当前位置: 仪器信息网 > 行业主题 > >

超临界液体色谱仪

仪器信息网超临界液体色谱仪专题为您提供2024年最新超临界液体色谱仪价格报价、厂家品牌的相关信息, 包括超临界液体色谱仪参数、型号等,不管是国产,还是进口品牌的超临界液体色谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超临界液体色谱仪相关的耗材配件、试剂标物,还有超临界液体色谱仪相关的最新资讯、资料,以及超临界液体色谱仪相关的解决方案。

超临界液体色谱仪相关的论坛

  • 【资料】超临界流体色谱法

    [b]超临界流体色谱法[/b](Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法.所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间.超临界流体色谱技术是2O世纪80年代发展起来的一种崭新的色谱技术.由于它具有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相所没有的优点,并能分离和分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

  • 【原创】超临界色谱与红外连用技术

    超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法。所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间,是气体在一定温度和压力下成为超临界流体,物质在超临界流体中的扩散速度高于在在流体中的扩散速度约100倍,而且它不需要像液相色谱那样需要高压才能通过具有一定阻力的柱子。对于相对分子量比较大、极性强、受热易分解的分子,不能使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],利用超临界色谱可解决问题。当压力解除后,超临界流体即成为气体,极易从分析体系中除去。超临界流体色谱技术是2O世纪80年代发展起来的一种崭新的色谱技术。由于它具有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相所没有的优点,并能分离和分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱不能解决的一些对象,应用广泛,发展十分迅速。据估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果。 (l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0.6cm/S时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短。这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间。   (2)与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法比较 出于流体的扩散系数与粘度介于气体和液体之间,因此SFC的谱带展宽比GC要小;另外,SFC中流动相的作用类似LC中流动相,流体作流动相不仅载带溶质移动,而且与溶质会产生相互作用力,参与选择竞争。还有,如果我们把溶质分子溶解在超临界流体看作类似于挥发,这样,大分子物质的分压很大,因此可应用比GC低得多的温度,实现对大分子物质、热不稳定性化合物、高聚物等的有效分离。  (3)应用范围的比较 SFC比起GC法测定相对分子质量的范围要大出好几个数量级,基本与LC法相当。当然,尺寸排阻色谱法(SEC)所测分子质量范围是所有色谱法中最大的。 超临界色谱与红外联用技术显示了独特的优越性,尤其对一些高沸点、难裂解的化合物,质谱分析难以得到理想的碎片,利用超临界色谱/红外联用技术可完全解决问题。 在超临界流体色谱中,流动相为超临界或亚临界状态下的CO2或以CO2为主,扩散与传质比HPLC快得多,从而它对样品的分离速度要快得多,加上再平衡时间短,因而分析样品的典型循环时间只需1-2分钟。由于SFC流动相的粘度低,色谱柱两端压力降较小,就可以采用更长的色谱柱,还可以多根色谱柱串联。 温度31.1℃/压力7.39Mpa为CO2的超临界点。CO2在超临界或亚临界状态时,具有特别强的渗透作用,溶解能力比气体大得多,甚至超过液体;同时它粘度小,保持了近似气体的扩散能力。 SFC的部件组成与HPLC很相似,包括流动相输送系统(泵、流量缓冲器和混合柱等)、色谱分离系统(进样器、色谱柱和柱温箱等)、检测系统(检测器等)和计算机软件。制备型的超临界流体色谱还包括收集系统。 随着超临界流体色谱技术的发展,愈来愈多的检测器得到了应用,除了通用的HPLC检测器如UV、DAD、MS等等,更有象FID、NCD这样的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器可以用于SFC。这使得SFC的分离检测兼具了液相色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的优点。 超临界流体色谱仪能分离的物质范围涵盖了从高极性的有机酸碱直到低极性的烃类。色谱柱的种类从C18柱一直到极性的二醇基柱和磺酸基柱。

  • 【原创大赛】超临界流体色谱的介绍和应用

    【原创大赛】超临界流体色谱的介绍和应用

    [align=center][b]超临界流体色谱的介绍和应用[/b][/align][align=center][b]西安国联质量检测技术股份有限公司[/b][/align][align=center][b]安平中心:薛凯路[/b][/align]超临界流体作为流动相的色谱方法,是20世纪80年代以来发展迅速的一个色谱分支,所谓超临界流体,是指在高于临界压力和临界温度时的一种物质状态。它既不是气体,也不是液体,但它兼有气体的低粘度、液体的高密度以及介于气、液之间较高的扩散系数等特性。从理论上说SFC既可以分析GC法难以处理的高沸点、不挥发性样品,又有比HPLC法更高的柱效和更短的分离时间,且可使用二者常用的检测器,也可与MS、FT-IR光谱仪等在线联接,因而可以方便地进行定性、定量分析。在中药药物分析领域已有愈来愈多的应用。SFC超临界流体色谱法在手性化合物的分析中越来越多使用。1.原理什么是超临界流体,对于某些纯物质来说,具有三相点和临界点,如图所示,从图中可以看出,物质在三相点,气、液、固三态处于平衡状态,当处于临界温度和临界压力以上时,则不论施加多大压力,气体也不会液化,此时即非气体,也非液体,而是以超临界流体形式存在。[align=center][img=,296,236]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081543_01_2904018_3.png[/img][/align]2.流动相和添加剂CO2的超临界流体性质化学反应性低, 惰性,无毒性,安全,临界点:T=31℃ , P=73 bar(1066psi),超临界CO2 理化性质类似于正己烷,易获得,成本低廉常作为弱洗脱剂。强洗脱剂一般为醇类,常用甲醇,乙醇,异丙醇。为了得到较好的峰形,有时候常常使用添加剂如:氨水等等。3. 手性柱正相直链淀粉衍生物 CHIRALPAK AD / AD-H CHIRALPAK AS / AS-H纤维素衍生物 CHIRALCEL OD / OD-H CHIRALCEL OJ / OJ -H CHIRALCEL OA, OB, OC CHIRALCEL OF, OG, OK CHIRALCEL CA-1[b]反相[/b]CHIRALPAK[sup][/sup] AD -RHCHIRALPAK[sup][/sup] AS -RHCHIRALCEL[sup][/sup] OD-RH CHIRALCEL[sup][/sup] OJ -RH[b]共价键合型-新产品[/b] CHIRALPAK[sup] [/sup]IA CHIRALPAK[sup][/sup] IB[b]其它[/b] CROWNPAK[sup][/sup] [b]CR (+), (-)[/b] CHIRALPAK[sup][/sup] OT(+), OP (+) CHIRALPAK[sup][/sup] WH, MA (+) CHIRALPAK[sup] [/sup] QD-AX CHIRALPAK [sup][/sup] QN-AX4. Thar 80 主要部件主要有进样器,溶剂泵,CO2泵,检测器,背压器等部件,具体如图所示。[align=center][img=,690,467]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081543_02_2904018_3.png[/img] [/align][align=center] [img=,437,609]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081544_01_2904018_3.png[/img][/align]5. 总结SFC仪器较特殊的两点1.保持一定温度:二氧化碳流经的管路有温控措施,将温度控制在35℃。2.保持一定压力:有一个限流器(或称备压装置)。为了保持在整个系统中二氧化碳一直保持超临界流体状态,一般反压设置为100bar。3.粘度近于气体,比液体低得多,可减少柱过程阻力,采用细长色谱柱以增加柱效 。(优于HPLC)4.扩散系数在气体和液体之间,具有较快的传质速度,使分析速度加快,峰型变窄,增加检测灵敏度 。(优于GC)

