当前位置: 仪器信息网 > 行业主题 > >

磷化氢气体传感器

仪器信息网磷化氢气体传感器专题为您提供2024年最新磷化氢气体传感器价格报价、厂家品牌的相关信息, 包括磷化氢气体传感器参数、型号等,不管是国产,还是进口品牌的磷化氢气体传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磷化氢气体传感器相关的耗材配件、试剂标物,还有磷化氢气体传感器相关的最新资讯、资料,以及磷化氢气体传感器相关的解决方案。

磷化氢气体传感器相关的资讯

  • 在线式四合一气体远程控制器
    ET-04型,列在线式多参数气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, 具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。同时将数据远程传输有:在线检测和无线传输功能特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一在线检测-四种气体前三种都是按照客户自行挑选的,第四种的气体是标配好的二氧化碳。如想变成在线式的,请看ET-08型在线式气体检测远程传输系统 主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:二氧化碳传感器寿命是7年,其他传感器寿命为30个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右,另外配充电器4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH 可以任意选择四种传感器,组成四合一气体分析仪,第四种定是二氧化碳检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒国内诚招各地区总代理商,有意向请来电咨询江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com
  • 城市雾霾四合一气体检测质量
    城市雾霾严重,空气质量堪忧。金坛亿通的四合一气体检测仪帮您检测空气质量!ET-04型,列在线式多参数气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, 具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。同时将数据远程传输 有:在线检测和无线传输功能特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一在线检测-四种气体前三种都是按照客户自行挑选的,第四种的气体是标配好的二氧化碳。如想变成在线式的,请看ET-08型在线式气体检测远程传输系统主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:二氧化碳传感器寿命是7年,其他传感器寿命为30个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右,另外配充电器4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH可以任意选择四种传感器检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒
  • 拉萨81套中标气体类的检测仪,实力所在
    在拉萨中标气体检测仪产品 ,每种81套,真正的实力,真正的优惠价,最低价!!!!ET系列气体检测仪ET系列气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, ET具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:24个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH7:尺寸:180mm(长)× 110mm(宽)× 80mm(厚)8:重量:1Kg(带充电器) 可以任意选择四种传感器,组成四合一气体分析仪检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路180号电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com
  • 英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选
    在当今这个快速发展的时代,环境保护已经成为全球共同关注的焦点。而环保监测,作为确保环境质量的重要手段,其意义愈发凸显。在众多环境污染物中,氯化氢(HCl)因其强烈的腐蚀性和对生态环境可能造成的严重损害,成为环保监测中不可忽视的对象。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。例如,氯化氢进入大气后,会形成酸雨,对植被和建筑物造成损害;进入水体后,会改变水体的酸碱度,影响水生生物的生存;进入土壤后,会破坏土壤结构,影响农作物的生长。评估环境质量:通过对环境中氯化氢浓度的监测和测试,可以直观地了解环境质量状况,为环保决策提供科学依据。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选预警和防控:当氯化氢浓度超过一定阈值时,环保监测系统可以发出预警,提醒相关部门及时采取措施进行防控,防止环境污染事件的发生。指导治理:通过对氯化氢来源的追踪和分析,可以指导相关部门采取针对性的治理措施,减少氯化氢的排放,改善环境质量。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选评估治理效果:在采取治理措施后,通过再次对环境中氯化氢浓度的监测和测试,可以评估治理效果,为后续的环保工作提供参考。随着全球环境问题的日益严重,环保监测的重要性愈发凸显。在众多环境污染物中,氯化氢(HCl)因其对生态环境可能造成的严重损害而备受关注。因此,对氯化氢进行准确、高效的监测成为环保工作中不可或缺的一环。英国Alphasense公司推出的氯化氢传感器HCL-A1(或类似型号HCL-D4),为环保监测提供了强有力的技术支持。氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。通过对氯化氢的监测和测试,可以评估环境质量、预警和防控环境污染、指导治理以及评估治理效果。这对于保护我们共同的家园——地球具有重要意义。英国Alphasense作为气体传感器领域的佼佼者,其推出的氯化氢传感器HCL-A1(或类似型号HCL-D4)具有以下特点:高灵敏度:该传感器具有较高的灵敏度,能够快速响应环境中的氯化氢浓度变化。快速响应:响应时间短,能够迅速捕捉到氯化氢的排放情况,为预警和防控提供及时信息。高分辨率:传感器具有较高的分辨率,能够精确测量出环境中氯化氢的浓度,为评估环境质量提供准确数据。稳定性好:传感器采用先进的技术和材料,具有良好的稳定性和可靠性,能够在恶劣环境下长时间稳定运行。电化学盐酸气体传感器氯化氢气体传感器HCL-D4的主要参数如下:灵敏度:100~200nA/ppm,这意味着传感器对氯化氢浓度变化具有高度的敏感性。响应时间:≤250s,传感器能够迅速响应并捕捉到氯化氢的排放情况。分辨率:0.1ppm,传感器能够精确测量出环境中氯化氢的浓度。尺寸:Φ14.5*8.3,小巧的尺寸使得传感器易于集成到各种气体检测仪中。零点:3ppm,传感器在零浓度时的输出值较低,保证了测量的准确性。测量范围:50ppm,适用于大多数环保监测场景。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选过载:100ppm,当环境中氯化氢浓度超过此值时,传感器将停止工作以保护自身。负载电阻:10~33Ω,这是传感器工作时所需的电阻范围。环保监测中氯化氢测试的重要性不言而喻。英国Alphasense氯化氢传感器HCL-A1(或类似型号HCL-D4)以其高灵敏度、快速响应、高分辨率和稳定性好等特点,为环保监测提供了强有力的技术支持。通过配备该传感器的气体检测仪可以实时监测环境中氯化氢的浓度变化,为评估环境质量、预警和防控环境污染、指导治理以及评估治理效果提供准确、及时的数据支持。更多英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选英国Alphasense传感器、英国Alphasense阿尔法传感器、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • 工业安全新守护者:深度解析英国Alphasense硫化氢传感器的良好性能
    在工业化浪潮汹涌向前的今天,安全生产已成为企业持续发展的基石,特别是在面对如化工、石油天然气开采、污水处理等高风险行业时,对有毒有害气体的有效监控显得尤为重要。其中,硫化氢(H₂ S)作为一种剧毒且易燃易爆的气体,其精准监测直接关系到生产安全与员工健康。在此背景下,英国Alphasense公司推出的硫化氢传感器,凭借其良好的技术实力与稳定性,正逐步成为工业安全领域的一颗璀璨明星。以下是对该传感器的全面剖析,揭示其在守护工业安全中的独特价值。外观与耐用性的双重保障英国Alphasense硫化氢传感器,外观设计紧凑而精致,内部结构坚固耐用,专为严苛的工业环境而生。其外壳精选耐腐蚀、耐高温材料打造,无论是潮湿、多尘、极端温度还是其他恶劣条件,都能确保传感器稳定如一地运行。同时,传感器达到高标准的防水防尘等级,进一步巩固了其在恶劣环境中的耐用性和可靠性,让安全监测无惧挑战。较高精度监测技术的核心优势技术的先进性是英国Alphasense硫化氢传感器脱颖而出的关键。该传感器采用先进的电化学或电化学红外吸收技术,这两种技术各有千秋,共同铸就了传感器的高精度监测能力。电化学传感器配套报警仪凭借其快速的响应速度和高度灵敏性,能够迅速捕捉空气中硫化氢浓度的细微变化;而电化学红外吸收传感器则凭借其对特定红外波长的精准识别,实现了更为稳定和抗干扰的测量结果。无论是哪种技术路线,英国Alphasense配套报警仪都确保了测量数据的准确无误,为安全生产提供了坚实的数据支撑。智能化功能引领未来趋势在智能化浪潮的推动下,英国Alphasense硫化氢传感器也不甘落后。传感器内置高性能微处理器,不仅能够实时分析数据、自动校准误差,还具备强大的报警功能。一旦监测到硫化氢浓度超标,传感器将立即触发声光报警,确保操作人员能够迅速响应并采取措施。此外,传感器配套报警仪还可支持远程监控和数据传输功能,用户可以通过智能手机APP或电脑软件随时随地查看监测数据,实现对生产现场的远程管理和实时监控。这种智能化功能不仅提升了工作效率,也为企业的安全管理带来了前所未有的便捷性。广泛应用展现非凡实力英国Alphasense硫化氢传感器的良好性能已经得到了市场的广泛认可和应用。在石油天然气行业,传感器配套报警仪被广泛应用于钻井平台、油气管道等关键区域,有效预防了因硫化氢泄漏而引发的安全事故;在化工生产领域,传感器更是成为了有毒有害气体监测的得力助手,保障了工人的生命安全;此外,在污水处理、垃圾填埋等环保领域,传感器也发挥了重要作用,为环保部门提供了准确可靠的数据支持。这些成功案例充分证明了英国Alphasense硫化氢传感器在工业安全领域的非凡实力和广泛应用前景。英国Alphasense硫化氢传感器以其高精度监测技术、智能化功能以及广泛的应用领域,成为了工业安全领域的新守护者。它不仅提升了企业的安全生产水平,也为人员的生命安全和环境的健康保驾护航。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • “疏水分子筛”助力安光所研发抗湿型高性能硫化氢传感器
    近日,安光所利用“疏水分子筛”研发抗湿型高性能硫化氢(H2S)传感器,相关成果以“基于Pt锚定CuCrO2(铜铬氧)的高性能H2S气体传感器”,“PDMS(聚二甲基硅氧烷)膜在抗湿、高选择H2S气体传感器中的双重功能”为题,分别发表于ACS Applied Materials & Interfaces和Chemical Communication杂志上。   H2S是一种无色、易燃易爆、有强腐蚀性的剧毒气体,广泛存在于石化、天然气、矿井、下水道、养殖场、废水处理厂、垃圾填埋场等半封闭和高湿度场所。近年来,半导体型H2S传感器取得了长足的进展,包括铜铁矿、氧化锌(ZnO)、氧化铜(CuO)在内的多种氧化物在干燥空气中都对H2S具有较高的响应。然而,传感器在实际使用时必须暴露在湿度环境中,环境中的水汽是一种强干扰性气体,且水汽(湿度)随时间、地点、季节、天气等因素急剧变化,这给传感器的浓度标定带来了较大干扰。此外,H2S是一种强腐蚀性气体,且腐蚀性随湿度增加而增大,导致传感器在高湿度环境下快速腐蚀中毒、寿命大幅缩短,成为传感器走向实际应用的一个重要挑战。   为解决上述问题,安光所激光中心孟钢研究员团队在前期基于Pt单原子敏化CuCrO2的高灵敏H2S传感器基础上,通过热蒸发法在CuCrO2敏感层上蒸镀了一层基于聚二甲基硅氧烷(PDMS)的疏水、透气薄膜。PDMS性质稳定、本征疏水,可有效隔绝环境中水汽的侵入,减弱环境湿度对传感器的影响,同时显著提升传感器在湿度环境中的长期稳定性;此外,PDMS膜中大量微孔可有效阻挡甲硫醇分子(结构、性质同H2S极相似,直径略大),充当“分子筛”的作用,进一步提升了传感器对H2S的选择性,实现了“一石二鸟”的功效。基于PDMS包覆CuCrO2的H2S传感器,工作温度较低(100 ℃)、湿度影响小、响应高(50%相对湿度下对5 ppm H2S的响应高达151)、选择性高、长期稳定性好,为H2S传感器在石化、天然气等领域的实际应用奠定了重要基础。   以上研究工作由中科院国际合作及安徽光机所所长基金等项目资助。
