当前位置: 仪器信息网 > 行业主题 > >

高精度激光跟踪仪

仪器信息网高精度激光跟踪仪专题为您提供2024年最新高精度激光跟踪仪价格报价、厂家品牌的相关信息, 包括高精度激光跟踪仪参数、型号等,不管是国产,还是进口品牌的高精度激光跟踪仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度激光跟踪仪相关的耗材配件、试剂标物,还有高精度激光跟踪仪相关的最新资讯、资料,以及高精度激光跟踪仪相关的解决方案。

高精度激光跟踪仪相关的论坛

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 纳米分辨率高精度激光衍射法在碳纤维细丝直径测量中的应用

    纳米分辨率高精度激光衍射法在碳纤维细丝直径测量中的应用

    [align=left][b][color=#339999]摘要:碳纤维单丝热膨胀系数是碳纤维复合材料设计、生产与可靠性和寿命评估的重要参数,本文针对单丝径向高温热膨胀系数测试这一难题提出了相应的解决方案。解决方案的核心内容是基于激光衍射法和高温辐射加热,并采用衍射轮廓拟合技术以及相应的校准、真空温度控制等技术,可实现几个纳米的测量分辨率。此解决方案不仅可以测量各种粗细单丝的直径及其热膨胀,还可以拓展应用于细丝的直径分布、截面形状和径向热膨胀测量。[/color][/b][/align][align=center][size=16px] [img=碳纤维单丝径向高温热膨胀系数激光衍射法测试解决方案,600,360]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300838571272_2512_3221506_3.jpg!w690x414.jpg[/img]~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 随着碳纤维增强复合材料应用的扩大,其设计也变得越来越精密。温度变化引起的热应力是复合材料设计中需要考虑的重要因素之一,而碳纤维的热膨胀系数是控制热应力的基本物理性能值。另外,碳纤维的热膨胀系数不仅是复合材料设计中的重要参数,也是预测制造工艺、可靠性和寿命的重要参数。[/size][size=16px] 由于碳纤维一般具有很强的方向性,其热膨胀系数主要包括轴向和径向热膨胀系数。本文将针对1~10微米直径的碳纤维单丝,提出径向热膨胀系数测试方法,特别是提出高温下径向热膨胀系数测试的解决方案。[/size][size=18px][color=#339999][b]2. 激光衍射法测量原理[/b][/color][/size][size=16px] 在假设碳纤维单丝是直径均匀、截面积形状为圆形细丝的前提下,按照热膨胀系数的定义,碳纤维单丝高温热膨胀系数的测试可以归结为不同温度下单丝直径的测量问题,具体测试涉及到单丝温度和单丝直径的精确测量。[/size][size=16px] 对于微小细丝直径的测量,只能选择非接触光学测量方法。可选择的测试方法主要有显微镜观测法、光学投影法和激光衍射法,但由于碳纤维测试需要涉及到高温和真空环境,显微镜直接观察方法很难实现较高温度,而投影法则是无法达到纳米量级的测量精度,因此本项目将选择激光衍射法,以实现纳米精度的单丝直径测量。[/size][size=16px] 激光衍射测量原理如图1所示。单色激光垂直照射被测细丝后在焦平面上形成衍射图形,通过对图形参数等的测量,可准确测得细丝直径。[/size][align=center][size=16px][img=01.激光衍射线径测量原理图,550,329]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300841272151_4630_3221506_3.jpg!w690x413.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图1 激光衍射法细丝直径测量原理图[/b][/color][/size][/align][size=18px][color=#339999][b]3. 细丝径向热膨胀测量装置[/b][/color][/size][size=16px] 基于激光衍射法的细丝径向高温热膨胀系数测量装置结构如图2所示。整个测量装置包括水冷真空系统、样品装置、温控加热装置和激光衍射测量装置四部分。[/size][align=center][size=16px][img=02.单丝碳纤维高温径向热膨胀系数激光衍射法测量装置结构示意图,500,452]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300841487917_7673_3221506_3.jpg!w690x625.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图2 单丝碳纤维高温径向热膨胀系数激光衍射法测量装置结构示意图[/b][/color][/size][/align][size=16px][color=#339999][b](1)水冷真空系统[/b][/color][/size][size=16px] 真空系统由水冷真空腔体内、真空泵和真空度控制系统构成。在整个高温测试过程中,需要对真空腔体抽真空,以便在整个高温测试过程中形成真空环境避免碳纤维细丝样品的氧化或烧断。真空腔体壁内通循环冷却水以对内部高温形成热防护。同时还需对循环冷却水温度和腔体内部真空度进行精密恒定控制,使得腔体温度和内部真空度所引起的腔体变形和光学窗口倾斜始终保持恒定和可重复。[/size][size=16px][color=#339999][b](2)样品装置[/b][/color][/size][size=16px] 采用悬空水平方式固定被测细丝碳纤维样品,细丝样品一端采用螺接压紧方式固定,另一端经过滑动装置采用砝码拉近,通过砝码重量提供的微小张力始终使细丝样品处于水平拉直状态。对于不同强度和粗细的碳纤维细丝,可通过更换砝码来提供不同的拉紧张力。[/size][size=16px][color=#339999][b](3)温控加热装置[/b][/color][/size][size=16px] 采用细管加热炉对整个样品进行辐射加热,测试过程中的温度变化按照步进台阶式形式变化,在每个设定点温度恒定后再进行激光衍射测量。这种加热方式的优点是用加热炉内的温度代替被测样品温度,由此可避免对细丝样品温度进行直接测量的困难性。[/size][size=16px][color=#339999][b](4)激光衍射测量装置[/b][/color][/size][size=16px] 激光衍射测量装置主要由激光源、衍射图像传感器和计算机图像分析系统组成。激光源和图像传感器分别水平布置在真空腔体的两侧,激光束垂直照射在被测细丝上,所形成的衍射图像由传感器接收。[/size][size=18px][color=#339999][b]4. 衍射轮廓的高精度测量[/b][/color][/size][size=16px] 细丝直径测量中采用激光衍射装置和图像传感器获得的衍射轮廓如图3所示。纤维直径根据测量衍射轮廓的第一个暗条纹之间距离,并由衍射公式计算获得。但如果直接采用图像传感器的固有位置分辨率,则只能获得10nm左右的直径测量分辨率,这显然无法获得足够高的直径变化检测精度。[/size][align=center][size=16px][color=#339999][b][img=03.图像传感器衍射轮廓示意图,550,402]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300842072248_1383_3221506_3.jpg!w690x505.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 图像传感器衍射轮廓示意图[/b][/color][/size][/align][size=16px] 为进一步提高细丝直径测量的分辨率,本文提出了以下几方面具体措施:[/size][size=16px] (1)对图3所示的衍射轮廓进行细分,具体细分技术是对衍射轮廓曲线进行参数拟合,拟合中需考虑衍射光以及背景光强度,如光学元件和窗口的散射光以及样品在高温下发出的光。[/size][size=16px] (2)采用已知直径的细丝对成像物镜的焦距进行高精度标定,减小系统误差。[/size][size=16px] (3)在CCD 前增加滤光片,在成像物镜前增加一平行于衍射方向的长条状光阑。[/size][size=16px] 通过上述措施,可将激光衍射法细丝直径测量的分辨率提高到几个纳米范围内。[/size][size=18px][color=#339999][b]5. 总结[/b][/color][/size][size=16px] 本文所述解决方案,除了可以实现1~10微米量级粗细的碳纤维单丝直径和热膨胀系数测试之外,还具备以下几方面的测试能力:[/size][size=16px] (1)本文所述解决方案在设计的同时,还同时考虑了碳纤维轴向方向上热膨胀系数测试功能的实现,即采用激光干涉法测试细丝样品在轴向方向上收缩和膨胀过程中的位移变化。在真空腔体形状和空间尺寸上都考虑了激光干涉法位移测量装置的布置,采用相同的加热和测温装置也可提供碳纤维细丝轴向热膨胀所需的温度变化和测量。[/size][size=16px] (2)由于具有几个纳米的超高分辨率,通过增加扫描装置,此解决方案可以用于碳纤维单丝外径分布和外径形状的测量。[/size][size=16px] (3)为各种粗细的线状材料外径测量提供了一种高精度的激光衍射测量方法,非接触光学测试方法和高温加热能力,也可推广应用到低温范围内的测试应用。[/size][align=center][color=#339999][b][/b][/color][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 【分享】激光平整仪的特征及应用

    激光平整度仪又可称为路面平整度仪、平整度测量仪,是集自动计算、显示、打印全方位多功能于一体的公路平整度检测仪器。激光平整仪采用进口高精度激光传感器、加速度传感器和距离传感器,特别适用于高等级公路、机场跑道的竣工验收。 激光平整仪采用高精度激光传感器、加速度传感器和距离传感器;能够快速实时的检测高速及各等级公路路面的平整度、构造深度等技术特性,为交竣工验收、预防性养护以及路面管理系统提供综合高效的数据支持。激光平整仪具有连续测量、自动运算、显示并打印路面平整度标准差的功能,在测试过程不受仪器装载车动态性能的影响,可以在较大车速范围内变换测试车速而不影响测试结果。 激光平整仪可通过激光技术和画像处理技术,采用非接触式测绘方式应用于弯曲、倾斜、旋转、排水等的特殊路面;激光平整仪广泛应用于用于公路、城市道路、广场、机场跑道等路面的施工检查竣工验收和道路的氧护,同时也可以为教学、设计及科研单位提供可靠的路面分析资料。