  • 超临界流体色谱SFC

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 超临界流体色谱

    超临界流体色谱

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 【实战宝典】超临界流体色谱法有哪些优缺点?

    【实战宝典】超临界流体色谱法有哪些优缺点?

    [b][font='Times New Roman'][font=宋体]解答:[/font][/font][/b][font=宋体][font=宋体]([/font]1[font=宋体])[/font][/font][font='Times New Roman'][font=宋体]超临界流体色谱法([/font]supercritical fluid chromatography[font=宋体], [/font][font=Times New Roman]SFC[/font][font=宋体])是以超临界流体作为流动相的色谱技术。原理即为使用超临界流体作为流动相,借助超临界流体的特性达到分离组分的目的。[/font][/font][font=宋体][font=宋体]([/font]2[font=宋体])[/font][/font][font='Times New Roman'][font=宋体]所谓超临界流体是指既不是气体也不是液体的一类物质,它们的聚集状态为介于气体和液体之间的流体,物理临界点温度通常高于沸点和三相点。从热力学上看,超临界流体的密度是气体的[/font]100~1000[font=宋体]倍,[/font][/font][font=宋体]与[/font][font='Times New Roman'][font=宋体]液体相近,具有和液体相似的溶解能力及与溶质的作用力[/font][/font][font=宋体];[/font][font='Times New Roman'][font=宋体]从动力学上看,超临界流体的黏度要比液体低,可以使用比常规液相色谱更大的线速度[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]扩散系数是液体的[/font]10~100[font=宋体]倍,传质速率高。[/font][/font][font=宋体]([/font][font='Times New Roman']3[/font][font=宋体])[/font][font='Times New Roman'][font=宋体]由于超临界流体的以上特性,超临界流体色谱法可获得比常规液相色谱更高的柱效和更快的分析速度。[/font][/font][font=宋体]但由于[/font][font='Times New Roman'][font=宋体]超临界流体自身稳定性不佳,使用条件苛刻,重现性不佳,成本高昂等一系列原因,导致[/font][/font][font=宋体]其[/font][font='Times New Roman'][font=宋体]发展空间受到限制。[/font][/font][font='Times New Roman'][font=宋体][img=,256,256]https://ng1.17img.cn/bbsfiles/images/2021/03/202103172141563611_2040_3389662_3.jpg!w256x256.jpg[/img][/font][/font]

  • 【求助】求两本超临界与离子液体的书,急用啊!!!!!

    各位XDJM,谁有1.绿色溶剂-离子液体的合成与应用——化学工业出版社2。超临界流体科学与技术——中国石化出版社这两本书啊,有的话通知我一声啊,急用啊,谢谢各位了!!!!!我的Email是poulfuchao@sina.com