  • 特价优惠——美国RAE,美国英思科;气体检测仪
    美国华瑞气体检测仪北京宏昌信科技有限公司 欢迎致电咨询:010-52745610 联系人:张经理www.hcxin.net促销产品:Pgm7340/pgm-7340PPB 泵吸式VOC检测仪Pgm7240/pgm-7240 PPB 泵吸式VOC检测仪Pgm7320/pgm-7320挥发性有机气体VOC检测仪Pgm7600/pgm-7600挥发性有机气体VOC检测仪Pgm7300/pgm-7300泵吸式VOC检测仪Pgm7200/pgm-7200泵吸式苯蒸汽检测仪Pgm3000/pgm-3000密闭空间复合气体检测仪pgm7800/pgm-7800密闭空间复合气体检测仪pgm7840/pgm-7840五合一气体检测仪pgm50q/pgm-50q四合一密闭空建、pgm50/pgm-50复合气体检测仪pgm54/pgm-54五合一气体检测仪/二氧化碳检测仪pgm2400/pgm-2400四合一气体检测仪pgm2000/pgm-2000四合一密闭空间检测仪pgm1600/pgm-1600可燃气体检测仪pgm1700/pgm-1700氧气/一氧化碳/硫化氢检测仪pgm1100/pgm-1100氧气检测仪(O2)pgm1110/pgm-1110一氧化碳检测仪(CO)pgm1120/8pgm-1120硫化氢检测仪(H2S)pgm1190/pgm-1190氯气检测仪(CL2)pgm1130/pgm-1130二氧化硫检测仪(SO2)pgm1140/pgm-1140一氧化氮检测仪(NO)pgm1150/pgm-1150二氧化氮检测仪(NO2)pgm1170/pgm-1170氰化氢检测仪(HCN)pgm1187/pgm-1187二氧化氯检测仪(CLO2)pgm1189/pgm-1189氯气检测仪(CL2)pgm1191/pgm-1191氨气检测仪(NH3)pgm1192/pgm-1192磷化氢检测仪(PH3)sp1102/sp-1102可燃气体检测器sp1104/sp-1104有毒气体检测器sp2102/sp-2102可燃气体检测仪sp2104/sp-2104有毒气体检测仪sp3104/sp-3104有毒气体检测仪sp3101/sp-3101氧气检测仪sp4101/sp-4101氧气检测器sp4102/sp-4102可燃气体检测器sp4104/sp-4104有毒气检测器sp1003/sp-1003控制器T40-CO气体检测器T40-H2S气体检测器T82单气体报警器GasBadge Pro气体检测仪M40-LEL气体检测器M40-O2气体检测器M40-LEL,H2S气体检测器M40-LEL,O2气体检测器M40-LEL,O2,CO气体检测器M40-LEL,O2,H2S气体检测器M40-LEL,O2,CO,H2S气体检测器LTX312-LEL,O2,CO气体检测仪MDU420-甲烷气体检测仪CDU440-CO2 气体检测仪iTRANS? -可燃气体(在线)iTRANS? -可燃气体(远程)iTRANS-可燃气体(双传感器)TLV FALCON有机气体TVOC检测仪TLV PANTHER气体检测仪GasBadge Pro二氧化硫(SO2)气体检测仪GasBadge Pro一氧化碳(CO)气体检测仪ITX 可燃气和甲醇二合一气体检测仪iTX多气体检测仪
  • 江苏苏美达仪器设备有限公司关于倒置显微镜等设备的招标公告
    江苏苏美达仪器设备有限公司受南通出入境检验检疫局委托,根据《中华人民共和国政府采购法》等有关规定,现对倒置显微镜等设备进行公开招标,欢迎合格的供应商前来投标。  项目名称:倒置显微镜等设备  项目编号:1749-1640SUMEC220D  项目联系方式:  项目联系人:洪玫  项目联系电话:025-84531290  采购单位联系方式:  采购单位:南通出入境检验检疫局  地址:江苏省南通市崇川区崇川路102号  联系方式:戴小程0513-68588590  代理机构联系方式:  代理机构:江苏苏美达仪器设备有限公司  代理机构联系人:崔媛媛、曹坡  代理机构地址: 025-84532581,84532535  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:分包号产 品 名 称数量简要技术要求用途预算 (人民币/万元)1倒置显微镜1符合人体工程学的可以调整角度的双目观察镜筒...机场快速检疫查验8.5数码生物体视镜1高分辨率体视光学成像系统...机场快速检疫查验16.4高灵敏度制冷CCD1冷CCD制冷系统:低于环境温度18℃或以上...实验室检疫鉴定12.82分散机1转速控制精度10rpm...农产品检测10电熔融炉1工作及加热方式:全自动样品熔融混匀、电加热...实验室设备正常更新423梯度PCR仪1加热块模式:0.2 ml专用合金...分子检测12酸纯化装置1在蒸馏至近干时,TFM? PTFE和近干的液体都不会吸收很大的红外辐射,可防止装置因过热而损坏...适用于痕量分析中超纯酸的制备,保证ICP、ICP-MS、AAS在检测中不受杂质干扰,以达到满意的检测数值。94硫酰氟残留红外分析仪1精度:± 1ppm(0-10ppm)...对熏蒸其他(硫酰氟)残留浓度检测8.8红外水份测定仪1采用第二代环形卤素灯及镀金辐射体加热单元,更快捷、均匀的加热样品...成份检测8A级化学防护服(含正压呼吸器)1防化手套:连接设计独特,无需任何工具可轻松更换...化学有害因子现场处置个人防护5手持式化学探测器1能够对探测化学制剂进行定性定量检测,配有显示屏并可实时显示探测化学战剂的详细种类、具体名称、浓度数值范围...主要用于海港或空港口岸环境中化学战剂(CWA)气体的监测,如神经性毒剂、H类糜烂性毒剂以及血液性毒性气体和其他种类的学化学物质,特别是在突发事件处置中用以化学有害因子的监测与排查,为应急处置和人员防护提供依据。20溴甲烷气体残留检测仪1软件: 报警方式:具有视觉、振动和声音(95 分贝)...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。2.85多样品自动浓缩仪1单个样品的体积范围:0.5-30mL...实验室仪器设备正常更新19全自动凝胶成像系统1采用CCD摄像头实时采集图象,采集状况可在电脑屏幕上直接观察并控制...卫生检疫设备正常更新12药品柜1柜体材质 镀锌钢板,涂有抗酸碱的环氧树脂涂层...检疫鉴定3低温冰箱1无CFC聚氨酯发泡,超厚保温层,保温效果好...植检检疫样品、试剂保存46便携式溴甲烷气体检测仪(低浓度)1检测范围: 0-200/0-2000ppm...口岸核生化防护设备1.45杂草检测图像采集设备1EF 24-105mm f/4L IS USM红圈防抖镜头,EF100mm f/2.8L IS USM微距镜头...杂草检测图像采集1.95便携式磷化氢高浓度检测仪1重量:不超过250克...口岸核生化防护设备1.5便携式溴甲烷熏蒸气体检测仪(高浓度)1提供现场实时检测溴甲烷气体的浓度和温度、对数据即时保存和打印的功能...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98手持式磷化氢气体检测仪(低浓度)1检测气体:空气中的磷化氢检测范围:0~10ppm分辨率:0.01ppm 产品类型:扩散式电化学有毒气体检测仪,带数据存储...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98  二、投标人的资格要求:  1、符合《中华人民共和国政府采购法》第二十二条的规定 1)具有独立承担民事责任的能力 2)具有良好的商业信誉和健全的财务会计制度 3)具有履行合同所必需的设备和专业技术能力 4)有依法缴纳税收和社会保障资金的良好记录 5)参加政府采购活动前三年内,在经营活动中没有重大违法记录 6)法律、行政法规规定的其他条件。 2、投标人的具体资质要求: 2.1 投标人营业执照(副本复印件)。 2.2 法人代表授权书(原件)及法定代表人、投标人授权代表身份证明材料。 2.3 若投标人不是投标产品制造商的,投标人必须具有下列授权文件之一: a.制造商出具的授权函正本 b.制造商的国内全资子公司出具的授权函正本 c.制造商对授权的区域代理商出具的授权函复印件及该区域代理商出具的授权函正 本 d.投标人取得的产品代理证书复印件(正本备查)。 2.4 银行出具的资信证书(复印件)(开标前三个月内)。 2.5 参加政府采购活动近三年内,在经营活动中没有重大违法记录(提供承诺书,格 式自拟)或提供检察机关出具的行贿犯罪档案查询结果告知函。 2.6 投标人资格证明。 2.7 投标人需要提供近三个月内任意一个月的依法缴纳税收和社会保障资金的记录。 2.8 本次采购均接受进口产品投标。  三、招标文件的发售时间及地点等:  预算金额:202.16 万元(人民币)  时间:2016年07月05日 17:30 至 2016年07月12日 17:30(双休日及法定节假日除外)  地点:江苏苏美达仪器设备有限公司,南京市长江路198号5楼。  招标文件售价:¥800.0 元,本公告包含的招标文件售价总和  招标文件获取方式:当面购买或邮购,每包800元人民币,售后不退 国内邮购须另加50元人民币。  四、投标截止时间:2016年07月27日 09:00  五、开标时间:2016年07月27日 09:00  六、开标地点:  南京市长江路198号苏美达大厦二楼开标大厅  七、其它补充事宜  公告期限:自发布之日起公告期限为5个工作日  八、采购项目需要落实的政府采购政策:  本项目执行《政府采购促进中小企业发展暂行办法》(财库〔2011〕181号),工业和信息化部、国家统计局、国家发展和改革委员会、财政部《关于印发中小企业划型标准规定的通知》(工信部联企业〔2011〕300号)等政府采购文件。
  • VOC快检利器——光离子化气体传感器(PID)!!
    提起VOC检测,可能环境的小伙伴比较熟悉,今天主要跟大家分享一下光离子化气体传感器(PID)方法检测VOC。1、什么是VOC?VOC是挥发性有机化合物(volatile organic compounds)的英文缩写,是在室温以气态分子的形态排放到空气中的所有有机化合物的总称。VOC 所涵盖的有机物种类繁多而且其组成成分多样,主要有:氯化物、苯类化合物、氟利昂化合物、有机醇、有机酮、有机醚、有机醛、有机酯、有机胺、有机酸以及石油烃化合物等。VOC及所形成的二次污染物不仅本身具有较强毒性对人们的健康带来负面影响,而且VOC作为臭氧和PM2.5的前体也影响着大气质量,是复合型空气污染的主要“贡献者“之一。2、VOC的检测方法检测VOC常见的方法有PID检测、GC-FID及GC-MS检测,其中GC-FID和GC-MS都是用来检测VOC气体总值的,在混合气体环境中不能检测出单独某一种VOC气体。GC-FID与GC-MS也可以测出具体某一种VOC气体成分,但价格昂贵,且体积大。其中PID传感器体积小、价格低廉、工作条件简单、能耗低,更适合作为便携式检测器。表1 VOC检测方法参数GC-MSGC-FIDPID使用方式氦气瓶氮气瓶、氢气瓶、空气瓶便携式重量非常重较重很轻尺寸体积非常大体积较大很小检测范围(ppm)更宽0~500000~10000数据线性全范围线性较好全范围线性较好低浓度线性良好选择性无选择性无选择性低能量灯增加选择性检测气体VOC气体VOC气体VOC气体、某些无机气体样品破坏检测破坏检测无损检测可回收操作使用极为复杂较为复杂简便简洁检测费用极其高高极低检测速度极其慢慢极快3、什么是PID?对于仪器分析的小伙伴,可能对GC-FID(氢火焰离子化检测器)与GC-MS(气质联用仪)使用更清楚,我们今天重点讲一下PID(光离子化检测器)。光离子化气体传感器(简称PID)由紫外光源和气室构成。PID 中激发待测气体离子化的源头就是电离室中的紫外灯,被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。紫外发光原理与日光灯管相同,只是频率高,能量大。图1 PID传感器结构PID工作原理:1、在真空玻璃腔内充入高纯稀有气体例如惰性气体。2、用可透紫外光的窗口将玻璃腔体密封。3、外加电磁场进行激发。4、在外加电磁场的作用下,被电离气体产生电流,进而被检测到。图2 PID传感器工作原理4、PID传感器类型与品牌调研PID传感器可以按照紫外灯能量、寿命及检测气体分类,主要可以分为以下类型。表2 PID传感器类型紫外灯能量(eV)9.6eV10.6eV11.6eV紫外灯寿命6个月12~24个月6个月检测气体种类114250300在VOC快检领域, PID传感器品牌几乎都是进口仪器公司,国产采用PID技术的检测设备仅镁汇科技一家企业。表3 PID传感器品牌品牌典型产品英国阿尔法AlphasensePID-A1英国离子科学Ion Science Ltd.FirstCheck F Ex6000,世界上首台PPB级PID检测器的多组分气体检测仪美国贝斯兰Baseline–MOCONPID-TECH FirstCheck F Ex6000MeiHui镁汇科技PID-GH,专注PID研发可替代进口品牌PID配件5、PID的国产替代通过分析比对,可以看出采用PID技术的检测设备与动辄花费大几十万的GC-FID、GC-MS相比,具有明显的优势,不但便携快捷而且设备成本低。表4 国产配件与进口配件对比类型价格货期特点进口配件国产3~5倍15~90天更新换代快国产配件进口1/3~1/52~5天精准定制进口仪器进口备件具有价格贵、费用高、购买周期长。一旦PID的氘灯损坏或者其他配件缺失,将存在一定时间的空白等待期,将会严重影响到VOC检测工作的检测进度。解决办法无外乎有两个:1、增加进口配件的储备与存储,但会增加资源浪费与资金压力;2、寻找进口配件的国产可替代化。 6、PID进口替代优选之品镁汇科技PID-GHSensor的外型设计可以与主要品牌的PID传感器进行互换,其可以安装在任何便携式和固定气体检测仪。可进口替代相同规格的PID传感器光源与其他易损配件。图3 0~200ppmPID的线性范围其不同配件的测量范围最小为0-2ppm,检出限0.5ppb。最大测量范围0-10000ppm,最小检出限为1000ppb。传感器使用寿命一般为3年,质保2年。氘灯能量为10.6eV,紫外灯管寿命6000h。其他配件一年,并且提供其他配件的购买。图4 PID主要配件图综上所述,目前国内PID气体传感器有了较大发展,对已知气体可以实现快速实时检测,有着广泛的应用前景。转载自公众号:实验室仪器分析
