金属非金属分离器

仪器信息网金属非金属分离器专题为您提供2024年最新金属非金属分离器价格报价、厂家品牌的相关信息, 包括金属非金属分离器参数、型号等,不管是国产,还是进口品牌的金属非金属分离器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属非金属分离器相关的耗材配件、试剂标物,还有金属非金属分离器相关的最新资讯、资料,以及金属非金属分离器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

金属非金属分离器相关的厂商

  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询
  • 山西德之北金属材料有限公司致力于对各类金属复合新材料的生产及研发,产品线包括不锈钢+碳钢、不锈钢+不锈钢、钛+碳钢、钛+不锈钢、铜+碳钢以及铝+碳钢等各种不同材质间的材料组合;公司拥有爆炸复合法和热轧复合法两种不锈钢复合板先进的生产工艺,通过与太钢集团公司强强合作,以太钢公司的现代化生产线和先进检测设备、优良规范的管理为依托,充分利用太钢丰富的产品线资源,拥有年产不锈钢复合板5万吨的生产能力,是我国在产最大的复合板生产基地之一。我司复合板具有大幅面、厚薄规格可任意组合的特点,根据客户要求定制,以保证交货期速度快,成品结合强度高等优势,客户遍及全国各地及部分国外地区。
    留言咨询
  • 正铭金属材料行凭借灵敏的市场信息和优越的货源渠道,提供优质名牌特殊金属材料及高科技金属产品与专业的服务阵容,我司奉行深入了解并满足客戶需求为导向,积极开拓,公开利润的经营、致力成为客户支持和信赖。公司鼓励在做商业决定中融合为多方可持续的共赢为使命社会价值观,优先为客户考虑提升客户的产品品质及推动精密的升级及提升客户之国际竞争力,致力于与客户建立可持续、积极稳定的商业伙伴关系。 客户购买我们的产品,仅仅是与我公司交往的开始,是售后服务部工作的开始,客户在使用正铭金属材料行产品的整个阶段内,全体售后服务人员以周到、细致、热忱、及时的服务,让客户轻松自如,无后顾之优地使用材料,真正体验到我公司的产品为客户带来的方便和创造的利润价值,让客户买到更放心的材料。
    留言咨询