  • 【资料】超临界流体色谱法测定固体在二氧化碳中的溶解度

    [size=5]超临界流体色谱法测定固体在二氧化碳中的溶解度[/size] 来源: 作者:赵锁奇,杨光华,王仁安摘要:开发了一种测定超临界二氧化碳中大分子溶质的溶解度的方法 这一方法将微型超临界流体萃取(Micro-SFE)直接与超临界色谱(SFC)相耦合.超临界流体色谱采用FID作为检测器,实验中两者具有阿一压力、温度及同样的CO流速。使用了模型溶质萘、联苯和菲来验证此方法,井得到了温度在308~330K.压力8.0~12.0MPa间溶质的等压溶解度曲线,实验结果与文献值相符,定量显示了在溶剂近临界区域固体/超临界流体二元系的相平衡特性 这一方法适用于重溶质在CO2中溶解度的测量。关键词:固体;溶解度;二氧化碳;超临界流体萃取;超临界流体色谱l 前 言近二十年不少研究者发表了相当数量的超临界流体中不同固体的平衡溶解度数据,常用模型化合物来考察温度、压力和超临界流体的密度对溶解度的影响.并用以建立超临界流体相平衡的理论。二氧化碳因其不可燃、无毒且价格低廉的特性成为最为常用的溶剂,而且二氧化碳有相对低的临界温度(31.2℃)和临界压力(72.9atm),显然有利于热敏性物质的分离。Francis测定过25℃下近临界二氧化碳中数百种溶质的溶解度.Tsekhanskaya等测定了超临界二氧化碳中固体萘的溶解度。McHugh发表了超临界CO2中萘和联苯的溶解度数据,Kurnik ,Schmitt和Reid则测定了包括CO2在内的超临界流体中数种有机化合物的溶解度数据。他们的工作中所用的仪器主要为中型的动态超临界流体萃取器。King,McHugh对超临界流体相平衡的静态和动态测定方法作了详细的评述。Bruno综述了溶质溶解度的四种测定方法,即动态流动法、静态(平衡)法、色谱溶解度法和光谱法。超临界流体色谱使用超临界流体作为流动相,起源于六十年代,自八十年代中期开始得到迅速发展,但主要是用于分析工作。八十年代超临界流体色谱开始用于测定热力学性质,如两相中溶质的偏摩尔体积和偏摩尔焓、固定相与流动相之间溶质的分配系数Staeh使用超临界流体萃取和薄层色谱来测定超临界流体中固体的溶解度,这对测定溶解度的压力闽值并获得密度变化对溶解度的影响的定性说明,无疑是有益的Saito和Skelton等报道了直接耦合的超临界流体萃取/超临界流体色谱,这一类系统使用紫外检测器,利用紫外吸收来测定复杂物质的溶解度,对无紫外吸收的溶质就显得无能为力了。Smith等将毛细管超临界流体色谱与质谱联合用于测定溶液中溶质的量,这种方法可以对宽范围的固体样品作出较快的测量,但难于用于液体样品。Battle等作了若干超临界流体色谱中溶质的保留机理的假设,以此为基础测定了固体芳烃的溶解度。相对于中型的超临界流体萃取来说,微型超临界流体萃取具有一定的优越性,如它便于建造和操作,所用样品量少.操作费用低,而且可以直接与分析仪器相衔接.如紫外、红外、核磁共振仪、质谱等.所用操作时间少。本文的目的是发展一种直接测定大分子固体或液体在超临界流体CO2中溶解度的新方法,该方法应较为简便地确定稀溶液范围内的定量结果。研究中建立了将超临界流体微萃取与超临界流体色谱系统直接连接到氢离子火焰检测器(FID)的实验装置,之所以选择氢离子火焰检测器是因为它是一种通用型宽线性范围的检测器,比起其它检测器.如TLC和紫外检测器,它有较高的灵敏度。实验选择了萘,联苯和菲作为模型化合物来验证方法的可靠性并研究这三种溶质-二氧化碳体系在超临界区的相平衡特征。

  • 【转帖】超临界流体定义、特点

    超临界流体定义、特点㈠定义超临界流体(supercritical fluid,简称SCF)可用临界温度和临界压力的形式来定义。气、液两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气、液两相性质非常接近。超临界流体(supercritical fluid),又称为稠密气体(dense gas)或高压气体(high compressed gas),它不同于一般的气体,也有别于一般液体,兼有液体和气体的双重特性,密度接近于液体,粘度和扩散系数接近于气体,渗透性好,与液体溶剂萃取相比,可以更快地完成传导,达到平衡,促进高效分离过程的实现。㈡特点超临界流体的溶解能力取决于它的温度和压力,通常和流体的密度呈正相关,随流体的密度增加而增加。在临界点附近,压力、温度的微小变化会引起流体密度及其对物质溶解能力的较为显著的变化。被用作超临界流体的溶剂有乙烷、乙烯、丙烷、丙烯、甲醇、乙醇、水、二氧化碳等多种物质,超临界二氧化碳是首选的萃取剂。这是因为二氧化碳的临界条件易达到(Tc=304.1 K,Pc=7.347 MPa),且无毒、无味、不燃、价廉、易精制,这些特性对热敏性和易氧化的产物更具有吸引力。超临界流体的特性① 无毒性、不燃性和无腐蚀性。超临界CO2流体无毒和不可燃,有利于安全生产,而且来源丰富,价格低廉有利于推广应用,降低成本。② 容易达到超临界条件。CO2临界温度为Tc=31.1℃ ,临界压力为Pc=7.3MPa,CO2的超临界条件与水相比(水的临界温度为374℃,临界压力为22MPa)更容易达到。

