当前位置: 仪器信息网 > 行业主题 > >

热导式气体分析器

仪器信息网热导式气体分析器专题为您提供2024年最新热导式气体分析器价格报价、厂家品牌的相关信息, 包括热导式气体分析器参数、型号等,不管是国产,还是进口品牌的热导式气体分析器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热导式气体分析器相关的耗材配件、试剂标物,还有热导式气体分析器相关的最新资讯、资料,以及热导式气体分析器相关的解决方案。

热导式气体分析器相关的论坛

  • 【求助】气相色谱与气体分析器是一回事吗

    要分析煤气中CO2、CO、H2、O2、N2及CnHm等成分。测量范围:0.2~100%,精度:0.2%,是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]还是气体分析器?气体分析器和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是一回事吗?

  • 【分享】电化学电极气体氧分析器检定规程

    本规程适用于新制造、使用中和修理后电化学电极气体氧分析器(以下简称仪器)的检定。其刻度以体积百分比表示,量程不小于1%。[img]http://bbs.instrument.com.cn//images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=192637]MV_RR_CNG_0073 电化学电极气体氧分析器检定规程.pdf[/url]

  • 【求购】QGS-08C红外线气体分析器

    谁能告诉我,北分瑞利[url=http://www.instrument.com.cn/netshow/SH100288/C15613.htm][color=#ff6500]QGS-08C红外线气体分析器[/color][/url] ,价位大概在多少? 不甚感激啊!

  • 【分享】气体分析仪器现状与技术比较

    气体分析仪器现状与技术比较1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。

  • 质谱仪的质量分析器-磁式质量分析器的原理特点

    磁式质量分析器又称单聚焦质量分析器,具有结构简单、操作方便等特点,见图1。由于磁式质量分析器只做方向聚焦,故分辨能力较低。在电动力学里,运动的带电粒子会受到磁场的作用力,这个力又叫作洛伦兹力。洛伦兹力定律是一个基本公理,不是从别的理论推导出来的定律,而是由多次重复完成的实验所得到的同样的结果。假设初始速度为0质量为m、电荷为z的离子,在加速电压U作用下,进入磁场强度为B的磁场内,会受到磁场力的作用发生偏转。在加速电压的作用下,离子在进入磁场时的瞬时速度v为: D=(2Uz/m)[sup]1/2[/sup]在磁场中受到与运动方向垂直的磁场力的作用发生偏离,离子运动轨道变成圆周运动,即 mu[sup]2[/sup]/r=Bzv合并两式,质荷比m/z等于: m/z=r[sup]2[/sup]B[sup]2[/sup]/2U式中,r为偏转轨道半径;m是原子量单位;z是离子的电荷量。该方程式为磁式质谱的基本方程。从方程式可知偏转轨道半径r为:r=(1/B)(2Um/z)[sup]1/2[/sup]从该式可知,只要改变加速电压U和磁场强度B的数值,就可使不同质荷比(m/z)的离子运动轨道半径相同。这就是磁式质量分析器工作的基本原理。在离子加速电压不变的条件下,改变磁场强度B的数值,就可使不同质荷比(m/z)离子沿一个固定运动轨迹到达离子接收器。[img=39f8a0dace71923d12022fcea072a59.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643179072768968.jpg[/img]图1 磁式质量分析器示意图磁式质量分析器的工作原理是依照带电粒子的质荷比来分离的,而且上面公式( D=(2Uz/m)[sup]1/2[/sup])的一个理想条件是离子的初始动能为0,进入磁场的动能完全由加速电压来决定。但实际上离子在离子化和加速过程中初始动能并不相同且不等于0,如果同一质量的离子进入磁场时能量不同,它的运动轨迹也会不同,这就无法实现同一质量数离子的正常聚焦。这种离子能量分散现象会严重影响仪器的分辨率。为了克服离子能量分散对分辨率的影响,通常会在磁分析器前面加一个静电分析器,利用静电分析器对离子进行能量聚集,这就是我们下面要介绍的双聚焦质量分析器。

  • 实验室分析仪器--质谱仪四极杆质量分析器结构及原理

    四极杆质谱仪自20世纪50年代问世以来,目前已成为最主要的质量分析器之一,其体积小、结构简单、造价低廉,且性能相对优秀。对于一般用途而言,其价值和性能都具有较为明显的优势。早期的四极杆质谱仪最大的限制在于其小的质量范围,一般在几百以内,但如今新一代仪器的质量分析范围已经可以较为普遍地达到3000,甚至更高。[b]1.基本原理[/b]四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,金属杆的截面多为双曲线,但也可以简单地制作为圆形或其他形状。图1为一种双曲线截面四极杆质量分析器的示意图。相对的两根极杆连接在一起,施加相同的电压,两组极杆电压相反。施加的电压由直流分量和交流分量叠加而成。从而,形成了一个在电极间对称于z轴(垂直于x-y平面)的电场分布。离子束进入电场后,在交变电场作用下产生了振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子能通过电场到达检测器,其他离子则由于振幅增大而撞到极杆上。 [img=image.png,500,203]https://i2.antpedia.com/attachments/att/image/20220126/1643167399292927.png[/img]图1 四极杆质量分析器示意图[b]2.三重四极杆[/b]利用三重四极杆,可以实现多级质谱分析。第二个四极杆(现在多数为六极杆或八极杆)并不是用于离子的选择和扫描的,而是作为一个含有气体的碰撞池。利用这样的装置,就可以实现低能的CID碎裂。这种手段虽然能较为高效地产生碎片离子,但是仪器与仪器之间的重复性并不好。这是由于碰撞气体的选择、气压、碰撞能量以及其他相关参数都会较为严重地影响二级质谱谱图。得到碎片离子后,离子进入第三个四极杆进行分析。三重四极杆最大的优势在于能够对母离子进行扫描并且筛选出其中某一个母离子进行碎裂分析检测。 [img=image.png,500,380]https://i2.antpedia.com/attachments/att/image/20220126/1643167401866561.png[/img]图2 二维四极场的稳定区图(I 和Ⅱ代表第一和第二稳定区)与扇形分析器类似,四极杆分析器非常适用于连续离子源,例如电喷雾离子源(ESI),并不太合适脉冲离子源,例如基质辅助激光解吸电离源(MALDI),但目前仍然有文章报道利用三重四极杆分析器检测 MALDI离子源产生的样品。四极杆质谱仪价格相对便宜,体积小,因此经常与[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用

