当前位置: 仪器信息网 > 行业主题 > >

氨水制备工艺分析

仪器信息网氨水制备工艺分析专题为您提供2024年最新氨水制备工艺分析价格报价、厂家品牌的相关信息, 包括氨水制备工艺分析参数、型号等,不管是国产,还是进口品牌的氨水制备工艺分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨水制备工艺分析相关的耗材配件、试剂标物,还有氨水制备工艺分析相关的最新资讯、资料,以及氨水制备工艺分析相关的解决方案。

氨水制备工艺分析相关的论坛

  • 你们制备无氨水吗?

    做氨氮的项目要使用无氨水,制备起来倒是不麻烦。但是经常使用,可能需要经常制备。你们检测氨氮制备无氨水吗?还是使用超纯水代替?

  • 【讨论】无氨水制备

    大家能不能跟我交流下关于无氨水制备的技巧啊,我的无氨水空白值大得离谱,比未蒸馏前高出好多倍!

  • 实验室制备无氨水用什么仪器?

    关于氨的测定,根据GB/T 18204.25——2000,需要用到无氨水,制备方法为:于普通的蒸馏水中,加少量的高锰酸钾至浅紫红色,再加少量氢氧化钠至呈碱性。蒸馏,取其中间蒸馏部分的水,加少量硫酸溶液呈微酸性,再蒸馏一次。我想问一下,像这种需要大量蒸馏的实验,应该用什么仪器?

  • 原料药制备工艺变更研究需要考虑的问题

    原料药制备工艺变更研究需要考虑的问题一、原料药制备工艺在药品生产和研发的地位以及与药品其他方面研究的关系 (1)地位 原料药是药品的主要组成部分,原料药的制备是药品生产的重要环节,是药品研究和生产的基础。 原料药的制备工艺可以给药物的质量研究提供信息。制备工艺可以给质量研究提供杂质信息,质量研究必须基于制备工艺进行,根据制备工艺引入的杂质情况,进行方法专属性的研究,这样的方法才能有效地检出杂质,质量标准也必须根据工艺中可能引入的杂质情况,制订相应的控制项目和限度,质量标准才能有效的控制产品的质量。 原料药的制备工艺反映了药物研发水平。有实力、科研水平高的企业,会采用先进技术或试剂,不断的提高工艺水平,降低产品成本、提高收率,提高产品的质量,增加产品的竞争力,反之,采用落后工艺的生产企业会逐步的被市场淘汰,因此,原料药制备工艺水平反映了生产企业的技术水平。 (2)关联关系 由于原料药的制备工艺与药品研究的基础,原料药的工艺变更不仅仅是简单的变化,和药物研究的其他方面有必然的联系,因此当原料药的制备工艺发生变更必须考虑其他方面的情况。 结构研究 制备工艺的不同或变更可能引起化合物的结构发生变化,同时会引起异构体的异构化或比例的变化,也会引起原料药的结晶溶剂(种类、数量)发生变化。 质量研究和质量标准 不同的工艺可以使产品的杂质水平发生变化,或产生新的杂质、或使产品的杂质增加,这些方面的变化会影响产品的质量,也可以使杂质检查的方法发生变化。质量标准也需要调整考察的项目和限度,质量标准也会发生变化。 稳定性研究 由于不同的工艺会产生不同的杂质,或使产品的晶型、结晶水或结晶溶剂等发生变化,这些变化会引起药物稳定性的变化。 药物的安全性和有效性 由于制备工艺的变化使得产品的杂质含量增加,或产生了新的杂质,可能会使产品产生新的毒副作用,或使药效降低,因此当质量降低时应考虑产品的安全性和有效性的问题。 所以说,原料药的制备在药品的生产和研究中处于非常重要的地位,是基础,如果原料药的制备工艺发生变化,也就是基础发生变化,那么药品的其他方面也需要进行相应的研究和变化,以适应这种变更。 二、原料药制备工艺变更的目的 一个药物特别是原料药批准生产后并非一成不变的,出于各种目的其制备工艺、质量标准、产品的有效期和包装材料等均有可能发生变化,就原料药的制备工艺来说基于以下的目的和原因需要不断的进行优化。 (1)保证产品质量的需要 产品工业化生产后,为保证产品质量的稳定或提高产品的质量,需要对生产工艺进行不断的优化调整,以达到保证产品质量的目的。 (2)工业化的需要 原料药批准生产后,由于扩大生产的需要,所用有机溶剂、试剂的规格会发生变化,所用的设备需要根据生产的需要进行调整,对于苛刻的工艺条件需要调整,工艺会发生变更。 (3)利润的需要 一个产品批准生产后,随着竞争产品的增加,需要降低成本,提高收率,增加利润,增强产品竞争力,因此需要变更生产工艺,采用价廉的试剂或溶剂,或缩短工艺路线等手段,但是这些变化是在不降低产品的质量基础上进行的。 (4)环保和劳保的需要 随着国家对环境保护和劳动者健康要求的体高,需要避免使用有毒、污染环境的溶剂或试剂,避免使用危险的操作,减少污染环境的排放物,也需要变更生产工艺。 (5)专利保护的需要 一方面要避免专利侵权,另一方面随着科学的发展新技术、新试剂的应用,也需要变更工艺,提高收率、降低成本,同时也需要申报专利保护自己的创新路线,增加产品的竞争力。 所以说,对于原料药出于各种目的其制备工艺会发生变更,由于原料药制备工艺的地位以及与其他方面的重要关系决定了如果工艺发生了变更,可能会引起产品的质量问题,从而会因起产品的安全性或有效性方面的担忧,因此需要对药物研究其他方面进行考虑以确定是否需要进行相应的变更研究。

  • 原料药制备工艺变更研究需要考虑的问题

    一、原料药制备工艺在药品生产和研发的地位以及与药品其他方面研究的关系二、原料药制备工艺变更的目的 三、原料药工艺的变更研究需要考虑的方面1.基本思路 2.原料药制备工艺变更的几种情况3.对工艺变更研究和评价的主要方面四、变更研究中需注意以下问题总结普通会员消耗1分,认证会员消耗0分下载http://www.instrument.com.cn/download/shtml/034760.shtml

  • 浅谈液相色谱分析与制备

    色谱有分离、检测两大功能。分离中起作用的是色谱填料和流动相,往往流动相是可以调整选择的,填料一旦装进去就很难更换。大家一定要注意对填料的选择,尤其是做制备的朋友。 很多朋友用进口色谱柱做分析,想做制备的时候发现进口制备柱太昂贵,想选用国产制备柱,但国产的制备柱填料和进口分析柱填料有一定差异,如安捷伦等分析柱和OL色谱柱 C18-EX,安捷伦大部分色谱柱偏重高效、快速,但柱容很低,OL色谱柱 C18-EX具有高碳载、大表面积、价格优惠、柱容也不错,很适合分离复杂化合物,制备纯化有机物。 这个时候如果想把分析方法照搬到制备上来,就不行了,需要从新摸索优化,浪费大量人力物力财力。所以摸索纯化工艺时候一定要从分析方法就开始选择好色谱柱,现在很多朋友都是直接填OL色谱柱 C18-EX 4.6*250 10um去摸索分析方法的,后期用相同填料,直接利用经验公式放大。 希望对大家有帮助。

  • 白炭黑制备工艺对比表面积和吸油值的影响!

    白炭黑制备工艺对比表面积和吸油值的影响!