金属非金属分离器相关的仪器

  • 谐波分离器 400-628-5299
    A.OBHS系列谐波分离器 命名规则: OBHS直径-HR波长示意图: OBHS谐波分离器选型表:型号名称1064nm处532nm处尺寸OBHS25.4-HR1064谐波分离器(1064高反,532高透)R>99.5%R<15%25.4x6.35OBHS25.4-HR532谐波分离器(532高反,1064高透)R<15%R>99.5%25.4x6.35B. 谐波分离器(进口)示意图及曲线图:YHS高谐波分离器(SIGMA)选型表:型号反射波长(nm)透过波长(nm)D(mm)T(mm)YHS-25.4C05-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 25.45YHS-30C05-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 30.05YHS-50C08-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 50.08YHS-50.8C08-355355 (R&ge 99.5%)532/1064 (T &ge 85%)ø 50.88YHS-25.4C05-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 25.45YHS-30C05-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 30.05YHS-50C08-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 50.08YHS-50.8C08-532532 (R&ge 99.5%)1064 (T &ge 95%)ø 50.88YHS-25.4C05-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 25.45YHS-30C05-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 30.05YHS-50C08-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 50.08YHS-50.8C08-10641064 (R&ge 99.5%)532 (T &ge 95%)ø 50.88
    留言咨询
  • LMS金属分离器适用行业LMS 系列金属分离器可用于检测食品、药品、乳制品、农产品、化工、塑料等行业原料里面的金属异物,如铁、铜、不锈钢、铝、等。功能特点采用,性能稳定,能分离出原料中含磁性和非磁性的金属(如铁、铜、铝、不锈钢等)。02检测精度高,小如0.2MM的金属粒子或者金属丝也可检出03全304不锈钢结构,满足食品、药品行业的卫生要求全封闭通道,符合食品、药品行业防尘要求良好的检测精度,可自动分离剔除金属符合满足IFS 及HACCP 认证要求保护生产设备,提高原料利用率LMS金属分离器介绍1.适用于食品、制药、塑料、包装等行业,用于检测粉末,颗粒,片才等产品中的金属杂质2.,采用电磁感应原理,自动检测并分离原料中的铁、铜、铝、不锈钢等金属杂质3.的检测剔除系统,即使金属内嵌于产品中也能快速检测剔除4.高检测性能,最小可以检测出φ0.2mm的金属5.微电脑控制,LED灯指示6.紧凑的结构设计,操作简单,方便安装,可与其他设备配套使用,也可独立使用7.特殊的结构设计,有效避免震动,噪声和产品效应等外部因素影响8.多种检测口径可选,满足不同客户的精度和产品需求9.304外壳机构,满足食品、药品行业的卫生要求
    留言咨询
  • 磁性分离器本产品是为生物实验而设计的小型专用磁性分离工具,适用于抗体纯化、免疫沉淀、免疫共沉淀、细胞分选、核酸分离等操作。该系列产品采用人性化的结构设计和外观设计,为用户考虑每一个操作细节,并提供完美的操作体验和视觉享受,优化的磁场分布,使操作更加快捷高效。产品名称编号规格包装Magnetic Separator Stand 2/15602011个/盒Magnetic Separator Stand 96 I603021个/盒Magnetic Separator Stand 96 II603031个/盒Magnetic Separator Stand 50602031个/盒Magnetic Separator Stand 96 III603041个/盒Megnetic Rod602041个/盒Magnetic Separator Stand 2/15适用于以普通1.5mL EP管,2mL EP管和15mL离心管为容器的磁性分离试验。Magnetic Separator Stand 96-I适合常规96孔平底微孔板、96孔PCR板、PCR管条(8孔或12孔)等;Magnetic Separator Stand 96-II适合96孔PCR板(20~200μL实验体系)Magnetic Separator Stand 96-III适合96孔深孔板Magnetic Separator Stand 50用于各种粒径的磁珠、琼脂糖磁珠等 适合常规50mL 离心管Megnetic Rod适用于200mL~2L的常规的实验室容器(非金属)
    留言咨询

