当前位置: 仪器信息网 > 行业主题 > >

金属化学元素分析

仪器信息网金属化学元素分析专题为您提供2024年最新金属化学元素分析价格报价、厂家品牌的相关信息, 包括金属化学元素分析参数、型号等,不管是国产,还是进口品牌的金属化学元素分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属化学元素分析相关的耗材配件、试剂标物,还有金属化学元素分析相关的最新资讯、资料,以及金属化学元素分析相关的解决方案。

金属化学元素分析相关的资讯

  • 天瑞仪器成功协办有色金属化学元素分析检测技术交流会
    为了进一步促进推进我国有色金属化学元素分析检测技术进展与产业升级,促进应用范围的不断加深与扩大,切实解决当前本领域内关注的热点、焦点和难点问题;3月29日—3月31日,由中冶有色技术平台、中冶有色技术网主办,江苏天瑞仪器股份有限公司(以下简称天瑞仪器)协办的“有色金属化学元素分析检测技术交流会”(以下简称交流会)在昆山成功举行。会议邀请了行业知名专家学者、科研院所、检验认证机构及有色金属领域相关代表、设备及技术解决方案供应商代表,就国家相关政策和学术研究进展、工程应用实例做了专题报告。会议开始,天瑞仪器董事长刘召贵博士致开幕辞,欢迎前来参会的老师及专家,并预祝本次会议圆满成功。天瑞仪器董事长刘召贵博士致开幕词会议现场座无虚席天瑞仪器顾问余正东作报告作为国内化学分析行业的领航者,拥有多年累积的分析测试仪器的技术和实力,产品广泛应用于有色金属行业中的地质考察、矿产、冶炼、加工、实验室研究、生产制造等环节。作为此次会议的协办方,还特地安排了专家学者们来公司参观考察,天瑞仪器总经理应刚热情的接待了考察团一行。天瑞仪器总经理应刚讲解仪器使用情况考察团参观多功能展厅考察团参观化学分析实验室考察团参观机加中心考察团一行先后参观了天瑞仪器多媒体展厅、化学分析实验室以及天瑞仪器的机械加工中心。参观学习后, 专家学者们对我公司的热情接待表示诚挚感谢,对天瑞仪器在检测方面的相关产品及技术实力表示充分的肯定。 相信通过此次会议能够加强有色行业内的技术交流,同时也为有色金属行业发展带来新的思路与机遇。未来,天瑞仪器将继续发展和巩固核心技术,为促进我国有色金属分析测试技术的快速发展,提高金属分析检测结果的准确性和可靠性贡献科技力量。
  • 第114号化学元素再次被实验确认
    德国美因茨大学6月25日报告说,一个国际研究小组在德国重离子研究中心通过实验再次确认了第114号化学元素。  在为期4周的实验中,科学家在120米长的粒子加速器内用钙离子轰击涂有钚涂层的薄箔,共制造出了13个第114号化学元素的原子。虽然数量看上去并不多,但这已是目前世界上第114号化学元素合成效率最高的实验了。科学家在实验中还鉴定出了第114号化学元素质量数分别为288和289的两种同位素,其半衰期大约为一秒。  在有关实验中,科学家使用了近年来开发的复杂测量设备“超锕系元素分离器和化学仪器”(TASCA)。这一设备能很有选择性地将第114号化学元素的原子从加速器其他反应产物中分离出来,并将其移入一个特殊的半导体检波器中。通过测量元素衰变时的辐射即可准确鉴定出第114号化学元素的原子。  德国科学家说,TASCA装置是世上现有效率最高的验证加速器中超重元素的设备。它将帮助科学家在未来实验中对第114号元素附近的超重元素进行化学检验,以便在化学元素周期表中为这些元素正确定位。科学家还希望TASCA能帮助他们发现第118号化学元素之后的新元素。  第114号化学元素是俄罗斯杜布纳核研究所的科学家于10多年前首次合成并确认的。其后美国科学家也制造出了两个该元素的原子。但该元素迄今尚未得到国际纯粹与应用化学联合会的正式承认。
  • 中标国外76种化学元素检测任务,武汉质检机构拿到2000万“大单”