  • 大直径电缆测径仪 高精度实时测径仪 激光测径仪

    [b]LPXJ70.1单路测径仪[/b]为大直径的测径仪,可以适用于0~70mm范围内的轧材外径检测,并且可根据检测需求,实现测径仪的定制,对更大线材的外径尺寸进行测量。该测径仪测量范围大,并且可以达到静态测量精度0.01mm,而动态测量精度也可以达到0.02mm,实现高精度的外径在线检测。LPXJ70.1单向测径仪(以下称本仪器)内置1组固定式光电测头,可对被测物一个方向的外径尺寸进行实时测量。主要应用于BV线、通讯电缆、塑胶线、电力电缆、光纤、漆包线、铝塑管、钢材、纤维等各类管材、棒材、线材的外径测量,在线检测和离线检测均可,并能实现自动反馈控制以及与电脑的联机通讯。[b]安装位置[/b]本仪器应用于线缆生产线时,既可以安装在冷却水槽之前,也可以安装在水槽之后。安装在水槽前时,由于外径测控仪距离挤塑机近,反馈控制及时,能获得最佳的控制效果。但此时塑料尚未固化,仪器测量的是线缆的热态外径,通常略大于其实际外径(冷态外径) ,因此设定的标称值应适当加大。安装在水槽后时,测量值为线缆的实际外径值,比较准确可靠,但控制滞后量大,控制效果较差。另外,被测线缆须吹干,否则线缆表面的水膜会影响测量精度,实际使用时应根据被测物带水的程度,适当加大设定的标称值。[b]安装方法[/b]1)打开包装,检查仪器及附件是否齐全。2)为保证测量的准确性,底座应安装在坚实、平整的平面上;3)分别连接底座和支杆、支杆和托板、测径仪和托板;4)松开星形手柄调节测径仪水平高度,使设备与被测工件平行,且被测工件垂直于两视窗的中心线并平行于底座上基准面,保证被测工件从距离底座的上基准面27.5±8mm的范围内通过。5)连接外接屏、变频器。将航空插头插入机体上对应的接口(如图3)。6)检查无误后,连接电源线,开机上电。基本规格:型号:LPXJ70.1测量范围:0~70mm静态测量精度:±0.01mm动态测量精度:±0.02mm测量光源:远心平行光源,绿色,λ = 520 nm测量频率:500Hz供电电压:AC220±15%V 50Hz操作温度:-10~+45℃操作湿度:85%设备尺寸:740*125*190mm

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 板带与薄膜状态产品的动态非接触高精度激光在线测厚的方法与实现

    板带与薄膜状态产品的动态非接触高精度激光在线测厚的方法与实现

    [b]一、 概述 [/b]自从上世纪60年代激光产生以后,其高方向性和高亮度的优越性就一直吸引着人们不断探索它在各方面的应用,其中,工业生产中的非接触、在线测量是非常重要的应用领域,它可以完成许多用接触式测量手段无法完成的检测任务。普通的光学测量在大地测绘、建筑工程方面有悠久的应用历史,其中距离测量的方法就是利用基本的三角几何学。在上世纪80年代末90年代初,人们开始激光与三角测量的原理相结合,形成了激光三角测距器。它的优点是精度高,不受被测物的材料、质地、型状、反射率的限制。从白色到黑色,从金属到陶瓷、塑料都可以测量。[b]二、 激光三角测量的原理[/b]激光三角测量法是人们将激光与三角测量的原理相结合的产物,其原理如下图示:[img=,520,354]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151451_01_2318341_3.gif[/img]它是将激光作光源,用线阵CCD作光电转换器,用玻璃透镜将被测物上的光斑聚焦成点,再成像到线阵CCD上,线阵CCD上的光电信号再移到计算机处理,从而得到距离信号。这就是激光三角测量的基本原理。[b]三、 第一代激光三角测厚仪的原理[/b]有了激光三角位移传感器,就为激光测厚仪垫定基础,其设计原理如下图所示,[img=,479,373]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151452_01_2318341_3.jpg[/img][b][color=#333333]第一代激光测厚仪原理[/color][/b]从上图可得:厚度为:[img=,97,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151519_01_2318341_3.jpg[/img][b][img=,12,23]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/b]公式中,[b]t[/b]表示厚度,[b]z[/b]是上下两个测头间的距离,[b]x[/b]是上测头到被测物上表面的距离,[b]y[/b]是下测头到被测物下表面的距离,只要[b]z[/b]是恒定的,则,上下测头测量出[b]x,y,[/b]就可以通过上面的公式算出厚度[b]t[/b],这样,用两个激光位移传感器就可以做出测厚仪。[b]四、 第一代激光三角测厚仪的误差分析[/b]1、上面的厚度公式中我们假设z是恒定的,则,在静止状态下系统误差就是上下测头的测量误差,我们令其表达式为:[img=,82,21]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151523_01_2318341_3.jpg[/img]2、实际上,在高精度测量时,z并不是恒定的,因为,上下测头是装在U形支架上,而随着温度的变化,U形支架是会变形的,扫描宽度越宽其变形量就越大,所以,其在静止状态下的误差表达式应为:[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151523_02_2318341_3.jpg[/img],见下图示,当温度变化时。1)假若U形支架的上臂向上变形一微米,下臂向下变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151524_01_2318341_3.jpg[/img]2)假若U形支架的上臂向下变形一微米,下臂向上变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151524_02_2318341_3.jpg[/img]3)假若U形支架的上臂向上变形一微米,下臂向上变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151524_03_2318341_3.jpg[/img]4)假若U形支架的上臂向下变形一微米,下臂向上变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151525_01_2318341_3.jpg[/img]5) 假若U形支架的上下臂向其它方向变形,则,误差比较复杂。[img=,502,356]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151500_01_2318341_3.jpg[/img]1、 上面分析是假设静止状态时的测量误差表达,而实际上激光测厚仪是要求能做到在线,动态扫描测量的,我们再来分析动态测量时的误差情况。我们知道,线阵测头的输出值是一段时间的测量结果的平均值。在动态测厚过程中,激光焦点在被测物表面扫描,由于激光散斑的原因,表面反射光强存在剧烈的起伏,导致一些采样点的信号强度过低,成为无效数据而[b][color=red]剔除[/color][/b],若单测头每次平均需m个数据,之间会剔除n个数据,则需要增加测n个数据,总数据量为m+n个,这可形象地用下图表示。[img=,224,164]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151501_01_2318341_3.jpg[/img][img=,210,135]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151501_02_2318341_3.jpg[/img]由于上下表面的数据是独立的,因此,上下表面数据序列中被剔除的数据也是独立的(见上图中的一个箭头表示一个剔除数据)。如果物体不动或高度不变,则剔除数据的位置没有什么影响,但当物体抖动量较大时,被剔除数据的位置对平均值的影响将立刻显现出来,例如当表面上升时(下图)[img=,265,178]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151504_01_2318341_3.jpg[/img][img=,265,178]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151506_01_2318341_3.jpg[/img]剔除数据的位置靠前则m个数据的平均值偏大,反之则偏小。由于上下两个测头内部对剔除数据的操作是独立的,无法进行协调,因此,物体抖动必然导致厚度测量结果的较大起伏!这种误差的统计估计如下:由上图可知,两个测头的数据错位范围为(-n,+n),处于各种错位情形的概率均等,则由概率论知,均方差为[img=,30,45]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151526_01_2318341_3.jpg[/img]个数据,若物体移动速度为V,单次采样时间为T,则造成的上下两测头的厚度测量的概率误差为[img=,78,45]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151527_01_2318341_3.jpg[/img],例如,若v=10mm/s, T=10ms, n=2, 则e=0.115mm!若上下测头组合仪取p个数平均,则厚度误差均方差下降为[img=,88,49]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151527_02_2318341_3.jpg[/img],若p=20,则e=0.026mm!对于高精度测量仍然是无法容忍的!由于激光散斑是无法消除的,因此,被测物速度越大,误差越大,因此原理上,上下独立测头不适宜抖动物体的测厚![b]一、 结论[/b]从上面的分析,我们可以知道:用激光位移传感器构成的测厚仪存在着原理上的缺陷,其误差的产生都是随机的,所以,无法进行补偿,故,在高精度测量时不能满足测量要求。[b]二、 第二代激光测厚系统原理简介[/b]第二代激光三角测厚仪是重新设计发展而来,它克服了第一代由于U形支架变形、振动等导致测量精度不高,由于采用二个光电转换部件导致工作不同步而导致上下两测头的测量点不重合,及由此导致测量精度不高,测量精度不稳定等不足。第二代激光测厚仪从测量原理上做了重新设计,不再采用两个位移传感器分别测量上下测头到被测物的上下表面的距离来算出厚度,而是直接测量被测物的厚度,避免了U形支架变形、振动等导致测量误差,大大提高了测量精度,而且不怕振动,并且安装使用更简单,工作更稳定,测量精度更高(+/-0.0015mm),它无环境污染,对人无伤害,对被测物无污染无接触,同时第二代激光三角测厚仪有完整的数据输出接口,这为涂布机的日后闭环自动控制打下了基础,详见原理图[img=,619,391]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151508_01_2318341_3.jpg[/img] [b][img=,195,20]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] [color=#333333]第二代激光测厚仪原理[/color][/b]上述原理图的工作原理:上下二个激光器将激光束分别打在被测物的上下表面,形成二个光斑,无衍射光学系统将这二光斑成像到面阵CCD或DSP等光电转换部件上,则,这二个光斑在面阵CCD或DSP等光电转换部件上的光斑的像之间的距离就是被测物厚度的映射,通过图像处理技术就能算出被测物的厚度。[b] [/b]从上面的原理图可知,U形支架上安装的不是激光位移测头,而是激光器,仅作为光源用,上下激光器照射到被测物的上下表面形成上下二个光斑,将这两个光斑通过一个无衍射光学系统成像到面阵CCD上,则,这二个光斑之间的距离就是被测物的厚度,这样直接测量的是被测物的厚度,这就避免了由于U形支架的变形和上下测头的测量误差还有抖动等因素的影响,第二代系统只有一个误差,就是无衍射光学系统的测量误差,而这个误差不是随机产生的,是可以补偿的,同时我们的单镜头面阵ccd测厚仪,由于是上下光斑同时测量,若出现上下任一光斑太暗,则该组上下光斑数据作废,保证了用于厚度数据的上下光斑的一一对应性!从原理上避免了第一代测厚仪的多项误差。故,第二代激光测厚系统比第一代激光测厚系统有无比优异性能。

