当前位置: 仪器信息网 > 行业主题 > >

瓶装水臭氧发生器

仪器信息网瓶装水臭氧发生器专题为您提供2024年最新瓶装水臭氧发生器价格报价、厂家品牌的相关信息, 包括瓶装水臭氧发生器参数、型号等,不管是国产,还是进口品牌的瓶装水臭氧发生器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合瓶装水臭氧发生器相关的耗材配件、试剂标物,还有瓶装水臭氧发生器相关的最新资讯、资料,以及瓶装水臭氧发生器相关的解决方案。

瓶装水臭氧发生器相关的方案

  • 瓶装水检重
    我们的天平可为检查瓶装水重量提供可靠的解决方案。使用具有设定限值的检重程序和称重视觉辅助功能,可以准确控制水量或标称毛重,比在灌装线中嵌入天平技术更加准确、实惠。您可获得各种格式的结果,通过Cubis® II(以太网、USB和RS232)、Quintix® (USB)和Entris® II(USB和RS232)的通信端口,可将我们的天平快速、轻松集成到灌装流程中。 振动、气流、温度变化可能是瓶装水生产工厂面临的主要难题,我们的天平可快速稳定。通过调整防震级别、借助Quintix® 和Entris® II的水平指示器或使用Cubis® II(MCA)天平的水平监控和自动调整功能,可以始终保持天平水平以便快速称量。
  • 出口瓶装水品质如何,难逃流动注射“法眼”
    北京吉天仪器有限公司自主研发的FD-800卤素测定仪、FIA 6000+流动注射分析仪和iFIA7流动注射分析仪,性能优秀,检测结果准确可靠,符合新行业标准的要求,能够为出口瓶装水氟、氯、总硬度的检测提供全面的解决方案。
  • 青岛盛瀚:离子色谱检测瓶装水中痕量溴酸盐
    目的:摸索国产仪器对于瓶装水中溴酸盐的测定方法以及国产仪器对于瓶装水中痕量溴酸盐检测的贡献;方法:采用青岛盛瀚CIC-200型离子色谱仪,选用Shodex IC SI-52 4E型分析柱,进样体积为300μl;采用吉大小天鹅溴酸盐快速检测仪器,对样品浓缩后进行检测;结果:溴酸盐浓度在10~100μg/L范围内具有良好的线性关系(r=0.9996),RSD4%,样品加标回收率为78% ~97%。对从超市购买的瓶装水样品进行测定均符合国家标准所规定的最高允许浓度(10μg/L),并且与快检仪器结果吻合。结论:国产仪器价格低廉,操作简单,分析快速,虽然灵敏度达不到国外仪器的灵敏度,但是对于瓶装水中溴酸盐的检测具有一定作用。
  • 离子色谱检测瓶装水中痕量溴酸盐
    目的:摸索国产仪器对于瓶装水中溴酸盐的测定方法以及国产仪器对于瓶装水中痕量溴酸盐检测的贡献;方法:采用青岛盛瀚CIC-200型离子色谱仪,选用Shodex IC SI-52 4E型分析柱,进样体积为300μl;采用吉大小天鹅溴酸盐快速检测仪器,对样品浓缩后进行检测;结果:溴酸盐浓度在10~100μg/L范围内具有良好的线性关系(r=0.9996),RSD4%,样品加标回收率为78% ~97%。对从超市购买的瓶装水样品进行测定均符合国家标准所规定的最高允许浓度(10μg/L),并且与快检仪器结果吻合。结论:国产仪器价格低廉,操作简单,分析快速,虽然灵敏度达不到国外仪器的灵敏度,但是对于瓶装水中溴酸盐的检测具有一定作用。
  • 瓶装水三卤甲烷分光光度法检测在可口可乐公司的应用
    该应用 进一步证明三卤甲烷分光度法 在准确度和精方面可完全满足标要求,媲美 准确度和精方面可完全满足标要求,媲美 传统的色谱检测法。 与此同时 ,分光 光度法 在成本上的优势是 气相 色谱法 无法企及的 。2018年 6月,全国第一部生活饮用水质地方标准《 ,全国第一部生活饮用水质地方标准《 ,全国第一部生活饮用水质地方标准《 ,全国第一部生活饮用水质地方标准《 上海市 生活饮用水质标准》 正式 发布, 新增常规指标 5项,其中就包括三卤甲烷( 总量 ),证明三卤甲烷 的受重视度愈来高 。分光 光度法作为一种高效便捷的方补充, 应适当 推荐 给瓶装水企业和自来行的客户 ,满足不 同的应用和测试需求 。
  • 使用 Fusion 紫外/过硫酸盐 TOC 分析仪分析瓶装水的 TOC
    本应用说明展示了 Teledyne Tekmar Fusion UV/过硫酸盐分析仪 ,测量五个常用瓶装水品牌中低水平 TOC 的能力。瓶装水样品的来源和净化方法各不相同,包括:两种天然含水层、一种蒸汽蒸馏、一种反渗透和一种两级微滤/紫外线消毒,所有结果都具有 10% 的准确度窗口(基于经认证的检查标准浓 度),以及 7.0% 或更低的精确度(基于一式三份运行的样品和标准的计算 %RSD)。
  • 离子色谱双通道自动进样同时分析瓶装水中阴阳离子
