当前位置: 仪器信息网 > 行业主题 > >

激光光散射粒度仪

仪器信息网激光光散射粒度仪专题为您提供2024年最新激光光散射粒度仪价格报价、厂家品牌的相关信息, 包括激光光散射粒度仪参数、型号等,不管是国产,还是进口品牌的激光光散射粒度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光光散射粒度仪相关的耗材配件、试剂标物,还有激光光散射粒度仪相关的最新资讯、资料,以及激光光散射粒度仪相关的解决方案。

激光光散射粒度仪相关的资讯

  • 全自动激光粒度仪散射理论的应用
    由于运用光散射参数的组合不同,形成了众多基于散射的颗粒粒径测量理论,米氏散射理论,夫朗和费衍射,衍射式散射,全散射,角散射等,不同理论的运用形成了多种粒度测试仪器共存的现状。  米氏理论是对均质的球形颗粒在平行单色光照射下的电磁方程的精确解,它适用于一切大小和不同折射率的球形颗粒。而夫朗和费衍射理论只是经典米氏理论的一个近似或一个特例,仅当颗粒直径与入射光波长相比很大时才能适用。这就决定了基于夫朗和费衍射理论的激光粒度仪的测量下限不能很小。正因如此,应用经典米氏散射理论的激光粒度仪以其适用范围广,在小粒径范围测量的极高精度,受到了广泛认可。
  • 重庆科技学院260.00万元采购激光光散射仪,纳米粒度仪,分子荧光光谱,PCR
    详细信息 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院化学一级学科硕士点科研平台建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 14:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02454 采购执行编号:1708-BZ2200461552AH 项目名称:重庆科技学院化学一级学科硕士点科研平台建设 采购方式:公开招标 预算金额:2,600,000.00元 最高限价:2,600,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 功能材料性能测试平台设备 866,500.00元 1 批 荧光分光光谱仪:测量波长范围:220~730nm和零级光 包号:2 包内容 最高限价 数量 单位 简要技术要求 广角动静态激光光散射仪 702,000.00元 1 台 动态光散射测量参数: 流体力学直径(Dh)及其分布,扩散系数(D),其他动力学参数 包号:3 包内容 最高限价 数量 单位 简要技术要求 制药工程及油田化学教学科研设备 1,031,500.00元 1 批 实时荧光定量PCR分析仪:操作界面:自带不低于7寸触摸屏控制操作 最高限价总计:2,600,000.00元 合同履行期限:中标人应在采购合同签订后6个月内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无 3、本项目的特定资格要求: 包1或包2所投产品若为进口产品的,投标人应提供产品制造商或中国境内代表机构或总代理出具的授权函(提供授权函复印件)。三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月12日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 13:30 投标文件递交截止时间: 2022年12月26日 14:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)五、开标信息 开标时间: 2022年12月26日 14:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)六、公告期限 自本公告发布之日起5个工作日七、其他补充事宜 采购项目需落实的政府采购政策 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:唐玮 文杰 代理机构电话:023-67523244 67707261 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:唐玮 文杰 项目联系人电话:023-67523244 67707261 项目联系人邮箱:1433831954@qq.com九、附件 公开招标-重庆科技学院化学一级学科硕士点科研平台建设CQS22A02454(终审稿).doc 免责声明:本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光光散射仪,纳米粒度仪,分子荧光光谱,PCR 开标时间:2022-12-26 14:00 预算金额:260.00万元 采购单位:重庆科技学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆市政府采购中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院化学一级学科硕士点科研平台建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 14:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02454 采购执行编号:1708-BZ2200461552AH 项目名称:重庆科技学院化学一级学科硕士点科研平台建设 采购方式:公开招标 预算金额:2,600,000.00元 最高限价:2,600,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 功能材料性能测试平台设备 866,500.00元 1 批 荧光分光光谱仪:测量波长范围:220~730nm和零级光 包号:2 包内容 最高限价 数量 单位 简要技术要求 广角动静态激光光散射仪 702,000.00元 1 台 动态光散射测量参数: 流体力学直径(Dh)及其分布,扩散系数(D),其他动力学参数 包号:3 包内容 最高限价 数量 单位 简要技术要求 制药工程及油田化学教学科研设备 1,031,500.00元 1 批 实时荧光定量PCR分析仪:操作界面:自带不低于7寸触摸屏控制操作 最高限价总计:2,600,000.00元 合同履行期限:中标人应在采购合同签订后6个月内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无 3、本项目的特定资格要求: 包1或包2所投产品若为进口产品的,投标人应提供产品制造商或中国境内代表机构或总代理出具的授权函(提供授权函复印件)。三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月12日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 13:30 投标文件递交截止时间: 2022年12月26日 14:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)五、开标信息 开标时间: 2022年12月26日 14:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)六、公告期限 自本公告发布之日起5个工作日七、其他补充事宜 采购项目需落实的政府采购政策 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:唐玮 文杰 代理机构电话:023-67523244 67707261 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:唐玮 文杰 项目联系人电话:023-67523244 67707261 项目联系人邮箱:1433831954@qq.com九、附件 公开招标-重庆科技学院化学一级学科硕士点科研平台建设CQS22A02454(终审稿).doc 免责声明:本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。
  • 130万!上海交通大学18角度激光光散射仪采购项目
    项目编号:0705-2240JDSMTXDK/06/招设2022A00222项目名称:上海交通大学18角度激光光散射仪预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期118角度激光光散射仪1)检测角度:≥ 18个(需配备大于等于18个检测角度的光电二极管);2)散射角范围:15 – 150°,35度以下保证有2个检测角度;3)其他技术要求详见第八章第二部分《技术规格》。1套收到信用证后4个月内合同履行期限:收到信用证后4个月内交货本项目( 不接受 )联合体投标。
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 139万!北京大学多角度激光光散射系统采购项目
    项目编号:BMCC-ZC22-0074项目名称:北京大学多角度激光光散射系统采购项目预算金额:139.0000000 万元(人民币)最高限价(如有):139.0000000 万元(人民币)采购需求:包号名称数量预算金额是否接受进口产品01多角度激光光散射系统1套139万元是注:1.交货时间:合同签订后120日内交货并安装完毕。2.交货地点:北京大学技物楼2-606室,中关村北二条3号。3.简要技术需求及用途:北京大学拟采购多角度激光光散射系统,用于各类高分子聚合物、天然及生物大分子的分离和绝对分子量和分布、均方旋转半径和分布、第二维利系数等高分子参数的测定表征,并得到分散度、大分子在溶液中构象、聚集态等信息。 合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。
  • 光散射法在难溶性药物粒度检测中的应用
    p style="text-indent: 2em "编者按:药品安全需要一致性的保障!在药物研究行业,仿制药的一致性评价试点工作早在2012年就已开展。现如今,该项工作早就由业界“雷声大雨点小”的评价,转入了如火如荼的燎原之势。根据国家《关于改革药品医疗器械审评审批制度的意见》 ,《国家基本药物目录》中自2007年10月1日前批准上市的化学药品仿制药口服固体制剂的质量一致性评价工作,将在2018年底迎来截止日期。/pp style="text-indent: 2em "作为仿制药一致性评价中必须考察的一部分,原料药的粒度控制与检测也随着这股东风,越来越受到业内的重视。而对于药物检测,特别是难溶性药物的粒度检测来说,光散射法无疑是重要手段,江苏省苏州工业园区食品药品监督管理局专家关玉晶等的条分缕析,将带我们走入光散射法在难溶性药物粒度检测中的应用天地……/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "药物粒度的测定方法有显微镜法、筛分法、光散射法等。对于原料药的粒度测定首选光散射法,是中国药典规定方法之一。采用的仪器为激光粒度仪,通常由激光光源、透镜、颗粒分散装置、检测器、控制系统构成,具有测量速度快、测试精度高、可测粒径范围宽等优点。其测定的理论依据是米氏散射理论和弗朗霍夫近似理论,将样品分散到分散介质中,用单色光束照射颗粒样品,即发生散射现象,散射光的能量分布与颗粒的大小有关,通过测量散射光的能量分布,即可计算出颗粒的粒度分布。/pp style="text-indent: 2em "光散射测定法光散射测定法有两种,即湿法测定和干法测定,根据样品的性状和溶解性能不同进行选择。湿法测定用于测定不溶于分散介质的混悬样品,测定时使用较少的样品就能取得较好的分散效果,测定结果准确、重现性好。干法测定用于测定水溶性或无合适分散介质的固态样品,方便快捷,但测定时使用样品量大,重现性稍差,尤其是粘性物料测定结果误差较大。难溶性药物的粒度测定常选择湿法测定。/pp style="text-indent: 2em "在用激光粒度仪进行粒度测定时需设定的主要仪器参数有分散介质折射率、样品折射率、样品吸收率。对于较大颗粒,使用弗朗霍夫近似理论,可不考虑样品折射率,对于较小颗粒,选择米氏散射理论,需提供分散介质与样品的折射率。分散介质的折射率可通过文献查得,水的折射率为 1. 33,乙醇的折射率为 1. 36。待测样品的折射率需要根据具体情况决定,如表面粗糙度、颜色、透明度、成分等进行选择输入,并结合粒度分布图形、数据拟合、残差值综合判断,选择与实际折射率一致或者接近的输入折射率,待测样品输入折射率与实际折射率偏差直接影响测量结果的准确性与可靠性。样品的吸收率体现了其吸收光量的特性,可通过在显微镜下,对处于悬浮介质中的物质进行观察而近似估算,样品的吸收率在 0 到 1 之间,晶体粉末为 0. 01、浅色粉末为 0. 1、深色粉末或金属粉末为 1。/pp style="text-indent: 2em "对于湿法测定,选择适宜的分散介质,制备具有稳定的分散体系的样品是获得准确结果的关键,需保证颗粒之间的分散性并且在测定过程中颗粒不进一步破裂或溶解。将药物加入分散介质中,通过超声、搅拌等物理分散的方法使药物形成稳定的分散体系,如需要可加入少量的化学分散剂或表面活性剂,如六偏磷酸钠、吐温、十二烷基硫酸钠等,以消除样品的聚集及电荷效应。需确定的因素有分散介质的种类、药物分散浓度、外力因素等。选择分散介质需要满足以下条件:①液体与颗粒无反应,②颗粒在液体中无溶解和膨胀,③液体在激光波长下应是可透过(不吸收)的,④液体与颗粒的折射率不同。/pp style="text-indent: 2em "常用的分散介质有水、乙醇、丙三醇水溶液、乙醇和丙三醇混合液等。考虑到实验成本、环境危害、操作方便等因素,分散介质首选水。