  • 实验室分析仪器--质谱仪四极杆质量分析器结构及原理

    四极杆质谱仪自20世纪50年代问世以来,目前已成为最主要的质量分析器之一,其体积小、结构简单、造价低廉,且性能相对优秀。对于一般用途而言,其价值和性能都具有较为明显的优势。早期的四极杆质谱仪最大的限制在于其小的质量范围,一般在几百以内,但如今新一代仪器的质量分析范围已经可以较为普遍地达到3000,甚至更高。[b]1.基本原理[/b]四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,金属杆的截面多为双曲线,但也可以简单地制作为圆形或其他形状。图1为一种双曲线截面四极杆质量分析器的示意图。相对的两根极杆连接在一起,施加相同的电压,两组极杆电压相反。施加的电压由直流分量和交流分量叠加而成。从而,形成了一个在电极间对称于z轴(垂直于x-y平面)的电场分布。离子束进入电场后,在交变电场作用下产生了振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子能通过电场到达检测器,其他离子则由于振幅增大而撞到极杆上。 [img=image.png,500,203]https://i2.antpedia.com/attachments/att/image/20220126/1643167399292927.png[/img]图1 四极杆质量分析器示意图[b]2.三重四极杆[/b]利用三重四极杆,可以实现多级质谱分析。第二个四极杆(现在多数为六极杆或八极杆)并不是用于离子的选择和扫描的,而是作为一个含有气体的碰撞池。利用这样的装置,就可以实现低能的CID碎裂。这种手段虽然能较为高效地产生碎片离子,但是仪器与仪器之间的重复性并不好。这是由于碰撞气体的选择、气压、碰撞能量以及其他相关参数都会较为严重地影响二级质谱谱图。得到碎片离子后,离子进入第三个四极杆进行分析。三重四极杆最大的优势在于能够对母离子进行扫描并且筛选出其中某一个母离子进行碎裂分析检测。 [img=image.png,500,380]https://i2.antpedia.com/attachments/att/image/20220126/1643167401866561.png[/img]图2 二维四极场的稳定区图(I 和Ⅱ代表第一和第二稳定区)与扇形分析器类似,四极杆分析器非常适用于连续离子源,例如电喷雾离子源(ESI),并不太合适脉冲离子源,例如基质辅助激光解吸电离源(MALDI),但目前仍然有文章报道利用三重四极杆分析器检测 MALDI离子源产生的样品。四极杆质谱仪价格相对便宜,体积小,因此经常与[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用

  • 【原创】在线分析器样品处理系统技术的发展及应用(上)

    在线分析器样品处理系统技术的发展及应用金义忠 重庆凌卡分析仪器有限公司摘 要 以21世纪前沿技术的视野来审视在线分析器的样品处理系统技术,样品处理系统技术是过程分析器器工程应用系统(以下简称在线分析系统)的核心和关键技术,确立这一技术观念意义深远,将对在线分析系统的推广应用,产生极大的激励和促进作用。本文对样气处理系统的体系、样气处理系统技术的针对性设计,工业炉窑、化工领域在线分析系统的工程应用技术进行了重点综述,肯定了当前研发样品处理系统技术的最新努力及最新进展。 关键词 样品处理系统技术 在线分析器 在线分析系统 样品处理部件1样气处理系统在在线分析系统中的地位样品处理系统如果只限于过程气体分析系统领域,就该称为样气处理系统。在在线分析工程技术行业内,本文所述的样气处理系统,过去却一直叫取样预处理系统、预处理系统、样气预处理系统、取样及预处理单元等。由于长期带着“预”字,好像只是在线分析器的附加部分,并未受到应有的重视。GB/T 19768—2005《在线分析器试样处理系统性能表示》的国家标准,其实JB/T 6854—1993的机械部标准,早就在处理系统之前取消了“预”字,从中必然引申出;样气处理系统和样气处理部件的技术概念和专业术语。令人遗憾的是,长期以来并未得到本行业人士的关注和认可。本文着力阐述的样气处理系统技术,自身有相对独立性、严密性、系统性,PLC可编程序控制器的自控功能及其软件就是一个证明。德国H&B公司的60S型干法高温取样探头在中国市场单独销售有数十套之多,最高售价135万元,算是另一个颇具说服力的证明。为了推进在线分析系统工程应用技术的发展,我们应有一种新的技术观念:在线分析面对诸多十分艰巨复杂的技术难题,样气处理系统技术是在线分析系统的核心和关键技术,期待样气处理系统技术从此走上全面提升和发展的轨道。2在线分析器工程应用对样气处理系统技术的依赖和要求2.1 1986年以前,国内各分析器器专业厂的在线分析器器几乎全是以单机销售的形式投放市场,而德国H&B公司的在线分析器却大约有三分之二是以在线分析系统(包括分析小屋)的形式投放市场,那时样气处理系统有个“预”字并不冤。以川分的红外等三项技术引进为契机,同时从H&B公司引进了在线分析系统技术,并两次培训系统设计和工程应用人才,使川仪无意中充当了一次在线分析器工程应用先驱的角色,设计水平、应用水平、生产规模都有长足进步。 在线分析器工程应用的症结和最佳途径在线分析器的长期连续、适时的检测分析,必然要求连续取样和严格的样气处理技术,要求样气真实和传输快速,样气进入分析器时,要求达到近于标准气的品质。在线分析系统长期连续运行的可靠性和安全性,以及近于免维护的易维护性,都完全依赖样气处理系统技术的针对性设计。根据每项在线分析系统的现场应用条件和取样条件,要采用专业化、规范化,针对性设计的专用型在线分析系统,由具有长期工程实践经验的专业制造商生产这些高品质在线分析系统,并承担全过程技术服务。对于完善的过程气体分析,起决定作用的是使样气处理系统与千差万别的生产工艺条件和环境应用条件匹配得当、组合完善。在线分析器对样气处理系统的这种绝对依赖,使在线分析器以在线分析系统形式供货既是在线分析工程技术发展的必然,也在业界各方人士的情理之中。3复杂的样气条件和干法样气处理技术3.1 复杂的样气条件是过程气体分析面对的最大困难:高温或低温、高粉尘、高水分或液雾、高压负压、腐蚀性和爆炸性危险;较高的自动化程度,少维护甚至近于免维护的应用要求;防尘及防水、防腐蚀、防爆炸等方面苛刻的防护及安全要求;较快的反应速度,滞后时间一般要求<60s ;保证必要的检测准确度等。3.2 干法样气处理技术的必要性 干法样气处理技术有利于有效保持样气的真实性,进而保证必要的检测准确度。干法样气处理技术能使样气干燥、洁净,达到近于标准气的品质,可能发生的腐蚀性也大为降低。所有这些都有利于保证在线分析器连续、稳定、可靠、准确地运行,延长其使用寿命,我见过某石化企业使用超过20年的红外分析器。干法样气处理技术已成为绝对的主流技术。当然湿法样气处理技术也并未完全淘汰,如焦炉煤气O2分析系统,湿法对付焦油更为有效。4样气处理系统技术的体系性特征在线分析系统如果去掉在线分析器和某些应用保障条件部分,就是样气处理系统,体系性地简述样气处理系统如下:4.1 采样探头 通常称为取样探头,是样气处理系统最重要的样气处理部件,根据不同的取样条件,就一定有不同的针对性极强的探头,最常用的是低于650℃的中温通用型探头。取样探头还应包括压缩空气加热(180℃)反吹单元及其程控反吹技术。4.2 样气输送管线 通常多采用Φ6×1不锈钢管,为避免发生冷凝,常采用伴热保温技术(120℃),伴热方式以自控温电伴热带较为经济实用。4.3 过滤器 过滤器就其用途来说,以下三类较有代表性:一是探头过滤器,在取样点就地过滤粉尘,避免在其后产生粉尘沉淀和堵塞的危险,目前的先进水平是0.3μm 99%。二是后级高精度膜式过滤器,以保护分析器为主要目的,目前的先进水平是0.05μm 99%。三是分析器内部的微型过滤器,以在线分析器的自保护为目的,并不属于样气处理系统。4.4 样气冷凝器 使样气冷凝至低露点、以干燥样气为目的。压缩机式样气冷凝器能使样气由140℃冷至2℃露点,效果最好,成本最高;半导体制冷样气冷凝器,入口样气温度一般只能是45℃;涡流致冷样气冷凝器,能使样气温度降低20℃以上,最大的优势是使用压缩空气,本安防爆;使用水源的样气冷却器(即交换器)也有很多应用。4.5 采样泵 通常称为抽气泵,样气压力为负压或微正压时,也能为分析器提供规定的样气流量,隔膜式抽气泵用得较多。另外,常用蠕动泵来排放冷凝液。4.6 气液分离器 气液分离常是十分棘手的技术难题 旋风自洁式分离器 对分离>5μm粉尘和液雾较为有效,相当于70μm粒度以上的重力分离;凝结式分离器能对付更小粒度的微小液雾;特定项目专用型(如乙烯裂解)的气液分离是技术含量很高的综合技术;最简单的气液分离器仅是圆筒中加上一根管子;现在已有采用聚合膜方式过滤液雾的研究。4.7 样气流量测量及控制 样气流量一般用球形转子流量计,流量控制用针形阀调节。切换和关断气路要采用各种阀件,以“五通切换阀”最被看重。4.8 样气压力测量与调节 高压的减压、稳压与调节是项困难任务,各种阀的原理及规格的选择也很有专业性。高压力样气在取样点根部阀处就地减压很有必要,以避免降低反应速度。4.9 部件材料的正确选用 以O型密封圈选材为例:连续使用温度的高低依次为,氟橡胶包覆聚四氟乙烯、氟橡胶、硅橡胶、丁晴橡胶。4.10 设备外壳及防护 一般采用的机柜称为仪表盘,组装后称为分析(仪器)柜; 人可以进入的机柜称为分析小屋; 机柜对粉尘、水的防护等级以IPXX表示; 机柜对可燃性气体和蒸气的防爆等级。如 dⅡCT6。4.11 机柜的气候调节 机柜的气候调节可分为降温、加热、换气等三个大的方面。4.12 自控单元 样气处理系统的连续、稳定、近于免维护的运行,以及各种报警,都离不开PLC可编程序控制器为核心的自控单元。4.13 标准物质 即标准气,是在线分析器的计量标准,现在已采用99.999%的高纯氮作为零点气。4.14 快速回路设计,提高分析系统的反应速度。4.15 尾气和冷凝液的安全排放。4.16 数据处理及远程传输。4.17 工程现场安装的施工设计。