金属非金属分离器相关的资讯

  • 半导体材料无机非金属离子和金属元素解决方案——光刻胶篇
    半导体材料无机非金属离子和金属元素解决方案——光刻胶篇李小波 潘广文 近年来,随着物联网、人工智能、新能源汽车、消费类电子等领域的应用持续增长以及5G的到来,集成电路(integrated circuit)产业发展正迎来新的契机。集成电路制造过程中,光刻工艺约占整个芯片制造成本的35%,是半导体制造中最核心的工艺。涉及到的材料包括多种溶剂、酸、碱、高纯有机试剂、高纯气体等。在所有试剂中,光刻胶的技术要求最高。赛默飞凭借其在离子色谱和ICPMS的技术实力,不断开发光刻胶及光刻相关材料中痕量无机非金属离子和金属离子的检测方案,助力光刻胶产品国产化进程。从光刻胶溶剂、聚体、显影液等全产业链,帮助半导体客户建立起完整的质量控制体系。 光刻胶是什么?光刻胶又称抗刻蚀剂,是半导体行业的图形转移介质,由感光剂、聚合物、溶剂和添加剂等四种基本成分组成。将光刻胶旋涂在晶圆表面,利用光照反应后光刻胶溶解度不同而将掩膜版图形转移到晶圆表面,实现晶圆表面的微细图形化。根据光刻机的曝光波长不同,光刻胶种类也不同。 光刻相关材料光刻相关材料主要有溶剂、显影剂、清洗剂、刻蚀剂和去胶剂,这些材料被称为高纯湿电子化学品,是集成电路行业应用非常广泛的一类化学试剂。光刻胶常用溶剂有丙二醇甲醚/丙二醇甲醚醋酸酯(PGME/PGMEA)、甲醇、异丙醇、丙酮和N-甲基吡咯烷酮(NMP)等。常见的正胶显影剂有氢氧化钠和四甲基氢氧化铵等,对应的清洗剂是超纯水。 光刻胶及光刻相关材料中金属离子、非金属阴离子对集成电路的影响半导体材料拥有独特的电性能和物理性能,这些性能使得半导体器件和电路具有独特的功能。但半导体材料也容易被污染损害,细微的污染都可能改变半导体的性质。通常光刻胶、显影液和溶剂中无机非金属离子和金属杂质的限量控制在ppb级别,控制和监测光刻工艺中无机非金属离子和金属离子的含量,是集成电路产业链中非常重要的环节。 光刻胶及光刻相关材料中无机金属离子、非金属离子的测定方法国际半导体设备和材料产业协会(Semiconductor Equipment and Materials International,SEMI)对光刻胶、光刻工艺中使用的显影剂、清洗剂、刻蚀剂和去胶剂等制定了严格的无机金属离子和非金属离子的限量要求和检测方法。离子色谱是测定无机非金属离子杂质(F-、Cl-、NO2- 、Br-、NO3- 、SO42-、PO43-、NH4+)最常用的方法。在SEMI标准中,首推用离子色谱测定无机非金属离子,用ICPMS测定金属元素。赛默飞凭借其离子色谱和ICPMS的领先技术,紧扣SEMI标准,为半导体客户提供简单、快速和准确的光刻胶和光刻相关材料中无机金属离子和非金属离子的检测方案,确保半导体产业的发展和升级顺利进行。针对光刻胶及光刻相关材料中痕量无机非金属离子和金属元素的分析,赛默飞离子色谱和ICPMS提供三大解决方案。 方案一 NMP、PGMEA、DMSO等有机溶剂中痕量无机金属和非金属离子的测定方案 光刻胶所用有机溶剂中无机非金属离子的限量要求低至ppb~ppm级别。赛默飞离子色谱提供有机溶剂直接进样的方式,通过谱睿技术在线去除有机基质,一针进样同时分析SEMI标准要求监控的无机非金属离子。整个分析过程无需配制任何淋洗液和再生液,方法高效稳定便捷,避免了试剂、环境、人员等因素可能引入的污染。ICS 6000高压离子色谱有机试剂阀切换流路图 滑动查看更多 光刻胶溶剂中ng/L级超痕量金属杂质的测定,要求将有机溶剂直接进样避免因样品制备过程引起的污染。由于 PGMEA 和 NMP具有高挥发性和高碳含量,其基质对ICPMS分析会引入严重的多原子离子干扰,并对等离子体带来高负载。iCAP TQs ICP-MS 中采用等离子体辅助加氧除碳,并结合冷等离子体、串联四级杆和碰撞反应技术,可有效去除干扰。变频阻抗式匹配的RF发生器设计,可轻松应对有机溶剂直接进样,并可实现冷焰和热焰模式的稳定切换。 冷焰TQ-NH3模式测定NMP中Mg热焰TQ-O2模式测定NMP中V NMP、PGMEA有机溶剂直接进样等离子体状态未加氧(左),加氧(右) 方案二 显影液中无机金属离子及非金属离子测定方案 光刻工艺中常用的正胶显影液是氢氧化钠和四甲基氢氧化铵,对于这两大碱性试剂赛默飞推出强大的在线中和技术,样品仅需稀释2倍或无需稀释直接进样,避免了样品前处理引入的误差和污染,对此类样品中阴离子的定量限达到10ppb以下。这一方法帮助多家高纯试剂客户解决了碱液检测的技术难题,将该领域的高纯试剂纯度提升到国际先进水平。中和器工作原理四甲基氢氧化铵TMAH是具有强碱性的有机物,作为显影液的TMAH常用浓度为2.38%, 为了避免样品处理中引入的污染,ICPMS通常采用直接进样方式测定。在高温下长时间进样碱性样品,会导致腐蚀石英炬管,引起测定空白值的提高。iCAP TQs使用最新设计的SiN陶瓷材料Plus Torch,耐强酸强碱,可一劳永逸地解决碱性样品中痕量金属离子的测定。新型等离子体炬管Plus Torch 方案三 光刻胶单体和聚体中卤素及金属离子测定方案 光刻胶单体和聚体不溶于水,虽溶于有机试剂但容易析出,常规方法难以去除基质影响。赛默飞推出CIC在线燃烧离子色谱-测定单体和聚体中的卤素,通过燃烧,光刻胶样品基质被完全消除,实现一次进样同时分析样品中的所有卤素含量。燃烧过程实时监控,测定结果准确稳定,满足光刻胶中痕量卤素的限量要求。图 CIC燃烧离子色谱仪SEMI P32标准使用原子吸收、ICP光谱和ICP质谱法来测定光刻胶中ppb级的Al Ca Cr 等10种金属杂质,样品前处理可采用溶剂溶解和干法灰化酸提取两种方法。溶剂溶解法是使用PGMEA等有机溶剂将样品稀释50-200倍,超声波振荡充分溶解后,直接进样测定。部分聚合物较难溶解于有机溶剂中,将采用500-800度干法灰化处理,并用硝酸溶解残留物提取。iCAP TQs采用在样品中添加内标工作曲线法测定,对于不同基质样品及处理方法的样品可提供准确的测定结果。 总结 针对集成电路用光刻胶及光刻相关材料,赛默飞离子色谱和ICPMS提供无机非金属离子和金属离子杂质检测的完整解决方案,为光刻胶及高纯试剂客户提供安全、便捷可控的全方位支持。“胶”相辉映,赛默飞在行动,助力集成电路产业发展,促进光刻胶国产化进程,欢迎来询! 