当前位置: 仪器信息网 > 行业主题 > >

超临界液体色谱仪

仪器信息网超临界液体色谱仪专题为您提供2024年最新超临界液体色谱仪价格报价、厂家品牌的相关信息, 包括超临界液体色谱仪参数、型号等,不管是国产,还是进口品牌的超临界液体色谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超临界液体色谱仪相关的耗材配件、试剂标物,还有超临界液体色谱仪相关的最新资讯、资料,以及超临界液体色谱仪相关的解决方案。

超临界液体色谱仪相关的仪器

  • 岛津Shimadzu半制备型超临界流体色谱仪Nexera UC Prep集合了超临界流体色谱仪Nexera UC的卓越性能以及岛津制备的新技术。紧凑的设计节省空间,并兼顾制备回收率高和操作性好的特点,有助于进一步提高制备的操作效率。产品特点:独特的“LotusStream 气液分离器”,实现卓越的回收率即使在大体积进样时也能保持尖锐的峰形按照制备作业流程设计的专用软件Prep Solution,操作简单紧凑型台式系统,节约安装空间,降低安装成本从固体样品中自动萃取组分,实现全自动化在线萃取-分析-制备工作更少的有机相使用,减少对环境的负担
    留言咨询
  • Nexera UC 能够方便用户对多组分进行同时分析,从样品的前处理、到样品分离直至样品分析步骤均可实现在线自动化。Nexera UC 将实际应用于需要对多种样品进行快速且可靠分析的领域,诸如食品中农药残留检测,或对疾病标记物的研究探索。该系统以超临界流体CO2 作为流动相,可最多同时放置48 个样品,通过自动萃取单元进行前处理、通过色谱进行分离以及通过质谱进行检测,所有步骤均可实现自动化操作。因此,不需要复杂的样品前处理操作。同时,该系统还可对某些可能因接触空气而氧化或者降解的不稳定化合物实现稳定可靠的分析。此外,以食品中农药残留的分析为例,仅仅在预处理阶段,该系统就可将传统方法需要的35 分钟缩短至5 分钟。与传统的人工操作方法相比,可在提高产效率的同时减少人为误差,因此农药残留分析可以在更少的时间完成。该系统由日本岛津公司、大阪大学、神户大学和宫崎县农业研究所共同研究开发,并在JST(日本科学技术振兴机构)的研究成果发展计划中被列为“先进分析测量技术和设备的开发方案”。
    留言咨询
  • 岛津制备型超临界萃取单元SFE-40P是专为制备规模开发,用于对样品的自动化萃取,支持Online和Offline两种组合方式:即与岛津半制备超临界流体色谱仪Nexera UC Prep组成在线SFE-SFC系统,完成自动化在线品萃取、分离和馏分收集;以及独立组成离线超临界流体前处理系统,完成对样品的萃取和馏分收集。产品特点:①支持对单个萃取容器的温度控制;②支持“静态”和“动态”两种萃取方式,以实现高效萃取;③搭配换架器(选配),实现多样品自动化连续萃取处理(最多48个样品);
    留言咨询
  • 传统LC/MS及GC/MS分析技术面临的挑战...Nexera UC 提供以上问题的稳妥解决方案全自动在线样品前处理及分析自动萃取目标化合物并分析杜绝不稳定化合物的降解在避光及无氧环境下实现样品萃取,防止不稳定化合物的氧化和降解分析速度、灵敏度及分离度的高度统一超临界流体实现样品的高效分离和高灵敏度分析,因此极大地提高检测灵敏度与分析通量特立独行的色谱技术,您所需要的唯一选择!Nexera UC通过全新的分离技术优化您的分析流程,将样品制备、分析及多种分离模式集于一体,提供高灵敏度的检测结果。 Nexera UC提供解决方案 农药残留分析过程中QuEChERS方法与NexeraUC方法对比QuEChERS作为样品前处理的典型方法,需要诸多人工操作,并且耗费大概35分钟的时间。而Nexera UC,同样的样品使用在线SFE/SFC分析方法仅需要大约5分钟时间用于样品前处理,且人工操作步骤大大减少。使用Nexera UC对上百种化合物进行同时分析。相比常规的LC及LC/MS和GC/MS等方法,Nexera UC可对不同极性的化合物进行分析。 不同极性的农药同时分析
    留言咨询
  • 创新的手性分离技术用于超临界流体手性化合物的作用是制药行业的关键因素,为了评估对映异构体,手性分离是作为主要课题. 作为一个解决方案,超临界流体色谱法(SFC)吸引了许多研究者的关注.由于 SFC的分离能力高于液相色谱法HPLC, SFC对于高效色谱法HPLC无法分离的手性化合物是强有力的分离工具。SFC-4000 – 分析系统超临界流体表现出来的物理特征包括溶解分子的扩散系数是液体的一百倍和至少小于一位数的粘度. SFC系统采用这样一个媒质作为流动相,在不降低任何分离效率的情况下,迅速执行分离分析方法, 原因是和使用液体作为流动相的高速液相色谱法相比柱温箱内的快速质量转移.SFC-4000 – 制备系统半制备SFC和制备 SFC系统应用于分离和高回收率提存. 当二氧化碳作为介质时,会发生气化只需保持分离和分馏样品在一个大气压力,使这一技术能够高效精炼一些后处理麻烦, 如消除溶剂制备后隔离. 这提供了许多优势, 包括削减成本采购溶剂和丢弃的有机溶剂相关的费用。种类丰富的检测器JASCO 提供了种类丰富的检测器,高压池紫外检测器UV, 二极管阵列检测器 (实时采集3D光谱和色谱) 和世界独一无二SFC用CD检测器.特别, JASCO独有的CD检测器用圆二色吸收法测量光学异构性, 还可以测量CD和 UV色谱图同时得到g-因子(CD/UV) 色谱图. 因为g因子特别是有一个比例关系和光学异构体成分比例的样本, CD检测器可以执行成分测量和没有分离峰的高纯度分馏法。通过SFC筛选研制方法分离并采集目标前手性化合物之前,需要寻找最合适的分离条件(色谱柱,溶剂,等.). 为了创建测量条件和自动测量样品, JASCO 可提供SFC研制方法筛选, 节省劳力的和改进操作。通过堆栈注入改进的样品处理量通过缩短进样间隔让色谱图重叠, 预分离模式可以提高效率. 这意味着即使是大量的分离和纯化样品可以在短时间内实现高回收率和高纯度。独特的样品采集机制SFC将二氧化碳作为流动相, 收集洗提样品时的一个主要问题是分离样品由于释放的二氧化碳体积膨胀导致飞散(约500倍). 为了提高采集率, JASCO已经开发出一种用于半制备SFC系统的微型旋风分离器(MCS), 和半制备SFC系统一个专用的馏分收集器.