    中标国外76种化学元素检测任务,武汉质检机构拿到2000万“大单”。近日获悉,湖北省地质实验测试中心(湖北省土地资源产品质量检验检测中心)成功中标沙特阿拉伯地盾水系沉积物样品测试任务,合同额2282万元。该任务来源于中国地质调查局2020年中标沙特阿拉伯地盾水系沉积物及重砂样品高精度地球化学勘查项目,项目总金额3.75亿元人民币,实施工作周期6年。根据合同约定,中国地质调查局将在沙特阿拉伯地盾区54万平方千米内开展区域地球化学调查,采用高精度仪器分析获得样品中76种化学元素高质量数据,并依此圈定一批找矿靶区,为沙特阿拉伯地盾区成矿潜力和远景评价提供地球化学依据,助力实现找矿突破。由于该项目需要分析76种化学元素,在国内尚无相应的配套检测方案,该中心组织一支以博士、硕士为主要成员的高层次课题攻坚小组,历时一年多时间,制定出国内首个水系沉积物样品76元素检测分析配套方案,并在中国地质调查局组织的能力考核中以可靠的数据质量、及时的分析效率、优质的服务水平取得最好成绩,最终获得该项目第一阶段全部样品测试合同。据悉,湖北省地质实验测试中心在市区两级市场监管部门的专业指导和大力支持下,2020年获批筹建省级质检中心“湖北省土地资源产品质量检验检测中心”,于2022年建成验收,该中心多次在国际国内市场拿到大额合同。多年来,该中心一直坚持围绕战略性矿产加强技术攻关,以技术创新引领标准高地,主持参与起草国家及行业标准76项,研制国家一级标准物质61种,其中“关键金属元素标准方法研究及矿石成分分析标准物质研制”成果荣获湖北省科技进步一等奖。这些标准涵盖了土壤、沉积物、岩石等不同类别样品中76项元素分析方法及相关分析测试质量控制体系,已在国内外地质、环保、农业、冶金等领域实验室广泛应用;并参与完成湖北省重点行业企业用地污染调查项目测试工作,以及国家地下水监测工程、长江流域国家地下水环境监测、湖北省地下水监测等一批重点水土污染检测项目,为绘好流域综合治理“地质地图”提供权威数据支撑。
  • 第112号化学元素正式得名“Copernicium”
    第112号化学元素正式得名“Copernicium”   德国重离子研究中心2月19日宣布,经国际纯粹与应用化学联合会确认,由该中心人工合成的第112号化学元素从即日起获正式名称“Copernicium”,相应的元素符号为“Cn”。  为纪念著名天文学家哥白尼(Nicolaus Copernicus),德国重离子研究中心于去年7月向国际纯粹与应用化学联合会提出了上述命名建议,但当时该中心建议新元素的元素符号为“Cp”。由于“Cp”已有其他科学含义,为避免歧义,国际纯粹与应用化学联合会经与发现第112号化学元素的研究小组协商,最终将新元素的元素符号定为“Cn”。该联合会选择2月19日为新元素正式冠名是因为这一天是哥白尼(1473年—1543年)的生日。第112号元素的名称是为了纪念著名天文学家哥白尼  德国重离子研究中心于1996年在粒子加速器中用锌离子轰击铅靶首次成功合成了第112号化学元素的一个原子,2002年重复相同的实验又制造出一个第112号化学元素的原子。此后,日本的一个研究机构于2004年也合成了这种元素的两个原子,从而证实德国科学家的发现。  新元素原子质量约为氢原子质量的277倍,是得到国际纯粹与应用化学联合会正式承认的最重的元素。
  • 118名青年化学家“代言”118个化学元素 有你认识的吗
    根据中国化学会网站消息,为庆祝2019联合国“国际化学元素周期表年”(IYPT2019),传播元素及化学知识,展示当代青年化学家风貌,中国化学会面向会员遴选118名青年化学家,作为118个化学元素的“代言人”,组成“中国青年化学家元素周期表”。  征集对象要求年龄在40周岁及以下,相对独立从事科学研究的中国化学会个人会员,优先考虑科研的独立性和研究方向的独有特色。  5月30日是全国科技工作者日,“中国青年化学家元素周期表”也正式亮相!  据悉,在刚刚过去的全国科技周期间,118名元素代言人已经出现在中国化学会在时尚街区-北京三里屯太古里举办的“碳氮氧氟氖点亮三里屯”主题灯展了。接下来,他们还将走进中国科学技术馆,在暑期举办的“律动世界”化学元素周期表主题展览上与公众见面,介绍118个元素的小知识。