  • 【资料】超临界流体色谱分析番茄红素

    [size=5]超临界流体色谱分析番茄红素[/size] 来源: 作者:齐国鹏,赵锁奇摘 要:以超临界C02作为流动相,在压力15.0~20.0MPa,温度25~50%,携带剂乙醇或正己烷的浓度分别为0~30%和0~20%的范围内考察了番茄红素及其氧化产物在C18色谱柱上的保留值的变化规律,确定了最佳的分离条件。对超临界丙烷萃取的番茄红素原料、萃取产物及萃余物进行了定量分析,考察了重复性及平行性。结果表明:在优化条件下,番茄红索的保留时间在3min以内,定量结果的重复性与平行性好。关键词:超临界流体色谱,番茄红素1 引 言番茄红素属于类胡萝卜素的一种,广泛分布于番茄、西瓜、葡萄等各种植物体中,作为多烯芳香烃,番茄红素是很强的抗氧化剂,可以消除血管中的自由基,淬灭单线态氧,对于抑制癌症有一定的效果。近年来,对番茄红素的分析方法的研究也日益增多。常用的方法是HPLC、TLC和紫外分光光度法等。这些方法各有特点,HPLC准确度较高,但有机溶剂耗费多;TLC设备要求不高,但分析时间长、精密度差;紫外分光光度法比较简单,但由于p.胡萝卜素等的干扰,容易产生较大的误差。利用超临界流体色谱分析胡萝卜素已有报道,LesellierE列和Aubert 利用超临界流体色谱对α-胡萝卜素和β-胡萝卜素进行了分析。但采用超临界流体色谱专门分析番茄红素还未见报道。超临界流体具有高的扩散性和较强的溶解能力,有机溶剂用量少,操作温度低等优点,本文通过考察色谱柱温度、超临界流体的压力、超临界流体的组成及携带剂浓度等因素对番茄红素分离的影响,为研究番茄红素建立一种有力的分析分离方法。2 实验部分2.1 仪器与试剂本实验室自行组装的超临界流体色谱仪,包括:两台ISCO 260DM 型注射泵输送二氧化碳,一台ISCO100DM型注射泵输送携带剂,三台泵由一台控制器控制,可以准确控制柱前压和携带剂的流量;冷冻机(重庆四达实验仪器厂)冷冻二氧化碳到一6℃;恒温箱(海安石油仪器厂);TSP-100高压UV-VIS检测器(美国TSP公司);Rhendyne 7125形六通进样阀配20μL定量管等部分。二氧化碳(北京氦普北分气体工业有限公司,纯度99.99%);无水乙醇(北京化工厂,分析纯);正己烷(北京化工厂,分析纯)。2.2 样品及处理样品包括:番茄红素标准品,β-胡萝卜素,室温下放置半个月后的氧化的番茄红素标准品,加入β-胡萝卜素的氧化番茄红素标准品;超临界丙烷萃取番茄产品,萃取的番茄原料,萃余物。将上述样品分别称取适量溶于正己烷中。2.3 色谱条件Spherisorb Ctg色谱柱(中国科学院大连化学物理研究所,尺寸:250mm×4.5mm,10μm填料);流动相为二氧化碳-乙醇,二氧化碳-正己烷;检测波长:472nm;进样量:20μL;温度、压力、流动相流速及组成以下说明。3 结果与讨论3.1 番茄红素的定性分析本实验所用的番茄红素的样品为超临界丙烷萃取番茄产品,其中主要的杂质为β-胡萝卜素,同时由于番茄红素易于氧化,所以对番茄红素、番茄红素氧化物、胡萝卜素进行了定性分析。在相同的色谱条件下,分别注入番茄红素标准液、氧化后的番茄红素标准溶液、加入β-胡萝卜素的番茄红素标准溶液。结果如图可看出,番茄红素及其氧化物,β-胡萝卜素的保留时间随极性的减小而增加。3.2 最佳条件的确定为了保证番茄红素的定量准确,通过考察压力、温度、流动相组成及浓度对番茄红素与其氧化物分离的影响,确定了番茄红素分离的最佳条件。3.2.1 柱前压的影响 改变柱前压,当柱前压由17.0MPa增加到20.0MPa时,番茄红素及其氧化物的容量因子逐渐减少,两者的保留时间都缩短,但番茄红素与其氧化物可以实现分离。3.2.2 柱后压的影响 当柱前压、温度及携带剂流速不变,将柱后压由15MPa增加到19MPa,番茄红素与其氧化物的容量因子均减小,但番茄红素与其氧化物的相对保留值随柱后压的增加而减小,分离度也有减小的趋势。3.2.3 温度的影响 容量因子随温度增加的变化趋势如图看出,随温度升高,番茄红素与其氧化物的容量因子降低。番茄红素与其氧化物的相对保留值在室温时最大。由图也可看出,分析温度较低时,番茄红素与其氧化物的保留时间较长,但分离度较大,所以,分离的温度可选择室温。3.2.4 携带剂的影响 当乙醇浓度由5%增加到8%时,番茄红素容量因子减小很快,当浓度增大到16%时,番茄红素与其氧化物的相对保留值减小,乙醇合适的浓度为8%~10%。若以正己烷做携带剂,变化趋势与乙醇相同,番茄红素与其氧化物的相对保留值与乙醇作为携带剂时的值相差不大,大约1.2。但在相同的浓度下,正己烷做携带剂分离番茄红素的容量因子比乙醇小。3.3 番茄红素的定量分析3.3.1 绘制番茄红素的标准工作曲线配制一系列浓度的番茄红素标准溶液,分别取20μL的上述标准溶液进色谱,并根据浓度.峰面积作标准曲线,标准曲线方程为Y =一0.049+7.42×0.0000001X(Y的单位为g/L),拟合度为0.9990,线性关系较好。线性范围:3~240mg/L。3.3.2 超临界萃取番茄红素样品色谱图 选好适当的色谱分离条件,取20μL番茄红素产品的正己烷溶液进色谱,将产品中番茄红素的峰面积代入标准曲线,即可求出溶液中番茄红素的浓度,并求出产品中的番茄红素含量。3.3.3 精密度及平行性测定 分别称取适量的同一批番茄产品、原料、萃余物各2份,溶于10mL的正己烷中。取各份上述溶液平行测定4次,结果列入表可以看出,测量结果的相对标准偏差均在6%以内,具有良好的精密度,且结果的平行性也很好。结合含量及总量进行物料恒算可以看出,原料中的番茄红素总量与产品及萃余物中番茄红素的总量较吻合,得到的结果可靠、准确。4 结 论(1)使用超临界流体色谱,在C18色谱柱上定性分析番茄红素,可通过改变温度、压力、携带剂浓度来改善分离条件。本研究确定的优化条件为柱前压20.0 MPa,柱压降在3.0~4.0MPa,分离的温度选择室温,携带剂浓度在8%~10%。番茄红素的保留时间大约3min,分析时间短于HPLC。(2)超临界流体色谱定量番茄红素,相对标准偏差在6%以内,结果的重复性和平行性较好。References1 Cheng Jian(成坚),Zeng Qingxiao(曾庆孝).Food and Fermentation lndustr/ez(食品与发酵工业),1999,26(2):75~782 Wang Qiang(王强),Han Yashan(韩雅珊),Dai Yunqing(戴蕴青).Chinese J.Chromatogr.(色谱),1997,15(6):534~535

  • 超临界流体萃取

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理(一). 超临界流体定义  任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取本文摘自:www.wolsen.com.cn

