当前位置: 仪器信息网 > 行业主题 > >

便携式雷达测速仪

仪器信息网便携式雷达测速仪专题为您提供2024年最新便携式雷达测速仪价格报价、厂家品牌的相关信息, 包括便携式雷达测速仪参数、型号等,不管是国产,还是进口品牌的便携式雷达测速仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式雷达测速仪相关的耗材配件、试剂标物,还有便携式雷达测速仪相关的最新资讯、资料,以及便携式雷达测速仪相关的解决方案。

便携式雷达测速仪相关的资讯

  • 广东电子眼测速仪送检不到3% 深圳零送检
    ■位于广深高速上的测速电子眼,未看到检测合格标志,有的生锈,有的损坏。 广东省审计厅日前披露的“问题电子眼”(故障率高及部分处罚认定与事实不符)引起车主广泛关注,按照国家下发的《强制检定的工作计量器具和检定周期明细表》规定,测速仪的检定周期为一年。那广东部分地区的电子眼“瞎拍”是谁的过错呢?到底电子眼会不会都送检呢?记者从广东省质监局网站发现,两年来该网站仅公开237台电子眼测速仪的送检报告。截至2011年底,全省在用的“电子眼”设备共9682套(台),237台不及总数3%。 公安部:一年强检一次加贴标志 2007年国家公安部下发的《关于规范使用道路交通技术监控设备的通知》中也规定,各地公安机关交通管理部门应当定期对监控设备进行维护、保养,建立监控设备管理档案,定期将列入国家强制检定目录的在用监控设备委托法定检定机构检定。未依法检定、逾期未检定或者检定不合格的监控设备,不得继续使用。此外,法律还规定检定合格后的测速设备,需由检测机构对下发给国家统一的检定证书、检定合格证或者设备上加盖检定合格印。对此,《广州市强制检定工作计量器具管理办法》也作出了详细要求,检定不合格的、不具备制造计量器具许可证CMC标志或首次强制检定CV标志的测速设备,一律不得投入使用。 广东:两年公开报告只有237台 那么,广东测速仪到底有没有依法进行定期检测?昨日下午,记者在广东省质监局的信息网站上找到了三份《依法申请强制检定工作计量器具检定结果公布情况表》,其中一份于2011年9月发布,其余两份分别为今年5月末和6月末发布,三份公布均未标明检测时间。 据今年的两份检定结果显示,全省各个地区共有121台测速设备进行了检定,检测机构为广东省计量科学研究院,检测结果全部合格,有效期至明年5月。其中,广州市内进行检测的测速仪只有4台,均为机动车超速自动监测系统的定点测速仪器,使用单位为市公安局交警支队番禺大队。此外,省内其他地区进行检定的检测仪也并不多,其中中山市最多为36台,梅州、云浮等地只有一两台;东莞、深圳等交通大市更是“榜上无名”。 在2011年发布的检定结果中,受检测速仪也只有116台,结果也全部合格,检定有效期均为今年8月到9月,即将面临过期。其中,广州市仅有25台,佛山有43台,韶关有24台,省内其他地区的也都寥寥无几,深圳、肇庆等多个珠三角城市的检定数据再次缺席。 至去年底,全省在用的“电子眼”设备共9682套(台),公布检测报告的237台不及总数3%。 析因:广东管理规定未细化 在公安部发布《关于规范使用道路交通技术监控设备的通知》后,我国各个省份根据通知,发布了当地的道路交通技术监控设备管理规定。其中,江苏、贵州、辽宁省的相关管理文件中,均规定了各级公安机关必须建立监控设备管理档案,登记编号、使用时间、类型,设置地点和检定合格情况等信息,并向有关部门报备。 相比之下,记者通过网站查询并未发现广东省曾发布类似管理规定,只在2006年发布了一份《公安机关使用交通技术监控设备查处道路交通安全违法行为的规定》。该规定只粗略地提到监控设备需具备合格资质与定期送检,并未提及设立设备管理档案及信息公开,且定期送检的时间也是个未知数。 记者在前日和昨日联系了广东省质监局咨询广东对道路交通技术监控设备监管的相关规定,但省质监局的联系人表示正在请示,记者至昨晚截稿时尚未得到答复。 电子眼怎么管 各地差异大 同样都是对于电子眼等交通电子监控设备的定期送检管理办法,东莞、佛山、中山却各有各的区别,其中佛山交警和交管部门甚至回应“不归我管”。省审计厅公布的“问题电子眼”(故障率高及部分处罚认定与事实不符)产生原因,由此可见一斑——记者昨日调查发现,虽然公安部和国家相关部门对道路交通技术监控设备的维护、监管早有明文规定要求强制检测,合格后才能继续使用。但相对国内其他省份,广东省的地方法规却存在未对送检时间、送检方式、备案等关键词进行细化的情况,各地标准存在巨大差异。 ●佛山 市交警称电子眼由各区管 昨日下午,针对佛山市电子眼分布及日常维护情况,佛山交警支队相关负责人称,目前佛山的电子眼由各区负责,市交警没有统一管理,也没有统计数据,“具体的你要去问各区”。记者致电佛山市交通局,得到的回应也是电子眼不属于他们管理。 记者随后搜索佛山交警及佛山市交通局的官网,均未找到有关电子眼的相关资料。据了解,2009年3月底,佛山交警正式向社会公布佛山一环、高速公路及五区道路共242个电子眼监控点分布位置。截至去年底,南海区也增添至158套“电子警察”。 ●中山 测速电子眼需每年检一次 中山市交警支队有关负责人表示,按照有关规定,中山市电子监控设备送检分两种情况:一种是测速性(包括固定测速与移动测速)的电子警察,安装投用前,要经过省质量技术监督部门的检测,合格后才能投用,以后每年检测一次,若合格的,需在电子警察设备上张贴合格证标签,有效期为一年;若不合格的,便不能再执法,须调试至正常状态后,才可以执法。检测费用是由道路交通管理方自己掏钱,具体为每一个车道1600元。 另外一种情况是安装在红绿灯口,抓拍机动车辆是否冲红灯,即证据性的电子警察,须在安装前,具备公安部产品质量监测合格证,否则不予安装。但是,只要有合格证,便不需每年检测一次。 相关负责人称,除前不久一台电子警察设备在安装前,就被质量技术监督部门发现有问题,要求其调试好后才能启用外,中山每年的例行检测,都没有检测出什么问题。 据了解,中山市目前有智能电子警察300余套,至二期电子警察安装完毕后,全市电子警察总数将达到366套。 ●东莞 以检定合格报告为准 东莞市交警支队负责人称,根据相关规定,东莞市电子警察检定周期为一年。依法进行周期检定后,检定部门将出具检定合格报告,交警部门以该报告为依据确认摄像头是否符合使用标准。至于是否在摄像头上粘贴检定合格标志,市民无法直观看到。对于检定出的不合格的测速仪,将不得用于道路执法,其所出具的数据也不能作为执法证据使用。 东莞交警支队宣传科还表示,东莞严格按照省公安厅有关规定要求执行。在抓拍时设定上浮值为10公里,对驾驶机动车辆超过道路限速值10公里以内的,实施警告教育,不进行罚款。例如限速80公里/小时的路段,实际抓拍值为90公里/小时以上才予以罚款。 据了解,目前东莞市(包括镇)共有1051套摄像头,市区范围(包括东城、南城、莞城、万江共四个区)全部统一由市财政出资建设,镇街统一由镇财政出资建设。交警部门按相关法律法规对全市电子眼监控系统进行管理、维护。 省公安厅交管局召开紧急会议要求:全面摸查“问题电子眼” 命令各地交警部门上报,称如果发现问题一定向社会公布处理结果 新快报前日昨日接连报道广东省存在“问题电子眼”,引发社会各界强烈关注。昨日下午,广东省公安厅交通管理局正式回应本报:该局领导高度重视“问题电子眼”事件,已责成相关人员组织调查,发现问题后着手解决,并将向媒体通报处理结果。 广东省交管局有关人士昨日致电本报记者时称:“省交管局局长在新快报等媒体对广东‘问题电子眼’情况进行报道后,高度重视此事,并于7月25日召集相关负责人召开紧急会议,会议要求马上进行‘问题电子眼’情况的摸查处理。”据了解,广东省公安厅目前正积极请求发布“问题电子眼”审计数据的省审计厅协助调查,并命令全省各地市交警部门上报“问题电子眼”相关情况。 有关人士称,广东省公安厅将妥善处理此事,发现问题绝不姑息,相关处理结果一定会通过媒体向社会通报。 广州曾规定测速仪无首次强检标志不得使用,但记者所见—— 巡城查看数十电子眼 没一个贴有检测标志 记者昨日驱车在广深高速、广园快速路、广州市内环路等路段巡城查看了数十个电子眼,发现有的电子眼设备已经生锈损坏,在可视范围内所见电子眼,记者均未发现贴有任何检测合格标志。记者查阅相关文件了解到,广州市1996年发布的《广州市强制检定工作计量器具管理办法》中就有规定,测速仪无制造计量器具许可证CMC标志或首次强制检定CV标志的不得使用。 广深高速电子眼多生锈损坏 记者昨日驱车从中山大道环城高速入口进入广深高速公路后,发现设置在花基中央的第一个电子眼在K8 500至K8 600路段之间,记者仔细观察发现,这个电子眼的两个“玻璃眼”(监控设备通过此处拍摄)已被砸碎;距离此处约一公里,在K9 700至K9 800路段之间,记者又发现了第二个标识为“广州交警39”的电子眼,该电子外箱锈迹斑斑;在K11 000处的“广州交警33”号电子眼与其他两处稍有不同,该电子眼的外箱除了生锈外,记者甚至未找到锁箱子的钥匙眼,也未见加锁。 沿广深高速一直往深圳方向,此类“铁箱”式电子眼甚多,但生锈的情况较为普遍。 记者未见电子眼贴合格标志 记者昨日采访多位市民,他们认为,电子眼作为执法工具,本身质量是否合格至关重要,作为执法部门有责任定期送检,市民更有权利知道电子眼是否通过检测合格,相关部门有义务将检测合格的标志贴于明显位置。但记者昨日巡城的结果却差强人意。在广深高速公路上,记者所看到的电子眼在可视范围内均未发现贴有任何检测合格标志。在广园快速路上,记者通过长焦镜头拍摄了五山路段、瘦狗岭路段、金贵村等路段的电子眼,另外,记者还拍摄了内环路多个电子眼的照片,通过仔细查看,在电子眼机身外表,以及安装电子眼的支架上并未发现贴有任何检测合格的标志。 测速仪检定单位之一、省计量科学研究院有关人士透露: 抓拍冲红灯电子眼从未接到检定任务 据了解,珠三角地区的部分测速设备由深圳市中×科技股份有限公司供应。据该公司的一名销售人员魏某表示,目前珠三角内的测速仪主要以传统的地感线圈测速系统为主,价格大约为4万到5万元一套,包含同向两个车道的摄像头。另一种雷达测速系统则较昂贵,单价将近6万元,但由于性能较不稳定,使用率较低。 ●设备供应商:“未听说要贴合格标志” 魏某透露,据规定,测速仪每年都要由当地质监部门授权的检测机构进行检定;但并不需要当地公安部门送检,而是由工作人员现场对设备进行检验。检定合格后,检测机构需对业主出具合格证书,若不合格,会进行调试维修。他透露,两种测速仪的检定费用约为每套1200元到1300元,均由设备使用者、即当地的公安或交警部门支出。 至于电子眼必须张贴合格标志方能使用的规定一事,该公司广州分部的一名负责人许某却表示,其从业期间内,并未发现投入使用的测速仪器上标有法定标志,大部分只具备检测合格证书。 ●检测单位:目前只有测速仪会检定 另据规定,除了测速仪属国家强制检定项目外,其他监控设备也应当有公安部门定期进行维护、保养。可除了以上三份公布情况表外,记者未能发现任何关于其它监控设备的定期维护、检测公告。 据广东省计量科学研究院为省质监局授权的相关人员张某表示,该研究院为省质监局指定的测速仪检定单位之一,每年对设备进行检定后,向设备使用单位出具检定报告,并把检定情况向省质监局汇报。但对于具体检定数量、方法以及合格率,张某并未透露。 张某称,道路监控设备有许多分类,目前只有测速仪属于国家强制检定的工作计量器具,对于其他用于监控冲红灯、变线等违章现象的设备,该院从未接到相关检定任务。