参考文献:1.SEMI F63-0521 GUIDE FOR ULTRAPURE WATER USED IN SEMICONDUCTOR PROCESSING2.SEMI P32-1104 TEST METHOD FOR DETERMINATION OF TRACE METALS IN PHOTORESIST3.SEMI C43-1110 SPECIFICATION FOR SODIUM HYDROXIDE, 50% SOLUTION4.SEMI C46-0812 GUIDE FOR 25% TETRAMETHYLAMMONIUM HYDROXIDE5.SEMI C72-0811 GUIDE FOR PROPYLENE-GLYCOL-MONO-METHYL-ETHER (PGME), PROPYLENE-GLYCOL-MONO-METHYL-ETHER-ACETATE (PGMEA) AND THE MIXTURE 70WT% PGME/30WT% PGMEA6.SEMI C33-0213 SPECIFICATIONS FOR n-METHYL 2-PYRROLIDONE7.SEMI C28-0618 SPECIFICATION AND GUIDE FOR HYDROFLUORIC ACID8.SEMI C35-0118 SPECIFICATION AND GUIDE FOR NITRIC ACID9.SEMI C36-1213 SPECIFICATIONS FOR PHOSPHORIC ACID10.SEMI C44-0618 SPECIFICATION AND GUIDE FOR SULFURIC ACID11.SEMI C41-0618 SPECIFICATION AND GUIDE FOR 2-PROPANOL12.EMI C27-0918 SPECIFICATION AND GUIDE FOR HYDROCHLORIC ACID13.SEMI C23-0714 SPECIFICATIONS FOR BUFFERED OXIDE ETCHANTS
  • 无机非金属材料领域成杰青基金资助重点
    p  /pp  5年时间(2012-2016),在金属材料、无机非金属材料、有机高分子材料三大材料学科中,工程与材料学部杰青基金资助了54位科研人员;其中无机非金属材料领域9000万元,金属材料相关领域3900万元,有机高分子材料领域3800万元,总计资助金额1.675亿元。/pp  以下是54个资助项目全名单:/pp/ptable cellspacing="0" cellpadding="0"colgroupcol width="72"/col width="287"/col width="72"/col width="201"/col width="72" span="2"//colgrouptbodytr class="firstRow"td width="72"学科/tdtd width="287"项目/tdtd width="72"负责人/tdtd width="201"学校/tdtd width="72"金额(万)/tdtd width="72"申请年/td/trtrtd width="72"金属/tdtd width="287"金属基储氢材料/tdtd width="72"余学斌/tdtd width="201"复旦大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"金属/tdtd width="287"磁性功能材料/tdtd width="72"王守国/tdtd width="201"北京科技大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"金属/tdtd width="287"金属材料的强韧化与变形断裂/tdtd width="72"刘刚/tdtd width="201"西安交通大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"金属/tdtd width="287"材料的微观结构与性能/tdtd width="72"于荣/tdtd width="201"清华大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"金属/tdtd width="287"计算材料学辅助的新材料设计与制备/tdtd width="72"秦高梧/tdtd width="201"东北大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"金属/tdtd width="287"磁性材料与器件/tdtd width="72"李润伟/tdtd width="201"中科院宁波材料所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"金属/tdtd width="287"金属纳米材料的稳定性/tdtd width="72"宋晓艳/tdtd width="201"北京工业大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"金属/tdtd width="287"高温防护涂层/tdtd width="72"郭洪波/tdtd width="201"北京航空航天大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"金属/tdtd width="287"高温熔盐中金属材料的制备及服役行为/tdtd width="72"汪的华/tdtd width="201"武汉大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"金属/tdtd width="287"面向聚变堆应用的高性能金属材料模拟与设计/tdtd width="72"吕广宏/tdtd width="201"北京航空航天大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"金属/tdtd width="287"金属磁性材料/tdtd width="72"姜勇/tdtd width="201"北京科技大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"金属/tdtd width="287"新型生物医用金属材料/tdtd width="72"郑玉峰/tdtd