    为了检测出白炭黑制备工艺与吸油值的影响,北京化工大学教育部超重力实验工程中心安排了此次《白炭黑制备工艺与白炭黑吸油值检测实验对比实验》,通过实验所检测数据和实验现象进行对比分析,以确保该实验的完成度。在实验开始前,我么先探讨一下关于白炭黑结构重造等现象实验现象吧!利用正交设计安排实验, 在超重力旋转床中, 采用硫酸沉淀法制备超细白炭黑, 研究实验制备工艺条件 pH、硅酸钠浓度、温度、电解质和旋转床转数以及不同干燥方式对白炭黑的 BET比表面积和 DBP吸油值的影响。 实验结果表明, 反应终止时 pH 对白炭黑的 BET比表面积影响最大, 其次是温度、电解质、硅酸钠的浓度和旋转床的转数。 干燥方式是影响 DBP吸油值的决定性因素, 其次是温度、电解质、旋转床的转数、硅酸钠的浓度和反应终止时 pH。 制得产品的 BET比表面积 140 ~ 351 m2/g, DBP吸油值 1. 42 ~ 4. 41 mL /g[align=center][img=,419,217]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031040512392_3675_3557318_3.png!w419x217.jpg[/img][/align]在整个实验过程中,我们按照实验起初的安排进行了准备工作,所准备的材料、实验器材、以及不同环境下的实验现场等多种实验数据,确保整个实验正常进行![align=center][img=,690,315]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031041146882_572_3557318_3.png!w690x315.jpg[/img][/align]依据正交实验表,硅酸钠溶液稀释到一定浓度,并加入一定量的 NaC l, 混合均匀后加入超重力旋转填充床(RPB)。量取一定量的浓 H2 SO4 , 加入加酸容器中 。开启水浴循环泵 , 加热料液至接近反应温度后, 开启物料循环泵 ,达到反应温度时, 开始以一定的速率滴加浓 H2 SO4 , 每隔 0. 5 m in记录一次反应体系的温度和 pH。反应过程中 pH 会发生突变(见图 2),当体系 pH变化不超过 0.04 /m in时 ,温度不变,可认为反应过程完成 。反应结束后从出料口放出料液至保温陈化容器中 , 调节 pH 至 4 ~ 5, 在70 ~ 80 ℃陈化 30 m in。然后将料液真空抽滤, 所得湿滤饼用水反复洗涤至检不出 C l为止。湿滤饼直接烘干 ,然后粉碎至粒径 ≤38 μm 得到产品 。由反应最优化条件制得的湿滤饼 ,同时再采用共沸蒸馏和醇洗置换方式对其进行干燥 ,以研究不同干燥方式对比表面积和吸油值的影响 。DBP吸油值按照 GB10528— 1989测定 一次粒径为电镜放大照片中统计 100个左右一次粒子的平均粒径 。[align=center][img=,582,346]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031041369102_8413_3557318_3.png!w582x346.jpg[/img][/align]对正交实验结果 作直观分析可知 ,各因素对产品比表面积影响的主次顺序为 :B D C A E 。各因素对产品 DBP吸油值影响的主次顺序为 :C E D A B 。正交实验中最大比表面积和最小比表面积的差值与平均比表面积(270. 7 m2/g)的比值为 0. 632, 最大和最小 DBP吸油值的差值与平均吸油值 (1. 705 mL /g)的比值为0. 394,说明各因素对比表面积的影响要大于对吸油值的影响。将不同水平下比表面积均值与各个因素分别做图, 得到各因素与平均 BET比表面积和 DBP吸油值的关系曲线 (见图 3),以获得最小比表面积作为评价指标的最优化条件为 :B1D2C2A4E 2 。即pH为 9, 温度为 80 ℃, 电解质加入量为 120 g, 液体硅酸钠的加入量 为 1. 5 L (硅酸钠质 量浓度为71. 0 g /L), 旋转床转速为 1 000 r /m in。考虑到电解质的加入量和温度都对 DBP吸油值和 BET比表面积有显著影响 ,因此在最优化条件的基础上增加对比实验, 提高反应温度至 90 ℃, 电解质的用量为150 g,其余条件与最小比表面积最优化条件相同。最优化条件的实验结果见表 3。[align=center][img=,690,270]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031042010232_9288_3557318_3.png!w690x270.jpg[/img][/align][align=center][img=,690,338]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031042175742_4923_3557318_3.png!w690x338.jpg[/img][/align]在超重力旋转床中采用硫酸沉淀法制备白炭黑, 反应终止时 pH 对白炭黑的 BET比表面积影响最大 ,其次是温度、电解质加入量 、硅酸钠的浓度和旋转床的转速。干燥方式对白炭黑的 DBP 吸油值影响最大 ,超过制备工艺条件成为 DBP吸油值的决定性因素 ,因此可通过干燥方式的选择实现对 DBP吸油值的调节 ,制备工艺条件对 DBP吸油值的影响顺序是电解质加入量 、旋转床的转数、温度、液体硅酸钠的浓度和反应终止时pH。所以,在实验过程中,炭黑吸油值的变化与实验环境有着密切的关系,平衡的实验环境能够带给人们更多的了解炭黑的特质,尤其是白炭黑在橡塑行业所具有的独特仪器环境中。

  • 谈一谈分析柱,半制备柱和制备柱

    kromasil的色谱柱包含有分析柱和半制备柱。究竟什么是分析柱,半制备柱和制备柱呢?分析柱,顾名思义,就是用于分析测试费柱子,这类柱子的特点是直径较小,通常直径小于0.5厘米,纵向扩散项小,能够高效,快速的分离分析药物,添加剂,色素。半制备柱是介于分析柱和制备柱之间的一种色谱柱,柱子的直径一般情况下不会超过5厘米。可以进行分析测试,也可以进行少量制备。随着柱子内径的增加,色谱的纵向扩散增加,分离效果也会下降!所以半制备柱在分离效果上是有缺陷的。本人查阅了kromasil的目录,kromasil的半制备柱的最大直径是5厘米。制备柱相比于半制备柱来说直径更大。制备柱更多的应用是用在纯化药物上面,可以将纯度为60%-70%的药物纯化到99%以上。制备柱由于柱管很粗,且可以重复利用,商品化的色谱柱意义不大,多为自行填充,kromasil有专门的填料提供。从上文中我可以帮大家理清楚这一脉络,kromasil生产成品化的分析柱和半制备柱,为制备柱提供色谱填料。可以满足液相色谱领域从微观分析到宏观制备各个层次的需求!不足之处希望大家多多指教!

