当前位置: 仪器信息网 > 行业主题 > >

激导荧光燃烧分析

仪器信息网激导荧光燃烧分析专题为您提供2024年最新激导荧光燃烧分析价格报价、厂家品牌的相关信息, 包括激导荧光燃烧分析参数、型号等,不管是国产,还是进口品牌的激导荧光燃烧分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激导荧光燃烧分析相关的耗材配件、试剂标物,还有激导荧光燃烧分析相关的最新资讯、资料,以及激导荧光燃烧分析相关的解决方案。

激导荧光燃烧分析相关的资讯

  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多?燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers® TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆◆◆联系我们,了解更多!
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介 工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多? 燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆ ◆ ◆联系我们,了解更多!
  • 岛津苏州燃烧法总有机碳分析仪中文版发布通知
    岛津苏州燃烧法总有机碳分析仪 TOC-L 中文版发布通知 TOC-L 系列产品是 TOC-V 燃烧法型号的升级版,自 2011 年 7 月进口 TOC-L 系列产品发布以来,广受用户好评。为了进一步提高岛津总有机碳分析仪的市场占有率,满足中低端市场的需求,岛津仪器(苏州)有限公司现推出 TOC-L 系列产品,该系列产品在保证同进口TOC-L 系列产品相同的性能指标和外观的前提下,大大降低了销售价格。 岛津仪器(苏州)有限公司TOC-L(CPN/CSN/CSH/CPH)系列产品发布的同时,进口TOC-(LCPN/CSN/CSH/CPH)系列产品,On-line TOC-V CSH 和 TOC-V WS/WP 湿法型号继续销售。 OC-LCSH 和 ASI-LTOC-L 系列的产品型号P/N名称测定灵敏度・ 操作方法与 TOC-V 系列的关系S638-91105-24TOC-LCSH高灵敏度・ 单机型TOC-VCSH 的后续机型S638-91105-34TOC-LCPH高灵敏度・ PC 控制TOC-VCPH 的后续机型S638-91105-14TOC-LCPN标准灵敏度・ PC 控制TOC-VCPN 的后续机型S638-91105-04TOC-LCSN标准灵敏度・ 单机型TOC-VCSN 的后续机型 【注】 TOC-L 的&ldquo L&rdquo 是罗马数字,表示「 50」 。 历代岛津实验室用 TOC 的称呼都使用从「 5」 的数字,比如TOC-500、TOC-5000(-5000A)、TOC-V(&ldquo V&rdquo 是罗马数字,表示「 5」 ),本产品也按此习惯命名。 咨询电话、网址:021-61131051021-61131031www.nano-instru.comhttp://nanoinstru-instrument.com.cn
  • 如何使用高温燃烧器分析铝元素(火焰法)
    铝的原子化温度很高,为2700℃,因此使用原子吸收分光光度计分析时,需要采用高温燃烧器,并选择N2O作为助燃气体来进行测试。但是使用高温燃烧器可能存在如下问题:通常情况下,使用高温燃烧器测定时,碳会附着在燃烧器火焰口导致测定数值偏低。日立原子吸收分光光度计ZA3000系列采用偏振塞曼校正法和双光束干涉效应解决了这个问题,下面我们通过具体实验来证明。使用高温燃烧器分析铝(火焰法)此次实验对每组样品重复测定10次,每组依次测定空白样品 — 样品 A — 样品 B— Al 30mg/L,以确认高温燃烧器测定数据的稳定性。实验共测定了40个样品,测试完成后查看燃烧器火焰口碳附着量。■ 测试条件:√ 使用高温燃烧器(P/N:7J0-8857)测定样品。√ 样品 A、样品 B是在河水中添加了Al。 ■ 测试数据: ■ 测试结果: 重复10次测定各样品,其定量值RSD波动在0.9%~1.1%,由此证明,使用日立原子吸收分光光度计ZA3000可以得到稳定的定量值。 测定结束时火焰口只附着极少量的碳,并且没有影响测定结果的稳定性。 综上所述,日立原子吸收分光光度计ZA3000系列采用偏振塞曼校正法和双光束干涉效应,即使燃烧器火焰口附着碳,也不会造成基线波动,从而获得了稳定的定量值。
  • 催化燃烧技术终结者——红外气体分析技术
    催化燃烧技术传感器应用广泛并且价格便宜,但易被污染中毒、缺乏安全自检、要求定期维护、标定以及使用寿命短。红外气体传感器这些年发展迅速,克服了以上催化燃烧的缺点,符合IEC61508安全标准,在检测碳氢化合物气体时可提供快速可信的检测结果。本文将就两种传感器的不同优缺点作出比较,以供大家了解。催化燃烧 催化燃烧最早起源于十九世纪六十年代采矿业,早期简单的铂丝线圈传感器由于能耗大、零点漂移严重不适于连续操作。 当前催化燃烧检测器连接两个铂丝线圈,每个都包裹着氧化铝粘土。检测单元包裹着催化剂,可燃气通过时可促进氧化发热。 催化燃烧优点 1、 检测器价格低廉、供应广泛; 2、 可使用各种可燃气,如果方法正确,可用于特殊物质检测; 3、 装置简单,除了标准气,没有其他特殊的维护装备; 催化燃烧缺点 1、 易中毒,如果暴露在有机硅、铅、硫和氯化物组分中,将失去对可燃气的作用; 2、 易产生烧结物,阻止可燃气与传感器接触; 3、 没有自动安全防护装置; 4、 在某些环境下灵敏度会下降(特别是硫化氢和卤素); 5、 需要至少12%的氧气浓度,在氧气浓度不足情况下工作效率明显下降; 6、 如暴露在可燃气体浓度过高的环境下,会被烧坏; 7、 使用时间越长,灵敏度越低; 8、 寿命有限,最长3-5年; 9、 需定期进行气体测试和标定;红外技术 包含一个原子以上的气体能吸收红外光,这样碳氢化合物和一些气体比如二氧化碳、一氧化碳能通过红外技术进行检测。二氧化碳气体分析示意图 为了区分红外吸收,气体和其他物质比水,需要额外增加一个波长宽带为2.7-3um的传感器。碳氢化合物在此范围没有吸收峰。这可以阻止错误报警发生和减小干扰物质的信号。双光束设计就是被用来防止光学组分污染造成错误报警。 红外技术优点 1、 较快的反应速率:响应时间一般小于7秒; 2、 自动故障操作:电源错误、信号错误、软件错误都能反馈给控制系统; 3、 对污染性气体的信号抗干扰能力强; 4、 寿命长,一般大于10年; 5、 维护成本低; 6、 无需氧气; 7、 高浓度可燃气体条件下,不会烧坏; 8、 不会烧结,相应的问题也不会发生; 红外技术缺点 购买价格高于催化燃烧检测器 催化燃烧需要定期测试(通过标气)。有些海洋石油平台通常每六周需测试一次,每3-5年需要更换一次,这样需要耗费大量的成本。 不会烧结的红外气体检测仪器可自我检测,比检测如灯、传感器、窗口、软件等这些不可恢复的问题,从而大大降低出现问题的可能性。较少的零点、量程漂移及高灵敏度意味着红外气体检测仪器的校准和常规维护少,一般为6-12个月。 同时,红外传感器的价格近年已经显著下降,虽然价格还是高于催化燃烧检测器,但实践经验表明,红外传感器的成本可通过减少维护成本来降低。故红外气体传感技术取代催化燃烧技术大势所趋。 四方仪器自控系统有限公司,以自主知识产权的红外传感器核心技术为依托,成功研制红外烟气、沼气、煤气、尾气、天然气等节能减排仪器仪表,并已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。 红外传感器可检测特征吸收峰位置的吸收情况,以确定某种气体的浓度。这种传感器过去都是大型的分析仪器,但近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。 微型红外传感器 使用无需调制光源的红外传感器使得仪器完全没有机械运动部件,实现免维护,有效降低维护成本,从而降低工业过程气体的监测成本。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 第一届光谱技术及应用大会 暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会2022 年 12 月 4-6 日 | 上海大华虹桥假日酒店https://b2b.csoe.org.cn/meeting/CSLIBS2022.html 光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2022 年 12 月 4-6 日在上海举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请 150 余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。总体日程日期时间活动地点12.4周日14:00-20:00签到一楼大堂12. 5周一08:30-12:00大会开幕式 & 大会报告一楼大华厅13:00-13:30海报交流与评选一楼海报区13:30-18:3008:30-18:30专题 1:激光诱导击穿光谱及相关技术一楼文华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用二楼馨华厅专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱一楼锦华厅专题 6:超快及瞬态光谱专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示一楼展区12. 6周二08:30-12:0513:30-18:00专题 1:激光诱导击穿光谱及相关技术二楼怡华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱二楼祥华厅专题 6:超快及瞬态光谱二楼馨华厅专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示二楼展区12.4-616:00-18:00现场核酸采样一楼核酸区12.4-617:30-19:00晚餐一楼餐厅12.5-612:00-13:00午餐一楼餐厅*日程可能会根据现场情况进行调整详细日程大会场12 月5 日上午08:30开幕式(1)介绍与会嘉宾 (2)主席致开幕辞大会报告08:50陈建民(复旦大学)——大气气溶胶光学特性研究09:20舒嵘(中国科学院上海技术物理研究所)09:50周怀春(中国矿业大学)——用于燃烧及高温光谱/成像诊断的高精度辐射模型10:20合影 & 茶歇10:40刘志(上海科技大学)11:10俞进(上海交通大学)——针对火星就位探测的激光诱导击穿光谱方法研究 会议日程专题 1:激光诱导击穿光谱及相关技术12 月 5 日下午第一场:基础研究+定量化方法主持人:俞进13:30王哲(清华大学)——激光诱导击穿光谱(LIBS)定量化理论方法及应用13:50苏茂根(西北师范大学)——激光等离子体辐射、诊断与应用14:10周卫东(浙江师范大学)——激光诱导空化气泡的演化及其对 LIBS 光谱的影响14:30张大成(西安电子科技大学)—— 激光诱导击穿光谱新技术与器件研究 (CSLIBS2022-01- 027)14:50陈钰琦(华南理工大学)——新型靶增强正交 DP-LIBS 与 OPC-LIBS 的元素分析研究(CSLIBS2022-05-003)15:00尼 洋(中国地质大学(武汉))——Elemental determination in stainless steel via laser- induced breakdown spectroscopy and back-propagation artificial intelligence network (CSLIBS2022-05-009)15:10李小龙(中国科学院近代物理研究所)——激光诱导击穿光谱表征软物质表面力学性能的实验研究 (CSLIBS2022-01-022)15:20茶歇第二场:基础研究+仪器设备+方法主持人:王哲15:50丁洪斌(大连理工大学)——LIBS 基本物理过程及聚变能应用进展16:10郭连波(华中科技大学)——激光诱导击穿光谱基础、仪器及应用研究16:30马欲飞(哈尔滨工业大学)——小型化固体激光器16:50曾和平(华东师范大学)——飞秒光丝非线性相互作用诱导击穿光谱17:10刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)17:20孙天洋(上海交通大学)——基于神经网络的火星模拟和大气压环境 LIBS 光谱的非线性校准迁 移 (CSLIBS2022-01-003)17:30卢渊(中国海洋大学)——基于显微 LIBS 成像技术的贝壳有机成分分析 (CSLIBS2022-01- 017)17:40饶云飞(上海交通大学)—— 光谱选择和随机森林结合的碎石微量元素的灵敏和精准测定(CSLIBS2022-05-030)12 月 6 日上午第三场:基础研究+仪器设备主持人:丁洪斌08:30段忆翔(四川大学)——LIBS 技术与仪器的发展历程—从实验室研发到现场应用08:50汪正(中国科学院上海硅酸盐研究所)——基于微等离子体增强 LIBS 信号研究09:10林庆宇(四川大学)——面向肺癌组织的 LIBS 元素成像技术、装置及方法(CSLIBS2022- 01-006)09:20刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)09:30张倍艺( 上海交通大学) —— 火星模拟气氛和模拟壤中氮元素的灵敏和精准测定(CSLIBS2022-05-031)09:40茶歇第四场:工业应用主持人:舒嵘10:00孙兰香(中国科学院沈阳自动化研究所)——矿浆成分 LIBS 定量分析方法与工业在线应用10:20王茜蒨(北京理工大学)——LIBS 