电探测器参数、型号等,不管是国产,还是进口品牌的超快速光电探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超快速光电探测器相关的耗材配件、试剂标物,还有超快速光电探测器相关的最新资讯、资料,以及超快速光电探测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超快速光电探测器相关的厂商

  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询
  • 深圳市汇成探测科技有限公司始建于2007年是一家专业从事金属探测器研发、生产、销售为一体的企业。公司严格依照ISO9001国际质量标准体系的要求,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和保证体系。目前公司主营品种齐全有地下可视成像仪、可视地下金属探测器、远程地下金属探测器、探盘式地下金属探测器、手持金属探测器。品质彰显价值,服务缔造信誉。为广大客户提供更优质的服务,公司以“专业、信誉、质量第一、用户至上”为经营宗旨,以高品质的产品与服务满足客户的梦想。追求卓越是我公司致力追求的目标。我们更坚信:有了您的支持和我们不断的努力,我们与社会各界同仁携手并进,开拓创新,共创美好未来。
    留言咨询
  • 400-860-5168转4131
    森泉光电有限公司是专业从事焊接设备、光电相关领域仪器设备代理与系统集成业务的综合性服务商,公司总部设在青岛,北京、上海设有分公司,业务范围涵盖国内各著名高校和各科研院所。 我们拥有优质的产品,稳定的供货渠道,强大的技术支持和成熟的销售服务经验,可提供全面的光电应用解决方案,竭诚为您提供服务。森泉为您的科研事业添砖加瓦: 1) 激光控制:电流源、温控器、温度控制器、激光控制器、激光伺服器、偏移锁相伺服器、激光器控制、伺服设备与系统等等2) 探测器:光电探测器、高速光电探测器、位置传感器、单光子计数器、单光子探测器、CCD、光谱仪、椭偏仪、光谱分析系统等等3) 定位与加工:纳米定位系统、微纳运动系统、多维位移台、旋转台、位移台、微型操作器等等4) 光源:半导体激光器、固体激光器、单频激光器、单纵模激光器、窄线宽激光器、光通讯波段激光器、CO2激光器、中红外激光器、染料激光器、飞秒超快激光器等等5) 光机械件:用于光路系统搭建的高品质无应力光机械件,如光学调整架、镜架、挠性镜架、真空镜架、支撑杆、固定底座等等6) 光学平台:主动隔振平台、气浮隔振台、刚性工作台、实验桌、隔振、隔磁、隔声综合解决方案等等7) 光学元件:光学隔离器、光隔离器、棱镜、阿米西棱镜、三角棱镜、直角棱镜、二向色镜、玻璃板、光学窗口片、光纤、偏转镜、反射镜、透射镜、半透半反镜、滤光片、衰减片、玻片等等8)高光谱:高光谱解决方案,光谱仪、可调谐光源、光源
    留言咨询