  • 滴丸制备工艺

    求助各位大侠:本人在清开灵滴丸的制备过程中,遇到了以下两个问题,希望哪位大侠能给指点一下,谢谢:1、滴丸制备过程中,出现时硬时软的现象,(主要成分为胆酸、珍珠母、猪去氧胆酸、栀子、水牛角、板蓝根、黄芩苷、金银花,辅料为聚乙二醇),不知道该怎么解决?2、滴丸在存放过程中会出现出霜现象,不知道什么原因,请教哪位大侠能够给分析一下。

  • 无氨水无二氧化碳蒸馏水等制备

    无氨水无二氧化碳蒸馏水等制备

    分析实验室进行稀释,溶解和清洗的水由于分析的要求不同,对水的纯度要求应根据不同的实验要求,进行制备。分析实验室用于溶解、稀释和配制溶液的水,都必须先经过纯化。分析要求不同,对水质纯度的要求也不同。故应根据不同要求,采用不同纯化方法制得纯水。一般实验室用的纯水有蒸馏水、二次蒸馏水、去离子水、无二氧化碳蒸馏水、无氨蒸馏水等。1、分析实验室用水的规格http://ng1.17img.cn/bbsfiles/images/2015/11/201511061540_572580_2961690_3.jpg根据中华人民共和国国家标准GB6682-92《分析实验室用水规格及试验方法》的规定,分析实验室用水分为三个级别:一级水、二级水和三级水。分析实验室用水应符合表1-1所列规格。一级水用于有严格要求的分析实验,包括对颗粒有要求的实验,如高效液相色谱用水。一级水可用二级水经过石英设备蒸馏或离子交换混合床处理后,再经0.2mm微孔滤膜过滤来制取。二级水用于无机痕量分析等试验,如原子吸收光谱分析用水。二级水可用多次蒸馏或离子交换等方法制取。三级水用于一般化学分析实验。三级水可用蒸馏或离子交换等方法制取。实验室使用的蒸馏水,为保持纯净,蒸馏水瓶要随时加塞,专用虹吸管内外均应保持干净。蒸馏水瓶附近不要存放浓NH3·H2O,HCl等易挥发试剂,以防污染。通常用洗瓶取蒸馏水。用洗瓶取水时,不要取出其塞子和玻管,也不要把蒸馏水瓶上的虹吸管插入洗瓶内。通常,普通蒸馏水保存在玻璃容器中,去离子水保存在聚乙烯塑料容器中。用于痕量分析的高纯水,如二次亚沸石英蒸馏水,则需要保存在石英或聚乙烯塑料容器中。2、水纯度的检查按照国家标准GB6682-92所规定的试验方法检查水的纯度是法定的水质检查方法。根据各实验室分析任务的要求和特点往往对实验用水也经常采用如下方法进行一些项目的检查:酸度 要求纯水的pH值在6~7。检查方法是在两支试管中各加10mL待测的水,一管中加2滴0.1%甲基红指示剂,不显红色;另一管加5滴0.1%澳百里酚蓝指示剂,不显蓝色,即为合格。硫酸根 取待测水2~3mL放入试管中,加2~3滴2mo1/L盐酸酸化,再加1滴0.1%氯化钡溶液,放置15h,不应有沉淀析出。氯离子 取2~3mL待测水,加1滴6mo1/L硝酸酸化,再加1滴0.1%硝酸银溶液,不应产生混浊。钙离子 取2~3mL待测水,加数滴6mo1/L氨水使呈碱性,再加饱和草酸铵溶液2滴,放置12h后,无沉淀析出。镁离子 取2~3mL待测水,加1滴0.1%鞑革达黄及数滴6mo1/L氢氧化钠溶液,如有淡红色出现,即有镁离子,如呈橙色则合格。铵离子 取2~3mL待测水,加1~2滴内氏试剂,如呈黄色则有铵离子。游离二氧化碳 取100mL待测水注入锥形瓶中,加3~4滴0.1%酚酞溶液,如呈淡红色,表示无游离二氧化碳;如为无色,可加0.1000mo1/L氢氧化钠溶液至淡红色,l min内不消失,即为终点。算出游离二氧化碳的含量。注意,氢氧化钠溶液用量不能超过0.1mL。3、水纯度分析结果的表示通常用以下几种表示方法:(1)毫克/升(mg/L):表示每升水中含有某物质的毫克数。(2)微克/升(mg/L ):表示每升水中含有某物质的微克数。(3)硬度 我国采用1L水中含有l0mg氧化钙作为硬度的1度,这和德国标准一致,所以有时也称作1德国度。4、各种纯度水的制备(1)蒸馏水将自来水在蒸馏装置中加热汽化,然后将蒸汽冷凝即可得到蒸馏水。由于杂质离子一般不挥发,所以蒸馏水中所含杂质比自来水少得多,比较纯净,可达到三级水的指标,但还有少量金属离子、二氧化碳等杂质。(2)二次石英亚沸蒸馏水为了获得比较纯净的蒸馏水,可以进行重蒸馏,并在准备重蒸馏的蒸馏水中加人适当的试剂以抑制某些杂质的挥发。如加入甘露醇能抑制硼的挥发。加入碱性高锰酸钾可破坏有机物并防止二氧化碳蒸出。二次蒸馏水一般可达到二级水指标。第二次蒸馏通常采用石英亚沸蒸馏器,其特点是在液面上方加热,使液面始终处于亚沸状态,可使水蒸气带出的杂质减至最低。(3)去离子水去离子水是使自来水或普通蒸馏水通过离子树脂交换柱后所得的水。制备时,一般将水依次通过阳离子树脂交换柱、阴离子树脂交换柱、阴阳离子树脂混合交换柱。这样得到的水纯度比蒸馏水纯度高,质量可达到二级或一级水指标,但对非电解质及胶体物质无效,同时会有微量的有机物从树脂溶出,因此,根据需要可将去离子水进行重蒸馏以得到高纯水。市售70型离子交换纯水器可用于实验室制备去离子水。(4)特殊用水的制备无氨水:①每升蒸馏水中加25mL 5%的氢氧化钠溶液后,再煮沸1h,然后用前述的方法检查按离子。②每升蒸馏水中加2mL浓硫酸,再重蒸馏,即得无氨蒸馏水。无二氧化碳蒸馏水:煮沸蒸馏水,直至煮去原体积的1/4或1/5,隔离空气,冷却即得。此水应贮存于连接碱石灰吸收管的瓶中,其pH值应为7。无氯蒸馏水:将蒸馏水在硬质玻璃蒸馏器中先煮沸,再进行蒸馏,收集中间馏出部分,即得无氯蒸馏水。