  • 【求助】奥式气体分析仪的使用

    各位大虾帮忙~~~实验室刚买了个奥式气体分析仪,不知道具体怎么用的。。。主用是如何进气啊,比如说我产生的气体有限,100-200ml在集气瓶中,怎样排空瓶内空气,如何进气,如何测定气体成分呢?在操作中要注意些什么?请各位指教!不胜感激!另外,我买的是六管气体分析器,那个洗气瓶是怎么用的;仪器有两个量气筒,一个直形,一个双球量气筒,到底用哪个啊?操作起来真的麻烦好多,哪位大侠用过的,能否联系一下呢?

  • 【转帖】气体分析仪器现状与发展趋势

    气体分析仪器现状与发展趋势一、气体分析技术介绍(1) 人工采样法传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2) 连续采样法连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。(3) 现场在线测量法现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。二、DLAS技术简介聚光科技研发生产的LGA-2000系列激光现场在线气体分析仪是基于DLAS技术开发的现场在线气体分析仪器。DLAS(Diode Laser Absorption Spectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。九十年代后,半导体激光器和光纤元件发展迅速,性能大大提高,价格大幅下降,室温工作、长寿命(100,000小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如frequency modulation spectroscopy、cavity ringdown spectroscopy等也逐渐成熟,DLAS技术开始被较多地应用于科学和工程研究,发达国家的一些仪器公司也开始将DLAS技术应用于气体监测。由于DLAS技术较传统光谱检测技术具有显著的技术优势而得到了迅速推广。Focused Photonics,Inc.(FPI)是DLAS技术的主要开发厂商之一,FPI自主开发了拥有完全知识产权的全系列的激光气体分析产品,并广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。FPI通过聚光科技(杭州)有限公司将该技术引入中国,结合中国各行业的实际需求,开发了LGA-2000系列激光现场在线气体分析仪、LGA-3000系列激光采样在线气体分析仪,并且在钢铁、焦化、石化、电力、环保、航天等行业取得了良好的应用。三、DLAS技术的特点DLAS技术的特点主要表现为:1.恶劣环境适应能力强,无需采样预处理系统,实现现场在线连续测量激光在线气体分析仪采用DLAS技术独有的“单线光谱”原理,使用非接触式激光测量方法,测量仪器与被测量气体环境隔离,其分析测量不受测量环境中背景气体、粉尘以及环境温度和压力的影响,具有高温、高粉尘、高水份、高腐蚀性、高流速等恶劣测量环境的良好适应性,避免了传统气体分析系统必需的复杂的采样预处理系统,从而实现了现场在线连续测量。2.克服了背景气体、水分和粉尘的吸收干扰,测量精度大大提高DLAS独特的“单线光谱”技术、频率扫描技术、谱线展宽自动修正技术克服了背景气体、水分和粉尘的吸收干扰,修正了温度和压力等气体参数变化对气体浓度测量的影响,而且系统直接对现场气体进行测量,气体信息不失真。相对于传统的气体测量技术,这些独特的测量技术和现场测量方法大大提高了测量的精度。3.响应速度快,实现工业过程实时在线管理DLAS技术进行气体分析不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间。系统可以达到毫秒级的响应速度,几乎是实时地反映过程气体浓度及其他参数变化状况,完全可以满足工业过程实时在线管理的需要。4.可同时检测多种气体参数,能测量分析多种气体,应用面广,仪器发展潜力大采用DLAS技术可同时在线测量气体的浓度、温度和流速等,并可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,可广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。较以往采用多种检测技术并进行系统集成而言,采用DLAS技术可大大简化仪器的结构,进而实现气体分析仪器的微型化、网络化(远距离数据无线传输)、智能化和自动化。5.光纤传输特性使系统的应用更加灵活,性价比更高DLAS技术采用的激光光源与常规光纤有良好的兼容性,所以可以将半导体激光器放置在中央处理单元内,把光纤输出的激光通过树形光纤分路耦合器同时耦合到多根光纤,不同的光纤把激光传递到几个不同的测量位置,对这几个不同位置的气体同时进行测量,从而实现分布式的在线气体监测分析。采用光纤后测量系统的抗电磁干扰能力、适应恶劣环境和防爆环境的能力非常强;整套测量系统的成本大大降低;与传统的气体分析系统相比,配置更加灵活,性价比也更高。