为减少分散介质中杂质颗粒对样品测定的影响,分散介质应选择高纯度的溶剂且在使用前应过滤处理。药物分散浓度需满足仪器灵敏度要求并使粒子保持单个原始态。浓度过高可能产生多重散射,浓度过低可能信噪比太低难以代表真实物质的颗粒分布。一般情况下,待测样品粒径越小光散射性越强,分散浓度略低。激光功率越强则仪器的散射光信号越强,分散浓度越低。药物分散的浓度常根据检测器遮光度来确定,湿法测定所需的供试品量通常应达到检测器遮光度范围的 8 ~ 20%。在合适浓度范围内,测量结果基本保持稳定。分散体系在分散后易发生再凝结,其体系的稳定性一方面取决于样品颗粒及分散液体的特性,另一方面取决于外力因素,如超声搅拌等机械处理方法、表面活性剂、添加离子化合物、分散体系的 pH 值等。超声波是打开凝结的最佳方式。样品分散的好坏可以通过改变分散能量是否引起粒度分布变化来确定,当样品分散较好时,测定过程中粒度分布不会发生明显改变。/pp style="text-indent: 2em "样品的粒度需要满足以下几个方面的因素:/pp style="text-indent: 2em "(1)精密度:精密度要求根据样品的用途、物料特点及粒度分布不同而确定。一般情况下,取一批原料药样品,重复测定 6 次,统计 6 次测定结果的 RSD,D 50 的 RSD 不大于 10%,D 10 、D 90 的 RSD 不大于 15%,对于粒径小于 10μm 的样品,RSD 可增加至 2 倍。/pp style="text-indent: 2em "(2)重现性:不同时间、不同分析人员取同一批原料药样品,用同样的方法重复测定 6 次,统计 6 次测定结果的 RSD,要求与精密度相同。/pp style="text-indent: 2em "(3)溶液稳定性考察:将样品液放置一定时间,取不同时间点的样品进行测定,统计测定结果的 RSD,要求与精密度相同。/pp style="text-indent: 2em "(4) 准确度:将测定结果与显微镜法所得到的结果进行比较,验证结果准确性。/pp style="text-indent: 2em "(5)耐用性:在分析方法开发时就应考虑,考察测定条件有小的变动时,测定结果不受影响的程度,以满足样品日常检验需要。湿法测定常需考虑的测定条件有超声(或搅拌)强度及时间、测量时间、平衡时间等。超声强度和时间应保证样品稳定分散又不得发生溶解和破裂。搅拌速度应适中,转速过快易产生气泡被当作颗粒测量使结果出现第二峰值,转速过慢大颗粒容易沉底结果不具有代表性,搅拌时间过长易导致颗粒溶胀或溶解。在保证测量结果准确性的基础上尽量缩短测量时间和平衡时间。/pp style="text-indent: 2em "对于原料药粒度标准的制定是测量原料药粒度的重要一环,制定原料药的粒度标准限度需综合考虑制剂的生产工艺、体外溶出、体内吸收等因素。原料药粒度越小,流动性越差,物料粘着性增加,混料时原料药不易混匀,从而影响制剂外观及含量均匀度。在研究中,应以休止角、外观、混合均匀性、含量均匀度等为考察指标,研究粒度分布对其造成的影响,确定符合产品要求的粒度范围。另外,需结合药物自身特性,如刺激性的药物,粒径愈小,刺激性愈大 稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在胃肠道内,易于吸收,生物利用度高,但并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。/pp style="text-indent: 2em "在仿制药体外研究中,需测定不同粒径的原料药的溶解度,找出具有区分能力的溶出条件,考察粒径大小对溶出度的影响,通过比较自制品与原研品的溶出曲线确定原料药粒度范围。进一步根据生物等效性研究结果判断粒度范围的合理性,必要时进行调整。在确定粒度测定方法及限度后,制定质量标准时方法描述要详尽,需规定参数设置、样品制备方法、分散条件等,以保证在标准的执行过程中的方法重现性和测定结果准确性。粒度分布的限度以 D 50 、D 90 或(和)D 10 来表示。/pp style="text-indent: 2em "讨论粒度研究是保证药品安全有效的基础,在研究中应确保测定结果的准确性。光散射法是原料药粒度测定的理想方法,在测定过程中要全面考虑测定因素对结果的影响,还需注意仪器校正、粒子形状、取样代表性、环境等因素。研究者在药物开发过程中,应进行详细的研究,准确的测定原料药的粒度并考察其对制剂的影响,确定符合产品特性的粒度分布范围,制得符合临床需求的药品。/p
  • 荧光/磷光体系溶液结构测定动静态激光光散射谱仪
    成果名称荧光/磷光体系溶液结构测定动静态激光光散射谱仪单位名称中国科学院化学研究所联系人程贺联系邮箱chenghe@iccas.ac.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 &radic 合作开发 □其他成果简介:荧光/磷光体系溶液结构测定动静态激光光散射谱仪通过引入二向色镜,采取叠光的手段,将785nm、633nm、532nm和457nm的激光作为光源,根据样品不同的吸收谱带选择样品无吸收的激光,解决了商业化动静态激光光散射谱仪无法测量荧光/磷光体系溶液结构的难题。该谱仪可精确测定流体力学半径在1nm-100&mu m,均方旋转半径在20nm-300nm尺寸范围的纳米、胶体、团簇颗粒等的溶液结构。应用前景:本项目可以吸引国内院所同行,尤其是本身已有商业化动静态激光光散射谱仪的同行的注意,吸引他们向我方申请加工、或者直接购买,在市场上有一定的应用前景。近两年来,仅德国ALV公司在中国市场购买就销售了15台左右谱仪,按每台谱仪的改装费80万元计算,我们的潜在市场至少有1200万元。
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 北京理工大学194.90万元采购激光光散射仪
    详细信息 北京理工大学多角激光光散射仪采购招标公告 北京市-海淀区 状态:公告 更新时间: 2024-01-20 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光光散射仪 开标时间:2024-02-02 00:00 预算金额:194.90万元 采购单位:北京理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:国信国际工程咨询集团股份有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北京理工大学多角激光光散射仪采购招标公告 北京市-海淀区 状态:公告 更新时间: 2024-01-20 招标文件: 附件1 附件
  • 【2022培训课程】X射线、激光粒度、纳米粒度、GPC、微量热培训下半年课程安排及报名通道
    01课程介绍及时间安排XRD 基础课程XRD Basic了解粉末衍射的基本理论和光路几何,进一步掌握针对各种样品的测试如何选择仪器配置寄设置扫描参数,深入学习HighScore (Plus) 物相分析软件。D1:X射线的产生,晶体学基础及粉末衍射聚焦光路 D2:平行光路几何,上机操作 D3:物相定性分析,晶粒尺寸分析,结晶度分析 D4:结构精修,无标定量分析 D5:衍射仪维护保养,上机操作,自由讨论 波长色散 XRF 基础课程WD-XRF Basic了解X射线荧光工作原理,掌握样品的制备,了解波长色散型荧光光谱仪主要光学部件组成和软件功能,掌握建立定量分析方法的步骤和Omnian无标定量分析软件的基本功能。课程时长5天。D1: X射线荧光原理介绍,样品制备分析,软件简介 D2: 详细介绍定量分析方法的建立 D3: Omnian无标定量分析软件的基本功能 D4: 上机操作,自由讨论 D5: 荧光光谱仪的维护和保养 能量色散 XRF 基础课程ED-XRF Basic了解X射线荧光工作原理,掌握样品的制备,了解Epsilon系列能量色散型荧光光谱仪主要光学部件组成和软件功能,掌握建立定量分析方法的步骤。课程时长4天。D1: X射线荧光原理介绍,样品制备分析,软件简介 D2: 详细介绍定量分析方法的建立 D3: 上机操作,自由讨论 D4: 荧光光谱仪的维护和保养 激光粒度课程Mastersizer 3000了解激光衍射基本理论、原理,掌握样品制备和测量方法,数据解析及误差原因分析。课程时长2天。通用课程:D1:激光衍射基本理论, 测量原理;影响测量结果的因素分析, 结果可靠性的判别及最优化样品分散方法的建立。 D2:软件功能培训;典型样品分散及测量实例,上机实践,疑难问题解答及仪器的维护保养。纳米粒度及电位课程Zetasizer了解动态光散射、zeta电位基本理论、原理,掌握样品制备和测量方法,数据解析及软件应用。课程时长2天。通用课程:D1: 动态光散射(DLS)基本理论,测量原理,样品分散要点,测量结果及参数分析, 典型样品测量及问题解答。D2: Zeta 电位理论基础及测量原理,样品制备原则及应用指导,上机实践, 疑难问题解答及仪器的维护保养规程。纳米粒度跟踪课程NTA(Nanosight)了解纳米颗粒跟踪分析技术理论原理,学习测量与分析方法。课程时长1天。D1:纳米颗粒跟踪分析技术(NTA)基本理论,测量原理,应用案例分析,上机实践,疑难问题解答及仪器维护保养。GPC课程GPC(Omnisec)了解凝胶渗透色谱技术理论原理,掌握溶剂配制原则和样品制备方式,掌握检测条件和信号读取的设置,并理解其意义。课程时长3天。D1:凝胶渗透色谱分离原理及检测器原理,流动相要求及样品制备方式。D2:检测条件设置,信号读取,窄分布和宽分布样品的检测及其意义。D3:实际操作培训。 微量热技术课程ITC&DSC (MicroCal ITC & DSC)等温滴定量热仪(PEAQ-ITC)是如何工作的?它能解决我们科研工作中的哪些问题?如何设计一个合理的ITC实验,如何获取可靠的ITC数据?面对实验中出现的一些奇怪的图谱,我们应该如何判断、分析和改进?马尔文全新一代的PEAQ-ITC提供了哪些方便的选项?课程时长1天至1天半。D1:PEAQ-ITC的原理及应用介绍,仪器讲解及实验操作、软件讲解及仪器维护等。微量热差式扫描量热仪(PEAQ-DSC)是如何工作的?如何正确的设计一个DSC实验?如何准备DSC样品?如何获取可靠的DSC数据?马尔文全新一代的PEAQ-DSC automated又提供了哪些方便的选项?课程时长1天至1天半。D1:微量热差式扫描量热仪原理及应用介绍;仪器讲解及上机演示;软件讲解及仪器维护等。马尔文帕纳科2022年度下半年培训课程一览培训地点:上海时间课程报名截止时间7月18-22日GPC(Omnisec)7月11日7月28-29日激光粒度(MS 3000 ) 7月18日8月1-5日WDXRF基础(Zetium) 7月25日8月15-18日XRD基础(Aeris) 8月8日9月5-9日WDXRF基础(Zetium) 8月29日9月26-29日EDXRF基础 9月19日10月11-12日微量热技术(PEAQ DSC)10月3日10月13日微量热技术(PEAQ ITC)10月3日10月17-21日WDXRF(基础)(Axios)10月10日10月27日纳米粒度及电位(Zetasizer)10月20日10月31日-11月4日XRD基础10月24日11月24-25日激光粒度(MS 3000 )11月14日11月28日-12月2日WDXRF基础(Zetium)11月21日培训地点:北京时间课程报名截止时间8月25日纳米粒度跟踪(Nanosight)8月16日9月1日纳米粒度及电位(Zetasizer)8月22日9月22-23日激光粒度(MS 3000 )9月12日* 培训费为RMB2303元/人天,每台仪器的新用户可提供两个免费培训名额,不包含食宿和交通费用,每场培训报名人数达到6人即可开班,培训人数上限为16人,报满截止,报名确认后会于培训前发培训通知。02咨询及付费信息以上课程安排可能会因不可抗因素进行调整,实际开课日期请参考报名表单中实时更新的选项。如您有任何疑问请联系咨询马尔文帕纳科亚太卓越应用中心X射线分析仪器负责人:万益娟 女士电话:135 6429 0063邮箱:yijuan.wan@panalytical.com物性测量仪器培训负责人:黎小宇 女士电话:139 1861 1071邮箱:Sherry.li@malvern.com.cn或北京实验室负责人:张瑞玲 女士电话:010-5323 6737邮箱:rain.zhang@malvern.com.cn培训费付费方式:培训费由公司转账到上海思百吉仪器系统有限公司(账号信息如下)公司名称:上海思百吉仪器系统有限公司公司地址:上海市闵行区元山路88弄9号公司电话:021-61133688开户行:中国银行闵行支行账号:445559221333税号:91310000772121566L点击报名培训课程下半年课程已开放申请,点击按钮即可报名亚太卓越应用中心地址马尔文帕纳科亚太卓越应用中心地址:上海市闵行区中春路1288号金地威新闵行科创园区24号楼3A层访问热线: +86 400 630 6902北京应用实验室地址马尔文帕纳科北京应用实验室地址:北京市石景山区鲁谷路74号瑞达大厦F906咨询电话:010-5323673703公司使命目标马尔文帕纳科的使命是通过对材料进行化学、物理和结构分析,打造出客户导向型创新解决方案和服务,从而提高效率和产生切实的经济影响。通过利用包括人工智能和预测分析在内的最新技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品及帮助产品更快速地上市。联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902邮箱:info@malvern.com.cn网址:www.malvernpanalytical.com.cn
  • 如何选择优质的激光粒度仪?