  • 便携式颗粒物激光雷达的“人生终极三问”
    第三届气象科技活动周南京主场活动中,聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)便携式颗粒物激光雷达收获了众多关注目光。  大家对它有诸多疑问,归纳起来主要是:Q1 我是谁?学名  便携式颗粒物激光雷达主要构成  主机+云台+支架,分析软件优点  这个有点多Q2 我从哪里来?诞生于创新基地  中科光电怀有光荣梦想  近些年雾霾日益严重,科学治霾需要说清楚污染源状况、说清楚环境质量现状及变化趋势、说清楚潜在的环境风险。面对繁重的环境监测任务,已有的传统监测设备不能完全满足要求。  为了弥补传统大气环境监测的不足,提升环境监测对科学开展环境管理的支撑作用,激光雷达立体监测技术应运而生。  我的梦想是仰望蓝天,遥望星空!肩负重要使命 Q3 我到哪里去?主要战场  哪里有大气污染,哪里就有我的身影。  人力不可及的地方,我也能不辱使命。应用区域  1、垂直监测,获取气溶胶垂直时空分布、边界层高度、云信息等,判别外来或本地污染来源;  2、水平扫描,实时监控、突发源快速定位,精准溯源、偷排漏排取证,开展专项监测和专项管控,高架源或者爆炸后的烟羽扩散、对站点数据影响评价;  3、走航观测,边走边测,实时获取大区域气溶胶浓度分布和烟羽扩散影响评价。战绩显著  在福建、广东、江苏、河南等多地支撑蓝天保卫战,让当地的大气污染防治“有数可依”,为空气质量改善提供了有力的科技支撑。未来可期  希望我的脚步能够遍布全国,和小伙伴们一起组成全覆盖、全天候的激光雷达网,全力支撑空气质量持续改善,让大家不再惧怕“十面霾伏”,能够见到更多蓝天和星空。
  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统  演讲人: 许荣川博士高级应用工程师  KHOO Yong Chuan Mike PhD  Senior Applications Engineer  网上讲座: 2011年1月12日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。  这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。  讲座将会进行40分钟及预留15分钟答疑环节。  这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。  具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。  讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • 浙江省计量院一项机动车测速领域研究成果获SCI发表
    近日,浙江省计量院一项机动车测速领域研究成果《Development of Verification Device for Multi-target Radar Velocimeter based on Echo Signal Simulation Technology》在国际SCI学术期刊《Journal of Sensors》发表。该成果针对现有机动车雷达测速仪检定装置无法检定多目标运动信号的难题,对多目标雷达测速仪的计量性能包括微波发射频率、模拟测速误差、多目标识别功能等多方面进行分析并开展相关试验研究。浙江省计量院基于FMCW毫米波雷达回波模拟技术,对雷达回波信号进行多普勒频移、光纤延时、功率增益减等处理,协同高精度摆臂角度控制装置,研发了一套多目标雷达测速仪检定装置,可在实验室模拟多个车辆运动目标信号的速度、距离和角度等参数。该装置适用于多目标雷达测速仪的检定,且测量重复性良好,有效解决了多目标雷达测速仪的量值溯源难题,确保检测数据的准确可靠。浙江省计量院聚焦交通安全、双碳等领域,全面对接三大科创高地建设,瞄准科技创新跑道,积极开展前沿科技领域的探索研究,实现成果高水平跨越。下一步,浙江省计量院将针对智慧交通、智能网联汽车、智能声学、语音人工智能等方面开展更深入的科技探索,进一步建立健全相关省域先进测量体系。
  • 河北省2300万水质监测设备大标揭晓
    相关新闻:青海质监局2000万色谱/质谱等仪器结果公布   2013年5月9日,河北省水文水资源勘测局在中国政府采购网公布了河北省2012年中小河流水文监测系统建设项目(中央投资部分)中标公告,此次采购仪器设备高达近300套,采购金额达到了2366万元。详情如下所示:  采购人名称:河北省水文水资源勘测局  采购人地址:石家庄市建华南大街85号  采购人联系方式:陈胜锁 0311-85696569  采购代理机构全称:河北华业招标有限公司  采购代理机构地址:石家庄市桥西区红旗大街25号西清公寓5楼  采购代理机构联系方式:刘 蓓 13933091090  采购数量:  第一标段:水文站断面监测设备采购及安装(张家口、承德、唐山、秦皇岛部分)  主要包括:雷达式水位计11套、翻斗式雨量计11套、无线传输设备11套、雷达波测速仪31套、雷达波测速仪控制器11套。  第二标段:水文站断面监测设备采购及安装(保定、廊坊、沧州、衡水、石家庄、邢台、邯郸部分)  主要包括:电子水尺32.4米、浮子式水位计4套、雷达式水位计5套、翻斗式雨量计11套、无线传输设备13套、雷达波测速仪20套、雷达波测速仪控制器4套。  第三标段:断面视频监控设备采购及安装23处。  第四标段:视频会议设备采购及安装(大屏幕视频会议系统6套)。  第五标段:声学多普勒流速剖面仪采购  主要包括:无线走航式ADCP 12套、微型ADCP 2套、电动遥控ADCP 2套。  第六标段:测速设备采购  主要包括:转子式流速仪116套、转子式流速仪(低速)53套、智能流量测算仪18套、手持式电波流速仪33套。  第七标段:水文测量设备采购  主要包括:经纬仪7套、自动安平水准仪17套、电子水准仪13套、全站仪8套、手持式GPS 8套、GPS(1拖3)2套、便携式测深仪18台、激光测距仪12台。  第八标段:计算机及网络通讯设备采购  主要包括:台式计算机45台、便携式计算机33台、系统服务器3台、数据库服务器1台、A3幅面激光彩色打印机2台、卫星电话5部、摄像机9台、照相机15台。  第九标段:预警预报软件采购  主要包括:开发信息交换系统软件、信息管理与监控维护平台软件、水情信息服务系统软件、水情产品制作平台软件、洪水预报系统软件各一套,编制50条中小河流洪水预报方案。  第十标段:钢制营房采购10处共240平米钢制营房。  项目实施地点:河北省境内(采购人指定地点)  供货、安装时间:1-2标段三个月,3-10标段两个月  合同履行期: 合同约定  采购公告日期: 2013 年 4月 10日  定标日期: 2013 年5月3 日  开标、评标地点:石家庄市桥西区裕华西路与西二环交叉口178号亨伦国际酒店16楼会议室  中标供应商名称:一标段:北京燕禹水务科技有限公司  中标供应商地址:一标段:北京市海淀区万寿路街道翠微路甲3号南楼五层518室  中标金额:一标段:3536080.00元  中标供应商名称:二标段:河南安宏信息科技有限公司  中标供应商地址:二标段:河南省郑州市金水区城北路5号  中标金额:二标段:2237092.00元  中标供应商名称:三标段:河北汉佳电子科技有限公司  中标供应商地址:三标段:石家庄桥西区新石北路368号  中标金额:三标段:1276500.00元  中标供应商名称:四标段:河北融商电子有限公司  中标供应商地址:四标段:石家庄市国泰街58号时代花园C8-4-301  中标金额:四标段:3337780.00元  中标供应商名称:五标段:水利部南京水利水文自动化研究所  中标供应商地址:五标段:江苏省南京市雨花台区中华门外铁心桥街95号  中标金额:五标段:5069750.00元  中标供应商名称:六标段:重庆华正水文仪器有限公司  中标供应商地址:六标段:重庆市北碚区龙风三村  中标金额:六标段:2271470.00元  中标供应商名称:七标段:广州市中海达测绘仪器有限公司  中标供应商地址:七标段:广州市番禺区番禺大道北555号番禺节能科技园内天安科技创新大厦1001  中标金额:七标段:2894000.00元  中标供应商名称:八标段:石家庄慷派世纪数码科技有限公司  中标供应商地址:八标段:石家庄市桥东区裕华东路49号中天世都商务楼1506室  中标金额:八标段:1852065.00元  中标供应商名称:十标段:泊头市东南西北特房制造有限公司  中标供应商地址:十标段:泊头市工业区  中标金额:十标段:1189600.00元  评标委员会成员名单:鲍虹、史永康、朱金钧、杜俊生、高明山、刘献峰、马存湖  项目联系人:刘蓓  联系方式:13933091090  传真电话:0311-67501100  采购代理机构受理质疑电话:0311-67501100
  • 小雷达 大神通 菏泽“蓝天保卫战”拿下两个全省“第一”
    捷报  “蓝天保卫战”首年,山东菏泽市PM2.5平均浓度同比下降18.3%,国控站点优良率同比增加7.2%,一举拿下PM2.5下降幅度和空气质量优良率提升幅度两个全省第一,获得环境空气质量生态补偿资金4192万元。  战果的取得离不开各方的共同努力,聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)作为第三方专家团队,全力提供高效的装备和优质的服务,为支撑打赢“蓝天保卫战”竭尽所能!高效的装备  “根据智慧环保监控指挥中心雷达扫描数据,发现一处污染热点,请中部作战区域工作队长安排人员巡查……”一条条指令或建议从智慧环保监控指挥中心发送到各作战区域,监管人员马上出动,迅速处置污染事件。菏泽市智慧环保监控智慧中心  指令中,精准发现污染热点的利器就是中科光电研发的便携式颗粒物激光雷达,它向空中发射出一束激光,就能探测到颗粒物的种类和时空分布。 便携式颗粒物激光雷达  便携式颗粒物激光雷达具有便携性、易操作、零盲区的优点,能够实时预警,快速锁源;可以开展移动监测,与固定监测结合起来,能让污染源无处可藏,目前已经广泛应用于各地的蓝天保卫战中,是监测、执法的有效工具。优质的服务  为了更好地支持菏泽打赢“蓝天保卫战”,中科光电派出精干力量长期驻守菏泽,现场巡查追源溯源,开展雷达扫描数据分析,进行气象条件预测,提出整改建议,追踪改善效果......以高度的责任心和专业的优质服务和菏泽市的蓝天卫士们并肩战斗,用科技的力量支撑该市线上监测、线下监管的全时同步。 中科光电专家团队夜间调试设备  菏泽市基础较弱,虽然首战告捷,但是任重道远。该市今年将集中攻坚PM10,确保PM2.5、PM10等各项大气指标持续改善。中科光电一起为打赢“蓝天保卫战”全力以赴!