  • 【突破】燕山石化氢气新能源装置质量在线监测系统正式投用
    2021年9月17日,北京市科委验收专家组对燕山石化承担的“氢燃料电池汽车用炼化工业副产氢气规模化提纯关键技术研究”课题进行验收。加拿大ASD公司提供的在线工业气相色谱KA8000Ex正式投用于该项目燕山石化氢气新能源装置北侧的分析小屋。 该系统可实现对氢气中低于4×10-9(ppb级)硫含量的准确分析,可实现对氢气中常规杂质与关键杂质硫的快速、连续分析,实现对产品质量精确可靠的判定,并帮助装置实现更优控制。在研制针对性、使用EPD技术检测极低含量杂质的灵敏性方面取得了突破性进展,为行业内首次应用,标志着燕山石化在氢能产品质量监控方面处于超前水平,同时也是对ASD的技术及团队极大认可,在行业内具有重大意义。《中国石化新闻网》新闻报道【项目背景】燕山石化检验计量中心从2019年开始跟踪新技术,对电子行业使用的增强型等离子放电检测技术(EPD)在氢气产品检测应用的可行性方面进行学习研究,并与ASD公司进行广泛交流和实验工作,最终确定项目合作。这是和中石化石科院在实验室解决方案合作后,ASD再次为中石化服务,本次提供中石化系统首套氢燃料电池用氢在线测量解决方案,将运用于北京“2022冬奥会”氢燃料电池车辆的氢气品质检测,实现对电池氢产品质量的精确把控!该系统首先在燕山石化公司安装,不久之后将在其它地点陆续安装上线。ASD是一家专门从事研发和制造实验室气体分析技术的高科技公司,凭借三十多年的GC(气相色谱)创新经验,为绿色能源领域的发展提供多种技术和应用,更为燃料电池的氢气分析打造出独特的创新解决方案。
  • 英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用
    在当今环境保护与工业安全备受关注的背景下,硫化氢(H2S)的有效检测与监控显得尤为重要。作为该领域的佼佼者,英国Alphasense公司凭借其良好的技术实力和创新精神,为市场提供了一系列高效、可靠的硫化氢检测方案。英肖仪器将从原理入手,深入剖析其核心技术,并探讨这些方案在多个领域的广泛应用。英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用原理探秘:科技引领,准确检测电化学传感器技术:英国Alphasense硫化氢检测方案的核心之一是电化学传感器。该技术利用化学反应将硫化氢气体转化为电信号,实现准确测量。其内部构造精密,包括工作电极、对电极和参比电极。当硫化氢气体接触到传感器表面时,与工作电极上的催化剂发生反应,产生与硫化氢浓度成正比的电流。电化学传感器以其响应速度快、灵敏度高的特点,在硫化氢检测领域占据重要地位。电化学红外吸收传感器技术:除了电化学传感器外,英国Alphasense还采用了先进的电化学红外吸收传感器技术。该技术利用硫化氢对特定红外波长的吸收特性进行检测。传感器内部集成了红外光源、红外检测器和气体室。红外光在通过气体室时被硫化氢吸收部分能量,剩余光被检测器接收并转化为电信号。通过计算入射光与出射光的强度差异,可精确测定硫化氢浓度。电化学红外吸收传感器具有更高的稳定性和抗干扰能力,适用于复杂环境下的高精度检测。应用场景:全面覆盖,准确守护石油化工行业:在石油化工领域,硫化氢是油气勘探、开采、运输和加工过程中常见的有害气体。英国Alphasense传感器及配套报警仪被广泛应用于钻井平台、油气管道、炼油厂等关键位置,实时监测硫化氢浓度,有效预防泄漏和爆炸事故的发生。污水处理与环保: 英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用在污水处理厂、垃圾填埋场等环保设施中,硫化氢的排放对环境质量构成威胁。英国Alphasense检测方案助力环保部门和企业实时监控硫化氢排放情况,确保环境质量达标,保护生态环境。农业与畜牧业:在沼气生产、畜禽养殖等农业领域,硫化氢也可能对生产环境和动物健康造成不利影响。英国Alphasense传感器能够及时发现并处理硫化氢超标问题,保障生产安全和动物福利。科研与教育:英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用在化学实验室、大学科研机构等场所,英国Alphasense硫化氢检测方案为学生和科研人员提供了一个安全、可靠的工作环境。它确保了教学和科研活动的顺利进行,促进了科学研究的深入发展。电化学硫化氢气体传感器H2S-D4详解主要参数:英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用测量范围:100ppm灵敏度:110~170nA/ppm响应时间:25s线性范围:0~20ppm,全量程线性度误差+/-6ppm过载:200ppm分辨率:0.2ppm尺寸:Φ14.5*8.3使用寿命:2年存储周期:6个月工作温度:-30~50°C工作湿度:15~90%RH负载电阻:10~47Ω主要特点:无过滤网设计:简化了维护流程,降低了使用成本。长寿命:传感器使用寿命长达2年,减少了更换频率和停机时间。英国Alphasense硫化氢检测方案以其科学准确的检测技术、高效稳定的工作性能和广泛覆盖的应用场景,在环境保护、工业安全等多个领域发挥着重要作用。它不仅是守护环境安全、保障工业生产和人员健康的重要工具,更是推动行业技术进步和创新发展的重要力量。更多英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用英国Alphasense传感器、英国Alphasense阿尔法传感器、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 如果硫化氢检测仪出现故障,应该如何处理?
    硫化氢检测仪是一种专门用于检测环境中硫化氢气体浓度的仪器,它通常用于一些可能存在硫化氢气体的场所,比如工业领域、化工生产、石油开采、污水处理、下水道、沼泽地等。那么如果硫化氢检测仪出现故障,应该如何处理呢?本文跟随逸云天小编一起了解下吧。  如果硫化氢检测仪出现故障,以下是一些常见的处理步骤:  1.查看说明书:首先,参考检测仪的用户手册或操作指南,查找有关故障排除的部分。手册可能提供特定故障的解决方法和步骤。  2.重新启动检测仪:有时,简单地重启检测仪可能解决一些临时故障。关闭并重新打开仪器,看看是否能够恢复正常工作。  3.检查电池和电源:确保检测仪的电池电量充足,或者检查电源连接是否正常。低电量或不稳定的电源可能导致故障。  4.清洁传感器:传感器的污染或堵塞可能影响检测准确性。按照厂家的指导,清洁或更换传感器。  5.校准检测仪:校准不正确可能导致错误的读数。尝试进行校准操作,根据手册中的说明进行校准。  6.联系厂家技术支持:如果以上步骤无法解决问题,及时联系检测仪的厂家或供应商的技术支持团队。他们可以提供更专业的故障诊断和修复建议。  7.不要自行修理:除非你有相关的技术知识和经验,否则不建议自行尝试拆卸或修理检测仪。不当的操作可能会进一步损坏设备或导致安全问题。  综上所述,相关信息就分享到这里,希望这篇文章能帮助到大家。  应用场景:  1、密闭设备: 如船舱、贮罐、车载槽罐、反应塔、冷藏箱、管道、烟道、锅炉等   地下有限空间: 如地下管道、地下室、地下仓库、废井、地窖、污水池、沼气池、化粪池、下水道等   地上有限空间: 如储藏室、酒糟池、发酵池、垃圾站、温室、冷库、粮仓、料仓等。  广泛应用于:石油、化工、燃气输配、仓储、市政燃气、消防、环保、冶金、生化医药、能源电力等行业得到了广泛的应用,并得到广大客户的一致**。
  • 发布气体监测成像预警系统新品
    一、产品介绍我国首产并有自主知识产权的气体远距离监测红外光谱仪系统,该红外监测系统可对气体远距定性、定量识别分析;可成像预警直观溯源;可在线监测、巡航、便携使用;广泛用于石油、化工、环保、安监、消防、科研等领域有毒有害气体遥测预警成像系统利用气体红外指纹光谱对气体云团进行遥感探测,通过识别软件实现对危险气体的快速定性识别和半定量反演,配合扫描云台和同轴可见-红外相机实现检测区域的扫描成像,依据气体的种类和浓度,分别以不同的颜色和深浅与可见图像或视频进行伪彩叠加,可以直观快速的核定危险气体源头、给出其在大气中的分布和扩散趋势。产品由集成了同轴相机的可见-红外相机的傅里叶红外光谱仪、扫描云台及配套的识别反演软件组成,如图 1所示。产品可以固定架设,也可采用车载方式。该检测方法与常规技术相比,具有以下特点:(1) 对现场气体远距离进行探测;(2) 不需采样,无需繁琐和危险的取样手续;(3) 检测种类多(涵盖了绝大多数易燃易爆和有毒气体种类);(4) 自动识别气体种类、反演浓度、自动报警;(5) 快速进行危险气体源头的定点定位、核定污染范围及其在空气中的分布和扩散趋势;(6) 快速分析多组分混合物;(7)监测范围广、速度快、灵敏度高。灵敏度高,可达到ppm.m级别,检测速度快,3秒钟内给出检测结果。二、测量成分:◆ 化学毒剂:沙林(GB)、芥子气(HD)、维埃克斯(VX)、索曼(GD)、环沙林(GF)、塔崩(GA)、路易斯气(Lewisite)等;◆有害气体:二氧化硫、硫化氢、氮氧化物、一氧化碳、氯化氢、苯、甲苯、二甲苯、 苯系物、多氯联苯、砷化氢 、磷化氢、光气、氯化氰、氰化氢等200多种气体;◆挥发有机物(VOCs);三、应 用:◆港口、海事局应用方式:高处架设或船载流动检测目的:针对进港船舶是否更换清油及排放超标的监测◆环保执法大队应用方式:高处架设或车载流动检测目的:提高环保部门针对排污企业超标排放的监测及执法技术手段◆化工园区管委会、安监局应用方式:高塔或高处架设,针对园区整体24小时监测目的:拓展政府部门对于化工园区的安全管理手段,监控偷排,防止爆燃类生产事故◆中海油、中石油、中石化应用方式:高塔或高处架设,无人车载巡检目的:防止爆燃类、中毒等生产事故◆消防大队、安监局应用方式:车载流动检测目的:火灾现场、危化品事故现场的应急处置支援,协助定性污染物种类、空气中分布及扩散趋势 创新点:用途:远距离360° 无死角扫描化工区气体泄露,覆盖从地到空的排放;可同时识别几十种气体,定性物种和定量数据可视化的输出。助力园区安全预警、泄露点快速溯源。 1、进入2017年国家重点研发计划,应急管理部“卡脖子”重大工程之一,公安部“十三五”反恐专项入选装备,军转民高科技产品,几十项专利支撑。2、测量距离覆盖几十米到5km,无需采样,原位秒级快速测定几十种VOCs和无机有毒有害气体。3、360度无死角大范围扫描:可实现水平360° 、仰俯 -30° ~ 45° ,1~ 5公里范围监测,空间覆盖度高。 4、可视化输出模式,助力溯源:将肉眼看不到的气体可视化,颜色表示浓度高低;自带可见光相机和红外相机,气体的图像叠加于相机图片上,使用人一眼就能看到污染排放的位置、具体物种和大致浓度,并了解扩散趋势和范围。。 5、应用场景多样:可便携、车载、船载,可连续自动和无人值守,提高工作效率。气体监测成像预警系统
  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • 化学传感器研究热度不减——13th SCCS分会场报告摘录之一