width="201"北京大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"金属/tdtd width="287"纳米金属材料的力学性能和变形机理/tdtd width="72"赵永好/tdtd width="201"南京理工大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"有机/tdtd width="287"生物医用高分子材料/tdtd width="72"张拥军/tdtd width="201"南开大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"高分子流变学与高分子加工/tdtd width="72"俞炜/tdtd width="201"上海交通大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"生物医用高分子材料/tdtd width="72"尤业字/tdtd width="201"中国科学技术大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"高效率有机电致发光材料与器件/tdtd width="72"苏仕健/tdtd width="201"华南理工大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"单晶复合有机光电功能材料与器件/tdtd width="72"李寒莹/tdtd width="201"浙江大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"高分子分离膜设计制备与应用研究/tdtd width="72"靳健/tdtd width="201"中科院苏州纳米所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"聚合物有序结构材料/tdtd width="72"朱锦涛/tdtd width="201"华中科技大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"有机半导体材料与器件/tdtd width="72"张浩力/tdtd width="201"兰州大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"特种及功能性弹性体材料/tdtd width="72"田明/tdtd width="201"北京化工大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"高分子物理/tdtd width="72"门永锋/tdtd width="201"中科院长春应化所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"有机发光材料与器件/tdtd width="72"段炼/tdtd width="201"清华大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"红外增透保护薄膜及金刚石单晶/tdtd width="72"朱嘉琦/tdtd width="201"哈尔滨工业大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"无机热电能量转换材料/tdtd width="72"史迅/tdtd width="201"中科院上海硅酸盐所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"无机/聚合物复合电介质的理性设计与性能调控/tdtd width="72"沈洋/tdtd width="201"清华大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"碳纳米管的可控制备与应用探索/tdtd width="72"刘畅/tdtd width="201"中科院金属所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"高能量密度固态锂电池关键材料的研究/tdtd width="72"崔光磊/tdtd width="201"中科院青岛能源所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"超高温陶瓷基复合材料/tdtd width="72"张幸红/tdtd width="201"哈尔滨工业大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"碳功能材料的表界面调控和层次化构建/tdtd width="72"杨全红/tdtd width="201"天津大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"新型与高性能亚稳材料/tdtd width="72"徐波/tdtd width="201"燕山大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"新型信息光子材料与器件/tdtd width="72"潘安练/tdtd width="201"湖南大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"功能纳米材料在新型肿瘤治疗方法中的应用探索/tdtd width="72"刘庄/tdtd width="201"苏州大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"生物陶瓷涂层/tdtd width="72"刘宣勇/tdtd width="201"中科院上海硅酸盐所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"碳纳米材料的电化学储能研究/tdtd width="72"李峰/tdtd width="201"中科院金属所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"无机非线性光学晶体材料/tdtd width="72"叶宁/tdtd width="201"中科院福建物构所/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"光电功能晶体材料/tdtd