技术在生物医药诊断监测中的应用研究10:40张雷(山西大学)——NIRS-XRF 联用煤质分析方法研究与应用11:00刘玉柱(南京信息工程大学)——Online in situ detection of elements and pollutions in the atmosphere (CSLIBS2022-05-029)11:20刘可( 华中科技大学) —— 基于 MLIBS 技术的挥发性卤代污染物检测方法研究(CSLIBS2022-01-005)11:30崔敏超(西北工业大学)——Rapid analysis of steel powder for 3D printing using laser- induced breakdown spectroscopy (CSLIBS2022-01-008)11:40刘曙(上海海关工业品与原材料检测技术中心)——激光诱导击穿光谱与铁矿石检测(CSLIBS2022-01-010)12 月 6 日下午第五场:其他应用主持人:汪正13:30郑荣儿(中国海洋大学)——深海 LIBS:何去何从13:50周小计(北京大学)——LIBS 在定量应用中的探索研究14:10刘木华(江西农业大学)——PRLIBS 对农产品品质信息分析能力提升方法研究14:30傅院霞(蚌埠学院)——An exploration of matrix effect on optimal acquisition delay for laser-induced breakdown spectroscopy of metal samples (CSLIBS2022-05-001)14:40田野(中国海洋大学)——水下固体靶的激光诱导等离子体诊断及光谱分析 (CSLIBS2022-01-014)14:50陈枫叶(上海交通大学)——LIBS 和机器学习实现火星气氛和模拟壤中碳元素的精确测定(CSLIBS2022-05-032)15:00何洪钰(中国原子能科学研究院)——激光诱导等离子体光谱直接探测气溶胶中的锶元素(CSLIBS2022-01-016)专题 2:原子光谱与质谱 & 专题 3:激光拉曼光谱与激光荧光光谱技术及应用12 月 5 日下午第一场:激光拉曼光谱与激光荧光光谱 I主持人:杨海峰、胡继明13:30胡继明(武汉大学)——拉曼光谱在细胞分析中的应用13:50杨海峰(上海师范大学)14:10朱井义(中科院大连化学物理研究所)14:30高亮(核工业西南物理研究院)——大气压等离子体活性物种激光诱导荧光定量诊断研究14:50于亚军( 中国科学技术大学) —— 基于线扫描和偶氮拉曼探针的快速活细胞成像(CSLIBS2022-03-004)15:10茶歇第二场:原子光谱与质谱 I主持人:侯贤灯、杭纬15:30侯贤灯(四川大学)——原子光谱分析研究15:50杭纬(厦门大学)——高电离电位元素的激光质谱分析技术16:10胡斌(武汉大学)——ICP-MS 单细胞分析16:30吕弋(四川大学)——基于金属稳定同位素标记的生物分析研究16:50郑成斌(四川大学)——碳原子发射光谱及其应用17:10邢志(清华大学)——高纯非导体材料纯度分析方法探索17:30杨杰(中国科学院近代物理研究所)——ⅥB 族原子一氧化物分子(CrO/MoO/WO)电子态结构研究 (CSLIBS2022-02-010)12 月 6 日上午第三场:原子光谱与质谱 II主持人:杭纬、于永亮08:30于永亮(东北大学)——适于微等离子体发射光谱分析的样品引入方式与接口08:50徐明(中国科学院生态环境研究中心)——利用 LA-ICP-MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律09:10陈明丽(东北大学)——LA-ICP-MS 对动植物组织中元素成像方法研究09:30郭伟(中国地质大学(武汉))——高精度 LA-ICPOES/ICPMS 原位分析技术及古气候中的应用 09:50茶歇第四场:激光拉曼光谱与激光荧光光谱 I主持人:任斌、陈建10:10谭平恒(中国科学院半导体研究所)10:30陈建(中山大学)10:50韩鹤友(华中农业大学)11:10李晓红(西南科技大学)——润湿性表面增强拉曼散射衬底的研究 (CSLIBS2022-04-002)12 月 6 日下午第五场:原子光谱与质谱 III主持人:侯贤灯、高英13:30高英(成都理工大学)——基于钒的光化学蒸气发生及应用13:50蒋小明(四川大学)——微型原子发射光谱仪的放电激发源研制14:10刘睿(四川大学)——金属元素标记均相免疫分析14:30冯流星(中国计量科学研究院)——阿尔茨海默症计量溯源技术研究14:50朱振利(中国地质大学(武汉))——基于等离子体技术的锑元素与同位素分析方法开发15:10张磊(中国科学院近代物理研究所)——MoO 分子光谱中的同位素位移 (CSLIBS2022- 02-007)15:20于尧(中国科学院近代物理研究所)——一氧化钌分子的电子态结构研究 (CSLIBS2022- 02-008)专题 4:光声光谱与TDLAS 技术及应用 & 专题 5:红外及太赫兹光谱12 月 5 日下午第一场:光声光谱技术I主持人:鲁平13:30刘锟(中国科学院合肥物质科学研究院)——光声光谱多组分检测技术研究13:50王强(中国科学院长春光机所)——高灵敏、大动态范围的腔增强光声光谱气体传感技术 14:10陈珂(大连理工大学)——光纤光声传感技术及应用研究进展14:30郑华丹(暨南大学)——新型石英增强光声光谱测声器14:50吴君军(重庆大学)——基于石英增强光声光谱的相变液滴局部蒸汽浓度表征15:10乔顺达(哈尔滨工业大学)——基于吸收加强的石英增强光声光谱技术 (CSLIBS2022-05- 039)15:20茶歇第二场:吸收光谱技术I主持人:王强15:50黎华(中国科学院上海微系统与信息技术研究所)——太赫兹光频梳与双光梳光源16:10姜寿林(香港理工大学深圳研究院)——基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术16:30王福鹏(中国海洋大学)——基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨16:50王如宝(北京杜克泰克科技有限公司)——基于光学麦克风光声光谱技术的环境空气 VOCs检测17:10宋俊玲(航天工程大学)——燃烧场测量探头设计和工程应用 (CSLIBS2022-03-001)17:20梁添添(哈尔滨工业大学)——基于激光光谱技术的氢气/氧气传感研究 (CSLIBS2022-05- 037)12 月 6 日上午第三场:光声光谱技术II主持人:闫明08:30鲁平(华中科技大学)——光声探测技术及应用08:50郑传涛(吉林大学)09:10李磊(郑州大学)09:30许可(朗思科技有限公司)——基于石英增强光声光谱的超高灵敏度气体分析仪器09:50郎梓婷( 哈尔滨工业大学) —— 基于共振腔的石英增强光声光谱气体传感技术研究(CSLIBS2022-05-034)10:00茶歇第四场:吸收光谱技术II主持人:黎华10:30闫明(华东师范大学)——基于光梳的光谱测量技术及应用10:50刘俊岐(中国科学院半导体研究所)——中红外可调谐半导体激光器11:10姚晨雨(山东大学)——空芯光纤 Fabry-Perot 干涉仪解调方法和光热光谱气体检测研究11:30陈卫(中国空气动力研究与发展中心)——可调谐激光器在高超声速流场光谱诊断中的应用与需求(CSLIBS2022-03-002)11:40刘晓楠(哈尔滨工业大学)——基于中红外半导体激光器和光致热弹性光谱的高灵敏度甲烷检 测 (CSLIBS2022-05-038)12 月 6 日下午第五场:红外及太赫兹光谱方法与应用主持人:邵学广、夏兴华13:30夏兴华(南京大学)——等离激元增强红外光谱生化分析13:50姜秀娥(中国科学院长春应用化学研究所)——仿生膜水合及其效应的红外光谱电化学研究14:10臧恒昌(山东大学)——药品连续制造过程中近红外实时评价与放行技术的研究14:30张良晓(中国农业科学院油料作物研究所)——油料油脂质量安全近红外快速检测技术研究14:50陈孝敬(温州大学)——结合 Libs 和线性回归分类对泥蚶重金属污染检测15:10邵学广(南开大学)——近红外光谱分析中的化学计量学方法与应用15:30茶歇第六场:红外及太赫兹光谱仪器研发主持人:邵学广、陈斌15:50陈斌(江苏大学)——低场核磁与近红外光谱联用分析仪的开发与应用探索 16:10李晨曦(天津大学)——光谱成像与太赫兹光谱技术在食品检测中应用16:30兰树明(无锡迅杰光远科技有限公司)——IAS 在线近红外光谱分析仪器开发16:50谢樟华(天津市能谱科技有限公司)——国产红外光谱仪的新机遇和新挑战17:10周新奇(杭州谱育科技发展有限公司)——FTIR 光谱技术产品开发及其应用17:30鲁兵(华中科技大学)——椰糠基质有效氮近红外检测仪设计与试验 (CSLIBS2022-06- 001)专题 6:超快及瞬态光谱12 月 5 日下午第一场:原子、分子与超快光谱主持人:郑俊荣13:25致辞13:30勾茜(重庆大学)——微波光谱探测 Diels–Alder 环加成预反应中间体 13:55兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量14:20吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用14:45郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量15:10茶歇第二场:超快光谱与理论主持人:郑盟锟15:25蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用15:50刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟16:15夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?16:40张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理 17:05郑俊荣(北京大学)17:30朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究12 月 6 日上午第三场:超快与二维光谱主持人:马骁楠08:30边红涛(陕西师范大学)——受限体系结构及超快动力学研究08:55陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量09:20李东海(中国科学技术大学)——二维光谱显微技术及应用 (CSLIBS2022-07-003)09:45任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学10:10茶歇第四场:超快光谱与生物相关体系主持人:任泽峰 10:25陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究10:50丁蓓(上海交通大学)——蓝光受体 BLUF 域质子耦合电子转移机理11:15康斌(南京大学)——Pump-Probe 显微镜和瞬态成像测量的若干尝试 (CSLIBS2022-07- 003)11:40朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探12 月 6 日下午第五场:超快光谱与激发态理论主持人:杨延强13:30李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究13:55张春峰(南京大学)——分子光电材料的激发态动力学妍究14:20陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究14:45金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用15:10茶歇第六场:超快光谱与功能材料主持人:金盛晔15:25马骁楠(天津大学)——新型有机发光材料中的激发态化学研究15:50吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控16:15王俊慧( 中国科学院大连化学物理研究所) —— 光化学转换动力学调控新机制(CSLIBS2022-07-004)16:40叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究17:05杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术17:30周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究17:55结束语专题 7:燃烧诊断 & 专题 8:环境监测 & 专题 9:工业检测12 月 5 日下午第一场:燃烧诊断 I主持人:蔡伟伟、彭江波13:30彭江波(哈尔滨工业大学)——高频 PLIF 燃烧流场测量及数据分析方法研究进展13:50武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究14:10雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用14:30齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究14:50梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究15:10蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究15:20常光(中国航空工业空气动力研究院)——用于燃气当量比测量的丙酮/甲苯激光诱导荧光技术研究 (gpcl2021-01-004)15:30陈爱国(中国空气动力研究与发展中心超高速空气动力研究所)——低密度风洞流场的非接触测量需求及进展 (gpcl2021-01-005)15:40张玥(北京航空航天大学)——基于背景纹影法的动态温度场测量(gpcl2021-01-020)15:50茶歇第二场:环境监测与工业检测 I主持人: 梅亮、杨荟楠16:00赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量 OH 自由基16:20梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术16:40楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气 OH 自由基总反应性测量与应用17:00胡仁志(中国科学院合肥物质科学研究院)——大气 HOx 自由基探测技术研究及应用17:20李天骄(南京理工大学)——纳米材料光点火诊断与应用17:40张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用 18:00杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究18:20马柳昊(武汉理工大学)——激光吸收光谱测温技术的谱线选择新策略研究 (gpcl2021-01-010)12 月 6 日上午第三场:燃烧诊断 II主持人:彭志敏、陈爽08:30陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展08:50伍岳(北京理工大学)——跨界面三维层析技术的开发与优化09:10超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法09:30彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究09:50林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨10:10熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用10:30茶歇第四场:环境监测 II主持人:陆克定、韦玮10:40陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战11:00郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究11:20韦玮(重庆大学)——腔增强红外光谱技术11:40刘诚(中国科学技术大学)——卫星结合地面靶向遥感 VOCs 排放源12 月 6 日下午第五场:工业检测 II主持人: 姚顺春、褚小立13:30姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法13:50张彪( 东南大学)——基于光场成像的燃烧诊断技术研究14:10褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用14:30陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发14:50董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼15:10马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用15:30梁炫烨(北京航空航天大学)——Mach-Zehnder 干涉法测量丙烷-空气层流预混火焰的火焰传递函数 (gpcl2021-01-018)15:40乔俊杰(重庆大学)——大气压空气直流辉光放电等离子体转动拉曼散射光谱诊断研究(gpcl2021-01-019)15:50熊青(重庆大学)——非热等离子体激光诊断研究 (gpcl2021-01-021)防疫政策:1. 对 7 天内有高风险区旅居史,以及西藏、新疆、内蒙古呼和浩特、河南郑州、广州、重庆、黑龙江绥化市、甘肃省兰州市、青海省西宁市人员,请线上参会;2. 来沪返沪人员须在 12 小时内完成一次核酸检测(可在机场和火车站落地检),并实行三天三检;3. 参会人员须持双绿码及 24 小时核酸检测阴性证明进行会议签到,双绿码即“随申码”和“行程码”绿码,参会期间非必要不离开酒店;4. 组委会将于 12 月 4-6 日每天 16:00-18:00 在酒店一楼设置核酸采样处,其他时间可从大华酒店步行 4 分钟到凯德七宝商业区广场进行核酸采样(每天 09:00-11:30,13:00-17:00, 18:00-21:00),建议会议期间每天都参与做检测;5. 会议期间除用餐外须全程佩戴口罩,做好防护。注:防疫政策可能会实时调整,请关注会议官网的参会须知。会议注册:类型2022 年 10 月 1 日前(含)缴费2022 年 10 月 1 日后缴费普通代表2400 元/人2600 元/人学生代表2000 元/人2200 元/人会议费包括:1、所有会场和展区入场;2、第 2-3 日午餐,第 1-3 日晚餐,会议期间茶歇;3、会议手册、会议投稿光盘、资料袋。会议将提供正规会议费发票(推荐选择电子普票)。注册地址:https://b2b.csoe.org.cn/registration/CSLIBS2022.html付款方式:a) 在线支付(优选):注册完成后,可跳转到在线支付页面,选择“支付宝”在线完成支付;b) 汇款转账:汇款时请务必注明“姓名+LIBS22”,以便核对;c) 可以先注册填写参会信息,再现场缴费开户银行:工行北京科技园支行户名:中国光学工程学会账号:0200296409200177730住宿信息会议地点:上海大华虹桥假日酒店,上海市闵行区七莘路 3555 号会议合作酒店:上海大华虹桥假日酒店住宿协议价 550 元/间•天预订请联系:喻经理,13916973452*预订时请说明是中国光学工程学会光谱会议组委会联系人索尼珂:022-58168515,15122063125sonik@csoe.org.cn 张洁:022-58168510,zhangjie@csoe.org.cn
  • 融合发展 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议在敦煌开幕
    仪器信息网讯 2023年5月8日,第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议在敦煌开幕。会议旨在进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新。本次会议由中国光学工程学会主办,中国光学工程学会光谱技术及应用专业委员会、西北师范大学承办,敦煌研究院、中国科学院近代物理研究所、上海理工大学、中国科学院合肥物质科学研究院、中国矿业大学、先进能源科学与技术广东实验室联办。来自国内相关领域240余家单位的600余位代表出席会议,仪器信息网作为合作媒体出席并对大会进行系列报道。会议现场大会开幕式由中国光学工程学会理事、中国光学工程学会光谱技术及应用专业委员会副主任委员兼秘书长、清华大学王哲教授主持,大会主席、中国科学院上海技术物理研究所王建宇院士、西北师范大学副校长李文生教授分别致辞。大会主席、中国科学院上海技术物理研究所 王建宇院士 致辞虽然科学技术不断的发展,为光谱分析仪器带来了性能上的提高和应用范围的扩展,但不断提高的科学技术水平,也对光谱仪器的性能、体积、成本提出了更加苛刻的要求。王建宇院士在致辞中表示,随着国家对自主创新和工程应用的大力支持,我国光谱技术的发展取得了长足的进步,原创性成果持续涌现。在此形势下,希望通过本届会议,紧跟最新发展趋势,引导重点单位,部署分子科学、光学、电子、化学、仪器等相关行业跨界融合,推动全方位的合作,搭建开放的交流平台,为光谱领域的技术创新提供新的动力。西北师范大学副校长 李文生教授 致辞当前,信息技术创新日新月异,数字化、网络化、智能化深入发展,同时也加速了光谱技术成为近代光学计量的重要分支学科。因其具有测量范围宽、速度快、分析精度高等优势,已在元素分析燃烧诊断、文物保护、大气检测、工业检测、生物医疗、航空遥感、矿物检测等诸多领域发挥着越来越重要的作用。李文生教授表示,随着高端新型光谱仪器的自主化和国产化,其必将为我国近代化工业、农业、科技等众多领域的发展壮大作出重要贡献。中国光学工程学会副秘书长邓伟 进行中国光学工程学会重要活动发布为期两天的会议,组委会精心安排了大会报告、分类报告、青年学者口头报告和张贴报告、优秀论文评选和产品展示等活动。值得一提的是,本次会议特别安排了激光诱导击穿光谱及相关技术、原子光谱与质谱、激光拉曼光谱与激光荧光光谱技术及应用、光声光谱与TDLAS技术及应用、红外及太赫兹光谱、超快及瞬态光谱、燃烧诊断、环境监测、工业检测等多个分会场。会议同期,中国光学工程学会成立了光谱技术及应用专业委员会,并召开了第一届专业委员会工作会议,旨在充分发挥专家学者的创造力、凝聚力和积极性,搭建一个交叉融合,创新奋进的交流平台。光谱技术及应用专业委员会开幕式之后,中科院安徽光学精密机械研究所刘文清院士、中科院上海技术物理研究所王建宇院士、清华大学王哲教授、中国矿业大学周怀春教授、北京邮电大学夏安东教授、中国海洋大学郑荣儿教授分别作大会报告。上海理工大学蔡小舒教授、西北师范大学董晨钟教授分别主持大会报告。中科院安徽光学精密机械研究所 刘文清院士《温室气体光学监测技术进展》环境污染和气候变化是我国生态环境建设的两大关键问题。大气污染气体与温室气体二者同根同源,具有显著的协同性,都涉及到大气成分的变化,但是它们的监测技术原理和仪器构成千变万化,取决于监测对象的浓度和来源。刘文清院士在报告中简要介绍了目前用于在线、现场、地基和天基碳监测技术、成果及应用案例。刘文清院士指出,我国急需补齐温室气体监测能力短板,包括温室气体地面大气及生态碳汇监测、地基及天基遥感监测能力,并加快建立园区、城市、区域、全球不同层面的温室气体监测技术体系。中科院上海技术物理研究所 王建宇院士《深空探测中的激光光谱技术》目前激光诱导击穿/荧光光谱、拉曼光谱、可调谐激光光谱等技术已广泛应用于火星探测中,并且将在后续国际行星探测任务中发挥更大作用。王建宇院士在报告中介绍了深空探测中激光光谱技术取得的一系列进展,比如,中国首次火星探测搭载的 MarSCoDe 已经在火星上获取了宝贵的探测数据,帮助科学家进一步研究火星表面物质成分;中国将在嫦娥七号搭载拉曼光谱仪实现月球表面首次拉曼光谱探测等。王建宇院士指出,中国的行星探测已经走在国际前列,未来将继续进行月球、火星以及小行星探测,采用更多的激光光谱技术手段帮助人类了解行星的形成和地质演化过程。清华大学 王哲教授《中国激光诱导击穿光谱发展现状和展望》王哲教授从基础研究、仪器设备开发、定量分析算法、不同领域应用等方面综述了激光诱导击穿光谱在中国的研究进展,重点介绍了在LIBS精确定量方面的进展,并展望了在国家重大战略目标下LIBS未来的发展潜力和面临的挑战。同时,立足于中国在能源、冶金、化工、农业、文保等多个领域的重大需求,王哲教授展望了LIBS在中国未来发展的机遇和挑战,提出了中国在 LIBS 技术进步和大规模应用的潜在方向。中国矿业大学 周怀春教授《用于燃烧及高温光谱/成像诊断的高精度辐射模型》燃烧等高温辐射对象的光谱/成像诊断是一个越来越受到关注的重要发展方向。周怀春教授研究团队提出了基于蒙特卡洛法的DRESOR法,因其能够获得高方向分辨率辐射强度而成为高温辐射图像分析重要方法之一。同时,该团队进一步提出了辐射计算模型精度的定量评价指标和方法,分别针对蒙特卡洛法和DESOR法,提出了提高其计算精度的方法,特别是证明了改进后的DRESOR法全面优于蒙特卡洛法,为进一步提高燃烧及高温辐射光谱/成像诊断技术的性能奠定了良好基础。北京邮电大学 夏安东教授《复杂分子体系的溶剂化相关的激发态过程的探测和调控》夏安东教授在报告中介绍了课题组长期以来针对复杂分子激发态溶剂化动力学过程复杂且无法直接探测的相关技术和科学问题,发展的多种表征激发态溶剂化动力学的超快光谱技术的原理和方法。他重点介绍采用激发态受激调控(基于受激亏蚀原理)的策略实现了激发态关键中间态的溶剂化过程和关键中间"暗态"的直接探测和表征,激发态溶剂化演化动力学过程中的速率常数和溶剂化相关的结构变化动力学的同时探测等。中国海洋大学 郑荣儿教授《深海 LIBS:何去何从?》随着我国自主研发的深潜器和观测平台技术的发展和进步,如何提升深潜器的作业能力、如何借助于这些平台获得有突破性的科学成果,成为海洋技术领域关注的焦点。郑荣儿教授的报告从“LIBS for Sea or Sea for LIBS ”的讨论出发,对水下 LIBS 探测技术研究和器件研发的历史沿革和发展现状进行介绍。同时,围绕海洋资源探测的战略需求,郑荣儿教授对深海原位LIBS探测技术的未来发展方向和潜在应用“何去何从”进行了探讨。上海理工大学蔡小舒教授 主持大会报告西北师范大学董晨钟教授 主持大会报告此外,本次会议还得到多家仪器企业的支持,并在会议期间分享、展示了他们最新的产品、技术及应用解决方案。展示交流现场
  • 锅炉燃烧效率分析仪testo 330 LL 焕新登场
    锅炉燃烧效率分析仪testo 330 LL 焕新登场 9月1号开始,德图将推出其焕然一新的锅炉燃烧效率分析仪testo 330 L。这款占有全球供暖系统测量调试市场60%份额的经典测量分析仪器,即将以焕新的面貌,让您耳目一新! 外形更靓丽!*厌倦了乏味的黑白显示屏?330的高分辨率彩色大显示屏,可图形化显示读数,背光明亮,屏幕显示带自动放大功能,清晰查看当前细节。*色彩鲜明的烟气矩阵,大拇指的指示方法,燃烧和损耗的信息直观明了*清晰的&ldquo 红绿灯&rdquo 表示方法,提供的全面的仪器诊断信息 功能更强大!*功能扩展的测量菜单,如管道测试,气密性测试及固体燃料测量等,为您的系统提供全面的分析评估*增强版O2及CO传感器,使用寿命长达6年。而普通的电化学传感器一般为2年。*带数据记录功能,可记录长时间内的测量曲线 价格更给力!*9月1日至12月31日,推出330-1 LL及330-2 LL的促销套装,价格很给力。更多信息请咨询德图400 882 733或登录www.testo.com.cn/heating查看。