中国化学会官方微信也将陆续推出“青年化学家:我为元素代言”专题,讲述代言人和元素的故事…   详细名单如下:原子序数元素名称元素符号英文名代言人代言人单位1氢Hhydrogen李阔北京高压科学研究中心2氦Hehelium孔学谦浙江大学3锂Lilithium郭少华南京大学4铍Beberyllium刘洪涛中国科学院上海应用物理研究所5硼Bboron刘超中国科学院兰州化学物理研究所6碳Ccarbon彭海琳北京大学7氮Nnitrogen吕华北京大学8氧Ooxygen田振玉中国科学院工程热物理研究所9氟Ffluorine程义云华东师范大学10氖Neneon刘俊中国科学院长春应用化学研究所11钠Nasodium余彦中国科学技术大学12镁Mgmagnesium杨东旭兰州大学13铝Alaluminum骆智训中国科学院化学研究所14硅Sisilicon陈雨中国科学院上海硅酸盐研究所15磷Pphosphorus陈永湘清华大学16硫Ssulfur翟天佑华中科技大学17氯Clchlorine何凤南方科技大学18氩Arargon王熙北京交通大学19钾Kpotassium关冰涛南开大学20钙Cacalcium赵倩香港理工大学21钪Scscandium黄闻亮北京大学22钛Tititanium张磊中国科学院福建物质结构研究所23钒Vvanadium朱凯哈尔滨工程大学24铬Crchromium肖雪广东药科大学25锰Mnmanganese王从洋中国科学院化学研究所26铁Feiron崔基炜山东大学27钴Cocobalt刘强清华大学28镍Ninickel陈昶乐中国科学技术大学29铜Cucopper殷亮中国科学院上海有机化学研究所30锌Znzinc李路吉林大学31镓Gagallium付磊武汉大学32锗Gegermanium肖斌中国科学技术大学33砷Asarsenic侯旭厦门大学34硒Seselenium赵晓丹中山大学35溴Brbromine李栋湖北工业大学36氪Krkrypton何晓华东师范大学37铷Rbrubidium张如范清华大学38锶Srstrontium吴思中国科学技术大学39钇Yyttrium赵永生中国科学院化学研究所40锆Zrzirconium江海龙中国科学技术大学41铌Nbniobium毕研峰辽宁石油化工大学42钼MoMolybdenum宗利利厦门大学43锝Tctechnetium肖成梁浙江大学44钌Ruruthenium左小磊上海交通大学45铑Rhrhodium刘武昆南京中医药大学46钯Pdpalladium熊宇杰中国科学技术大学47银Agsilver陆奇清华大学48镉CdCadmium付海燕中南民族大学49铟Inindium沈志良南京工业大学50锡Sntin赵爱迪中国科学技术大学51锑Sbantimony崔树勋西南交通大学52碲Tetellurium何刚西安交通大学53碘Iiodine周欢萍北京大学54氙Xexenon苗军舰上海海洋大学55铯Cscaesium郭鹏飞太原理工大学56钡Babarium黄小青苏州大学57镧Lalanthanum刘凯中国科学院长春应用化学研究所58铈Cecerium王阳刚南方科技大学59镨Prpraseodymium胡淑贤北京计算科学研究中心60钕Ndneodymium段培高西安交通大学61钷Pmpromethium李恩泽山西大学62钐Smsamarium王保力中国科学院长春应用化学研究所63铕Eueuropium夏志国华南理工大学64钆Gdgadolinium蒋尚达北京大学65铽Tbterbium张闽华东师范大学66镝Dydysprosium孙豪岭北京师范大学67钬Hoholmium王明吉林大学68铒Ererbium朱权四川大学69铥Tmthulium邢星西北工业大学70镱Ybytterbium任同祥中国计量科学研究院71镥Lulutetium鲁照永南开大学72铪Hfhafnium李智上海科技大学73钽Tatantalum蓝宇重庆大学74钨Wtungsten张克伟青岛大学75铼Rerhenium房大维辽宁大学76锇Ososmium胡君北京化工大学77铱Iriridium杨秀晗陶氏化学中国投资有限公司78铂Ptplatinum李剑锋厦门大学79金Augold祝艳南京大学80汞Hgmercury李春艳湘潭大学81铊Tlthallium黄又举中国科学院宁波材料技术与工程研究所82铅Pblead张闯中国科学院化学研究所83铋Bibismuth朱楠大连理工大学84钋Popolonium陈填烽暨南大学85砹Atastatine齐国栋中国科学院武汉物理与数学研究所86氡Rnradon章炜东南大学87钫Frfrancium刘文博四川大学88镭Raradium宋振雷四川大学89锕Acactinium谭小丽华北电力大学90钍Ththorium第五娟苏州大学91镤Paprotactinium宋宏涛中国工程物理研究院核物理与化学研究所92铀Uuranium袁立永中国科学院高能物理研究所93镎Npneptunium梅雷中国科学院高能物理研究所94钚Puplutonium王殳凹苏州大学95镅Amamericium徐超清华大学96锔Cmcurium庄小东上海交通大学97锫Bkberkelium朱晨苏州大学98锎Cfcalifornium张志鹏华东理工大学99锿Eseinsteinium张成潘武汉理工大学100镄Fmfermium孙其君中国科学院北京纳米能源与系统研究所101钔Mdmendelevium王瑞兵澳门大学102锘Nonobelium赵瑞瑞华南师范大学103铹Lrlawrencium周永宁复旦大学104钅卢Rfrutherfordium赖跃坤福州大学/苏州大学105钅杜Dbdubnium朱挺中南大学106钅喜Sgseaborgium胡憾石清华大学107钅波Bhbohrium杨友华东理工大学108钅黑Hshassium于洋北京理工大学109钅麦Mtmeitnerium王晓武中国科学院青岛生物能源与过程研究所110钅达Dsdarmstadtium李凯深圳大学111钅仑Rgroentgenium王家钧哈尔滨工业大学112钅哥Cncopernicium王成亮华中科技大学113钅尔Nhnihonium李鹏飞西安交通大学114钅夫Flflerovium史壮志南京大学115镆Mcmoscovium李林南京工业大学116钅立Lvlivermorium周永全中国科学院青海盐湖研究所117石田Tstennessine高兴发江西师范大学118气奥Ogoganesson白硕中国科学院过程工程研究所
  • 【时事新闻】赛默飞推出新型XRF分析仪 令金属化学分析更快更简便
    2015年9月21日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)针对金属加工、材料可靠性鉴别和金属废料行业等领域,正式推出Thermo ScientificTM NitonTM XL5 分析仪,用以评估金属材料的化学组分。与当今市场上的任何一款 X 射线荧光(XRF)合金分析仪相比,此分析仪更为小巧轻便,无论是管理层还是操作员抑或是质控人员均可便捷使用。Thermo Scientific Niton XL5 分析仪Niton XL5 分析仪专为在短时间内提供高度准确的结果而量身打造。整个分析仪仅重1.3千克,结构紧凑,操作员可使用其接近难以触及的区域,实现检测范围最大化,减轻用户疲劳,提供极低检测限(LOD)。此分析仪还有其他特色之处,包括配有一台电子信息处理机,供实时结果显示;还提供热插拔电池和旅行充电器,用于提高操作员现场工作效率。赛默飞世尔科技便携式分析仪的副总裁/总经理 Howard Kopech 表示说道:“金属化学性质的精确质控测试正变得越来越重要,尤其是在快速发展的金属加工市场。为了在提供强有力的解决方案,帮助客户提高质保/质控水平和分析性能的同时,增强用户信心,提高用户生产力,我们设计出了 Niton XL5 分析仪。”Niton XL5 分析仪采用蓝牙和 GPS 连接技术,提高了通讯能力。当分析仪被安装在测试架上时,Thermo Scientific NitonConnect 个人电脑辅助软件可轻松实现数据传输并提供远程查看功能。Thermo Scientific Niton XL5 分析仪还具有以下优势:- 新款高效 5W X 射线管,提高轻元素检测能力;- 微观和宏观相机,提高数据采集效率;- 可为不同应用提前创建可定制模式;- 全新用户界面和显示屏,其中包括具有滑动功能的触摸屏;- 针对恶劣环境,提高防护等级。Niton XL5 分析仪是 Thermo Scientific 手持式 XRF 分析仪系列产品中的一员分析仪系列产品的组成部分,Thermo Scientific 手持式 XRF 分析仪系列产品还包括现有的 Niton XL2 和 Niton XL3 系列。此外,新型 Thermo Scientific Niton XL2 100G是此系列产品的补充,向客户实时提供可靠的鉴定结果。欲了解有关 Thermo Scientific Niton XL5 手持式分析仪的更多信息,请访问:www.thermoscientific.com/XL5 。-------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛 默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com