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 川大研制出便携式激光诱导击穿光谱仪(LIBS)
    日前,由四川大学生命学院分析仪器研究中心牵头承担的国家重大科学仪器设备开发专项成果&mdash &ldquo 便携式激光诱导击穿光谱仪(LIBS)&rdquo 亮相第九届中国西部国际科学仪器展览会。该产品是国内自主研发的首例便携式LIBS仪器。除了具有与实验室台式LIBS相似的优点之外,其方便,便携,可现场,在线分析等优势受到国内外用户和参展商的高度关注。这一成果也标志着我国激光诱导击穿光谱仪器自主研制能力的提升。  与传统的技术相比较,该便携式仪器用途更加广泛,能够更好地服务于冶金、地质、医学,生物,环境污染监测等多个领域,为相关产业提供有效的现场、原位、快速分析的技术装备,从而加快检测速度,缩短分析时间,降低分析成本,提高生产效率,有广阔的市场前景和空间。四川大学自主研制的便携式激光诱导击穿光谱仪亮相第九届中国西部国际科学仪器展览会
  • 激光雷达 lidar
    激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p  近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong中标项目/strong/span/pp style="text-align: center "strong干式激光成像仪/strong/pp  项目编号:HYEZ2J2018007/pp  项目名称:干式激光成像仪采购/pp  总成交金额:6.97 万元(人民币)/pp  采购单位名称:北海市华侨医院/pp  中标单位名称:江西伟晨医疗设备有限公司/pp style="text-align: center "strong密封式同轴送粉激光增材制造系统/strong/pp  项目编号:HBT-15170140-173892/pp  项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目/pp  总成交金额:208.85 万元/pp  采购单位名称:武汉理工大学/pp  中标单位名称:南京中科煜宸激光技术有限公司/pp style="text-align: center "strong原子吸收分光光度计及涡度相关系统/strong/pp  项目编号:CEIECZB03-17ZL144/pp  项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目/pp  中标金额:54.43万元/pp  中标供应商名称、地址及成交金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title="1.jpg"//pp style="text-align: center "strong大连工业大学信息学院光电实验室建设/strong/pp  项目编号:LNZC20171001868/pp  项目名称:大连工业大学信息学院光电实验室建设采购项目/pp  中标金额:54.18万元/pp  中标单位:大连万慧科技有限公司/pp  主要成交标的:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title="2.jpg"/  br//pcenter/centerp style="text-align: center "strong激光治疗系统/strong/pp  项目编号:Q5300000000617001570/pp  项目名称:昆明医科大学附属医院购置激光治疗系统采购项目/pp  中标金额:129万元/pp  中标供应商名称:贵州邦建医疗科技设备有限公司/pp  主要成交标的:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title="3.jpg"//pp style="text-align: center "strong193nm 激光剥蚀进样系统等/strong/pp  项目名称:中国海洋大学/pp  项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目/pp  采购单位名称:中国海洋大学/pp  中标金额:1367.93612 万元/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title="4.jpg"/  br//pcenter/centerp style="text-align: center "strong激光雷达项目/strong/pp  项目编号:JXBJ2017-J28802/pp  项目名称:南昌大学空间科学与技术研究院激光雷达采购项目/pp  采购单位:南昌大学/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title="5.jpg"//pp style="text-align: center "strong308准分子光治疗系统和激光光子工作站/strong/pp  项目编号:[350823]SHHY[GK]2017015-1/pp  项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目/pp  中标金额:169.9万元/pp  中标供应商:厦门海辰天泽仪器有限公司/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title="6.jpg"//pp style="text-align: center "strong复杂曲面三维激光扫描系统/strong/pp  项目编号:LNZC20171201441/pp  项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目/pp  中标金额:58.9万元/pp  中标单位:北京金鹰腾飞科技有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title="7.jpg"//pp style="text-align: center "strong双光子激光共聚焦显微镜采购项目/strong/pp  项目编号:中大招(货)[2017]993号/pp  采购单位名称:中山大学/pp  中标金额:489.803430万元/pp  中标供应商名称:广州市诚屹进出口有限公司/pp  中标标的名称、规格型号、数量、单价、服务要求:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title="8.jpg"/  br//pcenter/centerp style="text-align: center "strong超短强激光微纳制造实验室项目/strong/pp  飞秒激光放大器/pp  项目号:17A51870611-BZ1700401866AH/pp  项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购/pp  中标总金额:145.9万元/pp  中标供应商:相干(北京)商业有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title="9.jpg"//pp style="text-align: center "strong便携式高分辨测风激光雷达/strong/pp  项目编号:OITC-G170321151/pp  项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目/pp  中标总金额:280.0 万元(人民币)/pp  中标供应商名称:西南技术物理研究所/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title="10.jpg"//pp style="text-align: center "strong激光共聚焦拉曼光谱仪、数字综合试验箱/strong/pp  项目编号:ZX2017-12-13/pp  项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目/pp  中标金额:115.30万元/pp  中标单位:西安共进光电技术有限责任公司/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title="11.jpg"//pcenter/centerp style="text-align: center "strong激光共聚焦拉曼光谱仪/strong/pp  项目编号:OITC-G17031833/pp  项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目/pp  采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所/pp  总中标金额:155.7781万元/pp  中标供应商:雷尼绍(上海)贸易有限公司/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title="12.jpg"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong还有一个招标大单,注意关注哦!/strong/span/pp  招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器/pp  项目编号:0811-184DSITC0089/pp  项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次)/pp  采购单位:华东师范大学/pp  预算金额:230.0 万元(人民币)/pp  采购内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title="2018-02-07_091003.jpg"//pp  购买标书时间:2018年01月26日-02月02日/pp  投标截止时间:2018年02月28日/pp  联系方式:冯东海 ,021-62231151/p
  • 浙江计量院邵建文、吴德林获浙江省市场监管系统“科技尖兵”
    近日,浙江省市场监督管理局、省药品监督管理局联合发文,表彰了一批敢闯敢试、贡献突出、担当作为先进个人,省计量院交声所所长邵建文和声学振动重点实验室吴德林博士获2022年度全省市场监管系统“科技尖兵”称号。邵建文,高级工程师,浙江省计量科学研究院交通与声学计量研究所所长,全国法制计量管理计量技术委员会机动车检验检测分技术委员会副秘书长,全国数字计量委员会副秘书长,全国智能网联汽车专用计量测试技术委员会通讯委员,浙江省计量测试学会智慧交通委员会秘书长,浙江省道路交通安全标准化委员会委员,浙江省科协数字科技学会联合体专家。曾获2022年中国仪器仪表学会科技进步奖三等奖;2021年浙江科技进步奖三等奖;2020年“中国计量测试学会科技进步奖”二等奖。邵建文正在为企业解决毫米波雷达研发难题近年来,邵建文领衔组建浙江省市场监管声学振动与智慧交通先进测试技术研究创新团队,带领团队围绕智慧交通、智能网联汽车、数字计量、仪器仪表可靠性等开展研究。牵头推进我省交通计量和声学振动计量科技工作全面高质量发展,引进和培养多位高水平技术人才,主持建立了机动车雷达测速仪国家型评实验室等多个平台载体,作为项目负责人承担2019年度全国机动车雷达测速仪计量比对项目。围绕智慧交通和智能网联汽车中计量新需求,近三年连续承担立项浙江省科技厅“尖兵”“领雁”研发攻关计划项目,聚焦于智慧交通,自动驾驶关键传感器计量检测及算法溯源等,解决一系列技术难题,处于国内领先水平;为主承担科技部数字诊疗重点专项《模块化CT 探测器及核心部件关键技术研发及产业化》中课题“核心部件可靠性设计、失效模型设计及检测技术研究”,通过可靠性设计与试验评估研究为国产CT探测器的产业化应用提供保障,项目的开展实现了我国国产CT探测器核心部件自主可控,成果广泛应用于新冠肺炎疫情防控中;牵头建设我省机动车检测站智控系统,全面支撑省市场监管局牵头的四厅局“2022年车检站分级评价”项目。吴德林,全国声学计量委员会超声工作组成员,浙江省数学医学学会会员,省声学振动精密测量技术研究重点实验室学术秘书及方向带头人,省市场监管声学振动与智慧交通先进测试技术研究创新团队成员。在解决企业技术难题、服务市场监管的过程中,吴德林不断拓展了科技创新能力,先后承担省部级课题2项、厅局级课题1项,参与省部级以上课题6项;发表论文8篇,申请专利10项,授权发明专利2项;制定标准3项,获得省部级科技奖励1项。 吴德林与国际专家开展声学领域专业交流吴德林多年来一直致力于声学振动计量测试研究,建立“超声换能器校准装置”最高等级社会公用计量标准,保障全省医学超声设备量值准确可靠,确保诊疗的准确与安全。开展“百名博士进厂入企”活动,不断运用科研成果为医疗机构、企业解决高强度医疗超声测量、超声应力换能器表征等技术难题。2021年4月,省计量院声学振动实验室接到了浙江某医院的咨询电话,该医院在利用海扶刀进行生物组织离体实验时,对海扶刀的声学特性测量遇到了难题。海扶刀其实不是真正的刀,它是“高强度聚焦超声肿瘤治疗系统”的译称,其原理是将超声能量聚焦于靶区,使靶区在数秒内产生高温,导致靶区组织产生凝固性坏死,而非靶区组织的功能保持正常。海扶刀设备笨重,调试安装好后不方便运输至实验室,因此需要在现场对海扶刀进行测试。吴德林和同事们迅速成立帮扶小组,通过近一个月的调研、数值计算和实验,最终制定了现场测试方案。把实验室前期的测试装置加以改造,搭建便携式的三维运动控制机构,采用的是近场互谱测量方法,利用耐高声压的水听器在海扶刀设备近场区域进行声场扫描,分析得到海扶刀的声学参数,避开了海扶刀激起的水花对测量的影响。本次技术服务后得到了企业高度好评,并作为典型帮扶案例在浙江日报、学习强国APP等多家媒体平台上报道。此外,基于该技术服务,项目组深入拓展,并成功申报了省科技厅公益项目。近年来,省计量院以习近平新时代中国特色社会主义思想为引领,深入学习贯彻党的二十大和省第十五次党代会精神,紧扣省委省政府、市场监管总局及省局中心工作,聚焦聚力创新深化、改革攻坚、开放提升,锚定构建省域现代先进测量体系,打造方向明路径清、管控准效能高、硬核精文化深、队伍齐作为强的“计量名院”总目标,不断优服务、提能力、增供给,推动实现创新有力、改革有效、开放有为,在奋力推进市场监管现代化中彰显计量担当。此次全省市场监管系统科技尖兵的入选,是对省计量院多年来推进科技创新蝶变、重视人才队伍建设工作的充分肯定,也是在贯彻落实习近平总书记“必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实施科教兴国战略、人才强国战略、创新驱动发展战略,开辟发展新领域新赛道,不断塑造发展新动能新优势”中心思想的具体实践,为推进省计量院建设与发展增添了新动力。