    p  判断激光粒度分析仪的优劣,主要看其以下几个方面:/pp  1、粒度测量范围 粒度范围宽,适合的应用广.不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射〈0.5μm〉如何检测./pp  最好的途径是全范围直接检测,这样才能保证本底扣除的一致性.不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差./pp  2、 激光光源 一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低 另外,气体光源波长短,稳定性优于固体光源.检测器因为激光衍射光环半径越大,光强越弱,极易造成小粒子信噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏.检测器的发展经历了圆形,半圆形和扇形几个阶段./pp  3、是否使用完全的米氏理论/pp  因为米氏光散理论非常复杂,数据处理量大,所以有些厂家忽略颗粒本身折光和吸收等光学性质,采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题./pp  4、准确性和重复性指标/pp  越高越好.采用NIST标准粒子检测./pp  5、稳定性/pp  仪器稳定性包括光路的稳定性和分散系统的稳定性和周围环境的影响.一般来讲选用气体激光器,使用光学平台,有助于光路的稳定.内部发热部件(如50瓦的钨灯)将影响光路周围环境./pp  稳定性指标在厂家仪器说明中没有,用户只能凭对于仪器结构的判断和参观或询问其他长时间使用过的用户来判断./pp  6、扫描速度/pp  扫描速度快可提高数据准确性,重复性和稳定性./pp  不同厂家的仪器扫描速度不同,从1次/秒到1000次/秒.一般来讲,循环扫描测试次数越多,平均结果的准确性越好,故速度越高越好 喷射式干法和喷雾更要求速度越高越好 自由降落式干法虽然速度不快,但由于粒子只通过样品区一次,速度也是快一些好./pp  用户每天需要处理的样品量,也是考虑速度的因素./pp  可自动对中,无需要换镜头,可自动校正./pp  7、使用和维护的简便性/pp  关于这一点,在购买之前往往被忽视,而实际上直接决定了仪器使用效率和寿命.了解的方法是对仪器结构的了解和其他已有用户的反映./pp  拆卸、清洗是否方便:粒度仪分为主机和分散器两部分.而样品流动池总是需要定期清洗的,清洗间隔视样品性质而定.将主机和分散器合二为一的仪器往往将样品池深置于仪器内部,取出和拆卸均很繁琐,且极易碰坏光路系统./pp  8、是否符合国际标准标准/pp  ISO13320标准是对激光粒度分析仪的基本要求.但并不是所有制造商都按照该标准执行.在测量亚微米粒子分布过程中,采用非激光衍射方法是不符合标准的./pp  总结:从目前世界各国生产的激光粒度仪产品的性能来看,英国马尔文公司的产品认可度是比较高的,但产品价格偏高,综合考虑性价比的话,国内粒度仪生产厂家如珠海欧美克公司生产的产品足以满足用户的要求,价格也比国外产品便宜的多,可作为用户选择的参考。/ppbr//p
  • 邀请函 | 5月19日 粒度仪线上交流会:动态光散射(DLS)技术篇
    邀请函诚挚邀请您的莅临粒度仪用户交流会时间:2022年5月19日14:00-16:30APP:腾讯会议01诚邀您的莅临尊敬的客户:您好!首先感谢您一直以来对安东帕(Anton Paar)公司的支持和信任! 安东帕一直以来为广大客户提供最高品质和领先技术的纳米粒度仪,激光粒度仪, 并提供完善的技术支持和售后服务。如今,安东帕公司的纳米粒度仪,激光粒度仪系列已经全部推向市场。因疫情原因,线下用户培训会,均已暂停;为了满足客户对粒度仪的学习需求,我们将系列开展粒度仪相关知识的线上培训,本次培训主题为“动态光散射(DLS)技术篇”。我们将一如既往竭诚为您服务,为您提供全面和连续的支持,确保您对安东帕产品的满意!期待您的光临!02报名方式方式一丨扫描下方二维码方式二丨点击“阅读原文”报名03培训费用收费标准丨免费培训形式 | 线上直播04培训流程5月19日14:00-16:0014:00-15:00DLS理论基础15:00-16:00DLS数据分析16:00-16:30答疑安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • “移情别恋” 这5种粉体已投向激光粒度仪怀抱
    p style="text-indent: 2em "随着科学技术的发展和工业工艺精细化程度的不断提升,产品呼唤的质量及性能要求日益提升,粉体材料的热度不断上升,同时对粉体粒度检测的要求也越来越高。在众多粒度检测方法中,激光粒度仪在各行各业的粒度检测中都有着广泛的应用,适用的粉体多如繁星,能力也在不断升级,成为了当下最受宠的粒度检测方法之一。在化工和矿业等领域,很多粉体的粒度检测本来是常用筛分法、沉降法等方法,但良禽择木而栖,现在也都渐渐走向了激光粒度仪的怀抱。仪器信息网选取了上述行业中5种常用的粉体进行探讨,它们移情别恋的故事这就为您奉上。/pp style="text-indent: 2em "(1)铝粉/pp style="text-indent: 2em "氧化铝是一种应用最广泛的催化剂载体,价格便宜,能够通过改变条件来制备各种催化反应所要求的不同的晶相、比表面积和孔分布的载体。铝粉作为生产氧化铝载体的重要原料,其规格对氧化铝载体的最终性能有重要影响。/pp style="text-indent: 2em "铝粉的粒径正是衡量铝粉质量的一项重要指标:粒径过小,合成溶胶反应较剧烈,反应温度不易控制且存在安全隐患;粒径过大,反应不易完全,会造成溶胶铝含量偏低而影响产品性能,而且使粒子间的空隙变大,接触点变小,填充密度随之减少,强度也随之降低。检测铝粉粒度的传统方法是筛分法,但速度慢,精度差,重复性低。相比之下,激光光散射法突破了筛层数的限制,测量范围大幅扩大,且为连续分布。具有较好的测量重复性,结果准确,可满足铝粉粒度的测定要求。/pp style="text-indent: 2em "不过需要注意的是,用激光粒度仪,通过测定散射光能的分布计算出被测样品的粒径大小,其中散射光的强度和空间分布与被测颗粒的大小和含量有关。因此,确保粉体能均匀分散在分散介质中,粒子不团聚,不与分散介质发生化学反应是准确测定样品粒度的前提。/pp style="text-indent: 2em "对于铝粉的粒度检测方法,筛分法和激光极度以检测方法都有相应的行业标准出台,分别是YS/T 617.6-2007《铝、镁及其合金粉理化性能测定方法 第6部分:粒度分布的测定 筛分法》和YS/T 617.7-2007《铝、镁及其合金粉理化性能测定方法 第7部分:粒度分布的测定 激光散射/衍射法》。/pp style="text-indent: 2em "(2)钛白粉/pp style="text-indent: 2em "钛白粉是塑料中是重要的添加剂,粒度大小和粒度分布对钛白粉的白度、光泽度、耐候性等性能有重要影响。6、70年代,国内外一些钛白粉厂多采用沉降法和电子显微镜法测定钛白粉粒度分布 。沉降法影响因素较多, 测定结果有很大差别 电子显微镜法测定粒度分布, 必须借助大量统计工具, 才能得到较为接近实际情况的粒度分布, 否则有局限性。相比之下,激光粒度仪法简捷 、快速 、准确度高、重现性好,对钛白粉粒度分布的测定适用性极好 ,有利于指导钛白生产和成品质量评定。使用激光粒度仪测量钛白粉最好的方法是先确定分散剂 、分散剂浓度及分散时间等影响因素,并建立稳定的测量体系。目前钛白粉的粒度检测尚无相关的标准出台。/pp style="text-indent: 2em "(3)硅粉/pp style="text-indent: 2em "硅粉是合成甲基氯硅烷的主要原料之一,硅粉粒径的大小直接影响到甲基氯硅烷的选择性及收率,故在甲基氯硅烷生产过程中必须对硅粉的粒度及分布情况进行测定。目前,常用的硅粉检测方法为筛分法,但该法噪声大,粉尘污染严重,且会在检测过程中造成样品损失,回收率低,在潮湿环境下硅粉易受潮,也会使测试结果产生偏差。/pp style="text-indent: 2em "激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。其测试速度快、重复性好、操作简单,已被应用于硅粉的粒度测试上。激光粒度仪测定硅粉的较佳仪器条件为: 遮光率 15%,超声时间 3 min,当搅拌速度为 1 500 r/min 时,获得的检测结果准确可靠。与钛白粉一样,化工用硅粉的粒度检测也尚无相关的标准出台。/pp style="text-indent: 2em "(4)碳酸钙粉/pp style="text-indent: 2em "碳酸钙( CaCO3 )粉主要存在于天然矿石中,目前是一种应用较广泛的环保型钻井液加重材料。在钻井钻进储层段时,钻完井液会侵入油层中,而小于孔喉直径的钻井液材料则会进入油层造成伤害,颗粒愈小,侵入深度愈大。固相颗粒的伤害对裂缝油藏更为突出。因此,对固相颗粒的控制,减少钻井液中固相含量,特别是超细钻井液材料的颗粒含量,使/pp style="text-indent: 2em "它们保持一个合理的级配,是减少钻井液固相对油层伤害的重要措施。/pp style="text-indent: 2em "过去通常采用沉降法测定碳酸钙粉末粒度,但沉降法的实验步骤繁琐,且重复性较低。当前随着激光衍射技术的不断更新,使用激光粒度分析仪已经完全可以代替传统的筛析和沉降方法,激光粒度分析仪具有较好的数据采集和处理系统,测试过程结束后,直接计算分析出实验数据所需结果并可以分类保存、一键打印实验结果,样品测试时间仅为数分钟 ,远远低于沉降法测量,大大缩短了测量周期。/pp style="text-indent: 2em "针对碳酸钙粉,目前已有国标GB/T 15057.11-1994《化工用石灰石粒度的测定》出台。但所规定的方法也仅为筛分法。/pp style="text-indent: 2em "(5)细精粉/pp style="text-indent: 2em "粒度是衡量铁矿石质量的一项重要指标 , 在铁矿石贸易合同中 ,贸易双方对粒度指标的要求都比较严格 ,粒度分布直接关系到铁矿石价格 。而细精粉是铁矿石中价格最贵的品种之一 , 而最能表现其质量除了铁品位就是它的目级粒度。通常目级粒度的测试是用筛分仪进行测试。筛分作为一种古老的方法, 它最大的优点在于廉价, 所以适用于矿业中较大颗粒粒度测试 。目前进口铁矿中粒度测试都采用网筛进行筛分,但是也有许多的缺点 :①干式条件下测量小于 1mm的矿石比较困难 ②干式条件下测量粘性较大或成团的矿石比较困难 ③筛分时间长短受人为因素控制 ,可比性、可靠性下降。/pp style="text-indent: 2em "随着科学技术的发展,激光光衍射 (或称小角激光光散射)等 ,已成为粒度测试的首选方法,不需要对照标准来校准仪器 很宽的动态范围 灵活性高 可以直接测量干粉 具有高度的再现性 可以测量整个样品 测量方法是非破坏性和非侵入性的 速度较快 分辨率高。不过细精粉的粒度分布均匀, 都在 1mm以下 ,而激光粒度仪的测试范围在 0.02 ~ 2mm, 因此,激光粒度仪在细精粉粒度检测中的应用有一定的范围条件:当测试时间 20s、泵速2 500r/min时,激光粒度仪可适用于铁矿石目级粒度的测定,而且结果比机筛的结果更加真实。/pp style="text-indent: 2em "在细精粉等铁矿石粉体的粒度检测标准中,目前针对筛分法已有国标GB/T 10322.7-2016,《铁矿石和直接还原铁 粒度分布的筛分测定》出台。另有商业检测标准,SN/T 4844-2017《铁矿石安全卫生检验技术规范 第7部分:质量评价 粒度分布》现行,但尚无相关的激光散射/衍射法粒度检测标准出台。/pp style="text-indent: 2em "上述5大粉体的粒度检测都已经或正在展现出对激光粒度仪的青睐,但铝粉外,似乎并无相应的激光散射/衍射法粒度检测标准出台,这对于各激光粒度仪厂商也不失为一种参与行业建设的机遇。/p
  • 激光粒度仪在粒度检测中的应用浅谈
    p style="text-indent: 2em "编者按:谈到粒度,激光粒度仪怎能缺席?目前,在各行各业的粒度检测领域,激光粒度仪应用广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。/pp style="text-indent: 2em "那么激光粒度仪在粒度检测中到底是怎样应用的呢?我国颗粒学泰斗专家周素红研究员的论述,无疑将给我们带来启示……/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "激光粒度分析方法是近年来发展较快的一种测试方法,其主要特点是:/pp style="text-indent: 2em "1)测量的粒径范围广, 可进行从纳米到微米量级如此宽范围的粒度分布。约为 :20nm ~ 2000μm , 某些情况下上限可达 3500μm /pp style="text-indent: 2em "2)适用范围广泛 , 不仅能测量固体颗粒 , 还能测量液体中的粒子 /pp style="text-indent: 2em "3)重现性好 ,与传统方法相比 ,激光粒度分析仪能给出准确可靠的测量结果 /pp style="text-indent: 2em "4)测量时间快,整个测量过程1-2分钟即可, 某些仪器已实现了实时检测和实时显示 ,可以让用户在整个测量过程中观察并监视样品。/pp style="text-indent: 2em "激光粒度分析不仅在先进的材料工程 、国防工业、军事科学、而且在众多传统产业中都有广泛的应用前景。特别是高新材料科学的研究与开发 ,产品的质量控制等 , 如 :陶瓷、粉末冶金、稀土 、电池、制药 、食品、饮料 、水泥 、涂料 、粘合剂 、颜料、塑料、保健及化妆品 。由于颗粒粒子的特异性能在于它的粒径十分细小,粒径大小是表征颗粒性能的一个重要参数, 因此 ,对颗粒粒径进行测量是开展材料检测、评价颗粒材料的重要指标。/pp style="text-indent: 2em "当光线照射到颗粒上时会发生散射 、衍射 。其衍射、散射光强度均与粒子的大小有关 。观测其光强度, 可应用夫琅和费衍射理论和 Mie 散射理论求得粒子径分布(激光衍射/散射法)。/pp style="text-indent: 2em "光入射到球形粒子时可产生三类光:1)在粒子表面 、通过粒子内部、经粒子内表面的反射光 2)通过粒子内部而折射出的光 3)在表面的衍射光 。这些现象与粒子的大小无关 。全都可以作为光散射处理 。一般地 , 光散射现象可以用经Maxwell 电磁方程式严密解出的 Mie 散射理论说明。但是, 实际使用起来过于复杂, 为了求得实际的光强度, 可根据入射波长 λ和粒子半径r 的关系 ,即 :r λ时,Rayleigh 散射理论r λ时,Fraunhofer 衍射理论在使用上述理论时 ,应考虑到光的波长和粒子径的关系, 在不同的领域使用不同的理论 。/pp style="text-indent: 2em "粒子径大于波长的时候, 由 Fraunhofer 衍射理论求得的衍射光强度和 Mie 散射理论求得的散射光强度大体是一致的。因此 ,可以把 Fraunhofer 衍射理论作为 Mie 散射理论的近似处理。这时 ,光散射(衍射)的方向几乎都集中在前方, 其强度与粒子径的大小有关 ,有很大的变化。即, 表示粒子径固有的光强度谱 。解出粒子的光强度分布(散射谱)就可以定出粒子径。当波长和粒子径很接近的时候 ,不能用 Fraunhofer 的近似式来表示散射强度 。这时有必要根据 Mie 散射理论作进一步讨论。在Mie 散射中的散射光强度由入射光波长(λ)、粒子径(a)、粒子和介质的相对折射率(m)来确定 。、/pp style="text-indent: 2em "激光粒度分析的应用领域极为广泛, 如 :1)医药中的粒度控制着药物的溶解速度和药效 2)催化剂的粒度影响着生成反应效率 3)制陶原料的粒度影响着烧结后的物理特性 4)矿物的粒度影响着长途海运的安全 5)食品的保质期受粒度影响 6)橡胶原料粒度影响着其寿命 7)电池原料的粒度影响着电池的充放电效率和寿命 8)涂料 、染料中的粒度影响着产品染色时的发色、光泽 、退色 9)塑料原料的粒度影响着塑料的透明度和加工以及使用性能。/p