  • 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2023 年5月7-9日在敦煌举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请150余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。主办单位:中国光学工程学会承办单位:中国光学工程学会西北师范大学协办单位:敦煌研究院中国科学院近代物理研究所上海理工大学中国科学院合肥物质科学研究院中国矿业大学支持单位:长春新产业光电技术有限公司长沙麓邦光电科技有限公司光谱时代(北京)科技有限公司北京镭宝光电技术有限公司国仪量子(合肥)技术有限公司埃德比光子科技(中国)有限公司成都诺为光科科技有限公司北京欧兰科技发展有限公司东方闪光(北京)光电科技有限公司奥谱天成(厦门)光电有限公司上海五铃光电科技有限公司上海尤谱光电科技有限公司深圳市唯锐科技有限公司大会名誉主席:庄松林 院士(上海理工大学)范滇元 院士(深圳大学)乐嘉陵 院士(中国工程院)陈良惠 院士(中国科学院半导体研究所)许祖彦 院士(中国科学院理化技术研究所)大会主席:田中群 院士(厦门大学)刘文清 院士(中国科学院合肥物质科学研究院)孙世刚 院士(厦门大学)王建宇 院士(中国科学院上海技术物理研究所)执行主席:董晨钟(西北师范大学王 哲(清华大学 )蔡小舒(上海理工大学)阚瑞峰(中国科学院合肥物质科学研究院 )周怀春(中国矿业大学 )程序委员会(音序):蔡伟伟、 蔡小舒、曹世权、陈军 、褚小立 、崔执凤、狄慧鸽 、丁洪斌、丁晓彬、董晨钟、董大明、董磊、 董美蓉、付洪波、郭金家 、郭连波、杭纬、 侯贤灯、侯宗宇、胡继明、 胡仁志 、贾云海、阚瑞峰 、 雷庆春 、李博 、李传亮 、李聪、李飞 、李华、李润华、李祥友、李晓晖 、林庆宇、刘诚 、刘冬 、刘飞、刘继桥 、刘木华、卢渊、陆继东、陆克定 、马维光 、马新文、马欲飞、 梅亮 、 敏琦、彭江波 、 钱东斌、任斌、 邵杰 、邵学广、 史久林 、舒嵘、苏伯民、苏茂根、孙对兄、孙兰香、田野、万福 、王茜蒨、王强、 王珊珊 、王圣凯 、王哲、王珍珍、吴涛 、 吴学成 、 吴迎春 、夏安东、 徐文江 、 许传龙 、 许振宇 、 闫伟杰 、 杨荟楠 、 杨磊、杨增玲 、 姚顺春、殷耀鹏、尹王保、于宗仁、俞进、袁洪福 、 张大成、张登红、张雷、赵南京、赵卫雄 、 郑培超、周怀春 、 周磊 、 周卫东、周骛 、 周小计、朱家健 、 朱香平专题分会1) 激光诱导击穿光谱及相关技术召集人:王哲 (清华大学 )、 董晨钟 (西北师范大学 )邀请报告:➢ 丁洪斌(大连理工大学) LIBS 基本物理过程及聚变能应用进展➢ 段忆翔(四川大学) LIBS 技术与仪器的发展历程 从实验室研发到现场应用➢ 郭连波(华中科技大学) 激光诱导击穿光谱基础、仪器及应用研究➢ 刘木华(江西农业大学) PRLIBS 对农产品品质信息分析能力提升方法研究➢ 马欲飞(哈尔滨工业大学) 小型化固体激光器➢ 舒嵘(中国科学院上海技术物理研究所) )————“祝融号”火星车物质成分探测仪中的 LIBS探测与分析➢ 苏茂根(西北师范大学) 激光等离子体辐射、诊断与应用➢ 孙兰香(中国科学院沈阳自动化研究所) 矿浆成分 LIBS 定量分析方法与工业在线应用➢ 王茜蒨(北京理工大学) LIBS 技术在生物医药诊断监测中的应用研究➢ 王哲(清华大学) 激光诱导击穿光谱( LIBS )定量化理论方法及应用➢ 汪正 中国科学院上海硅酸盐研究所 基于微等离子体增强 LIBS 信号研究➢ 俞进(上海交通大学) 针对火星就位探测的激光诱导击穿光谱方法研究➢ 曾和平 华东师范大学 飞秒光丝非线性相互作用诱导击穿光谱➢ 郑荣儿(中国海洋大学) 深海 LIBS :何去何从➢ 周卫东(浙江师范大学) 激光诱导空化气泡的演化及其对 LIBS 光谱的影响➢ 周小计(北京大学) LIB S 在定量应用中的探索研究2) 原子光谱与质谱召集人:侯贤灯 (四川大学 )、 杭纬 (厦门大学 )邀请报告:➢ 陈明丽(东北大学) LA ICP MS 对动植物组织中元素成像方法研究➢ 冯流星(中国计量科学研究院) 阿尔茨海默症计量溯源技术研究➢ 高英(成都理工大学) 基于钒的光化学蒸气发生及应用➢ 郭伟(中国地质大学(武汉)) 高精度 LA ICPOES/ICPMS 原位分析技术及古气候中的应用➢ 杭纬(厦门大学) 高电离电位元素的激光质谱分析技术➢ 侯贤灯(四川大学) 原子光谱分析研究➢ 胡斌(武汉大学) ICP MS 单细胞分析➢ 蒋小明(四川大学) 微型原子发射光谱仪的放电激发源研制➢ 刘睿(四川大学) 金属元素标记均相免疫分析➢ 吕弋(四川大学) 基于金属稳定同位素标记的生物分析研究➢ 邢志(清华大学) 高纯非导体材料纯度分析方法探索➢ 徐明(中国科学院生态环境研究中心) 利用 LA ICP MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律➢ 于永亮(东北大学) 适于微等离子体发射光谱分析的样品引入方式与接口➢ 郑成斌(四川大学) 碳原子发射光谱及其应用➢ 朱振利(中国地质大学(武汉)) 基于等离子体技术的锑元素与同位素分析方法开发3) 激光拉曼光谱与激光荧光光谱技术及应用召集人:任斌(厦门大学 )、 胡继明 (武汉大学 )邀请报告:陈建(中山大学)➢ 高亮(核工业西南物理研究院) 大气压等离子体活性物种激光诱导荧光定量诊断研究➢ 韩鹤友(华中农业大学)➢ 胡继明(武汉大学) 拉曼光谱在细胞分析中的应用➢ 谭平恒(中国科学院半导体研究所)➢ 杨海峰(上海师范大学)➢ 朱井义(中科院大连化学物理研究所)4) 光声光谱 与 TDLAS技术及应用召集人:马欲飞(哈尔滨工业大学 )、 董磊 (山西大学 )、 王强 (中科院长春光机所 )邀请报告:➢ 陈珂(大连理工大学) 光纤光声传感技术及应用研究进展➢ 姜寿林(香港理工大学深圳研究院) 基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术➢ 黎华(中国科学院上海微系统与信息技术研究所) 太赫兹光频梳与双光梳光源➢ 李磊(郑州大学)➢ 刘俊岐(中国科学院半导体研究所) 中红外可调谐半导体激光器➢ 刘锟(中国科学院合肥物质科学研究院) 光声光谱多组分检测技术研究➢ 鲁平(华中科技大学) 光声探测技术及应用➢ 王福鹏(中国海洋大学) 基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨➢ 王强(中国科学院长春光机所) 高灵敏、大动态范围的腔增强光声光谱气体传 感技术➢ 王如宝(北京杜克泰克科技有限公司) 基于光学麦克风光声光谱技术的环境空气 VOCs检测➢ 吴君军(重庆大学) 基于石英增强光声光谱的相变液滴局部蒸汽浓度表征➢ 许可(朗思科技有限公司) 基于石英增强光声光谱的超高灵敏度气体分析仪器➢ 姚晨雨(山东大学) 空芯光纤 Fabry-Perot干涉仪解调方法和光热光谱气体检测研究➢ 闫明(华东师范大学) 基于光梳的光谱测量技术及应用➢ 郑传涛(吉林大学)➢ 郑华丹(暨南大学) 新型石英增强光声光谱测声器5) 红外及太赫兹光谱召集人:邵学广(南开大学 )邀请报告:➢ 陈斌(江苏大学) 低场核磁与近红外光谱联用分析仪的开发与应用探索➢ 陈孝敬(温州大学) 结合 Libs和线性回归分类对泥蚶重金属污染检测➢ 姜秀娥(中国科学院长春应用化学研究所) 仿生膜水合及其效应的红外光谱电化学研究➢ 兰树明(无锡迅杰光远科技有限公司) IAS在线近红外光谱分析仪器开发➢ 李晨曦(天津大学) 光谱成像与太赫兹光谱技术在食品检测中应用➢ 邵学广(南开大学) 近红外光谱分析中的化学计量学方法与应用➢ 夏兴华(南京大学) 等离激元增强红外光谱生化分析➢ 谢樟华(天津市能谱科技有限公司) 国产红外光谱仪的新机遇和新挑战➢ 臧恒昌(山东大学) 药品连续制造过程中近红外实时评价与放行技术的研究➢ 张良晓(中国农业科学院油料作物研究所) 油料油脂质量安全近红外快速检测技术研究➢ 周新奇(杭州谱育科技发展有限公司) FTIR光谱技术产品开发及其应用6) 超快及瞬态光谱召集人:夏安东(北京邮电大学 )邀请报告:➢ 边红涛(陕西师范大学)——受限体系结构及超快动力学研究➢ 陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量➢ 陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究➢ 陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究➢ 丁蓓(上海交通大学)——蓝光受体BLUF域质子耦合电子转移机理➢ 勾茜(重庆大学)——微波光谱探测Diels–Alder环加成预反应中间体➢ 金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用➢ 兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量➢ 李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究➢ 蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用➢ 刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟➢ 马骁楠(天津大学)——新型有机发光材料中的激发态化学研究➢ 任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学➢ 夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?➢ 吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用➢ 吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控➢ 杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术➢ 叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究➢ 张春峰(南京大学)——分子光电材料的激发态动力学妍究➢ 张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理➢ 郑俊荣(北京大学)➢ 郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量➢ 周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究➢ 朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究➢ 朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探7) 燃烧诊断召集人:蔡伟伟 (上海交通大学 )、 彭江波 (哈尔滨工业大学 )邀请报告:➢ 蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究➢ 超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法➢ 陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展➢ 雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用➢ 梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究➢ 林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨➢ 彭江波(哈尔滨工业大学)——高频PLIF燃烧流场测量及数据分析方法研究进展➢ 彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究➢ 齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究➢ 伍岳(北京理工大学)——跨界面三维层析技术的开发与优化➢ 武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究➢ 熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用8) 环境监测召集人:陆克定 (北京大学 )、梅亮 (大连理工大学 )邀请报告:➢ 陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战➢ 梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术➢ 胡仁志(中国科学院合肥物质科学研究院)——大气HOx自由基探测技术研究及应用➢ 刘诚(中国科学技术大学)——卫星结合地面靶向遥感VOCs排放源➢ 楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气OH自由基总反应性测量与应用➢ 韦玮(重庆大学)——腔增强红外光谱技术➢ 赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量OH自由基➢ 郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究9) 工业检测召集人:姚顺春 (华南理工大学 )、袁洪福 (北京化工大学 )邀请报告:➢ 陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发➢ 褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用➢ 董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼➢ 李天骄(南京理工大学)——纳米材料光点火诊断与应用➢ 马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用➢ 杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究➢ 姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法➢ 张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用➢ 张彪(东南大学)——基于光场成像的燃烧诊断技术研究