  • 高精度测厚仪哪个好

    在选择高精度测厚仪这样大型的机械设备时,往往都通过比较做出选择,知名品牌也是参考的一点,但是设备的质量也尤为重要。大成精密高精度测厚仪就符合这两点的厂家,在国内来说,他们做的是相当不错的,自主研发生产,质量高,得到了得到了消费者的大力认可,下面我们就来介绍一下,它好在哪些方面吧:   1、操作简单方便  简单方便的设备仪器不管是谁,都会非常喜欢的。如果设备仪器的操作比较繁琐或是需要专业人员来操作。厂家就会考虑很多方面,一来操作繁琐要对工作人员进行一系列的培训,二来请来的专业人员所需要的成本就会有所上升,利益就会相应减少。高精度测厚仪操作十分简单方便,这是厂家选择他们的其中一个理由。  2、能连接数据进行打印  测厚仪有电脑连接接口,在使用的时候可以购买相关软件,从而实现对测两次数据的储存打印,而且相关的软件还能够对测量数据进行统一,用专业的方式显示出来,从而让我们更加简单的了解测量数据机器所具有的特点。  http://www.dcprecision.cn/Uploads/201601/56a1a0aa23fb3.jpg  3、采用国外进口的优质元件  专业的测厚仪传感器部件通常采用的都是国外进口的优质元件,这些优质传感器元件能够让测厚仪的测厚分辨率比普通测厚仪增加很多,这种仪器对于零点一微米的距离都能精准的测量。然而测厚仪里面的优质传动元件也是确保测厚仪工作稳定性和准确性的重要因素。  激光测厚仪是近年来开发出的高科技实用型设备,是用于热轧生产线上实时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境,具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点,并为轧制钢材厚度控制提供了准确的信息,从而提高了生产效率和产品质量,降低了劳动强度。  使用大成精密激光测厚仪以来,具不完全统计,因板厚误差造成的废品率下降了50%以上,创经济效益近千万元,受到各级部门和工作人员的肯定与赞赏。