超快速光电探测器相关的仪器

  • 仪器简介:硅光电探测器(Si)&mdash &mdash &mdash 室温型探测器,波长范围:200-1100nm技术参数:型号列表及主要技术指标:技术指标\型号名称 DSi200 紫敏硅探测器 DSi300 硅探测器 进口紫外增强型 国产低暗电流型有效接收面积(mm2) 100(&Phi 11.28) 100(10× 10)波长范围(nm) 200-1100 300-1100峰值波长(nm) ------- 800± 20峰值波长响应度(A/W) 0.52 0.4254nm的响应度(A/W) 0.14(0.09) -------响应时间(&mu s) 5.9 -------工作温度范围(℃) -10~+60 -------储存温度范围(℃) -20~+70 -------分流电阻RSH(M&Omega ) 10(5) -------等效噪声功率NEP (W/&radic Hz) 4.5× 10-13 -------暗电流(25℃;-1V) ------- 1X10-8&mdash 5× 10-11 A结电容(pf) 4500 3000(-10V)信号输出模式 电流 电流输出信号极性 正(P) 正(P)主要特点:■ DSi200/DSi300硅光电探测器硅光电探测器(Si)&mdash &mdash &mdash 室温型探测器,波长范围:200-1100nm两种型号的探测器室的外观相同,其中:◆ DSi200型内装进口紫敏硅光电探测器◆ DSi300型内装国产低暗电流硅光电探测器◆ 推荐配合I-V放大器(型号:ZAMP)使用 硅光电探测器使用建议:◆ DSi200/DSi300均为电流输出模式的光电探测器,在接入示波器、锁相放大器等要求电压输入的信号处理器前,建议采用I-V跨导放大器ZAMP(Page85做为前级放大并转换为电压信号,标明可输入电流信号的信号处理器可直接接入信号,但仍建议增加前置放大器以提高探测灵敏度;◆ DSi200/DSi300配合DCS103数据采集系统(Page95)使用时,建议采用I-V跨导放大器以提高探测灵敏度;◆ DSi200/DSi300配合DCS300PA数据采集系统(Page95)使用时,由于DCS300PA双通道已集成信号放大器,故可不再需要另行选配前置放大器。
    留言咨询
  • DPe系列为常温型热释电探测器,适合经济型的测量,专门用于红外波段的光谱测量。热电元件由独特的薄膜热释电PZT材料组成,允许红外辐射被有源区域高效吸收。具有更高的灵敏度、更低的噪声、更好的频率响应以及更好的温度稳定性。热释电探测器使用建议:DPe系列热释电探测器必须配合锁相放大器,推荐使用DCS500PA。DPe系列热释电探测器的响应率与调制频率成反比,最优工作频率在低频(10HZ左右)区域。DPe系列热释电探测器为全波段响应的探测器,实际工作波长受窗口材料限制,可根据实际需要来选择合适的窗口。 频率响应曲线: 窗口透过率曲线: 光谱响应曲线: 常温型热释电探测器型号列表及主要技术指标:型号/参数DPe16DPe22工作区域面积(㎜2)1.65×1.651.65×1.65光敏面直径尺寸(㎜2)3.73.7窗口材料类型A4A3波长范围(μm)2-162-22信号输出模式电压电压响应率(V/W)12.75×1052.75×105典型值D* [cmHz1/2W-1] 14.32×1084.32×108NEP(W/Hz1/2)13.82×10-103.82×10-10反馈电阻(GOhm)1010反馈电容(fF)200±50 200±50 工作电压(V)±2.2~±8±2.2~±8环境温度(℃)-10~+50-10~+50输出信号极性正(P)正(P)备注125℃,10Hz,带宽1Hz黑体T = 500K;E = 38 W / m2不含窗口材料
    留言咨询
  • 仪器简介:DSR100系列探测器光谱响应度测量系统,是适应不断增长的材料科学对检测设备的需求而诞生的。它结合了北京卓立汉光仪器有限公司给多家科研单位定制的探测器光谱响应测量系统的特点和经验,采用国家标准计量方法进行测试,是光电探测器、器件、光电转换材料科研和检验的必备工具。技术参数:型号 DSR100UV-A DSR100UV-B DSR100IR-A DSR100IR-B波长范围 200~2500nm 1~14&mu m测试光斑\光斑模式 均匀平行光斑 汇聚光斑 均匀平行光斑 汇聚光斑尺寸 Ф2~20mm Ф0.3~3mm Ф2~20mm Ф0.3~3mm 光源 光源 氘灯/溴钨灯复合光源 溴钨灯/碳化硅复合光源光强稳定性 &le 0.8% &le 2%光源切换方式 软件自动切换 软件自动切换三光栅单色仪 光 谱分辨率 <0.1nm(435.8nm@1200g/mm光栅) <2.5nm (2615nm@75g/mm光栅)扫描间隔 最小可至0.005nm输出波长带宽 <5nm <10nm多级光谱滤除装置 根据波长自动选择滤光片,消除多级光谱杂散光  光调制频率 4~400Hz数据采集装置灵敏度 锁相放大器 2nV;直流数据采集可选标准探测器 标准硅探测器 (标定200~1100nm) 标准热释电探测器(标定1~14mm)光谱响应度测量重复性* &le ± 1.5% &le ± 5%光路中心高 305mm仪器尺寸 1500mm× 1200mm× 560mm控制机柜 标准4U控制柜,含计算机主要特点:◆ 宽光谱范围(200~2500nm或1~14&mu m可选),适用面广宽光谱范围意味着适用于各种不同样品,如响应在日盲区的深紫外探测器、响应在可见光的太阳能电池、响应在近红外的光纤传感器、响应在中远红外的红外光电传感器,都可以在DSR100上测量光谱响应度。◆ 开机即用的Turnkey系统设计,维护简单系统采用替代法的测量原理,设计成开机即用的turnkey模式,用户不需要在实验前对系统进行复杂的调试,日常维护也十分简单。◆ 调制法测量技术,提升测量结果信噪比DSR100系统采用调制法测量技术。调制法是目前国家计量单位采用的标准方法,通过选频放大的技术,可以大幅度抑制杂散光或环境噪声对测量精度带来的负面影响。DSR100系统针对弱信号采集专门设计了独特的前置放大电路,同时采用高性能的锁相放大器进行调制法测量。锁相放大器测量灵敏度达到2nV,动态范围达到100dB。通过提高测量灵敏度并且抑制噪声,DSR100系统可以从背景噪声中提取非常微弱的光电探测器响应信号。◆ 全反射光路设计,优化光斑质量由于各种光电探测器的光谱响应范围不同,因此好的探测器光谱响应度测量系统应该是宽光谱范围的,这样才能具备较强的通用性。在宽光谱范围的光学设计中,采用反射式的光路设计要比透射式得到更高品质的光束质量和均匀光斑。在透射式的光学系统中,影响光束质量和光斑品质的重要因素是色差,色差源自于不同波长的单色光在光学材料中的折射率不同,波长范围越宽,色差越明显。而在反射式的光学系统中,由于根本不涉及折射,所以不存在色差的问题。因此采用反射式光路,成像质量大大优于透射式光路,从而可以得到更高均匀度的平行光斑,或者更小尺寸的汇聚光斑。◆ 高稳定性光源,降低背景噪声影响尽管采用调制法可以降低系统杂散光和背景噪声对测量的影响,但光源本身的波动依然无法消除。因此,在采用调制法的系统中,光源稳定性反而成为系统噪声的主要来源。DSR100采用高稳定性的光源来保证系统的高重复性。右图是典型的光源相对强度的稳定度测量数据。◆ 全自动测量流程1)自动化测量流程得到高重复性样品的重复定位精度很大程度上决定了测量重复性,电动平移台重复定位精度10um,远远高于手动样品定位2)自动化测量流程降低了操作人员的要求按软件文字提示即可正确操作系统进行测量,不需要对操作人员进行复杂的培训,特别适合工业客户做检测用3)自动化测量流程提高时间利用率系统在预设方案后即自动运行测量流程,可提高操作人员时间利用率◆ 大空间样品仓,四壁可拆卸,方便系统调试特别设计的四壁方便拆卸的样品仓,给实验人员足够大的空间进行样品安装和调试。同时,也能容纳一些特殊体积的探测器,比如液氮制冷的探测器、条纹变相管等。实验人员的可操作性大大增强。◆ 激光监视光路选项,CCD图像监控,可对极小面积的光电探测器进行精确定位◆ 标准测量软件,数据导出格式支持第三方软件DSR100系统的软件保存所有测试第一手原始数据,可供实验人员导出成txt、xls等常见格式的文档,以便后期分析处理。
    留言咨询