  • 医用超纯水制备检验分析纯水工艺流程

    医用超纯水制备处理超纯水水质要求对医院来说相对更严格以及更高。往往需要超纯水的电阻应高于15000000000000以上。为了确保医疗安全的超纯水,超纯水系统应用于医院行业,主要是由不锈钢材料的组合,必须配备水杀菌装置之前。  医院检验分析超纯水设备工艺流程:原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→一级反渗透机→中间水箱→中间水泵→EDI系统→纯水水箱→纯水泵→紫外线杀菌器→微孔过滤器→用水点。  医院检验分析超纯水设备各系统说明:  1、预处理系统  医院检验科超纯水设备预处理系统主要由PP喷熔滤元、85C过滤、CTO精密过滤器组成。系统运行总出力200L/h 以上,要求源水温度在25±3℃。喷熔滤元能除去大部份悬浮物、胶体和颗粒状机械杂质,使出水得到初步净化;正常滤水能力为200L/h,其滤速为16m/h。由于原水为地表自来水,水中余氯及有机物的含量可能较高,而低压复合反渗透膜对余氯及有机物有严格的限制,其值必须≤0.1mg/l,所以在预处理中设置85C过滤、CTO精密过滤器去除原水中的余氯及 有机物,有效保证反渗透装置长期、平稳、安全、可靠地运行。85C过滤、CTO精密过滤器 的正常滤水能力为200L/h,其滤速16m/h。所以在反渗透膜前设置三级预处理进行保护, 以防止反渗透浓水侧的污染结垢。有效保证反渗透装置长期、平稳、安全、可靠地运行。运行方式为自动控制。  2、反渗透系统  反渗透装置能去除99.6%以上的盐份及100%的有机物、细菌、病毒物。反渗透运行过程中,膜表面有一定量的沉积物,系统设置主机自动冲洗反渗透装置,以保证反渗透装置的稳定运行。本系统的反渗透膜为美国陶氏公司的TW30-1812-300膜元件两支。  高压泵是RO装置的动力源。为使RO装置处于良好运行状况下,高压泵进出口压力开关;当 高压泵进口压力低于限定值(缺水P≤0.05MPa)或高压泵出口压力高于限定值(P≥0.6 MPa)时,则高压泵及RO系统自动停止运行,以防止误操作引起出水背压过高而对RO膜造 成损坏。RO系统运行制水、压力控制、自动清洗均为自动控制。RO系统每隔一定周期可自 动定时对RO膜元件进行低压表面冲洗,将RO膜元件内尚存的浓水冲洗掉,防止浓水沉积引 起RO膜表面结垢。反渗透系统出力为100公升/小时;一级反渗透系统脱盐率大于99.6%。  3、精脱盐后处理系统  纯水储水罐的反渗透除盐水水质仍达不到高纯水用水标准,还需进行进一步脱盐处理。反渗 透除盐水经过紫外线杀菌,杀灭各种细菌¸病毒¸芽孢等物质。最后进入核子级抛光纯化系统 进行深度脱盐处理。核子级抛光树脂系统产水稳定电导率达0.2us/cm以下,通过交换反应 能彻底除去水中的残余离子,产品水完全符合并超过中国药典规定的纯水指标,最后送去高 纯水用水系统。  4、从设备自来水进水口到终端出水口为止为全自动控制,用水点阀门打开自动出水,自来水缺水设备自动停止运行,纯水箱满水设备自动停止运行,纯水罐体为全密封配置。以保证水质标准完全符合中国药典规定标准。  医院检验分析超纯水设备技术参数:  机器型号:PT-RO-100L/H-A  (产水量还有:10L/H 20L/H 、50L/H、150L/H、0.25T/H .......等更多型号。  进水水源:市政自来水  进水水温:5-38℃  进水水压:1-6Kg  机器电源:220V/50HZ  进水TDS :≤1000ppm  额定功率:150W  制 水 量:100L/H  产水电导率:≤0.2us/cm(25℃)  产水电阻率:≥5mΩ/cm(25℃)  主机体积:长550mm×宽395mm×高960mm  出水水质符合《中国药典2010版》标准。  医院检验分析超纯水设备特点  1、高产水量:主耗材使用寿命更长,超纯化系统采用高性能进口核子级抛光树脂。与同类产品相比,产水量更大,造水成本也更低。  2、制水过程自动控制,部件的造水能力,延长其使用寿命。可更换的配件均符合国标要求,容易购买而且质优价廉,确保低成本运行。  3、即时在线检测:在线即时检测水质,数字化显示更准确、直观。  4、可更换配件质优价廉:RO膜、系统自动冲洗功能可以有效预防生物膜的形成,保证关键  5、关键元器件:采用优质进口配件。6、独特的外观设计:整机一体化设计,结构紧凑、精致典雅、美观大方,方便运输、安装。 总之医院超纯水设备生产水质不仅对于生活用水是最重要的,同时对医院和医疗结构也是最重要的是水,医院的水质量的要求也越来越严格,主要是超纯水、超纯水是医院重要的物品。

  • 求购化验室无氨水制备仪器

    [size=18px]大家好:本人是做污水化验的,但是现在化验室的蒸馏水出了问题,现在做氨氮,还有磷酸盐的时候,空白值特别高,原来做的时候,氨氮空白A一般在0.020以下,现在已经上到了0.040,甚至更高,基本与处理出水的空白值一样,甚至更高,根本做不了曲线,没办法计算,(氨氮分析用的是纳氏试剂光度法)。而磷酸盐也出现同样的情况,原来空白:A 在0.001-0.003之间,现在已经上到0.009-0.010。已经持续有10天左右时间。[/size][size=18px]怀疑是蒸馏水方面出了问题,但是通过对不锈钢蒸馏水机清洗除垢后,情况还是这样。 [/size][size=18px]所以现在化验室想申请购买,可以制造无氨水的仪器设备,对无氨水的使用量1-2L/日,预算在1-2万元,望各位高手,能给小弟指点迷津!!![/size]

  • 自己编写的化学分析试样制备一般规定,诸位提提意见

    化学分析试样制备的一般规定1 制备试样的基本原则是取得均匀一致,能充分代表原始试样化学成分的化学分析试样,因此必须严格遵守技术与安全操作规程;遇到疑难问题时必须会同有关方面协商解决,不允许马虎从事,确保不发生任何质量及安全事故。2 制备试样所使用的一切工具必须无油、无锈,保持清洁,使用前后要清理干净;筛子、钢钵、捣杵、钻头等尽量分类使用或经过严格清洗后使用,保证试样不受沾污。3 原始试样表面存在的包砂、锈、涂料、油污等必须事先清理干净,使其全部或部分露出本体颜色。4 制备试样时应尽可能防止粉尘飞扬、样品飞散。制备结束后应掸净手上、衣服上的粉尘才能制备另一个试样,不许同时近距离制备不同品种的试样,防止试样相互沾污。5 制备试样过程中,应防止因机械摩擦等原因造成过热,使试样发生氧化。6 试样应无油、无锈、不得含有其他夹杂物;车、刨、钻的试样形状以断续片状为好,尽量不要成长卷状。7 金属复验试样除工艺上有特殊要求外,不得在原位置取样。应在靠近原位置的相邻位置重新取样制备。8 试样制备结束后应及时装入专用纸袋中(纸袋应细密、光滑、无绒毛纤维),填写有关内容,保证袋、样相符。

  • 分析到制备的放大

    在做一化合物的制备,经分析色谱摸好条件后,放大到制备时,应该需要注意什么呢?