    p  strong仪器信息网讯/strong 2017年11月6日,第十三届全国化学传感器学术会议(13th SCCS)在广西桂林成功召开。6日下午,漓江瀑布大酒店会议厅迎来四个分会场的同时开幕,50个邀请报告、41个口头报告将于两天内在这里次第上演。仪器信息网摘录部分精彩报告,以飨读者。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/abc31f7b-e1e6-4d29-948f-dc2fc8fb8cea.jpg" title="IMG_0675_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong13th SCCS分会场速递/strong/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/cc310345-38dc-4f41-943f-b0c7c629e3a0.jpg" title="肖丹.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong报告题目:几种化学传感器研究进展/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong报告人:四川大学 肖丹/strong/span/pp  团队开展了电容耦合非接触式电导检测器(C4D)研究,设计了双激励的电容耦合非接触式电导检测器(DIC4D) 研究了离子选择性电极测量的电子集成多电极检测电路(EIMES),获得了响应斜率的增加 利用静电纺丝聚苯胺微管纤维制备了葡萄糖传感器 设计了气体 pH 电极测量装置,直接测定空气和烟气的 pH 值 合成了 HBI 衍生物 HSA 荧光探针,测定了血清中 HSA 的含量 合成了电致化学发光试剂用于细胞液中 GSH 的检测 设计了自增强的电致化学发光试剂用于钴离子的测定 制备了耐磨且持续稳定的电致化学发光玻碳电极 利用生物质的电致化学发光进行了强碱体系的测试。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f6ec847b-4866-41e8-a653-5134741e2982.jpg" title="杨海峰.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:基于拉曼探针构筑的生物化学传感/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:上海师范大学 杨海峰/span/strong/pp  团队合成系列 SERS 纳米复合材料(磁性或多孔),通过表面功能化,构筑拉曼探针,利用磁场富集分离或表面反应选择性富集目标分子,来提高检测灵敏度,实现体液中生物标志物和病毒等快速拉曼分析。合成金/磁网 SERS 探针,利用小型拉曼光谱仪,可以快速定量检测尿液中腺苷,有望用于肺癌早期诊断。在金或银纳米粒子表面,进行功能化,制备高选择性拉曼探针,也可高灵敏检测 RNA 型高致病性流感病毒、尿路感染标志物亚硝酸根、神经递质多巴胺、结肠癌标志物等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/a294b462-adaa-4e10-aed8-8b81fbef077d.jpg" title="王赪胤.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:自驱动自传感微悬臂传感器/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:扬州大学 王赪胤/span/strong/pp  团队利用 PVDF 压电材料的自激、自感特性作为自制微悬臂传感器的加工材料,结合集成电路强大的信号处理、运算分析能力,首次探索出一套不需外加驱动器(自驱动)同时又可实现自我感知外界信号(自传感)的微悬臂传感器“读出系统”。对传感器表面进行功能化修饰,将抗体固定到传感器的金表面,利用固定化的分子识别物质和分析物之间的免疫反应,将抗原和抗体之间特异性结合的信息转换为可检测的电压信号。与传统的方法相比,方法具有成本低廉、样品使用量少、响应速度快、可便携化、适用于现场检测等诸多优点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/e3fbde69-749d-46dd-a9e7-fe85f9b0e78a.jpg" title="王桦.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:金银纳米功能材料的制备及其化学生物传感应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:曲阜师范大学 王桦/span/strong/pp  团队采用蛋白质(酶)、肽、明胶等生物基质,通过一锅式生物矿化超分子自组装途径,合成了一系列特异光电特性的金银纳米功能材料,用以构建了一些化学与生物光电传感技术。如以谷胱甘肽合成强荧光银纳米材料,开发了一种基于醇溶剂效应的化学传感技术 建立了microRNA 的电化学传感技术 基于超分子自组装途径合成三聚氰胺银纳米材料用以修饰电极 设计了一种锁核酸修饰的探针用以结合纳米孔蛋白,构建了一种高选择性检测 microRNA 及其单碱基错配的传感技术等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/02effc8e-22a5-4b2e-b3ec-c525226f3474.jpg" title="王文.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:声表面波化学传感器研究进展/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:中国科学院声学研究所 王文/span/strong/pp  基于敏感膜式的SAW化学传感技术体积小、功耗低、响应快,特别是适合于小型化单兵毒害气体快速检测与报警应用。基于冷凝吸附原理的SAW化学传感器灵敏度高(ppb级)、可检测气体组分多(多大数百种),并可很好的解决交叉干扰问题,符合复杂大气背景条件下的便携式气体成分分析应用要求。报告人从上述传感器敏感机理及物理功能结构两方面出发,结合实验室研究成果,介绍SAW化学传感器的研究进展及应用现状,并分析其未来发展趋势。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2a3c7273-2371-4377-ba67-bad3d264fe0a.jpg" title="曹忠.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:基于二氧化锡中空微球的硫化氢气体传感器研究与应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:长沙理工大学 曹忠/span/strong/pp  团队通过以氨基酚醛树脂球作模板制备中空微球(HMS)结构的二氧化锡,从而制成一种新型薄膜式硫化氢传感器。实验表明,二氧化锡中空微球对硫化氢气体表现出良好的气敏特性。在最佳工作温度200℃时,所制作的传感器对硫化氢的灵敏度高,响应快,线性范围为0.2~100 ppm,检出限达到 0.1086ppm,且不受环境湿度、温度的影响,具有良好的重现性和选择性。该技术可在养殖场连续工作 10 个月以上,适于远程无线监测,在环境保护领域有潜在的应用价值。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6de0f32b-2011-4e24-8ca0-64ea5aff39f1.jpg" title="刘继锋.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:Zn 2+ 离子诱导的多肽自组装行为及其检测应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:天津科技大学 刘继锋/span/strong/pp  团队将特异性结合锌离子的小肽片段和拉曼报告分子 4-MBA 通过 Au-S 键结合到纳米金表面,构建了一种 Au-肽探针,实现体外对Zn 2+ 的检测,具有较高灵敏度和较好的特异性,并通过拉曼成像技术,实现了对细胞内 Zn 2+ 分布的检测,此外还发现了由 Zn 2+ 诱导的探针有序的组装形貌,为此类探针在今后食品安全以及生物医学等方面的检测提供了理论基础和方法。/p
  • 4款传感器,满足工业气体安全还看MOCON
    众所周知,人类长期接触挥发性有机化合物(VOC)会导致呼吸系统问题、癌症和神经损伤;自然环境如空气、水和土壤等会造成破坏和污染。挥发性有机化合物(VOC) 是由工业和自然过程产生的潜在危险化合物。这些有害气体通常在正常大气条件下会蒸发,但室内环境中的VOC水平要高得多,因为许多制成品(如地毯、油漆和清洁用品等)都可能会排放这些物质。室外来源可能包括垃圾处理场、工业和碳氢化合物排放过量等。光电离检测器(PID) 是检测VOC水平的最简单、最有效的方法。在不靠气相色谱柱的情况下,膜康(MOCON)独立的PID可以使用便携式或固定式对许多挥发性有机化合物进行实时测量。1 易用型检测器VOC-TRAQ II 基于最新的Baseline piD-TECH eVx™ 光电离传感器,VOC-TRAQ II没有组合部件,采用简单的扩散方法,仍提供了快速的响应时间,既紧凑又实惠。一种灯能量之间有5个不同的检测级别,提供了广泛的检测功能。附带的VOC-TRAQ II pc软件可以轻松进行校准、设置参数和显示数据图形。 特点及优势:紧凑型设计广泛的检测功能附带pc软件可编程报警级别和采样频率简单的设置和校准存储多达36,000个样品读数2带流动腔的VOC光电离检测器 VOC-TRAQ II与流通式外壳结合在一起变成Baseline VOC-TRAQ II流动腔,进出口流道可用于远程样品输送,当与加压源或泵一起使用时,该装置可实现受控样品输送。VOC-TRAQ II流动腔借助带有windows操作系统软件的pc能够远程监测和记录总挥发性有机化合物的存在。装置的高灵敏度归功于piD-TECH eVx™ 光电离检测器。 膜康(MOCON)光电离检测器应用:环境监测:洁净室AMC、空气质量监测、无组织排放监测有毒气体监测:室内空气质量、检漏、OEM PID传感器工业过程分析和控制:饮料气体监测、工业气体混合控制、工艺气体分析、特种和工业气体监测、地面测井分析膜康(MOCON)的VOC-TRAQ总挥发性有机化合物(TVOC) 检测器是一种极具性价比的解决方案,使用基于windows的pc主动监测非爆炸性气体泄漏,通过存储多达36,000个样本读数随时间记录数据。VOC-TRAQ使用piD-TECH eVx™ 光电离传感器来监测用户所需范围内的汽化气体。3OEM的首选piD-TECH eVx™ 膜康(MOCON)屡获殊荣的专利piD-TECH eVx™ 插入式传感器具有全面的光电离检测功能,其设计与大多数品牌的电化学传感器机械结构相似。其出色的特性使piD-TECH系列传感器成为想要在手持、移动或固定式设备中集成voc检测功能的oem制造商的理想选择。piD-TECH eVx™ 的检测能力和最小检测量(MDQ)分为五个范围,对oem市场来说它具有更高的性价比和灵活性,同时兼具了市场上无法比拟的先进技术。 特点及优势:提供OEM集成支持可靠的长寿命灯泡:6000 小时易于清洁和现场维修,无需工具本质安全:UL、CAN/CSA、ATEX、IECEx认证内部输入电压调节,提高信号稳定性双重过滤,防止气溶胶和颗粒物的侵害4灵敏型传感器piD-POD piD-POD结构紧凑,由一个圆柱形外壳组成,可组装piD-TECH eVx™ 光电离传感器和进/出样口。它适用于高达300 cc/min的进气流量,并配备了一个带配套适配器的PC接头。piD-POD采用膜康(MOCON)piD-TECH eVx™ 传感器系列(单独出售),允许用户为应用选择所需的灵敏度和灯能量。光电离检测器(PID)不会破坏样品,因此piD-POD对于原始设备制造商来说是一种在其仪器设计中集成TVOC测量的直接手段。 特点及优势:用于piD-TECH传感器低死角密封设计集成到气体监测仪器中提供光电离检测的灵敏度几十年来,AMETEK MOCON一直是气体检测设备监测水平远低于OSHA行动限值的领先供应商。这得益于稳定、快速的检测结果可以让工作人员有足够的时间对日益增加的健康风险做出反应。
  • 蜂鸟气体传感器技术推出新网站
    蜂鸟传感技术推出了新网站,以进一步扩大其气体传感器OEM市场领先制造商的影响力。 该传感器已应用在重症护理,麻醉,病人监护,排放监测,水果储存,食品包装,热量测定和车辆废气测试等方面。 新网站展示了医疗和工业应用提供的OEM传感器的选件,以及欧洲,美洲,日本和亚太地区代表处的联系信息,并提供了全球化的语言版本,包括中文,葡萄牙语,巴西语和日语。 英国Crowborough技术中心以ISO 9001认证的最高标准配备生产设备,蜂鸟传感器技术是世界领先的仕富梅气体分析仪系列的核心。 蜂鸟传感器包含无损耗部件和许多传感器,可持续使用数十年,并提供无与伦比的性能,可靠性且易于集成。这种经验证的可靠性在过程和生命科学中的应用,使OEM合作伙伴为他们的客户提供了终身受益的产品。 传感器探测的气体范围包括氧气,一氧化碳,二氧化碳和甲烷气体,适用于包括连续排放监测(CEMS),水果储存,食品包装,热量测定和车辆废气测试等一系列应用。 产品系列包括著名的Paracube氧传感器,结合世界顶级的带切割制造工艺的气体分析技术。 最新推出的Paracube系列,Paracube Micro,提供了'新一代'集系统集成,灵活性,兼容性和可靠性程度无与伦比的设计理念,可方便的集成到通风系统,解剖麻醉,病人的监测和其他生命紧急医疗的应用中。 蜂鸟传感技术部的马丁考克斯说道:&ldquo 很高兴推出我们蜂鸟技术的新网站,这将帮助我们提升气体传感器全球制造商的形象&rdquo 。 &ldquo 我相信在我们专业团队的支持下,我们的传感器一定会得到我们主要制造商的肯定。&rdquo 蜂鸟传感器的网址:www.hummingbirdsensing.com