  • Easy选型直播节目|第40期:激光粒度仪仪器选型
    仪器信息网讯 激光粒度仪是基于光衍射现象设计的仪器,当光通过颗粒时产生衍射现象(其本质是电磁波和物质的相互作用)。衍射光的角度与颗粒的大小成反比。不同大小的颗粒在通过激光光束时其衍射光会落在不同的位置,位置信息反映颗粒大小;同样大的颗粒通过激光光束时其衍射光会落在相同的位置。衍射光强度的信息反映出样品中相同大小的颗粒所占的百分比多少。激光粒度仪主要由激光器、样品池、光学系统、信号放大及A/D转换装置、数据处理及控制系统组成。目前,激光粒度仪的技术已经逐渐发展成熟,基础性创新成果鲜有问世,但是技术性的革新却依然层出不穷,与行业相关的应用型研究也十分活跃。近年来,随着纳米技术的发展,激光粒度仪在纳米材料的研究和生产中得到了广泛的应用。同时,激光粒度仪的技术也在不断更新和完善,分辨率和测试范围不断提高,能够满足更多领域的需求。为帮助380万+用户解决选型的痛点和困惑,仪器信息网特开设“Easy选型”直播节目,从选型原则、技术进展、行业标准、市场表现、用户口碑、使用反馈、应用支持、售后服务、案例分享、真机测评等多个维度,为用户了解技术采购带来一些实用经验。6月6日,仪器信息网将启动第40期“激光粒度仪”选型直播, 届时将邀请领域专家与仪器厂商畅谈选型经验,与直播间网友进行互动,欢迎报名预约。扫码预约观看直播直播日程日期日程邀请嘉宾14:00-15:00专家对话和互动答疑1、 激光粒度仪关键技术2、激光粒度仪研发及应用趋势3、激光粒度仪选型注意事项4、直播间互动答疑专家团队嘉宾1:蔡小舒 上海理工大学能源与动力工程学院教授嘉宾2:李雪冰 百特技术总监主持人:仪器信息网资深编辑 杨厉哲15:00--15:40丹东百特粒度仪生产制造云参观15:40--16:10纳米粒度电位仪的原理和选型宁辉 百特产品总监 16:10--16:20用户互动答疑16:20--16:30抽奖及结束语报告嘉宾简介蔡小舒,上海理工大学能源与动力工程学院教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流实验研究、热能工程、透平机械、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等的副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。李雪冰博士,现任职丹东百特仪器有限公司技术总监CTO,颗粒表征综合解决方案专家,中国科学技术大学纳米材料方向博士毕业。具有十几年颗粒表征研究和应用经历,熟悉国内外各种品牌的颗粒分析仪器性能和特点,长期担任颗粒协会会员、仪器信息网物性检测评审专家、粉体网颗粒表征专家等职务,常年受邀参加新能源、制药、化工领域等会议并做相关报告,是一位具有丰富实践经验的颗粒表征技术专家。宁辉博士,丹东百特仪器有限公司产品总监CPO,是全国纳米技术标准化技术委员会委员,具有十几年产品研发和产品应用的研究经历,他带领团队成功研制了动态光散射纳米粒度和电泳光散射Zeta电位仪,产品性能达到国际先进水平,填补了国内空白,是一位具有技术过硬与实践经验的颗粒表征技术专家。6月6日下午2点,专家坐镇直播间,分享案例,讲解经验,还有多种精美礼品赠送。仪器信息网视频号,扫码一键预约
  • 激光粒度仪选型指南
    p  激光粒度仪是专指通过颗粒的衍射或散射光的空间分布来分析颗粒大小的仪器。现在许多用户在市场上挑选激光粒度仪的时候,都感到非常为难,因为一方面对激光粒度仪的了解不太多 另一方面市场上鱼龙混杂,各个厂家都说自己的粒度仪是最好的,不知听谁的好。/pp  挑选激光粒度仪首先要十分注重仪器的准确度和重复性。分辨是否只要用亚微米的标准颗粒测试一下就可分辨 粒度范围宽,适合的应用广,最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。激光粒度亿一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低 另外,气体光源波长短,稳定性优于固体光源。/pp  在挑选激光粒度仪还要要了解其分散方式是怎样的,一个样品要得到一个客观的测试结果,只有分散的好,才能测出正确的结果。最后要检查激光粒度仪的检测器,因为激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。/pp  原帖链接:http://bbs.instrument.com.cn/topic/3443446/p
  • 无锡中科光电“基于激光光散射谱技术的智能传感器的产业化”项目 入选国家火炬计划
    近期,科技部印发了2014年度国家星火计划、火炬计划、重点新产品计划和软科学研究计划立项清单。无锡中科光电技术有限公司的“基于激光光散射谱技术的智能传感器的产业化”成功入围国家火炬计划创新性产业集群项目。 本项目产品创新采用双波长三通道探测技术,发射20mJ高能量双波长激光,其中355nm激光因波长与细颗粒物直径相仿,散射截面大,回波信号强,特别适合灰霾等细颗粒物的探测;同时,532nm波长是人眼最敏感的波段,这一波长的颗粒物消光与大气能见度息息相关,其测量结果与视觉主观感受基本一致。接收望远镜收集颗粒物和云等对激光的后向散射回波,通过355nm回波信号以及532nm的垂直和平行偏振信号,分析颗粒物消光和退偏振特性,再结合其它信息,反演出颗粒物质量浓度的空间分布和边界输送通量。解决了微脉冲雷达霾层穿透能力差、回波信号弱、反演精度低的缺点,同时提高了对细颗粒物的探测能力,最小可探测粒径达5nm。 注:国家火炬计划项目,是以国内外市场需求为导向,以国家、地方和行业的科技攻关计划、高新技术研究开发计划成果及其他科研成果为依托,以发展高新技术产品、 形成产业为目标,择优评选并组织开发的具有先进水平和广阔的国内外市场及较好经济效益的高科技项目。其重点发展领域是:新材料、生物技术、电子与信息、光 机电一体化、新能源、高效节能与环保。
  • 新品发布 | 安东帕 Litesizer DLS 700 动态光散射粒度分析仪
    新品发布Litesizer DLS 系列是安东帕公司的动态光散射粒度/Zeta 电位分析仪产品,用于表征从纳米到微米粒子的粒度、粒度分布、Zeta 电位、分子量、粒子浓度、透光率等特性,具有适用浓度范围宽、一键操作完成测试、功能全面等优点。在 Litesizer DLS 100 和Litesizer DLS 500 取得了优秀销售和应用成绩的基础上,安东帕推出了功能更为强大的Litesizer DLS 700。Litesizer DLS 700安东帕 Litesizer DLS 700动态光散射粒度分析仪携全新复杂基质测试方案登场:MAPS系统:复杂样品的简单方案PCON系统:样品中不同颗粒浓度及总浓度的直观表达MAPS多角度联合测试简单的单峰样品测试已无法满足日益多样的测试需求,Litesizer DLS 700 正式推出多峰样品的最佳测试方案:MAPS 系统拥有更高的分辨率,解决复杂样品的粒径问题;更准确的粒径分布结果;更优秀的分离度,粒径比例大于1:2 即能准确分辨。不同角度分管样品中不同大小颗粒的结果,将其连立计算,即可获得,不同大小颗粒的准确结果。实验分析NIST 标准物质:已知粒径分别为150nm和300nm(粒径大小比值为1:2),将两者混合,混合比为3:1用背散射角测量/MAPS 测量使用Maps进行三角度测量背散射角度测试显示单峰背散射测量只显示一个峰值无法将其分为双峰,MAPS 结果,准确的解出了两个峰值。Litesizer DLS 700 测试显示双峰PCON颗粒浓度测试借助 PCON 系统强大的功能,现在您可以更了解样品中颗粒的浓度。Litesizer 700 不单单提供样品中颗粒的总浓度,通过 MAPS 对样品进行解析,还可以确定不同大小颗粒各自的浓度。结果显示:峰大小、相应浓度、总浓度
  • 激光粒度原理及应用
    p  粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。/pp  激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。/pp  strong激光粒度仪的光学结构/strong/pp  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。/pp  strong激光粒度仪的原理/strong/pp  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。/pp  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。/pp  为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。/pp  strong激光粒度仪测试对象/strong/pp  1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。/pp  2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。/pp  3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。/pp  strong激光粒度仪的应用领域/strong/pp  1、高校材料/pp  2、化工等学院实验室/pp  3、大型企业实验室/pp  4、重点实验室/pp  5、研究机构/pp  文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115)/ppbr//p
  • 张福根专栏|激光粒度仪应用导论之结构篇
    p style="text-indent: 2em "span style="font-family:宋体"经典的激光粒度仪的光学结构如下图所示。它由激光器、空间滤波器、准直镜、测量池、傅里叶透镜和环形光电探测器这列组成。此外还有数据采集板和计算机。从激光器发出的激光束经过空间滤波器后,变成一束发散但波前纯净的光束,经准直透镜后,变成一束平行光,照射到测量池中的待测颗粒上,被颗粒散射。散射光透过测量池的玻璃,被傅里叶透镜收集起来。在傅里叶透镜的后焦面上,放置了一个环形探测器阵列。探测器阵列由数十个独立的探测单元组成,每个单元都是一个环带,所有环带对应于相同的圆心。环带的平均半径从圆心往外数呈指数式增长,理想情况下环带的有效探测面积与环带的平均半径成正比。环带的共同圆心上开了一个直径约/span100span style="font-family:宋体"微米的通孔(也有做成实心反射面的)。通孔的中心(也是环带的圆心)位于光学系统的光轴上。通孔的后方斜置了一个独立的探测器,通常被称为“零环探测器”或“中心探测器”,而中心外的其他单元从里往外数分别称为/span1span style="font-family:宋体"环、/span2span style="font-family:宋体"环、/span3span style="font-family:宋体"环,/span??span style="font-family:宋体"。未经散射的光被聚焦到中心孔内,穿过探测器阵列平面,照射到零环探测器上。/span/pp style="text-align: center text-indent: 2em "img src="http://img1.17img.cn/17img/images/201808/insimg/60fa3bb2-9d98-450f-b12b-5e01a5441cfe.jpg" title="图2.jpg"//pp style="text-align: center text-indent: 2em "span style="font-family:宋体"激光粒度仪工作原理示意图/span/pp style="text-indent: 2em "span style="font-family:宋体"傅里叶透镜把相同散射角的光线聚焦到探测平面相同的半径位置上,因此每个探测单元接收到的散射光代表一个确定的散射角范围内散射光能的总和。未被颗粒散射的光被聚焦到中心探测器上。该探测器根据测量池中放入被测颗粒前后接收到的光信号的相对变化(称为“遮光比或遮光度”),可以判断待测颗粒在测量池中的浓度。颗粒浓度应该控制在适合的范围内,以保证散射信号既有足够高的信噪比,又不会发生复散射(即入射光只被颗粒散射一次)。其他探测单元用来接收散射。散射光被探测器转换成电信号,再经数据采集板放大和/spanA/Dspan style="font-family:宋体"转换,变成数字信号,然后传输给计算机。计算机软件根据散射光能分布计算散射颗粒的粒度分布。这个计算过程是一个求解高阶、病态的线性方程组的过程,行业中通常称为“反演过程”,具体的算法称为“反演算法”。计算机同时还担负整个仪器系统的协调控制任务。/span/pp style="text-align: center text-indent: 0em "span style="font-family:宋体"img src="http://img1.17img.cn/17img/images/201808/insimg/a2d22faa-0b31-42c2-bba4-f49b51e620e4.jpg" title="微信图片_20180803162750.png"//span/ppbr//pp style="text-indent: 2em "strongspan style="font-size:15px line-height:107% font-family:宋体"编者按:/span/strongspan style="font-size:15px line-height:107% font-family:宋体"本文带我们了解了激光粒度仪的基本结构,与“激光粒度仪应用导论之原理篇”一起,为读者构建了激光粒度仪的理论基础,然而掌握理论不等于善于应用,编者通过走访和论坛冲浪发现,不少激光粒度仪初级用户在解读粒度分析报告时都犯了难。别着急,张福根博士系列专栏——激光粒度仪应用导论之报告解读篇,就将照方抓药,为你答疑解惑。/span/pp style="text-indent: 2em text-align: right "span style="font-size:15px line-height:107% font-family:宋体"(作者:张福根)/span/ppbr//p
  • 在线激光粒度仪知多少?