  • 热导式气体传感器应用于氦气泄漏场合检测

    热导式气体传感器应用于氦气泄漏场合检测

    [align=center]在正常室温以及大气压下,氦是一种无色无味的气体。其在空气中的体积含量为5.24×10-6,它是人类发现临界温度最(ZUI)低的物质。氦是重要的工业气体之一,氦气广泛用于军事工业  研究  石化  制冷  医疗  半导体  管道泄漏检测等领域,其具体应用如下:[/align]检验和分析应用:核磁共振分析仪的超导磁体需要使用液氦冷却。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中,氦气通常用作载气,氦气渗透性良好,不易燃,它还能用于真空泄漏检测。用作保护气体:氦气具有非活泼的化学性质,常用于保护镁  锆  铝  钛等金属焊接。在航空航天技术中,氦气可用作卫星、火箭的挤压和姿态控制发动机空气源。[img=,348,310]https://ng1.17img.cn/bbsfiles/images/2019/06/201906051610066391_5463_3422752_3.png!w348x310.jpg[/img]虽然氦气是无毒的,表面上对人体无害,但是大量吸入会引起窒息甚至死亡!这是因为过度吸入窒息会导致人体缺氧,轻者人会感到疲倦,严重的人可能会突然变黑并在眩晕中窒息!因此在使用氦气的环境中必须实时监测氦气的浓度,OFweek Mall推荐使用热导式气体传感器MTCS2601来进行氦气泄露检测。 法国Endetec的热导式气体传感器MTCS2601由基于 MEMS 技术的 4 个 Ni-Pt 电阻组成的微机械的热电导率传感器。此热导式气体传感器安装在小型的 SMD 封装内。同时结合了低功耗 CMOS 标准集成电路,非常适合 OEC厂商的泄漏检测,或者基于帕拉尼原理的真空度检测,需要超低功耗,长寿命和免维护的产品。适用于恶劣环境下初级压力控制,需要功耗和尺寸的限制,或者是气体泄漏或者水分,或者侵入。[b] 法国Endetec热导式气体传感器 MTCS2601特点:[img=,339,295]https://ng1.17img.cn/bbsfiles/images/2019/06/201906051609017071_7955_3422752_3.jpg!w339x295.jpg[/img][/b]MEMS 热导式气体传感器遵循没有化学反应的物理皮拉尼原理,基于气体热导率变化对于压力测量范围:0.0001~1000mbar,卓越的可重复性。硅晶片上有加热电阻,并且有优异的温度补偿。超小的传感器气体体积例如0.1cm3 。

  • 实验室分析仪器--气质联用离子源与质量分析器功能介绍

    离子源的作用是接受样品产生离子,常用的离子化方式有:[b]1、电子轰击离子化(electron impact ionization,EI)[/b]EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。[b]EI特点:[/b](1)电离效率高,能量分散小,结构简单,操作方便。(2)图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。(3)所得分子离子峰不强,有时不能识别。本法不适合于高分子量和热不稳定的化合物。[b]2、化学离子化(chemicalionization,CI)[/b]将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。[b]CI特点[/b](1)不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。(2)分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。(3)场致离子化(fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。[b]4、场解吸离子化( field desorption ionization,FD)[/b] 用于极性大、难气化、对热不稳定的化合物。[b]5、负离子化学离子化(negative ion chemical ionization,NICI)[/b]是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。[b]质量分析器[/b]其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有:[b]1、四极质量分析器(quadrupole analyzer)[/b]原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。[b]2、扇形质量分析器[/b]磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。特点:分辨率低,对质量同、能量不同的离子分辨较困难。[b]3、双聚焦质量分析器(double-focusing massassay)[/b]由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率

  • 关于奥氏气体分析仪介绍

    【简单介绍】1901奥氏气体分析器具有三只吸收瓶,适应工业上分析煤气中的二氧化碳(CO2),一氧化碳(CO),氧(O2),和碳化氢等之用,同时也适应公共卫生工作上测定空气之成份。【详细说明】奥气体分析仪,工业气体分析仪,实验室化验气体分析仪用途: 1901奥氏气体分析器具有三只吸收瓶,适应工业上分析煤气中的二氧化碳(CO2),一氧化碳(CO),氧(O2),和碳化氢等之用,同时也适应公共卫生工作上测定空气之成份。奥气体分析仪,工业气体分析仪,实验室化验气体分析仪特点: 上 海银泽仪器设备有限公司生产的奥氏气体分析器选用优质的玻璃为材料,经灯工工艺精制而成,做工考究,经久耐用,价格低廉。为各行业实验室化验检测气体的最常用的仪器。奥气体分析仪,工业气体分析仪每套包括下列零件:1.气体吸受瓶 3只;2.气体量管连外套 1只;3. 梳形活塞排 1只;4. 250ml水准瓶 1只;5.U形干燥管 1只;6.直形干燥管 1只;7.弯形接管3只;8.木箱及其它配件1套.