  • 新型纳米传感器可检测多种有害气体
    p 据麦姆斯咨询报道,纳米气体传感器创新厂商AerNos近日宣布,它们开发出了一款微型、高精度、经济型纳米气体传感器,能够同时探测多种ppb级(十亿分之一)的有害气体,这款气体传感器专为物联网互联设备集成而设计。/pp  利用AerNos专利的AerCNT技术,其智慧城市空气污染纳米气体传感器(AerSCAP)产品线得以探测一氧化碳、二氧化碳、氮氧化物、地表臭氧、二氧化硫以及瓦斯泄漏。目前,AerNos AerSCAP产品提供三种配置,分别能够支持同时探测3、4、7种有害气体。AerNos AerSCAP产品为固定式和移动应用进行了优化设计,能够方便的集成进入现有的城市基础设施,如街灯、泊车计时器、交通灯、监控系统、公共运输系统以及其他智慧城市实施。/pp/p
  • 掺硼石墨烯可制成超高灵敏度气体传感器
    一个国际联合研究小组近日宣布,通过在石墨烯中加入硼原子的方式,他们开发出一种灵敏度极高的气体传感器。该装置能“嗅”出空气中浓度极低的有害气体,在人们还未察觉时发出警报。该研究还有助于改善锂离子电池和场效应晶体管的性能。  用石墨烯制成的气体传感器已具有很高灵敏度,但科学家们并不想止步于此,希望通过在石墨烯中掺入其他元素的方式让其性能得到进一步提升。  美国宾夕法尼亚州立大学物理学、化学和材料学教授莫里西欧特伦斯经过不断更换掺入元素,成功合成了1厘米见方的高品质掺硼石墨烯片。为防止硼化合物暴露在空气后快速分解,他们研制中用到了类似起泡器的化学气相沉积系统。  核心部件制成后,被送往本田研究院的美国公司进行组装。2010年诺贝尔物理学奖获得者、英国曼彻斯特大学科学家康斯坦丁诺沃肖洛夫的实验室负责研究传感器的传输机制。此外,比利时、日本和中国的科学家也促成了这项研究。  测试显示,新的气体传感器能够探测到浓度极低的有害气体分子,如空气中含量为十亿分之一的氮氧化合物和百万分之一的氨气,灵敏度比单纯用石墨烯制成的气体传感器要分别高出27倍和1000倍。  负责此项研究的本田研究所首席科学家阿维迪克哈瑞泰元认为,新方法开辟了一条制造超高灵敏度气体传感器的新途径。该技术未来极有可能突破1000的五次方分之一检出限,在灵敏度上,比目前最先进的气体传感器高6个数量级。  未来这种传感器有望在科学实验和工业中获得广泛的应用,无论是有毒有害气体、超标排放的汽车尾气,还是大气污染中的氮氧化合物都会在它面前一一显出原形。研究人员称,除检测有毒和易燃气体外,这种掺硼的石墨烯理论上还能帮助改建锂离子电池和场效应晶体管。  相关论文发表在11月2日出版的《美国国家科学院院刊》。 来源:科技日报
  • 中国科大在多维探测和识别的气体传感器方面取得进展
    近日,中国科学技术大学火灾科学国家重点实验室易建新副教授课题组提出一种化学电阻-电位型多变量传感器,实现了单一传感器对多种气体和火灾特征的三维探测和准确识别。相关成果以“A chemiresistive-potentiometric multivariate sensor for discriminative gas detection”为题发表在国际学术期刊《自然通讯》上(Nature Communications 14,2023, 3495)。低浓度气体的高灵敏探测和准确识别对于公共安全、环境保护、健康诊断和工业生产等诸多应用具有重要意义。相比于气相色谱和质谱等传统气相分析技术,气体传感器具有成本低、尺寸小、易集成和实时监测等优点,有利于大规模应用。但是,常规传感器仅输出单一信号,不能识别气体,因此探测准确性低,在实用中易受其它气体或环境湿度等干扰而引起误报或漏报。这一问题严重限制了气体传感器的应用。图1. 基于双敏感电极的化学电阻-电位型多变量气体传感器的原理和三维响应研究人员首先利用半导体氧化物电极在表面和界面上不同的响应机制,在同一电极上成功提取出化学电阻和电位两种不同原理的传感信号;进一步,采用钙钛矿型氧离子-电子混合导体氧化物取代贵金属铂电极,和常规的电子导电的敏感材料进行配对,获得了输出三个独立响应信号的双敏感电极传感器。得益于钙钛矿非常规的反向电位响应,传感器的气敏性能得到了显著提高,实现了2-乙基己醇、一氧化碳等多种危险和火灾特征气体的(亚)ppm级三维探测和准确识别,并展现出在火灾危险早期预警方面的应用潜力。图2. 多变量气体传感器在火灾早期预警中的应用这种兼具探测和识别功能的多变量气体传感器简单、高效、成本低,可适用于不同半导体材料电极和固体电解质基底,工作温度范围宽,并可进一步拓展获得更高维度的响应,为复杂环境中气体的高灵敏和准确探测提供了新思路。论文的第一作者为宋卫国研究员和易建新副教授共同指导的博士生张红,通讯作者为易建新副教授。研究得到了国家重点研发计划项目、国家自然科学基金和中央高校基本科研业务费的资助。
  • CVD专用气体发生器——Peak氢气发生器
    化学气相沉积法CVD(Chemical Vapor Deposition)是近年发展起来的制备无机材料的新技术。此方法是利用气态或蒸汽状态的物质在固体表面上进行化学反应,从而形成所需要的固态薄膜或涂层的过程。其中,用氢气还原卤化物来制备各种金属或多晶硅薄膜是最为常用的化学反应,此还原反应的方法应用范围广泛,可制备单晶、多晶以及非晶薄膜,另外也容易掺杂。 作为反应中必不可少的还原气体,氢气在CVD反应中扮演着极其重要的作用。通常实验室如今还在使用传统的氢气钢瓶作为氢气气源,但是氢气钢瓶不仅搬运、使用不便,而且氢气是易燃易爆气体,存在极大的安全隐患。因此,氢气发生器便成为了代替氢气钢瓶的优质选择。如今,Peak氢气发生器已广泛应用于CVD实验,是化学气相沉积应用的可靠的氢气气源。 应用优势: 1.高纯度 作为反应中必不可少的还原气体,高纯度氢气在CVD反应中扮演着极其重要的作用。 氢气中微量氧或水蒸气等杂质会对沉积过程产生很大影响,当有氧存在时,沉积物的晶粒剧烈生长,并伴有分层现象出现。 Peak氢气发生器采用三重过滤技术,所产氢气纯度>99.9999%,氧气含量 1ppm,水含量 1ppm,过滤技术及氢气纯度都为市场领先。 Peak高纯氢气发生器 2.安全性 Peak氢气发生器因其即产即用、按需供给的特点,成为极为安全、可靠的氢气气源。 Peak氢气发生器采用PEM质子交换膜电解纯水的原理产生高纯氢气,无需添加碱液,即插即用,使用方便,而且具有开机自检、压力报警等特性,全面保障发生器的安全性。 更多资讯,可关注“毕克气体”官方微信。
  • 光学气体传感器供应商敢为科技再获数千万融资
    近日,国内高精度光学气体传感器及系统解决方案提供商武汉敢为科技宣布完成新一轮数千万融资,本轮融资由上海锦冠投资、山西永昌盛、武汉达益能和泉州申远川共同投资完成。  据了解,敢为科技成立于2013年,是一家以高精度光学气体传感器为核心的面向碳监测、能源安全监测等领域提供数字化系统解决方案的国家级高新技术企业。  作为一家高精度光学气体传感器及系统解决方案提供商,敢为科技主要产品包括针对碳监测领域的污染源/环境空气温室气体监测系统、能源安全监测领域的变压器油中溶解气体监测系统、绝缘开关柜分解产物监测系统等,以及智能化、数字化系统软件平台。主要应用于环保、煤炭开采、油气勘探以及能源安全等领域。公司研发团队主要由国内顶尖的光学工程、计算机等专业的博士、硕士组成。  在过去的三年,敢为科技凭借在高精度光学气体传感器及系统方面的领先优势,实现连续三年营收成倍增长 并进一步加大了高精度光学气体传感器的核心关键器件的研发,使高精度光学气体传感器的国产化程度达到90%以上 同时面向终端客户提供整体解决方案,尤其是在碳排放监测、能源安全监测等领域逐步实现“硬件+软件平台+数据服务”的新发展模式。  在产能方面,公司的全资子公司---敢为科技(江苏)有限公司以及武汉东湖高新科创中心生产基地,总生产面积4000余平米先后投入生产运营。新的生产线更加标准化、规范化、智能化及数字化,从工艺升级、成品率提升等方面保障产品的规模化生产,年产值将突破1亿元。  据敢为科技创始人,华中科技大学光电信息工程张俊龙博士介绍,新一轮融资完成之后,敢为科技会将本轮融资主要用于公司自动化产线的扩建、关键光学器件的持续研发,以及公司在数字化能源安全监测、碳排放监测等领域市场的拓展,为各个领域提供高精度气体检测解决方案。
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • 2014年上海市气体检测(报警)仪产品质量监督抽查结果
    近期,上海市质量技术监督局对本市生产和销售的列入国家《依法管理的计量器具目录(形式批准部分)》的气体检测(报警)仪(包括可燃气体报警仪 一氧化碳检测报警器 硫化氢气体检测仪 一氧化碳、二氧化碳红外气体分析器 二氧化硫气体检测仪以及烟气分析仪等)产品质量进行了专项监督抽查。本次抽查了11批次产品,经检验,全部合格。  本次监督抽查依据JJG693-2011《可燃气体检测报警器》、JJG695-2003《硫化氢气体检测仪》、JJG915-2008《一氧化碳检测报警器》等国家标准及相关产品标准要求,对产品的下列项目进行了检验:外观、标识、报警功能检查、示值误差、重复性、响应时间、漂移。  具体抽查结果如下:  2014年气体检测(报警)仪质量监督抽查所检项目符合相关标准的产品  注:排名不分先后  小贴士:  有毒有害和易燃易爆气体检测(报警)仪类产品是列入《中华人民共和国依法管理的计量器具目录(型式批准部分)》的计量器具之一。生产企业需要取得制造计量器具许可证方能生产和销售。  气体检测(报警)仪类产品一般是由传感器和指示部分组成。由传感器检测出空气中可燃气体(或一氧化碳气体、硫化氢气体等)通过信号转换成浓度显示出来,以达到提醒和报警的作用。
  • 电化学VOCs气体传感器等两项行业标准编制完成 为首次发布!
    p  近日,工业和信息化部发布公告称,根据行业标准制修订计划,相关标准化技术组织已完成《钢制化工容器设计基础规范》等10项化工行业标准、《合成纤维厂供暖通风与空气调节设计规范》等10项石化行业标准、《有色金属矿山井巷工程质量检验评定标准》1项有色行业标准、《霍尔元件 通用技术条件》等62项机械行业标准、《纺织品 定量化学分析 牛皮纤维与某些其他纤维的混合物》等37项纺织行业标准、《工业用温轮胶》等17项轻工行业标准、《增雨防雹炮弹生产安全技术条件》1项民爆行业标准的制修订工作。/pp  在以上138项行业标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2020年8月20日。/pp  我们注意到,在138项行业标准中,有《JB/T 13999—2020 电化学VOCs气体传感器》和《JB/T 14000—2020 光学粉尘传感器》两项标准。/pp  《JB/T 13999—2020 电化学VOCs气体传感器》规定了电化学VOCs气体传感器的术语和定义、分类、要求、试验方法、检验规则、标志、包装、运输和贮存。标准中传感器按所测气体类型给出了醛类传感器系列、醇类传感器系列、苯系物传感器系列、其他VOCs传感器系列(以环氧乙烷最为常用)的技术参数。/pp  《JB/T 14000—2020 光学粉尘传感器》规定了光学粉尘传感器的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。/pp  两项标准的起草单位相同,包括:郑州炜盛电子科技有限公司、沈阳仪表科学研究院有限公司、汉威科技集团股份有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心。/pp  两项标准均为首次发布。/pp  详情如下:/pp  a href="https://www.instrument.com.cn/download/shtml/954054.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《JB/T 13999—2020 电化学VOCs气体传感器》;/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/954056.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《JB/T 14000—2020 光学粉尘传感器》。/span/a/p
  • 智能气体传感器探测化学药品灵敏度更高