    p style="text-indent: 2em "在线激光粒度分析仪由一般由采样系统、物料稀释系统及激光测量系统三大部分组成。其与常规离线的激光粒度粒度分析的区别主要在于采样和稀释不同。/pp style="text-indent: 2em "采样系统:/pp style="text-indent: 2em "水和浆料会同时流过取样阀两条管道,管道一接着粒度测量系统,管道二是生产线的旁路。当系统发出采样信号时,取样阀会旋转180度,从管道二取出一部分样品进入了管道一,被输送到下一个部件–稀释器。为保证取样的代表性,每次采样阀动作5次,即采5个2.5ml的样品,再进行稀释测量。/pp style="text-indent: 2em "稀释系统:/pp style="text-indent: 2em "结合使用预稀释器和级联稀释器。预稀释器是一个装有气动搅拌器以及用于控制稀释状态的液位传感器的容器。浆料样品自动地注入预稀释罐进行第一步的稀释,样品通过罐内的搅拌器自动混合,高低位传感器自动地控制预稀释罐的填充和清空。级联稀释器以同轴文氏管为基础,没有运动部件,可以同时稀释和同时分散。联稀释器的设计使用了流体力学模型软件。每个文氏管的动力来自于外部的供水,当通过文氏管区域的时候流体的速度增加。能加入额外的文氏管来增加稀释率。两个稀释仪均可进行自我清理,以便最大限度地减少任何应用中的稀释液用量。级联稀释器内部的文氏管喷更有效分散颗粒使测量数据准确可靠,防止稀释休克。/pp style="text-indent: 2em "激光粒度仪的测量基本原理是:当粒子流通过光学测量池时探测器收集特定时刻特定范围内的散射光,通过大量的扫描并对结果取平均值,得到具有代表性的散射模式。根据Mie理论,光碰到圆形的粒子时发生散射,如果知道粒径和粒子的光学特性,如折光率和吸光度,就能够精确地预测光的散射模式。每种尺寸的离子具有它自身的特征散射模式,就象指纹一/pp style="text-indent: 2em "样,没有一个是重复的。从这一理论反推,确定一系列粒子的散射模式,就可以得到这个系列的粒径及各种粒子所占比例,即粒度分布。/pp style="text-indent: 2em "在线激光粒度仪具有如下的性能特点:/pp style="text-indent: 2em "1.能给出极为详尽的粒度分布数据。包括粒度分布表、粒度分布曲线、中位径、平均粒径、边界粒径(能根据用户需求界定粒度分布范围)。/pp style="text-indent: 2em "2.测量范围大,能覆盖的整个粒度范围。在一个量程内就能测量小至亚微米(约0.1 μ m),大至数百微米的粉体粒度。/pp style="text-indent: 2em "3.测量速度快。测量一个样品只需3分钟左右,相当快捷。操作方便。现场安装完毕后,可在计算机上进行远程操作。/pp style="text-indent: 2em "在线激光粒度仪可实现实时监测产品的粒度,具有操作简单、快速、准确的特点,在浆料性质变化不大的条件下,在线分析数据趋势比较平稳,分析稳定性较好。数据分析具有一定的代表性。随着工业生产对粒度检测实时性和速度的要求越来越高,在线激光粒度仪的研究和应用也日益广泛。/pp style="text-indent: 2em "关于在线的粒度检测标准,冶金行业已有YB/T 4605-2017《烧结矿在线自动采样、制样、粒度分析及转鼓强度测定》和YB/T 4547-2016《焦炭在线自动采样、制样、粒度分析及机械强度测定技术规范》,但所用的方法都为筛分法。在线激光散射/衍射法相关粒度检测尚无国家及行业标准出台。另外,值得一提的是,烟台德信仪表有限公司有企业标准Q/0600YDX 001-2017 《在线粒度分析仪》出台。/p
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style="text-indent: 2em "strong编者按:/strong如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。/pp style="text-indent: 2em text-align: center "strong激光粒度仪应用导论之原理篇/strong/pp style="text-indent: 2em "当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。/pp style="text-indent: 2em "首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。/span/pp style="text-indent: 2em "麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。/pp style="text-indent: 2em "现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。/pp style="text-indent: 2em "世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title="图1:颗粒光散射示意图.jpg"//ppbr//pp style="text-indent: 0em text-align: center "颗粒光散射示意图/pp style="text-indent: 2em "激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。/pp style="text-indent: 2em "strong 编者结:/strong明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。/pp style="text-indent: 0em text-align: right "(作者:张福根)/p
  • 2021年激光粒度仪中标盘点:纳米粒度仪需求激增
    激光粒度仪是一种常用的粒度测试仪器,广泛应用于制药、化工、能源、建材、地矿、环保等行业,以及高校、科研院所、军工等领域;按工作原理,主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。为了更好的了解激光粒度仪市场,仪器信息网对2021年激光粒度仪中标标讯整理分析,供广大仪器用户参考。(注:本文数据来源于公开招中标信息平台,共统计激光粒度仪中标公告234条,不包括非招标形式采购及未公开采购项目,主要反映激光粒度仪科研市场变化,结果仅供定性参考。)从时间维度来看,2021年激光粒度仪月度中标数量波动较大。1-5月份科研市场采购需求疲软,招投标市场表现低迷;6月份中标数量激增,达到全年峰值,主要原因在于马尔文帕纳科在本月分别中标一批Mastersizer 3000激光粒度仪与一批Zetasizer Pro纳米粒度及电位分析仪;下半年中标数量虽有波动,但整体保持在相对高位。从季度分布来看,2021年激光粒度仪中标数量逐季增加,与2020年趋势基本相似。据公开招中标信息平台统计,2021年激光粒度仪招标单位覆盖29个省份、自治区及直辖市。广东省中标数量再列第一,排名二到五位的依次为江苏、北京、浙江、山东;激光粒度仪采购需求连续两年集中在以上五个省市。四川、山西、河北、辽宁、河南各省中标数量排名位于第二梯队,其中,河北与河南两地浮现激光粒度仪“采购大户”,2021年,河北化工医药职业技术学院、河北省药品医疗器械检验研究院、郑州大学分单次或多次采购了一批激光粒度仪,仪器总价均超过200万元。2021年激光粒度仪采购用户单位类型对采购单位分析发现,2021年,来自大专院校/科研院所的采购比例有所提升,高达79%;而企业占比缩减至5%。“十四五”期间,科技创新被提到前所未有的高度,国家实验室及研究机构的建设浪潮势必为科学仪器市场带来新的机遇,激光粒度仪厂商应高度关注,提前布局。2021年中标激光粒度仪类型分布从中标激光粒度仪类型来看,2021年纳米粒度仪采购需求激增,中标数量占比47%,创历年新高。近年来,随着新能源、生物医药、纳米技术等行业的迅速发展,对纳米颗粒尺寸表征的需求呈现指数般增长态势,国内外激光粒度仪生产厂商积极响应市场需求,纷纷推出纳米粒度及电位分析仪。2020年,马尔文帕纳科重磅发布Zetasizer Advance系列纳米粒度电位仪,包括Lab,Pro,Ultra三个型号;2021年,丹东百特隆重推出BeNano系列纳米粒度及 Zeta 电位仪,包括BeNano 90 Zeta、BeNano 180 Zeta、BeNano 180 Zeta Pro等多个型号;珠海欧美克高调发布NS-90Z纳米粒度及电位分析仪,成功引进和吸收了马尔文帕纳科纳米颗粒表征技术。随着各方入局及新产品的推出,纳米粒度仪市场迎来良好发展机遇。2021年激光粒度仪中标价格分布纵观整体中标价位分布,30万元以上的中高端激光粒度仪更受科研用户青睐,合计占比达67%。长期以来,国产品牌往往占据中低端市场,进口品牌则在高端市场占绝对优势;值得一提的是,国产品牌开始逐渐向高端市场渗透,2021年,多条中标讯息显示,丹东百特激光粒度仪中标单价超过40万元。2021年进口/国产品牌中标数量占比2021年激光粒度仪各品牌中标数量占比分布2021年激光粒度仪中标市场上,国产占比35%,进口占比65%,与2020年相比保持稳定。聚焦中标品牌,马尔文帕纳科以41%的占比稳坐榜首;丹东百特位列第二,占比19%,持续领跑国产品牌榜;麦奇克凭借7%的占比重回前三;济南微纳与珠海欧美克紧跟其后,并列第四,占比6%;布鲁克海文与安东帕中标数量旗鼓相当,各占比5%。其他表现较好的品牌还有新帕泰克、HORIBA、真理光学、Sequoia、贝克曼库尔特、美国PSS等。根据2021年中标数据信息,仪器信息网整理了2021年招投标市场“出镜率”较高的激光粒度仪明星型号,榜单如下:仪器类型品牌型号纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Pro激光粒度仪马尔文帕纳科Mastersizer 3000激光粒度仪丹东百特Bettersize2600纳米粒度及Zeta电位仪丹东百特BeNano 90 Zeta纳米粒度及Zeta电位仪安东帕Litesizer 500纳米粒度及Zeta电位仪麦奇克Nanotrac Wave II纳米粒度及Zeta电位仪布鲁克海文NanoBrook Omni纳米粒度及Zeta电位仪布鲁克海文NanoBrook 90plus PALS激光粒度仪欧美克LS-909激光粒度仪济南微纳Winner802
  • 《激光粒度仪(中国) 市场调研报告(2021版)》发布
    粒度是粉体材料的主要性能指标,粒度测试已经成为粉体材料生产、应用、研究的一项重要的基础性工作。粒度测试的方法很多,常见的有筛分法、沉降法、显微镜法、电阻法、光散射法、电超声法等。其中,光散射法以其显著特点已在颗粒测量领域及国际市场上占据了主导地位。基于光散射原理的激光粒度仪主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。静态光散射法具有测量动态范围宽、测试速度快、重复性好、操作简便、可实现在线测量等优点,是目前应用最广泛的粒度测试方法;动态散射法具有准确、快速、重复性好等优点,已成为一种常规的纳米粒度表征方法。前者主要用于测量微米、亚微米颗粒,后者则主要用于测量纳米颗粒及Zeta电位。目前,激光粒度仪应用领域非常广泛,包括制药、化工、能源、冶金、建材、地矿、环保、食品、化妆品、半导体等行业,以及高校、科研院所、军工等领域。为了更系统地了解我国激光粒度仪的市场情况,仪器信息网特别对激光粒度仪用户进行抽样调研,对主流激光粒度仪厂商进行采访,并对2020-2021年千里马招标网、各省市政府采购网招中标信息,仪器信息网激光粒度仪专场流量,大型科研仪器国家网络管理平台数据进行统计分析,撰写了《激光粒度仪(中国) 市场调研报告(2021版)》。本报告内容主要包括:中国激光粒度仪市场现状、竞争格局及发展趋势,激光粒度仪用户抽样调研分析,招中标、仪器导购专场、共享仪器平台大数据统计分析。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=241如对本报告感兴趣,可通过以下邮箱survey@instrument.com.cn联系我司相关人员,咨询报告相关细节!  附报告目录:第一章 激光粒度仪概述1.1激光粒度仪定义及分类1.2激光粒度仪发展历程第二章 激光粒度仪市场综合分析2.1激光粒度仪市场概览2.2 2020-2021年激光粒度仪新品一览第三章 激光粒度仪用户市场调研分析3.1激光粒度仪用户地域分布3.2激光粒度仪用户行业分布3.3不同品牌激光粒度仪用户数量分析3.4激光粒度仪用户采购行为分析3.5 激光粒度仪使用困扰因素分析3.6激光粒度仪产品及售后改进建议第四章 激光粒度仪大数据统计分析4.1激光粒度仪2020年中标盘点4.2激光粒度仪导购专场访问量统计分析4.3共享仪器平台激光粒度仪品牌盘点第五章 激光粒度仪技术与市场发展趋势5.1激光粒度仪技术发展趋势5.2.激光粒度仪市场发展趋势参考文献附录马尔文帕纳科 丹东百特麦奇克新帕泰克 珠海欧美克济南微纳真理光学
  • 闻歌识人 激光粒度仪如何反演“天机”?