  • 常见质量分析器

    [b]质量分析[/b][font=&]其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有:[/font][b]四极质量分析器(quadrupoleanalyzer)[/b][font=&]原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。[/font][b]扇形质量分析器[/b][font=&]磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。[/font][font=&]特点:分辨率低,对质量同、能量不同的离子分辨较困难。[/font][b]双聚焦质量分析器[/b][font=&](double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。[/font]

  • 【求助】求助--奥式气体分析仪的使用

    各位大虾帮忙~~~实验室刚买了个奥式气体分析仪,不知道具体怎么用的。。。主用是如何进气啊,比如说我产生的气体有限,100-200ml在集气瓶中,如何测定气体成分呢?在操作中要注意些什么?请各位指教!不胜感激!另外,我买的是六管气体分析器,那个洗气瓶是怎么用的;仪器有两个量气筒,一个直形,一个双球量气筒,到底用哪个啊?操作起来真的麻烦好多,哪位大侠用过的,能否联系一下呢?

  • 【分享】解读气体分析仪器的现状与发展趋势

    [color=#00FFFF] 这是专家的著作,本人将其拿来供大家学习。[/color]一、不同的气体分析技术比较 1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。 二、DLAS技术简介 聚光科技研发生产的LGA-2000系列激光现场在线气体分析仪是基于DLAS技术开发的现场在线气体分析仪器。 DLAS(DiodeLaserAbsorptionSpectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。 九十年代后,半导体激光器和光纤元件发展迅速,性能大大提高,价格大幅下降,室温工作、长寿命(100,000小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如frequencymodulationspectroscopy、cavityringdownspectroscopy等也逐渐成熟,DLAS技术开始被较多地应用于科学和工程研究,发达国家的一些仪器公司也开始将DLAS技术应用于气体监测。由于DLAS技术较传统光谱检测技术具有显著的技术优势而得到了迅速推广。 FocusedPhotonics,Inc.(FPI)是DLAS技术的主要开发厂商之一,FPI自主开发了拥有完全知识产权的全系列的激光气体分析产品,并广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。 FPI通过聚光科技(杭州)有限公司将该技术引入中国,结合中国各行业的实际需求,开发了LGA-2000系列激光现场在线气体分析仪、LGA-3000系列激光采样在线气体分析仪,并且在钢铁、焦化、石化、电力、环保、航天等行业取得了良好的应用。 三、DLAS技术的特点 DLAS技术的特点主要表现为: 1.恶劣环境适应能力强,无需采样预处理系统,实现现场在线连续测量 激光在线气体分析仪采用DLAS技术独有的“单线光谱”原理,使用非接触式激光测量方法,测量仪器与被测量气体环境隔离,其分析测量不受测量环境中背景气体、粉尘以及环境温度和压力的影响,具有高温、高粉尘、高水份、高腐蚀性、高流速等恶劣测量环境的良好适应性,避免了传统气体分析系统必需的复杂的采样预处理系统,从而实现了现场在线连续测量。 2.克服了背景气体、水分和粉尘的吸收干扰,测量精度大大提高 DLAS独特的“单线光谱”技术、频率扫描技术、谱线展宽自动修正技术克服了背景气体、水分和粉尘的吸收干扰,修正了温度和压力等气体参数变化对气体浓度测量的影响,而且系统直接对现场气体进行测量,气体信息不失真。 相对于传统的气体测量技术,这些独特的测量技术和现场测量方法大大提高了测量的精度。 3.响应速度快,实现工业过程实时在线管理 DLAS技术进行气体分析不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间。系统可以达到毫秒级的响应速度,几乎是实时地反映过程气体浓度及其他参数变化状况,完全可以满足工业过程实时在线管理的需要。 4.可同时检测多种气体参数,能测量分析多种气体,应用面广,仪器发展潜力大 采用DLAS技术可同时在线测量气体的浓度、温度和流速等,并可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,可广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。较以往采用多种检测技术并进行系统集成而言,采用DLAS技术可大大简化仪器的结构,进而实现气体分析仪器的微型化、网络化(远距离数据无线传输)、智能化和自动化。 5.光纤传输特性使系统的应用更加灵活,性价比更高 DLAS技术采用的激光光源与常规光纤有良好的兼容性,所以可以将半导体激光器放置在中央处理单元内,把光纤输出的激光通过树形光纤分路耦合器同时耦合到多根光纤,不同的光纤把激光传递到几个不同的测量位置,对这几个不同位置的气体同时进行测量,从而实现分布式的在线气体监测分析。采用光纤后测量系统的抗电磁干扰能力、适应恶劣环境和防爆环境的能力非常强;整套测量系统的成本大大降低;与传统的气体分析系统相比,配置更加灵活,性价比也更高。