width="72"潘世烈/tdtd width="201"中科院新疆理化所/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"纳米线储能材料与器件/tdtd width="72"麦立强/tdtd width="201"武汉理工大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"先进结构陶瓷/tdtd width="72"范同祥/tdtd width="201"上海交通大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"无机/有机介电功能复合材料设计与实现/tdtd width="72"党智敏/tdtd width="201"北京科技大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"无机能量转换功能材料/tdtd width="72"暴宁钟/tdtd width="201"南京工业大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"光电功能晶体生长与应用研究/tdtd width="72"杨春晖/tdtd width="201"哈尔滨工业大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"二维碳基材料/tdtd width="72"任文才/tdtd width="201"中科院金属所/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"电池材料/tdtd width="72"李泓/tdtd width="201"中科院物理所/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"VO2智能节能材料研究/tdtd width="72"高彦峰/tdtd width="201"上海大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"低维功能纳米材料结构与物性调控的研究/tdtd width="72"杜世萱/tdtd width="201"中科院物理所/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"功能碳纳米材料与应用/tdtd width="72"曹安源/tdtd width="201"北京大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"半导体材料/tdtd width="72"孙志梅/tdtd width="201"北京航空航天大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"铁电低维材料的制备及相关效应研究/tdtd width="72"吕笑梅/tdtd width="201"南京大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"先进陶瓷与陶瓷基复合材料/tdtd width="72"贾德昌/tdtd width="201"哈尔滨工业大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"能量转换与储存材料研究/tdtd width="72"郭玉国/tdtd width="201"中科院化学所/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"储氢材料研究/tdtd width="72"陈萍/tdtd width="201"中科院大连化物所/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"介孔结构纳米复合材料与性能研究/tdtd width="72"陈航榕/tdtd width="201"中科院上海硅酸盐所/tdtd width="72"200/tdtd width="72"2012/td/tr/tbody/tablep/p
  • 《非金属矿实验室选矿试验作业规范 》团标发布,27类仪器设备迎来新规定!
    近日,中关村材料试验技术联盟发布公告,中国材料与试验团体标准委员会(CSTM标准委员会)批准发布T/CSTM 00349-2022《非金属矿实验室选矿试验作业规范》团体标准。该团体标准规定了与非金属矿实验室选矿试验作业相关的方法原理、设备、仪器、药剂、样品采集、试样制备、破碎及粒度分析、工艺矿物学试验、磨矿试验、擦洗(捣浆)/脱泥(分级)试验、水力分级试验、重选试验、磁选试验、浮选试验、化学提纯试验、色选试验、试验方法选择、数据处理、安全要求等。在仪器、设备部分,对X 射线衍射仪、体视显微镜、偏光显微镜、扫描电镜、ICP 电感耦合等离子发射光谱仪、激光粒度仪、颚式破碎机、球磨机、电子秤、电热鼓风干燥箱等提出要求。标准信息标准状态现行标准编号T/CSTM 00349—2022中文标题非金属矿实验室选矿试验作业规范英文标题Specification for mineral dressing test in non-metallic ore laboratory国际标准分类号73.080中国标准分类号Q 69国民经济分类C309 石墨及其他非金属矿物制品制造发布日期2022年04月07日实施日期2022年07月07日起草人吴建新、钱潜、张武艺、张红林、金成国、吴玉梅、李佳、郑长文、李佩悦、尹国亮、张乾伟、周志强。起草单位中建材蚌埠玻璃工业设计研究院有限公司、厦门欣意盛新材料科技有限公司、咸阳非金属矿研究设计院有限公司、宜宾学院。主要技术内容本文件规定了与非金属矿实验室选矿试验作业相关的方法原理、设备、仪器、药剂、样品采集、试样制备、破碎及粒度分析、工艺矿物学试验、磨矿试验、擦洗(捣浆)/脱泥(分级)试验、水力分级试验、重选试验、磁选试验、浮选试验、化学提纯试验、色选试验、试验方法选择、数据处理、安全要求。本文件适用于各种非金属矿实验室选矿试验,包括可选性及流程试验研究。是否包含专利信息否标准文本文本下载链接https://www.instrument.com.cn/download/shtml/1082081.shtml