    留言咨询
  • 超临界流体色谱 400-860-5168转1694
    超临界流体色谱(SFC) 采用超临界流体(最常见的是 CO2 )作为流动相溶剂进行萃取。超临界一氧化碳固有的低粘度和高扩散率与传统的液体萃取相比,SFE是一种更快、更高效的萃取技术。这提供了更快的流速,从而缩短了提取时间,而无需更高的压力系统。在CO2中加入助溶剂流动可以帮助进一步调整强度。抽气箱可提供高达 100°C 的温度,在提取容器之后是背压调节器,它提供保持 CO2 的背压要求超临界是提取性能的一个组成部分,整个系统可以更快速更高效的实现分离分析。&bull 高通量高分离度由于其高扩散率和低粘度,可以在保持高分离能力的同时短时间分离。 与HPLC相比,分析时间可缩短至1/2~1/10。&bull 低成本分离分析与HPLC相比,使用有机溶剂的成本可降低至1/2~1/10。&bull 高安全稳定性能二氧化碳稳定安全不易燃烧,容易获得可重复利用。&bull 待测的组分繁多根据改性剂溶剂、添加剂的类型和用量以及各种色谱柱的选择,也可以分离极性组分。&bull HPLC和SFC对比下图显示了使用具有小填料粒径的色谱柱测量的 HPLC、SFC 和高通量 SFC (HT-SFC) 获得的色谱图。 与显示相同分离效率的色谱图相比,使用填料粒径为5 μm的光学分体柱的SFC可以将分析时间减少到使用相同色谱柱的HPLC的1/3左右,而使用填料粒径为3 μm的光学分体柱可以将分析时间减少到使用5 μm色谱柱的SFC的1/3左右。
    留言咨询
  • 半制备型SFC通过分析型超临界流体色谱仪对样品的纯化方法优化,获得合适的纯化条件,半制备型超临界色谱仪在此基础上使用10mm-30mm内径的色谱柱,进行毫克级别制备,更高效地获得高纯度目标物。半制备型SFC由以下五个模块组成:流动相输送模块,色谱柱管理模块,检测模块,背压模块及组份收集模块。 该系统的核心组成为背压调节器使系统压力控制无论溶剂组成和流量。特殊设计的两个NP7001输送泵可提供高达100ml/ min的CO2和50 ml /min的改性剂的输送能力,运行过程系统耐压高达42兆帕。可以选择手动和自动(选配)两种进样方式。重复注射可以进行叠加色谱操作。检测选择包括UV和ELSD。柱温箱内支持6支色谱柱进行切换,保持了温度一致性,更换更便捷。Clarity专业色谱软件过程控制设计为全自动操作,监测和记录温度、压力和色谱图。产品特点:高通量低粘度和高扩散系数的CO2的可以大幅度提高分离和提纯效率,缩短洗脱时间。成本低与制备型HPLC相比,由于使用廉价的CO2作为流动相和样品回收的简单性,总成本可以大大降低。安全和环保不可燃的CO2比有机溶剂更安全。使用二氧化碳可以提供更少的环境负担。
    留言咨询
  • 制备型超临界流体色谱(SFC) 当毫克级半制备能力已无法满足需求时,更为强大的制备型超临界流体色谱仪将为您提供克级以上制备的解决方案。制备型SFC由以下五个模块组成:流动相输送模块,色谱柱管理模块,检测模块,背压模块及旋风收集模块。产品特点:3-5倍的洗脱速度,提高制备效率旋风收集模块实现样品与CO2的快速分离,大幅降低废液处理和样品干燥能耗特殊设计的自动背压调节装置,确保系统压力稳
    留言咨询
  • JASCO生产的超临界萃取与色谱装置,采用电子制冷的CO2输送泵和特殊设计的全自动背压调节装置,确保了系统的压力稳定;极小的死体积(小于10ul),保证了分离的准确性。 主要特点 与泵一体的泵头制冷装置设计便于操作. SSQD系统,确保了被输送介质的流速稳定. 泵头电子冷却装置保持泵头温度低于-4℃. 系统控制单元包括各种操作模式,如加入有机改性试剂. 流量范围:0.001-10ml/min. Max压力:30MPa. 操作方式:定流量或定压力. 可配多种检测器,可以进行手性光学分析 无废液产生,绿色环保 制备型超临界萃取/色谱仪 用内径30mm色谱柱,可以分离从数百毫克到数克的样品 CO2流速可达120ml/min 有八套分馏储存器 专用软件可以迅速进行处理 多种检测器制备型可供选择 欢迎与我们联系索取详细资料!