  • 实验分析仪器--质量分析器种类及性能特点分析

    质量分析器是利用电磁场(包括磁场、磁场与电场组合、高频电场、高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子按空间位置、时间先后或运动轨道稳定与否等形式分离的装置。[b]1.质量分析器种类[/b]质量分析器依据不同方式将离子源中生成的样品离子按质荷比m/z的大小分开。质量分析器主要分为:扇形磁场,飞行时间质量分析器,四极杆质量分析器,离子阱,傅里叶变换离子回旋共振分析器。扇形磁场是历史上最早出现的质量分析器,其利用不同质荷比的带电离子在稳定磁场内偏转的半径不同,将离子分开检测。飞行时间质量分析器则是利用不同质荷比的离子经加速电压加速后,飞过一定距离所需的时间不同,即质荷比小的离子飞行速度快,先到达检测器,质荷比大的飞行速度慢则后到,从而获得分离。四极杆、离子阱、傅里叶变换离子回旋共振、轨道阱等质量分析器是利用离子囚禁技术来实现对带电离子的捕获、储存、筛选及分离,即根据离子振动频率的方式来区分。质荷比小的离子,频率较大,质荷比大的离子,频率较小。四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,离子进入后,在交变电场作用下产生振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子有稳定的运动轨迹,能通过四极杆电极到达检测器,其他离子则由于振幅大而撞到极杆上,实现不同质荷比离子的分离检测。离子阱质量分析器由一个环形电极和两个端盖电极组成,当环电极施加射频电压,两个端电极接地时,就会形成一个电势阱,使离子能够长时间地囚禁于阱内,通过调整扫描参数,使离子运动的频率增加,当和外加频率共振时,离子从外场吸收能量、轨迹变大、抛出阱外而被检测。傅里叶变换离子回旋共振(FTICR)质量分析器是根据磁场中离子回旋频率来测量离子质荷比(m/z)。彭宁阱(Penning trap)捕获的离子被垂直于磁场的振荡电场激发形成一个更大的回旋半径,当回旋的离子束接近一对捕集板时,捕集板上会检测到感应电流信号。通过傅里叶变换,可以将这些电流信号转换成质谱信号。轨道阱(orbitrap)质量分析器是近年来发展的一种新型的质量分析器,其是利用作用在纺锤形电极上的静电场将离子束缚,通过测定离子轴向场的谐振运动频率来确定其质荷比。[b]2.质量分析器性能指标[/b]衡量一个质量分析器性能主要有5个指标:质量分析范围、分析速度、传输效率、质量精度和质量分辨率。质量分析范围决定了质量分析器可以分析离子的m/的上下限。通常用Th或u来表示一个离子带一个单位的正电荷,即z=1。分析速度又称扫描速度,用来描述质量分析器分析某段特定质量范围的速度。通常用每秒可以分析的质量单位(u/s)或每毫秒可以分析的质量单位(u/ms)表示。传输效率指的是可以到达检测器和进入质量分析器的离子数目的比值。传输效率包括在分析器的其他部分的离子丢失,如通过质量分析器前和后的电子透镜所丢失的离子。质量精度是指质谱仪测量m/z精确度的描述,它主要是指理论值m/Z理论和测量值m/Z测量值之间的差距。它可以用毫质量单位即mmu来表示,也可以用百万分之一([img=CodeCogsEqn(1).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166392876602.gif[/img])来表示。质量精度在很大程度上与仪器的稳定性和分辨率有关。质量分辨率,或者也可以说是分辨能力。分辨率指的是仪器可以获得两个具有微小质量差别的离子所对应信号的能力。两个质量峰被认为区分的条件是:当使用磁场或离子回旋共振分析器时,两个峰之间的峰谷的强度不高于两峰之间较弱峰强的10%,当使用四极杆、离子阱、TOF时,不高于50%。如果用△m来表示两个具有质量分别为m和m+△m的质谱峰可以被分开的最小质量,则分辨率R的定义为R=m/△m。[table][tr][td][b]项目[/b][/td][td][b]扇形磁场(magnetic)[/b][/td][td][b]飞行时间(TOP)[/b][/td][td][b]四级杆(quadrupole)[/b][/td][td][b]离子阱(ion trap)[/b][/td][td][b]傅里叶变换离子回旋共振(FTICR)[/b][/td][td][b]轨道阱(orbitrap)[/b][/td][/tr][tr][td]质量范围[/td][td]20000Th[/td][td]1000000Th[/td][td]4000Th[/td][td]6000Th[/td][td]30000Th[/td][td]50000Th[/td][/tr][tr][td]分辨率[/td][td]100000[/td][td]5000[/td][td]2000[/td][td]4000[/td][td]500000[/td][td]100000[/td][/tr][tr][td]质量精度[/td][td]10[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166392926197.gif[/img][/td][td]200[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393329357.gif[/img][/td][td]100[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393370078.gif[/img][/td][td]100[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393225800.gif[/img][/td][td]5[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393208659.gif[/img][/td][td]5[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394336945.gif[/img][/td][/tr][tr][td]离子进入方式[/td][td]连续[/td][td]脉冲[/td][td]连续[/td][td]脉冲[/td][td]脉冲[/td][td]脉冲[/td][/tr][tr][td]工作压力[/td][td][img=CodeCogsEqn(20).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394700923.gif[/img]Torr[/td][td][img=CodeCogsEqn(20).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394998738.gif[/img]Torr[/td][td][img=CodeCogsEqn(21).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394184126.gif[/img]Torr[/td][td][img=10的-3.gif]http://www.ewg1990.com/upload/image/20190116/10%E7%9A%84-33576495.gif[/img]Torr[/td][td][img=CodeCogsEqn(22).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395141047.gif[/img]Torr[/td][td][img=CodeCogsEqn(22).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395961052.gif[/img]Torr[/td][/tr][/table]表1常见质量分析器性能参数[b]3.质量分析器的特点及联用[/b]每个质量分析器都有其优缺点。如扇形磁场质量分析器重现性好,能够较快地进行扫描,但在目前出现的小型化质量分析器中,其所占的比重不大,因为如果降低磁场体积和重量将极大地影响磁场的强度,从而大大削弱其分析性能;四极杆质量分析器结构简单,易加工,成本低,但是其分辨率不高,杆体易被污染,维护和装调难度较大;离子阱质量分析器体积小,可在较高压力下(如0.1Pa)工作,能方便地进行级联质谱检测,尤其在质谱仪器小型化研制中具有无可比拟的优势;傅里叶变换离子回旋共振质量分析器具有更高的灵敏度和分辨率,但价格昂贵;飞行时间质量分析器最大的特点是检测离子的质量范围较大,适用于大分子化合物的分析。为了将质量分析器的优势最大化,可以把不同的质量分析器按一定顺序结合来实现仪器的通用性,在同一台质谱仪器上实现多种功能,如四极杆飞行时间质量分析器、离子阱-飞行时间质量分析器、离子阱-傅里叶变换离子回旋共振质量分析器等。质量分析器的联用可以分析由第一级质量分析器筛选出的离子碎裂后的碎片谱图。从筛选出的离子获得的碎片具有时间依赖性,可以在其后的质量分析器观察到。同时这些仪器允许碎裂的离子继续进行下一级的碎裂,形成多级碎片([img=CodeCogsEqn(10).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395559110.gif[/img]),并且被检测到

  • 【质谱比较】质谱质量分析器的类型、区别及特点

    气相离子能够被适当的电场或磁场在空间或时间上按照质荷比的大小进行分离。广义地说,能够将气态离子进行分离分辨的器件就是质量分析器。在质谱仪器中,也使用或研究过多种多样的质量分析器,这里我们就集中对质量分析器做一个认识和探讨。本期主题:质谱质量分析器的类型、区别及特点讨论内容:1、你的仪器质量分析器的类型及主要使用领域是什么?2、你认为各种质量分析器的优点是什么?3、根据应用,我们应该如何来选择适合的质量分析器?...................等等相关的讨论筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇=总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • GC—MS的质量分析器

    用于质谱仪的质量分析器种类很多。GC—MS的质量分析器多用四极杆分析器,也有使用离子阱或飞行时间分析器的。HP5973使用的是四极杆分析器。它由4根棒状镀金陶瓷电极组成。相对两根电极施加电压(vdc,+vrf),另外两根电极施加电压-( vdc,+vrf)。其中Vdc为直流电压,Vrf为射频电压。4个棒状电极组成一个四极电场。  离子从离子源进入四极场后,在场的作用下产生振动,数学计算表明,在保持Vrf/Va。不变的情况下,对应于一个特定的Vrf值,四极场只允许一种质荷比的离子通过,到达检测器被检测。其余离子的振幅不断增大,最后碰到四极杆而被吸收。改变Vrf值,可以使另外质荷比的离子顺序通过四极场实现质量扫描。设置扫描范围实际上是设置Vrf的变化范围。当vrf由一个值变化到另一个值时,检测器检测到的离子就会从m1变化到m2,也即得到一个m1到m2的质谱。该质谱被送到计算机储存。Vrf的变化速度是可调的,因此可以人为地设置一次扫描所用的时间(即扫描时间)。

  • Agilent 5975 MSD质量分析器腔体

    Agilent 5975 MSD质量分析器腔体怎么打开的,我想换装色谱柱。放空阀已经放空,指螺旋按钮松开的。说下步骤,新手啊!