    p style="text-indent: 2em text-align: justify "激光粒度仪作为粉体材料粒度表征的重要工具,已经成为当今最流行的粒度分析仪,在各领域得到广泛应用。现在市场上激光粒度仪品牌较多,有时对同一样品的测试结果也有较大差异,给用户造成很大的困扰。那么造成这种差异的原因是什么呢?除了样品制备和操作人员的差异外,最主要的原因是各激光粒度仪厂家采用的反演算法有很大差异。span style="text-indent: 2em " /span/pp style="text-indent: 0em text-align: center "span style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201901/uepic/5398ee10-96c5-4b67-8e3e-64d47f2d388e.jpg" title="1.jpg" alt="1.jpg"//span/pp style="text-indent: 2em text-align: justify "激光粒度仪的两个核心部分是光路系统和数据处理系统。光路系统主要影响测量范围,数据处理系统主要影响的是结果的准确性。数据处理系统包括信号的滤波、提取和反演算法,本文主要讨论反演算法。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/411dfc8a-5f31-4902-9cf3-db0c0f27f982.jpg" title="2.png" alt="2.png"//pp style="text-indent: 2em text-align: justify "什么是反演?反演就是对反问题的求解过程。科学上的反问题很多,如精确制导、无损探伤、天气预报、CT技术、法医学、考古学等都是反问题,对这些问题的求解过程就是反演。还有我们常做的游戏“闻声识人”,一个人在唱歌,你通过歌声判断这个唱歌的人是谁,这和激光粒度仪通过光散射信号反推粒度分布很相似。如,如果是大合唱,那么你需要通过合音来推算出都有哪些人在参加大合唱,每个人的音量在合音中的贡献比例是多少(类似于多分散样品)。这些事例说明“反演”存在于生活中的方方面面。反演算法是通过数学的方法求解反问题,它的准确性完全依赖所用算法的适应性。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/d40b218f-6d73-4224-8144-e9de64c69092.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em text-align: justify "激光粒度仪中的反演算法是对线性代数中的病态矩阵求解,病态矩阵是指对因数值的很小改变导致解有很大改变的矩阵。激光粒度仪中Mie散射系数矩阵A就是病态矩阵,且条件数较大,求解过程更复杂。我们可以通过矩阵关系式Ax=b,其中A为Mie散射系数矩阵,b为光散射向量,即激光粒度仪每个通道的信号组成的一维矩阵,x就是要求解的粒度分布数据。当b光散射向量有微小波动都会造成粒度分布x有剧烈波动,这是激光粒度仪反演算法的难点所在,并会直接影响激光粒度仪的重复性和准确性。/pp style="text-indent: 2em text-align: justify "本文所说的全程自适应反演算法是指适应单分散、多分散、双峰、多峰等都能得到准确的、稳定的粒度分布结果的任何分布类型样品的反演算法。目前在市面上,很多激光粒度仪厂家在软件中会设置很多分析模式来适应不同类型的样品,如通用模式、单峰模式、多峰模式等。从下图结果可以看出,不同分析模式对同一样品测试结果会产生巨大差异,常用的“通用模式”分布图形较平滑,但它偏离样品的真实分布却很大,反而其它两种模式更适合样品的真实分布,当然这是在我们知道样品粒度分布特征的前提下进行的有针对性的模式选择。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/42d3f04c-f6de-4673-88e3-93114dbcd653.jpg" title="4.png" alt="4.png"//pp/pp style="text-indent: 2em text-align: justify "与此不同的是,本文作者开发了另外一种全程自适应算法来测试样品的结果,这种算法是以非负最小二乘为基础,采用正则化参数动态变化的数学方法来实现的,软件中没有分析模式选项就直接进行反演计算,适合所有分布类型的样品,不论是单峰的、多峰的、单分散的、宽分布的都能得到准确的结果。目前这种算法已经应用到丹东百特所有型号的激光粒度仪中。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/0beae131-887f-498b-936d-ed14f8bddbcd.jpg" title="5.png" alt="5.png"//pp style="text-indent: 2em text-align: justify "反演算法是激光粒度仪的灵魂,它就像一个黑盒子,你看不到它的内部,不清楚它的过程,但它对得到准确的粒度测试结果是至关重要的。现在,很多用户不太清楚反演算法对粒度测试的重要性,对测试结果准确性的判断不够客观,以为进口仪器测的结果就是准确的。还有不少人追求粒度分布图形光滑、漂亮,这些都是可能造成错误的结果。出现这种现象的原因是国外激光粒度仪进入中国较早,而他们给出的结果大多都是平滑好看的分布曲线,如R-R分布、正态分布等。此文的目的是告诉广大激光粒度仪用户,要进行客观地去判断仪器的优劣,而不是迷信哪一种仪器。最好的方式是配制几种已知粒度分布的样品来验证激光粒度仪及其反演算法,只要在同一个模式下所测结果与实际值一致,这种激光粒度仪及其反演算法就是真实可靠的。/pp style="text-indent: 2em text-align: justify "激光粒度测试反演算法对粒度测试结果有着决定性的影响。通过歌声就能猜对唱歌人,是对声音和旋律有深刻了解的人才能做到的。/pp style="text-indent: 2em text-align: right "strong作者:/strong/pp style="text-indent: 2em text-align: right "丹东百特仪器有限公司/pp style="text-indent: 2em text-align: right "研发总监/pp style="text-indent: 2em text-align: right "范继来/p
  • 百特研发中心主任范继来的激光粒度仪情怀
    从事粒度测试研发工作近二十年,对激光粒度仪充满了感情,与其说是对事业的追求,不如说是一种情怀,那是探索的情怀,是提升与超越的情怀!2002年我参加工作时,我们的激光粒度测试技术同欧美相距甚远,那时我就梦想有朝一日赶上和超过他们,这个梦想使我找到了不断钻研和探索的动力。经过多年的努力,百特激光粒度仪得到了飞跃发展,获得了7项发明专利,22项实用新型专利,9项著作权,并参与起草了5项国家标准。特别是在光学系统和数据处理方面,百特激光粒度仪的创新技术已居于世界领先地位。光学系统是激光粒度仪的基础,它决定了仪器测量范围和测量精度。目前,国际先进的激光粒度仪的测量范围已经涵盖纳米到毫米范围,而百特自主研发的双镜头激光粒度仪、正反傅里叶结合光学系统激光粒度仪,散射光探测角度几乎达到了0-180°,测量范围同样涵盖了纳米到毫米的广阔范围,并且重复性精度甚至达到了0.1%,这就是百特独创的光学系统的神奇效果。要实现激光粒度测试中大角度散射光的接收,首先要解决激光在水中全反射角的限制。国外激光粒度仪普遍采用双光源方式来突破这个限制,但双光源存在波长不同、折射率不同、功率不一致、数据连接点凸起等问题,影响测量结果。而百特另辟蹊径,采用单一光源的双镜头和正反傅里叶结合光学系统,这种系统获得的散射信号是连续的,基准是一致的,折射率是唯一的,而探测角度却与双光束光学系统有相同的效果,因此百特光学系统优于双光束系统,是被理论和实践反复证明了的。 对激光粒度仪而言,光学系统好比人体的肌肉,而以Mie散射理论为基础的反演算法则像人体的中枢神经,它对激光粒度仪的内在性能——准确性、重复性和分辨力——有着直接的影响。由于反演算法首先对高阶病态矩阵求解,而病态矩阵求解是令数学家都头疼的难题,稍不留神就可能得出千奇百怪的结果,正所谓“差之毫厘谬以千里”。就是这项技术,我和我的研发团队用了十几年的时间,费尽了“洪荒之力”,终于在非负最小二乘法基础上找到了全局优化、大角度差分、智能降噪和自由拟合的合理方法,保证了百特激光粒度仪的准确性、重复性和分辨力全面超过进口品牌。我始终有一个情怀,那就是中国的激光粒度仪要达到甚至超越国际先进水平。通过多年努力研究,现在我们可以骄傲地说,以百特为代表的中国的激光粒度测试技术已经达世界先进水平,我和我的同事为此感到自豪和骄傲。我们当然不会满足,还要激情满怀地在提升激光粒度仪的道路上继续前行。
  • 张福根专栏|激光粒度仪应用导论之技术问题篇
    p style="text-indent: 2em "本文简述了作者团队近几年已经完成的部分研究成果或已经发现而正在解决的激光粒度仪的理论和技术问题。用户了解这些内容对正确认识和更好利用粒度仪器及其输出的测试结果会有所裨益。/pp style="text-indent: 2em "1 爱里斑的反常变化(Anomalous Change of Airy disk,简称ACAD )对及其对激光粒度测量的影响/pp style="text-indent: 2em "前文已经叙述过,激光粒度仪是建立在“颗粒越大,散射光斑(爱里斑)越小”这一物理现象之上的。这一现象使得爱里斑的尺寸与颗粒大小呈现一一对应关系。而作者团队的研究成果(参见论文:L. Pan, F. Zhang, et al. Anomalous change of Airy disk with changing size of spherical particles [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016,170: 83-89)表明,这种物理现象对吸收性颗粒来说,或者透明颗粒从粒径变化的大尺度上看是正确的。但如果颗粒是透明的,那么从某些较小的粒径区间看,有时会出现相反的情况,即:颗粒越大,爱里斑也越大。我们把这种现象称作爱里斑的反常变化(英文简称“ACAD”)。/pp style="text-indent: 2em "下图是基于Mie散射理论,用数值计算的方法绘制的散射光斑模拟图,形象地显示出光斑大小的变化。这里假定颗粒分散在折射率为1.33的水介质中,照明光波长0.633微米。先看第一行,颗粒折射率取1.59,故相对折射率为1.20。从(a1)到(a4),颗粒直径分别为2.88μm, 3.28μm, 5.30μm, 6.06μm,逐步增大;对应的散射光斑角半径(从亮斑中心到第一个暗环的角距离)分别为8.09° ,13.06° ,5.08° ,7.90° ,时大时小。粒径从2.88μm增大到3.28μm,时,爱里斑尺寸则从8.09° 增大到13.06° ,属于反常变化;粒径从5.30μm增大到, 6.06μm,爱里斑尺寸从5.08° 增大到7.90° ,也属于反常变化。图7中的(b1)到(b4)是m 为1.1,颗粒直径分别为5.91μm,6.82μm,10.90μm,11.81μm对应的散射光斑,角半径分别为4.24° ,7.02° ,2.61° ,4.35° ,也是振荡减小的。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/3ad14d66-db52-460b-b9e1-ba3ee2c52995.jpg" title="1.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong 爱里斑图像随着粒径增大而变化/strong/pp style="text-indent: 2em "img src="https://img1.17img.cn/17img/images/201808/insimg/4f396c68-da7c-44fd-8227-d1b3f65bcafc.jpg" title="2.png"//pp style="text-indent: 2em "图中红色曲线是根据Fraunhofer衍射理论得到的爱里斑尺寸随无因次参量的变化,它是一条单调下降的曲线。