  • 铝灰制备聚合氯化铝工艺研究

    铝灰制备聚合氯化铝工艺研究

    [align=center][font=黑体]铝灰制备聚合氯化铝工艺研究[/font][/align][align=left][b][font=黑体]摘要[/font][/b][font=黑体]:[/font][font=黑体]铝灰作为电解铝行业生产加工过程中的重要固体废弃物,产生巨大,铝灰在存储、处理方面带来很多环境问题,因此铝灰无害化、资源化处理迫在眉睫。本文介绍了以铝灰为原料,采用酸溶法制备聚合氯化铝的工艺研究,通过对不同处理方法产生的铝灰进行试验,完善各项工艺参数的调整和验证,达到实验室条件下制备聚合氯化铝净水剂的最佳条件,从而探索出适合制备聚合氯化铝产品的前期处理方法及后期工艺技术。[/font][/align][b][font=黑体]关键词[/font][/b][font=黑体]:铝灰;氧化铝;变废为宝;聚合氯化铝;净水剂[/font][b][font=黑体]中图分类号:TQ314.2 文献编识码:B [/font][/b][align=left][b][font=黑体]前言[/font][/b][font=宋体]随着我国工业的发展以及科技的进步,人们在生活中对铝产品的需求量日益增加,而在铝生产加工过程中产生一种附加产物——铝灰,铝灰中含有大量具有经济价值的氧化铝、金属铝、氮化铝,是一种可再生的资源,但其本身也是含有一定量有毒金属元素的危废,已经列入《国家危险废弃物名录》,传统的填埋处理方式不仅会对环境造成极大的污染和破坏[sup][1][/sup],同时也造成了资源[sup][2][/sup]的浪费。我司是一个集电解铝、铝精深加工为一体的大型企业,每年会产生大量的铝灰,因此将铝灰“变废为宝”成为一个新的课题,也是为公司寻找新的利润增长点的一个方向,是资源最大化的必走之路,同时也符合“科学发展观”、“建设绿色环保生态工厂”的积极性倡导。[/font][font=宋体]由于全球环境的污染,人们的环保意识不断提高,污水处理以及饮用水的净化现在已经是一个全球共同关注的课题。中国作为一个发展中国家,上世纪以来工业发展迅猛,某种程度上忽略了对生态的影响,饮用水的质量通常得不到保障;在发达国家,由于长期使用化学净水剂,残留在水中的化学物质通过日积月累,可能对人体健康造成一些潜移默化的伤害,同时净水之后的残渣无法很好地处理,也造成了不容忽视的环境问题。聚合氯化铝是一种新型净水材料,是目前国内外广泛使用的无机高分子絮凝剂,具有用量少、产生污泥少、除浊效果好、对出水pH值影响小等优点。[/font][font=宋体]巩义周边分布较多化工企业,化工企业在生产过程中,会产生大量废酸,废盐酸是其中一种,对化工企业而言没有大的附加价值,且废酸处理成本较大,废盐酸易挥发且具有强烈腐蚀性,如果处理不当容易对周边环境造成污染和破坏,也会对周边居民的身体健康状况造成影响。我司可以较低价格购进废酸,用来与本公司铝加工过程中产生的铝灰反应制备净水剂,利用铝灰中的铝、硅等元素在水[/font][font=宋体]中可形成大量带电胶团的性质,制备聚合氯化铝絮凝剂[sup][3-4][/sup],从而实现将铝灰无害化、资源化处理[sup][5][/sup]。同时也解决了铝灰和废酸带来的生态环保等社会问题,体现我司在环境保护、建设绿色生态园林企业的社会担当。[/font][font=宋体]聚合氯化铝(PolyaluminumChoride,PAC)是一种无机高分子含有不同量羟基的多核高效混凝剂,是一种介于AlCl[sub]3[/sub]和Al(OH)[sub]3[/sub]之间的水溶性无机高分子聚合物,其分子通式为[Al[sub]2[/sub](OH)[sub]n[/sub] Cl[sub]6-n[/sub]x (H[sub]2[/sub]O)] [/font][sub][font=宋体]m[/font][/sub][font=宋体],其中m代表聚合程度,n代表聚合氯化铝氯化铝的中性程度。具有分子结构大、吸附能力强、凝聚力强、形成絮体大等优点[sup][6][/sup],对管道无腐蚀性,净水效果明显,能够有效去除水中有色物质及重金属离子,广泛应用于饮用水、污水处理等领域[sup][7][/sup]。[/font][font=宋体]制备聚合氯化铝原料按来源可以分为:含铝矿石(如铝土矿)、工业含铝废料(如铝灰)、含铝化工产品及中间体(如结晶氢氧化铝)。合成方法根据原料的不同又可以分为:金属铝法、活性氢氧化铝法、氧化铝法、氯化铝法等。按照生产工艺又分为:酸溶法、碱溶法、中合法。本文主要以火法、湿法处理后的铝灰为原料,采用酸溶法,开展实验,探索出何种铝灰处理工艺适合做聚氯化铝产品[sup][8][/sup]。[/font][/align][align=left][font=宋体][b][font=黑体]1 [/font][font=黑体]实验材料与方法[/font][/b][font=黑体]1.1[/font][font=黑体]主要原料与仪器设备[/font][font=宋体]1.1.1[/font][font=宋体]铝灰:我司铝灰来源为电解铝灰、铝加工1、8系铝灰、3系铝灰、5系铝灰、再生铝铝灰。本文采用三种不同的铝灰展开试验,1#经火法处理后的再生氧化铝铝灰、2#经湿法处理后的高铝料铝灰、3#未经处理的二次铝灰。[/font][font=宋体]1.1.2 [/font][font=宋体]主要设备:电子天平(AL204梅特勒-托利多(上海)有限公司);恒温磁力搅拌器(78HW-1江苏金坛市金城国胜实验仪器厂);抽滤装置(GG-17抽滤瓶1000ml);电热恒温鼓风干燥箱(DHG-9070A型上海一恒科学仪器有限公司)。[/font][font=黑体]1.2[/font][font=黑体]实验方法[/font][/font][/align][align=left][font=宋体][font=黑体][font=华文宋体]1.2.1 [/font][font=宋体]聚合氯化铝制备工艺[/font][font=宋体]聚合氯化铝在制备方法上,有不同的合成路径,按照同一种制备原料——铝灰渣和废盐酸的生产工艺,反应后的混合物可经长时间恒温熟化,从而提高产品的氧化铝浓度和盐基度,也可通过添加铝酸钙的生产工艺提高产品聚氯化铝的氧化铝浓度和盐基度,本文采用第二种生产工艺展开探究。[/font][font=宋体]分别称取1#、2#、3#样品40g,置于500ml烧杯中,一定量的废盐酸和水,置于恒温磁力搅拌器[/font][font=宋体]上于一定温度下反应若干小时,反应完全后冷却,使用抽滤装置进行抽滤,将上清液与残渣分离,残渣用来与青石粉制备偏铝酸钙,将制成的偏铝酸钙加入第一步分离的上清液中,继续恒温反应若干小时后,使用抽滤装置进行抽滤,将上清液与残渣分离,上清液即为PAC液体,将上清液至于电热恒温鼓风干燥箱中进行干燥,得到聚合氯化铝固体产品。其工艺流程图如图1所示:[/font][/font][/font][/align][align=center][font=宋体][font=黑体][font=宋体][img=,690,214]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011537089487_9751_3237657_3.png!w690x214.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=楷体]图1 制备聚合氯化铝工艺流程图[/font][/font][/font][/align][align=left][font=黑体][font=楷体][font=宋体]1.2.2 [/font][font=宋体]偏铝酸钙的制备工艺[/font][font=宋体]将一次过滤后的含水量约50%一次滤渣与青石粉按照6∶4的比例搅拌混匀,于1300℃高温煅烧2h,自然冷却后,研磨成粉。[/font][font=黑体]1.3 [/font][font=黑体]试验原理[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]本实验选用了三种不同的铝灰, 1#经高温处理的再生氧化铝铝灰、2#经处理后的高铝料铝灰、3#未经处理的二次铝灰。氮化铝遇水后,发生水解反应,放出氨气:[/font][/font][/font][/align][align=left][font=宋体]AlN+3H[sub]2[/sub]O=Al(OH)[sub]3[/sub]+NH[sub]3[/sub] (1)[/font][/align][align=left][font=宋体]水洗滤渣在盐酸溶液中的溶出反应如下:[/font][/align][align=left][font=宋体]2Al+6HCl=2AlCl[sub]3[/sub]+3H[sub]2[/sub] (2)[/font][/align][align=left][font=宋体]Al[sub]2[/sub]O[sub]3[/sub]+6HCl=2AlCl[sub]3[/sub]+3H[sub]2[/sub]O (3)[/font][/align][align=left][font=宋体]Al(OH)[sub]3[/sub]+3HCl=AlCl[sub]3[/sub]+3H[sub]2[/sub]O (4)[/font][/align][align=left][font=宋体](2-n/4)AlCl[sub]3[/sub]+n/2H[sub]2[/sub]O+n/8Ca(AlO[sub]2[/sub])[sub]2[/sub]→Al[sub]2[/sub](OH)nCl[sub]6-n[/sub]+n/8CaCl[sub]2[/sub] (5)[/font][/align][font=黑体]1.4 [/font][font=黑体]分析方法[/font][font=宋体]本实验中液体或固体聚合氯化铝中氧化铝含量及盐基度的测定均采用GB/T 22627-2014分析标准进行。[/font][align=left][font=宋体][font=黑体]2[font='Times New Roman'] [/font][/font][font=黑体]实验过程及分析[/font][font=黑体]2.1 [/font][font=黑体]单因素优选实验[/font][font=宋体]2.1.1 [/font][font=宋体]原料配比的确定[/font][font=宋体]在反应温度为85℃,熟化聚合温度为70℃,反应时间为2h,熟化聚合时间为2h的条件下,综合试验了不同的原料配比,对PAC性能的影响结果如图2所示。[/font][font=宋体]由图2可见,随盐酸加入量的增多,产品中氧化铝质量分数随之增加,这是由于酸溶阶段主要是铝灰中的单质铝和氧化铝与废盐酸发生反应,当废盐酸的加入量增加时,有利于反应的正向进行;单一从理论上出发,盐酸用量在一定范围内越大,铝灰中单质铝与氧化铝的溶出率越高。但从实际生产而言,盐酸加入量越大,可能造成不能完全反应,浪费了生产成本,且盐酸是挥发性酸,高温下挥发的酸形成酸雾,会对实验工作环境造成危害,同时对现场操作人员的健康造成不利的影响。