  • 混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    [b][color=#339999][size=16px]摘要:在下落法比热容测试中绝热量热计的漏热是最主要误差源,为实现绝热量热计的低漏热要求,本文介绍了主动护热式等温绝热技术以及相应的解决方案。方案的核心一是采用循环水冷却金属圆筒给量热计和护热装置提供低温环境或恒定冷源,二是采用三通道分布式温差传感器和[/size][size=16px]PID[/size][size=16px]控制器使绝热屏对量热计进行动态温度跟踪。此单层绝热屏技术可以达到小于[/size][size=16px]0.02K[/size][size=16px]的温差控制精度,对于更低漏率量热计和更高温度均匀性的要求可采用多层屏技术。[/size][/color][/b][align=center][size=16px][color=#339999][b]------------------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 背景介绍[/b][/color][/size][size=16px] 下落法,也称之为铜卡计混合法,是一种测量固态材料比热容的绝热量热计标准测试方法,常用于测量100℃至超高温温度范围固态材料的比热容,特别适用于要求更具代表性的较大试样尺寸复合材料和各种低密度材料。[/size][size=16px] 下落法比热容测试的基本原理如图1所示,将已知质量的试样悬挂于加热炉中进行加热,当试样的温度达到设定温度且稳定后使其落入置于自动绝热环境且初始温度为20℃的铜块量热计中。试样放热使量热计温度升高到末温,通过测量量热计的温升,可求出试样的平均比热容。[/size][align=center][size=16px][color=#339999][b][img=下落法原理及其量热计温升变化,650,260]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181720089359_1047_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 下落法原理及其量热计温升变化[/b][/color][/size][/align][size=16px] 从上述下落法原理可以看出原理十分简单,但要实现比热容的准确测量,最关键的技术是要使量热计始终处于绝热环境,且量热计的起始温度要准确恒定,具体要求如下:[/size][size=16px] (1)下落法测试过程要求量热计始终处于绝热状态,避免量热计热量向四周散失而降低量热计的温升。为此需要采用高精度的主动绝热技术,使位于量热计周围的主动护热装置的温度动态跟踪量热计的温度变化并保持一致,从而形成动态等温绝热效果。[/size][size=16px] (2)为了保证测试的连贯性和准确性,样品下落前量热计的初始温度始终要保持一个恒定值,如20℃,由此要求量热计在处于绝热环境的同时,还需准确控制量热计温度恒定在20℃。[/size][size=16px] 上述两点几乎是所有绝热量热计准确测量最重要的边界条件,也是绝热量热计的关键技术,需要采用精密的温控技术才能实现。为此,本文介绍了实现此关键技术的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的整体思路是样品通过顶部入口落入量热计,对圆柱形量热计按照上中下三个方向进行全方位的主动式护热,量热计及其护热装置全部放置在比20℃起始温度略低的温度环境内,此温度环境由19℃循环水冷却的金属圆筒提供。依此设计的量热计整体结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=下落法比热仪绝热量热计结构示意图,550,451]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181721406706_1103_3221506_3.jpg!w690x567.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 下落法比热仪绝热量热计结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,量热计内镶嵌了一个圆柱形落样井,落样井外侧镶嵌有金属细丝以提供量热计标定加热功能,测温热电阻则由量热计底部插入固定。[/size][size=16px] 在量热计的侧向四周安装有一个侧向护热圆桶以提供量热计径向绝热所需的径向温度跟踪控制。同样,在量热计的上下两端分别安装有底部护热板和顶部护热板,以提供量热计轴向绝热所需的温度跟踪控制。由此通过径向和轴向的温度动态跟踪控制,使护热装置的温度始终与量热计相同,从而使量热计总是处于等温绝热状态。[/size][size=16px] 由于量热计和护热装置都处于一个温度19℃左右的低温环境,此低温环境就相当于一个恒定冷源,那么护热装置仅采取加热方式就可以对高于此低温环境的量热计温度进行快速跟踪控制,同时也这样可以很精确的控制量热计的20℃起始温度。[/size][size=16px] 为了实现高精度的起始温度控制和跟踪温度控制,除了需要采用高精度铂电阻温度计之外,关键是还需在上中下护热装置与量热计之间分别配置高分辨率的分布式温差传感器,以及三通道的超高精度PID温度控制器,温差传感器的分辨率以及PID温控器的AD和DA精度决定了温度跟踪精度和量热计绝热效果,最终决定了比热容的测量精度。本解决方案所采用的温差传感器以及超高精度PID控制器,可使温度跟踪精度达到0.02K以下,优于标准方法中规定的0.05K精度要求。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 等温绝热是各种高精度绝热量热计普遍使用的技术手段,也是各种高精度温度环境控制首选的技术途径之一。针对下落法比热容测试中的绝热量热计,本解决方案采用的是单层绝热屏结构,而对于绝热或环境温度恒定有更高要求的仪器设备和试验环境,在单层结构基础上可以采用多层绝热屏结构,特别是在恒定的真空压力环境下,单层或多层绝热屏结构更是首选技术方案。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    [align=center][color=#990000][img=光谱仪压强控制,690,398]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808077473_8105_3384_3.png!w690x398.jpg[/img][/color][/align][color=#990000]摘要:光谱测量和光谱仪是检测监测中的重要技术手段,为了得到满意的测量精度,光谱仪要求配套高精度的压强和温度传感器、执行机构和PID控制器,并需具有适用范围广、精度高、易集成和成本低的特点。本文将针对光谱仪压强和温度控制的特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 光谱测量作为定性、定量的科学分析方法,以其测量精度高、响应速度快的优势成为各种检测监测研究中的重要技术手段,但在实际应用中样品气体的压强和温度变化会对测量结果产生严重的影响,以下是光谱测量中的温压控制方面国内外所做的一些研究工作以及所表现出来的影响特征:[color=#990000](1)压强控制范围[/color] 不同的光谱测量和光谱仪对压强控制范围有着各自不同的要求,如使用气体吸收池的红外光谱仪,吸收峰的强度可以通过调整试样气体的压强(或压力)来达到,一般压强范围为0.5~60kPa。在采用可调谐二极管激光吸收光谱(TDLAS)技术测量大气中二氧化碳浓度时,就需要6~101kPa范围内的稳定压强。在X射线光谱分析仪检测器内压强的精确控制中,要使得工作气体的密度稳定来保证检测器的测量精度,一般压强控制在一个大气压附近或者更高,而激光诱导击穿光谱仪的工作压强最大可达275kPa。由此可见,光谱仪内工作气体的压强控制范围比较宽泛,一般在0.1~300kPa范围内,这基本覆盖了从真空负压到3倍大气压的4个数量级的压强范围。[color=#990000](2)压强控制精度[/color] 在光谱测试中,观察到的谱线强度与真实气体浓度之间的关系取决于气体样品的压强,所以压强控制精度直接决定了光谱测量精度。如美国Picarro公司的光谱分析仪中的压强控制精度±0.0005大气压(波动率±0.05%@1大气压)。文献[1]报道了设定压强为6.67kPa时对吸收池进行控制,经过连续四小时控制,压强波动为±3.2Pa,波动率为±0.047%。文献[2]报道了样品池内气体压强同样被控制在6.67kPa时压强长期波动幅度为7Pa,波动率为±0.047%。文献[3]报道了激光红外多通池压强控制系统的稳定性测量,目标压强设定为60Torr,在150~200s时间内最大波动为±0.04Torr,波动率为±0.067%。文献[4]专门报道了光谱测量仪器的高精度温压控制系统的设计研究,目标压强值为18.665kPa,42小时的恒压控制,最大偏差为5.33Pa,波动率为±0.014%。文献[5]介绍了X射线光谱仪中探测器的恒压控制结果,在工作气体恒压在940hPa过程中,波动小于±2hPa,波动率为±2%。文献[6]介绍了X射线光电光谱仪在0.05~30mbar压强范围内的恒压控制技术,在设定值为0.1mbar时,恒定精度可达±0.001mbar,波动率为±1%。[color=#990000](3)温度控制精度[/color] 在光谱测试中,谱线强度与真实气体浓度之间的关系还取决于气体样品的温度稳定性,而且温度的稳定性同时也会影响压强的稳定性。文献[2]报道了样品池内气体温度控制在室温(24℃)时,温度短期波动为±0.01℃,长期温漂为±0.025℃,波动率为±0.1%。文献[4]报道的光谱测量仪器的高精度温度控制系统中,温度控制在45℃,42小时内的温度波动为±0.0015℃,波动率小于±0.004%。 综上所述,由于样品气体的压强和温度变化是影响测量结果的主要因素,所以在光谱测量以及各种光谱仪中,对样品气体的压强和温度调节及控制有以下几方面的要求: (1)压强控制范围非常宽泛(0.1~300kPa),但相应的测量和控制精度则要求很高,这就对压强测量传感器、控制阀、真空泵和相应的控制器提出了很高的要求,并且这闭环控制系统中的四个组件必须相互匹配,否则很难得到满意的结果。 (2)同样,在温度的高精度控制过程中,也应选择合适的温度传感器、加热装置、电源和控制器,并在温度闭环控制系统中四者也必须相互匹配。 (3)在压强和温度这两个闭环控制系统中,都会用到高精度控制器,为了降低实验成本和光谱仪造价,希望能用一个具有2路同时PID自动控制功能的高精度控制器。 (4)针对不同的光谱测量和光谱仪,其测试结构并不相同,这就要求温压控制系统中的各个部件具有独立性,由此有利于测试装置和光谱仪结构和合理布局和集成。 总之,为了得到光谱测量的满意精度,要求配套高精度的压强和温度传感器、执行机构和PID控制器,并具有适用范围广、精度高、易集成和成本低的特点。本文将针对这些特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[color=#990000][size=18px]2. 光谱仪压强和温度一体化测控方案[/size]2.1. 控制模式设计(1)压强控制模式[/color] 针对光谱仪上述的压强测控范围(0.1~300kPa),最佳方案是针对具体使用的压强范围选择相应的测控模式,如图2-1所示,针对低压范围建议采用上游控制模式,针对高压范围建议采用下游测控模式,也可以采用上下游同时控制的双向控制模式。[align=center][color=#990000][img=光谱仪压强控制,690,217]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808325845_3021_3384_3.png!w690x217.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-1 压强控制的三种模式[/align] 针对低压采用上游控制模式,可以重复发挥真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制。针对高压(如1个大气压左右)采用下游控制模式,可以有效控制真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制,同时还避免了进气口处的样品气体和其他工作气体的流量太大。 如果对进气流量和腔体压强有严格规定并都需要准确控制,则需要采用双向控制模式,双向控制模式可以在某一恒定压强下控制不同的进气流量,但双向控制模式需要控制器具有双向控制功能,这对控制器提出了更高的能力要求。以上三种控制模式的特点更详细介绍,请参考文献[7]。[color=#990000](2)温度控制模式[/color] 同样,温度测控模式也要根据不同的温度范围和控温精度要求进行选择,如在室温附近且控温精度较高的情况下,则需要具有加热和制冷功能的双向控制模式,只有这种模式才能保证足够高的控温精度。如果在高温范围内,也建议采用双向控制方式,即以加热为主同时辅助一定的冷却补偿,以提高控温精度和快速的温度稳定。[color=#990000]2.2. 传感器的选配[/color] 传感器的精度是保证压强和温度测控准确的关键,因此传感器的选择尤为重要。 对于上述范围的压强控制,强烈建议采用目前精度最高的薄膜电容真空计[8],这种真空计的测量精度可以达到其读数的0.2%,全量程内具有很好的线性度,非常便于连接控制器进行线性控制,并具有很高的分辨率和很小的温漂。在实际选型中,需要根据不同的压强范围选择合适量程的真空计,如对于上述0.1~300kPa的压强范围,可以选择2Torr和1000Torr两种规格的真空计,由此对相应压强量程实现准确的覆盖。 对于温度控制而言,当温度不高的范围内,强烈建议测量精度最高的热敏电阻温度传感器,较高温度时也建议采用高温型的热敏电阻或铂电阻温度传感器。如果加热温度超过了热敏电阻和铂电阻传感器的使用范围,则建议采用热电偶型温度传感器。这些温度传感器在使用前都需要进行计量校准。[color=#990000]2.3. 执行机构的选配[/color] 压强控制执行机构是决定能否实现高稳定性恒定控制的关键。如图2-2所示,强烈建议采用线性度和磁滞小的步进电机驱动的电动针阀,不建议采用磁滞和控制误差都较大的比例电磁阀。电动针阀可以布置在进气口和出气口处,也可以根据上游或下游控制模式的选择布置一个电动针阀。如果光谱仪的真空腔体庞大,电动针阀就需要更换为口径和流速更大的电控阀门,以便更快的实现压强恒定控制。详细指标可参见文献[8,9]。[align=center][color=#990000][img=电动针阀和电动调节阀,690,369]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808519287_4900_3384_3.png!w690x369.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-2 小流量电动针阀和大流量电动阀门[/align] 温度控制的执行机构建议采用具有帕尔贴效应的半导体热电片,这种热电片具有加热制冷双向工作模式,配合高精度的热敏电阻和控制器可以实现超高精度的温度控制,非常适合光谱仪小工作腔室的控温。 如果光谱仪工作腔室较大且温度在300℃以下,建议采用具有加热制冷功能的外排式循环浴进行加热,这种循环浴同样具有加热制冷功能,可达到较高的控温精度。 如果光谱仪工作在更高温度,则建议采用电阻丝或光加热方式,同时配备一定的通风冷却装置以提高加热的热响应速度,从而保证温控的稳定性和速度。[color=#990000]2.4. 控制器的选配[/color] 控制器是实现高精度和高稳定性压强和温度测控的最终保障。在压强控制设计中,控制器需要根据所选真空计和执行机构进行选配,选配的详细介绍可参见文献[10]。根据文献的计算可得认为,如果要保证压强测控的精度,必须采用至少16位以上的A/D模数采集器。同样,温度测控的精度保证也是由模数采集器的位数决定。因此,对于光谱仪中压强和温度的控制,建议采用了目前上海依阳实业有限公司开发的精度和性价比最高,并结合了PID参数控制功能的24位A/D采集的控制器,详细内容可参见文献[11]。 按照上述的选型,最终压强和温度的测控方案如图2-3所示。[align=center][color=#990000][img=光谱仪压强和温度控制框图,690,291]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030809355503_6326_3384_3.png!w690x291.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-3 光谱仪压强和温度测控方案示意图[/align] 特别需要指出的是,上述的压强和温度控制,基本都采用了双向控制模式,而我们所开发的这款高精度控制器恰恰具有这个功能。另外,在光谱仪实际应用中,压强和温度需要同时进行控制,可以采用两台控制器分别进行控制,但相应的光谱仪整体体积增大、操作变得繁复并增加成本。而目前所建议使用的高精度控制器则是一台双通道的PID控制器,两个通道可以独立同时进行不同PID参数的控制和PID参数自整定,并且每个通道都具有双向控制功能,这有效简化了控制器并降低了仪器尺寸和成本。[size=18px][color=#990000]3. 总结[/color][/size] 综上所述,通过对光谱测量和光谱仪的压强和温度测控要求的分析,确定了详细的温压测控技术方案,并详细介绍了方案确定的依据以及相应所选部件的技术参数指标。 整个技术方案完全能满足光谱测量和光谱仪对压强和温度测控的要求,并具有测控精度高、功能强大、适用范围广、易集成和成本低的特点。除了薄膜电容真空计为进口产品之外(也可选国产真空计),方案中的所有选择部件和仪表都为国产制造。[color=#990000]4. 参考文献[/color](1)牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008μm波段对δ13CO2的研究[J]. 物理学报, 2017(02):136-144.(2)孙明国, 马宏亮, 刘强,等. 参数主动控制的痕量气体实时在线测量系统[J]. 光学学报, 2018, v.38;No.434(05):344-350.(3)许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020(9).(4)周心禺, 董洋, 王坤阳,等. 用于光谱测量仪器的高精度温压控制系统设计[J]. 量子电子学报, 2020, v.37 No.194(03):14-20.(5)Elvira V H , Roteta M , A Fernández-Sotillo, et al. Design and optimization of a proportional counter for the absolute determination of low-energy x-ray emission rates[J]. Review of Scientific Instruments, 2020, 91(10):103304.(6)Kerherve G , Regoutz A , D Bentley, et al. Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach[J]. Review of Scientific Instruments, 2017, 88(3):033102.(7)上海依阳实业有限公司,“真空度(气压)控制:上游模式和下游模式的特点以及新技术“,知乎:https://zhuanlan.zhihu.com/p/341861844.(8)上海依阳实业有限公司,“真空压力控制装置:电动针阀(电控针型阀)”:http://www.eyoungindustry.com/2021/621/29.html.(9)上海依阳实业有限公司,“微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制装置的国产化替代”,知乎:https://zhuanlan.zhihu.com/p/377943078.(10)上海依阳实业有限公司,“彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制”,知乎:https://zhuanlan.zhihu.com/p/343942420.(11)上海依阳实业有限公司,“高精度可编程真空压力控制器(压强控制器和温度控制器)”:http://www.eyoungindustry.com/2021/618/28.html.[align=center]=======================================================================[/align][align=center] [img=,690,345]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030804374064_8626_3384_3.jpg!w690x345.jpg[/img][/align]