  • 气质联用仪在气体分析中的应用

    [font=微软雅黑][font=微软雅黑]随着气体制造和应用技术的不断发展进步,对于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]器分析方法也提出了相当高要求,也就是电子工业中标准气体对于气体纯度要求越来越高,气体的组成部分也非常复杂,一般分析很难达到衡量杂志要求标准。近年来技术发展迅速,分析具有一定灵敏度,样品量、分析速度加快、分离和鉴定也有很多有点,技术应用范围也在涉及到了化学、化工、环境和能源等很多领域,同时还有储粮糙米和稻谷释放气体方面也有很多研究课题。[/font] [/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]1 气体联用仪的工作原理 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  混合物样品经过色谱柱分离进入质谱仪离子,在离子源被电离成为离子时,离子经过质量分析器和检测器成为质谱信号输入计算机,样品由色谱柱不断流入到离子源里,离子由离子源质量分析器然后设定好分析器质量范围,计算并采集到质谱。这样计算机就可以自动将每一个质谱中离子强度相加,显示出总体离子强度,随着时间变化曲线中总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图形状和一般色谱图能够相互一致,这样就是质谱检测器的色谱图。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  质谱仪扫描方式一般有两种,全扫描和选择离子扫描,前者是制定质量范围中离子扫描记录,能够最终得到一个正常的质谱图,也就是质谱图提供未知图。另一个就是选择离子检测,只针对选定离子进行检测,离子不被记录,最大优点就是对于离子进行选择性检测,对于不相关离子统统都被排挤在外,后者的检测灵敏度比较高,是普通的一百倍,但是缺点就是不能得到非常完整的质谱图,所以不能用来对于未知物的定性分析使用,它的主要用途是定量分析,可以把全扫描方式出的复杂色谱图变简单,消除造成干扰的因素,对于被测部分影响可以降低主峰,一般都采用切割技术,或者使用气路相对比较复杂的技术,通过离子选择技术来避开主体。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]2 对于进样方法的选择 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  由于分析样品比较复杂,所以对于气体和液体样品来说,气体进样通常都使用六通进样方法,液体取样一般采用的是注射方法,但是对于液化气体就比较麻烦,因为压力比较高,所以采用注射方法,这样就可以使得仪器适用于检测不同的样品。色谱分离和质谱数据采集同时进行,使得每一个分组得到分离鉴定,设置合适的色谱和质谱分析方法,色谱条件包括色谱柱、固定液化、气化温度和温升程序等,设置原则是一般情况使用毛细管,非极性样品采用级毛细管柱,使用后再进行调整,质谱条件包括电离和电子电流等方面内容,一般都是根据样品情况进行设定,保护灯丝,设定质谱条件后还要进行溶剂去除,通过离子源打开灯丝。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]3 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]在糙米和稻谷释放气体中应用 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]凭借[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]选择性和质量分析器灵敏性广泛被应用于农业与粮食行业中,对于离子源选择、进样技术选择、质量分析器选择等方面都使用质量分析器。对于不同的温度和湿度条件储藏稻谷进行微生物活动监测,实验结果可以看出,稻谷在[/font][font=微软雅黑]30℃,湿度在70%~80%度之间,微生物活动水平相对比较低,当储藏环境湿度超过80%时,就会影响到稻谷和糙米表面微生物,粮层湿度会扩散。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]是一种很有效的分离分析方法,定性方面存在很多弊端问题,就是在残留分析方面,质谱仪定性上有非常重要作用,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]能够提供可信的定性信息,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和多级质谱的选择性,可以消除基质影响,广泛应用于水稻杀虫剂、除草剂、杀菌剂和稻谷熏蒸剂中,各种药剂之间不同物理特性,也会受到一定条件影响,检测仪器,样品制备方法等都受到不同选择,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]是常用灵敏检测手段,已经成为药剂残留检测重要的技术手段,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]现在有不少科研人员都在使用。 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]4 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]质量分析器选择 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]一般有四级杆,主要就是飞行时间和扇形磁场检测器,单独的四级,只是用来分析器扫描工作,适合于分析小分子和多电荷大分子,该质量法分辨仪器保留时间接近,质量相差几个数量,因而影响测定结果准确性。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]常常会出现基质效应问题,可以诱导相同浓度的药剂在基质溶液中的色谱值数据,就会造成溶剂标准计算含量变化,基质诱导效用就会成为假阳性结果,使得挥发组沉淀物质和热变形基质对于色谱柱的污染会造成很多影响,可以减少难挥发化合物和不稳定化合物抑制基质诱导方法。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  对稻谷和糙米等储粮品种的储藏安全进行研究,在实践中主要难点问题就是相同温度条件,稻谷和糙米本身会发生很多生物化学变化,同时也会导致品质变化,另外就是霉菌会使得稻谷和糙米品质劣变,最主要因素就是湿度过大,就容易导致霉菌产生,对于稻谷和糙米呼吸作用总体来说储藏结构与原理,受到环境、气候和通风条件限制,粮仓温度和湿度会发生变化,非常容易造成粮食发霉情况,针对这一问题,可以选用智能化多参数粮情检测方法,把粮食储存情况做智能记录,使得整个系统都能够正常运转。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]5 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]的改进方法 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]适用于分析非极性和挥发性成分,对于极性和非挥发性稳定性较差的,氨基甲酸酯类农药极性热不稳定农药,这类检测一般都使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url],某些有机磷农药也属于极性农药,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]测定经常会导致回收率低现象发生,就限制了[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]色谱仪检测灵敏度应用范围,对于挥发性不稳定性农药有很多突破。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  利用两个色谱保持真空状态下,连接分析色谱柱和进样口,保持常压状态下,使用传统分析方法拖尾柱药剂改善峰形,提高药剂检测限,然后影响到色谱柱分离能力,分离同分异构体上,使得这些分异构体有很低的分辨率,优化条件实现快速和高灵敏特点。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]  [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和四级杆、离子飞行时间质量分析仪器都已经广泛被应用,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联实验室分析最常见和最熟悉的检测方法,就是许多标准谱库使定性简单,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]在低压条件下结合很多技术是[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]未来发展趋势。色谱柱的安装应该严格按照说明进行操作,切割时候应该使用专用陶瓷技术,割面要平整,对于不同规格毛细管柱要选用不同石墨,还要多注意端口和质谱不能混合,对于仪器公司提供的工具要进行专门工具比对,一般可以使用接质谱前先开机方式,看看是否有气泡溢出等,防止造成固定液被氧化流失而损坏色谱柱。另外对[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]要及时进行改进,对于极性和非挥发性不稳定组分要进行氨基甲酸酯农药检测工作。[/font][font=微软雅黑] [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑][font=微软雅黑]6 结论 [/font][/font][font=Arial][color=#808080][/color][/font][font=微软雅黑]  质谱法可以有效定性分析很多复杂有机化合物,不论是对于储粮稻谷还是糙米释放出气体,都能很好分离和分析出方法,特别是适合于进行有机化合物定量分析,但是一般的定性分析比较困难,这两者有效结合必将会为化学家和生物学家提供一个先进的复杂有机化合物处理器,可以成为一种很好定性和定量分析出样品的工具。也可以将两种方法进行相互结合,使用联用技术将[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和质谱联合起来,也就是[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url],被广泛应用于分离和鉴定各种物质,具有高度灵敏度和分辨率,生物样品药物和代谢物定量也具有一定工具效能。[/font]