    据美国媒体报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体(气相)色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。 该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管(仪器信息网注:这里可能是指色谱微柱),第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。 研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。 在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当&ldquo 接线员&rdquo ,当一个试管正&ldquo 忙&rdquo 时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。 二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子&ldquo 热线&rdquo ,可以探测某些特殊分子。范旭东说:&ldquo 如果怀疑某地有化学武器泄露,我们就送一批这种专用分子&lsquo 热线&rsquo 过去,能极灵敏地识别出这些成分。&rdquo 目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。 无论是探查爆炸物、化学武器,还是监测矿井安全,对于化学气体检测仪器而言,最重要的一条就是灵敏度。如果不能迅速准确地检查出目标物,即使是再尖端的技术也可以说意义不大。本文介绍的这套仪器一方面能使不同分子尽可能分开并分别聚集,另一方面通过轮换试管和定做试管的方式使检测过程更加高效和具有针对性,这些都是强化灵敏度的关键因素。与此同时,这种仪器似乎并不复杂,也大大提高了它作为实用技术进行推广的可能性。
  • 智能气体传感器探测化学药品更灵敏
    据美国科学促进会网站5月2日(北京时间)报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。  该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管,第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。  研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。  在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当“接线员”,当一个试管正“忙”时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。  二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子“热线”,可以探测某些特殊分子。范旭东说:“如果怀疑某地有化学武器泄露,我们就送一批这种专用分子‘热线’过去,能极灵敏地识别出这些成分。”  目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。
  • 第十三届全国化学传感器学术会议会议指南(大会日程安排)
    第十三届全国化学传感器学术会议  会议指南  (初稿)  主办单位:中国仪器仪表学会分析仪器分会化学传感器专业委员会  承办单位:桂林电子科技大学(材料科学与工程学院)  西南大学(化学化工学院)  协办单位:湖南大学化学生物传感与计量学国家重点实验室  上海师范大学  江苏电分析仪器有限公司  广西师范大学  桂林理工大学等  2017年11月  广西桂林  组织机构  大会学术委员会和组织委员会  学术委员会  顾问:汪尔康院士、姚守拙院士、陈洪渊院士、张玉奎院士、程京院士、董绍俊院士、杨秀荣院士、谭蔚泓院士、马立人教授  主席:俞汝勤院士  副主席:吴海龙章宗穰王柯敏沈国励鞠熀先庞代文  委员(以拼音为序):  曹忠关亚风范清杰何品刚胡效亚黄杉生蒋健晖晋卫军鞠熀先  孔继烈李根喜李景虹陆祖宏卢小泉毛兰群缪煜清牛利庞代文  邱建丁邵元华沈国励孙立贤王建秀王利兵王柯敏王荣魏琴  吴国强吴海龙吴荣坤吴霞琴吴旭明夏兴华肖丹谢青季徐静娟  羊小海杨海峰杨黄皓杨荣华叶邦策殷传新由天艳袁若张晓兵  庄乾坤  组织委员会  主席:孙立贤周怀营  副主席:吴海龙袁若杨海峰吴荣坤徐华蕊徐芬王仲民马传国  委员:褚海亮邹勇进向翠丽张焕芝张坚苗蕾闫二虎彭洪亮黄鹏儒  秘书:于芳韦思跃  参会须知  尊敬的来宾:  欢迎您参加“第十三届全国化学传感器学术会议”。祝您在参会期间工作顺利,身心愉快,敬请注意以下事项:  1.本会议指南为参会代表们提供了本次会议的相关信息,供参会时参考。未尽事宜、日程与议程变更及临时活动,请留意会场临时通知。  2.出席会议各项活动时,请佩戴代表证。  3.请在会场内关闭手机等通讯工具,会场禁止吸烟、大声喧哗。  4.会议代表凭会务组统一分发的餐券在指点地点用餐。餐券只能在会议指定的时间和地点使用,餐券遗失不补,结余不退。如自行安排餐饮,费用自理。  5.参加会议各项活动请量力而行,并注意随身财物安全。  6.遇有紧急情况或特殊问题,可与会务组工作人员联系:工作人员联系方式工作职责褚海亮13367739152报到现场闫二虎13788589330会场韦思跃13649430852接待/住宿张焕芝18877317790墙报/展台/奖状夏永鹏15507838038餐饮于芳15907884599收费和收据发票   交通信息  1.起点:桂林两江国际机场——漓江大瀑布酒店(约1小时30分钟/30.4公里)  乘坐机场大巴在民航大厦站下车,在安新小区北口站换乘2路在漓江剧院站下车,步行420米至漓江大瀑布酒店。(备注:机场打车费用约130元)  2.起点:桂林北站——漓江大瀑布酒店  乘坐100路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约25元)  3.起点:桂林西站——漓江大瀑布酒店  乘坐22路在十字街(解放西路)站下车,步行1000米至漓江大瀑布酒店。(备注:打车费用约45元)  4.起点:桂林站——漓江大瀑布酒店  乘坐11路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约15元)  5.起点:桂林汽车客运总站——漓江大瀑布酒店  乘坐10/11路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约10元)  6.杉湖大酒店与漓江大瀑布酒店紧挨着,步行3~5分钟。  一、会议基本事项  会期:2017年11月5日—8日  报到时间:2017年11月5日08:00——22:00  会议开始时间:2017年11月6日上午08:30  地点:桂林漓江大瀑布酒店  早餐用餐地点:桂林漓江大瀑布酒店和杉湖大酒店  午餐、晚餐用餐地点:2017年11月6日晚宴设在漓江大瀑布酒店2楼中堂  其他时间午餐、晚餐均在好吃堡自助餐餐厅(凭餐卷)  (漓江大瀑布酒店出门左转往前走100米)  开幕式及大会报告会场:桂林漓江大瀑布酒店(3楼银河厅)  第一分会场:(3楼银河厅)  第二分会场:(4楼漓江厅)  第三分会场:(12楼独秀厅)  第四分会场:(12楼清湘书屋)  墙报及仪器展览时间:2017年11月5日10:30-18:30  2017年11月6日08:30-18:30  2017年11月7日08:30-18:00  (特别是6日的17:30-18:20,第一批墙报作者必须参与)  7日的13:50-14:30,第二批墙报作者必须参与)  地点:2楼中堂  墙报分两批展示(会务组提供材料,协助张贴墙报):  第一批墙报(P1-P73)参会者报道后马上张贴,展览时间为11月5日和6日,11月6日晚上6点之前撤下   第二批墙报(P74-P145)参会者于11月6日晚上8点之前张贴好,展览时间为11月6日和7日,7日晚上6点之前撤下。  二、会议议程(初步安排)2017年11月5日星期日全天报到注册时间内容地点08:00-23:00注册桂林漓江大瀑布酒店大堂18:00-20:00晚餐(自助餐)好吃堡自助餐餐厅21:00-会议学术委员会扩大会议地点:2楼象山厅圆桌会议2017年11月6日星期一上午主会场地点:3楼银河厅时间内容08:30-08:50会议开幕式开幕式议程主持:孙立贤教授1.桂林电子科技大学校领导致欢迎辞;2.化学传感器专业委员会主任致辞;3.中国仪器仪表学会分析仪器分会领导讲话;4.桂林电子科技大学材料科学与工程学院院长致辞08:50-09:10合影及茶歇大会报告主持人:俞汝勤、汪尔康时间类型报告人单位报告题目09:10-09:40PL01汪尔康中国科学院长春应用化学研究所水质检测生物化学需氧量(BOD)研究09:40-10:10PL02董绍俊中国科学院长春应用化学研究所基于新型能源的自供能生物电化学传感器10:10-10:40PL03俞汝勤湖南大学化学计量学与传感技术促推分析化学数学化、信息化及研究范式转换10:40-11:05PL04鞠熀先南京大学生物传感中的信号放大策略11:05-11:30PL05袁若西南大学电致化学发光生物传感器构建新方法进展11:30-11:55PL06樊春海中国科学院上海应用物理研究所DNA纳米结构与生物传感器12:00-午餐2017年11月6日星期一报展、仪器展8:30-18:30第一批墙报展2楼中堂8:30-18:30仪器展3楼银河厅门口走廊分组报告2017年11月6日星期一下午第一分会场:地点:3楼银河厅主持人:杨海峰、肖丹时间类型报告人单位报告题目14:00-14:20IL01肖丹四川大学几种化学传感器研究进展14:20-14:40IL02杨海峰上海师范大学基于拉曼探针构筑的生物化学传感14:40-15:00IL03翟艳玲青岛大学荧光光谱电化学器件构建及在分析传感中的应用15:00-15:20IL04王宗花青岛大学新型比率电化学传感器的构建及其在生化分析中的应用研究15:20-15:30OP01杨盛(杨荣华)长沙理工大学细胞自助式原位信号放大与超灵敏荧光成像分析15:30-15:40OP02戚鹏中国科学院海洋研究所腐蚀微生物快速检测技术的开发及评价15:40-15:50OP03陈玉凤湖南大学化学调控凝胶的形成:构建仿生细胞外基质的三维人工细胞成像平台15:00-16:00茶歇主持人:黄昊文、吴再生时间类型报告人单位报告题目16:00-16:20IL05黄昊文湖南科技大学基于金纳米簇模拟酶构建高灵敏度可视化分析检测乳腺癌抗原的生物传感方法16:20-16:40IL06吴再生福州大学核酸探针与分子诊断16:40-17:00IL07叶邦策(尹斌成)华东理工大学DNA分子机器及生物成像分析17:00-17:10OP04李春艳湘潭大学近红外碱性磷酸酶荧光探的构建及生物成像研究17:10-17:20OP05曹宇扬州大学多级孔Cu-BTC超灵敏传感器用于非电活性有机磷农药检测17:30-18:20第一批报展集中参观讨论时间主持人:袁若张晓兵要求报展作者站在报展前与与会代表面对面集中讨论,同时评比优秀墙报奖(各10)第二分会场:地点:4楼漓江厅主持人:陈卓、王赪胤时间类型报告人单位报告题目14:00-14:20IL08陈卓湖南大学基于石墨纳米囊的拉曼生化分析14:20-14:40IL09周翠松四川大学皮摩尔级单碱基错配的可视化识别14:40-15:00IL10王赪胤扬州大学自驱动自传感微悬臂传感器15:00:15:20IL11陈时洪西南大学基于功能化聚芴衍生物的超灵敏电致化学发光传感器检测Cu2+15:20-15:30OP06刘剑波湖南大学基于三棱柱DNA纳米结构的多目标检测及其级联酶固定研究15:30-15:40OP07张培盛湖南科技大学高选择性荧光探针设计及生物成像研究15:40-15:50OP08刘松杨湖南大学红细胞膜包被的团聚体颗粒作为微反应器用于NO的催化产生15:50-16:00茶歇主持人:朱志、王建秀时间类型报告人单位报告题目16:00-16:20IL12朱志厦门大学生物传感的信号转化与放大新策略16:20-16:40IL13王建秀(衣馨瑶)中南大学卟啉抑制β淀粉样蛋白聚集的SPR研究16:40-17:00IL14苏磊北京科技大学荧光金纳米簇的刻蚀化学及分析新方法研究17:00-17:10OP09吴国强深圳市凯特生物医疗电子科技有限公司临床电解质分析用标准物质的研制及应用17:10-17:20OP10邵娜北京师范大学银纳米颗粒比色法用于碱性磷酸酶及卵巢癌肿瘤标志物的检测17:30-18:20第一批墙报面对面交流第三分会场:地点:12楼独秀厅主持人:王桦、刘宇明时间类型报告人单位报告题目14:00-14:20IL15王桦曲阜师范大学金银纳米功能材料的制备及其化学生物传感应用14:20-14:40IL16刘宇明北京卫星环境工程研究所碳纳米管气体传感器在火星大气探测中的潜在应用14:40-15:00IL17王文中国科学院声学研究所声表面波化学传感器研究进展15:00-15:20IL18孟子晖北京理工大学功能化光子晶体检测有机磷的研究15:20-15:30OP11周建华中山大学Plasmonicbiosensingbasedonwell-definedmetalnanostrucutres15:30-15:40OP12吴一萍上海师范大学金纳米花的可控合成、组装、敏化和SERS检测应用15:40-15:50OP13努尔古丽· 