    留言咨询
  • BUCHI超临界流体色谱系统采用 SFC 色谱法进行制备分离,非常容易使用。 系统占用空间极小,并且能满足不同复杂程度和规模的项目。检测:UV;ELSD 和 MS (可选)泵:制备型 SFC 模式系统设计:结构紧凑,自动化 BUCHI超临界流体色谱系统技术参数:1、CO2泵/溶剂泵1.1采用不锈钢柱塞泵设计,两个独立通道,可在一个运行过程中使用C02或多种溶剂,无需提前混合1.2 可进行等度,二元线性梯度或阶梯式梯度洗脱1.3 总流速(含40%改性剂):0 - 660mL/min1.4 最高压力:CO2泵:400bar;改性剂泵:400bar1.5 改性剂数量:3个1.6 添加泵:标配内置1.7 泵冷却:冷却循环液1.8 CO2回收装置:标配 2、检测器2.1 DAD检测器,可同时根据8个不同波长的紫外检测通道进行收集2.2 紫外波长范围:190-720nm2.3 ELSD检测器:可选2.4 MS检测器:可选 3、进样和柱系统3.1 定量环:10mL3.2 叠加进样:标配3.3载柱能力:1根;Max.2根3.4 色谱柱规格:ID 20-50mm,L Max.800mm3.5 柱温箱温度:室温-50℃
    留言咨询
  • 分析型SFC分析型超临界流体色谱以具有良好溶解和传质特性的超临界流体(主要为:CO2)作为流动相,通过筛选色谱填料、调节流动相的种类、比例、流速以及系统温度和压力,实现分析条件的优化,适合用于小极性及中等极性分子的分离,特别在手性拆分过程中具有不可替代的优势。分析型SFC主要由以下四个模块组成:流动相输送模块,色谱柱管理模块,检测模块及背压模块。产品特点:◆ 通常使用3-5倍HPLC的洗脱流速,使得分析更快速◆ 使用CO2以及少量改性剂作为流动相,分析成本更低◆ 不仅适用于中小极性分子的分离,一些亲水性大分子也同样适用◆ 保留行为与GC、HPLC差异显著,可解决传统分离手段不能满足要求的问题
    留言咨询
  • 超临界流体色谱系统超临界流体色谱系统(SFC)可精确地改变流动相强度、压力和温度,精微调控系统的分离能力和选择性,在结构类似物、异构体、对映体和非对映体混合物的定量分析和分离纯化中具有不可替代的优势。SFC是继GC、HPLC之后的新型分离手段,具有正相色谱的强大正交功能和反相色谱的易用性和可靠性。SFC能够最大限度地提高分离效率、减少溶剂用量、降低成本、绿色环保。SFC优势(1)分离快速SFC通常使用3倍于HPLC的洗脱流速,使得样品分析更加快速,同时分离度也得到了改善。在纯化抗肿瘤药物QD803时,分析时间缩短了2倍。(2)溶剂量少减少有机溶剂的使用,降低溶剂成本,减少废液产生。(3)适用范围广CO2可与极性至非极性的宽范围有机溶剂混溶,从而使液态CO2的流动相具有更强的分离能力。不仅适用于小极性和中等极性分子的分离,同样适用于一些亲水性的大分子。
    留言咨询
  • PICLab超临界色谱具有以下显著特点:纯度可达到99%,收率可以达到95%分离速度很高,只需要几分钟时间由于采用CO2最为流动相,CO2可以循环使用,所以实验非常环保和安全并且成本大大减低用于手性化合物的分离 PICLab超临界色谱:分析型:用于实验室的分离和方法开发 分析兼半制备型:用于实验室分离,和100g的制备量,可选配CO2循环回路 制备型:制备量从g 到Kg级别,具有CO2循环回收功能。 同台设备可实现分析和制备两种功能CO2流速范围:10-1000mL/min,压力可达350 bar连续自动进样和手动进样控制软件,自动调节回收CO2中夹带剂的含量,保证样品分离效果强大的操作软件很容易实现分析和制备的功能转换,无需硬件操作
    留言咨询
  • Nexera UC 能够方便用户对多组分进行同时分析,从样品的前处理、到样品分离直至样品分析步骤均可实现在线自动化。Nexera UC 将实际应用于需要对多种样品进行快速且可靠分析的领域,诸如食品中农药残留检测,或对疾病标记物的研究探索。该系统以超临界流体CO2 作为流动相,可最多同时放置48 个样品,通过自动萃取单元进行前处理、通过色谱进行分离以及通过质谱进行检测,所有步骤均可实现自动化操作。因此,不需要复杂的样品前处理操作。同时,该系统还可对某些可能因接触空气而氧化或者降解的不稳定化合物实现稳定可靠的分析。此外,以食品中农药残留的分析为例,仅仅在预处理阶段,该系统就可将传统方法需要的35 分钟缩短至5 分钟。与传统的人工操作方法相比,可在提高产效率的同时减少人为误差,因此农药残留分析可以在更少的时间完成。该系统由日本岛津公司、大阪大学、神户大学和宫崎县农业研究所共同研究开发,并在JST(日本科学技术振兴机构)的研究成果发展计划中被列为“先进分析测量技术和设备的开发方案”。
    留言咨询
  • 岛津制备型超临界萃取单元SFE-40P是专为制备规模开发,用于对样品的自动化萃取,支持Online和Offline两种组合方式:即与岛津半制备超临界流体色谱仪Nexera UC Prep组成在线SFE-SFC系统,完成自动化在线品萃取、分离和馏分收集;以及独立组成离线超临界流体前处理系统,完成对样品的萃取和馏分收集。产品特点:①支持对单个萃取容器的温度控制;②支持“静态”和“动态”两种萃取方式,以实现高效萃取;③搭配换架器(选配),实现多样品自动化连续萃取处理(最多48个样品);