  • 水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪
    XY-2201E总有机碳TOC分析仪  水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪  水质总有机碳的测定燃烧氧化-非分散红外吸收法(TOC分析仪)是一种常用的水质检测方法,用于测量水中的总有机碳。这种方法通过燃烧样品,将有机碳转化为二氧化碳,然后使用红外光谱仪测量其浓度。  具体步骤包括:  1. 样品处理:将水样进行适当的前处理,如去除悬浮物和金属氧化物等,以避免干扰。  2. 燃烧氧化:将处理过的水样在高温下进行燃烧,使有机物氧化为二氧化碳,以便测量其浓度。  3. 非分散红外吸收法:使用红外光谱仪测量生成二氧化碳的浓度,从而推算出总有机碳(TOC)的含量。  这种方法的优点是测量范围广、灵敏度高、选择性好,可以用于测量不同类型和浓度的水样。同时,TOC分析仪是一种连续测量的仪器,可以实时监测水样的TOC浓度,有助于及时了解水质状况。  一、产品介绍:  XY-2201E总有机碳TOC分析仪采用了高温催化燃烧氧化法,将试样连同净化气体(高纯氧)分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生产的二氧化碳经载气输送依次被导入非分散红外气体检测器NDIR中, CO?被检测。从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。即:TOC=TC-IC  二、产品特点:  1.高温催化氧化,对于难消解的有机碳,也能高效率的氧化,使得产品易于分析高浓度的TOC样品;  2.快速分析(1~4min);  3.更高的安全性,燃烧炉加热采用多重保护,独立于温度控制系统的过热保护电路,过热能自动切断加热,确保产品安全;  4.实时流量监视,保持流路稳定,保证数据的可靠性;  5.管路多方位清洗和吹扫,可以根据需求,按操作要求清洗内部回路,大大减少了故障发生率及仪器维护时间;  6.仪器自动排废,自动排酸和进酸,进酸量控制稳定;  7.较少的样品和试剂消耗,每次测量需消耗高纯水0.5μL,酸试剂2ml(IC测试时),高纯氧气约2000ml(标况下,流速100ml/min,通气时间20min.);  8.NDIR检测器的CO?检测有良好的线性和高准确性。CO?信号转化成为一个峰曲线,然后再由内置的数据处理器计算出TOC数值(TC与IC之差);  9.催化燃烧氧化法氧化能力强,几乎可以氧化所有的有机物且性能稳定。680℃燃烧法几乎是在所有盐份的融点以下,这样可以延长催化剂和燃烧管的寿命,这一点尤其是在测定对象是含盐份的水样时很重要;  10.仪器使用高分辨率7寸触摸宽屏,采用智能系统,全中文界面,使得界面友好,操作简便。  三、技术参数:  1.测定范围:0~1000mg/L(非稀释状态),稀释状态可达到0~30000mg/L  2.重 复 性:≤ 3%  3.示值误差:TC:±0.1%F.S或±5%(取较大者)  IC:±0.1%F.S或±4%(取较大者)  4.线 性:R2≥99.9%  5.检出下限:0.5mg/L  6.分析时间:2~4min  7.注 射 量:10μL~500μL  8.外部存储:U盘  四、使用范围:  地表水、地下水、生活污水、工业废水中总有机碳(TOC)的测定,应用于环境监测、城市给排水、疾病控制、化工电力等行业。
  • 碳硫分析仪对燃烧碘量法测钢铁中硫准确度
    碳硫分析仪对燃烧碘量法测钢铁中硫准确度 燃烧碘量法测定钢铁中硫受炉温、溶剂及仪器设备等各方面因素影响:燃烧碘量法测钢铁中硫的含量因其操作简便,测定快速是目前工厂中测钢铁中硫含量应用最广的分析方法。但该法测定硫受炉温,助熔剂等各方面因素的影响,硫的回收率较低,一般小于 90%,有时仅 60~70%。因此掌握好分析条件事关重要。为了提高该法测定硫的准确度,查阅了有关资料,南京麒麟分析仪器有限公司专业生产的碳硫分析仪现场进行了对硫的试验。 实验:对于同一个标样(含硫为 0.033%)实验过程中发现滴定速度是非常关键的操作高硫试样尤其如此。为此进行了实验,结果表明通氧燃烧后不立即滴定会导致结果偏低。当等 30 秒后滴定,回收率会降低近 30%,而预置(预置一部分碘标准溶液)80%后立即滴定和不预置滴定结果相近。因此滴定速度开始时宜快为好,即使暂时过量也不致影响结果。1、燃烧温度时硫回收率的影响 硫在钢铁中存在的形态较稳定,需提高燃烧温度才能使硫化物分解氧化。资料介绍炉温在 1399℃时硫回收率可达 90-96%,在 1450~ 1510℃时约 98%。国外采用高频炉燃烧硫有较高的回收率。用管式炉燃烧时,炉温很难达 1350℃但应根据不同材料,燃烧时尽量提高炉温,一般铸铁 1250℃,普通钢,低合金 1300℃,高速钢,耐热钢 1300--1350℃,另外还必须确保一定高温持续时间,使硫充分氧化。由于目前我国采用管式炉较多,我们在管式炉实验中燃烧温度 1350℃比 1250℃的回收率要高 5%左右。2、通氧流量对硫回收率的影响 燃烧时通氧流量也是不可忽视的,氧气流量小试样燃烧不完全使结果偏低,氧气流量过大,使一部分 SO2 继续氧化为 SO3,而 SO3 不能被碘标液滴定也会使结果偏低。一般合金钢控制在1.5~3.0l/min,碳钢为 1.0~2.0l/min,所的得回收率较高。为了方便一般选用 1.5~2.0l/min 氧气流量为宜,在实际操作中应采用&ldquo 前大氧,后控气&rdquo 的供氧方式,它即可有效的提高试样的燃烧速度和温度,有利于硫的充分氧化,又可确保 SO2 的完全吸收,有利于滴定反应的顺利进行。2结论 燃烧碘量法测定钢铁中硫受炉温、溶剂及仪器设备等各方面因素影响。硫的转化率往往只是在某特定条件的一定回收率。因此只要掌握好分析条件,使标准钢样与未知试样在燃烧温度上尽量高且一致,选择的溶剂一致且加入量相同,滴定速度开始时宁快勿慢,氧气流量控制一致等因素掌握好,准确度会高,再现性会好的。南京麒麟分析仪器有限公司2012.06.18
  • 梅特勒托利多“激光气体分析仪,使燃烧控制更可靠”获奖用户揭晓
    梅特勒-托利多过程分析部门于2013年8月推出了“激光气体分析仪,使燃烧控制更可靠”的活动,与广大用户分享了燃烧控制中的气体分析技术及应用亮点。恭喜以下用户获得了移动电源的礼品。 姓名联系方式凌海清136*****042张国强139*****261杨巧谷182*****778姜文革138*****015阴豪138*****847孙尚峰158*****668王秀平151*****800张书文135*****846 *礼品已通过EMS快递寄出,请获奖者留意查收。 梅特勒-托利多过程分析将继续推出气体分析活动,感谢广大用户的关注和参与。 访问梅特勒-托利多气体分析技术中心www.mt.com/gas 关于梅特勒-托利多过程分析梅特勒-托利多过程分析提供广泛的pH,ORP,溶解氧,气相氧,二氧化碳,电导率,TOC,硅表钠表分析仪和浊度传感器、变送器和清洗系统,为您的液体过程分析、纯水、超纯水监测提供完整、精确、可靠的解决方案。梅特勒-托利多也为客户提供全球范围的全方位服务管理,包括校准服务、性能测试、安装及运行认证、技术培训等。
  • 用户之声|CIC燃烧离子色谱-OLED材料卤素分析利器
    关注我们,更多干货和惊喜好礼陈洁 郑洪国 荆淼随着我国新冠疫情逐渐得到控制,各行各业复工复产进程不断加快。多家智能手机企业相继推出新款机型,折叠手机更是其中的重头戏。知名手机厂商近年来推出的折叠手机一经推出,随即售罄,市场火爆程度可见一斑。OLED作为折叠手机最重要的元器件,也得到前所未有的关注和重视。OLED面板具有可折叠、可弯曲的特性,可以彻底改变当前智能手机、甚至平板和笔记本电脑的既有形态。OLED是什么?OLED全称为有机发光二极管,是一种全新的平面显示技术,能够实现自发光。OLED材料作为OLED显示技术的核心,因高性能、低能耗、响应快速、超薄、柔性显示等优点,正从液晶显示器(LCD)手中夺取越来越多的市场份额。OLED有机材料OLED材料包括传输层材料,注入层材料及有机发光材料。与液晶显示组件相比,由于终端材料层替代了液晶面板中的滤光片、背光模组和液晶材料,使得OLED有机材料在整个OLED屏幕中占据了举足轻重的地位。发光材料是 OLED 器件中最重要的材料,一般发光材料应该具备较高的发光效率和良好的电子空穴传输性能。按化合物的分子结构,有机发光材料一般分为两大类: 高分子聚合物和小分子有机化合物。图 OLED基本结构(点击查看大图)OLED有机材料卤素限量要求光的亮度或强度取决于有机发光材料的性能。有机发光材料中卤素,会严重影响制成器件的寿命。业内一般规定有机光电材料卤素限值F、Cl为2 mg/Kg,Br、I为1 mg/Kg。OLED有机材料卤素测试难点有机发光材料为复杂有机基质,且纯度通常都比较高,所含的卤素杂质含量低,样品量小。因此,复杂样品基体消除、痕量卤素的释放和较低的检测灵敏度需求,均对分析方案带来极大的挑战。标准中OLED有机材料卤素检测方法简单、快速、准确的卤素测试方法一直吸引着大家的关注。卤素的测定,主要有氧瓶/氧弹燃烧离子色谱法,CIC在线燃烧离子色谱法,ICP-OES及ICP-MS等方法,不同测试方法各有其特色。材料中卤素释放及含量检测—不同方法对比• 无需前处理a:氧弹燃烧需要的手动制样燃烧,ICP-OES及ICP-MS需要微波消解等其他前处理方法。• 无人为操作误差b:样品转移过程存在人为误差。• 测定所有卤素c:ICP-OES无法测定F元素;ICP-MS F的第一电离能高于Ar,Cl在Ar等离子体中难电离。• 样品卤素检出浓度d:氧瓶/氧弹燃烧-离子色谱样品检出浓度>10mg/Kg(参考文献7);ICP-OES样品检出浓度Cl>50mg/Kg,Br>30mg/Kg(参考文献6);ICP-MS样品检出浓度>10mg/Kg。CIC燃烧离子色谱法具有简单易行,灵敏度高的优势,已经成为电子电器行业卤素检测的权威方法。韩国标准《KS M0180》,日本标准《JEITA ET-7304》,国际标准《IEC 62321 Part 3-2》及我国出入境标准《SN/T 3019.2-2013》均推荐CIC在线燃烧离子色谱法。赛默飞OLED有机材料卤素检测方案CIC在线燃烧离子色谱-测定OLED有机光电材料中卤素图 CIC燃烧离子色谱仪图 CIC燃烧流程及原理(点击查看大图)滑动查看更多图 低浓度卤素标样分离谱图(点击查看大图)图 典型样品分离谱图(点击查看大图)滑动查看更多CIC 测定有机光电材料中卤素具有以下技术优势:1一次进样(10-70mg)可同时分析样品中总硫和卤素含量;2可测定限度低至ppm级的硫和卤素,样品检出限可低至0.038~0.1mg/Kg;3燃烧过程实时监控,可选精细燃烧模式,保证样品充分燃烧,重复性好;4硫和卤素释放彻底,分别以硫酸盐和卤素离子的形式存在,样品基质完全消除;5特色氢氧根体系及高容量离子交换色谱柱(IonPac AS18),提供高基体样品基质兼容能力,可满足高氮含量有机材料中痕量Br的检测;6样品及标样均通过同一燃烧通道,保证测定结果的准确性;7全自动化的燃烧-吸收-分析过程,人工干预少,空白低,测定结果准确度和精密度满足或优于ASTM现行方法要求。使用者的声音实践是检验真理的唯一标准,让我们来听听使用者的声音吧。宁波卢米蓝新材料有限公司成立于2017年2月,是一家高校衍化的研发型高科技公司,在新材料研发、专利布局等方面具有业内领先的优势。公司致力于有机半导体材料的研发、生产和销售,为有机半导体行业提供高效能的有机发光二极管(OLED)所需的核心材料与技术,支持有机半导体产业持续、健康、快速的发展,以打造具有国际领先水平的有机发光材料为目标。卢米兰新材料有限公司质检高级主管周工说:为了保证产品质量及满足下游客户的需求,我们必须对不同类型有机材料产品中低浓度卤素进行严格限量,这台CIC在线燃烧离子色谱很好的帮我们解决了这个难题。样品无需前处理直接上机测定,无需配制淋洗液,既节省了实验时间同时保证了样品重复性。低背景,梯度洗脱及高灵敏度,保证了测定结果的准确性,为公司新材料研发和生产提供了可靠的数据保障。图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 电解抑制器原理图(点击查看大图)滑动查看更多总结CIC在线燃烧离子色谱为OLED有机光电材料中低浓度卤素测定,提供了简单,便捷的操作及准确可靠的实验结果,为前景广阔的OLED有机发光材料市场发展添砖加瓦。参考文献:1. KS M0180 Standard test method for halogen (F, Cl, Br) and sulfur content by oxidative pyrohydrolytic combustion followed by ion chromatography detection for electric & electronic equipment 2. JEITA ET-7304 Definition of Halogen-Free Soldering Materials 3. IEC62321 Part3-2 Screening of total bromine in electric and electronic products by Combustion – Ion Chromatography (C-IC) 4. SN/T 3019.2-2013 电子电气产品中卤素的测定 第2部分:氧仓燃烧离子色谱法 5. GB/T 33465-2016电感耦合等离子体发射光谱法测定汽油中的氯和硅 6. 陶振华,张娇等,氧弹燃烧-ICP-OES测定塑料中的氯和溴,广州化工 7. 叶晨,曾文法等,氧弹燃烧-离子色谱法测定塑胶中的卤素如需合作转载本文,请文末留言。