  • 高精度形位测试系统

    高精度形位测试系统是想测发动机或试件经受温度变化后(如从70℃到-70℃)后,尺寸的变化,用于材料的性能研究。本人不知道到底用什么仪器设备可以测试,有哪位能指点一下啊?谢谢了!其中有用电子散斑、激光多普勒测试系统进行测试的,不是太清楚,请各位指教,谢谢了!

  • 激光粒度仪的标称精度和实际精度的区别

    做了一段时间颗粒分析,发现激光粒度仪器的标称精度从没达到过。我用的仪器精度最小可以测试0.1微米,但是实际测试中仅仅偶尔有时能测量到0.9微米的颗粒,绝大部分样品只能检测到1.2微米以上的颗粒------------------------------(在电镜观测测试样品中有很多0.6微米左右的颗粒),并且从检测结果来看,怀疑2微米的颗粒以下虽然能检测到,然而并不能稳定的都捕捉到,有很多漏检了。因为在电镜下检测的最大颗粒2.5微米以下,最小在1微米以下,大部分在1.5微米的颗粒,-------------结果从激光粒度仪出来的平均粒径却在2.5微米。请问这是仪器有问题,还是正常的。还是颗粒本身的影响,谢谢

  • 【云唐】高精度综合农药残留检测仪优势

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404120914418944_2982_5604214_3.jpg!w690x690.jpg[/img]  随着农业生产的快速发展,农药的使用越来越广泛,农药残留问题也日益引起人们的关注。为了保障食品安全和人民健康,高精度综合农药残留检测仪应运而生,其独特的优势在农药残留检测领域发挥着重要作用。  高精度综合农药残留检测仪拥有卓越的检测精度。通过采用先进的光学、电化学等技术手段,该仪器能够准确、快速地检测出农产品中的农药残留量,有效避免了传统检测方法中可能出现的误差和干扰。这种高精度检测不仅提高了检测效率,还为食品安全监管提供了更加可靠的数据支持。  高精度综合农药残留检测仪具有广泛的适用范围。它可以检测多种农药残留,包括有机磷、氨基甲酸酯、拟除虫菊酯等不同类型的农药。这种广泛的适用范围使得该仪器能够满足不同农作物和食品的农药残留检测需求,为农业生产提供了全面的技术保障。  高精度综合农药残留检测仪还具备自动化、智能化的特点。通过内置的软件系统和自动化控制装置,该仪器能够自动完成样品处理、数据分析等步骤,大大降低了检测人员的操作难度和劳动强度。同时,该仪器还能够实时记录检测数据,方便用户进行数据管理和追溯。  高精度综合农药残留检测仪在农药残留检测领域具有显著的优势。其高精度、广适用范围和智能化特点使得该仪器成为保障食品安全和人民健康的重要工具。随着科技的进步和应用的推广,相信高精度综合农药残留检测仪将在未来发挥更加重要的作用。

  • 我们想购买高精度形位测试系统

    高精度形位测试系统是想测发动机或试件经受温度变化后(如从70℃到-70℃)后,尺寸的变化,用于材料的性能研究。本人不知道到底用什么仪器设备可以测试,有哪位能指点一下啊?谢谢了!其中有用电子散斑、激光多普勒测试系统进行测试的,不是太清楚,请各位指教,谢谢了!

  • 非接触高精度涂层测厚系统

    可测量范围是什么?测量的精度一般是多少??答:一般测量范围如下:l? 低热传导系数的涂层(如大多数聚合物)的测量范围是0,1μm-500μml? 高热传导系数的涂层(如金属)的测量范围是0,1μm-1mm测量精度:l? 可重复性是? 1μml? 测厚精度是? 3%以上数值可能随不同的应用而有所变化,但客户的需求和测量的准确性可能取决于样品,以及用于校准的测量技术的准确性。非接触高精度涂层测厚:在测量时间、测量距离、检测精度、激光安全防护等各类因素之间寻求一种平衡,建立更高精度的解决方案。

  • 【分享】激光测距仪的诞生

    世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。  激光是六十年代发展起来的一项新技术。它是一种颜色很纯、能量高度集中、方向性很好的光。激光测距仪是利用激光进行测距的一种仪器。它的作用原理很简单:通过测定激光开始发射到激光从目标反射回来的时间来测定距离。例如用激光测距仪来测量月球的距离,如果激光从开始发射到从月球反射回来的时间被测定为2.56秒,激光发射到月球的单程时间就等于1.28秒,而激光的速度是光速,等于每秒三十万公里。因此,测得的月球离地球的距离为单程时间和光速的乘积,即三十八万四千公里。为了发射和接收激光,并进行计时,激光测距仪由激光发射器、接收器、钟频振荡器及距离计数器等组成。激光测距仪还能用来对人造卫星跟踪测距,测量飞机飞行高度,对目标进行瞄准测距,以及进行地形测绘,勘察等。  激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。  由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。