  • 雷达界的"裁判长",中国雷达技术科学家保铮院士逝世
    p style="text-align: center "strongspan style="text-align: justify text-indent: 2em "保铮:雷达界的“裁判长”/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/e7ae0a17-5f41-4c7a-9cf1-3852a1ecc1ec.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center text-indent: 2em "保铮/pp style="text-align: justify text-indent: 2em "保铮把自己的科学救国思想融于60多年的雷达技术科教历程中,又把科研成果转化为生产力和可观的经济效益。在他身上有着脚踏实地的精神,严谨科学的作风,热心育人的风范,体现出了铮铮爱国心。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/fd963c1c-938a-43f8-8095-91760a1c220f.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong求真务实的学术路/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮,1927年12月1日出生于江苏南通,1953年毕业于解放军通信工程学院(现西安电子科技大学,简称西电),师从毕德显先生,是中国第一届雷达毕业生。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮在雷达研究领域取得的开拓性研究成果广泛应用于中国大量雷达武器装备中,为中国雷达技术的进步和发展作出了历史性的杰出贡献。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1958年,作为技术骨干,保铮与其他几位教师共同研制出我国第一台气象雷达,经测试证明其主要技术性能与当时国外同类产品相当。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "据西电的雷达专业老教授讲,上世纪70年代初期,部队雷达出现故障,打电话找到在“五七”干校劳动的保铮,要求他帮助解决故障问题,而保铮往往只需对方讲述一下设备的运行情况,就能在电话中告诉指战员问题出在哪里,该如何解决,指战员按照电话里的指导进行操作,故障就真的排除了!/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1973年10月,正在陕西眉县“五七”干校劳动的保铮,突然接到去南京参加四机部召开的一个重要会议的通知。因当时我国民航部门从法国进口了一部航管雷达,虽然对方将雷达卖给我们,但不卖信号处理机,我国只有通过自己研制解决。参加会议的保铮看过国外的方案,认为其设计过于复杂,决定自己设计一台数字动目标显示器,而且要比国外进口的便宜。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1974年末,保铮在几年不搞科研、缺少研究设备的情况下,带领研究小组,悄悄地开始数字动目标显示的研究。经过一年多的艰苦攻关,研制出颇具特色的0.5微秒数字动目标显示器,不久又研制出0.2微秒的数字动目标显示器,推动了我国雷达数字信号处理的发展。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "他与研究组于1982年又研制出我国第一台动目标检测器和自适应天线旁瓣相消系统,1986年研制出可编程动目标检测器。这两项成果当时属于国内首创。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "作为中国雷达界的专家,保铮参与了大量重要雷达装备的技术咨询、方案论证和技术把关工作,他始终本着实事求是、求真务实和对国家高度负责的精神,不回避问题,对国家雷达研究或装备方面提出了大量宝贵的意见和建议,受到了雷达界同行的高度赞誉,被称为最值得尊敬和信赖的“裁判长”。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong六十余载育人生涯/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮在六十余载的科教生涯中,治学严谨,学术造诣深厚,非常注重理论与实践相结合,为国家培养了一大批优秀科技人才。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1984~1992年,保铮出任西安电子科技大学校长,他勇于担当,真抓实干,狠抓学科建设,调整和拓宽专业结构,加强高层次办学基础,倡导从细微之处体现精神,提出“管理从严,学术搞活”的治校方针,强调科研对培养高层次人才的重要性,调整科研体制,建立了一系列专职科研机构。他根据雷达信号处理发展的新动向,先后选定了一系列新的研究领域,为雷达信号领域培养了一百多名博士研究生和硕士研究生。他总是放手让学生工作,又亲自作细致指导并严格要求。在保铮的博士生中,有3位曾获得全国百篇优秀论文提名奖,4位曾获得过全国百篇优秀论文奖。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“2017年增选的两院院士中,西电78级校友、中国空间技术研究院‘嫦娥五号’总指挥、总设计师杨孟飞当选为中国科学院技术科学部院士,西电2000级(博士)校友、中国工程物理研究院副总工程师范国滨当选为中国工程院工程管理学部院士。现在,西电的院士校友数量已经增加到20位,这些人才的成长是保铮等老前辈、老专家当年潜心培育打下坚实基础的结果。”中国科学院院士、西安电子科技大学党委书记郑晓静介绍说。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong期望将雷达创新推向新高度/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "西电校长杨宗凯认为,保铮是学校的一面“旗帜”,深刻诠释着“西电精神”。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“‘能有机会用自己掌握的知识为社会作贡献,这种满足感是平常人难以体验的。’保铮这句话激励着我在西电努力前行,也激励着西电人在加快建设一流高校的奋进之路上,开拓创新,在新时代作出西电人的新贡献,继续打造‘西军电’传奇!”郑晓静如是说。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“希望我们的师生能够真正做到‘顶天立地’!”保铮话语笃定,“近来学校发展势头强劲,西电人共同努力,学校一定会越来越好!”/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“前天我们开学术委员会,保院士还坐着轮椅参加了会议,保院士说他很想去实验室看一看。”谈及保铮与雷达的不解情缘,雷达信号处理国家级重点实验室主任刘宏伟教授感动地说,“在保院士的带领下,几代西电人不懈努力,让这个专门从事新体制雷达和雷达信号处理基础理论研究及关键技术攻关的实验室,成为我国首批建设的国家级重点实验室,跻身雷达信号处理领域世界一流的研究机构。这些都有赖于保院士当年提出的‘顶天立地’思想。”/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮把自己的科学救国思想融于60多年的雷达技术科教历程中,又把科研成果转化为生产力和可观的经济效益。在他身上有着脚踏实地的精神,严谨科学的作风,热心育人的风范,体现出了铮铮爱国心。/pp style="text-align: right text-indent: 0em "span style="font-size: 14px "strong来源:《中国科学报》 2018年1月19日3版 /strong/span/pp style="text-align: right text-indent: 0em "span style="font-size: 14px "strong记者:张行勇 通讯员:吴华/strong/spanbr/br//pp style="text-align: center text-indent: 0em "strong讣 告/strong/pp style="text-align: left text-indent: 2em "strongbr//strongbr/ 中国共产党优秀党员、我国雷达技术领域著名科学家、教育家、中国科学院院士、西安电子科技大学原校长保铮同志,因病医治无效,于2020年10月21日18时45分在西安逝世,享年93岁。br/br/ 保铮同志,江苏南通人,1927年12月出生于江苏南通,1978年9月加入中国共产党,1953年7月毕业于解放军通信工程学院(现西安电子科技大学)雷达系并留校任教,历任西北电讯工程学院(现西安电子科技大学)讲师、副教授、教授、副院长,1984年10月至1992年2月担任西安电子科技大学校长。1991年当选为中国科学院学部委员(院士)。曾任国务院学位委员会学科评议组成员、国家自然科学基金委员会评审组成员、国家杰出青年科学基金委员会委员、陕西省科学技术协会副主席、雷达信号处理国防重点实验室学术委员会主任、信息产业部电子科技委员会顾问、解放军总装备部科技委员会顾问、空军科技发展与人才培养顾问。先后荣获国家级有突出贡献的科技专家、电子部优秀教师、陕西省优秀教师、全国先进教育工作者、五一劳动奖章、全国高校先进科技工作者、光华科技基金特等奖、何梁何利基金科学与技术进步奖、陕西省教学成果特等奖,2019年被授予“庆祝中华人民共和国成立70周年纪念章”。br/br/ 保铮同志丧事从简,遗体告别仪式定于2020年10月25日上午9点在西安殡仪馆咸宁厅举行。/ppbr/br//pp style="text-align: right text-indent: 0em "span style="font-size: 14px "西安电子科技大学保铮院士治丧工作小组br/br/二〇二〇年十月二十一日br/br/联系地址:西安电子科技大学党政办公室 710126br/br/联系电话:029—81891820,联系人:李明/span/p
  • 设备更新采购潮!广西特检院预算超千万采购483台/套仪器设备
    近日,广西壮族自治区特种设备检验研究院进行2024年技术机构设备更新,连发两条招标公告。总预算1415.48万元,采购超声波探伤仪、X射线机、工业内窥镜、硬度计、测厚仪、金相显微镜、电磁超声高温腐蚀检测仪、应力分析及缺陷评估仪、力学性能检测仪、爬行检测机器人、X射线荧光分析仪、离子色谱仪、分析天平、原子吸收光谱仪、紫外可光分光光度计、溶解氧测定仪等共483台/套仪器设备。其中,招标公告一分为2个标项,预算金额分别为561.88万元、325万元,采购仪器设备数量分别为265台/套、2台;招标公告二预算金额为528.6万元,采购仪器设备数量为216台/套。详情如下: 招标公告一 (一)项目名称:2024年技术机构设备更新采购(二)项目编号:GXZC2024-G1-004334-GXGL(三)预算总金额:886.88 万元(四)采购需求:标项一数量:265 台/套预算金额:561.88 万元需求:恒磁小一体旋转磁场探伤仪10台、数字超声波探伤仪3台、工业内窥镜2台、数显布氏硬度计1台、涂层测厚仪1台、现场金相显微镜5台、检验终端(平板)160台、照度计15台、全自动精密显微硬度计1台、倒置式金相显微镜1台、多功能试样表面处理机1台、电火花取样机1台、热处理智能温控设备1台、无线笔式电磁超声高温腐蚀检测仪7台、埋地管道综合分析仪1台、工业管道应力分析及缺陷评估仪1台、防爆绝缘电阻测试仪2台、防爆型兆欧表2台、防爆万用表(本安型工业防爆万用表)2台、穿透涂层测厚仪1台、货叉自然下滑倾角测量仪1台、笔式电磁超声高温腐蚀检测仪(不含高温探头)3台、硬度计2台、防爆相机5台、防爆对讲机29台、超声波测厚仪(树脂、玻璃钢用)1台、碳排放数字监控大电视1台、自动微量残炭测定仪1台、自动颗粒度测定仪1台、热脱附管标样制备仪1台、样品过滤模块1台、样品架1台。标项二数量:2 台/套预算金额:325 万元需求:在线力学性能检测仪1套、管道外壁漏磁腐蚀成像检测仪1套。(五)获取招标文件 时间:2024年07月01日至2024年07月08日 ,每天上午08:30至12:00 ,下午15:00至18:00(北京时间,法定节假日除外)地点(网址):“广西政府采购云”平台(https://www.gcy.zfcg.gxzf.gov.cn) 方式:请登录“广西政府采购云”平台(https://www.gcy.zfcg.gxzf.gov.cn)进行报名并获取采购文件;未注册的供应商可在广西政府采购云平台完成注册后再行报名。如在操作过程中遇到问题或需技术支持,请致电广西政府采购云客服热线:95763。