  • 川大研制世界首台聚合物燃烧过程实时在线分析仪器
    记者12月13日从四川大学获悉:中国仪器仪表学会于近日组织专家,对该校完成的国家自然科学基金委员会国家重大科研仪器研制项目(自由申请)成果“聚合物燃烧过程实时在线分析仪器与系统”进行鉴定,经鉴定认为,聚合物燃烧过程实时在线分析仪器是世界首台套能同时实时在线检测与分析聚合物阻燃性能、真实燃烧行为与阻燃机理的科研仪器,技术难度大、创新性强、具有自主知识产权,各种性能和功能指标优于现有国内外用于阻燃研究的商品化仪器,整体技术处于国际领先水平。目前,有机高分子材料已广泛应用于各领域,但因具有易燃性,易被引燃引发火灾,造成人员伤亡及财产损失。赋予有机高分子材料阻燃性是从源头上解决易燃高分子材料引发火灾的有效措施。但由于缺乏能够实时在线精确分析聚合物燃烧过程的仪器,已有阻燃机理的研究是在非真实火环境下得到的,不能有效指导阻燃化设计,甚至得出的结论对阻燃设计完全无效。目前,有机高分子材料的阻燃还不能完全上升到科学层面,更多的是凭经验设计。为此,四川大学化学学院王玉忠院士经过近40年对高分子材料的研究,提出和发展了阻燃新理论和新方法,并开发出各种无卤阻燃高分子材料体系与阻燃技术。研究团队在国家自然科学基金委员会国家重大科研仪器研制项目(聚合物燃烧过程实时在线分析系统的研制及其用于阻燃性能与气相阻燃机理研究)支持下,创制出聚合物燃烧过程实时在线分析仪器与系统,能够科学表现聚合物真实燃烧行为,实时在线分析聚合物热释放、烟释放等内容,并同时原位分析燃烧行为和机理,填补了聚合物燃烧实时在线分析检测领域空白。
  • 岛津参加第八届全国青年燃烧学术会议
    2023年4月22-23日,由中国工程热物理学会燃烧学分会主办,中国科学院广州能源研究所华南理工大学、中国工程热物理学会燃烧学专业委员会青年工作委员会、中国科学院可再生能源重点实验室、广东省新能源和可再生能源开发与利用重点实验室、广东省能源高效清洁利用重点实验室以及中国科学院广州能源研究所青年创新促进会协办的“第八届全国青年燃烧学术会议”在广州成功举办。岛津企业管理(中国)有限公司(以下简称“岛津”),作为优秀的仪器厂商也参加了此次会议并宣传了“化学化工学科-质子交换膜燃料电池研究解决方案”等相关内容。22日,中国科学院广州能源研究所袁浩然研究院主持此次会议的开幕式,首先对前来参会的各位专家、学者表示感谢并宣布此次会议开幕。岛津在《固体燃料热转化的碳控制新技术》分会场宣传了“全新X射线光电子能谱仪”和“EPMA-8050G”等产品,并在会议间隙播放了岛津宣传片。分会场宣传片播放岛津展台此次会议,岛津展台展示了众多分析表征相关技术和解决方案,其中《质子交换膜燃烧电池研究》方案随会议资料一同发放给与会专家。与会老师与岛津工作人员就相关技术展开深入交流。本届大会旨在全面展示近年来我国青年燃烧学者在燃烧科学和技术研究方面的最新进展和成果,深入探讨燃烧学科所面临的机遇和挑战,继承和弘扬往届的优良传统和经验,增进广大青年燃烧学者之间的了解和合作,促进我国燃烧科学和技术的发展。本文内容非商业广告,仅供专业人士参考。
  • 华中科技大学煤燃烧国家重点实验室气体分析仪采购项目中标
    华中科技大学,煤燃烧国家重点实验室气体分析仪采购项目(项目编号:2014-034)的竞标中,我公司凭借良好的市场信誉、专业的技术服务、完善的售后保障、优秀的产品以及合理的价格顺利赢得此次竞标。 华中科技大学煤燃烧国家重点实验室,属国家开放性实验室。实验室立足国家能源建设与环境保护需求,致力于以煤为代表的化石燃料和以生物质为代表的绿色燃料的燃烧和转化过程及其中污染物生成规律和控制方法的应用基础研究,促进先进的高效率低污染能源利用技术和装备的开发,在实验仪器设备的选用上有着非常严格的要求,此次中标的主要仪器设备是日本HORIBA生产的PG-350便携式红外气体分析仪。我公司根据此次项目需求给出了最合理的仪器配置以及优惠的报价。PG-350便携式红外气体分析仪是目前同类产品中最轻的,同时还具备高精确度、优秀的稳定性、量程范围宽广等诸多优势。在此次竞标中PG-350便携式红外气体分析仪凭借其优异的性能在其他同类产品中脱颖而出。得到现场专家的一致认可,最终成功中标。 我公司将切实履行承诺,保质保量完成该项目,在此,感谢公司全体同仁在此次投标工作中作出的努力,希望协心同力,再创佳绩!最后再次祝贺我司成功中标。
  • 乐氏科技中标燕山大学燃烧烟气成分综合分析仪采购项目
    燕山大学燃烧烟气成分综合分析仪采购项目(招标编SX2014111)于2014年11月24日开标,根据本项目招标文件和各投标单位的投标文件,按照评标原则和评标办法,经评标委员会评定,确定北京乐氏联创科技有限公司为燃烧烟气成分综合分析仪项目中标单位候选人,现予以公示。  公示时间自2014年11月26日-11月27日。 如有异议,可向燕山大学监察审计处投诉。
  • 第三十六届国际燃烧会议在首尔隆重召开
    LaVision在韩国首尔召开的国际燃烧会议(ISOC)上为燃烧领域的专家学者展示最前沿的创新产品。 LaVision公司自创建伊始,便以为燃烧领域提供先进的成像解决方案为己任。执着于这一信念,跨越超过25年岁月,始终如一,持之以恒,为LaVision公司赢得了引以为豪的声望。在首尔举行的第36届国际燃烧会议上,我们荣幸地展示了最新的产品创新成果。这一两年举办一次的会议活动为分享燃烧领域应用的相关想法和经验提供了一个理想的科学沙龙。火焰的LIF层析成像 我们的FlameMaster 3D-LIF成像系统可为湍动燃烧分析提供火焰中OH自由基的瞬态3D-LIF成像。采用多台配有双象器的增强型相机进行3D-LIF信号的层析重构。我们还展示了一幅题为“层流和湍动喷射火焰中的层析OH激光诱导荧光”研究进展海报。另外这种实验装置可以同时进行OH和燃料的3D-LIF成像测量。配备高速相机和高重复频率激光器还可进行时间分辨的3D-LIF成像。湍动喷射火焰中OH的瞬态3D-LIF层析重构成像背景纹影(BOS) BOS是一种简单,效费比高,对测试对象尺寸无限制的用于气体流动,混合以及热流体可视化测量的成像测试方法。LaVision的BOS成像测试系统可以测量绝对2维或轴对称流体,如锥状本生火焰的3维气体密度和温度场。BOS测量得到本生火焰3维温度场改进的致密喷雾激光成像测量 结构化激光照明平面成像(SLIPI)是一种用于喷雾特别是致密喷雾的高对比度创新成像技术。LaVision公司的SprayMaster喷雾测量系统支持时间平均和瞬态SLIPI喷雾成像。内窥式成像 内窥式(激光)成像广泛用于光学通道受限的燃气轮机,内燃机和工业炉窑等应用对象场合。LaVision提供多种可见光波段和紫外波段内窥镜用于PIV,LIF和火焰自发光观测。内窥镜产品包括用于相机和激光的型号。相逢在首尔 本次ISOC大会于7月31日至8月5日在首尔会展中心(Coex Convention & Exhibition Center in Seoul)举行。众多与会专家来到我们的展台对我们展示的智能成像测试系统表现了浓厚的兴趣,并就其个性化的需求和我们进行了卓有成效的交流。我们也为各位专家解决其测量任务给予了有价值的建议。更多关于该次会议活动的信息请访问该届大会和LaVision公司网站。
  • 青岛海关技术中心155.00万元采购燃烧试验箱
    基本信息 关键内容: 燃烧试验箱 开标时间: 2022-03-09 09:30 采购金额: 155.00万元 采购单位: 青岛海关技术中心 采购联系人: 吴振兴 采购联系方式: 立即查看 招标代理机构: 山东中钢招标有限公司 代理联系人: 孙娜 代理联系方式: 立即查看 详细信息 中华人民共和国青岛海关仪器设备计量检定校准项目公开招标公告 山东省-青岛市-城阳区 状态:公告 更新时间: 2022-02-15 项目概况 仪器设备计量检定校准项目招标项目的潜在投标人应在青岛市山东路177号鲁邦广场A座三楼306室获取招标文件,并于2022年03月09日9点30分(北京时间)前递交投标文件。 项目编号:SDSITC-01215711 项目名称:仪器设备计量检定校准项目 预算金额:155万元 最高限价(如有):155万元 采购需求: 第一包:仪器设备计量检定校准(一),采购预算(最高限价):105万元,数量:1宗; 第二包:仪器设备计量检定校准(二),采购预算(最高限价):50万元,数量:1宗。 合同履行期限:签订合同后一年。 本项目(不接受)联合体投标。 招标性质:本次青岛海关技术中心仪器设备计量检定校准项目性质为自有资金,数量详见下表,实施地点为青岛市城阳区新悦路83号,实施时间以合同签订时间为准。 第1包仪器设备计量检定校准(一) 序号 设备名称 数量 1 耐静水压测试仪 1 2 耐熨烫升华仪 1 3 喷淋试验机 1 4 垂直燃烧试验机 1 …… 总计 1881 第2包仪器设备计量检定校准(二) 1 钳形电流表 1 2 抗电强度测试仪 1 3 标准指针销 1 4 稳定性试验机 1 …… 总计 525 (一)满足《中华人民共和国政府采购法》第二十二条规定; (三)本项目的特定资格要求:(1)投标人须是省级及以上质量技术监督部门授权的法定计量检定机构或通过国家CNAS认可,具备相应检定校准能力,能够出具带有CNAS标识的检定或校准证书的企业。(2)近三年内在经营活动中无行贿犯罪及重大违法记录。(3)通过信用中国(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)、信用山东(credit.shandong.gov.cn)及信用青岛(www.qingdao.gov.cn/n28356080/index.html)查询,未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单。(4)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。(5)本项目不接受联合体投标。 时间:2022年02月16日至2022年02月23日,每天上午9:00至11:30,下午13:30至17:00(北京时间,法定节假日除外) 地点:青岛市山东路177号鲁邦广场A座三楼306室。 方式:投标人需携带单位营业执照复印件加盖单位公章或法定代表人授权委托书原件,按照上述时间、地点获取招标文件。 售价:¥200.0元,本公告包含的招标文件售价总和。 提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月09日9点30分(北京时间) 开标时间:2022年03月09日9点30分(北京时间) 地点:青岛市山东路177号鲁邦广场A座三楼303会议室。 自本公告发布之日起5个工作日。 本次招标公告在中国政府采购网和中华人民共和国青岛海关互联网门户网站发布。 (一)采购人信息 名 称:青岛海关技术中心 地址:青岛市城阳区新悦路83号 联系方式:吴振兴0532-58253626 (二)采购代理机构信息 名 称:山东中钢招标有限公司 地 址:青岛市山东路177号鲁邦广场A座306室 联系方式: (三)项目联系方式 项目联系人:孙娜 电 话:0532-85722157 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:燃烧试验箱 开标时间:2022-03-09 09:30 预算金额:155.00万元 采购单位:青岛海关技术中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山东中钢招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中华人民共和国青岛海关仪器设备计量检定校准项目公开招标公告 山东省-青岛市-城阳区 状态:公告 更新时间: 2022-02-15 项目概况 仪器设备计量检定校准项目招标项目的潜在投标人应在青岛市山东路177号鲁邦广场A座三楼306室获取招标文件,并于2022年03月09日9点30分(北京时间)前递交投标文件。 项目编号:SDSITC-01215711 项目名称:仪器设备计量检定校准项目 预算金额:155万元 最高限价(如有):155万元 采购需求: 第一包:仪器设备计量检定校准(一),采购预算(最高限价):105万元,数量:1宗; 第二包:仪器设备计量检定校准(二),采购预算(最高限价):50万元,数量:1宗。 合同履行期限:签订合同后一年。 本项目(不接受)联合体投标。 招标性质:本次青岛海关技术中心仪器设备计量检定校准项目性质为自有资金,数量详见下表,实施地点为青岛市城阳区新悦路83号,实施时间以合同签订时间为准。 第1包仪器设备计量检定校准(一) 序号 设备名称 数量 1 耐静水压测试仪 1 2 耐熨烫升华仪 1 3 喷淋试验机 1 4 垂直燃烧试验机 1 …… 总计 1881 第2包仪器设备计量检定校准(二) 1 钳形电流表 1 2 抗电强度测试仪 1 3 标准指针销 1 4 稳定性试验机 1 …… 总计 525 (一)满足《中华人民共和国政府采购法》第二十二条规定; (三)本项目的特定资格要求:(1)投标人须是省级及以上质量技术监督部门授权的法定计量检定机构或通过国家CNAS认可,具备相应检定校准能力,能够出具带有CNAS标识的检定或校准证书的企业。(2)近三年内在经营活动中无行贿犯罪及重大违法记录。(3)通过信用中国(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)、信用山东(credit.shandong.gov.cn)及信用青岛(www.qingdao.gov.cn/n28356080/index.html)查询,未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单。(4)单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。(5)本项目不接受联合体投标。 时间:2022年02月16日至2022年02月23日,每天上午9:00至11:30,下午13:30至17:00(北京时间,法定节假日除外) 地点:青岛市山东路177号鲁邦广场A座三楼306室。 方式:投标人需携带单位营业执照复印件加盖单位公章或法定代表人授权委托书原件,按照上述时间、地点获取招标文件。 售价:¥200.0元,本公告包含的招标文件售价总和。 提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年03月09日9点30分(北京时间) 开标时间:2022年03月09日9点30分(北京时间) 地点:青岛市山东路177号鲁邦广场A座三楼303会议室。 自本公告发布之日起5个工作日。 本次招标公告在中国政府采购网和中华人民共和国青岛海关互联网门户网站发布。 (一)采购人信息 名 称:青岛海关技术中心 地址:青岛市城阳区新悦路83号 联系方式:吴振兴0532-58253626 (二)采购代理机构信息 名 称:山东中钢招标有限公司 地 址:青岛市山东路177号鲁邦广场A座306室 联系方式: (三)项目联系方式 项目联系人:孙娜 电 话:0532-85722157