  • 高精度真空控制技术在激光吸收光谱气室气压调节中的应用

    高精度真空控制技术在激光吸收光谱气室气压调节中的应用

    [size=16px][color=#339999][b]摘要:目前用于气体吸收池真空压力控制的压力控制器存在有残留气体和无法进行高真空测量的问题,无法进行微量气体的光谱分析。为此,本文提出了动态平衡法的解决方案,即采用两个高速真空低漏率的电子针阀分别调节进气和出气流量,电子针阀由连接电容压力计的真空压力控制器进行调节。此解决方案可在非常宽的量程范围内实现真空压力精密控制,并彻底解决了残留气体问题,并为微量气体进样和测量奠定了的技术基础。[/b][/color][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][img=高精度真空压力控制技术在长光程气体吸收池气压控制中的应用,600,438]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061007336504_5804_3221506_3.jpg!w690x504.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 长光程气体池主要应用于空气污染研究、环境监测、气体纯度分析、工业生产过程监测、排放气体分析和石油勘探地质录井过程监测等领域。如图1所示,长光程气体池由防震底座、池体、凹面反射镜、平面反射镜、窗片、标准光纤接头和气体进出口等组成。在具体应用中,需将池体防震底座安装在仪器箱体内,待测气体经过气体进口进入气体池,由出口排出。测量光射入气体池并在池体内多次反射后进入光谱仪分析。[/size][align=center][size=16px][color=#339999][b][img=01.长光程气体池,500,334]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061009532830_1898_3221506_3.jpg!w540x361.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 长光程气体池[/b][/color][/size][/align][size=16px] 在气体池具体应用过程中,需要对气室内的真空压力进行精确控制以消除温度和内部气压变化对气体折射率和气室尺寸的影响。特别是对气室内部气体压强的精密控制,还存在以下问题:[/size][size=16px] (1)目前很多气体吸收池的压力控制基本都是采用压力控制器模式,如图2所示,即采用集成了真空度传感器的单阀结构的绝对压力控制器来控制进气口或出气口压力。由于这种方法是一种控压模式,只能快速调节进气或出气的单端通断,无法在对应的出气或进气端进行调节,尽管可以将吸收池内的压力进行准确控制,但气室内还会残留被测气体之外的其他气体。[/size][align=center][size=16px][color=#339999][b][img=02.绝对压力控制器方式,400,200]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061010180936_7162_3221506_3.jpg!w295x148.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 压力控制器模式[/b][/color][/size][/align][size=16px] (2)无法进行高真空控制,对于微量气体导入后的气压无法控制,同时也存在残留气体。[/size][size=16px] 为了解决上市后问题,特别是真正解决气体吸收池内部真空压力的全量程精密调节,并为微量气体进样提供准确的控制,本文将提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案将采用一种不同于上述压力控制的动态平衡法,即通过调节气室的进气和出气流量并达到平衡,从而使气室内的压力精确达到设定值。气室真空压力控制装置的结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=动态平衡法流量调节模式下的吸收池真空压力控制装置,650,262]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061010386786_9043_3221506_3.jpg!w690x279.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 吸收池真空压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 图3所示的真空压力控制装置主要由数字针阀、真空计、真空泵和PID控制器构成,其中真空泵提供负压源,两个电子针阀分别用来调节进气和出气流量,真空计用来检测气室内的气压值并将测量信号传输给控制器,PID控制器则根据设定值或设定程序分别对两个电子针阀进行调节并最终达到控制要求。采用图3所示控制装置进行长光程气体吸收池内真空压力控制的步骤如下:[/size][size=16px] (1)排除吸收池气体:首先关闭进气针阀,并使排气针阀全开。启动真空泵将整个气室和管路内的气体完全排出,即气体吸收池内的真空度达到极限真空(气压最小),由此使得吸收池和管路内的环境气体浓度达到最低,避免对样品气体的检测形成干扰。[/size][size=16px] (2)进样气体导入:打开进气针阀,导入样品气体。[/size][size=16px] (3)气室压力控制:真空压力PID控制器根据设定值或设定曲线,并依据真空计测量值对进气针阀和出气针阀的开度进行快速调节,使得真空计测量值与设定值快速重合,实现准确控制。[/size][size=16px] 从上述结构和操作过程可以看出,此种真空压力控制方法和装置具有以下优点:[/size][size=16px] (1)可以有效的排出环境气体,并在整个测试过程中不会再有环境气体的残留。[/size][size=16px] (2)整个真空压力的控制过程,仅是对样品气体进行进气和排气流量操作,而且真空压力控制范围可以覆盖负压和正压,如0.001Pa~0.5MPa(依据所用真空压力传感器量程)。[/size][size=16px] (3)由于采用了高速和真空低漏率的电子针阀,其全程运行时间小于1s,漏率小于-11量级,高压耐压达到了0.7MPa,这是保证真空压力宽量程和快速控制的基础。电子针阀采用0-10V模拟电压进行控制,可直接与各种控制器连接进行调节。[/size][size=16px] (4)电子针阀还可以配备FFKM全氟醚橡胶密封件,具有超强耐腐蚀性,可用于各种腐蚀性气体的检测。另外,电子针阀有多种流量通经规格,可适用于各种型号和尺寸规格的气体吸收池的真空压力控制。[/size][size=16px] (5)真空压力PID控制器是一种双通道超高精度PID控制器,两个通道是独立的闭环控制通道,每个通道都是24位AD、16位DA和0.01%最小控制输出百分比,这使得控制可以达到很高的精度。此控制器的两个输入端可连接两个真空压力传感器来实现全量程的覆盖,两个输出通道可连接两个电子针阀。整个控制器带有RS485通讯和计算机软件,可通过计算机直接进行各种控制参数设置、控制程序运行、过程参数显示和存储,整个控制过程显示直观。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,采用本文解决方案中的进气和出气流量调节方法的吸收池压力控制,除了可以宽量程和高精度控制之外,优势是可以完全消除残留环境气体对测量的影响。更重要的是,这种真空压力控制方式也同样非常适用于微量样品气体的检测,为某些稀少气体和毒性气体进行高真空微量气体的检测奠定的硬件基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 从激光发展前景看激光划片机现状

    众所周知,激光的应用领域在人们生活中可谓是无处不在,你知或不知,激光应用就在那里,用它那精湛的激光加工技术丰富着您的生活。 今天我们就来探讨一下这样一个具有历史代表性的产业链,是怎样逆袭曾经的风貌。 目前随着激光技术的发展,已广泛用于单晶硅、多 晶硅、非晶硅太阳能电池的划片以及硅、锗、砷化镓和其他半导体衬底材料的划片与切割。那么说到这里肯定很多人会问,激光加工技术是利用什么原理来完成划片和切割的这样一个步骤的呢? 从科学的角度上来讲,激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为两大类: 一、激光加工系统; 二、激光加工工艺。 激光加工系统主要包括激光器、导光系统、加工机床、控制系统及检测系统这些配件。而激光加工工艺的范围就略广泛一些,主要应用在切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。 从功能上来讲,激光加工工艺在激光焊接、激光切割、激光笔、激光治疗、激光打孔、激光快速成型、激光涂敷、激光成像上都有很成熟的一个应用。 另外激光在医学上的应用主要分为三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。激光美容、激光去除面部黑痣、激光治疗近视、激光除皱、都是激光领域是医学行业内伟大的成就。 在军事方面,激光成就了战术激光武器、战略激光武器、激光动力推动器等,此外激光武器的关键技术已取得突破,2013年低能激光武器已经投入使用。 在通信方面,激光通过大气空间传输达到通信目的,激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 发展前景 由此可见激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光划片机现状 激光划片机又称为陶瓷激光切割机或激光划线机,采用连续泵浦声光调Q的 Nd: YAG 激光器或绿激光作为工作光源,由计算机控制二维工作台,能按输入的图形做各种运动。输出功率大,划片精度高,速度快,可进行曲线及直线图形切割;无污染,噪音低,性能稳定可靠等优点。 目前,常见的硅晶体划片工艺分接触划片和非接角划片(激光划片工艺)两种: 接触划片工艺: 接触划片工艺主要有锯片切割等多种方法,是过去硅晶体、太阳能电池的切割方法,缺点是精度差,废品率高,速度慢。 非接触划片工艺: 非接触划片工艺主要是激光划片,由于是非接触方式,划线细,精度高,速度快,目前是太阳能电池等划片的主要方法。 江苏启澜激光科技有限公司开发研制的晶圆激光划片机具有国际先进水平,主要适用于表面玻璃钝化硅晶圆的划片机切割加工。激光加工技术已广泛应用于制造、表面处理和材料加工领域。晶圆紫外激光划片机,其无接触式加工对晶圆片不产生应力、具有较高的加工效率、极高的加工成品率,可有效的解决困扰晶圆切割划片的难题。同时,图像识别、高精度控制、自动化技术的发展,使得能实现图像自动识别、高精度自动对位、自动切割融为一体的晶圆切割划片机成为可能。国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 调查显示,瑞士、美国和日本主要的激光晶圆切割机生产商每年在中国市场约销售近100台,国外设备售价在40~42万美元左右,为了提高我国激光精密加工装备的国产化水平,降低设备的采购及使用成本,提高行业的生产效率。晶圆紫外激光划片技术代表了当今世界晶圆切割加工技术前沿的发展方向,对国家未来新兴的晶圆制造产业的形成和发展具有引领作用,有利于晶圆制造技术的更新换代,实现跨越发展。

  • 激光测厚仪可实现什么功能及其特点是什么?

    激光测厚仪可实现什么功能及其特点是什么?

    [b]LPBH-P型激光测厚仪的功能特点:[/b]☀ 利用激光的单色性好、高亮度、方向性强、抗干扰性强等优点,实现高精度的测量。☀ 具有高数据处理系统,对采集到的数据信号进行综合处理且输出相关内容。☀ 高强度C型架设计,自带高温防护措施,既保证了强度又保证了使用寿命。☀ 可推出来检修,不影响其他设备的运行。☀ 采用冷却防尘装置,可防止雾气、粉尘、氧化铁皮、油污、高温等侵袭干扰。☀ 可测量运动中的轧材,动态测量精度高。☀ 可为您专业定制产品。☀ 在线实时显示轧制带钢的厚度变化,及时进行超差提醒。☀ 可制成移动式或固定式的测厚仪,移动式可实现横向覆盖式测量,固定式测量路线为一条直线。☀ 对高温轧材进行在线无损测量。☀ 可测量玻璃的厚度值。[img=,287,219]http://ng1.17img.cn/bbsfiles/images/2017/06/201706021728_01_3193000_3.jpg[/img]

  • 【分享】激光测距仪测量原理

    【分享】激光测距仪测量原理

    激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离; c——光在大气中传播的速度; t——光往返A、B一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如图所示。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω 在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具,宏诚科技的CEM手持式激光测距仪LDM-100就是测量的最佳助手。 手持式激光测距仪使用注意事项 [font=Times New Rom