提示:供应商只有在“广西政府采购云平台”完成获取采购文件申请并下载了采购文件后才视作依法获取采购文件(法律法规所指的供应商获取采购文件时间以供应商完成获取采购文件申请后下载采购文件的时间为准)。 售价(元):0 (六)提交投标文件提交投标文件截止时间:2024年07月24日 09:30(北京时间)投标地点(网址):“广西政府采购云”平台(https://www.gcy.zfcg.gxzf.gov.cn)(本项目不要求投标供应商到达开标现场,但供应商应派法定代表人或委托代理人准时在线出席电子开评标会议,随时关注开评标进度,如在开评标过程中有电子询标,应在规定的时间内对电子询标函进行澄清回复。) 开标时间:2024年07月24日 09:30 开标地点:“广西政府采购云”平台电子开标大厅 (七)联系方式1. 采购人信息名称:广西壮族自治区特种设备检验研究院 地址:广西南宁市邕宁区仁信路25号 项目联系人:王志鹏 项目联系方式:0771-5350822 2. 采购代理机构信息名称:广西国力招标有限公司地址:广西南宁市白沙大道53号松宇时代13楼项目联系人:覃阳、徐康项目联系方式:0771-4915558 招标公告二 (一)项目名称:2024年技术机构设备更新采购(二)项目编号:GXZC2024-G1-004335-YZLZ(三)预算金额:528.6 万元(四)采购需求:216 台/套手持雷达测速仪2台、手持式热偶真空计1台、特检专用硬度计2台、数字超声探伤仪3台、机电类工具箱6台、承压类工具箱6台、接地电阻测试仪2台、土壤电阻率测试仪3台、低温移动罐车抽真空设备1台、恒磁小一体磁轭探伤仪5台、里氏硬度计6台、高温测厚仪1台、便携式超声波硬度计1台、安全阀在线校验仪1台、超声波测厚仪(测小管)1台、数据记录仪4台、光纤激光打标机2台、超声波测厚仪15台、烟气黑度计1台、手持雷达测速仪4台、电火花检测仪3台、电扶梯接地故障检测仪3台、全自动电梯导轨垂直度爬行检测机器人1台、激光测距仪11台、钳形接地电阻仪2台、管道防腐层检测仪1台、涂层测厚仪、泄漏检测仪3台、GPS定位仪1台、移动电源2台、超声波试块1台、超声波试块1台、超声波测厚仪(PE管专用)2台、穿透涂层超声波测厚仪1台、防爆相机1台、防爆对讲机2台、便携式高清视频内窥镜2台、工业内窥镜1台、无线笔式电磁超声高温腐蚀检测仪4台、数字超声波探伤仪1台、安全阀在线检验仪1台、声级计13台、台式PH计1台、电导率仪1台、水准仪2台、转速表1台、超小型射线机1台、X射线荧光分析仪1台、多功能电梯能效检测仪1台、机电类检验工具箱1台、多功能电梯检测仪2台、便携式烟度计1台、超声探伤试块1台、便携溶解氧检测仪1台、离子色谱仪1台、手持式特斯拉计1台、分析天平1台、便携式PH/溶解氧多参数测定仪1台、便携式电导率仪1台、原子吸收光谱仪1台、紫外可光分光光度计1台、钠离子(pNa)计1台、硅酸根测定仪1台、铁含量测定仪1 台、浊度计1台、含油量分析仪1台、转速表1台、安全阀在线校验仪1台、手持式热偶真空计1台、导轨垂直度测量仪1台、经纬仪1台、全站仪1台、温湿度计2台、绝缘电阻测试仪4台、水准仪2台、电梯振动及起制动加减速度测量仪1台、检验终端配件9台、超声波测厚仪8台、防腐层粘结力测试仪2台、低浓度自动烟尘烟气综合测试仪1台、格林曼黑度计1台、射线剂量检测仪1台、储罐呼吸阀在线校验仪1台、电导率仪1台、溶解氧测定仪1台、X射线机1台、泄漏电流测试仪1台、防腐层绝缘电阻测量仪1台、数显布氏硬度计1台、杂散电流检测仪1台、转向参数测试仪2台、制动性能测试仪2台、液压踏板力计2台、接地电阻土壤电阻率测试仪2台、紫外/可见光照度计2台、电梯导轨垂直度检测仪2台、电梯振动及起制动加减速度测试仪2台、工业内窥镜1台、测氧仪3台、便携式烟气分析仪1台、便携式浊度计1台。(五)获取招标文件时间:2024年07月01日 至 2024年07月08日,每天上午0:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外)地点:广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)方式:网上下载。本项目不提供纸质文件,潜在供应商需在广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)-进入“项目采购”应用,在获取采购文件菜单中选择项目,获取招标文件。电子投标文件制作需要基于广西政府采购云平台获取的招标文件编制,通过其他方式获取招标文件的,将有可能导致供应商无法在广西政府采购云平台编制及上传投标文件。售价:¥0.0 元,本公告包含的招标文件售价总和(六)提交投标文件提交投标文件截止时间:2024年07月22日 09点30分(北京时间)开标时间:2024年07月22日 09点30分(北京时间)地点:投标地点:广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)开标地点:广西政府采购云平台电子开标大厅(七)联系方式1. 采购人信息名称:广西壮族自治区特种设备检验研究院地址:南宁市邕宁区仁信路25号联系方式:王志鹏;0771-53508222. 采购代理机构信息名称:云之龙咨询集团有限公司地址:南宁市良庆区云英路15号3号楼云之龙咨询集团大厦6楼/530201联系方式:唐冰、韦顺 0771-2611898、2618118、26181993. 项目联系方式项目联系人:唐冰、韦顺电话:0771-2611898、2618118、261819
  • “雷磁”三合一718型便携式多参数分析仪市场需求强劲
    上海仪电科学仪器股份有限公司于2011年上半年推出的集离子计、电导率仪、溶解氧测定仪功能、特点于一身的718型便携式多参数分析仪,因具有&ldquo 三合一&rdquo 的功能、特点,尤其受到用户的青睐。今年第三季度开始产销强劲,订单比去年同季至少增加200%以上,成为仪电科仪公司新产品产销的一个增长点。&ldquo 雷磁&rdquo 三合一718型便携式多参数分析仪,属于袖珍式仪器,防水防尘,非常适用于野外作业,可满足化工、环保、科研、教育等领域用户的不同测量需要,产品技术与指标在国内同行业中位于先进水平。采用低功耗设计,具有欠压检测、自动关机、背光控制以及测量模块电源智能管理等电源管理,自动温度补偿功能、标定功能,可进行零氧、满度、气压校准和盐度校准功能; 内置三大模块: 离子测量模块:具有有强大的&ldquo 宽容性&rdquo ,除仪器提供的离子模式,如果用户需要测量其它离子,配上相应的离子电极,可自己建立自定义离子模式进行测量; 电导测量模块:可测量电导率、电阻率、总固态溶解物(TDS)以及盐度值,并且具有自动温度补偿、自动校准、自动量程、自动频率切换等功能;溶解氧测量模块:可进行溶解氧浓度、溶解氧饱和度和电极电流的测量。 图为即将大批量面市的&ldquo 雷磁&rdquo 三合一718型便携式多参数分析仪
  • 激光多普勒测速技术发展及应用漫谈(1)
    仪器信息网讯 2020年 12月1日23时11分,嫦娥五号探测器稳稳软着陆在月球,落月过程中,中国科学院上海技术物理研究所研制的激光测距测速敏感器发挥着重要作用,该多普勒激光测速精度可达0.1米/秒,将三个方向的多普勒激光测速的结果反馈给导航系统,确保航天器着陆更平稳。据悉,这也是多普勒激光测速技术首次在太空导航上得到应用。嫦娥五号激光测距测速敏感器和激光三维成像敏感器激光多普勒测速是什么?激光多普勒测速仪发展史又是怎样?本期,我们邀请北京航天光新科技有限公司 CEO 杨开健分享激光多普勒测速技术发展及应用。杨开健 北京航天光新科技有限公司 创始人兼CEO 1.激光多普勒测速仪原理激光多普勒测速仪基于光学多普勒效应利用多普勒频移实现对物体线速度的非接触测量。多普勒效应(Doppler effect)主要内容为:当声源与接收器(或观察者)之间存在相对运动时,使得接收器(或观察者)收到的声音频率,和声源发出的声音频率不同(出现频差)的现象。接收器接收的频率和声源发出的声波频率之间的差值就叫多普勒频率,其大小同声源与接收器之间的相对运动速度的大小、方向有关。多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。当然光波也具有多普勒效应。如图所示,激光多普勒测速仪出射的激光束入射到运动物体上,部分散射光仪器接收。由于仪器相对于物体有一定的运动速度,根据多普勒效应可知,仪器接收到散射光的频率与出射激光的频率不同,分别是和,这里指仪器出射激光的频率,指多普勒频率。多普勒频率与物体的运动速度有关,通过探测多普勒频率即可计算出物体的运动速度。激光多普勒测速仪原理示意图2.激光多普勒测速仪发展史——解决不同时代用户的需求痛点1964年Yeh和Commins首次观察水流中粒子的散射光频移,并证实了可利用激光多普勒频移技术来确定流动速度,Foreman和George,Golesfecion和Kreid,Pike,Huffaker等人进一步论述了多普勒技术原理、特点及其应用,使该项技术初步得以实用化,不仅可以测量液体流速,还可以测量气体的流速。70年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光单元有了进一步的发展,使得该系统的光路结构更为紧凑。光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了计数处理、光子相关及其它一些方法使激光多普勒技术测量范围更广泛,它的精度高、线性度好、动态响应快、测量范围大、非接触测量等优点得到了长足的发展。1975年在丹麦首都哥本哈根举行的“激光多普勒测速国际讨论会”标志着这一技术的成熟。80年代,激光多普勒技术进入了实际应用的新阶段,它在无干扰的液体和气体测量中成为一种非常有用的工具。可应用于各种复杂流动的测试,如:湍流、剪切流、管道内流、分离流、边界层流等。随着大量实际工程、机械测试的需要,目前,固态表面的激光多普勒技术也越来越受到重视:A. E. Smart,C. J. Moore等把该项技术应用到航空发动机的研究上 清华大学利用激光多普勒技术分析磁头的运行姿态溯;美、德开始激光光栅多普勒测量的研究,由光栅衍射主极大光束形成的多普勒信号,具有信噪比高、抗干扰能力强等优点,可用于各种机械的振动测量,但使用时须将光栅和测量目标相连接,限制了它的适用范围;F. Durst和M. Zare提出了PDA(相位多普勒)技术;他们研究发现,球形粒子对两束相交光束散射,会在周围光场形成明暗相间的干涉条纹。当用两个探测器接收多普勒信号时,两路信号之间存在的相位差与粒子大小成呈线性关系。这一技术被广泛应用于粒子大小的测量中,目前也被用于折射率的测量中;天津大学进行将激光多普勒技术用于固体表面面内位移远距离测量研究。3.从应用有限到技术逐渐商品化激光多普勒技术虽被证明是一种非常有用的技术,但它的仪器化产品在过去相当一段时期内受气体激光器体积庞大、信号处理技术相对落后的限制,在机械工业和大型工程领域的实际应用比较有限。近年来,许多微光学元件己经商品化,激光二极管的应用也为实现仪器小型化提供了便利条件,微小透镜取代了传统的透镜。计算机和数字信号处理技术的结合增大了振动量测量和分析的实时性和自动化程度,信号时域波形分析法、函数分析法、调和分析法等技术的成熟大大提高了测量的准确性和实用性。特别是随着传感技术和信息技术的发展,产生了一些新的测量方法,将多传感数据实时综合处理及分析变为可能,信号处理过程实现了信息化和综合化。半导体技术使得信号处理器体积减小的同时可靠性得到大大增强。这些技术的涌现,使得激光多普勒技术向着小型化、数字化、多维化、实用化、商品化等方向发展。目前,世界上许多国家已经有成熟的激光多普勒测速产品,如美国、德国、英国、丹麦、瑞典、新加坡等。应用于工业测量领域的光路结构大部分是双光束差动结构,该结构具有易对准、接收口径大等优点。该技术已经可以在钢铁、有色金属的轧机生产线的在线测量,或者用在线缆、造纸、印刷等行业的生产线的速度测量和长度累计。补充:国内激光多普勒技术研究现状据公开资料表明,国内目前从事激光多普勒技术研究的单位越来越多,清华大学、中国科学技术大学、大连理工大学、电子科技大学、国防科技大学、中国科学院上海技术物理研究所等单位都展开了激光多普勒测速技术研究。本网根据相关资料整理如下:(图源网络公开整理)欢迎广大业内人士分享更多科学技术干货内容,请投稿至liuld@instrument.com.cn
  • TX1315 便携式生物毒性分析仪在环监站的应用
    TX1315 便携式生物毒性分析仪在环监站的应用哈希公司 污染物之间的毒性效应往往具有加和、协同、拮抗等作用,常规理化参数监测项目单一,难以评估。通过生物综合毒性检测能监测未被检测的污染物的潜在的毒性效应,可以有效反应污染物对人体健康、环境生态系统的综合影响。因此,在供水安全、预警突发环境污染事件场景和公共卫生事件中,生物毒性在水质安全保卫中发挥着重要的作用。急性毒性检测根据选取受试生物不同,分为鱼类急性毒性测试法、浮游生物急性毒性测试法和微生物急性毒性测试法。前 2 种方法工作量大,测试时间长,不适于大批量水样的快速检测,发光细菌法因其检测速度快、自动化程度高、人为错误少等优点得到广泛应用。早在 20世纪 70 年代末,国外科学家就已从海鱼体表分离出了发光细菌用于检测水体的生物毒性,90年代德国与欧盟均颁布了应用发光细菌检测水质急性毒性的标准方法,而我国于 1995 年颁布实施了《水质 急性毒性的测定 发光细菌法》(GB/T15441-1995),现该法已成为我国水质急性毒性快速检测的主要方法。通过建立污染水体作用剂量与毒性效应之间的关系,可以将损害程度量化,直观地反映污染水体对生物种群的影响,提供环境污染预警,更好地指导环境污染防治。因而水质急性毒性检测已经逐步成为评价水质污染地重要手段之一。浙江省某环监站担任着省内环境安全和保证供水系统安全的重任,需要对水质综合毒性指标能进行快速检测的能力,经过与国家标准方法的对比,认为 TX1315 便携式生物毒性分析仪可以胜任毒性检测的需求,并且可以针对突发事故进行现场检测。1) 复苏菌a. 1mL 冷的 2.5% NaCl 加入到冻干粉中;b. 冰箱中复苏 30 分钟。2) 配置测试样品a. Hg 标液 1000mg/L 稀释到 20mg/L;b. Hg 标液 20mg/L 稀释到 2mg/L;c. Hg 标液 2mg/L 稀释到测试用不同梯度浓度。3) 测试a. 加样:2mL Hg 标液/2mL 3% NaCl+ 10ul 发光菌液;b. 反应 15 分钟;c. 每个浓度三个平行样,每个测试管配一个参考管。根据《水质 急性毒性的测定 发光细菌法》(GB/T15441-1995)标准要求,使用明亮发光杆菌作为受试菌种,检测汞的不同当量浓度标准液的 RLU 值和相对发光度,结果如下图所示。发光细菌法测定水质急性毒性可选用参比毒物来表征,也可选用抑制率来表示。我国国标中采用氯化汞作为参比毒物,在检测样品的同时,制作一系列浓度的氯化汞与发光强度关系曲线。以样品的相对发光强度从标准曲线上查得相应的氯化汞浓度,则该样品的毒性即相当于该浓度氯化汞的毒性。发光细菌发能较好的反映水质的综合毒性,但是不能获得具体某一类型毒性物质的毒性信息。