超快速光电探测器相关的资讯

  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • “活字印刷式”光电探测器阵列,实现多通道超构红外成像
    受神经形态计算并行处理能力的启发,多通道超构成像(meta-imaging)在成像系统的分辨率增强和边缘识别方面取得了相当大的进步,甚至扩展到中远红外光谱。目前典型的多通道红外成像系统由分离的光栅或合并的多个相机构成,这需要复杂的电路设计和巨大的功耗,阻碍了先进的类人眼成像器的实现。近期,由成都大学郭俊雄特聘研究员、清华大学Yu Liu、电子科技大学黄文教授和北京师范大学张金星教授领导的科研团队开发了一种由铁电超畴(superdomain)驱动的可打印石墨烯等离子体光电探测器阵列,用于具有增强边缘识别能力的多通道超构红外成像。通过直接重新调整铁电超畴而不是重建分离光栅,所制造的光电探测器在零偏压下表现出多光谱响应。与单通道探测器相比,研究人员所开发的多通道红外成像技术表现出更强和更快的形状分类(98.1%)和边缘检测(98.2%)。研究人员开发的概念验证光电探测器阵列简化了多通道红外成像系统,并为人脑型机器视觉中的高效边缘检测提供了潜在的解决方案。相关研究成果以“Type-printable photodetector arrays for multichannel meta-infrared imaging”为题发表在Nature Communications期刊上。基于“活字印刷式”多通道光电探测器阵列的红外成像使用铁电超畴打印的光电探测器的多通道超构红外成像技术方案如上图所示。与多个相机的合并不同,所提出的超构成像的像素点被设计为使用通过“活字印刷式”探测器实施的单个孔径实现并行多通道。通过将单层石墨烯和具有纳米级宽度条纹超畴的BiFeO₃ (BFO)薄膜集成,研究人员开发了一种简单的双端零偏压多通道阵列(MCA)探测器,用于超构红外成像。基于拉曼信号的载流子密度空间监测表明,通过重新调整铁电超畴可以实现石墨烯导电性的非均匀图案化。当工作在零偏压和室温下时,所开发的器件阵列在中红外区域表现出可调谐的透射光谱和选择性响应。“活字印刷式”等离子体光电探测器的制造和架构为了验证这种可打印架构的性能,研究人员通过重新调整铁电畴宽度(对应于活字印刷技术的排版过程)在同一BFO薄膜上制作了一个器件阵列。研究人员重点研究了石墨烯/ BFO超畴(不同宽度)混合结构的光谱响应。所开发的光电探测器实现了约30 mA W⁻ ¹ 的增强响应度和10⁹ Jones数量级的比探测率(D*)。“活字印刷式”光电探测器阵列的表征重要的是,研究人员展示了MCA光电探测器在红外成像应用中的集成,与单通道阵列(SCA)探测器相比,显示出对整体目标形状和边缘检测的更高识别精度,以及更快的训练和识别速度。“活字印刷式”探测器在手势红外成像和识别中的应用总而言之,通过将单层石墨烯和具有纳米级宽条纹超畴的BFO薄膜集成,研究人员开发了一种可打印的光电探测器阵列,证明了这种类型的器件阵列是为多通道超构红外成像应用而设计的,并实现了增强的边缘检测。所开发的可打印光电探测器在零偏压下工作,在室温下表现出约30 mA W⁻ ¹ 的高响应度。这可以归因于石墨烯等离子体与入射光的共振耦合。此外,器件阵列在中红外区域表现出选择性响应,这是通过在环境条件下直接重新调整BFO超畴宽度实现的。这项研究证明,通过在纳米尺度上改变铁电畴可精确控制石墨烯载流子密度。与依赖复杂纳米制造技术的传统器件相比,石墨烯片与不同衬底的兼容性提供了多种优势。此外,该研究还证明了MCA探测器可以增强红外成像中的形状和边缘检测。这些特性使得未来具有简单的电路设计和低功耗的集成光电子平台成为可能。论文链接:https://www.nature.com/articles/s41467-024-49592-4
  • 超快高敏光电探测器问世 用于安检及生化武器探测
    据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然纳米技术》杂志上。  科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。  而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。  通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。  研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。  新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。  虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。