    留言咨询
  • 传统LC/MS及GC/MS分析技术面临的挑战...Nexera UC 提供以上问题的稳妥解决方案全自动在线样品前处理及分析自动萃取目标化合物并分析杜绝不稳定化合物的降解在避光及无氧环境下实现样品萃取,防止不稳定化合物的氧化和降解分析速度、灵敏度及分离度的高度统一超临界流体实现样品的高效分离和高灵敏度分析,因此极大地提高检测灵敏度与分析通量特立独行的色谱技术,您所需要的唯一选择!Nexera UC通过全新的分离技术优化您的分析流程,将样品制备、分析及多种分离模式集于一体,提供高灵敏度的检测结果。 Nexera UC提供解决方案 农药残留分析过程中QuEChERS方法与NexeraUC方法对比QuEChERS作为样品前处理的典型方法,需要诸多人工操作,并且耗费大概35分钟的时间。而Nexera UC,同样的样品使用在线SFE/SFC分析方法仅需要大约5分钟时间用于样品前处理,且人工操作步骤大大减少。使用Nexera UC对上百种化合物进行同时分析。相比常规的LC及LC/MS和GC/MS等方法,Nexera UC可对不同极性的化合物进行分析。 不同极性的农药同时分析
    留言咨询
  • SFC采用具有良好溶解能力和传质特性的超临界流体作为流动相,通过调节流动相的组成、流速、系统的温度和背压,实现分析和制备条件的优化。标配CO2回收装置:经过过滤、加压、降温,CO2净化后重新液化,回到系统循环利用。具有自主知识产权的旋风收集器,能够高效分离CO2及夹带剂,提高回收率。
    留言咨询
  • 准确、可靠的性能SFC-24 SSI超临界流体泵是一款可靠、准确、重现性极佳的液体流体输送泵,专为超临界萃取及其它高要求输液用途设计,也可以用来输送其它需要的超临界萃取液或各种助剂。SFC-24的最大流量为24mL/min,最高压力可以达到10,000psi。该泵的恒压模式具有一个可选择的压力设定点,流量会自动调节以保持设定的压力。SFC-24具有使用帕尔贴模块技术的集成冷却系统。易于维护冷却系统在泵内完全独立控制,不需要外部制冷装置、冷却剂或氟利昂,帕尔贴技术是完全固态的标准功能- 全铝泵头,有助于热传递- 帕尔贴集成冷却系统- 不锈钢流体路径(泵头除外)- 内置电子压力传感器- 简便的前面板键盘控制并带有LED显示- 电机故障检测器- 出口过滤器- RS232和远程控制SFC-24 技术参数流速 ......................... 0.01 – 24.0 mL/min.压力...........................0 – 10,000 psi压力精度 ................. ± 2%满量程流速精度.................. ± 5% (基于气体体积衡量及计算液体量)接口 ..........................RS-232串口,用于完全控制和状态监控 运行/停止输入(5V TTL) 远程0-10V和0-10kHz流速控制输入恒压........................ 压力监测(通过传感器)控制模式 ............... 用户可选择的压力设定点泵的流量会自动调整以保持压力尺寸...................... 5.75” H x 11.125” W x 21.125” D(14.6 x 28.3 x 53.7 cm)重量 ....................... 36 lbs. (16.3 kg)
    留言咨询
  • 由于超临界流体兼具气体和液体的性质,无气液界面,因此也就没有表面张力存在,此时的凝胶毛细管孔中并不存在由表面张力产生的附加压力。因此利用在超临界流体条件下对凝胶进行干燥,不会产生由附加压力而引起的凝胶结构的坍塌,避免了凝胶在干燥过程中的收缩,保持了凝胶网络框架结构,制得具有高比表面积、粒径分布均匀、大孔容的超细气凝胶。 气凝胶是一种具有高比表面积、低堆积密度的多孔纳米材料。由于气凝胶具有独特的纳米结构,因此在航天、催化、环境保护等领域有着广阔的应用前景,其制备技术已成为化学工程研究的一个新兴领域。溶胶-凝胶法(Sol-gel)是制备气凝胶的一种常用方法,它包括溶胶制备、凝胶制备和凝胶干燥这样三个过程。超临界流体是温度和压力高于其临界点的任何物质;这样的流体可以像气体一样通过固体扩散,并像液体一样溶解材料;在临界点附近,压力或温度的微小变化会导致密度的较大变化,从而可以“微调”超临界流体的许多特性。在工业和实验室过程中,超临界流体通常是有机溶剂的合适替代品。 二氧化碳是许多常用的超临界流体之一,超过其临界点(31°C,1057 psi)相对简单;涉及超临界流体的应用包括萃取,纳米颗粒和纳米结构的成膜,超临界干燥,CO2捕集与封存以及提高油采收率的研究。 水是另一种经常在其超临界条件(374°C,3185 psi)下使用的物质。其出色的导热性能使其成为加压反应器发电的选择流体,超临界水具有腐蚀性和反应活性,使其成为某些有害废料的氧化破坏的选择;因超临界水的腐蚀性,禁止使用T316不锈钢。
    留言咨询