  • 美国TSI集团帝强公司携手福斯公司在中国饲料工业展览会暨畜牧业科技成果推介会展出高精度谷物水分测定仪
    2014年4月19-20日,2014中国饲料工业展览会暨畜牧业科技成果推介会即将在沈阳国际展览中心开幕。在加快建设现代饲料工业的新的历史转型期,为推动国内外饲料养殖企业之间的深度合作和交流,充分展示和大力推介畜牧饲料的新技术、新产品、新成果,中国饲料工业展览会已经成为国内外饲料行业展示新成就、交流新经验、沟通新信息、推广新技术、促进新合作的重要平台,成为国内饲料行业影响最大、规格最高、人气最旺的专业品牌展会,一年一度的行业大型盛会。作为全球高科技精密仪器的跨国公司美国TSI集团的DICKEY-john帝强公司与食品及农业领域分析方案的世界领导者丹麦福斯分析仪器公司的中国全资子公司,将携手在年会上将展出高精度谷物水分测定仪GAC ? 2500-AGRI。美国TSI集团的DICKEY-john帝强公司是生产谷物水分分析仪的世界领先企业,为您提供的GAC?2500-AGRI高精度谷物水分测定仪用于农场和企业,适用于大型农场、小型收储机构、以及粮食生产型企业等领域,是一款经济实惠的高精度水分测定仪,它使用最新的149MHz分析技术为用户提供与UGMA型号一样精确的测量结果。此外,GAC2500-AGRI具有精度更高的温度传感器,让您能够直接测量包括冰冻以及高温等极端温度条件下的谷物。直观的彩色触摸屏使操作更加简便,随时能够获得准确的测量结果,而无需考虑使用者的技能水平,采用和GAC?2500-UGMA美国联邦政府及美国农业部认证仪器同样的技术,为您提供最高级别准确性的水分测量,可以在30秒内测出谷物样品的水分、温度、以及容重。水分测量结果与标准法测量结果的精度与重复性误差不超过±0.1%。GAC 2500-AGRI可以测量几乎所有种类的谷物、油料种子、豆类、草籽、菜籽、颗粒饲料以及花生、杏仁等作物,并有庞大的标定数据库可供下载。关于TSI公司 TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。 关于帝强公司DICKEY-john美国帝强公司(DICKEY-john Corporation)创立于1966年,总部位于美国伊利诺斯州奥本市。在设计和制造电子控制装置监测仪传感器和应用于农业,食品加工业的分析仪器路外重型设备的分析产品及其它应用方面都处于世界领先地位。美国帝强公司不断地致力于农业和食品加工业的电子仪器设备的研究和制造, 并不断的更新技术。目前美国帝强公司的主要产品有:应用于农业领域的分析仪器与设备,如GAC2500, GAC2100BLUE, GAC2100AGRI以及GAC500XT高精度快速水分测定仪,和MINIGACplus和MINIGAC以及M-20P等便携式快速水分测定仪;应用于食品加工领域的近红外品质分析仪INSTALAB700和INSTALLAB600系列产品;应用农机和播种机械设备的各类监测器和传感器;以及应用公路养护设备方面的雷达地面测速仪等。欲了解更多信息,请登录www.dickey-john.com
  • 吉天仪器发布便携式流动注射分析仪新品
    产品特点1. 便携设计,适用于现场分析便携箱为拉杆箱设计,内置自动进样器、蠕动泵、化学反应模块和双光束检测器,配有手提式移动电源箱。2. 抗震性强,防水耐低温,安全可靠便携箱可登机,水下一米至少半小时不渗水,配有挂锁孔及背带挂扣,设计抗冲击等级IK08防撞击、不变形、不碎裂。3. 高灵敏度,检测速率快,检测结果可靠检出限可以达到ppb级别,检测灵敏度高。内置蒸馏、消解、萃取等前处理模块,样品无需手工前处理,检测速率快。专利的压力调节装置,保证长时间进液稳定性,提高检测精度。新型集成化小型双光束光学系统,有效提高了光学系统的性能,保证检测结果准确可靠。4. 分析软件操作便捷,具备状态监控功能分析软件内置标准曲线,内置标准化的方法,更加易于使用。分析软件可视化界面、层次化、自诊断的设计,提供强大的运行状态监控、自我维护功能。5. 可拓展配置自动进样器可根据检测需要拓展50-300位的自动进样器,实现自动进样,提高检测效率。方法符合国标、行标及国际标准国家标准《中华人民共和国饮用水天然矿泉水检验方法》GB 8538-2016 流动注射法测氰化物、挥发酚国家环境保护标准《水质 氨氮的测定 流动注射-水杨酸分光光度法》HJ 666-2013《水质 总氮的测定 流动注射-盐酸萘乙二胺分光光度法》HJ 668-2013《水质 总磷的测定 流动注射-钼酸铵分光光度法》HJ 671-2013《水质 挥发酚的测定 流动注射-4-氨基安替比林分光光度法》HJ 825-2017《水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》HJ 824-2017《水质 氰化物的测定 流动注射-分光光度法》HJ 823-2017《水质 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》HJ 826-2017《水质 六价铬的测定 流动注射-二苯碳酰二肼光度法》HJ 908-2017所有分析方法均符合EPA、ISO、DIN标准方法创新点:吉天便携式流动分析仪M-lab iFIA5是基于吉天成熟的流动注射平台打造的全新型号。采用便携式拉杆箱设计,内置自动进样装置和比例稀释系统,可实现超标样品自动稀释以及标准曲线自动配置,无需额外配置自动进样器和比例稀释器。仪器通讯方式为LAN或WIFI,支持多台通道无线通讯,使用更加方便,可以方便携带至检测现场进行应急监测,也可装备于应急监测车和监测船。便携式流动注射分析仪
  • 开创热雷达先河:浙大研发高光谱热雷达,为机器感知拓展全新领域
    作为浙大博士毕业生,鲍芳琳用一篇 Nature 封面论文开创了热雷达的先河,为人工智能安上了一双白天夜晚均能看见的“眼睛”。(来源:Nature)这得从他和所在团队提出的新型机器感知方法——HADAR (heat-assisted detection and ranging)说起。HADAR 的中文名是“高光谱热雷达”,也可以简称为“热雷达”。这是一种新颖的传感范式,与现有的微波雷达(radar)、激光雷达(LiDAR)、声纳(sonar)等有着根本性不同。微波雷达、激光雷达与声纳都是主动式传感,它们会主动向环境发射信号。热雷达是被动式传感,会和相机一样“默默”地接收信号。课题组之所以将它取名为雷达,是希望有朝一日热雷达可以像微波雷达和激光雷达一样,在各行各业中取得广泛应用。图 | 鲍芳琳(来源:鲍芳琳)从人类在夜晚没有视力说起当前,人类正处于人工智能蓬勃发展的时代。机器人外卖员、扫地机器人、自动驾驶汽车等已经开始走进人类生活。预计在未来十年,将会有数以百万记的机器人和人类共同生活在地球上。届时,机器人和人类的社会互动将达到一个空前的强度。对于这些机器人来说,它们必须借助传感器来“看”周围的环境,并在获得机器视觉之后做出自主决策。在当前的智能机器市场上,以谷歌以及特斯拉的无人驾驶汽车为例,它们主要采用相机以及激光雷达来获得机器视觉。相机结合机器学习算法的方法,在白天的确表现优异,但是一到夜晚就没法工作。事实上即使在白天,相机也不能很好地区分真正的行人与海报上的人像。另一方面,激光雷达以其高精度而著称,在机器视觉领域有着不可替代的作用。然而,激光雷达只适合单机使用,难以扩展到多人工智能的场景中。当多台激光雷达放在一起,就会出现信号串扰,并对人眼造成安全隐患。由此可见对于即将来临的机器人时代来说,显然需要新一代的传感器,以便不分昼夜地支持多人工智能场景。当然,作为人类的我们早已习惯了白天与黑夜的二分世界。在黑夜看不见东西也是一个再自然不过的现象。那么,想要造出一个不分昼夜的传感器,先得回过头去思考:为什么人的眼睛在黑夜没有视觉能力?这其实是生物演化的结果。几百万年前,人类跟其他陆地动物一样都还是远古海洋生物。海洋几乎只在可见光区域透明。从那时起,人的眼睛就一直围绕着可见光演化。然而,地球一直在自转,始终只有一面朝着太阳。背对太阳的另一面没有可见光,于是就形成了黑夜。而人工智能既没有生物演化,也无需考虑海洋的透明窗口。那么,人工智能的机器视觉可以做到没有昼夜之分吗?鲍芳琳说:“我们的热雷达工作给出了肯定的答案,YES!”在这项工作中,第一步便是利用红外热辐射作为传感信号源。事实上,我们周围的所有物体诸如地面、房子、人体等,都会不分昼夜地发出红外热辐射。利用红外热辐射进行成像,具有一定的夜视能力。然而,热成像有着非常典型的“鬼影效应”。如下图,热成像之下的人脸没有细节,更像个“鬼魂”。图 | 鲍芳琳的热成像照片(来源:鲍芳琳)其实热成像下的其他物体也都一样:缺乏纹理、对比度低,远不如白天我们眼见的景象。那么,“鬼影效应”是怎么产生的?假如能从热成像中恢复纹理细节,使热成像达到类似于白天景象的效果,就能得到真正的夜视吗?鲍芳琳说:“我们的热雷达工作正是解释并克服了‘鬼影效应’,并实现了真正的夜视。热雷达可以在黑夜看到类比于白天的景象,在此基础之上实现不分昼夜的机器感知。”由于热雷达是被动式传感,所以非常适合用于多人工智能场景,有望为未来的人机交互时代提供传感支持,并有望为机器视觉以及人工智能带来突破。可以说,热雷达重新定义了低可见度环境下的机器感知,即将为低可见度下的机器视觉以及成像技术带来革命。审稿人也评价称:“这篇论文将会吸引全球学者来探索热雷达,并将热雷达的框架应用到低可见度情况的各个任务场合。”同时,热雷达毫无疑问将提升自动驾驶以及其他机器辅助技术。随着热雷达的进一步优化,它将开辟一个全被动的、对物理环境有着灵敏传感的机器感知技术。由此可见,热雷达有望重塑我们的未来,它会让我们更加接近一个人机交互的社会。在那里,机器可以通过高灵敏传感为我们提供既关键、又安全的信息。(来源:Nature)具体来说:热雷达最直接的应用就是作为机器人以及无人驾驶汽车的传感器。热雷达采取完全被动式的传感方式,可以感知材料、温度、几何纹理等多维度的物理信息,还能在黑夜看到类似白天的景象,这将为机器人提供全新的机器视觉支持。热雷达也能用于野生动物监测。野生动物大多只在夜间活动。热雷达的夜视能力以及灵敏的温度感知能力,将帮助我们更好地监测珍稀野生动物。热雷达也可用于智能医疗,更好地在夜间监测患者的行为、状态。热雷达还能用于国防领域,由于其具备被动传感的特征,故其具有良好的隐蔽性。日前,相关论文以《热辅助探测和测距》(Heat-assisted detection and ranging)为题发在 Nature,并成为当期封面论文。鲍芳琳是第一作者,美国普渡大学祖宾雅各(Zubin Jacob)担任通讯作者[1]。图 | 相关论文(来源:Nature)“本来也不存在路,路都是人走出来的”事实上,这篇发表于 Nature 封面的论文,一开始起源于鲍芳琳用来练手的一个小课题。2019 年 5 月,为了拓宽个人研究方向,鲍芳琳来到美国普渡大学 Zubin Jacob 组从事博后研究,原本他打算做一个量子多体物理与张量网络的课题。然而等鲍芳琳真正来到普渡大学,Zubin 却并没有成功申请到张量网络的项目。于是,他们打算先花两三个月时间,拿个小课题练练手。一边积累机器学习与张量网络方面的知识,一边申请新的项目。对于这个小课题,Zubin 给鲍芳琳设定了一些相对浅显的内容:用机器学习对红外光谱进行材料分类。不过,Zubin 却给这个小课题取了一个响亮的名字——HADAR(heat-assisted detection and ranging),这便是此次研究的前身。但是,Zubin 和鲍芳琳都没有红外遥感方面的基础。等鲍芳琳掌握了张量网络、神经网络与机器学习方面的必要知识后,鲍芳琳又开始了解领域内的现状,结果发现对于红外光谱进行材料分类这种工作,早在十年前就被做完了,因此并不能作为新的课题。但是,鲍芳琳觉得 HADAR 这个名字有点意思。利用红外辐射进行被动式传感,相比激光雷达而言也有其独特的优势。在 HADAR 这个单词里,D 跟 R 分别代表目标探测与距离测量。如果不像激光雷达那样主动发射信号出去,又该如何测量目标物体的距离呢?最直接的做法就是模拟人眼,用双目视差法测量距离。然而,鲍芳琳发现热成像受到“鬼影效应”影响,普遍都缺乏纹理,这时就很难采用双目视差的方法,这也是热成像传感领域的一个瓶颈。那么,为什么热相机拍照片无法像普通相机那样富含纹理呢?“鬼影效应”又是怎么产生的?以及能否克服“鬼影效应”,实现热红外的目标探测与距离测量?这些问题让鲍芳琳来了兴趣,也让他看到了真正适合 HADAR 这个名字的、完全不同于当初小课题的研究思路与内容。找到新的研究思路之后,他很快就想通了“鬼影效应”的机制与克服办法,由此提出了“TeX 视觉”的概念,这也是热雷达的核心原理。与此同时,Zubin 也极大肯定了鲍芳琳的想法。综合一些其他想法,再加上组里的前期研究基础,他们很快就在一年之内申请到 4 个项目。热雷达项目,则由其中一个 DARPA 项目支持。获得支持之后,他们分析了热雷达的理论极限,也研究了一些基础问题,比如热雷达需要多少个光子才能分辨目标物体的材料、以及测量目标物体的距离等。另一方面,他们也开始着手使用仿真模拟的方法,去证实热雷达的可行性,以及通过户外实验去实现热雷达的原始模型。(来源:Nature)后来,他们把上述研究整理为论文并投稿到 Nature,尽管得到了非常正面的评价,期刊编辑以及审稿人都表示这项工作很有意思。