超快速光电探测器相关的方案

超快速光电探测器相关的资料

超快速光电探测器相关的试剂

超快速光电探测器相关的论坛

  • 火焰探测器的工作原理与紫外线探测器的渊源

    火焰探测器的工作原理与紫外线探测器的渊源

    火焰探测器又称感光式火灾探测器,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。下面工采网小编给大家介绍一下火焰探测器工作原理。火焰燃烧过程释放紫外线、可见光、红外线,在特定波长、特定闪烁频率(0.5HZ-20HZ)具有典型特征,有别于其他干扰辐射,阳光、热物体、电灯等辐射出的紫外线、红外线没有闪烁特征。火焰探测器工作原理是通过检测火焰辐射出的特殊波长的紫外线、红外线及可见光等,同时配合对火焰特征闪烁频率来识别,来探测火焰。一般选用紫外光电二极管、紫外线探测器、紫外线传感器等作为探测元件。[img=,446,450]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011704_01_3332482_3.jpg!w446x450.jpg[/img]紫外线探测器是将一种形式的电磁辐射信号转换成另一种易被接收处理信号形式的传感器,光电探测器利用光电效应,把光学辐射转化成电学信号。光电效应可分为外光电效应和内光电效应。外光电效应器件通常指光敏电真空器件,主要用于紫外、红外和近红外等波段。具有内增益的外光电效应器件包括光电敏倍增管、像增强器等光敏电真空器件,它们具有极高灵敏度,能将极微弱的光信号转换成电信号,可进行单光子检测,其灵敏度比内电光效应的半导体器件高几个量级。内光电效应分为光导效应和光伏效应。光导效应中,半导体吸收足够能量的光子后,把其中的一些电子或空穴从原来不导电的束缚状态激活到能导电的自由状态,导致半导体电导率增加、电路中电阻下降。光伏效应中,光生电荷在半导体内产生跨越结的P-N小势差。产生的光电压通过光电器件放大并可直接进行测量。根据光导效应和光伏效应制成的器件分别称为半导体光导探测器和光伏探测器。最后给大家介绍三款性能非常优秀的紫外线探测器和紫外线二极管,都是应用在火焰检测和防紫外辐射源等领域的顶尖产品。[b]德国SGLUX 紫外光电探测器 - TOCON_ABC1[img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]基于碳化硅的宽频紫外光电探测器,带有集成放大器TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射和火焰检测领域。[b]紫外光电探测器TOCON_ABC1特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有集中器镜头盖0…5 V电压输出峰值波长是280 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 pW/cm2[b]德国SGLUX 紫外光电探测器 - TOCON_ABC10[/b][img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射、淬火控制和火焰检测领域。[b]紫外光电探测器TOCON_ABC10特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有衰减器0…5 V 电压输出峰值波长是290 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 mW/cm2[b]德国SGLUX 紫外光电二极管 - SG01D-5LENS[img=,394,291]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_01_3332482_3.jpg!w394x291.jpg[/img]SiC 具有独特的特性,能承受高强度的辐射,对可见光几乎不敏感,产生的暗电流低,响应速度快和噪音低。这 些特性使SiC成为可见盲区半导体紫外探测器的最佳使用材料。SiC探测器可以一直工作于高达170°C(338°F)的温度中。信号(响应率)的温度系数也很低, 0,1%/K。由于噪音低(fA级的暗电流), 能够有效地检测到极低的紫外辐射强度。请注意这个装置需要配置相应的放大器。(参见第3页中的典型电路)。SiC光电二极管有七个不同的有效敏感面积可供选择,从0.06 mm2 到36 mm2。标准版本是宽频UVA-UVB-UVC。四个滤波版本导致更严格的感光范围。所有光电二极管都有密封的金属外壳(TO型),直径为5.5mm的TO18 外壳或9.2mm 的TO5外壳。进一步的选项是2只引脚(1绝缘,1接地)或3只引脚(2绝缘,1接地)。[b]德国SGLUX 紫外光电二极管 SG01D-5LENS 特点[/b]宽频UVA+UVB+UVC, PTB报道的芯片高稳定性, 用于火焰检测辐射敏感面积 A = 11,0 mm2TO5密封金属外壳和聚光镜, 1绝缘引脚和1接地引脚10μW/cm2 峰值辐射约产生350 nA电流[b]德国SGLUX 紫外光电二极管 SG01D-5LENS参数:[/b][b][img=,690,365]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_02_3332482_3.jpg!w690x365.jpg[/img][/b][/b][/b]