  • 超临界气凝胶干燥仪一、什么是气凝胶它是一种固体相和孔隙结构均为纳米量级的无机非晶体多孔材料。具有连续无规则的开放纳米网络结构,孔隙率高达80%~99.8%多孔纳米结构使得它在宏观上表现出纳米材料*的界面效应和小尺寸效应,同时具有低折射率、低介电常数、低传声速度、低传热系数等优异的性质。材料以其优异的结构性能在隔热隔声材料、催化剂及催化剂载体材料、废气吸附材料、光学材料等等诸多其他领域都有着非常广泛的应用。 二、成型过程 溶胶→凝胶→凝胶老化→干燥。 前体溶液在催化剂的作用下形成胶体粒子分散在溶剂中→溶胶。溶胶中的胶体粒子经聚集缩合的凝胶过程形成无序交联具有空间三维网络结构的湿凝胶; 刚成形的湿凝胶,三维结构强度不够,很容易破碎断裂,故需在母液中老化一定时间。 老化时,凝胶内部和表面尚未反应的官能团(羟基、羧基、醚键、醛基、羰基等)会进一步缩合,使得所制备的凝胶的强度提高; 老化后,再干燥,不能破坏凝胶结构,使纳米量级孔结构中的溶剂被带走清除,得到高孔隙率、低密度的多孔固体材料: 湿溶胶→气凝胶(带很多气孔的轻质固定材料)。 三、干燥方法 在湿凝胶成为气凝胶的过程中,凝胶结构要承受巨大的干燥应力,这种应力会使凝胶结构持续的收缩和开裂,导致结构塌陷。 干燥应力主要来自于毛细力(主要压力)、渗透压力、分离压力等。 (备注:毛细力,产生是在三相界面上内弯液面引起----液面弯曲产生的。毛细力的方向:作用方向始终指向弯曲液面的凹面(凹凸弯液面是指相对于液相一侧言的)。毛细现象(capillarity) 在一些线度小到足以与液体弯月面的曲率半径相比较的毛细管中发生的现象。毛细管中整个液体表面都将变得弯曲,液固分子间的相互作用可扩展到整个液体。)湿凝胶干燥过程中,溶剂的挥发,孔道中的固液相界面向高能的固气相界面转变,形成弯月面,毛细力产生;在凝胶微孔结构中,由于孔道半径为纳米量级,其承受的毛细力非常大。凝胶结构中孔径大小并不均一,不同孔道承受的毛细力不同;溶剂挥发的毛细力从凝胶表面到凝胶内部产生巨大梯度,导致凝胶结构受力不均,造成凝胶结构的塌陷(凝胶结构会出现较大的收缩甚至开裂),最终得不到结构理想的气凝胶。 影响干燥应力的主要因素包括:凝胶结构的强度、凝胶的孔径大小与均一度、凝胶内溶剂的表面张力、溶剂与凝胶结构表面的接触角等。可以调节各类因素有效控制干燥应力对凝胶结构的破坏程度,提高成功概率及生产效率。 常规干燥方法:超临界干燥 在高于临界温度和压力的条件下,凝胶中的溶剂被替换成特定的超临界流体, 再通过先降压再降温的方式将凝胶孔径中的超临界流体转化为气体,得到干燥气凝胶。 原理:液-超临界相变和超临界-气相变替换了常规方法中的液-气相变,有效避免了在液-气相变中产生的干燥应力。 超临界干燥方法:1、高温超临界干燥:事例:硅气凝胶干燥。用甲醇等有机溶剂作为超临界流体。达到超临界条件时,高温导致硅凝胶结构表面为反应性的—OH基团与有机溶剂(如甲醇)发生二次酯化反应,亲水性的—OH 被取代为疏水性的烷基基团。 得到的气凝胶在空气中不会因吸收水分而导致结构开裂,稳定性强。 弊端:在高温高压条件,易燃的有机溶剂作为超临界流体,使得实验过程相对危险,对于相关设备要求苛刻。 2、低温超临界干燥二氧化碳作为超临界流体,通过低温超临界干燥制备出了硅气凝胶。临界温度非常容易达到的二氧化碳成为了低温超临界干燥中常采用的流体,其较低的临界温度(31℃)和临界压力(7.39MPa)以及二氧化碳的无毒和不易燃等特性使得低温超临界干燥技术更加安全。 弊端:CO2与水的相容性较差,必须先对湿凝胶进行水-乙醇置换,后由二氧化碳置换凝胶中的乙醇,经过干燥得到气凝胶。用二氧化碳低温超临界干燥方法得到的硅气凝胶不具有疏水性,得到的气凝胶表面具有亲水性—OH基团(故需要密闭存放,此方法得到的材料应用在干燥的环境中)。 3、方法对比:二氧化碳超临界干燥得到的硅气凝胶比在甲醇超临界干燥得到的硅气凝胶结构中的微孔率更高。可能是甲醇的临界温度和压力较高,加快了凝胶的老化(或部分孔隙的塌陷),使得凝胶结构变粗,孔隙率降低。冷冻干燥 冷冻干燥是通过避免液-气相界面在干燥过程中的毛细压力来实现凝胶干燥的方法。这种方法要求凝胶中的溶剂必须具有较低的扩散系数和较高的升华压强。溶剂在凝胶孔道中先被冷冻,然后再在真空条件下升华成为气态,得到干燥的气凝胶。冷冻干燥方法对于凝胶的结构强度要求较高,需要对凝胶进行较长时间的老化以获得足够高的强度。但是仍然会出现由于凝胶孔道中溶剂冷冻结晶而导致凝胶孔结构塌陷,故冷冻干燥方法没有普用性。 4、常压干燥常压干燥取决于凝胶的骨架结构强度、凝胶结构均一度、凝胶内溶剂的表面张力和凝胶表面的接触角,必须调节控制降低干燥应力。可能性的调节过程:通过控制溶胶-凝胶过程和老化过程来提高凝胶结构强度和均一度,通过表面改性或选择合适的前驱体来调节凝胶表面接触角,选表面张力较小的溶剂。表面改性和置换表面张力较小的溶剂是常压干燥中主要的步骤。表面改性的方法两种:一种是共前驱体法,即将改性剂与硅溶胶混合,改性剂也作为反应单体与硅溶胶一起发生聚合反应得到具有疏水特性的凝胶结构; 一种为凝胶后对凝胶表面进行改性。以有机硅为原料的硅气凝胶制备通常用的一种方法。以无机硅为硅源形成的硅气凝胶材料通常采用第二种改性方法,即将二氧化硅颗粒表面的Si-OH基团烷基化为Si-R基团,得到具有表面疏水特性的凝胶。由于凝胶表面的烷基化需要在有机溶剂中进行,在表面烷基化改性时,还需要对凝胶进行漫长的透析和溶剂置换。四、应用分析用超临界干燥法制备的材料,才是真正意义上的气凝胶,而常压干燥或冷冻干燥法制备的材料只能算“类气凝胶"材料。 型号:XT2000 CC设计体积:200ml--25L设计压力:10Mpa~100Mpa设计温度:-40℃~450℃主要配置:主超临界腔体 增压系统 压力安全控制器PSE(软件控制) 恒温恒压排气系统(避免巨大的压降导致空隙塌陷,及温度的下降导致的干燥不充分)含气液分离,冷凝,回收等 防爆设计:有机干燥 非防爆设计 :CO2干燥加热温度控制系统 程序化工作站平台 升降平台(可选)