不过,鲍芳琳和导师以及同事基本都是物理或光学背景出身,而审稿人全部来自计算机科学和机器视觉领域。不同背景学者的关注点很不一样。审稿人在点赞理论框架的同时,也希望鲍芳琳等人补充更多的模拟与实验,真正把热雷达做出来,并与现有的激光雷达等进行对比。在长达两年的审稿过程中,鲍芳琳自学了一些计算机图形的基础知识。他还带着几个研究生开发出一个基于光线追迹的计算机图形仿真软件,生成了世界上唯一一个公开的红外高光谱成像的数据库(the HADAR database)。利用这个数据库,他们开始训练机器学习,并对热雷达理论进行数值验证。同时,利用 DARPA 项目组提供的更加优质的实验数据,鲍芳琳开发了一系列算法,在实验上实现了热雷达的所有效果,包括 TeX 视觉、类比于白天的夜视能力、显著优于传统热成像的目标探测与距离测量等。热雷达是一个新概念,也是一个跨领域的工作。虽然目前只是一篇期刊论文,但是鲍芳琳感觉其工作量堪比一个博士学位论文。短短 6 页的 Nature 正文背后,有着将近 100 页的方法与补充材料,涵盖光学信息理论、机器学习算法、实验细节、与当前机器视觉的对比分析等内容。审稿意见以及修改材料也长达 143 页。原本 3 个月的小课题做了 4 年才有了这第一个阶段性成果。鲍芳琳说:“论文合作者之一的 Vaneet Aggarwal 教授曾问我,这么长时间没出成果,你不怕以后找不到工作(教职)吗?说实话,我也担心。不过权衡之下,我觉得‘做好一件事情’比‘做过多件事情’更重要,所以一直在坚持。”而鲍芳琳和同事踏实的论证工作,也得到了审稿人多次的赞赏。与此同时,漫长的研究也并未让鲍芳琳过于担心找工作一事。因为在此前,他曾在其他项目上发表过一些论文。但是,由于热雷达过于前沿,他也曾遇到过一些困惑。其表示:“我本科学的是物理,博士学的是光学。在做热雷达之前,我主要研究量子物理。”在做热雷达之后,曾经有很长一段时间,组里新来的同学问他从事什么研究方向,很多次他都答不上来。尽管热雷达涉及到多个学科的知识,但它本身是一个新生事物,不曾被明确定义过。直到研究临近结束,他才慢慢释然。“本来也不存在路,路都是人走出来的。也许若干年后,热雷达本身就成了一个研究方向。”鲍芳琳总结称。另据悉,在论文审稿期间,鲍芳琳也迎来了女儿 Louisa 的出生。组里同学开玩笑说,她的名字应该叫 HADAR。他继续说道:“这项工作能坚持到最后,离不开亲人们默默的支持。”未来,鲍芳琳会持续推动热雷达相关的研究,直到它像激光雷达等一样在社会上取得广泛的应用。这其实是一条漫长的路,前文提到了鲍芳琳的热成像照片。那么,它对应的热雷达图像在哪里?目前依旧无法得到。这是因为,目前的热雷达仍然处于概念验证的阶段,还有很多理论需要通过进一步的实验加以验证,也有更多应用值得去探索。与此同时,热雷达所使用的高光谱热相机非常笨重、迟缓和昂贵,急需得到进一步的突破。“我计划回国之后在这些方面继续开展研究工作,希望 2024 年初能回到祖国怀抱,我未来的研究方向也会继续围绕量子物理与人工智能开展,热雷达便是其中的一个方向。”他说。参考资料:1.Bao, F., Wang, X., Sureshbabu, S.H. et al. Heat-assisted detection and ranging. Nature 619, 743–748 (2023). https://doi.org/10.1038/s41586-023-06174-6
  • 雷磁发布雷磁ZD-1型便携式数字滴定器新品
    ZD-1型便携式数字滴定器是一种方便的便携式精密加液装置,可以应用于多种场合,适合定量添加、连续添加;是高等院校、科研机构、石油化工、制药、药检、冶金等各行业的辅助分析工具。n 高精度滴定,可实现0.01mL的精密定量添加;n 速率可调,支持10阶变速;n 滴定和吸液两种操作模式的切换,通过转动手动旋钮的方向,滴定器将自动检测进入模式,方便高效;n 具有两种添加模式,包括连续添加模式、定量添加模式;n 液晶显示,读数直观;n 锂电池供电,方便用户现场使用;n 便携式设计,按键操作,便于用户携带和操作。【技术参数】型号ZD-1 测量范围(0.01-99.99)mL分辨率0.01mL显示液晶显示可调速率范围10阶滴定管容量允差10mL滴定管:±0.025mL尺寸(mm),重量(kg)200×80×350,1.5创新点:ZD-1型便携式数字滴定器是一种方便的便携式精密加液装置,可以应用于多种场合,适合定量添加、连续添加;高精度滴定,可实现0.01mL的精密定量添加;速率可调,支持10阶变速;是高等院校、科研机构、石油化工、制药、药检、冶金等各行业的辅助分析工具。雷磁ZD-1型便携式数字滴定器
  • 新材料领域:便携式增强拉曼检测设备
    现场快速检测在环境污染物检测、农残检测、安检、疾病早期诊断等领域具有广泛应用。基于增强拉曼光谱的检测技术,具有灵敏度高、检测速度快、指纹识别等优点,倍受关注。近十年来,中国科学院合肥物质科学研究院在这方面取得丰富的技术积累。主要技术指标(或参数):   1、检测下限:多数有机物0.01-1ppm;部分有机物1ppb;离子0.01ppm;   2、具有指纹识别能力、现场快速检测;   3、可测量液体、固体中的目标物,也可分析固体表面及浅表层物质,例如菜叶上农残和物品表面纳克级别的粉末。   应用领域:   微量/痕量有机物、离子等的快速灵敏检测:   1、 农药残留等有机物检测;   2、 环境污染物检测;   3、 金属离子、酸根离子的检测。   市场前景:   具有良好的社会经济价值及应用前景。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。   相关图片:便携式增强拉曼检测设备
  • 浙江计量院一科研项目获中国计量测试学会科学技术进步奖一等奖
    近日,“中国计量测试学会科学技术进步奖”在世界计量日中国主场纪念活动中举行颁奖。省计量院参与的《高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制》获2022年度“应用研究类”项目一等奖。会上,国家市场监督管理总局副局长燕军、湖北省副省长盛阅春、中国工程院院士谭久彬、中国科学院院士舒红兵为获奖项目颁奖。   该项目主要开展了高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制,首次建立了复杂环境下交通测速在线计量及溯源体系,满足了国内交通行业对速度在线计量和全量程量值溯源的迫切需求,并被机动车测速仪的国际法制计量组织(OIML)国际建议和IEEE国际标准所采纳,实现了国际应用。其中,省计量院主要负责路端多目标三维跟踪雷达交通测速在线计量及溯源关键技术等研究,作为主导实验室承担2019年度全国雷达测速仪微波发射频率及模拟车速量值比对项目,将成果应用于浙江省公安厅交通管理局和海康威视数字技术股份有限公司等。目前,该项目成果已在国家重大轨道交通工程落地应用,解决了高速列车全量程速度溯源难题;此外,项目成果还广泛应用于道路交通执法领域,保障了交警处罚结果的准确性和可靠性,推动了国内相关产业升级,提升了我国产品的国际竞争力。 高精度宽量程多普勒雷达现场标准装置测试场景   中国计量测试学会科学技术进步奖是2013年经国家科学技术部、国家科学技术奖励办公室批准的社会力量奖项,主要奖励在计量领域科学研究、技术创新与开发、科技成果推广应用和实现产业化方面取得卓著成绩或者做出突出贡献的项目。
  • 乐氏科技便携式傅里叶红外气体分析仪在应急监测方面的应用
    近年来,突发环境事件时有发生,在发生污染事故,造成环境污染的紧急情况下,事故发生单位和政府必须快速采取措施、锁定污染物,因此,及时开展应急监测工作是必不可少的。 根据《突发环境事件应急监测技术规范》等有关要求,发生污染事故时,需要对厂界、辐射区域范围内大气敏感点进行多方位气体监测。监测点位的设置需要根据事故现场环境及严重程度来判断,实行多点位监测。在监测过程中根据外部环境的变化及时调整采样点位。 综上所述,《突发环境事件应急监测技术规范》对污染事故应急监测提出很高的要求,由于污染事故具有突发性、不确定性、扩散速度快以及后果的不可控性等特点,为了最大程度地控制事态扩大、减轻污染危害,对事故发生初始阶段的应急监测尤为重要,同时,对应急监测设备也提出了极大的挑战。1应急监测设备必备的性能便携性:事故发生现场地点具有多样性,如:山林火灾的监测、化工厂爆炸、工业泄露、加油站爆炸、恐怖袭击的生化毒气等等,应急人员需要在短时间内携带设备前往事故现场,并在现场进行移动、穿插,这对设备的便携性提出严格要求。功能性:事故类型不同,产生的有毒、有害气体种类及气体组分是不同的,这对分析仪监测气体组分的数量、精准度以及应对复杂场景提出严苛要求。快速性:在有限的时间快速了解事故发生现场气体种类及大致含量是制止事态扩大和减轻污染危害的重要条件,这对分析仪的检测速度、分析周期提出更高要求。 乐氏科技的便携式傅里叶红外气体分析仪能够完全满足上述条件。仪器搭配了PLS偏最小二乘法作为化学计量方法,采用先进的光谱预处理方法,使得仪表在复杂的环境空气中适用性更强,测量结果更准确、更科学。是突发性环境污染事故应急监测的好帮手。2工作原理 采用傅里叶变换红外光谱技术(FTIR Spectrometer)进行气体分析。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和精细定量分析。 图1 光谱信息产生机理 图2 光谱信息产生机理3产品特点测量精度高,优于标定的±2%;光谱范围宽; 高分辨率分析模式; 定性、定量种类丰富,定性可达5578种 ;分析周期短、可连续在线监测; 抗光谱干扰能力强;预热时间短。4应用案例 2022年9月,乐氏科技在某疾控防疫中心实验室现场试验,对用户提前配制好的混合有机溶剂进行现场分析(配制的样品组分包含:苯系物、三氯乙烯、二乙醇、甲酸),以检验便携式傅里叶红外气体分析仪在分析VOCs性能方面的表现。图3 实验室测试现场通过一个周期的测试,结果显示:傅里叶红外气体分析仪能够非常快速、准确地检测出实验混合物中的气体组分,并进行定量分析。图4 仪器采集的原始样品谱图样品原始谱图中包含有丰富的VOCs组分特征谱带,说明仪器红外响应非常灵敏。图5 样品原始谱图与三氯乙烯标准谱图比对两者特征谱带出现的位置及形状相似度极高,因此仪器准确地分析出了混合样品中的三氯乙烯样品。图6 样品原始谱图与苯标准谱图比对样品原始谱图与苯标准谱图在2800cm-1—3200cm-1内比对,两者特征谱带出现的位置及形状相似度极高,因此仪器精准分析出了混合样品中的苯。 通过上述多组对比,很好地证明乐氏科技便携式傅里叶红外气体分析仪在VOCs分析方面具有很高的红外灵敏度和响应,非常适合在环境空气应急检测或职业卫生检测行业的应用。
  • 斯派超便携式运动粘度计获批最新ASTM D8092标准
    p  【波士顿,2017年5月16日】斯派超MiniVisc 3000(原Q3000,现已更名) 便携式运动粘度计获最新ASTM D8092专属标准——Standard Test Method for Field Determination of Kinematic Viscosity Using a Microchannel Viscometer(使用微通道粘度计现场检测在用润滑油的标准方法)。/pp style="text-align: center"img style="width: 450px height: 395px " src="http://img1.17img.cn/17img/images/201705/insimg/7366c596-e18f-4ea6-9c55-20f8c3e821f6.jpg" title="1.jpg" height="395" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong斯派超MiniVisc 3000便携式运动粘度计/strong/pp  斯派超科技首席技术官Patrick Henning博士说:ASTM D8092的批准对斯派超MiniVisc 3000来说,是一个里程碑式的认可与进步。ASTM是全球范围内粘度检测标准的提供者(如ASTM D445,ASTM D446,ASTMD7279等),MiniVisc3000创造性的解决了现场运动粘度直接检测的需求。ASTM D8092保证了MiniVisc3000用户在方便、简单、快速粘度检测的同时,检测结果也得到ASTM标准的认可和支持。/pp  MiniVisc 3000采用专利的开合式Hele-shaw毛细管,直接、定量、精准检测润滑油40℃运动粘度,而且设计轻巧、操作简单、不需要使用任何试剂、不需要前处理,可以直接在现场使用。/pp  斯派超MiniVisc3000现场便携式运动粘度计具有以下特点:/pp  strong便携/strong/pp  ◆ 外形尺寸:15.2cm x 12.7cm x 20.3cm /pp  ◆ 重量:1.8kg/pp  ◆ 锂电池供电/pp  ◆ 金属毛细管,没有易损配件/pp  strong操作简单/strong/pp  ◆ 整个做样过程不需要使用液体溶剂及辅助设备 /pp  ◆ 检测速度快,2-4分钟(与粘度有关) /pp  ◆ 全程不需要使用任何试剂。/pp  strong结果精准/strong/pp  早在2013年NASC就对MiniVisc 3000的精度和重复度进行了评估,目前美国海军(包括美国海岸巡逻队)已经有超过100艘舰船使用MiniVisc3000便携式运动粘度计进行现场粘度检测。/pp  MiniVisc 3000是斯派超Minilab油液现场监测系统中重要组成部分,Minilab可帮助用户同时进行粘度、元素、污染度、智能铁谱、铁磁颗粒、油液老化的检测,直接得到检测报告和诊断帮助,并且所有结果均符合ASTM标准要求。/p
  • 得利特发布得利特A1035便携式颗粒计数器新品