蓝色曲线是根据Mie理论计算的透明颗粒的爱里斑尺寸变化曲线,可以看出它是振荡的。我们把爱里斑尺寸随粒径的增大而增大的粒径区域,称为“反常区”。图中还表达出折射率实部仍然取1.2,但颗粒有吸收时爱里斑尺寸的变化。可以看出,随着吸收系数的增大,反常现象会逐步消失。在该图所设定的情形中,吸收系数达到0.1时,反常现象即完全消失(绿色曲线)。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/9059b5e1-eadd-4451-b427-f6642c42419e.jpg" title="3.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong 爱里斑尺寸随粒径变化曲线/strong/pp style="text-indent: 2em "凭直觉我们就能想到,反常现象的存在可能导致爱里斑尺寸与颗粒大小不再一一对应,从而使得仪器根据光能分布反演粒度分布产生困难。作者团队进一步的研究表明,爱里斑的振荡随着粒径的增长会反复出现直至永远。其振荡周期会趋近于一个常数。而反常现象对粒度分布反演的困扰主要发生在第一个反常区(参考文献:L. Pan, B. Ge, and F. Zhang. Indetermination of particle sizing by laser diffraction in the anomalous size ranges[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199:20-25)。/pp style="text-indent: 2em "作者团队已经推导出第一个反常区的中心粒径(反常区内Mie理论曲线与Fraunhofer曲线的交点)公式为:/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/be81374b-33fc-4075-a312-18647c7e952f.jpg" title="4.jpg"//ppbr//pp style="text-indent: 2em "从上式可以看出,反常现象对任意折射率的透明颗粒都存在。颗粒折射率越大,第一个反常中心的数值就越小。当被测颗粒的粒径分布落在反常区域,即上述公式给出的粒径位置周围时,将出现两个不同的粒度分布对应于相同的光能分布的情况,从而给粒度分布的反演带来不确定或者错误的结果。对此现象,各激光粒度仪厂商各有应对的方法,比如,真理光学的研发团队就在对ACAD现象深入研究的基础上,成功地解决了该现象对粒度测量的困扰,并已应用在真理光学的激光粒度仪产品中。/pp style="text-indent: 2em "2 平行平板测量池带来的全反射盲区/pp style="text-indent: 2em "所谓“全反射”就是当光线从折射率较大的空间(光密媒质)射向折射率较小的空间(光疏媒质)时,如果入射角较大,则光线将全部反射回光密媒质,不能传播到光疏媒质中。在激光粒度仪中,如果用液体分散待测颗粒(称为“湿法测量”),由于光电探测器总是安装在空气中,那么散射光就是从光密媒质向光疏媒质传播。目前市面上流行的激光粒度仪都是用平行平板玻璃作为测量池的窗口,这就会带来全反射的问题。如下图所示,当散射角比较小时,散射光能够穿过平行平板玻璃进入到空气,从而被光电探测器接收。假设分散介质是水(折射率1.33),那么根据折射定律可以算出全反射角为48.57° ,即在入射光垂直于玻璃表面的情况下,当散射角达到该角度时,光线进入空气的折射角等于90° (称为“全反射临界角”);当散射角继续增大,散射光将全部被玻璃-空气界面反射,回到测量池内,故称全反射。此时没有任何散射光出射到空气中。实际上置于空气中的探测器不可能摆在90° 的方向,常见的最大角为70° 左右,对应于水中的散射角为45° 。所以对前向散射来说,仪器只能接收散射角小于45° 的散射光。45° 到90° 的散射光不能被探测,这个角度范围即为测量盲区。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/62269a7f-254a-4c5d-8872-c0062969f795.jpg" title="5.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong散射光在平行平板玻璃测量池内的全反射现象示意图/strong/pp style="text-indent: 2em "对采用平行平板玻璃的测量池,即使设置了后向散射探测器,其后向能接收的最小散射角为135° (=180° -45° )。就是说45° 到135° 之间是测量盲区。该盲区对应于0.3到0.1微米的颗粒。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/51eeae4c-813c-4ec8-90a6-5f99ce16cd00.jpg" title="6.jpg"//ppbr//pp style="text-indent: 0em text-align: center " strong双光束照明的光学结构/strong/pp style="text-indent: 2em "引入另一束不同波长的照明光(以下称为“辅助照明光”或“辅助光束”),是加强激光粒度仪对亚微米颗粒测量能力的一种手段,如上图所示。一般来说辅助光束应该以较大的倾斜角入射到测量池中,从而使得测量池内大于45° 的散射光也能出射到空气中。例如,辅助光从空气入射到测量池的入射角为43° ,则对应于水中的倾斜角为31° 。该光束被颗粒散射后,逆时针方向最大76° (=31+45)的散射光,相对于水-玻璃界面,入射角也只有45° ,所以能够出射到空气中被探测器接收。另一方面,辅助光一般采用波长较短的蓝光,以扩展测量下限。/pp style="text-indent: 2em "真理光学则采用了梯形玻璃的测量窗口,能够较好地解决全反射对亚微米颗粒测量的影响。下图是真理光学LT3600plus激光粒度仪的结构示意图。该仪器包含了多项创新成果。就激光粒度仪的核心技术之一——光学结构来说,主要有两项:一是用一体化的偏振滤波取代了传统的针孔滤波,使仪器的抗震能力极大地提高,完全避免了针孔滤波所固有的易偏移,难调节的麻烦;二是用独创的改进型梯形窗口取代了传统的平板窗口。本文重点讨论第二点。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/fe3173a2-dec7-4250-bf55-92c9a964348d.jpg" title="7.jpg"//ppbr//pp style="text-indent: 0em text-align: center "strong真理光学LT3600plus的光学结构示意图/strong/pp style="text-indent: 2em "梯形玻璃测量池的工作原理见下图。在这种结构中,前向的平板玻璃被换成了梯形玻璃,同时在梯形玻璃的平行面与斜面相交的棱上加了一片防串条,并且给超大角探测器设置了遮光格栅。当光轴上方的超大角(大于全反射角)散射光传播到玻璃—空气界面时,正好落在玻璃的斜面上。此时散射光到达斜面的入射角总是小于玻璃-空气界面的全反射角,因此能够出射到空气中,从而解决了平板玻璃结构的全反射问题。必须说明的是,这种梯形结构20多年前就有人提出过。但是这种结构在应用中存在一个麻烦的问题,就是从平面出射的散射光和从斜面出射的散射光在空气中会相互串扰。真理光学通过前述的防串条和遮光格栅,巧妙地解决了串扰问题,故此能把梯形玻璃测量池应用在实际的粒度仪中。该方案用一束照明光解决了全反射盲区问题。下图(第二张)是LT3600Plus仪器对对0.1、0.2、0.4、0.5、1.0微米单分散标准颗粒的测量结果综合。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/24748398-5f6f-41b3-9d65-6a2a6dfd5d7b.jpg" title="8.jpg"//ppbr//pp style="text-indent: 0em text-align: center " strong改进的梯形玻璃测量池工作原理图(不包含后向接收)/strong/pp style="text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/0f4aa241-55ef-4927-b1b4-8ff2a4bb20e1.jpg" title="9.jpg"//strong/ppbr//pp style="text-align: center text-indent: 0em "strong LT3600Plus测量各种亚微米颗粒的结果综合/strong/pp style="text-indent: 2em "3 折射率数据获取的困难及解决之道/pp style="text-indent: 2em "用激光粒度仪测量样品时,需要预先输入样品的折射率。折射率数值如果不对,将导致错误的测量结果。目前一般是通过查找文献资料获得颗粒的折射率数值(粒度仪厂家虽然在仪器软件中也提供了部分物质的折射率数据,但也是从公开的文献中引用过来)。但是在实际操作中,折射率数据的问题,还是会困扰激光粒度仪的使用。主要原因是:/pp style="text-indent: 2em "(1)有些样品的折射率在公开文献中查不到;/pp style="text-indent: 2em "(2)有时查到的折射率数据与实际折射率不符。原因是:/pp style="text-indent: 2em " (2a)物质中的杂质含量会影响折射率的数值。如果待测物质的实际杂质含量与文献提供数据所对应的杂质含量不一致,那么待测物质的实际折射率与文献提供的折射率数值也不一致。/pp style="text-indent: 2em "(2b)物质的折射率随照明光的波长变化。激光粒度仪的主光束通常是红光,波长大约633纳米到655纳米。文献提供的折射率数据对应的光波长很少是这个范围的。最常见的折射率是用钠黄光(波长589纳米)测量得到的。因此实际折射率与文献提供的数值可能不一致。/pp style="text-indent: 2em "准确地获得被测颗粒的折射率,成为激光粒度仪应用的重要问题之一。/pp style="text-indent: 2em "在各种解决方法之中,真理光学的研发团队提出了一种利用激光粒度仪测量得到的散射光分布本身计算待测颗粒的折射率的方法(已申请发明专利)。可以自动测定颗粒尺寸远大于光波长情况下颗粒的折射率。/pp style="text-indent: 2em "本方法所依据的基本原理是:当颗粒的尺寸远大于光波长(典型值为10倍以上),且只考虑小角度(通常小于5º )范围内的光强分布时,散射光分布可以用Fraunhofer衍射理论比较精确地描述。而Fraunhofer衍射理论给出的光能分布与颗粒的折射率无关,只与颗粒尺寸有关;同时在小角范围内,Fraunhofer衍射理论与Mie理论的数值高度吻合,因此我们可以根据散射光在小角范围内的分布和衍射理论确定样品的粒度分布,再利用大角散射光及前面用衍射理论获得的粒度分布,通过简单的迭代算法,计算出颗粒的折射率实部和虚部。/pp style="text-indent: 2em "4 其他问题/pp style="text-indent: 2em "衍射法粒度测量还存在一些其他的值得进一步研究的问题。例如当颗粒浓度很高时,散射光被颗粒多次散射(称为“复散射”)对测量结果的影响,颗粒形状偏离球形是怎样影响测量结果的等等,这些问题都有待研究者们继续探索下去。/pp style="text-indent: 2em "本文中,张福根博士基于自己多年来的研发成果,深入探讨了激光粒度仪存在的几个前沿问题,激光粒度仪的复杂性由此可见一斑,其未来的发展仍然让人期待。不过作为粒度粒型检测分析的重要仪器,有关激光粒度仪的话题不仅是高山流水的学术研究,同时也是日常实验检测中的亲密伙伴,在实际应用中我们应该选择什么样的激光粒度仪呢?下一篇张福根专栏|激光粒度仪选型建议将为你提供参考。/pp style="text-indent: 0em text-align: right "(作者:张福根)/pp style="text-align: left text-indent: 2em "更多精彩内容尽在a href="http://www.instrument.com.cn/zt/YYMMG" target="_self" title="" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "激光粒度仪应用面面观/span/a。br//p