  • 【资料】超临界流体色谱快速测定烟酰胺的含量

    [size=5]超临界流体色谱快速测定烟酰胺的含量[/size] 来源: 作者:郭亚东,马银海,张艳,彭永芳摘要:采用超临界流体色谱快速测定制剂中烟酰胺的含量.在CO2流动相中添加10%的甲醇,于填充柱上分离,检测波长为216nm,在测定范围内,浓度与其峰面积呈良好的线性关系(r=0.9998),峰面积的相对平均偏差(RSD)为1.39%,平均回收率97.3%~101.3%,4min即可完成分析.方法简便,样品前处理简单,可用于制剂中烟酰胺的快速分析。关键词:烟酰胺;超临界流体色谱;含量测定水溶性维生素对人们的生长发育和健康有着重要作用,人们除了从水果和蔬菜中摄取外,还从添加了维生素的食品和复合维生素制剂中补充人体的需要,有必要建立快速,稳定的分析方法用于其含量测定。对烟酰胺的含量测定方法主要是高效液相色谱法,该方法取得了较好的结果,但其分析时间长,样品前处理麻烦。此外,毛细管电泳,胶束电动毛细管电泳,气/质联用等方法也用于它的含量测定.本文探索了用超临界流体色谱测定维生素含量的方法,结果令人满意。1 仪器与试药超临界流体色谱仪:Gihon Model SF3系统(英国),对照品烟酰胺购自Lancaster化学公司(英国),甲醇为高效液相色谱纯,CO2为超临界流体色谱纯.2 实验方法及结果分析2.1 色谱条件色谱柱cyano(5μm,4.6×250mm),柱温50℃,紫外检测器配有高压检测池,其检测波长为216nm,进样装置带有l0μL进样阀的自动进样器,流动相压力20MPa,流动相流速为2.0mL/min。2.2 流动相对分离的影响只用CO2作流动相时,其保留时间太长,且色谱峰拖尾严重;当在流动相中加人10%的甲醇后,其峰形大为改善,保留时间缩短;当流动相流速改变时,保留时间会有小的改变,但对峰形几乎没有影响。2.3 线性关系考查将烟酰胺对照品取适量,精称后用甲醇稀释成5~50μg/mL的标准溶液,取6个不同浓度的对照品溶液按上述实验条件各进样三次,记录其色谱图,以对照品浓度(μg/mL)为横坐标,峰面积值为纵坐标,绘制标准曲线,得回归方程Y=一351.6+147.7X,R=0.9998,可见在所用浓度范围内具有良好的线性关系。2.4 精密度及稳定性试验测定该维生素日内和日间的峰面积,以考查分析方法的精密度和样品的稳定性,在上述实验条件下,连续进样8次,烟酰胺峰面积的相对标准偏差(RSD)为1.11%,放置1d后的RSD为1.39%,表现出良好的精密度和稳定性。2.5 回收率试验精密称取已知含量的同一样品三份,加人不同量的烟酰胺对照品,按样品测定项下的条件进样分析,计算其回收率,烟酰胺的回收率平均值±SD为98.3±1.28%。2.6 样品测定取昆明振华制药厂生产的复合维生素B(批号990701)5片,碾碎后用5mL甲醇溶解并超声提取20min,用0.45μm滤膜过滤,适当稀释后在上述色谱条件下进样分析,以峰面积按标准曲线法计算含量。3 讨论3.1 流动相选择当用CO2加10%甲醇作流动相时,烟酰胺的保留时间为3.7min。可以满足快速分析的要求,且色谱峰形得到改善。3.2 提取溶剂的选择比较了水、甲醇和乙醇作溶剂提取样品,结果以甲醇较好。样品用甲醇溶解并超声提取后,直接进样分析,不需要复杂的前处理.3.3 结果通过测定回收率,精密度并考查其线性关系,表明该方法可以于快速测定烟酰胺含量,能给出满意的结果.[参考文献][1] Hurtado S A,Nogues M T V,Pulido M I et a1.Determination of water—soluble vitamins in infant milk by HPLC[J].chromato A,1997,778:247.[2] Wills R B H,Shaw C G,Day W R.Analysis of water soluble vitamins by PHLC[J].Chromatogr Sci.,1977,15:62.

  • 【资料】超临界流体色谱法简介

    [color=#cc0033][color=#000000][/color][/color][color=yellow][font=宋体][font=Wingdings]Ø [/font][/font][/color][size=3][font=SimSun][color=yellow][b]发展现状 [/b][/color][b][color=#ffffff] [/color][/b] 超临界流体色谱技术是2O世纪80年代发展起来的一种崭新的色谱技术。由于它具有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相所没有的优点,并能分离和分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱不能解决的一些对象,应用广泛,发展十分迅速。 [/font][/size][font=华文行楷][size=3][font=SimSun] 据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果。[/font][/size][size=7] [/size][/font]

  • 【资料】超临界流体色谱法分析大豆磷脂

    [size=5]超临界流体色谱法分析大豆磷脂[/size] 来源: 作者:王学军, 赵锁奇, 王仁安 摘要:采用以CO2为流动相的超临界流体色谱方法,以含0.05%(体积分数)三乙胺的乙醇作为改性剂,对具有重要生物功能的大豆磷脂组成进行分析,获得了大豆磷脂提取物中6个重要组分的定性结果,并讨论了流动相组成、操作温度和压力对分离的影响。对其中有代表意义的磷脂酰胆碱(PC)进行了外标法定量分析,在PC质量浓度为0.020 g/L-0.075 g/L时具有较好的线性关系,PC加样回收率为96.7%( =5),重现性好。此方法可用于实际样品的分析。关键词:超临界流体色谱;磷脂酰胆碱;大豆磷脂2 实验部分2.1 仪器与试剂 所用SFC装置由本实验室设计组装而成。Rheadyne进样器配有lOμL的定量管,Spectra 100可变波长紫外检测器为美国TSP公司产品,色谱信号由色谱工作站记录。无水乙醇、三乙胺均为国产分析纯试剂。PC,PE,PI标准品购自Sigma公司大豆磷脂分别为本实验室超临界流体抽提萃取物和北京化学试剂公司产品。2.2 色谱条件 参考文献[2,7,8]所报道的内容,本实验所用色谱柱选择Sphefisorb C18 10μm(中科院大连化学物理研究所),250 mm×4.6mm i.d.不锈钢柱;流动相为超临界CO2和改性剂(体积比为10:1),其中改性剂为含0.05%(体积分数)三乙胺的乙醇溶液;流动相流速为1.1mL /min~1.3 mL/min;柱温为3O℃~60℃ ;压力为20MPa~30MPa;进样体积为10μL;经紫外扫描,选择检测波长为214nm。2.3 混合标准溶液和样品溶液的制备 称取各磷脂标准品适量,加人同一容量瓶中,加乙醇至刻度,配成标准品的混合溶液,其中每一标准品的质量浓度均在0.2 g/L到10.0 g/L之问;分别称取两种大豆磷脂样品1.0 g,并各自配成质量浓度约为50 g/L的乙醇溶液。