    本文建立了一种离子色谱双通道自动进样同时分析检测瓶装水中阴阳离子的方法。所测离子包括消毒副产物溴酸盐,常规阴离子F-、Cl-、NO2-、Br-、NO3-、SO42-以及常规阳离子Na+、K+、Mg2+、Ca2+。其中溴酸盐能够准确定量到5μg/L,远远低于国家标准中10μg/L 的限量要求,完全可以满足检测需求。使用自动进样系统实现阴阳离子同时进样分析,简便快捷,无需变换系统,一次性完成阴阳离子分析测定。此方法用于实际样品的检测获得满意结果,可用于瓶装水的批量检测。
  • 红外显微镜分析瓶装水中的微塑料
    瓶装水替代饮用自来水在市场内销售,越来越多的人反对使用一次性塑料瓶,因为这些塑料瓶最后可能会完好无损的进入环境(其需要很多年来降解),或者是分解成更小的碎片和颗粒后,作为次生微塑料进入环境。红外(IR)光谱是识别聚合物的主要分析技术,使用红外显微镜可检测和识别微塑料小至只有几微米大小的颗粒。显微红外经证实是检测和鉴别瓶装水中是否存在微塑料的卓越分析技术,采用适当的样品收集和净化方法,该技术还可应用于其他含有微塑料的样品。
  • 使用 Agilent Cobalt Insight 系列对瓶装水误报率的研究
    对水的总误报率为 0.024%。Agilent Cobalt Insight 系列对瓶中液体、气溶胶和凝胶的检测符合 ECAC B 型和 A 型的标准 3。水和软饮料的区分经常被认为是解决液体筛查限制问题的潜在标准。本应用简报介绍了使用 Insight 系统对各种市售水以及装在常规可重复使用容器中的自来水测试得到的研究结果。所测试的瓶装水包括装在饮料瓶中的自来水、不含气泡和含气泡的矿泉水、有味道的水、开胃水和苏打水(表 1)。这些水的矿物质含量(总固体残留物)从 0 mg/L(纯水)到 3000 mg/L(高矿物质含量)不等。同时,所测试的瓶子大小和填充水位的多少也不相同。使用几个不同的 Insight 系统对 72 种不同的水产品样品进行了 12360 次测试。结果仅获得三次误报,对应误报率为 0.024%。
  • 瓶装水分析质量控制
    为了保证瓶装水的品质,您必须对水源和纯净水进行分析测试。为了获得最.佳的测试结果,您需要使用优质的样品制备工具,例如移液器、实验室天平、针头滤器、滤纸和纯水系统。测试内容:矿物质、农药和化合物等化学物质;赛多利斯提供所有关键的产品和解决方案,便于您快速、简便地制备样品,并确保您的水满足现行安全法规,包括1998年11月3日颁布的关于人类饮用水水质的欧洲理事会第98/83/EC号指令以及美国FDA 21 CFR 165.110对化学物质和微生物污染物的法规和限值。
  • 氢气发生器用于培育钻石
    无需大量氢气钢瓶,Peak氢气发生器帮您消除安全隐患,消除气瓶的麻烦和不便,以及提供安全、可靠和稳定的实验室气源。
  • 使用Optima 7300DV ICP-OES分析地表及瓶装水中的微量金属元素
    文中使用了Optima 7300DV ICP-OES对饮用水及瓶装水中微量金属元素进行了检测,共分析了Al,Ag,Ba,Be等16种元素,结果表明,测量的重现性、准确性及结果稳定性俱佳。
  • 瓶装水中痕量溴酸盐检测方法的比对_离子色谱法与快速检测法
    0.999),最低检出限为7.0 μg/L,样品加标回收率为70.96% ~ 97%,相对标准偏差小于4%(n=6)。快速检测方法采用GDYS-104SI 溴酸盐快速检测仪,样品经微波浓缩5倍后比色测定。本文分别采用上述两种方法对市售的16 种瓶装水中的溴酸盐进行检测和结果比对。结果表明两种方法的检测数据基本吻合,均能满足现有标准的检测要求。
  • 准确分析瓶装饮用水中的微塑料——使用 Agilent 8700 LDIR 激光红外成像系统
    微塑料是指粒径在 1 μm 与 5 mm 之间的小塑料颗粒。据报道,由于废弃物管理不当和塑料污染,微塑料目前广泛存在于环境中[1,2]。但是,微塑料的膳食暴露途径目前尚不明确。据计算,瓶装水的消费量将以每年 7% 的速度增长,预计到 2025 年,全球瓶装水的平均总消费量将达到 5130 亿升[3]。本研究展示了 Agilent 8700 LDIR 激光红外成像系统如何准确鉴定和定量瓶装饮用水中存在的微塑料。本研究还展示了Agilent Cary 630 FTIR 光谱仪用于研究微塑料污染源的能力。
  • 使用氢气发生器时出现故障怎么解决
    我们在日常实际操作氢气发生器的时候,可能经常会碰到氢气发生器操作中不产生氢气的情况,我们可以从下面几个故障原因自检以下。
  • 流动注射氢化物发生器的维护及故障排除
    使用和存放时都不可将发生器倒置或横放, 以免呼吸管内水流出, 在零度以下,运输时或室内存放, 应将呼吸管内水放尽。在零度以上运输时可将呼吸管上口外露的软管用夹子夹紧, 防止水流出, 使用前将夹子取下。
  • 引发PET瓶装食用油变质的残氧量分析与控制