    A1035便携式颗粒计数器,采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。 仪器特点1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定2、适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度3、可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气4、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级5、管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测6、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护7、内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准8、内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准9、内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能10、可设定任意报警级别,实现污染度或洁净度检测11、内置微水传感器和温度传感器12、中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷13、超大存储,可选择存储在仪器内部或外部存储设备中14、嵌入式设计,高强度外壳,便于携带,适合各类工程机械 技术参数光 源:半导体激光器流速范围:20-60mL/min离线检测样品粘度:≤100cSt,粘度高时可选配压力舱在线检测压力:0.1-0.6Mpa(选配减压装置zui高压力可达40Mpa)粒径范围:1-500μm(选用不同型号传感器)接口:USB接口、电源接口数据存储:提供1000组数据存储空间,并支持优盘存储灵 敏 度:1μm或4μm(c) 极限重合误差:10000粒/ml计数体积:1-999ml计数准确性:±0.5个污染度等级防护等级:IP67测试时间间隔:1秒-24小时检测样品温度:0-80℃水活性:0-1aw(±0.05aw)水含量:0-120ppm(±10%)工作温度:-20-60℃供 电: AC 220V±10%、50/60Hz或DC12-40V重 量:2.5kg体 积:275×220×107mm创新点:A1035便携式颗粒计数器,采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。得利特A1035便携式颗粒计数器
  • 福斯FOSS与TSI集团帝强DICKEY-john公司签署战略合作协议
    食品及农业领域分析方案的世界领导者丹麦福斯分析仪器公司的中国全资子公司(以下简称:福斯)与全球高科技精密仪器的跨国公司美国TSI集团的DICKEY-john公司(以下简称:帝强)签署战略合作协议,福斯中国正式成为帝强谷物水分测定仪中国总代理,全权负责帝强谷物水分测定仪在中国市场的推广、销售工作,双方将携手在中国推广快速谷物水分测定解决方案。 福斯多年了致力于开发和生产用于食品和农业领域的各类分析仪器,为食品、农产品的常规质量与过程控制提供快速、可靠、专业的分析方案。目前,全球约85%的牛奶生产,80%的谷物交易,75%的啤酒生产都在使用福斯提供的分析方案。 从七十年代开始, 福斯的产品就进入了中国市场。目前福斯中国设立了销售、市场、商务、应用支持及售后服务等部门。专业的客户服务中心,售后服务及维修业务覆盖全国。福斯中国不仅为中国用户提供仪器设备,还为用户提供售前咨询、定制应用支持和开发,及各种售后服务。经过多年的努力,福斯已在中国销售安装了几千台仪器,拥有商检、食品、饲料、乳品、粮食检测、面粉、农业研究、育种等不同行业的约5000个满意用户。 帝强开发了世界上第一个成功的谷物水分测定仪,在谷物和食品分析技术领域拥有40多年的经验,是世界领先的农业和食品加工领域分析仪器与设备提供商,其中高精度快速水分测定仪和便携式快速水分测定仪的技术一直居世界领先地位。帝强的高精度谷物水分快速测定仪, 是美国农业部(USDA)谷物检验、批发及畜牧场管理局(GIPSA)指定的法定谷物水分测定仪,也是美国农业部官方测试仪器。 通过本次合作,福斯将进一步补充和完善食品、农产品的常规质量与过程控制提供快速、可靠、专业的分析方案,借助帝强精确、易用的水分测定仪,用户可通过节约生产过程的时间、更有效的利用原材料、降低生产成本、始终如一的保持高质量产品以及优化食品安全实现提高收益。 福斯与帝强建立战略合作关系,在更高的层次满足了客户的需求,将能开创双赢的局面,预祝双方协力开拓市场机遇,共同成功。 关于福斯FOSS1956年,NILS FOSS先生于丹麦成立福斯有限公司(以下简称福斯),致力于开发和生产用于食品及农业领域的各类分析仪器。五十多年来,福斯已经发展成为集研发、生产、市场推广、销售、售后服务于一体的集团公司。福斯现有雇员约1100人,下设丹麦、瑞典、中国三个研发生产公司,在世界各国设有21个销售及服务分公司及100多个独家代理商。今天,福斯已经成为世界上最大的食品及农业领域分析方案提供商之一,全球约85%的牛奶生产,80%的谷物交易,75%的啤酒生产都在使用福斯提供的分析方案。 关于TSITSI公司是一家设计并制造流体测量、环境颗粒物及其它环境参数实时监测的高科技精密仪器的跨国公司,是流体测量和环境监测领域的技术领航者,产品涉及基础研究、环境监测、劳动保护、生物医药及工业生产等诸多领域,能满足工业、政府部门、大学及研究机构等不同层次的需求。TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有分公司和代表处,并在其服务的全球各个市场均建立了当地机构。每天,我们专业的员工都在把科研成果转化成现实。欲了解更多信息,请登录 www.tsi.com 关于帝强DICKEY-john美国帝强公司(DICKEY-john Corporation)创立于1966年,总部位于美国伊利诺斯州奥本市。在设计和制造电子控制装置监测仪传感器和应用于农业,食品加工业的分析仪器路外重型设备的分析产品及其它应用方面都处于世界领先地位。美国帝强公司不断地致力于农业和食品加工业的电子仪器设备的研究和制造, 并不断的更新技术。目前美国帝强公司的主要产品有:应用于农业领域的分析仪器与设备,如GAC2500, GAC2100BLUE, GAC2100AGRI以及GAC500XT高精度快速水分测定仪,和MINIGACplus和MINIGAC以及M-20P等便携式快速水分测定仪;应用于食品加工领域的近红外品质分析仪INSTALAB700和INSTALLAB600系列产品;应用农机和播种机械设备的各类监测器和传感器;以及应用公路养护设备方面的雷达地面测速仪等。欲了解更多信息,请登录www.dickey-john.com
  • “高端装置扭矩速度测量”重大仪器项目启动
    2月28日,国家重大科学仪器设备开发专项&mdash &mdash &ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目启动会,在中国计量科学研究院(以下简称&ldquo 中国计量院&rdquo )召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。  图1:科技部条财司副司长吴学梯在启动会上讲话  启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。  图2:项目总体组组长、中国计量院副院长宋淑英讲话  项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。  图3:项目负责人、中国计量院力学与声学研究所所长张跃汇报项目总体情况  项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。  与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。  高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。  而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。  该项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。  据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。  图4:启动会现场  该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • 欧普图斯便携式激光拉曼光谱仪通过鉴定
    欧普图斯光纳科技便携式激光拉曼光谱仪通过技术成果鉴定  5月20日,适逢“世界计量日”之际,中国分析测试协会组织有关专家前往苏州,对欧普图斯(苏州)光学纳米科技有限公司自主研发的RamTracer-200系列便携式激光拉曼光谱仪进行技术鉴定。  此次技术鉴定由中国分析测试协会张玉奎院士主持,委员会成员则包括中国科学院大连化学物理研究所张玉奎院士、中国分析测试协会副理事兼秘书长张渝英研究员、中国分析测试协会技术部负责人汪正范研究员、中国计量院化学所常务副所长李红梅研究员、清华大学化学系副系主任张新荣教授和原公安部科技司司长刘辛高级工程师。鉴定会现场  鉴定委员会专家在审查了公司项目工作组的研发报告、查新报告、国家分析仪器质量监督检验中心的检验报告和用户报告等材料,听取了公司项目研发、工程技术、经营管理等情况汇报,并实地考察、详细了解产品研制和使用过程中的各关键环节。鉴定委员会专家进行实地考察  通过审慎周密的考察和质疑,专家组一致同意并通过了“RamTracer-200系列便携式激光拉曼光谱仪”的仪器鉴定。鉴定结论如下:  欧普图斯光纳科技RamTracer-200系列便携式激光拉曼光谱仪,通过优化集成整合现代光学技术、半导体技术、电子技术和分析化学技术,仪器的光谱分辨率达到6cm-1、峰位准确度和精密度分别达到1cm-1,检测速度快,体积小,便于携带。其自主知识产权的纳米技术模块NanoDog,利用纳米增强技术实现了对食品中非法添加物、农兽药残留、掺假食品、危险品、毒品和毒物等的拉曼光谱信号进行有效放大,检测灵敏度可达ppb水平。自主研发的操作系统和自动辨识系统,采用便捷的一键式操作界面,缩短分析时间,方便用户对现场快速检测的使用。已针对我国的食品安全以及公共安全中的需求,建立了一套具有自主知识产权的纳米增强拉曼数据库,为自动辨识系统提供数据支持。  RamTracer-200系列便携式激光拉曼光谱仪为自主设计,关键技术具有自主知识产权,整机的主要性能指标达到国际先进水平。鉴定委员会一致同意通过该仪器的成果鉴定。并建议:加强知识产权的保护,尽快实现产业化并推广应用。  鉴定会的最后,张玉奎院士进行了总结,认为基于激光拉曼技术、纳米技术、分析化学技术、微电子技术和软件技术等研发的RamTracer-200系列便携式激光拉曼光谱仪,可广泛应用于食品安全现场快速筛检、公安刑侦检测、环保监测、医疗检测等诸多领域,发挥其保障安全的作用。  产品介绍:RamTracer-200系列便携式激光拉曼光谱仪RamTracer-200 WFP与RamTracer-200 HS  RamTracer-200系列便携式激光拉曼光谱仪,采用纳米增强激光拉曼光技术,具有重现性良好,样品前处理简单,检测时间短,检测成本低,系统小型便携,操作简便等优点。其非接触、无损检测和简单样品制备的特性,精度高、现场快速筛查的优势,非常适于高通量和应急检测。  欧普图斯光纳科技已开发出多项具国际领先水平且拥有自主知识产权的产品系列,包括现场快速高灵敏化学物检测仪 (RamTracer)、纳米技术模块 (NanoDog)、激光拉曼光谱系统,专项应用数据库,以及便于使用的自动标识软件和人性化的人机界面, 可对微痕量物质进行现场快速辨识。项目已获得授权的发明专利17项、软件著作权3项、发表学术论文和报告20余篇,已申报国家标准3项,行业标准1项(已于2012年5月通过相关行业标委会评审,并计划在2012年内发布并实施),地方标准10余项(其中1项于2011年发布并实施)。其技术在食品安全现场快速检测、刑侦安全、环保监测、重大疾病早期筛查、生物制药、工业流程在线监测等领域均有着广阔的应用前景。
  • “高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动
    2月28日,国家重大科学仪器设备开发专项——“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动会,在中国计量科学研究院(以下简称“中国计量院”)召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。 科技部条财司副司长吴学梯在启动会上讲话  启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。  项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。  项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。  与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。  高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。  而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。  国家重大科学仪器设备开发专项“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。  据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。  该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制