另外一方面,随着加入废盐酸的量的增多,H[sup]+[/sup]浓度会越大,游离酸越多,产品的盐基度逐渐下降;盐酸加入量过少时,产品浑浊,液渣分离操作难度大。因此选[font=宋体]择最佳的原料配比是尤为重要的,经过实验数据的对比,选定原料配比铝灰、盐酸、水的最佳配比为20∶60∶80。[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=,469,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011540049329_4319_3237657_3.png!w469x283.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=center][font=楷体]图2 原料配比对PAC性能的影响[/font][/align][font=楷体]m[/font][font=楷体](铝灰g)∶V1(盐酸ml)∶V2(水ml) 1 20∶30∶80 [/font][font=楷体]2 20∶40∶80 3 20∶50∶80 4 20∶60∶80 [/font][font=楷体]5 20∶70∶80[/font][font=宋体]2[/font][font=宋体].1.2 [/font][font=宋体]反应温度的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20[/font][font=宋体]∶6[/font][font=宋体]0[/font][font=宋体]∶8[/font][font=宋体]0[/font][font=宋体]条件下,反应时间为[/font][font=宋体]2h,[/font][font=宋体]熟化温度[/font][font=宋体]70[/font][font=宋体]℃,[/font][font=宋体][font=宋体]熟化聚合时间为[/font]2h[/font][font=宋体][font=宋体],单一调控反应温度进行实验,研究的反应温度对[/font]P[/font][font=宋体]AC[/font][font=宋体][font=宋体]的性能指标的影响,结果如图[/font]3所示:[/font] [align=center][img]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml5444\wps3.jpg[/img][font=华文宋体] [img=,465,278]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532246174_1801_3237657_3.png!w465x278.jpg[/img][/font][/align][align=center][font=楷体]图[/font][font=楷体]3 [/font][font=楷体]反应温度[/font][font=楷体][font=楷体]对[/font]PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]3可见,随着反应温度的升高,产品中氧化铝质量分数和盐基度均随之上升,但结合实验的其他现象,反应温度超过90℃后,盐酸和水挥发较快,造成反应物损失,产品质量明显减少,[/font][font=宋体][font=宋体]产品[/font]P[/font][font=宋体]AC[/font][font=宋体]的性能将下降,也就是铝在水解过程中将会转化成更高聚合度的形态,[/font][font=宋体][font=宋体]且产品呈现粘性浑浊液体状态,难以将固液有效分离。综合考虑,本阶段反应温度以[/font]85℃为最佳反应温度。[/font][font=宋体]2[/font][font=宋体].1.3 [/font][font=宋体]反应时间的确定[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应温度为85℃,熟化聚合时间为2h,[/font][font=宋体]熟化温度[/font][font=宋体]70℃,单一调控[/font][font=宋体]反应时间[/font][font=宋体]进行试验,[/font][font=宋体]研究反应时间的长短对[/font][font=宋体]PAC的性能指标的影响,结果如图4所示:[/font][align=center][img=,466,282]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532386484_1319_3237657_3.png!w466x282.jpg[/img][/align][align=center][font=楷体]图[/font][font=楷体]4 反应时间对PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]4可以看出,反[/font][font=宋体]应[/font][font=宋体]初期,盐酸浓度大,反应物充分,铝灰与盐酸反应速率较快,聚合氯化铝的氧化铝质量分数和盐基度呈正向增加趋势,此时,反应物浓度大,推动反应正向进行,反应速率快,随着反应的进行,反应物盐酸被不断[/font][font=宋体]地[/font][font=宋体][font=宋体]消耗,其浓度降低,反应产物浓度增加,抑制了正向进行速率,当反应时间达到[/font]2h时,反应物几乎最大程度被消耗完,盐基度也到达了最高。因此,综合考虑反应的能耗、时间成本等因素,[/font][font=宋体]本阶段[/font][font=宋体][font=宋体]最佳反应时间为[/font]2h。 [/font][font=宋体]2[/font][font=宋体].1.4 [/font][font=宋体]聚合温度的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应时间为2h,[/font][font=宋体][font=宋体]反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,[/font][font=宋体][font=宋体]熟化聚合时间为[/font]2h[/font][font=宋体][font=宋体],单一调控熟化聚合温度进行试验,[/font][font=宋体]研究熟化聚合温度对[/font][/font][font=宋体]PAC的性能指标的影响,结果如图5所示:[/font][align=center][img]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml5444\wps5.jpg[/img][font=华文宋体] [img=,465,278]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532486665_6908_3237657_3.png!w465x278.jpg[/img][/font][/align][align=center][font=楷体]图[/font][font=楷体]5 [/font][font=楷体]聚合温度对[/font][font=楷体]PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]5可以看出,随着熟化聚合温度的升高,产品聚合氯化铝中氧化铝质量分数与盐基度等参数呈现明显的先上升后下降的趋势,聚合温度过低,反应不充分,聚合程度低;聚合温度过高会破坏聚合态结构,导致部分聚合物分解,熟化聚合温度达到70℃时,产品聚合氯化铝中氧化铝含量和盐基度达到最高值,综合考虑,确定聚合温度70℃为[/font][font=宋体]本[/font][font=宋体]阶段最佳反应条件。[/font][font=宋体]2[/font][font=宋体].1.5 [/font][font=宋体]聚合时间的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应温度为85℃,[/font][font=宋体][font=宋体]反应时间[/font]2[/font][font=宋体]h[/font][font=宋体],[/font][font=宋体]熟化[/font][font=宋体]聚合[/font][font=宋体][font=宋体]温度[/font]70℃,[/font][font=宋体]单一调控熟化聚合时间变量,研究熟化聚合时间对[/font][font=宋体]PAC的性能指标的影响,结果如图6所示:[/font][font=宋体][font=宋体]由图[/font]6可以看出,随着聚合熟化时间的延长,产品中氧化铝含量和盐基度均呈上升趋势,当聚合时间达到2[/font][font=宋体]h[/font][font=宋体][font=宋体]后,产品氧化铝含量和盐基度指标均到达预期值,继续延长熟化聚合时间产品指标增幅不大,出于生产效率和成本的综合考虑,熟化聚合时间[/font]2[/font][font=宋体]h[/font][font=宋体]为本阶段最佳反应条件。[/font][align=center][img=,466,281]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011533076037_6078_3237657_3.png!w466x281.jpg[/img][/align][align=center][font=楷体]图[/font][font=楷体]6 聚合[/font][font=楷体]时间[/font][font=楷体][font=楷体]对[/font]PAC性能的影响[/font][/align][font=黑体]2.1 [/font][font=黑体]经过不同处理方式的铝灰试验结果[/font][font=宋体]在选择最佳试验原料配比和试验条件下,原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80[/font][font=宋体][font=宋体],反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,反应时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],熟化聚合温度[/font]7[/font][font=宋体]0[/font][font=宋体]℃,熟化聚合时间2[/font][font=宋体]h[/font][font=宋体],将三种铝灰进行原料中氧化铝含量的分析测定和同种工艺制备聚合氯化铝[/font][font=宋体],与国标《水处理剂聚氯化铝》对比,产品均达到国标要求[/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][font=宋体]结果数据汇总如表[/font]1、表2:[/font][font=楷体][/font][align=center][font=楷体][font=楷体]表[/font]1[/font][font=楷体] [/font][font=楷体]三种不同原料实验数据对比[/font][/align][font=楷体][/font][table][tr][td=1,2][font=楷体]样品名称[/font][/td][td=4,1][font=楷体]氧化铝质量分数/[/font][font=楷体]%[/font][/td][td=1,2][font=楷体] [/font][font=楷体]可溶度/[/font][font=楷体]%[/font][/td][td=1,2][font=楷体] [/font][font=楷体]浸出率/[/font][font=楷体]%[/font][/td][/tr][tr][td][font=楷体]原料[/font][/td][td][font=楷体]P[/font][font=楷体]AC[/font][font=楷体]固体[/font][/td][td][font=楷体]滤渣[/font][/td][td][font=楷体]铝酸钙[/font][/td][/tr][tr][td][font=楷体]1[/font][font=楷体]#[/font][/td][td][font=楷体]6[/font][font=楷体]8.33[/font][/td][td][font=楷体]8[/font][font=楷体].5[/font][/td][td][font=楷体]6[/font][font=楷体]3.37[/font][/td][td][font=楷体]5[/font][font=楷体]7.78[/font][/td][td][font=楷体]6[/font][font=楷体].75[/font][/td][td][font=楷体]4[/font][font=楷体].8[/font][/td][/tr][tr][td][font=楷体]2[/font][font=楷体]#[/font][/td][td][font=楷体]6[/font][font=楷体]9.86[/font][/td][td][font=楷体]2[/font][font=楷体]1.03[/font][/td][td][font=楷体]5[/font][font=楷体]9.26[/font][/td][td][font=楷体]5[/font][font=楷体]9.26[/font][/td][td][font=楷体]3[/font][font=楷体]1.99[/font][/td][td][font=楷体]4[/font][font=楷体]9.17[/font][/td][/tr][tr][td][font=楷体]3[/font][font=楷体]#[/font][/td][td][font=楷体]7[/font][font=楷体]8.2[/font][/td][td][font=楷体]2[/font][font=楷体]0.76[/font][/td][td][font=楷体]4[/font][font=楷体]7.37[/font][/td][td][font=楷体]5[/font][font=楷体]9.83[/font][/td][td][font=楷体]5[/font][font=楷体]2.00[/font][/td][td][font=楷体]5[/font][font=楷体]4.00[/font][/td][/tr][/table][font=楷体][/font][font=楷体][/font][align=center][font=楷体][font=楷体]表[/font]2[/font][font=楷体] [/font][font=楷体][font=楷体]产品与国标[/font]GB/T 22627-2014对比[/font][/align][font=宋体][/font][table][tr][td][align=center][font=宋体]指标名称[/font][/align][/td][td][align=center][font=宋体]Al2O3/%[/font][/align][/td][td][align=center][font=宋体]水不容物含量/%[/font][/align][/td][td][align=center][font=宋体]PH值(10g/L水溶液)[/font][/align][/td][td][align=center][font=宋体]Fe含量/%[/font][/align][/td][td][align=center][font=宋体]Pb含量/%[/font][/align][/td][td][align=center][font=宋体]As含量/%[/font][/align][/td][/tr][tr][td][align=center][font=宋体]标准要求[/font][/align][/td][td][align=center][font=宋体]≥6[/font][/align][/td][td][align=center][font=宋体]≤0.4[/font][/align][/td][td][align=center][font=宋体]3.5-5.0[/font][/align][/td][td][align=center][font=宋体]≤3.5[/font][/align][/td][td][align=center][font=宋体]≤0.002[/font][/align][/td][td][align=center][font=宋体]≤0.0005[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#1[/font][/align][/td][td][align=center][font=宋体]8.5[/font][/align][/td][td][align=center][font=宋体]0.25[/font][/align][/td][td][align=center][font=宋体]4.1[/font][/align][/td][td][align=center][font=宋体]0.7[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#2[/font][/align][/td][td][align=center][font=宋体]21.03[/font][/align][/td][td][align=center][font=宋体]0.1[/font][/align][/td][td][align=center][font=宋体]4.05[/font][/align][/td][td][align=center][font=宋体]0.72[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#3[/font][/align][/td][td][align=center][font=宋体]20.76[/font][/align][/td][td][align=center][font=宋体]0.1[/font][/align][/td][td][align=center][font=宋体]4.1[/font][/align][/td][td][align=center][font=宋体]0.65[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][/table][font=宋体][/font][font=宋体][font=宋体]由表[/font]1看出,三种原料虽然固有氧化铝含量均很高,但是不同的处理工艺对铝灰中氧化铝的性能造成不同的影响,1[/font][font=宋体]#[/font][font=宋体][font=宋体]铝灰经火法处理后的铝灰在制备聚氯化铝时溶解度、浸出率都很低,产品率低,不适合作为制备聚合氯化铝的原料,[/font]2[/font][font=宋体]#[/font][font=宋体][font=宋体]和[/font]3[/font][font=宋体]#[/font][font=宋体]铝灰通过数据可以看出均适合作为制备聚合氯化铝的原料,但是[/font][font=宋体]3#[/font][font=宋体]铝灰是未经处理的铝灰,若直接进行酸溶反应,反应较为剧烈,具有很大的危险性,也不符合环保要求。必须经过湿法脱氨除氮处理后方可进行下一步的生产。[/font][font=宋体][font=宋体]根据表[/font]2数据显示,我司铝灰实验室制备聚合氯化铝产品各项产品指标均满足国家标准要求[/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体]3 [/font][font=黑体]实验结论[/font][font=宋体]1、[/font][font=等线][font=等线]以铝灰和废盐酸为原料,采用酸溶法制备聚合氯化铝,通过单因素优选实验,得出铝灰和废盐酸反应制备聚合氯化铝的最佳工艺参数为:[/font][font=等线]原料配比[/font][/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80[/font][font=宋体][font=宋体],反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,反应时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],熟化聚合温度[/font]7[/font][font=宋体]0[/font][font=宋体]℃,熟化聚合时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],[/font][font=宋体]在该最佳条件下,采用[/font]2[/font][font=宋体]#[/font][font=宋体][font=宋体]铝灰制备,得到液体[/font]P[/font][font=宋体]AC[/font][font=宋体]氧化铝质量分数[/font][font=宋体]8.09%[/font][font=宋体],盐基度[/font][font=宋体]53.01%[/font][font=宋体]2、[/font][font=宋体]3#[/font][font=宋体][font=宋体]未经处理的二次铝灰,直接进行酸溶反应,由于[/font]A[/font][font=宋体]lN[/font][font=宋体]的水解行为,反应现象剧烈,操作上存在一定的危险性,应经前期湿法脱氨固氮处理后再进行酸溶反应。[/font][font=宋体]3、采用自制偏铝酸钙可高效、经济地调节铝灰及聚合氯化铝的盐基度,节约时间成本,提高生产效率,减少废渣产生。[/font]