喀日新疆大学卟啉及其络合物在光波导传感器中的应用15:50-16:00茶歇主持人:汪正、余堃时间类型报告人单位报告题目16:00-16:20IL19汪正中国科学院上海硅酸盐研究所液体阴极辉光放电光谱用于元素分析研究16:20-16:40IL20余堃中国工程物理研究化工材料研究所钯镍合金薄膜型氢传感器研究16:40-17:00IL21袁智勤北京化工大学荧光贵金属纳米簇制备及其分析应用17:00-17:10OP14漆奇北京艾立特科技有限公司功能材料特性分析的标准化研究17:10-17:20OP15曹成河西学院含腙氟离子检测试剂的开发与性能研究17:30-18:20第一批墙报面对面交流第四分会场:地点:12楼清香书屋主持人:曹忠由天艳时间类型报告人单位报告题目14:00-14:20IL22曹忠长沙理工大学基于二氧化锡中空微球的硫化氢气体传感器研究与应用14:20-14:40IL23由天艳江苏大学基于碳纳米点复合材料的传感器研究及应用14:40-15:00IL24邓健秋桂林电子科技大学高倍率长循环寿命的钠离子电池电极材料15:00-15:20IL25黄磊上海师范大学印制式气体传感器的研究进展15:20-15:30OP16陈佳中国科学院兰州化学物理研究所基于功能化核酸的光学传感新方法用于几种生物标志物的检测15:30-15:40OP17杨治庆中国科学院海洋研究所基于纳米金功能化BiOI薄膜的信号抑制光电传感器检测硫酸盐还原菌15:40-15:50OP18王佳明新疆大学四苯基卟啉锰光波导气体传感器在气体检测方面的应用15:50-16:00茶歇主持人:杨占军、刘万卉时间类型报告人单位报告题目16:00-16:20IL26刘万卉烟台大学智能制剂与化学生物传感16:20-16:40IL27刘继锋天津科技大学多肽自组装结构在生物催化与分子识别中的应用16:40-17:00IL28杨占军扬州大学无标记化学发光免疫分析新方法研究17:00-17:10OP19张如月石河子大学基于纳米多孔金膜和环糊精的双信号电化学传感器用于双酚A测定17:10-17:20OP20王银芳上海师范大学基于铂镍纳米立方体-鲁米诺纳米复合材料的电化学发光免疫传感器17:30-18:20第一批墙报面对面交流时间内容地点18:30-20:30晚宴2楼中堂20:30-22:00化学传感器专业委员会和刊物编委会联席会议2楼象山厅分组报告2017年11月7日星期二上午第一分会场:地点:3楼银河厅主持人:李平、魏琴时间类型报告人单位报告题目08:00-08:20IL29魏琴济南大学功能化纳米界面的组装及其在传感与能源催化领域的应用08:20-08:40IL30李平山东师范大学活体内活性氧的荧光成像研究08:40-09:00IL31谭亮湖南师范大学血管内皮细胞损伤标志物的多方法检测09:00-09:20IL32王旭东复旦大学Fully-reversiblehydrogenperoxideopticalsensorwithfastresponse09:20-09:30OP21王新锋中国工程物理研究院化工材料研究所钯合金氢气传感器定量关系研究09:30-09:40OP22王丹丹上海中医药大学ABioluminescentSensorRevealsthatCarboxylesterase1isaNovelEndoplasmicReticulum-derivedBiomarkerforLiverInjury09:40-09:50OP23郑来宝中国科学院海洋研究所基于对巯基苯硼酸功能化银纳米粒子的比色传感器及其在微生物检测中的应用09:50-10:00OP24许钬福州大学临床疾病的早期诊断的新方法10:00-10:10茶歇主持人:谢青季、黄行九时间类型报告人单位报告题目10:10-10:30IL33谢青季湖南师范大学基于电子转移短程效应的高敏电分析10:30-10:50IL34黄行九中国科学院合肥物质科学研究院纳米环境电分析化学中的晶面效应10:50-11:10IL35刘英菊华南农业大学基于纳米生物双重模拟酶的免疫传感器对微囊藻毒素的检测11:10-11:20OP25严正权曲阜师范大学可视性阳离子比色传感材料及其功能化试纸的设计制备与应用11:20-11:30OP26胡校兵上海第二工业大学Disposableelectrochemicalaptasensorbasedoncarbonnanotubes-V2O5-chitosannanocompositefordetectionofciprofloxacin11:30-11:40OP27陈建湖南科技大学基于FRET机制的荧光纳米粒子传感器11:40-11:50OP28张雨上海师范大学可见光驱动检测多巴胺的纳米Au/P25复合材料光电化学传感器12:00-午餐第二分会场:地点:4楼漓江厅主持人:陈显平、杨大驰时间类型报告人单位报告题目08:00-08:20IL36陈显平重庆大学Multi-scaleModellingBasedSelectionof2DGermaniumMonosulfideChemicalsensors08:20-08:40IL37杨大驰南开大学电化学法设计铜钯纳米拓扑结构提高氢气传感器的稳定性和气敏性08:40-09:00IL38刘锴清华大学基于二氧化钒相变的新型驱动器件09:00-09:20IL39葛广波上海中医药大学Isoform-specificenzymmaticbiosensors:designstrategiesandbiomedicalapplications09:20-09:30OP29李雪萌中山大学生物医学学院金纳米棒-二硫化钨复合结构在氨气检测上的应用初探09:30-09:40OP30韩海涛中国科学院烟台海岸带研究所基于功能纳米材料的海岸带水体不同形态铁电化学传感器09:40-09:50OP31冯德芬广西民族大学基于MOFs@CdS和SiO2@Au复合物之间能量转移的增强型敌百虫电致化学发光传感器09:50-10:00OP32邹立伟上海中医药大学Ahighlyselectivenear-infraredfluorescentprobetodetectdipeptidylpeptidaseIVinlivingsystems10:00-10:10茶歇主持人:张友玉、王家海时间类型报告人单位报告题目10:10-10:30IL40王家海广州大学纳米孔传感器10:30-10:50IL41张友玉湖南师范大学纳米探针在生物分析中的应用10:50-11:10IL42杨光明红河学院表面分子印迹聚合的制备与应用11:10-11:20OP33张丙青湖北工程学院基于TiO2光阳极的无酶葡萄糖光电化学传感器的研究11:20-11:30OP34姜晖东南大学电位敏感和电位分辨型纳米电化学发光传感器11:30-11:40OP35蔡光旭山东卓越生物技术股份有限公司离子选择性电极的微型化和集成化11:40-11:50OP36张姣陕西科技大学液晶型非标记免疫传感器检测天蚕素B12:00-午餐第三分会场地点:12楼独秀厅主持人:只金芳、魏琴时间类型报告人单位报告题目08:00-08:20IL43只金芳中科院理化技术研究所基于微生物的电化学传感器的水体生物毒性检测技术的开发08:20-08:40IL44薛中华西北师范大学生命相关重要离子和分子的可视化及电化学传感08:40-09:00IL45万逸海南大学基于丙酮酸激酶与便携式荧光仪超灵敏检测微生物09:00-09:20IL46黄晋湖南大学核酶探针用于细胞内传感09:20-09:30OP37付菲西南大学基于肽聚糖稳定的金纳米颗粒的等离子共振光散射检测溶菌酶09:30-09:40OP38王鹏山东卓越生物技术股份有限公司手持式血气分析仪测试芯片的研制09:40-09:50OP39李雨晴长沙理工大学基于三角形金纳米片的复合膜修饰电极高灵敏检测L-色氨酸09:50-10:00OP40李圣凯西南大学基于双倍输出的目标物转换策略以MoS2纳米花作为模拟过氧化无酶构建ECL适体传感器检测MUC110:00-10:10茶歇主持人:陈卫、何治柯时间类型报告人单位报告题目10:10-10:30IL47陈卫中国科学院长春应用化学研究所三维碳-金属氧化物复合材料气体传感性能研究10:30-10:50IL48何治柯武汉大学一步法合成Rox-DNA功能化CdZnTeSQDs及其在葡萄糖可视化检测中的应用10:50-11:10IL49汪洪武肇庆学院新型碳材料-电化学传感器的研制及应用11:10-11:20OP41陈丽英仪器信息网互联网+仪器助力化学分析学科发展11:20-11:30OP42卢莹安徽农业大学基于交流阻抗技术的可再生型核酸适配体电化学传感器的研究11:30-11:40OP43曾卫佳西南大学Hemin为电化学可再生共反应促进剂用于构建高灵敏电致化学发光传感器12:00-午餐2017年11月7日星期二报展、仪器展13:50-14:30第二批报展集中参观讨论时间主持人:袁若张晓兵要求报展作者站在报展前与与会代表面对面集中讨论,同时评比优秀墙报奖(各10)2017年11月7日星期二下午大会报告及闭幕式主持人:卢小泉、樊春海地点:3楼银河厅时间类型报告人单位报告题目14:40-15:05PL07卢小泉西北师范大学卟啉及纳米材料的电化学研究15:05-15:30PL08孙立贤桂林电子科技大学功能材料与化学传感器15:30-15:55PL09逯乐慧中科院长春应化所有机纳米探针的设计及应用15:55-16:20PL10张晓兵湖南大学高性能荧光生物成像探针的研究16:20-16:45PL11牛利中科院长春应化所电化学传感及分析仪器设计16:45-17:10PL12吴海龙湖南大学高阶化学传感与复杂体系精准定量17:10-17:30茶歇17:30-会议闭幕式主持人:吴海龙1.化学传感器杂志执行主编讲话;2.会议优秀论文和优秀报展论文颁奖;3.会议总结(组委会);4.下一届会议承办单位代表发言18:30-晚餐2017年11月8日星期三全天时间内容地点:06:30-早餐  报展目录  报展:  2017年11月6日8:30-18:30  2017年11月7日8:30-14:30  (特别是6日17:30-18:20和7日13:50-14:30,所有墙报作者都必须参与)  地点:2楼中堂  主持人:袁若张晓兵编号题目第一作者通讯作者作者单位P1钯纳米粒装饰硅纳米线及其氢气传感器的应用高敏KoreaAdvancedInstituteofScienceandTechnologyP2基于多孔碳纳米微球构建4-氨基苯酚电化学传感器李阳王海波信阳师范学院P3项链状纳米粒子在饮料检测中的应用向媛杨海峰上海师范大学P4基于电纺丝修饰CuO葡萄糖传感器徐汀文颖上海师范大学P5高粘、柔性SERS条以及快速检测应用汪丹王丰,杨海峰上海师范大学P6离子液体辅助的二氧化锡为基底制备的平面钙钛矿膜用于无标记的光电化学传感器裴建英吴一萍,杨海峰上海师范大学P7基于聚合物纳米粒子修饰碳纳米管构建化学传感器与性能研究许升刘晓亚江南大学P8基于金/无规共聚物组装体系的分子印迹传感涂层赵伟刘晓亚江南大学P9磁珠辅助的催化发夹组装和双供体荧光共振能量转移用于核酸检测羊小海湖南大学P10热线半导体型传感器气敏响应机理研究高健高健郑州大学P11Determinationofcatechinsbasedonnitrogendopedgraphene/Au@Ptcore-shellnanomaterialsmodified陈显兰红河学院P12一种集核酸提取、等温扩增、结果判读的一体化A群轮状病毒快速诊断纸芯片叶辛方雪恩,孔继烈复旦大学P13垂直定向ZnO纳米棒阵列的制备及表征蒋建朋蒋建朋西安邮电大学P14基于聚左旋多巴/MWCNTs复合材料构建电化学传感器的研究卫志强杨晖河南科技大学P15鳞状细胞癌抗原和癌胚抗原在免疫层析分析装置上的同时检测刘燕毛勋西北大学P16基于酶促金属化信号放大的碱性磷酸酶液晶生物传感器字琴江周川华云南大学P17基于三维多孔类石墨烯的对乙酰氨基酚和对氨基苯酚电化学检测冯岩龙郭慢丽华南师范大学P18快速响应的双光子荧光探针用于细胞内内源性甲醛成像辛芳云敬静,张小玲北京理工大学P19NiO/ZnOp-n结酶生物传感用于海水有机磷检测赵明岗赵明岗中国海洋大学P20基于目标循环及核酸纳米结构信号放大的miRNA非标记电化学测定熊梅赵晶瑾广西师范大学P21基于解磷定/二硫化钼量子点的电化学传感器用于有机磷的检测尹文青彭娟宁夏大学P22基于Ir/MnO2标记型前列腺特异性抗原免疫传感器的研制马玉洪杨云慧云南师范大学P23DetectionofFourTetracyclineVeterinaryDrugsinMilkBasedonFluorescentAptasensorandCatalyticHairpinAssemblyReaction周琛YongxinLi四川大学华西公共卫生学院P24基于石墨烯量子点构建银离子的比率传感平台雷翠华朱树芸曲阜师范大学P25α-取代丙烯酸酯模板分子工程用于多硫化氢快速荧光成像郭敬儒杨盛,杨荣华长沙理工大学P26基于二硫化钼量子点荧光共振能量转移检测有机磷张慧佳彭娟宁夏大学P27基于7,7,8,8-四氰基喹啉甲烷与氧化石墨烯的谷胱甘肽电化学传感研究袁柏青袁柏青安阳师范学院P28一种用于高效光动力治疗的硅基纳米材料王荣贵陈惠,孔继烈复旦大学P29硫化铅纳米晶基电化学发光免疫传感高灵敏检测甲胎蛋白沙海峰贾能勤上海师范大学P30基于二氧化钛-石墨烯纳米复合物的光电化学适体传感器测定土霉素封科军封科军惠州学院P31DNA纳米机器构建及其分析