    留言咨询
  • SFC-24超临界流体泵 400-860-5168转0237
    Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2 输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier 是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • SFC-24超临界流体泵 400-860-5168转2133
    产品简介 智能化的Model SFC-24是一款可靠、准确、重现性好的液体CO2输送泵,专为超临界萃取及其它高要求输液用途设计,也可以用来输送其它需要的超临界萃取液或各种助剂。 Model SFC-24泵的流速最大可达24mL/min,最大压力为10000psi。该泵在恒压模式下可自由选择压力设定点,流速可自动调整以满足设定的压力。 SFC-24制冷系统使用Peltier Thermoelectric模块。该制冷系统完全置入泵体内,避免了外接制冷,外设连接管路,使用特种冷却剂,Peltier技术是完全的固体状态。 众所周知,液体在超临界状态下的物理性质会发生巨大变化,其渗透性能将达到惊人的状态。而且,在处于超临界状态的液体挥发时,会强烈吸热,导致所接触的介质剧烈降温。所以,对超临界状态的液体输送泵有着很高的特殊要求。此外,用于输送泵的各种管路,还有柱塞密封材料的热胀冷缩性能都需要很稳定,否则,很容易漏液或出现故障。在研发和生产Model SFC-24泵过程中,SSI综合考虑了所有这些因素,经过多次试验,终于完成了该产品的制造。 Model SFC-24 泵已经被全球的许多重要的科研和生产部门使用,值得我们骄傲的是,这些重要的客户经过使用后,给与了该产品很高的评价!所有这些荣誉都将激励我们进一步研发更好更新的产品。 在中国,已有许多重要的科研和生产商使用,我们也很荣幸地拥有了很多优秀的重要的客户。 标准特性   1、全铝泵头,有助于热传递   2、内置Peltier电子恒温模块   3、不锈钢液体管路(只有泵头不是不锈钢)   4、内置电子压力传感器   5、简单的前面板键盘控制并带有LED显示   6、电机故障检测   7、出口过滤器 技术参数: 流速 0.01-24.0ml/min 压力 0-10,000psi 压力准确度 满量程的± 2% 流速准确度 ± 5% (基于气体体积衡量及计算液体量) 控制 RS-232控制 运行/停止输入 (5 V TTL) 用户选择上/下压限设计 远程0-10V和0-10kHz流速控制输入 恒压 用户选择压力设定点, 流速自动调整满足设定压力 控制模式 压力 外型尺寸 5.75&rdquo H x 11.125&rdquo W x 21.125&rdquo D (15 x 28 x 54mm) 重量 36磅 (16.5Kg) 订货信息: 货号:S10SNXP1 规格: SFC-24泵, 0.01-24mL/min, 恒压, 自清洗组件, 110/220V, RS232控制, 压力监控, 热电头冷却器 货号:S10SNX01 规格: SFC-24泵, 0.01-24mL/min, 恒流, 自清洗组件, 110/220V, RS232控制, 压力监控, 热电头冷却器
    留言咨询
  • 可变体积微型超临界萃取仪,主要面向大学、研究所及企业研 发中心:&bull 萃取釜体积:3-30mL可变&bull 平行操作釜体设计:单釜位&bull 最高操作压力:10,000PSI(68.9MPa)&bull 操作温度:200℃, 250℃,最高至300℃&bull 温度压力PID控制、数字显示&bull 高精度快速图像处理器&bull 高精度二氧化碳高压泵,配备Peltier电子制冷系统 可变体积微型超临界萃取仪可配备1 ~ 5釜位操作,最大可配备1000mL的萃取釜,最高工作压力可达10,000psi(约合68.9Mpa),操作温度主要有200℃,250℃两种(300℃需要定制),因此,特别适合于多数据快速分析,如食品、药品、土壤等大多数领域的质量检测等。SFT-PM-II超临界萃取设备产品配备了釜前预热单元,使得釜内温度能够快速达到所需要的萃取温度,最大限度地防止了萃取副产物的出现,对提高产品纯度具有重要的意义。SFT-PM-II CO2超临界萃取设备采用先进的泵驱动,配备先进的嵌入式电子制冷系统,可保持泵头温度低于-4℃,不需要再额外配备外循环水浴槽,是目前先进的增压系统。 SFT-PM-II超临界二氧化碳萃取仪主要技术数据如下:温度/压力显示:独立的LED数字显示温度范围:常温~200℃、250℃(300℃定制)温度精度: +/- 0.5℃操作压力:最高10,000psi(68.9MPa),前置面板控制,LED数字显示。恒压模式流速范围:0-25.0mL(液体)/min流量精度:全量程+/-2%过压报警:高/低压报警(PAH/PAL),机械爆破片(11,500psi)增压泵:SFT-10二氧化碳增压泵,合金泵头,配备电子制冷,截止阀,不锈钢流体管路,防堵阀,压力传感器。泵为连续压力模式,带压力设定。流量自动调节来维持压力。T型单向阀实现0 psi 可信度的流速漂移,进出口过滤,T型压力传感器,不增加系统的体积,前置面板流速调节,增量为0.1 mL/min,可设定压力上下限,带压力、流量控制和上下限报警。微处理器高级控制萃取釜体积:3-30mL可变