  • 【原创】光电导探测器主要应用范围

    [size=4] photoconductive detector 利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。 1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为 λc=hc/Eg=1.24/Eg (μm) 式中 c为光速。本征光电导材料的长波限受禁带宽度的限制。在60年代初以前还没有研制出适用的窄禁带宽度的半导体材料,因而人们利用非本征光电导效应。Ge、Si等材料的禁带中存在各种深度的杂质能级,照射的光子能量只要等于或大于杂质能级的离化能,就能够产生光生自由电子或自由空穴。非本征光电导体的响应长波限λ由下式求得 λc=1.24/Ei 式中Ei代表杂质能级的离化能。到60年代中后期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半导体材料研制成功,并进入实用阶段。它们的禁带宽度随组分x值而改变,例如x=0.2的HG0.8Cd0.2Te材料,可以制成响应波长为 8~14微米大气窗口的红外探测器。它与工作在同样波段的Ge:Hg探测器相比有如下优点:①工作温度高(高于77K),使用方便,而Ge:Hg工作温度为38K。②本征吸收系数大,样品尺寸小。③易于制造多元器件。表1和表2分别列出部分半导体材料的Eg、Ei和λc值。 通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实用性器件还要考虑性能、工艺、价格等因素。常用的光电导探测器材料在射线和可见光波段有:CdS、CdSe、CdTe、Si、Ge等 在近红外波段有:PbS、PbSe、InSb、Hg0.75Cd0.25Te等 在长于8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。 可见光波段的光电导探测器 CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属全密封型结构,玻璃窗口与可伐金属外壳熔封。 器件灵敏度用一定偏压下每流明辐照所产生的光电流的大小来表示。例如一种CdS光敏电阻,当偏压为70伏时,暗电流为10-6~10-8安,光照灵敏度为3~10安/流明。CdSe光敏电阻的灵敏度一般比 CdS高。光敏电阻另一个重要参数是时间常数 τ,它表示器件对光照反应速度的大小。光照突然去除以后,光电流下降到最大值的 1/e(约为37%)所需的时间为时间常数 τ。也有按光电流下降到最大值的10%计算τ的 各种光敏电阻的时间常数差别很大。CdS的时间常数比较大(毫秒量级)。 红外波段的光电导探测器 PbS、Hg1-xCdxTe 的常用响应波段在 1~3微米、3~5微米、8~14微米三个大气透过窗口。由于它们的禁带宽度很窄,因此在室温下,热激发足以使导带中有大量的自由载流子,这就大大降低了对辐射的灵敏度。响应波长越长的光,电导体这种情况越显著,其中1~3微米波段的探测器可以在室温工作(灵敏度略有下降)。3~5微米波段的探测器分三种情况:①在室温下工作,但灵敏度大大下降,探测度一般只有1~7×108厘米瓦-1赫;②热电致冷温度下工作(约-60℃),探测度约为109厘米瓦-1赫 ③77K或更低温度下工作,探测度可达1010厘米瓦-1赫以上。8~14微米波段的探测器必须在低温下工作,因此光电导体要保持在真空杜瓦瓶中,冷却方式有灌注液氮和用微型制冷器两种。 红外探测器的时间常数比光敏电阻小得多,PbS探测器的时间常数一般为50~500微秒,HgCdTe探测器的时间常数在10-6~10-8秒量级。红外探测器有时要探测非常微弱的辐射信号,例如10-14 瓦;输出的电信号也非常小,因此要有专门的前置放大器。[/size]