  • 直线电机双轴联动平台在锂电池激光焊接的解决方案

    直线电机双轴联动平台在锂电池激光焊接的解决方案

    为了解决日益突显的能源、环保问题,新能源行业越来越受到世界各国的关注。锂电池行业作为国家重点扶持新能源项目发展较为迅速。近两年,中央和地方各项扶持政策协同效果逐渐显现,我国的新能源汽车市场出现了超预期发展和增长,并带动了产业链上下游企业的高速增长尤其是锂电池行业, 随着新能源汽车销量的进一步提高,业内预计,2018年锂电池或将进入供应紧张的阶段,强烈的需求对锂电池的产品技术、工艺、性能提出了更高的要求,更进一步凸显了产能的不足。目前国际上大多采用先进的激光焊接技术对锂电池的电池芯及保护板进行焊接。随着制造业的不断发展,大力发展高端制造技术,如何提高激光技术在锂电池制造领域的技术水平、如何升级优化激光焊接设备的整体性能,成为目前各个厂家研究的重点。在运动平台部分,直线电机相较于滚珠丝杆有更优的动态性能,更精密的定位精度及重复定位精度,更高的稳定性,更低的维护成本。用直线电机传动平台替换滚珠丝杆运动平台已成为必然趋势。激光焊接技术特点及难点: 激光焊接是一个将正负极材料、隔膜和电解液等原材料化零为整的融合制造过程,是整个锂电池生产流程中的关键工艺。激光焊接是利用激光束优良的方向性和高功率密度等特点来进行工作的。激光焊接有以下特点:激光功率密度高,可以对高熔点、难熔金属或两种材料进行焊接 聚焦光斑小,加热速度快,作用时间短,热影响区域小,热变形可忽略;激光焊接属于非金属焊接,无机械应力和机械变形;激光焊接装置易于计算机联机,能精确定位,实现自动焊接。锂电池模组通过高效精密的激光焊接可以大大降低接触电阻,降低能耗,提高电池的安全性、可靠性和使用寿命。但激光焊接要求焊件装配精度高,且要求激光束在工件上的位置不能有显著偏移。若焊件装配精度以及激光束定位精度达不到要求,很容易造成焊接缺憾,影响焊接质量。激光焊接技术的特点以及锂电池的结构性能对激光焊接设备的运动平台提出了更高更精密的要求。双轴联动直线电机平台技术特点及难点: 直线电机的本质是把旋转电机平放展开并直接连接到驱动负载上。它能替代例如滚珠丝杠、齿条与齿轮、皮带与皮带轮和减速箱的所有机械传动部分,从而消除了齿隙以及与机械传动相关的问题。具有结构简单、调速范围宽、动态性能优良、定位精度高、安全可靠、运行噪声低、无磨损、免维护以及无限行程等优点。灵猴双轴联动直线电机平台加速度可达5g、重复定位精度可达1μm并且在深度优化结构设计的基础上采用独特自主编写控制算法,跟踪检测速度波动,并作出后续补偿,使双轴直线电机在高速度走曲线小圆弧运动条件下,速度波动在3%以下,轨迹偏差更是在微米级别。完全满足锂电池激光焊接对平台精度、加速度、速度等性能的要求。日前有某激光焊接设备厂商客户的设备运动平台采用的是丝杆模组,但在其加速度为1g、速度提到100mm/s时其设备的焊接质量将无法保证,现需求双轴联动直线电机平台以替代丝杆平台模组并明确要求提供包括圆弧转角在内的跟随误差测试报告,但该客户对直线电机运动平台并不了解,故向我公司寻求解决方案。经过与客户的数次技术交流,在完全理解掌握客户设备的特性信息后设计了初版双轴联动直线电机运动平台模组,但是其要求的运动平台的运动轨迹的圆弧转角要求较小,且其速度及精度要求较高,经过我司对双轴联动直线电机平台的结构优化,定制化编写算法控制上下两轴的耦合,经过详细的系统测试,最终满足客户的需求,升级优化了客户的激光焊接设备,使其设备的焊接速度、精度以及稳定性在同行业处于领先地位。客户要求如下:[b]直线电机需求表 [/b]客户名称:[u] 某激光焊接设备集成 [/u]运用行业:[u] 锂电池激光焊接 [/u]联系人电话:[u] [/u]电子邮箱:[u] [/u]运动轴运动方式 :□水平 √ □垂直速度规划曲线:□1/3-1/3-1/3梯形波 √ □1/2-1/2三角形波总的运动行程:[u] 上轴270mm、下轴300mm [/u]mm总的运行时间:[u] 1.8s [/u]s最大运行速度:[u] 0.5 [/u]m/s最大运行加速度:[u] 3g [/u]m/s2负载重量:[u] 30 [/u]kg精度定位精度:[u] ±5 [/u]μm重复定位精度:[u] ±1 [/u]μm分辨率:[u] 0.1 [/u]μm放大器和电源最大电流:[u] 6.3 [/u]A电压:[u] 220 [/u]VAC □50 Hz √ □60Hz使用环境环境温度:[u] 室温 [/u]℃最大允许温升:[u] 130 [/u]℃是否在无尘环境中: □是 √ □否是否允许水冷或空气冷却:□是 □否 √是否是真空环境: □是 √ □否硬件总体设计及验证系统配置: 双轴联动直线电机运动平台主要由:直线电机、检测反馈、驱动控制,防护装置四部分组成。该运动平台选用无铁芯直线电机,运动平滑无齿槽力;检测反馈由光栅或磁栅、霍尔、温控组成;此平台模组选用的是高创驱动器,防护装置由风琴防护罩、高性能拖链、光电传感器、优力胶硬限位组成,充分保护运动平台的安全可靠性。模型效果如图2所示: [img=十字滑台,554,415]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311009_01_3294819_3.jpg[/img][align=center]图1:双轴联动模组模型[/align]双轴联动直线电机主要性能参数如图3所示: [img=,327,290]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311010_01_3294819_3.jpg[/img][align=center]图2:双轴联动模组性能参数[/align]验证测试根据客户设备的运动特点及轨迹,为保证客户设备在运行过程中的稳定性及可靠性,我们多次做了过需求验证并出具了相关的验证报告,运动平台的各项参数均符合客户需求,并做了相当于设备连续运行1.5年的耐疲劳测试,各项参数均无异常。经过多次技术交流、结构优化、测试验证,灵猴双轴联动直线电机运动平台仅在两周的时间就达到了客户的要求,满足了交付条件并实时在客户现场调试安装,直到客户设备完全出货,我们还积极跟踪我司产品在客户设备终端的运行状况以及各项数据,实时为客户设备提供可靠性报告。该客户“非标私人订制”的双轴联动直线电机运动平台模组上下两轴均采用自主研发的BUM系列无铁芯直线电机,该系列直线电机具有高推力、低运动质量、无齿槽效应、无磁吸力等特点,特别是在走曲线圆弧轨迹时,可实现高速度小圆弧转角下的低速度波动。在使用了双轴联动直线电机运动平台后,使其焊接速度提高50%,提高了其圆弧转角处的焊接质量,升级优化了客户整体设备的性能,提高客户设备销量的同时也增加了直线电机模组的销量,真正实现了双赢价值。直线电机平台模组除上述应用外,还有在医疗行业应用的超薄十字蛇形运动平台模组,其整体尺寸大小仅有圆珠笔大小;在3C行业中的视觉检测以及点胶平台上的快速移动的四轴联动直线电机模组;在机床以及快速搬运行业的LPS系列单轴平台模组;可以完全直接替换丝杆的SP标准系列单轴平台模组等等。随着制造行业越来越苛刻的要求,现代先进制造装备向着高速度、高精度、快响应、大行程的趋势发展。这必然要求一个反应灵敏、高速、轻便的驱动系统,由于传统的进给方式—“旋转电机+ 滚珠丝杠”需要联轴器、丝杠等中间传递环节,造成整体系统刚性不够、弹性变形严重,又因为该“间接传动”中丝杠精度很难提高、存在反向间隙等缺点,使得传统的进给系统无法达到上述要求。相对而言,直线电机具有结构简单、安装方便、无接触、无磨损等优点,并在精度、重复定位精度、刚度、工作寿命等其他性能指标上都优于旋转电机。其主要推广与高速、高精等旋转电机无法满足要求的场合。现代直线电机技术日益成熟,其势必取代传统的“旋转电机+ 丝杠”的传动模式。

  • 高精度一乎面加工与检浏

    高精度平面主要包括平晶、平行平晶、标准平面和分划板等。高精度平面的平面度一般γ/20,平行度<2′′。 1高箱度平面的加工方法 a古典抛光法 在一般抛光机上采用柏油模、分离器抛光.这种方法与操作者的技能有较大关系, b.蟹钳式分离器加工法 它在很人程度上减小了倒翻力矩的挤压作用,同时也采用新型抛光模(如混合模、聚四氟乙烯抛光模等),明显提高了加效率利和精度。 c.环形抛光模加工法 它用校正板和夹持器代替分离器.不仅能保持分离器的功能,又使抛光速度趋于均匀。采用了膨胀系教很小的玻璃作为基底,其上涂以聚四氟乙烯塑料为抛光膜层,加上校正板的连续自动修正作用,所以可在连续加工中保持抛光模的面形稳定.能获得γ/10~γ/200的面形精度和平行度为1"~0.1"的平行平晶.也可加工棱镜、多面体等。 d.离子抛光法 一般是将氢等惰性气体原子在真空中用高频放电方法使之离子化,由高压场使离子加速,轰击光学玻璃表面。通常能以原子为单位去除表面材料,形成所需要的抛光面。这种方法可获得高精度的光学表面,井能通过控制程序进行自动加工。 e.电子计算机控制撇光法 用计算机控制光学磨具在零件表面上的运动轨迹、进给速度和压力等工艺因素达到修磨零件表面的目的。这种方法的优点是工具位置、停留时间、运动轨迹及操作参数等均可实现最优化、加工精度可达γ/80,适合于高精度大型光学零件的最后修磨加工。2.高精度平面的检测 测试方法有液面法、等倾干涉法、多光束干涉法、阴影法和三面法等。