  • 我国学者研制出世界首台聚合物燃烧过程实时在线分析仪器与系统
    12月16日记者获悉,四川大学完成的“聚合物燃烧过程实时在线分析仪器与系统”项目日前通过成果鉴定,这是世界首台套能同时实时在线检测与分析聚合物阻燃性能、真实燃烧行为与阻燃机理的科研仪器。  有机高分子材料目前正广泛应用于国民经济和人民生活。与金属材料和无机非金属材料相比,有机高分子材料具有易燃性,易被引燃引发火灾。赋予有机高分子材料阻燃性,是从源头上解决易燃高分子材料引发火灾的有效措施。但由于缺乏能够实时在线精确分析聚合物燃烧过程的仪器,已有阻燃机理研究则仅是在非真实火环境下得到,不能有效指导阻燃化设计。鉴定现场。四川大学供图  为此,四川大学化学学院王玉忠院士团队经过近40年在高分子材料无卤阻燃领域系统的基础研究与应用研究,提出和发展了阻燃新理论和新方法,并开发出各种无卤阻燃高分子材料体系与阻燃技术,已在国内外企业中得到广泛应用。研究团队创制出的聚合物燃烧过程实时在线分析仪器与系统,能够科学表现聚合物真实燃烧行为,实时在线分析聚合物热释放、烟释放、瞬态自由基、官能团、精细化学结构、采集烟尘颗粒、表征燃烧和阻燃性能等,并同时原位分析燃烧行为和机理,填补聚合物燃烧实时在线分析检测领域空白。  日前,由中国仪器仪表学会组织的专家团队鉴定认为,该聚合物燃烧过程实时在线分析仪器和系统,技术难度大、创新性强、具有自主知识产权,各种性能及功能指标优于现有国内外用于阻燃研究的商品化仪器,整体技术处于国际领先水平。
  • 重磅!四川大学研制「世界首台」聚合物燃烧过程实时在线分析仪器
    近日,中国仪器仪表学会组织专家,对四川大学完成的国家自然科学基金委员会国家重大科研仪器研制项目(自由申请)成果“聚合物燃烧过程实时在线分析仪器与系统”进行鉴定,经鉴定认为,聚合物燃烧过程实时在线分析仪器是世界首台套能同时实时在线检测与分析聚合物阻燃性能、真实燃烧行为与阻燃机理的科研仪器,技术难度大、创新性强、具有自主知识产权,各种性能和功能指标优于现有国内外用于阻燃研究的商品化仪器,整体技术处于国际领先水平。目前,有机高分子材料已广泛应用于各领域,但因具有易燃性,易被引燃引发火灾,造成人员伤亡及财产损失。赋予有机高分子材料阻燃性是从源头上解决易燃高分子材料引发火灾的有效措施。川大研制的世界首台聚合物燃烧过程实时在线分析仪器(四川大学供图)但由于缺乏能够实时在线精确分析聚合物燃烧过程的仪器,已有阻燃机理的研究是在非真实火环境下得到的,不能有效指导阻燃化设计,甚至得出的结论对阻燃设计完全无效。目前,有机高分子材料的阻燃还不能完全上升到科学层面,更多的是凭经验设计。为此,四川大学化学学院王玉忠院士经过近40年对高分子材料的研究,提出和发展了阻燃新理论和新方法,并开发出各种无卤阻燃高分子材料体系与阻燃技术。研究团队在国家自然科学基金委员会国家重大科研仪器研制项目(聚合物燃烧过程实时在线分析系统的研制及其用于阻燃性能与气相阻燃机理研究)支持下,创制出聚合物燃烧过程实时在线分析仪器与系统,能够科学表现聚合物真实燃烧行为,实时在线分析聚合物热释放、烟释放等内容,并同时原位分析燃烧行为和机理,填补了聚合物燃烧实时在线分析检测领域空白。
  • 布鲁克推出高灵敏度碳硫元素燃烧分析仪G4 ICARUS 2系
    p  德国卡尔斯鲁厄-布鲁克于当地时间2018年9月27日宣布推出新的G4 ICARUSTM 2系产品,这是一款多功能,高灵敏度的燃烧分析仪,用于测量无机样品中碳和硫元素的浓度。G4 ICARUS 2系产品通过引入新式的,高灵敏度检测技术以及独特并经过行业验证的炉体,扩展了布鲁克紧凑,高效和低维护特色的燃烧分析仪产品线。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/9b9b7a5e-cdf9-4f13-b61a-3e7c6630a271.jpg" title="G4 ICARUS 2系-高性能碳硫分析仪.jpg" alt="G4 ICARUS 2系-高性能碳硫分析仪.jpg" width="400" height="442" border="0" vspace="0" style="width: 400px height: 442px "//pp style="text-align:center"strongspan style="text-align: left "/spanspan style="text-align: left "G4 ICARUS 2系-高性能碳硫分析仪/span/strongbr//pp style="text-align: left " G4 ICARUS 2系配备了基于非色散紫外(NDUV)吸收光度测定法的HighSenseTM LED源探测器,该法用于硫元素的检测。与传统的红外吸收探测器相比,HighSenseTM的信噪比提高了十倍,线性动态范围提高五个数量级,其不会受到光谱或热的干扰。基于这种新式检测技术,G4 ICARUS 2系在分析精度和准确度方面优于传统燃烧分析仪,使其成为科研和工业实验室中严苛应用需求的理想工具。br//pp  G4 ICARUS 2系的炉区采用布鲁克独特的ZoneProtectTM技术进行屏蔽,确保清洁,高效的燃烧,低维护和低运营成本。ZoneProtect的集成自动清洁功能可将循环时间缩短至1分钟以内,从而提高样品通量。这使得G4 ICARUS 2系成为原料金属制造,陶瓷,采矿和水泥行业质量控制的绝佳选择。/pp  span style="color: rgb(79, 129, 189) "布鲁克燃烧分析业务产品线经理Peter Paplewski博士评论道:/spanispan style="color: rgb(79, 129, 189) "“我们HighSense检测器与ZoneProtect炉体技术相结合所获得的分析性能开启了硫元素测定的新时代。G4 ICARUS 2系为科研实验室提供分析精度,准确度和长期稳定性,同时提供工业环境中所需的经过验证的效率,耐用性和速度。这使得G4 ICARUS 2系成为所有无机固体样品碳硫分析的绝佳选择。”/span/i/ppbr//p
  • 确立680℃燃烧法、TOC走向世界
    1980年中国天津举办国际展会,岛津展出TOC-10B仪,这是TOC仪的海外首次亮相,森田作为展示说明人员也参加了此次展会。在当时的中国,TOC仪还是新颖且有些陌生的仪器。当时的天津,大街上满是穿着人民制服骑着自行车的人们,这点给森田留下了深刻的印象。 1983年研发完成的TOC-500给岛津TOC仪带来突破性进展。测量的基本单元发生了显著变化。也就是说,燃烧温度由原来的950°C变更为680°C。必须100%测量所有有机物的TOC仪,无可厚非燃烧温度越高越好。但是,当样品中含有盐分时使用950°C燃烧法,高温下熔化的盐分会侵蚀燃烧管和催化剂,会大幅缩短燃烧管的寿命。海水和许多废水中都含有盐,因此影响很大。森田用反向思维解决了这个问题,先设定680°C燃烧温度可满足必要的性能,之后研究了燃烧方法、氧化催化剂和数据处理方法等。罗曼罗兰曾说:“每个人都有他的隐藏精华,和任何别人的精华不同,它使人具有自己的气味。”然而大多数人会在汹涌人潮背后随波逐流,多数人会沿袭前人道路,将权威学说全盘接受,而森田不落窠曰,他以笃定的自我信念守护思维的火种,明确设想,埋首推演、试验,论证了680°C这一有效燃烧温度。 森田还改变了一直以来TOC仪运维作业中重要难点--燃烧管的更换方式。这一改良大大缩短了作业时间,这引起了海外用户的关注。1987年匹兹堡展览上展出岛津TOC-500,这是在美国举办的规模宏大的分析仪器展览会,为了展示TOC-500的易维护性,森田通过简单的操作,在几分钟内完成了运行中TOC-500的燃烧管更换,看到此过程的观众露出了惊讶的表情。这是因为为确保950°C型燃烧温度TOC仪燃烧管不发生破裂,在更换时必须先切断电源等待电炉温度下降,然后打开装置,打开电炉,更换燃烧管后再组装成原样,之后通电等到950°C,实质上这一流程需要一天的时间。 TOC-500的首次海外展出也在中国。在美国匹兹堡展的2年前,即1985年,在北京举行的国际性展览会上展出了该仪器,森田也参加了该展会,与5年前的天津展会相比,对TOC监测仪感兴趣的参展者有所增加,几天的展会上一直有观众前台展台参观TOC并细心询问仪器情况。另外,在岛津完成680°C燃烧法研发时,日本的TOC仪的法定方法 (JIS) 中采用的是900°C燃烧法。作为TOC仪器JIS方案制定委员的森田向委员会提交了使用680°C燃烧法可实现同样性能的证明数据,之后法定方法中也承认了680°C燃烧法。 具有突出特点的产品商品力很强。TOC-500的推出,不仅在国内市场,在进入的海外市场也获得了很高的声誉。广泛应用在欧洲的大型化学、药品厂家和美国南部的石油精炼、化学厂家。在礼节性拜访瑞士著名药品厂商时,该公司实际操作仪器的技术人员走过来对森田说“一直以来,我使用了很多TOC仪器,但岛津TOC-500是第一”,森田感到非常高兴。 未完待续… …
  • 原子荧光光谱仪在焚烧法处理垃圾的应用
    原子荧光光谱仪也叫做原子荧光光度计因为其检出限低、稳定性好、线性范围宽等特点被广泛应用的环保领域,例如用燃烧法处理垃圾。用焚烧法处理垃圾,减量化效果显著、节约用地,还可消灭各种病原体,是城市垃圾处理的主要方法之一。而原子荧光光谱仪作为检测重金属的主要仪器,在其中主要的用来检测焚烧垃圾产生的烟气以及残渣中的重金属。焚烧法处理垃圾是通过适当的热分解、燃烧、熔融等反应,使垃圾经过高温下的氧化进行减容,成为残渣或者熔融固体物质的过程。在这其中需要注意烟气的排放,否则会使烟气中的重金属等污染物进入大气形成二次污染。在这个过程中,原子荧光光谱仪用来检测烟气中重金属含量,在《环境化学》中收录了一篇名为《垃圾焚烧飞灰重金属元素分析标准样品研制》的文章,作者列举了原子荧光法等三种分析重金属样品的分析方法,在环境标准《HJ 1133-2020 环境空气和废气 颗粒物中砷、硒、铋、锑的测定 原子荧光法》要求使用原子荧光法检测烟气中的重金属元素。另外,焚烧后的残渣也需要使用原子荧光光谱仪检测,例如应用《YS/T 1171.7-2017再生锌原料化学分析方法 第7部分:砷量和锑量的测定 原子荧光光谱》、《YS/T 1171.8-2017再生锌原料化学分析方法 第8部分:汞量的测定 原子荧光光谱法和冷原子吸收光谱法》检测再生锌中砷、锑、汞等重金属的含量。除了在垃圾焚烧之外,原子荧光光谱仪还被广泛应用的水质、土壤等环境样品中砷、汞等重金属元素的检测中,为我国环保事业做出积极贡献。作为原子荧光行业领跑者的金索坤专注于原子荧光光谱仪的研发生产二十余载,推出SK-2003A便捷型原子荧光光谱仪、SK-乐析测汞型原子荧光光谱仪等产品助力重金属检测。金索坤还会不断地推陈出新,用更加优质的原子荧光产品为我国环保事业贡献力量。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 燃烧假人技术难题,莫帝斯一举攻克
    自2018年以来,莫帝斯历经三年,一举攻克了燃烧假人的所有技术难点!自接到北京市劳动保护科学研究所的项目以来,莫帝斯组织精兵强将并会同业内的专业人士共同研发制造,攻克了众多技术难点,终于突破了该产品的所有技术难关。 目前该产品不仅仅获得了北京市劳动保护科学研究所技术专家的认可,同时通过了美国UL工作人员现场技术审核,审核中“裸体”校准测试以及标准服测试一次性获得了通过,同时数据和美国杜邦数据进行了比对,所有的结果均取得了优势的成绩。 燃烧假人作为燃烧仪器“皇冠上的明珠”,集成了众多技术难点。如燃烧假人在测试过程中,需要1秒钟采集到1240个数据并进行计算分析,得出二级烧伤和三级烧伤的数据;火焰吞没模型需要无死角地将火焰强度均匀施加在不规则的假人表面,以获得均匀的火场暴露值;烧伤模型的建立,需要在数据后台进行上万次的运算等等。?莫帝斯燃烧技术(中国)有限公司成立于2008年,为全资的中国民族企业,其产品品牌为“莫帝斯”,其取义为Metis,她在古希腊神话中是水文和聪慧女神,是大洋河流之神俄刻阿诺斯和大洋女神泰西斯的女儿,也是雅典娜的母亲,她在一切生物中是最聪明的。“莫帝斯”品牌的寓意在于,我们的目标就是要制造出人性化和智能化的测试仪器,同时,当我们走出国门,进行品牌的推广时,便于提高海外市场的认知程度,避免因为品牌直译而产生的歧义。莫帝斯燃烧技术(中国)有限公司自成立以来,在国内拥有众多知名用户,如公安部四川消防研究所、公安部天津消防研究所、公安部上海消防研究所、公安部沈阳消防研究所、中国标准化研究院、中国铁道科学研究院、中国船级社远东防火检测中心、中国科学院力学研究所、清华大学、中国科技大学、北京理工大学、浙江理工大学、北京化工大学、浙江工业大学、中原工学院、中国南车、德国TUV南德意志集团、瑞士SGS通标标准技术服务有限公司、青岛四方车辆研究所等,莫帝斯致力于提供优质的燃烧测试仪器,为中国的阻燃材料以及燃烧测试研究提供最为有力的科研及检测武器。