超快速光电探测器相关的耗材

  • 145GHz InP磷化铟 超快光电探测器模块 1480-1620nm 搜索产品 型号 货号
    该产品是为数据通信( 1T/bs PAM),电信和微波光子应用而研发的145GHz超快光电探测器模块。光谱响应1480-1620nm技术参数特性• 3dB带宽高达145GHz• 可探测200 GBaud光幅度调制信号• 可同时在C&L波段运行• 集成偏置网络• 低偏压操作• 0.8 mm射频接口 技术背景高速光电探测器模块是数据通信和电信领域下一代光通信链路发展的热点。由于这些研发在符号速率方面总是领先一步,因此在接收端需要具有超过最先进射频带宽的光电探测器模块。此外,光电探测器模块的高速性能使其适用于微波光子学。模块内部的光电探测器芯片基于成熟的InP技术,在HHI的晶圆加工线上制作,采用Telcordia和空间限定的工艺,同时封装在Fraunhofer HHI中。 应用• 数据通信• 电信• 测试测量• 微波光子学技术参数• 工作波长: 1480 nm - 1620 nm• 3 dB带宽: 高达145 GHz• 低暗电流: 100 nA @ 3 V• 偏置电压: +2 V• 0.8 mm射频接口(Female)• RF射频的阻抗匹配50Ω• 输出接口: FC/APC 保偏,单模光纤
  • 超快光电探测器
    超快光电探测器:UPD系列现在有42种特别的光电二极管型号! ALPHALAS GmbH已发布超快光电二极管的新型号,该产品将产品范围扩展到更快的上升时间以及从紫外到红外的更宽波长范围。新增功能:在800至2600 nm波长范围内,超快光电探测器的HF性能大大提高(新闻稿,PDF)光电二极管的功能光电二极管的应用• 高速运行• 上升时间:从15 ps开始• 带宽:高达25 GHz• 光谱范围:170-2600 nm(紫外线到红外线)• 紧凑式设计• 电池或外接电源• 自由空间光束模型,或带有FC / PC插座或带有SM光纤的尾纤• 脉冲形式测量• 脉冲持续时间测量• 同步• 模式跳动监控• 外差测量介绍UPD系列超快光电二极管UPD系列超快光电探测器适合测量DC至25 GHz的光波形。各种型号的上升时间短至15 ps,并且覆盖170至2600 nm的光谱范围。所有光电二极管均封装在紧凑的实心铝制外壳中,并可用电池或外部电源偏置。硅类光电探测器的紫外线扩展版是覆盖170至1100 nm光谱范围的商业产品。另一类特别的对紫外线敏感的InGaAs光电探测器可用于探测350至1700 nm范围内的激光脉冲,因此具有较宽的光谱范围和较快的市售速度。阻抗匹配和微波技术可确保对脉冲形式进行测量,而不会产生振铃或伪影。客户可以自由使用50Ω端接电阻来实现高速操作,也可以自由使用高阻抗负载来获取大信号。这保证了针对各种应用的较大灵活性。结合我们的BBA系列宽带高增益放大器,高速光电检测器是昂贵的雪崩光电二极管的有利替代品。UPD系列高速光电探测器是激光和光子学研究不可或缺的工具。新的光电探测器型号可用:上升时间更快和波长范围更广UPD-15-IR2-FC:超快InGaAs PIN光电探测器,上升时间 25 GHz,光谱范围800-1700 nm,光纤耦合输入,带FC / APC连接器UPD-35-IR2-P:UPD-35-IR2-D:超快速InGaAs PIN光电探测器,上升时间 10 GHz,光谱范围800-1700 nm,带有抛光或漫射窗口UPD-35-UVIR-P:UPD-35-UVIR-D:超快速InGaAs PIN光电探测器,上升时间 10 GHz,光谱范围350-1700 nm,带有抛光或漫射窗口UPD-50-SP:UPD-50-SD,UPD-50-UD,UPD-50-UP:超快速Si PIN光电探测器,上升时间50 ps,下降时间50 ps,带宽 7 GHz,光谱范围170-1100 nm或320-1100 nm,带有抛光或漫射窗口UPD-100-IR1-P:超快Ge光电探测器,上升时间UPD-3N-IR2-P:快速InGaAs光电探测器,红外范围扩展到2.1 µm,上升时间150 psUPD-5N-IR2-P:快速InGaAs光电探测器,扩展的红外范围高达2.6 µm,上升时间为200 ps超快光电二极管(UPD系列)光电探测器型号上升时间(ps)带宽(GHz)光谱范围(nm)量子效率@峰值敏感区域(直径µm/ mm2)等效噪音功率(W /√Hz)暗电流(nA)材料光学输入/窗口类型射频输出连接器UPD-15-IR2-FC 25800 - 170075%Fiber, 9 µm1.0 × 10-150.1InGaAsFiber w.FC/APC 5)SMAUPD-30-VSG-P 10320 - 90040%200x200/0.043.0 × 10-150.1GaAsPolished,glassSMAUPD-35-IR2-P 10800 - 170080%55/0.00241.0 × 10-150.3InGaAsPolished,glassSMAUPD-35-IR2-D 10800 - 170080%55/0.00241.0 × 10-150.3InGaAsDiffuse,quartzSMAUPD-35-IR2-FR 10800 - 170080%55/0.00241.0 × 10-150.3InGaAsFC/PCreceptacle 5)SMAUPD-35-IR2-FC 10800 - 170080%Fiber, 9 µm1.0 × 