    引发PET瓶装食用油变质的残氧量分析与控制摘要:塑料瓶装食用油随处可见,但由于塑料本身的性能差异较大,由此包装的食用油在贮运期间的氧化变质问题愈发突出。根据食用油的变质机理,氧气是诱发瓶装食用油氧化变质的主因。经过对瓶装食用油顶空气体中氧含量的测试和氧气来源分析,生产过程中的氧气残留和包装材料的氧气渗透在一定程度上加速了食用油的氧化进程,因此避免食用油生产过程中的氧气接触、提高瓶体整体的阻隔性及密封性、加强包装质量检测和控制方能有效控制瓶装食用油的氧化变质。关键词:食用油、PET瓶、氧气、渗透性了解关于更多相关仪器信息,您可以登陆济南兰光公司网站查看具体信息或致电0531-85068566咨询。Labthink兰光期待与行业中的企事业单位增进技术交流与合作。
  • 杭州科晓:使用Optima 7300DV ICP-OES分析地表及瓶装水中的微量金属元素
    文中使用了Optima 7300DV ICP-OES对饮用水及瓶装水中微量金属元素进行了检测,共分析了Al,Ag,Ba,Be等16种元素,结果表明,测量的重现性、准确性及结果稳定性俱佳。
  • 高普科学桌下式氮气发生器(三路气体)专为SCIEX LC-MS设计的氮气发生器方案
    •UG-AB桌下式氮气发生器(三路气体)专为SCIEX LC-MS设计的氮气发生器方案•气体种类: •氮气: 最大气体流速: 12L/min出口压力: 60psi• 空气:最大气体流速: 25L/min出口压力: 110psi•空气:最大气体流速: 12L/min出口压力: 60psi
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Ba的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Cu的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Cr的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Al的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Ni的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • 杭州科晓:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • 杭州科晓:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Al的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • 杭州科晓:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Cd的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • 杭州科晓:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Zn的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Zn的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
  • PerkinElmer:Optima7300DV电感耦合等离子体发射光谱测定地表水和瓶装水中微量金属元素Cd的研究
    重金属是典型的淡水污染物,严重威胁着地理生物多样性 ,这些有毒金属元素都不是人体正常机能所需要的,即使是在低浓度情况下也能对人体产生毒性作用,个人饮用水井或公共供水系统极易受到环境污染物污染。当前仍旧迫切需要处理各种水体中存在的过量金属元素,以保护环境不受金属元素污染。个人饮用水井系统并没有被纳入监测范围,这需要由其自身来进行检测和处理。要对市场上销售的瓶装水进行微量和痕量水平金属杂质的日常监测,电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES) 都能够胜任这类分析工作。ICP-MS提供最强大的样品检测能力。而ICP-OES,则更适合检测溶解性总固体含量较高的样品。与石墨炉原子吸收相比,径向观测ICP 灵敏度偏低。对于使用 ICP-OES 测定饮用水中微量元素来说,灵敏度非常重要。而轴向观测 ICP-OES对许多元素的检出限都能达到亚ppb 级,因此就很好的克服了径向观测的这一缺点。由于轴向观测能够采集整个中心通道的光,使得检出限提高了10倍。由于检测饮用水需要测定许多元素,因此使用全谱直读 ICP-OES 进行同时测定是非常经济的方法。本文基于快速、分段式电荷耦合检测器(SCD) 的全谱直读ICP-OES,建立了一个快速、简单、方便的分析水样的方法。该ICP-OES 具有双向观测,用户可根据需要,进行观测方式(径向或轴向)选择。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制