金属非金属分离器相关的方案

金属非金属分离器相关的资料

金属非金属分离器相关的论坛

  • 关于金属分离器的分离技术介绍

    关于金属分离器的分离技术介绍

    金属分离器广泛应用于食品行业,医药行业,药物和胶囊兼用细微的粉末产品;调料,添加剂或粉状原料进入下一步处理之前对其进行检测,保护后续设备;药草、茶叶、奶粉和化学添加剂等细微的粉末产品对其进行质量检测。并完成金属和非金属的分离工序,主要利用电磁转化原理,当电流通过线圈时会产生磁场,根据电磁转换理论,当一定的电流通过固定的线圈时就在线圈内产生稳定的磁场,该磁场会受到外界的环境变化而被破坏,主要是受到金属物体的破坏,破坏了磁场的稳定,磁场的改变又会引起电路电流的改变,得到一个改变的电流,该改变的电流就会被侦测到,并被放大。然后通过微处理器对前后的电流变化比较,得到是否有金属通过,根据现在技术DSP的应用很快能分选出是否有金属通过和非金属通过。http://ng1.17img.cn/bbsfiles/images/2013/11/201311041533_475270_2803766_3.jpg此外,金属分离器是特别设计以满足严格的卫生标准,因而特别适用于食品、化工和制药行业。金属分离器的分离系统可通过回旋漏斗清除自由下落的散装材料中磁性和非磁性的金属杂质(钢、不锈钢、铝等),而不对产品处理造成任何干扰。这已被证实特别是对谷粒、轻薄、易碎含纤和潮湿的散装材料中的杂质高度有效的清除方法。金属分离器的性能特点:1、含有长纤维的产品不会堵塞排出设备。2、可以避免紊乱和产品结块(轻而薄的产品)。3、卫生设计,排出装置防锈防水。4、可避免长时间的产品积淀和结块发霉。5、通过清理薄片可以快速而简单的清洁。

  • 浅谈金属杂质的负影响及分离技术

    金属杂质的影响:1)堵塞注塑机的射嘴、模具的流道等,导致经常需要维修人员去清理,造成生产停顿。 2)损坏设备,比如螺杆断裂、滚筒刮花或有压痕、模具损坏。增加维修费用。 3)注塑或挤出的产品不合格,比如不耐高压、绝缘有问题、影响外观等。 4)导致产品召回。引起客户抱怨, 损害市场形象。金属分离器的特点和优势: 1.生产设备:避免金属杂质对模具、螺杆和生产设备带来的危害。减少维修费用,延长使用寿命。 2.生产效率:避免临时停机、打乱正常的生产安排,减少报废率,提高生产效率。 3.产品质量:避免含有金属杂质的产品,伤害消费者,引起巨额的赔偿。 4.资源节约:提高回料利用率。金属分离器利用电磁转化原理,完成生产过程中金属和非金属分离的工作。从而保证生产的正常运作和质量把控。被广泛应用于食品行业,医药行业,药物和胶囊兼用细微的粉末产品;调料,添加剂或粉状原料进入下一步处理之前对其进行质量检测,保护后续设备。金属分离器的具体分离原理:当电流通过线圈时会产生磁场,根据电磁转换理论,当一定的电流通过固定的线圈时就在线圈内产生稳定的磁场,该磁场会受到外界的环境变化而被破坏,主要是受到金属物体的破坏,破坏了磁场的稳定,磁场的改变又会引起电路电流的改变,得到一个改变的电流,该改变的电流就会被侦测到,并被放大。然后通过金属分离器的微处理器对前后的电流变化比较,得到是否有金属通过,根据现在技术DSP的应用很快能分选出是否有金属通过和非金属通过。

  • 如何测定中金属中的非金属含量?

    本人在工作中遇到一个问题,就是在Pb金属合金中的碳含量?而且碳含量比较低,因为碳污染问题,用SEM-EDS很难确定碳的存在,而ICP、直读光谱仪都不能测定非金属,请问还有什么其他方法和仪器可以测定金属中的非金属?希望高手指点一二,本人在这先谢谢了!

金属非金属分离器相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制