  • 燃烧脂肪 改善糖尿病 这个细胞因子“一箭双雕”
    11月24日,暨南大学医学部生物医学转化研究院教授尹芝南团队与合作者,在《自然》在线发表的研究成果显示,白细胞介素27(IL-27)具有促进脂肪细胞产热和能量消耗的作用,其主要响应细胞是脂肪细胞而非免疫细胞,并且IL-27具有减轻肥胖和提高胰岛素信号敏感性,即改善2型糖尿病的治疗作用。  “这一工作历时7年才得以完成。”尹芝南对《中国科学报》表示。  发现减肥新靶点  近年来,随着富含脂肪和糖等高能量食品的摄入持续增加,以及越来越多的工作为久坐形式,人们罹患超重或肥胖的比率快速上升。世界卫生组织流行病学调查显示,2016年,18岁以上的成年人中有超过19亿人超重(身体质量指数即BMI≥25),其中超过6.5亿人为肥胖(BMI≥30),流行率与1975年相比增长近3倍。  “肥胖的根本原因是卡路里的摄入超过消耗,引起能量以脂质形式在脂肪细胞中堆积,而免疫细胞深度参与此过程。因而,寻找新的治疗靶点,尤其是直接靶向脂肪细胞而有效减重的分子尤为迫切。”尹芝南说。  尹芝南长期从事免疫与健康的基础和临床研究,在T细胞领域取得一系列开创性成果,并将研究成果成功应用于临床转化。此次,尹芝南团队通过构建多种基因工程小鼠,进行高脂饮食诱导的肥胖模型,并结合肥胖人群样本发现,肥胖人群血清中IL-27水平下降;突破了传统观念中IL-27专一性靶向免疫细胞的认知,首次发现IL-27通过直接作用于脂肪细胞,导致白色脂肪细胞棕色化,并激活UCP1介导的“脂肪燃烧”;通过将脂肪组织中的脂质转变为热量消耗掉,从而达到降低体重和改善糖尿病等代谢性疾病的目的。  “体重增加,从表面上来看是脂肪细胞增大,但根本原因是胰岛素抵抗。”尹芝南解释,团队发现的IL-27作用于脂肪细胞燃烧,一方面是减肥,但最主要是改善了胰岛素抵抗。改善胰岛素抵抗,对治疗肥胖及很多疾病都具有重要意义,如脂肪肝、多囊卵巢综合征等。  尹芝南指出,该研究突破了对IL-27仅专注于调节免疫系统的传统认知,为肥胖及其相关代谢性疾病的治疗提供了新的靶点和潜力药物,而IL-27作为体内正常表达的分子,具有良好的安全性,因而具有巨大的临床应用潜力和市场价值。不过,他也同时强调,从实验室到临床,还有很长的路要走。  “在肥胖过程中是哪个细胞产生IL-27?IL-27在脂肪细胞的相互作用过程中有没有受到其他细胞的作用,有没有受到情绪的影响?这些都是团队接下来要做的基础研究。”尹芝南说。  躺平燃烧卡路里?  传统观点认为,免疫细胞尤其是T细胞、B细胞和巨噬细胞,是IL-27的主要响应细胞,而脂肪组织局部含有大量的巨噬细胞和T细胞。  为了探究IL-27通过何种细胞发挥改善肥胖的作用,尹芝南团队构建了IL-27Rα的条件性敲除小鼠。他们意外发现,在T/B细胞和巨噬细胞中特异性缺失IL-27Rα,都不影响小鼠对高脂诱导肥胖的易感性。这促使作者猜想,IL-27是否还有其他未被发掘的响应细胞。  为此,尹芝南团队利用IL-27Rα全身性敲除小鼠开展了骨髓嵌合实验,并进行了高脂饲喂或寒冷刺激。结果发现,IL-27信号主要通过非造血系统来源的细胞影响产热与肥胖进程。一个大胆的想法在尹芝南脑海中产生:IL-27是不是可以直接靶向脂肪细胞来促进产热、改善肥胖进程呢?  为了验证上述假设,研究人员首先分离了脂肪组织中的脂肪细胞组分,发现上面确实有IL-27Rα的表达;对体外分化的原代脂肪细胞进行免疫荧光染色,也可以观察到IL-27Rα的阳性表达;并且IL-27处理体外分化的脂肪细胞可以上调UCP1的表达。  于是,他们再次构建了脂肪细胞上特异性缺失IL-27Rα的小鼠和棕色/米色脂肪细胞特异性缺失IL-27Rα的小鼠,这些小鼠也的确表现出对肥胖诱导和寒冷刺激实验的易感性。这些结果表明,IL-27确实可以直接靶向脂肪细胞,以促进产热、减轻肥胖。  “我们在动物实验中,注射重组IL-27可以显著减轻肥胖小鼠的体重并改善胰岛素信号敏感性,初步验证了IL-27作为治疗药物的潜力。”论文共同第一作者、暨南大学附属珠海市人民医院博士后王倩解释,该研究成果的主要优势是IL-27是在本体表达的蛋白,不是人工合成的外源性化合物。  “我们可以在不用限制饮食、不用节食的情况下改善2型糖尿病、燃烧脂肪、减轻体重,从机制上改善胰岛素信号的敏感性。”论文共同第一作者、暨南大学附属珠海市人民医院博士后李德海介绍。  “我们非常期待能够尽快将这一治疗靶点产业化,推动其临床应用,研发出RNA相关药物,为肥胖、糖尿病、脂肪肝等一系列代谢性疾病提供一个全新的治疗方法。”尹芝南还透露了另一研究方向——通过IL-27水平变化,预判身体健康状况。  相关论文信息:https://doi.org/10.1038/s41586-021-04127-5
  • 精准调控 SERS基底研究越发多样化——第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议报告集锦
    从1974年,有关拉曼增强的第一篇文章发表到现在已经快50年了。特别是1997年, Nie和Kneipp等人观察到单分子SERS现象,SERS相关研究走向热潮。数十年来,科研工作者制备了各种类型的SERS基底。不过,随着研究的深入,以及相关应用领域的拓展,如火如荼的SERS研究也不仅仅是科研专家攻关的课题,同时也面临商业化和实际应用的挑战。基于此, SERS研究越来越深入,科研专家的研究工作已经从最初的“是什么”,到“为什么”、“怎么做”,并且开始有目的的进行精细化的结构和功能调控,以及相关的验证和评价。由此,SERS基底的研究也愈发多样化。第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术会议暨第六届燃烧诊断会议期间,南开大学谢微教授、中山大学陈建研究员、武汉纺织大学沈爱国教授分别介绍了不同类型SERS基底的设计和制备。南开大学 谢微教授《原位增强拉曼光谱在纳米催化中的应用研究》催化表界面表征可解释催化机理并指导高性能催化剂的制备,然而表界面多相环境复杂、界面物种难以分离纯化,对其进行原位分析检测十分困难。对催化反应进行SERS检测的关键在于制备同时具有催化和等离激元两种性质的金属纳米结构。基于此,谢微教授课题组设计并合成了双功能SERS基底纳米粒子,实现了多种纳米粒子催化反应的SERS检测。纳米粒子催化反应的SERS检测可以对表界面中间物种进行识别,进而分析界面活性中心,还可以对催化表界面电场及电荷转移进行分析。谢微教授说,这些研究表明SERS在表界面化学分析中将发挥越来越重要的作用。中山大学陈建研究员《范德华二维晶体 α-MoO3的性能调控及 SERS 应用》二维材料由于其独特的层状结构及优异的物理化学性质,被广泛的应用于各个领域。二维材α-MoO3作为一种重要的n型半导体,其形状、尺寸和性能均具有良好的可调性。对MoO3性能调控和缺陷的研究是目前的热点问题。陈建研究员采用可控的离子插层的方法将H离子插入MoO3纳米片的范德华间隙,从而调控MoO3的SERS性能。其探究了插层H离子溶液浓度和插层程度对MoO3增强效果的影响,证实了插层程度对增强效果有影响,插层程度越重,增强效果越好。插层H离子的MoO3纳米片对探测分子R6G和MB都表现出良好的灵敏度,探测极限低至10-8M,增强因子可达10-4。武汉纺织大学 沈爱国教授《有机表面增强拉曼光谱及其应用》建立复杂样品精准分析的新方法和新技术一直都是化学测量学的前沿领域。据沈爱国教授介绍,针对有机半导体SERS基底结晶度低和晶相杂乱,无法发挥潜在的光电性能的弊端,他们课题组在前期实验工作基础上,大胆提出合成和筛选了高结晶度有机半导体单晶材料,从功能上替代,从性能上超越无机半导体,助力有机表面增强拉曼散射(OSERS)继贵金属和无机半导体SERS之后真正迎来新的时代。沈爱国教授介绍道,有机半导体单晶的物理和化学性质类似无机半导体,具有精确的能级结构,且通过化学剪裁和修饰可轻易改变单体性质和半导体聚集态的能级结构,为高特异地定向检测分析物带来了无限可能。三位专家的报告引发大家的极大关注,贵金属、无机半导体、有机半导体……大家就SERS基底的发展历程,物理增强和化学增强等多个话题进行了讨论。大家纷纷表示,每一类SERS基底都有优势,也有其局限性。特别是有机表面增强拉曼散射目前相关的研究还不是很多,未来的发展走向值得大家关注。而从应用落地的角度出发,未来如何建立复杂体系分析物有效定性和精准定量的普适方法是大家共同努力的方向!
  • 锅炉燃烧试验中心开建 总投资2亿元
    8月7日,世界最先进的锅炉燃烧试验中心在哈电集团哈尔滨锅炉厂有限责任公司正式开工建设。试验中心建成后,将成为世界热容量最大、系统功能最完善、控制系统最先进、最接近工程实际的技术先进的综合性大型燃烧试验平台,对提高我国发电设备的燃烧效率,降低SO2、NOx、CO2的排放,有效节约能源、保护环境意义重大。  据悉,该项目总投资为2亿元,占地面积约6000平方米,包括热态实验台、冷态实验台和煤化分析实验室。项目首期建设30兆瓦燃烧验证热态试验台,10兆瓦多功能燃烧热态试验台,50千瓦一维炉热态试验台以及全炉膛冷态模化试验台,预计明年下半年投入使用。据介绍,锅炉燃烧试验中心以建设国家级技术研究中心为目标,无论是试验台容量的选择还是研究方向的定位均将达到“中国最好,世界一流”的水平,将成为我国提高机械工业技术创新能力的重要基地。该燃烧试验中心还将具备煤、灰的成分和特性分析能力,自主研发新型燃烧器能力和锅炉燃烧特性研究能力等。
  • 成都建成中西部首个国家燃烧实验室
    9月6日,成都市产品质量监督检验院电线电缆燃烧特性国家级实验室技改升级后正式投运。据悉,该实验室当前的技术水平和综合能力为国内领先,多项检验能力均为西南地区独家具备。  电线电缆产业是我国仅次于汽车产业的第二大产业,产品品种满足率和国内市场占有率均超过90%。但从产业发展水平来看,还存在行业集中度低、技术力量分散、产品科技含量不高等问题。为适应电线电缆产业发展,占领产业高端,成都市产品质量监督检验院建立了国家电线电缆燃烧实验室,填补了西部地区无阻燃、抑烟以及无卤性能电线电缆检测的空白。   成都国家燃烧实验室总面积660m2,总资产300多万元,拥有电缆耐火特性(冲击带喷淋)试验装置、成束电缆燃烧试验装置等20余台(套)专用设备,能够进行电缆燃烧烟密度测量、卤酸气体释出测定、单根绝缘电缆燃烧、水平燃烧等13项试验,形成了阻燃、耐火、低烟无卤电线电缆产品的全项检测能力,同时预留了低压成套设备母线槽产品水平燃烧、变压器产品燃烧和矿用电缆燃烧的发展空间。目前,国内只有北京、上海、江苏、广东拥有具备电线电缆多种项目检测能力的同类燃烧实验室。成都建立的国家燃烧实验室设备自动化操作程度高,实验过程和实时再现监控能力强,技术水平、综合能力达到了西部第一、国内领先水平。  电线电缆燃烧特性检验对于普通人来说可能并不熟悉,但这项性能的系列指标其实关系到千家万户的安全。成都质检院电器检测中心工程师李健告诉记者,电线电缆的燃烧特性除了包括了高温条件下是否能正常工作等,还包括了在燃烧状态时产生的烟浓度等,“现在的高层建筑越来越多,这些指标不但关系控制安全隐患,在发生火灾之类的灾难时也能减低损失。”  据介绍,随着中国经济的快速发展,各行各业特别是高层建筑、地铁工程、易燃易爆场所建设对高性能的阻燃、耐火、低烟无卤电线电缆产品需求量急剧增加,加之各级政府对重大工程的质量安全以及老百姓对居住环境消防安全的高度重视,相应的阻燃、耐火、低烟无卤电线电缆产品也成为市场推广的必然趋势。  “我们正是综合分析了原有实验室能力和对现有标准的满足程度,实施了此次重大技改升级工程。”实验室相关负责人告诉记者,目前的实验室新增了母线垂直燃烧试验装置、冲击带喷淋试验装置等,多项检验能力均为西南地区独家具备,“成都地铁所用本地企业生产的电线电缆就是送我这里检验。”  据悉,成都市产品质量监督检验院电线电缆燃烧特性实验室是目前西南唯一的一家国家级实验室。此次技改升级投运后,预计每年可为西南地区相关企业节约研发测试、长途包装运输、特性试验等各项费用数千万元。
  • 威卡威佛吉亚汽车内饰有限公司与我们汽车内饰燃烧试验箱合作成功
    秦皇岛威卡威佛吉亚汽车内饰有限公司与我们汽车内饰燃烧试验箱合作成功汽车内饰材料燃烧试验箱适用范围:本燃烧试验装置适用于鉴别汽车(轿车、多用乘客车、载货汽车和客车)内饰材料水平燃烧特性。满足GB8410、TL1010、GM6090M、DIN7520、GM9070P、MVSS302的标准规定。一、主要参数:1、 该设备由控制箱、燃烧箱、燃烧灯、电磁阀、高压点火器、试品夹具、煤气管和信号控制线组成;2、 燃烧时间:0~99.99/S/M/H;3、 燃烧箱:由不锈钢箱制作,长385mm,进深204mm,高度360mm;燃烧箱底部设10个直径19mm 的通风孔,四壁靠近顶部四周有宽13mm的通风槽。整个燃烧箱由4只高10mm的支脚支承着。在燃烧箱顶部设有安插温度计的小孔,此孔设在顶部靠后中央部位,中心距后面板内侧20mm。4、 煤气灯喷咀内径为9.5mm;5、 喷咀口部中心处于试样自由端中心以下19mm处;6、 金属梳的长度至少为110mm,每25mm内有7~8个光滑圆齿;7、 钢板尺精度1mm;8、电源:220V/50Hz9、气源:煤气或石油液化气10、通风橱:燃烧箱应放在通风橱中,通风橱内部容积为燃烧箱体积的20~110倍,而且通风橱的长、宽、高的任一尺寸不得超过另外两尺寸中任一尺寸的2.5倍。(本仪器已配置)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制