  • 中为ZWL-S6超高精度光谱辐射计,全球同步发布

    随着LED产业日益成熟,国际、国内客户LED产品需求量的增加,消费者对于LED产品品质要求也越来越高,不仅强调发光效率,而且均匀性、一致性、显色性等指标也备受关注。无论是在LED背光领域,还是在LED照明领域,都需要更好光学量测设备,以解决量测方面的应用需要。此前,灵敏度高、测量精度准确,符合国际标准的高端检测设备,一直是国外设备处于主导地位。国内LED企业,为了生产出品质良好的LED产品,一套高端检测设备需要投入几十万甚至上百万,可是在售后的保障方面,由于时空距离,却并不能得到最快的响应。面对这种情况,LED业界对于具有国际水准、符合国际标准的国产高端检测设备充满期待。基于以上的种种原因,杭州中为光电技术股份有限公司(ZVISIONR)作为国际半导体照明装备领域领军企业之一,携手美国海洋光学(Ocean Optics),成功研发出全球领先的ZWL-S6超高精度光谱辐射计,首次真正打破了在高端测试机领域,国外设备厂商垄断的局面。将在满足客户的高端检测需求的前提下,大幅降低设备成本,同时以中为光电强大的服务实力为支撑,全力为中国LED行业加油!中为光电将于2011年8月30日在上海高工G20-LED峰会携手美国海洋光学(Ocean Optics)进行中国LED半导体装备领域设备首次全球同步发布!中为光电基础研究部总监殷源博士将在会议上分享中为光电(ZVISIONR)对于LED检测的最新观点与建议。高端应用环境首选中为ZWL-S6超高精度光谱辐射计系统:ZWL-S6超高精度光谱辐射计支持国际电工委员会(IEC)、国际照明委员会(CIE)、美国能源之星(Energy Star)、中国计量科学研究院(NIM)等权威检测标准;搭载中为F4M专利技术积分球、卓越的驱动电源、极致专业的夹具、权威的标准光源等顶级部件,可组成最高端的ZWL-3140Q超高精度颜色测量系统,能够有效的满足行业检测机构、企业实验室等高端应用环境对于光谱检测精度、稳定性、量测范围、测试速度、外观设计、软件功能等综合性能的高要求。同时,能够有效的降低高端设备的保有成本,为中国LED行业的发展贡献一份力量!

  • 激光测振仪在压电变压器振动测试中的应用

    激光测振仪在压电变压器振动测试中的应用

    压电变压器驱动电压低,体积小,质量轻,结构简单,无电池辐射等特点,但工作状态复杂,其振动特性影响它的特性,比如使用频率范围和转换效率等。压电变压器其实是电场和振动场耦合的谐振件,它在谐振时,器件会因多种因素(比如负载、环境、材料、输入电压)而发热、产生疲劳甚至破裂等问题。激光测振仪直接非接触地测得压电变压器在谐振状态下端点的振动位移、速度和加速度信号,便于更深入了解他的谐振状态,促进压电变压器的结构设计与优化。OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。OptoMET数字型激光多普勒测振仪具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。[img=,554,271]https://ng1.17img.cn/bbsfiles/images/2019/03/201903281454403195_8750_3859729_3.jpg!w554x271.jpg[/img]OptoMET单点激光测振仪有3个系列:分别是Vector、Nova、Dual Fiber系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。文章来源嘉兆科技官网来源网址:http://www.tnm-corad.com.cn/news/Show-5612.html

  • 激光测振仪在钢轨无损检测中的应用

    激光测振仪在钢轨无损检测中的应用

    钢轨在生产、铺设及行车过程中会产生各种损伤,这些损伤不但影响行车的平稳和舒适,而且会危及行车安全。钢轨的损伤包括疲劳、磨耗、锈蚀、弯曲变形和裂纹等。通常,我们可以利用机器视觉方法检测钢轨表面的损伤。但对于钢轨内部损伤,常规的图像法无法检测。钢轨内部早期损伤难以发现,随着工作时间推移会突然出现裂纹,容易造成严重的行车事故。钢轨内部缺陷已成为铁路运输安全的主要损伤类型。目前,铁路系统检测钢轨内部缺陷采用的是超声波法,该方法中利用高频的超声波作为信号源,基于此方法的钢轨探伤车无法实时在线监测钢轨内部缺陷。但在钢轨中激励低频、高能的超声波时,超声波会在钢轨边界不断发生反射、折射以及纵横波的转换,从而会产生一种新的超声波信号---超声导波。超声导波适合检测横截面一致、长距离的波导介质材料,如管道、钢轨等。钢轨具有声导管性质,超声导波在其内部传播距离很远。一般利用超声导波换能器接受导波,但换能器的黏贴位置、粘贴胶质和轨道温度等因素会影响这种非接触式测量方法的效果,降低测量准确率。然而利用激光测振仪这种非接触测量工具,既可以实现实时在线监测钢轨,发现钢轨早期的内部缺陷,同时也能提高检测精度。这种方法利用激光测振仪测量钢轨振动速度曲线,经信号处理后利用脉冲回波法,检测超声导波在钢轨内部缺陷处产生的回波信号来实现在线监测钢轨。[img=,599,333]https://ng1.17img.cn/bbsfiles/images/2019/04/201904101153380291_7519_3859729_3.jpg!w599x333.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。应用参考:邢博,余祖俊,许西宁,朱力强.基于激光多普勒频移的钢轨缺陷监测.中国光学,2018,11(06):991-1000.文章来源:嘉兆科技http://www.tnm-corad.com.cn/news/Show-5639.html

  • E+H恩德斯豪斯高精度pH标定液

    E+H恩德斯豪斯高质量CPY20标定液提供了最高精度的pH标定。它们在已经通过权威DAkkS永久认证(德国认证机构)的标定实验室内进行生产和装瓶。标定液的准确率是+/-0.02 pH,它们使用NIST和PTB标准进行配置,只包含FDA认证防腐剂。使用CPY20可以得到可靠的准确值。E+H恩德斯豪斯高精度pH标定液的优势高精度和可再现的标定液帮助您优化过程中的pH测量值,提高产品产量和质量CPY20 pH标定液按照 NIST (USA) 和 PTB (Germany)标准配置,可溯源,并满足生命周期内严格的文档要求所用防腐剂均为FDA认证介质,确保最高的产品安全CPY20 pH标定液的温度曲线预设置在Liquiline系列变送器中 ,方便传感器标定和调节,降低维护工作量易访问的标定液证书简化您的审计跟踪流程,并提高SOPs可靠性详细,单独的标定液分析证书可在 下载区 下载. 在“文本搜索”字段中输入您的批号,然后点击“开始搜索”按钮.E+H恩德斯豪斯高精度pH标定液的应用领域CPY20 pH 标定液用于各类行业pH电极的标定和校准,适用于生产过程和实验室中高精度传感器的日常校准标定和校准可以采用:Memobase Plus CYZ71D 软件Liquiline 系列变送器各类常规的 pH变送器了解标定液和装瓶尺寸,请点击“特性和说明”.[b][color=#ffffff]文章来源:E+H http://www.china-endress.com/[/color][/b]

  • C型架的激光测厚仪有哪些优势?

    C型架的激光测厚仪有哪些优势?

    蓝鹏激光测厚仪采用C型架结构,可以实现高精度的厚度检测,在对板形材料的厚度测量中,C形结构是采用最到的一种结构,C型架结构的激光测厚仪优势多,并且适合大多数的板材厚度检测使用。http://ng1.17img.cn/bbsfiles/images/2017/04/201704121700_01_3193000_3.jpgC形结构激光测厚仪的优势:★ 采用激光光源,相较于射线光源成本低,无污染。★ 采用一组测头,测量整个板型材料的厚度。★ 测量方式为横向覆盖式测量。★ 采用一组测头,相较于多组测头的测厚仪,有效的降低了成本。★ 可以动态实时的扫描测量板材厚度。★ 便于维修,C形架推出导轨,不影响生产。★ C型设计,可以安装在挤出线上使用而不影响生产。★ C型架结构坚固,水冷、风吹、多层隔热和防护。★ 良好的C型架驱动系统为测厚仪稳定工作提供了保证。★ 安装简单方便,对测厚仪可调整位置。★ 成本更低,检测点数多,性价比高。

  • LBT-HAT200手持式高精度PM2.5,PM10速测仪是做什么的?

    LBT-HAT200手持式高精度PM2.5,PM10速测仪的简介:  该速测仪是专用于测量空气中PM2.5(可入肺颗粒物)及PM10(可吸入颗粒物)数值的专用检测仪器。它是在吸收国外先进的高灵敏度微型激光传感器技术基础上自主开发出的集空气动力学, 数字信号处理, 光机电一体化的高科技产品. 该仪器具有测试精度高, 性能稳定, 多功能性强, 操作简单方便的特点,可广泛适用于公共场所环境及大气环境的测定,还可用于空气净化器净化效率的评价分析。  LBT-HAT200手持式高精度PM2.5,PM10速测仪的特点:  1.光散射式原理测试精度高  2.快速响应测试  3.创新性电子切割技术  4.直读实时粉尘浓度,数值方式显示  5.操作简单,无需维护  6.高效大容量锂电池供电  7.智能识别自动关机,最大限度节省电量

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制