  • 干货|7大因素影响激光粒度测试结果
    p style="text-indent: 2em "编者按:粉体的粒度及粒度分布是衡量产品质量的关键性指标,而目前最火的粒度检测方法之一就是激光粒度仪了。这种粒度检测方法不受温度变化、介质黏度、试样密度及表面状态等诸多因素的影响,具有测试速度快、测量范围广、便捷易操作等特点。放眼市场,激光粒度仪的品牌和型号也可谓五花八门,琳琅满目。但值得称道的激光粒度仪虽然不胜枚举,却仍然会收到诸多因素的影响,造成检测结果的不稳定。太原理工大学矿业工程学院的专家张国强就深度剖析了7大影响激光粒度仪检测结果的因素。/pp style="text-indent: 2em "专家观点:/pp style="text-indent: 2em "目前市面上的激光粒度分析仪其基本原理均为米氏散射理论及其近似理论。包括测量纳米级颗粒所使用的动态光散射原理也是借助米氏散射理论而补充完善起来的 。米氏散射理论把待测颗粒等效成各向同性的球形粒子,在入射光照射下根据麦克斯韦电磁方程组,可以求出散射光强角分布的严格数学解。 利用米氏散射理论的基本公式进一步求出此时散射光强分布对应的颗粒粒径。米氏散射理论通过测量待测样品的散射光强分布巧妙地解决了超细颗粒的粒度测量问题,但由于基于米氏理论的激光粒度测量技术本身的复杂性,提前预先设定的边界条件并不能全面地反映实际样品的具体情况。 同时商品化的激光粒度分析仪由于受生产厂家技术实力水平的限制,导致各厂家仪器的内部构造与算法程序等方面均存在差异。/pp style="text-indent: 2em "为探究粉体粒度测试评价用标准样品的特性,为激光粒度分析仪生产厂家提供优化仪器性能的理论依据,为粒度检测用户提供评价激光粒度测试结果可靠性与准确性的依据。下面我将对激光粒度仪测试结果的重要影响因素进行分析:/pp style="text-indent: 2em "(1)复折射率/pp style="text-indent: 2em "激光散射法粒度测量的对象一般是微米级的粒子,这些粒子的光学常数并不能简单看成/pp style="text-indent: 2em "粒子材料的光学性质,而是指颗粒的复折射率n’,其定义为:n‘=n+ik。其中 n 为通常所说的折射率,虚部k表示光在介质中传播时光强衰减的快慢,即吸收系数,有时也被称作吸收率。/pp style="text-indent: 2em "复折射率的选择合适与否直接影响到粒度检测结果的准确性与可靠性,但是影响待测颗粒复折射率的因素较多,难以确定其准确值,所以到目前为止在激光粒度测量领域中仍旧没有确定复折射率的统一方法 。在实际的粒度检测过程中,一般只是对同种物质使用一个固定的复折射率,这样的测量结果必然会与样品的真实值有较大偏差。 但是如果针对不同粒/pp style="text-indent: 2em "度区间的颗粒都去寻找其复折射率,却又不现实的。/pp style="text-indent: 2em "(2)折射率/pp style="text-indent: 2em "Mie 散射理论是麦克斯韦电磁方程组的严格解,激光法检测的前提假设是粉体粒子是球形且各向同性的,大多数晶体在不同的方向上有不同的折射率。由于不同厂家的设备中光能探测器的数量、空间分布位置、灵敏度的不同也会导致检测结果的差异。/pp style="text-indent: 2em "(3)内置算法/pp style="text-indent: 2em "由于光强分布的差异,不同粒度仪生产厂家所采用的软件内置算法不同,造成系数矩阵的计算结果差异,由此给反演带来不同程度的误差。/pp style="text-indent: 2em "(4)内外复折射率/pp style="text-indent: 2em "球形石英粉等颗粒,在高温环境下烧灼成型。由于既要成球,又要熔透转变为非晶型或不定形,其技术难度很高。 所以在生产过程中会有部分无定形态的熔融石英包裹在结晶石英上,以及熔融石英内部含有空心气泡。这种颗粒被称为双层颗粒,颗粒内外复折射率不同,导致激光法测量时可能带来较大误差,据相关文献,最大误差可能超过 50%。/pp style="text-indent: 2em "(5)反常异动现象/pp style="text-indent: 2em "有研究者发发现在有些折射率下对于部分粒径区间,随着粒径的变小,散射光强分布主峰会向探测器内侧移动,而正常情况下应向探测器外侧移动,从而影响粒度检测的结果。 这种现象被称为散射光能分布的反常移动现象。/pp style="text-indent: 2em "(6)分散状态/pp style="text-indent: 2em "使用激光粒度仪检测过程中,需注意保证待测颗粒处于良好的分散状态。 当前市面上的主流激光粒度仪, 基本上都带有离心循环分散和超声分散两种分散模式,所以对于这种类型仪器的用户,不建议测试前的机外分散, 因为在用烧杯将分散后的溶液导入循环槽的过程中极易在杯底残留部分大颗粒,导致测试结果产生误差。 在仪器中分散样品时,应注意根据物料性质调整超声和离心循环分散的功率,太大容易导致气泡的产生,太小则容易导致分散效果变差和大颗粒沉底。/pp style="text-indent: 2em "(7)仪器的保养程度/pp style="text-indent: 2em "激光粒度仪的保养程度,对检测结果有较大影响。激光粒度仪需要定期标定维护。在实际的使用过程中发现,部分样品极易在测试过程中附着在仪器的管路内部,从而混入之后的测试样品中带来测试误差。而仪器自带的清洗功能很难解决这类问题,需要在激光粒度测量中引起足够重视。/pp style="text-indent: 2em "鉴于激光粒度测量过程中的影响因素过多,各种样品不同粒级区间的复折射率难以确定,所以目前来看并没有可靠地依据来证明激光粒度测试的准确性,这也是激光粒度检测急需解决的问题。在对粉体粒度要求较高的领域,可以采用多种粒度检测手段,综合比较检测结果,来得到较为可靠的粉体粒度值。此外研制并推广国家及行业内认可的激光粒度分析标准样品,也是一个解决激光粒度检测差异性的实用方法。/p
  • 大塚电子发布大塚电子小角激光散射仪PP-1000新品
    小角激光散射仪 PP-1000 PP-1000小角激光散射仪利应用了小角光激光光散射法(Small Angle Laser Scattering,简称SALS),可以对高分子材料和薄膜进行原位检测,实时解析。与SAXS和SANS的装置相比,检测范围更广。利用偏光板的Hv散射测量可以进行光学各向异性的评价,解析结晶性胶片的球晶半径,Vv散射测量可以进行聚合物混合的相关距离的分析。 特点l 0.33 ~ 45°散射角度的测量,最短测试时间10 毫秒l 检测范围0.1μm ~数十微米l 可以在专用溶液单元中测量溶液样本l Hv散射,Vv散射测量可以在软件上轻松切换 用途l 高分子材料评价→结晶性胶片结晶化温度、球晶直径、结晶化速度配光、光学异方性→聚合物混合相分离过程和相关距离(分散度)→高分子凝胶三维架桥结构的大小→树脂热硬化树脂和UV硬化树脂的硬化速度 l 粒子物性评价粒子直径,凝聚速度 检测原理 小角激光散射仪由光源、偏振系统、样品台和记录系统组成。单色激光照射到样品时发生散射现象,散射光投射到屏幕上并被拍摄下来,得到样品的散射条纹图。操作过程:1.在样品台上放置样品。2.根据想要测量的对象调整检偏片。3.来自样品的散射图案会被相机记录下来。 当起偏片与检偏片的偏振方向正交时,得到的光散射图样叫做Hv散射;当起偏片与检偏片的偏振方向均为垂直方向时,得到的光散射图样叫做Vv散射。从这些散射图形中可以获取球晶半径、相分离结构、分散相颗粒平均粒径、配向状态等信息。l Hv散射 球晶半径解析:R = 4.09 / qmax(R:球晶半径,qmax:散射光强度最大的散射向量) q = 4πn/λsin(θ/ 2)(q:散射向量, λ:介质中的波长,n:样品折射率,θ:散射角) l Vv散射 对聚合物混合的相分离过程的评价连续相与分散相的大小,分散相颗粒平均粒径(分散度)粒子直径的评价相分离构造与相关距离检测 技术参数 应用案例 l PVDF球晶半径分析 溶融温度230℃結晶化温度160℃PP-1000散射图样 偏光显微镜图样 各时间45°方向的散射向量提取 球晶半径计算创新点:1.0.33 ~ 45° 散射角度的测量,最短测试时间10 毫秒2.检测范围0.1μ m ~数十微米3.可以在专用溶液单元中测量溶液样本4.Hv散射,Vv散射测量可以在软件上轻松切换大塚电子小角激光散射仪PP-1000
  • 日本岛津制作所发布SALD-2300激光衍射粒度仪
    近日,日本岛津制作所最新发布了可用于测量颗粒粒径和分布的激光衍射粒度仪SALD-2300。 粉状原料的粒度分布对药物、化妆品、食品、充电电池和其他成品的性能有重大影响,是质量控制的重要指标。随着粒度测量的需求扩展到各个领域,岛津开发出了可以提供更加广泛的测量范围,并可方便、高效的进行精密测定的粒度仪,其粒径测量范围可达17纳米到2500微米。并且,通过对光路和检测器的优化,灵敏度提高了10倍,因此能够轻松应对浓度在0.1ppm到200000ppm之间的样品。此外,SALD-2300具有连续测量功能,最短测量间隔仅为1秒。因此,SALD-2300可精确地测量出随时间变化的粒度分布的实时数据。 (注解:粒度分布显示测量样品中颗粒的尺寸及比例。在激光衍射法中,光源发出的激光照射在颗粒样品上产生衍射和散射光,检测器单元对这些衍射和散射光进行检测,从而分析出样品中颗粒的尺寸和分布。) 粉体作为原材料被广泛应用于工业生产和日常生活中,如药物、化妆品、食品、油墨印刷、充电电池电极、催化剂、陶瓷等等。原材料中的颗粒尺寸对产品质量有重大影响,因此准确的测量出粒度分布在质量控制和产品开发中非常重要。例如,在化妆品中,氧化钛和氧化锌微粒被用来制成紫外散射剂以阻隔紫外线。通过对紫外线的散射,颗粒阻挡紫外线到达皮肤。粒度大小是对紫外线阻隔作用的关键。当颗粒大于或等于1微米时,大部分紫外线正向散射(朝向皮肤),直接到达皮肤上。相反,如果颗粒小于1微米,光线除了正向散射外,还会发生反向或两边散射。因此,当皮肤表面存在多层超微颗粒时,可以更有效的散射紫外线。此外,由于某些样品的粒度分布会在稀释和浓缩后改变,测量实际使用条件下的粒度分布很重要。使用传统的粒度仪,由于可测量的浓度范围有限(10ppm到100ppm),必须通过稀释或浓缩来调整样品的浓度,因此结果往往偏离样品的实际粒度分布。但是,凭借高灵敏度的光学系统和检测器,SALD-2300可以实现从0.1ppm到200000ppm较宽浓度范围内的测量。 SALD-2300除了可测量多种浓度的样品,无需对样品进行稀释和浓缩外,因为采用了单一高能光源设计,在测定过程中无需切换光源,因此具备进行间隔时间仅1秒的连续测量的能力。因此,SALD-2300可精确地测量出随时间变化的粒度分布的实时数据。 SALD-2300的特点粒度测量范围在17纳米到2500微米之间通过采用新的传感器和进样器的改进功能,粒度测量范围扩展至17纳米至2500微米。因此,使用SALD-2300不仅可以测量平均粒度为50纳米的聚苯乙烯乳胶微粒,还可以测量粒度为2毫米的不锈钢球,实际应用范围有了显著的扩展。适用于粒子浓度范围在0.1ppm到200000ppm之间的样品的测定通过增强散射光检测系统的灵敏度及相应选件,SALD-2300可以测量浓度范围在0.1ppm到200000ppm之间的样品。这一设计对测量浓度由高往低变化的样品十分有效,比如监测药物的分解过程。间隔仅1秒的连续测量功能可实时观察粒度分布的变化由于分散和聚集作用,同一样品中,粒度分布常常也会随着时间变化。通过间隔仅1秒的高速连续测量,SALD-2300可连续实时的测量粒度分布变化。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制