10-150.3InGaAsFiber w.FC/APC 5)SMAUPD-35-UVIR-P 10350 - 170080%55/0.00241.0 × 10-150.3InGaAs4)Polished,MgF2SMAUPD-35-UVIR-D 10350 - 170080%55/0.00241.0 × 10-150.3InGaAs4)Diffuse,quartzSMAUPD-40-VSI-P 8.5500 - 169040%200x200/0.043.0 × 10-105000InGaAsPolished,glassSMAUPD-40-IR2-P 8.5800 - 170080%60/0.00281.1 × 10-150.5InGaAsPolished,glassSMAUPD-40-IR2-D 8.5800 - 170080%60/0.00281.1 × 10-150.5InGaAsDiffuse,quartzSMAUPD-40-IR2-FR 8.5800 - 170080%60/0.00281.1 × 10-150.5InGaAsFC/PCreceptacle 5)SMAUPD-40-IR2-FC 8.5800 - 170080%Fiber, 9 µm1.1 × 10-150.5InGaAsFiber w.FC/APC 5)SMAUPD-40-UVIR-P 8.5350 - 170080%60/0.00281.1 × 10-150.5InGaAs4)Polished,MgF2SMAUPD-40-UVIR-D 8.5350 - 170080%60/0.00281.1 × 10-150.5InGaAs4)Diffuse,quartzSMAUPD-50-SP 7.0320 - 110045%100/0.00791.2 × 10-150.001SiPolished,glassSMAUPD-50-SD 7.0320 - 110045%100/0.00791.2 × 10-150.001SiDiffuse,quartzSMAUPD-50-UP 7.0170 - 110045%100/0.00791.2 × 10-150.001Si4)Polished,MgF2SMAUPD-50-UD 7.0170 - 110045%100/0.00791.2 × 10-150.001Si4)Diffuse,quartzSMAUPD-70-IR2-P 5.0800 - 170080%80/0.0052.0 × 10-150.8InGaAsPolished,glassSMAUPD-70-IR2-D 5.0800 - 170080%80/0.0052.0 × 10-150.8InGaAsDiffuse,quartzSMAUPD-70-IR2-FR 5.0800 - 170080%80/0.0052.0 × 10-150.8InGaAsFC/PCreceptacle 5)SMAUPD-70-IR2-FC 5.0800 - 170080%Fiber, 9 µm2.0 × 10-150.8InGaAsFiber w.FC/APC 5)SMAUPD-70-UVIR-P 5.0350 - 170080%80/0.0052.0 × 10-150.8InGaAs4)Polished,MgF2SMAUPD-70-UVIR-D 5.0350 - 170080%80/0.0052.0 × 10-150.8InGaAs4)Diffuse,quartzSMAUPD-100-IR1-P 3.0400 - 200080%80/0.0053.0 × 10-13700GePolished,glassSMAUPD-200-SP 2.0320 - 110085%400/0.1261.5 × 10-150.001SiPolished,glassBNCUPD-200-SD 2.0320 - 110085%400/0.1261.5 × 10-150.001SiDiffuse,quartzBNCUPD-200-UP 2.0170 - 110085%400/0.1261.5 × 10-150.001Si4)Polished,MgF2BNCUPD-200-UD 2.0170 - 110085%400/0.1261.5 × 10-150.001Si4)Diffuse,quartzBNCUPD-300-SP 1.0320 - 110090%600/0.2833.0 × 10-150.01SiPolished,glassBNCUPD-50-SP 7.0320 - 110045%100/0.00791.2 × 10-150.001SiPolished,glassSMAUPD-50-SD 7.0320 - 110045%100/0.00791.2 × 10-150.001SiDiffuse,quartzSMAUPD-50-UP 7.0170 - 110045%100/0.00791.2 × 10-150.001Si4)Polished,MgF2SMAUPD-50-UD 7.0170 - 110045%100/0.00791.2 × 10-150.001Si4)Diffuse,quartzSMAUPD-70-IR2-P 5.0800 - 170080%80/0.0052.0 × 10-150.8InGaAsPolished,glassSMAUPD-70-IR2-D 5.0800 - 170080%80/0.0052.0 × 10-150.8InGaAsDiffuse,quartzSMAUPD-70-IR2-FR 