    留言咨询
  • 瑞士SITEC-Sieber Engineering AG成立于1984年,由Rolf Sieber创建,具有多年的高压领域的经验,主要提供高压技术产品,生产高压的模型系统和组件,主要产品有SITEC高压阀门、配件和系统,如超临界流体萃取仪器、高压灭菌实验台等。在过去30多年时间,SITEC阀门及设备已销往世界20多个国家和地区。SITEC 专注于高压技术产品的研发,其超临界萃取装置压力可达700bar。超临界流体萃取是采用超临界气体作为萃取剂,从固体或者液体原料中分离热不稳定物质,具有极大的应用价值,其标准型号产品参数为:max 操作压力:300barmax 操作温度:80℃CO2 流量:18l/h萃取体积:1L可选项:max 操作压力:500, 700barmax 操作温度:120,150, 200℃CO2 流量:10,30,50,100 l/h萃取体积:2, 4, 6, 10, 20LSITEC 超临界流体萃取装置具有以下优势: l 低温分离天然提取物l 化学惰性和无毒溶剂在萃取物中无残留l 通过改变萃取的压力和温度实现溶解度的变化l 高选择性和高扩散率 SITEC 超临界流体萃取装置的功能特征:? 严密的CO2的闭合循环? 超临界溶剂的无污染循环? 高效的分离步骤? 手动操作的快速开关? 液体原料的连续萃取SITEC 超临界流体萃取装置的可选项? 流体旋流分馏? 馏分提取系统? 改性剂系统? 多管路设计? 可加装额外的萃取器、分离器等? 数据采集系统? PLC控制器用于过程控制和批文件处理用于制药研究的Max压力为500bar 的模块化SFE 系统,该系统包含可选的组分分离系统、改性剂系统和Coriolis 质量流量计精密的终分离器,带可控的液体CO2液位以防止气溶胶产生
    留言咨询
  • 岩征仪器超临界高压反应釜,超临界反应又叫临界反应,超临界反应是反应物处于超临界状态或者反应在超临界介质中进行。超临界反应大致分为两类,超临界催化反应和超临界非催化反应。超临界技术应用于化学反应,所用到的溶剂主要是CO2、水、丁烷、戊烷、己烷等低分子烃类。在超临界条件下进行化学反应,超临界流体能影响反应体系的传质、传热、选择性、平衡收率和反应速率,从而有可能提供一种能高效控制反应速率、转化率和选择性,并有利于产物分离与溶剂回收的新方法或新过程。超临界高压反应釜在超临界条件下进行化学反应,一般具有如下优点:1、可选用环境友好的溶剂,有利于环境污染的控制 2、高压下较高的反应物浓度有利于提高反应速率 3、利用溶剂性质在临界点附近与温度、压力的敏感关系和超临界条件下的簇团现象,微调反应的微观环境,提高反应选择性和转化率 4、超临界流体与液体相比具有较大的扩散系数,能消除多相反应体系的相界面,减小传质对反应速率的限制 5、与气体相比具有较大的传热系数,能消除因传热不良而造成的局部反应温度失控 6、有效萃取催化剂表面吸附的中间物种和使催化剂中毒的结焦前体,抑制催化剂失活,延长催化剂寿命 7、通过反应-分离一体化,克服热力学限制等,使反应条件易于控制,有效提高反应选择性和转化率。
    留言咨询
  • 仪器简介:SFT超临界相平衡仪I是确定亚临界和超临界流体中化合物和混合物溶解性参数的有效分析工具。研究人员可以在准确控制的条件下直接或栩栩如生地观察相的变化。实验可以液体、超临界二氧化碳或其它液化气体中进行。另外,利用该仪器还可以用来研究共溶剂的存在对超临界流体中化合物溶解性的影响。研究人员可以在较大的压力和温度范围内观察化合物的分解、沉淀和结晶等过程。实验可以从几百个Psi到10,000Psi,温度从常温到150OC。30ml观测池压力10,000 Psi温度为150OC可调速搅拌器水平位置液体物料观测池垂直位置固体物料观测池的视频档案记录系统 SFT超临界相平衡仪I是确定亚临界和超临界流体中化合物和混合物溶解性参数的有效分析工具。研究人员可以在准确控制的条件下直接或栩栩如生地观察相的变化。实验可以液体、超临界二氧化碳或其它液化气体中进行。另外,利用该仪器还可以用来研究共溶剂的存在对超临界流体中化合物溶解性的影响。研究人员可以在较大的压力和温度范围内观察化合物的分解、沉淀和结晶等过程。实验可以从几百个Psi到10,000Psi,温度从常温到150OC。SFT超临界相平衡仪II对于确定二元、三元以及多元复杂混合物的临界点十分有用。该仪器能够快速地研究相变与压力、温度以及样品浓度之间的函数关系。SFT超临界相平衡仪II还可以用来确定均相化合物在复杂混合物中溶解或沉淀的过程条件。这些数据对于确定化合物的选择性萃取或分馏非常有用。另外,超临界&ldquo 反溶剂&rdquo 应用也是可行的。