  • 【资料】超临界流体色谱同时测定维生素B2,B3和烟酰胺

    [size=5]超临界流体色谱同时测定维生素B2,B3和烟酰胺来源: 作者:郭亚东 摘要:采用超临界流体色谱同时定量测定维生素制剂中维生素B2(核黄素)、维生素B3(烟酸)和烟酰胺的含量。在CO2流动相中添加15%(体积分数)的甲醇(含0.1%二乙胺),于填充柱上分离,检测波长为268nm。上述3种维生素在测定范围内,其浓度与相应的峰面积呈良好的线性关系(r0.999),平均回收率为97.3%~102.3%;5 min即可完成分析。其日内和日间峰面积测定的相对标准偏差(RSD)小于1.5%。该方法简便,样品前处理简单,可用于上述3种维生素的快速分析。关键词:超临界流体色谱;核黄素;烟酸;烟酰胺;维生素制剂水溶性维生素对人们的生长发育和健康有着重要作用。人们除了从水果和蔬菜中摄取外,还从添加了维生素的食品和复合维生素制剂中补充人体的需要,因此有必要建立快速、稳定的分析方法用于其含量的测定。对维生素制剂中维生素B2(核黄素)、维生素B3(烟酸)和烟酰胺测定的方法主要是高效液相色谱法。采用该方法虽可取得较好的结果,但其分析时间长,样品前处理麻烦。毛细管电泳、胶束电动毛细管电泳等方法也可用于其含量测定。本文建立了用超临界流体色谱同时测定这3种维生素的方法,该方法样品前处理简单、分析时间短、分离好,结果令人满意。1 实验部分1.1 仪器与试药超临界流体色谱仪:Gilson Model SF3系统(英国)。核黄素和烟酰胺对照品购自Lancaster化学公司(英国),烟酸购自Acros公司(英国),甲醇为高效液相色谱纯,二乙胺为分析纯,CO2为超临界流体色谱纯。1.2 色谱条件色谱柱:Cyano(5μm,4.6mm i.d.×250mm,英国);柱温:50℃;紫外检测器配有高压检测池,其检测波长为268nm;进样装置:带有10μL进样阀的自动进样器;流动相操作压力:20MPa。2 结果与讨论2.1 流动相组成对分离的影响只用CO2或者CO2加甲醇作流动相时,这3种维生素不能完全分开;当在甲醇中加入少量二乙胺后,其分离情况得到大大改善。表给出了当流动相的流速一定,在CO2中分别添加10%和15%(均为体积分数)的甲醇,并在这两种体积分数下的甲醇中各分别添加0.1%和0.5%(均为体积分数)的二乙胺时上述3种维生素的保留时间,可见流动相中甲醇和二乙胺的含量对保留时间的影响很大。本文将l5%的甲醇(含有0.1%的二乙胺)添加到CO2中作流动相,可使3种维生素的同时分析在短时间内完成,分离结果令人满意。2.2 流动相流速对分离的影响当流动相组成为CO2加l5% 的甲醇(含有0.1% 的二乙胺)时,将流动相流速从2.0 mL/min提高到3.0 mL/min,对这3种维生素的色谱峰形和分离情况都没有太大的影响,最后出峰的维生素B2的保留时间仅从5.11min降为3.37min。本文采用2.5mL/min的流速进行分析。[/size]

  • 【求助】超临界色谱中的流速u的求法

    【求助】超临界色谱中的流速u的求法

    超临界色谱中的流速u的求法在色谱柱中的流速应该等于体积流量除以色谱柱的截面积,但是在超临界流体色谱中流体的密度变化很大,用注射泵的体积流量除以截面积并不是流体在色谱柱中的真正流速。我想问的是在超临界体系下,范第姆特方程中的流速u(cm/s)应该怎么求?http://ng1.17img.cn/bbsfiles/images/2011/06/201106281850_302003_2254860_3.jpg

  • 【转帖】二氧化碳超临界流体萃取!

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理 (一). 超临界流体定义  任何一种物质都存在三种相态-[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取。

  • 【求助】关于超临界流体色谱技术

    不知道这里面有没有超临界流体分离技术方面的大虾,我很想了解一些超临界流体分离技术方面的知识,不知道可不可以给我提供一些,万分感谢!

  • 大家来谈谈超临界色谱目前有哪些国内外厂家在做之云云

    超临界色谱作为一种潜力极大的色谱技术已经开始被越来越多实验室所应用,其利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。各位版友,可否知晓目前在超临界色谱技术的厂商佼佼者是谁?我只知道waters在这方面蛮强,大家来讨论一下吧,各家的优点。超临界色谱主要的应用领域是什么?其在分离性能上的突出性是什么?在色谱分离领域中,有没有比超临界技术更牛叉的技术?

  • 请问什么是超临界色谱柱?

    [color=#000000]看到[url=http://bbs.instrument.com.cn/list.asp?ForumID=700][color=#000000]Kromasil[/color][/url]有一种超临界色谱柱,[/color]从来没用过这种柱子,请问有啥特点?适宜用在那些方面的分析?