应用郑姣何治柯武汉大学P32近红外成像介导的协同光动力学/化学癌症治疗的前药设计刘红文张晓兵湖南大学P33海胆状氧化酶活性钴酸镍微球的制备及其比色检测对苯二酚的应用宋亚文赵明岗,陈守刚中国海洋大学P34基于酶致碱式碳酸铜矿化的高灵敏比色免疫分析黎波赖国松湖北师范大学P35多壁碳纳米管和金纳米粒子修饰的辛基酚可抛式传感器的制备及应用李海玉张庆中国检验检疫科学研究院P36脱嘌呤/脱嘧啶核酸内切酶1活性的简便灵敏免标记荧光检测李雪君张亮亮广西师范大学P37表面等离子体共振铝纳米锥阵列及其生物传感应用张力周建华中山大学P38基于BSA-AuNCs/AChE高灵敏度荧光传感器检测有机磷农药罗庆娇邱萍南昌大学P39双亲聚合物改性碳纳米管在亚硝酸盐检测的应用朱晓洁刘晓亚江南大学P40基于片状Fe:TiO2复合Bi2S3纳米材料的光电适配体传感器检测卡那霉素陈全友谭学才广西民族大学P41金三角-量子点复合物在心肌肌钙蛋白I检测的应用王瑛姝婷周建华中山大学P42聚L-甲硫氨酸修饰电极测定碘刘旭孙登明,高慧淮北师范大学P43基于卟啉近红外光谱结合化学计量学方法快速判别33种茶叶原产地尹桥波付海燕中南民族大学P44磁珠辅助的催化发夹组装和双供体荧光共振能量转移用于DNA的检测方红梅羊小海,王柯敏湖南大学P45一种快速检测苯硫酚的近红外荧光探针及其应用高倩曾荣今湖南科技大学P46可视化生物传感器用于环境污染物的快速检测分析陈俊华陈俊华广东省生态环境技术研究所P47凝集素微阵列芯片在活细胞表面糖基化合物靶标筛选中的应用田荣荣ZhenxinWang中国科学院长春应用化学研究所P48AnenhancednonenzymaticelectrochemicalglucosesensorbasedonPddopedCumodifiedelectrode李崭虹Zhi-GangZhu上海第二工业大学P49Polyacrylamide-PhyticAcid-PolydopamineConductingPorousHydrogelforEfficientRemovalofWater-SolubleDyes赵珍LinaMa,ZhenxinWang中国科学院长春应用化学研究所P50基于3D石墨烯-普鲁士蓝构建的电化学尿酸传感器李鹏威贾能勤上海师范大学P51基于二氧化锡和还原氧化石墨烯纳米复合材料传感器对SF6分解产物的气敏特性研究褚继峰杨爱军西安交通大学P52一种基于双波长快速区分和检测GSH与Cys/Hcy的荧光探针杨贇山曾荣今湖南科技大学P53碳量子点荧光探针及其对丙酮的选择性检测赛丽曼黄磊上海师范大学P54基于无定型配位聚合物的近红外碱性磷酸酶纳米荧光探针的构建周东叶李春艳湘潭大学P55基于氟硼吡咯的近红外半胱氨酸荧光探针的构建江文丽李春艳湘潭大学P56介孔纳米金修饰的高灵敏拉曼免疫探针黄亚齐林大杰,王舜温州大学P57金纳米颗粒催化增长增强表面等离子体共振用于microRNA的高灵敏检测聂文艳王青,王柯敏湖南大学P58血红蛋白的电化学检测侯嘉婷韩国成桂林电子科技大学P59基于多孔纳米花结构的Co3O4葡萄糖电化学传感器胡婧婷胡婧婷国网吉林省电力有限公司电力科学研究院P60基于局域表面等离子体共振的表面增强紫外可见吸收光谱探索王阳阳周建华中山大学P61基于金纳米颗粒的裂开型脱氧核酶探针用于细胞内microRNA的放大检测吴亚楠黄晋,王柯敏湖南大学P62基于金/银合金的比率型SERS纳米探针用于细胞内一氧化氮的成像分析司艳美李继山湖南大学P63双通道电化学分析系统对β-淀粉蛋白寡聚体和纤维丝的同步测定于妍妍于妍妍徐州医科大学P64类石墨烯碳材料修饰玻碳电极用于亚硝酸盐的高灵敏安培检测杨玫郭慢丽华南师范大学P65一种新型咔唑席夫碱荧光探针的制备及高效识别铝离子(Ⅲ)的性能研究张献张献齐鲁工业大学P66光子晶体水凝胶传感器陈千山吴朝阳湖南大学P67基于功能核酸的液晶生物传感研究蒋婷婷吴朝阳湖南大学P68葫芦脲与叠氮基共功能化石墨烯用于构建超灵敏电致点击化学传感器韦天香韦天香,戴志晖南京师范大学P69化学计量学辅助液相色谱全扫描质谱同时检测奶粉中多种雌激素孙小东吴海龙湖南大学P70基于聚亚甲基蓝颗粒的唾液隐血可逆检测罗崇岱周建华中山大学P71基于多功能血红素/G-四链体纳米线的电化学生物传感器检测铅离子卿敏袁若,张进西南大学P72比率型双光子荧光纳米探针用于细胞内pH检测于欣艳李继山湖南大学P73微波辅助制备碳量子点荧光及其应用于茶多酚含量的检测吴春莲韦庆益华南理工大学P74基于Ag/Au核壳纳米颗粒修饰单壁碳纳米管的比率型SERS探针用于细胞内核酸内切酶的检测分析覃小洁李继山湖南大学P75氧化石墨烯/金纳米颗粒/四苯基卟啉纳米复合材料用于镉离子电化学传感器的构建刘静李继山湖南大学P76SilverNanoclusterswithEnhancedFluorescenceandSpecificionRecognitionTriggeredbyAlcoholSolvents:AHighlySelectiveFluorimetricStrategyforIodideIonsinUrine冯路平HuaWang曲阜师范大学P77MesoporousSilver?MelamineNanowiresFormedbyControlledSupermolecularSelf-Assembly:ASelectiveSolid-StateElectroanalysisforProbingMultipleSulfidesinHyperhalineMediathroughtheSpecificSulfide?ChlorideReplacementReactions刘敏HuaWang曲阜师范大学P78基于交替三线性分解的二阶标准加入法建模液相色谱-质谱数据用于检测血浆中抗癌药:克服基质干扰和基质效应胡勇吴海龙湖南大学P79LC-MS结合二阶校正方法快速测定面膜中非法添加的15种糖皮质激素龙婉君吴海龙湖南大学P80三维荧光结合二阶校正方法测定辣椒中三种罗丹明类染料的含量常月月吴海龙湖南大学P81化学计量学辅助HPLC-DAD快速测定蜂胶中十八种多酚类物质刘倩吴海龙湖南大学P82可实时再生的共反应促进剂控制增强苝四甲酸/过硫酸根体系用于电化学发光分析雷燕梅袁若西南大学P83HPLC-DAD结合二阶校正方法同时测定中成药保健品中非法添加的11种非甾体抗炎药王童吴海龙,俞汝勤湖南大学P84基于炔基的比率型SERS纳米传感器用于活细胞和组织中Caspase-3的检测吕梦李继山湖南大学P85化学计量学辅助HPLC-DAD策略用于同时定量分析中药川穹的中6种活性成分肖蓉吴海龙湖南大学P86生物素化抗体-无机盐杂化纳米花三维ELISA用于甲胎蛋白的快速高效检测刘宇澄何治柯武汉大学P87基于SBA-15/氧化苏木精/青霉素酶/nafion修饰玻碳电极的青霉素电化学传感器罗晴谭学才广西民族大学P88Ag纳米粒子/壳聚糖/石墨烯修饰电极与HIV相互作用的研究弓巧娟弓巧娟运城学院P89基于ATP促进目标物循环的新型荧光检测法检测MicroRNA-21文智斌袁若,柴雅琴西南大学P90基于功能化β环糊精—二茂铁主客体识别复合物构建电致化学发光传感器谢西月袁亚利,袁若西南大学P91基于DNA酶剪切循环驱动的DNA镊子来构建高效酶级联放大的可再生传感器寇贝贝袁亚利,袁若西南大学P92基于p型硫化铅量子点猝灭富勒烯-纳米金包二硫化钼构建光致电化学传感器李孟洁袁若,柴雅琴西南大学P93Fully-reversiblehydrogenperoxideopticalsensorwithfastresponse丁龙江Xu-dongWang复旦大学P94基于卟啉锰同时作为猝灭剂和模拟酶构建光致电化学适体传感器黄廖静袁亚利,袁若西南大学P95Anactivity-basednear-infraredfluorescentprobefornativehumanalbuminanditsbio-imagingapplicationinlivingcells金强葛广波上海中医药大学P96一步法构建基于分子印迹-丝网印刷电极的可抛式农残快检传感器刘江李迎春哈尔滨工业大学(深圳)P97生物质炭基NiCo2O4的制备及室温下NH3气敏性研究吕贺史克英黑龙江大学P98级联放大的高灵敏CEA荧光适体传感器研究杨文婷许文菊西南大学P99基于Ni3N-Co3N纳米棒阵列的葡萄糖电化学传感器尤超熊小莉四川师范大学P100基于红绿蓝模型的金纳米团簇可视化检测汞离子邓文清熊小莉,黄科四川师范大学P101金团簇纸片氢化物发生-顶空固相萃取荧光可视化测锌代蕊黄科,熊小莉四川师范大学P102非标记型荧光和电化学生物传感器用于鸟嘌呤及其衍生物的检测陈敬华陈敬华福建医科大学P103液相色谱-单级质谱结合数学分离用于食品中8种塑化剂的同时绿色定量分析方焕吴海龙湖南大学P104荧光素@ZIF-8复合材料的比率荧光传感器用于铜离子的检测刘楠汪莉江西师范大学P105COFs@罗丹明-B复合材料的比率荧光传感器检测银离子蔡可莹宋永海江西师范大学P106人血清白蛋白-染料结合的荧光自助放大策略用于血清中前列腺特异性抗原的检测齐鹏邹振,杨荣华长沙理工大学P107基于3D氮掺杂石墨泡沫构建的无支撑电化学传感器用于检测H2O2和葡萄糖张玉李迎春石河子大学,哈尔滨工业大学(深圳)P108基于Ce@ZnO中空微球修饰的光纤气体传感器用于室温下丙酮气体的检测张路李迎春哈尔滨工业大学(深圳)P109P110多孔分层Co3O4/CuO纳米片的合成及其室温NOx气敏特性研究刘思宇李丽,史克英黑龙江大学P111电化学传感器中引入肖特基势垒:一种构建电化学传感器的新策略王兴涛赵明岗,陈守刚中国海洋大学P112石墨烯量子点-核酸适体生物传感器的制备及其用于癌胚抗原检测研究文为文为,王升富湖北大学P113Au修饰SnO2超薄纳米片的水热法合成及其低温甲醛气敏性能张乐喜张乐喜,别利剑天津理工大学P114钌硅纳米粒子表面增强的分子印迹电化学发光传感器超灵敏检测伏马菌素B1张修华张修华,王升富湖北大学P115基于铜纳米簇和核酸外切酶信号放大的电化学适体传感器用于miRNA21的超灵敏检测王升富王升富湖北大学P116构建新型双光子比率型荧光探用于快速检测SO2衍生物杨晓光杨盛,杨荣华长沙理工大学P117杂交链式反应的生物条形码放大技术检测CEA吴媛晋晓勇宁夏大学P118基于银片和上转换纳米颗粒间能量转移原理检测鱼精蛋白和胰蛋白酶陈洪雨张友玉湖南师范大学P119光电化学检测用无定型a-MoSx/RGO异质膜宋文波宋文波吉林大学P120一种脂滴定位的聚集发光荧光探针对碱性磷酸酶的检测以及成像应用李雅倩李海涛湖南师范大学P121卤键在分子识别中的应用李丽丽晋卫军北京师范大学P122化学修饰的DNA荧光探针用于乳腺癌细胞中miRNA-21的检测和抑制李静黄晋*,王柯敏*湖南大学P123基于碳点及I-的类酶催化反应构建双信号传感器用于尿样中I-的检测王海燕张友玉湖南师范大学P124氧化镁/中空碳球复合材料的制备及CO2吸附性能研究焦成丽江河清中国科学院青岛生物能源与过程研究所P125运用CCD荧光传感技术对DNA在2D界面上的游走过程进行跟踪与监测闫安杜民,李春艳福建医科大学P126基于P型BiOCl/TiO2复合材料的光电化学传感器检测毒死蜱罗燕妮谭学才广西民族大学P127基于染料-钴纳米片的荧光传感器用于焦磷酸根检测与细胞成像黄伟涛黄伟涛湖南师范大学P128银-分子印迹微球的制备及在表面增强拉曼散射中的应用任晓慧李欣哈尔滨工业大学P129食用农产品质量安全在线检测传感器黄家怿黄家怿广东省现代农业装备研究所P130离子液体功能单体的分子印迹荧光传感器与2,4,6-三氯苯酚选择性识别研究卢星李蕾浙江师范大学,嘉兴学院P131制备碳量子点-分子印迹复合材料分析硝磺草酮陈立钢陈立钢东北林业大学P132基于双发射碲化镉量子点介孔分子印迹聚合物的比率型荧光探针用于三聚氰胺的可视化检测张靓陈立钢东北林业大学P133制备碳化氮分子印迹复合材料检测奶粉中金霉素王尚书陈立钢东北林业大学P134分子印迹-碳量子点荧光探针的制备其对蜂蜜中土霉素的检测刘浩驰丁兰吉林大学P135氮氧化物化学电阻气体传感器进展与讨论赵将赵将国民核生化灾害防护国家重点实验室P136ApH-resolvedcolorimetricbiosensor:thenewdimensionformultipletargetsdetection郝楠KunWang江苏大学P137基于纳米金/碳量子点的荧光适体传感器用于ATP检测刘帅王慰郑州轻工业学院P138基于碳量子点和核酸适体的多巴胺检测传感器魏星姜利英郑州轻工业学院P139荧光素/铜纳米簇复合物比例荧光探针用于比率和可视化检测盐酸吗啉王本乾桂日军,王宗花青岛大学P140一种基于双金属和氧化石墨烯/硫堇复合物生物传感用于尿酸的测定高小惠桂日军,王宗花青岛大学P141用于L-组氨酸检测的酶扩增DNA-铜纳米簇荧光探针研究王星星何婧琳,曹忠长沙理工大学P142基于蚀刻引发电化学发光恢复构建氰化物传感器冯莹莹池毓务福州大学P143基于铜离子调控纳米金氮化碳复合物蚀刻与发光性能的电致化学发光传感器吴海山池毓务福州大学P144碳量子点纳米荧光探针的制备及其在细胞色素c成像分析中的应用研究张海娟邱洪灯中科院兰州化物所P145肿瘤标志物化学传感分析及药物运输的研究郭英姝张书圣临沂大学第十三届全国化学传感器学术会议会议指南20171025-chl(1).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制