  • 【在线分析仪器知识普及】在线分析仪…顺磁氧篇…概论与热磁氧(收集)

    顺带说明一下:本资料无个人发明,都是书上和个人工作中的一点体会,用于分析工的个人技能培训用的。顺磁式氧分析仪第一节:简述顺磁式氧分析器:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。

  • 潜水装备氦气检测中热导式气体传感器的使用

    [align=center][/align]我们生活的大陆一直被海洋包围,人类从未停止过探索海洋。各种潜水活动从未停止过,从浅水潜水到氧气瓶深海潜水,一些深海域海需要大型潜水艇才能到达,海洋的秘密总是那么多!关于潜水用到的气体其实有很多,比如氢气  氮气  氧气  氦气等。其中,氦气潜水被世界各地的潜水爱好者广泛使用。大家为什么要使用氦气潜水呢?下面工采网简单介绍一下吧!1924年,美国海军和美国矿业局联合发起了一系列关于氦 - 氧混合物的研究实验。他们最初的测试工作是证明呼吸氧混合物对测试动物或人类没有负面影响,但也缩短了潜水的减压时间。潜水员使用氦 - 氧混合物注意到的主要生理反应是氦气的高导热性导致冷感的显著增加 当人们说话时,呼吸气体密度的降低会导致音高变得更高,就像唐老鸭一样。这些实验清楚地表明,与空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]比,氦 - 氧混合物在大深度潜水中具有更大的优势。众所周知,当我们在陆地上时,接触的氧气大约是0.21个大气压,但是海水的密度很高。当我们潜水时,我们需要承受比陆地更多的压力。在100英尺的水深处,我们需要面对大气压力的3至4倍,并且当它达到300英尺时需要10倍。此时,潜水员的耳朵和肺部将承受很大的压力。如果不采取措施,将导致耳鸣,甚至耳聋,同时,也会导致胸闷、呼吸困难、昏迷!这时,如果你仍然使用正常压强的空气,这是非常危险的。这时,氦气的优势非常突出!使用高压氦氧混合物可以帮助潜水员更好地适应深海压力,氦氧混合物的密度更小,使潜水员更容易吸入。氦潜水的一个优点是潜水员可以方便地呼吸!氦潜水能有效减少潜水病的发生,同时增加潜水深度和减少安全减压的时间。不过工采网提醒大家需要注意的是:氦潜水的使用需要专业的指导,氦-氧或氮氧混合物的比例需要非常精确,哪怕小部分不平衡也会造成很大的伤害!因此需要对氦气进行浓度检测,保证其浓度在一个标准值上,可以使用热导式气体传感器MTCS2601:[b]法国Endetec 热导式气体传感器 - MTCS2601[/b]MTCS2601 传感器由基于 MEMS 技术的 4 个 Ni-Pt 电阻组成的微机械的热电导率传感器。此传感器安装在小型的 SMD 封装内。适用于恶劣环境下初级压力控制,需要功耗和尺寸的限制,或者是气体泄漏或者水分,或者侵入。

  • 【原创】红外线气体分析仪的特点

    1、能测量多种气体 除了单原子的惰性气体和具有对称结构无极性的双原子分子气体外,CO、CO2、NO、NO2、NH3等无机物、CH4、C2H4等烷烃、烯烃和其他烃类及有机物都可用红外分析器进行测量;2、测量范围宽 可分析气体的上限达100%,下限达几个ppm的浓度。进行精细化处理后,还可以进行痕量分析;3、灵敏度高 具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来;4、测量精度高 一般都在+/-2%FS,不少产品达到+/-1%FS。与其他分析手段相比,它的精度较高且稳定性好;5、反应快 响应时间一般在10S以内6、有良好的选择性 红外分析器有很高的选择性系数,因此它特别适合于对多组分混合气体中某一待分析组分的测量,而且当混合气体中一种或几种组分的浓度发生变化时,并不影响对待分析组分的测量。

  • 【讨论】奥式气体分析仪中吸收液都怎么配制

    奥式气体分析仪中氧气吸收液有没有人知道它的配制方法,我在网上查到两种配制方法,不知哪一种比较合理,请大家给一些建议: 1、称取焦性没食子酸15克,溶于45ml蒸馏水中,另外称取144克氢氧化钾溶于96ml水中,冷却后将两溶液混合,装入奥氏气体分析器的吸收瓶中加数毫升液体石腊成一封闭层。 2、取焦性没食子酸30克于第一个烧杯中,加70毫升蒸馏水,搅拌溶解,定容于100毫升;另取30克氢氧化钾或氢氧化钠于第二个烧杯中,加70毫升蒸馏水中,定容于100毫升;冷却后将两种溶液混合在一起,即可使用。 另外的一些吸收液的配制方法我没有查到,不知道哪位仁兄知道,告诉一下,不胜感激。

  • 质量分析器问题

    有专家能浅显解释一下这些质量分析器的原理和应用吗,Q和QQQ不用解释,特别是线性离子阱和静电场轨道阱构造,原理,能力有什么区别?[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2021/11/202111272149517123_9616_3485549_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制