  • 【资料】超临界流体萃取法——毛细管气相色谱法分析牡丹皮及制剂中丹皮酚的含量

    超临界流体萃取法——毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析牡丹皮及制剂中丹皮酚的含量第二军医大学长征医院药材科 (上海 200003) 缪海均 柳正良* 李云华* 邵元福*第二军医大学药学院[B]摘要[/B] 本文采用超临界流体萃取法(supercritical fluid extraction,SFE)提取中药牡丹皮及其成方制剂中丹皮酚,以氯仿作改性剂,在温度90℃,压力4000 psi下,二氧化碳动态萃取体积3 ml 静脉萃取时间5 min为最佳。该法简便快速,萃取完全。用大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法作含量监测,结果:相关性好(r=0.9999),中药与制剂的回收率分别为97.8%,RSD=2.35%(n=3);100.3%,RSD=1.89%(n=3)。结果准确,灵敏,分辨率好。为中药有效成分的提取和质量控制提供了有效可靠的方法。[B]关键词[/B] 超临界流体萃取法; 牡丹皮; 丹皮酚; 毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法中药的成分极其复杂,在定量分析中,样品的提取是非常关键的,超临界流体萃取是近代分离领域中出现的先进的样品制备技术,将传统的蒸馏和有机溶剂萃取结合在一起,利用超临界流体的优良溶解能力,达到分离、纯化的目的。丹皮酚(paeonol)是毛茛科植物牡丹(Paeonia suffruticosa Andr)的主要挥发性有效成分,具有祛风镇痛、降压、止血、抗炎症、抗菌、抑制血小板凝集等多种药理作用 [1] 。本文用超临界二氧化碳流体对牡丹皮及其成方制剂中丹皮酚的萃取条件进行了系统的研究,筛选出压力、温度、CO 2动态萃取量、静态萃取时间和改性剂加入量等五变量的最佳条件,用大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定了丹皮酚的含量,其结果准确、灵敏,分辨率好。[B]1 实验部分[/B]仪器、试剂和药品 仪器:100DX、100DM注射泵,SFX210超临界萃取器(美国ISCO公司),HP5890series II[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](美国HP公司),NEC Pewermate 325(日本)。试剂:二氧化碳(99%)(上海酒精总厂),其余试剂均为分析纯。药品:丹皮酚标准品(中国药品生物制品检定所),药材及成方制剂购于长海医院。

  • 【资料】超临界色谱PPT

    杂不能收钱呢?[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=44357]超临界色谱PPT[/url]