SFT超临界相平衡仪II对于确定超临界流体的过程参数,如物质在超临界流体中的结晶和反应等条件,非常有用。例如,SFT超临界相平衡仪II可以用来确定反应物和产物的溶解性,从而为操作超临界反应提供依据。同时,可以使用SFT超临界相平衡仪II进行小规模间歇式超临界反应。SFT超临界相平衡仪的其它应用包括:确定聚合物的浊点,聚合物在超临界二氧化碳以及其它液化气体中的溶涨度。更为复杂的应用包括确定向溶涨聚合物中注入新材料以及表面沉积实验等的过程参数。SFT超临界相平衡仪I主要构成为手动注射泵和30ml样品池。一个CCD照相机使用光纤光源(fiber optic light source)可以清楚地观测样品池内部。观测池的方向为液体物料时水平位置,固体物料时垂直位置。通过对内置叶轮的磁力驱动实现搅拌。内置RTD准确而均匀地实现所需要的温度。观测数据可以输送到视频带上。温度、压力、时间、日期以及数据信息都能够显示并记录在TV/VCD中,如果选择了视频面板显示记录系统。相平衡仪的主要技术参数:压力容器:样品池 : 316不锈钢示窗 : 3/8&rdquo 石英玻璃压力 : 10,000 Psi (69 Mpa)爆破片压力 : 11,500 Psi (79 Mpa)压缩比 : 10:1样品池体积 : 可变,3 ml到30 ml压力精度 : +/- 2 Psi (13.8 Pa)温度范围 : 常温到150OC温度精度 : +/- 0.5OC加热带功率 : 500 Watts程控加热器:用户可以通过Fuzzy Logic控制器设定加热速度与保持时间。可通过内置的RTD直接控制流体的温度。温度范围:常温&mdash 150 OC观测: 一个可变焦距彩色CCD照相机直接安装在石英玻璃窗上。使用可变密度的光纤光源在第二个窗口闪光。设备已括彩色监视器/VCR。视频和监视器:照相机: 彩色1/3&rdquo CCD照相机85mmIris : 自动,5勒克斯焦距 : 12手动透镜监视器: 14 彩色(35mm)兼容性: NTSC (在选项VCR上可视) 选项视屏: 超临界相平衡仪所输出的温度和压力数据可在显示器上显示。这此数据以及时间、日期、用户的评论等可以记录在VCR带上,以实现完整的实验数据记录。系统配置: 重 量 : 27.2 kg电压要求: 120VAC,单相,10安培(可按照国际电源要求制造)尺 寸: 长/宽/高=56cm X 71 cm X 23cm
    留言咨询
  • 瑞士SITEC-Sieber Engineering AG成立于1984年,由Rolf Sieber创建,具有多年的高压领域的经验,主要提供高压技术产品,生产高压的模型系统和组件,主要产品有SITEC品多用途超临界萃取系统、相平衡系统、超临界微粉化和喷雾干燥系统、连续超临界反应系统、高压灭菌系统、高压产生系统及SITEC高压阀门、配件等。在过去30多年时间,SITEC阀门及设备已销往世界20多个国家和地区。瑞士SITEC 连续超临界流体反应装置在超临界状体下反应提高反应的转化率和产出率,以更小的反应器获得相同数量的产品。SITEC 连续超临界流体反应装置的产品参数为:max 操作压力:50-1000barmax 操作温度:20-500℃瑞士SITEC 连续超临界流体反应装置的优势:1、提高产率2、高选择性3、提高转化率4、更小的反应容器5、高催化能力6、反应物无溶解度限制的均相反应7、提高催化剂寿命瑞士SITEC 连续超临界流体反应装置的功能特性:1、固定床管式反应器,浆液反应器,再循环反应器,下流柱反应器,Berty型反应器2、气体和液体的压力产生3、气体和液体质量流量计瑞士SITEC 连续超临界流体反应装置的应用:1、加氢化反应、聚合反应、异构化反应、氧化反应2、催化反应、酶反应、合成反应、水解反应等该装置是瑞士一家制药公司特殊设计的催化高压反应装置,次两个反应器是固定床催化反应,可以上流、下流、串联或者并联运行此装置是反应工程研究装置(德国运行),该装置配有max温度为450℃的Berty 反应器
    留言咨询
  • Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier 是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • 超临界流体干燥机 R-403超临界干燥是一种去除溶剂并且不引起表面张力效应的方法。随着液体的蒸发,表面张力会拖曳固体中的小结构,造成固体扭曲或收缩。在超临界条件下,不存在表面张力,清除超临界流体不会影响固体形状。超临界干燥用于制造气凝胶,干燥一些易被破坏的材料,如考古样品或是用于电子显微镜实验的样品。规格反应槽容量50ml ~ 50L温度范围-35 ~ 350℃压力范围(依容器而定)真空 ~ 413 bar控制箱一般加热器电子加热器、夹套式加热装置操作控制手动操作或全自动计算机控制主体架构桌上型/落地式材 质304SS,316SS,HastelloyC-276, Inconel, Titanium… 等密合方式扣住式,自动化气缸,螺栓型接 口流体入口, 流体出口, 取样,压力表, 安全阀… 等组 件冷凝器,分离器,接收罐,冷却器… 等
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制