  • 胰岛素制剂的来源和制备工艺

    胰岛素制剂在临床上的应用日趋广泛,其分类和命名方式较为复杂,易导致概念混淆,使用不当,本文针对胰岛素制剂的分类和特点作一概述,以便我们更好地为病人提供药学服务。胰岛素制剂可根据胰岛素来源、制备工艺、作用时间长短等来进行分类。1.根据胰岛素来源胰岛素制剂可分为人胰岛素、猪胰岛素、牛胰岛素。动物胰岛素与人胰岛素的区别在于结构上氨基酸序列的不同,因而动物胰岛素存在一定的免疫原性,可能在人体产生抗体而致过敏反应。另外,动物胰岛素的效价低,由动物胰岛素换用人胰岛素时,剂量应减少15%~20%,否则会增加低血糖风险。2.根据制备工艺2.1 经动物胰腺提取或纯化的猪、牛胰岛素,目前传统的普通结晶的动物胰岛素逐渐被淘汰,取而代之的是单组分或高纯化胰岛素,是指经凝胶过滤处理后的胰岛素,再用离子交换色谱进行纯化,以进一步降低胰岛素原的含量并去除部分杂质。2.2 半合成人胰岛素:以猪胰岛素为原料进行修饰得到的人胰岛素。2.3 生物合成人胰岛素:用重组DNA技术生产的人胰岛素,又称重组人胰岛素,为中性可溶性单组分人胰岛素。2.4 胰岛素类似物:通过重组DNA技术,对人胰岛素氨基酸序列进行修饰生成的可模拟正常胰岛素分泌和作用的一类物质。目前已用于临床的有赖脯胰岛素;门冬胰岛素;甘精胰岛素;地特胰岛素。人胰岛素为六聚体,皮下注射不能直接进入血液循环,必须解聚成单体或二聚体才能透过毛细血管进入循环。而不同个体分解和吸收的差异较大,导致最后进入循环的胰岛素量会有明显差异。另一方面,胰岛素混悬液若混合不充分或形成晶体会使吸收率降低,不同的注射部位也会影响最后的作用效果,这使得人胰岛素不能很好地重建人体正常的生理性胰岛素的分泌。胰岛素类似物克服了人胰岛素的这些不足,其中速效胰岛素类似物起效、达峰及维持正常时间较人胰岛素缩短,更符合生理餐后胰岛素谱,长效胰岛素类似物吸收变异小,作用时间长,更好地模拟人体生理基础胰岛素分泌。

  • 羧甲基壳聚糖的制备工艺研究

    【序号】:6【作者】: 丁振中1张超1曾哲灵【题名】:羧甲基壳聚糖的制备工艺研究【期刊】:当代化工研究. 【年、卷、期、起止页码】:2017(04)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iAEhECQAQ9aTiC5BjCgn0RkFnCMgT--3xSKLJ7TgeL85qJ-W7AXK2rIpUr_nb_c3g&uniplatform=NZKPT

  • 求分析条件换制备条件

    求分析条件换制备条件

    分析柱(250*4.6)制备柱(250*20)均岛津 C18分析柱分离条件:流速1ml/min,65%甲醇,纯化10min出的峰 如图,换制备柱求 流速 上样量 溶剂比,楼主已疯。。。那个什么分析转制备的公式楼主查过算过,不靠谱,流速太大,有没有合适的方法或者指点一二,从多大的流速、上样量、溶剂比开始摸索条件。。。楼主菜鸟。http://ng1.17img.cn/bbsfiles/images/2016/12/201612161532_01_2659472_3.png

  • 分析色谱与制备色谱到底有啥关系

    分析色谱是制备色谱的基础。当我们在分析色谱上取得了良好的分离效果时,可以将其放大,应用到制备色谱上,由此,我们需要考虑调整上样量,流速,梯度:1.上样量的调整:他与分析色谱柱和制备色谱柱的柱长和柱内径有关:具体关系时;制备柱上样量/分析柱上样量=制备柱长/分析柱长*制备柱内径的平方/分析柱内径的平方;2.流速的调整:制备柱流速/分析柱流速=制备柱体积/分析柱体积=制备柱长/分析柱长*制备柱内径的平方/分析柱内径的平方;3.梯度的调整:制备柱梯度/分析柱梯度=制备柱体积/分析柱体积*制备柱流速/分析柱流速;制备色谱与分析色谱有啥关系?很多初接触色谱领域的朋友对制备色谱这个名词比较陌生。其实,在化学化工医药等广泛采用的层析法以及薄层色谱就是最为典型的制备色谱,换句话说,将分析色谱的进样量增大,同时得出大量的所需物质(馏分)的过程就可以称为制备色谱。分析色谱的目的,是分析出混合物中一个(或者几个)纯物质的含量。制备色谱的目的,是从混合物中得到纯物质。而制备色谱系统则是利用制备色谱的思想高效能得到纯化物质的多个分析测试设备联用的总称。制备色谱能当分析色谱用吗?目前,很多客户的要求都倾向于买一台液相能同时解决制备和分析的所有问题,那就相当OK。这样的客户大多是科研经费紧张,好不容易批下来点钱,不想都花在后期纯化和分析上,所以最好二合一。在我看来,分析液相和制备液相是通用的,只是精度的差别问题。比如,分析的液相一般流速在0.1~10mL/min,活塞的一个冲程大概是10μL,而普通的制备液相一般都是10~100mL的流速,因此活塞杆的尺寸也会变大,一个冲程差不多是100μL;流速的精度相对来说就差了很多。流速大了,管路也相应的粗了不少,以降低高流速带来的背景压力;但这样的仪器用于分析的话,柱后的扩散现象相当的厉害,即使在色谱柱上达到基线分离的两个峰,由于柱后扩散的作用,到达检测器的时候,差不多又会合到一起了;另外就是检测器的差异,主要是检测池的大小和狭缝的大小不同带来的灵敏度的不同。制备仪器一般灵敏度是分析的1/20,以保证大量进样后,不会超过量程太多而平头,分不清到底分没分开了。倒是有个折中的办法,就是买分析型的液相,然后接个半制备的色谱柱。半制备就是直径一厘米的柱子,流速5mL以内,因此这个分析液相能达到;进样量大约是分析柱的10~20倍,检测器可能会平头,没关系,换个波长,找个吸收较弱的波长当检测波长就OK了,不是大量制备的话,我想基本可以满足需要了。 小结:分析色谱,制备色谱与工业色谱的主要区别? 1.分析色谱:在乎分析结果,对化验结果的纯度,比例等要求准确,而对收率,浓度等产品参数不在乎,一次进料,而且每次进料少。2.工业色谱:比较在乎产品的浓度和收率,还有纯度,工业化生产是连续进料。3.制备色谱:介于两者之间,一般用于做单柱试验。【来源:实验与分析】

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制