  • 超临界萃取新技术在中药提取分离中的应用

    一、 中药产业化形势及应用新技术的意义 中药为我国传统医药,用中药防病治病在我国具有悠久的历史。由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。面对科学技术,特别是医药工业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。改革开放到党的十五大,我国明确了中药发展的战略方向和思路,提出"科教兴业"的战略主体目标,中药的发展迈进了一大步。中药生产中的大桶煮提、大锅蒸熬及匾、勺、缸类生产器具当家的状况大为改善,进而出现不锈钢多功能提取罐、外循环蒸发、多效蒸发器,流化干燥器等设备,中成药的剂型也有较大的发展,由丸、散、膏、丹剂为主发展成为具有颗粒剂、片剂、胶囊剂、口服液及少量粉针等剂型。中药产值比1979年翻了五番,约占医药工业产值的30%以上。然而,我国现阶段创制的中成药还难以在国外注册、合法销售与使用。从目前全世界天然药物的贸易额来看,中国仅占1%左右,与天然药物主产国的地位极不相称。其原因主要是产业现代工程技术水平不高,制备工艺和剂型现代化方面还很落后;生产过程的许多方面缺乏科学的、严格的工艺操作参数,不仅导致了消耗高、效率低,而且还出现有效成分损失、疗效不稳定、剂量大服用不方便、产品外观颜色差、内在质量不稳定;同时还出现缺少系统的量化指标,大多数产品缺乏疗效基本一致的内在质量标准;许多复方制剂还难以搞清楚其作用的物质基础。"丸、散、膏、丹,神仙难辨"的状况尚未根本改变。要改变这种现状,让西方医药界接受中药,增强中药在国际市场上的竞争地位,主要途径是,以中药理论为指导,采用先进的技术,实现中药现代化。中药产品现代化的重点可简单地用8个字来描述,即"有效、量小、安全、可控"。实际上,它涉及范围十分广泛,要解决的问题比较复杂,但首先最关键的问题就是要提取分离工艺、制剂工艺现代化,质量控制标准化、规范化。为此,许多医药专家多次提出要采用超临界流体技术、分子蒸馏技术、膜分离技术、冷冻干燥技术、微波辐射诱导萃取技术、缓控释制剂技术、各种先进的色谱、光谱分析等先进技术,进行中药研究开发及产业化。在国家有关部门的主持下,1998年3月底,来自全国及香港20多个单位的60多位专家学者聚集厦门大学,探讨了中药现代化问题,特别是中药复杂体系中重大科学基础问题,超临界流体技术、分子蒸馏技术、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]等同时也被提出来。 超临界CO2萃取技术、分子蒸馏技术、超重力场技术是目前国际上较新的三大提取分离技术、采用这些技术对中药进行提取分离纯化,对实现中药现代化具有重要意义。 中国作为全球中药材大国,随着我国入世的临近,更应在推动中药现代化、成果产业化进程中发挥重要作用,使中国的资源优势转化为经济优势,并使我国中药现代化的重大举措得以实现。二、 超临界CO2流体萃取新技术在中药提取分离中的应用 超临界流体(Supercritical Fluid,简称SF或SCF)是指超临界温度(Tc)和临界压力(Pc)状态下的高密度流体。超临界流体具有气体和液体的双重特性,其粘度与气体相似,但扩散系数比液体大得多,其密度和液体相近。超临界流体对物质进行溶解和分离的过程就叫超临界流体萃取(Supercritical Fluid Extraction,简称SFE)。其基本原理为:CO2的临界温度(Tc)和临界压力(Pc)分别为31.05℃和7.38MPa,当处于这个临界点以上时,此时的CO2同时具有气体和液体双重特性。它既近似于气体,粘度与气体相近;又近似于液体,密度与液体相近,但其扩散系数却比液体大得多。是一个优良的溶剂,能通过分子间的相互作用和扩散作用将许多物质溶解。同时,在稍高于临界点的区域内,压力稍有变化,即引起其密度的很大变化,从而引起溶解度的较大变化。因此,超临界CO2可以从基体中将物质溶解出来,形成超临界CO2负载相,然后降低载气的压力或升高温度,超临界CO2的溶解度降低,这些物质就沉淀出来(解析)与CO2分离,从而达到提取分离的目的。不同的物质由于在CO2中的溶解度不同或同一物质在不同的压力和温度下溶解状况不同,使这种提取分离过程具有较高的选择性。1、 超临界CO2流体萃取技术在中药现代化中应用的优越性 用超临界CO2萃取技术进行中药研究开发及产业化,和中药传统方法相比,具有许多独特的优点。 1.1 萃取能力强,提取率高。用超临界CO2提取中药有效成分,在最佳工艺条件下,能将要提取的成分几乎完全提取,从而大大提高产品收率和资源的利用率。同时,随着超临界CO2萃取技术的不断进步,全氟聚醚碳酸铵(PFPE)的应用,把超临界CO2萃取扩展到水溶液体系,使得难以提取的强极性化合物如蛋白质等的超临界CO2提取已成为可能。 1.2 萃取能力的大小取决于流体的密度,最终取决于温度和压力,改变其中之一或同时改变,都可改变溶解度,可以有选择地进行中药中多种物质的分离,从而可减小杂质使中药有效成分高度富集。便于减小剂量和质量控制,产品外观大为改善。 1.3 超临界CO2临界温度低,操作温度低,能较完好地保存中药有效成分不被破坏,不发生次生化。因此,特别适合那些对热敏感性强、容易氧化分解破坏的成分的提取。 1.4 提取时间快、生产周期短。超临界CO2提取(动态)循环一开始,分离便开始进行。一般提取10分钟便有成分分离析出,2-4小时左右便可完全提取。同时,它不需浓缩步骤,即使加入夹带剂,也可通过分离功能除去或只是简单浓缩。 1.5 超临界CO2提取,操作参数容易控制,因此,有效成分及产品质量稳定。 1.6 超临界CO2还可直接从单方或复方中药中提取不同部位或直接提取浸膏进行药理筛选,开发新药,大大提高新药筛选速度。同时,可以提取许多传统法提不出来的物质,且较易从中药中发现新成分,从而发现新的药理药性,开发新药。 1.7 超临界CO2还具有抗氧化、灭菌作用,有利于保证和提高产品质量。 1.8 超临界流体萃取应用于分析或与GC、IR、MS、LC等联用成为一种高效的分析手段。将其用于中药质量分析,能客观地反映中药中有效成分的真实含量。 1.9 经药理、临床证明,超临界CO2提取中药,不仅工艺上优越,质量稳定且标准容易控制,其药理、临床效果能够保证或更好。 1.10 超临界CO2萃取工艺,流程简单,操作方便,节省劳动力和大量有机溶剂,减小三废污染,这无疑为中药现代化提供了一种高新的提取、分离、制备及浓缩新方法。2、 超临界CO2流体萃取技术在中药提取分离及中药现代化中的应用方式及前景 从"八五"期间国家"八五"攻关项目"超临界CO2萃取技术在中草药生产中的应用研究与开发"到"九五"期间承担多项中国重点项目(有关SFE技术研究开发中药新药)以来,包括萃取分离研究和药理毒理研究及新药的开发研究,取得了重要的科技成果:①证明了超临界CO2萃取技术可应用于中药领域;②总结了SFE在中药中应用的规律性;③提出较为适合中药萃取的超临界设备结构类型;④总结了超临界CO2萃取中药的优越性,证明了用超临界CO2萃取中药,不仅工艺上优越,而且还能保持中药本身的药理活性;⑤研究开发出一批具有较好前景的品种,有的已工业化,走向市场。根据研究开发实践,认为超临界流体萃取技术应用于中药提取分离及中药现代化,具有较大的潜力和可观前景。SFE应用于中药,结合几个典型的研究开发实例,可将其分为如下几个方面。 2.1 SFE与中药有效成分或中间原料的提取 这一方面主要是指那些已具备质量标准的单体或有效部位的提取,往往本身就是产品,只要达到标准,便可进入市场。这是SFE技术应用于该领域中的较为容易进行的一个方面。 2.1.1超临界流体萃取法从黄花中提取青蒿素(Artemisinin)的新工艺。青蒿素来自菊科植物黄花蒿(Artemisia annua)的一种倍半萜内酯类成分,是我国唯一得到国际承认的抗疟新药。然而本应属于中国的东西,中国仅占国际市场份额的0.5%。传统的汽油法存在收率低、成本高、存在易燃易爆等危险,用SFE工艺,从0.1升、5升设备小试到25升、50升设备中试放大,一直到200升设备的工业化生产证明,超临界CO2萃取工艺可用于青蒿素的生产,青蒿素产品符合中国药品标准。超临界CO2萃取工艺比传统法(如汽油法)优越,产品收率提高1.9倍,生产周期缩短约100小时,成本降低447/Kg,可节省大量的有机溶剂汽油,避免易燃易爆的危险,减少三废污染,大大简化生产工艺。该新工艺已取得发明专利证书。在最近召开的中国青蒿素成果产业化发展战略研讨会上,已初步决定推广这种新工艺,以达到占国际市场份额的3-5%的目标。 2.1.2 贯叶连翘提取物的超临界CO2萃取 贯叶连翘提取物是目前国际流行的十大植物提取物之一,主要用于治疗忧郁症。提取物是用贯叶连翘药材经水煮或醇提、浓缩、干燥而得。采用超临界CO2萃取工艺,达到出口标准,

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制