5.0800 - 170080%80/0.0052.0 × 10-150.8InGaAsFC/PCreceptacle 5)SMAUPD-70-IR2-FC 5.0800 - 170080%Fiber, 9 µm2.0 × 10-150.8InGaAsFiber w.FC/APC 5)SMAUPD-70-UVIR-P 5.0350 - 170080%80/0.0052.0 × 10-150.8InGaAs4)Polished,MgF2SMAUPD-70-UVIR-D 5.0350 - 170080%80/0.0052.0 × 10-150.8InGaAs4)Diffuse,quartzSMAUPD-100-IR1-P 3.0400 - 200080%80/0.0053.0 × 10-13700GePolished,glassSMAUPD-200-SP 2.0320 - 110085%400/0.1261.5 × 10-150.001SiPolished,glassBNCUPD-200-SD 2.0320 - 110085%400/0.1261.5 × 10-150.001SiDiffuse,quartzBNCUPD-200-UP 2.0170 - 110085%400/0.1261.5 × 10-150.001Si4)Polished,MgF2BNCUPD-200-UD 2.0170 - 110085%400/0.1261.5 × 10-150.001Si4)Diffuse,quartzBNCUPD-300-SP 1.0320 - 110090%600/0.2833.0 × 10-150.01SiPolished,glassBNCUPD-300-SD 1.0320 - 110090%600/0.2833.0 × 10-150.01SiDiffuse,quartzBNCUPD-300-UP 1.0170 - 110090%600/0.2833.0 × 10-150.01Si4)Polished,MgF2BNCUPD-300-UD 1.0170 - 110090%600/0.2833.0 × 10-150.01Si4)Diffuse,quartzBNCUPD-500-SP 0.6320 - 110090%800/0.53.5 × 10-150.01SiPolished,glassBNCUPD-500-SD 0.6320 - 110090%800/0.53.5 × 10-150.01SiDiffuse,quartzBNCUPD-500-UP 0.6170 - 110090%800/0.53.5 × 10-150.01Si4)Polished,MgF2BNCUPD-500-UD 0.6170 - 110090%800/0.53.5 × 10-150.01Si4)Diffuse,quartzBNCUPD-3N-IR2-P6) 0.46)800 - 210075%300/0.071.5 × 10-1390InGaAsPolished,glassBNCUPD-5N-IR2-P6) 0.36)800 - 260070%300/0.077.0 × 10-132000InGaAsPolished,glassBNCUPD-2M-IR2-P 0.004900 - 170080%2000/3.144.0 × 10-145InGaAsPolished,glassBNCUPD-2M-IR2-P-1TEC3) 0.004900 - 170075%2000/3.141.0 × 10-140.3InGaAsPolished,glassBNC注意:1)漫射窗降低了定位精度要求,并以降低的灵敏度为代价将损伤阈值提高了大约2倍。 三到五。仅推荐用于高峰值功率激光器。2)该模型的输出为负。 所有其他型号默认情况下都具有正输出,但如果需要,也可以订购负输出。3)带TEC冷却模块,非标准外壳。4)具有增强的蓝/紫外线敏感性的改性材料。5)与可选的滤光片支架不兼容。6)大大提高了性能。UPD系列光电探测器的电源相关产品• 低噪声电源,输入:230 V AC(欧洲标准)PS-UPD-12-EU:输出:12 V DC• 低噪声电源,输入:100-240 V AC(通用)PS-UPD-6-WW:输出:6 V DCPS-UPD-9-WW:输出:9 V DCPS-UPD-12-WW:输出:12 V DC• BAT-UPD-6V:偏置电池,6 V• 宽带放大器BBA系列(幅度增益:×10,×100或可变×1÷100)• BNC 50Ω终端负载• SMA(公头)到BNC(母头)适配器• SMA转SMA适配器• 衰减滤光片适配器
  • Discovery光电探测器
    美国Discovery Semiconductors公司全线产品 量青光电专业代理 Discovery Semiconductors, Inc.是一家制造超快 InGaAs 光电探测器,射频过光纤接收器,平衡光接收器,和一些定制产品的行业领导者。产品应用范围从模拟射频连接到超快数字通信。1993年,并凭借使用在40和Discovery的仪器和系统包含span color:#333333 font-size:16px "="" style="margin: 0px padding: 0px "Lab Buddy和光学相干接收机系统。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制