  • 第117号化学元素正式获官方命名 元素周期表符号为Ts
    美国橡树岭国家实验室(ORNL)官网11月30日发布新闻公告称,国际纯粹与应用化学联合会(IUPAC)正式批准将117号化学元素命名为“Tennessee”,以表彰位于田纳西州的橡树岭国家实验室、范德堡大学和田纳西大学在该元素发现中作出的贡献。其在元素周期表中的符号为Ts,从此117号元素不再只有代号。  117号元素2010年首次被科学家发现,2015年12月30日,IUPAC和国际纯粹与应用物理联合会联名宣布,已经通过实验证实了这一元素的存在,随后ORNL提出以田纳西州命名的建议,历时一年才得以正式批准。  117号元素作为一种超重元素在自然界中并不存在,是科学家们通过钙-48原子轰击同位素锫-249人工合成的,而合成所需的锫-249,全世界只有ORNL的高通量同位素反应堆能够生成。ORNL为俄罗斯杜布纳联合核研究所提供了22毫克锫-249,经过6个月实验最后生成了6个Ts原子并获得了证实。  官方同意用“Tennessee”为117号元素命名还有一个原因,该元素在周期表中属于卤族元素,卤族元素在周期表中的英文名称都是以-ine结尾,比如氟为“Fluorine”、氯为“Chlorine”,这样可保持卤族元素名称的一致性。  田纳西州州长比尔哈斯拉姆和ORNL主任托姆梅森分别发表声明。梅森表示,田纳西出现在元素周期表中证明了田纳西州在国际科学界的地位。哈斯拉姆代表所有田纳西州人民对获得这一荣耀表示感谢。
  • 谁的青春没有一张元素周期表?化学元素周期表150岁生日,各种炫酷周期表盘点
    pstrong--化学元素周期表150岁生日,联合国、Nature、Science等都在为其庆祝!/strong/pp  今年是门捷列夫发现周期表的150周年,也是IUPAC成立的100周年。联合国大会于2017年决定将今年定为“化学元素周期表国际年”(IYPT2019),以表彰化学元素周期表的重要性。今年会有很多活动来庆祝元素周期表150岁的生日。那大家印象中的元素周期表都是什么样的?大家都见过哪些元素周期表呢?盘点了下各式各样炫酷的元素周期表。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/6f39b81f-9fd9-4442-be96-0415ce3bd0e4.jpg" title="1.jpg" alt="1.jpg" width="585" height="248" style="width: 585px height: 248px "//pp  2017年12月20日,联合国大会宣布将2019年定为“化学元素周期表国际年”(IYPT2019),以表彰化学元素周期表的重要性。2019年是门捷列夫发现周期表的150周年,也是IUPAC成立的100周年。 联合国大会表示,“化学元素周期表是现代科学领域最重要和最具影响力的成果之一,不仅反映了化学的本质,也反映了物理学、生物学和其他基础科学学科的本质”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/b66a5f4e-b1f6-4afd-9404-ca08e2e484ae.jpg" title="2.jpg" alt="2.jpg" width="619" height="262" style="width: 619px height: 262px "//pp style="text-align: center "门捷列夫的周期表/pp  2019年1月29日,联合国教科文组织于巴黎举行的“化学元素周期表国际年”(IYPT2019)启动仪式,仪式上教科文组织总干事阿祖莱与俄罗斯科学和高等教育部部长戈图科夫(Mikhail Kotyukov)、法国科学院院长科尔沃(Pierre Corvol)以及2016年诺贝尔化学奖得主费林加(Ben Feringa)等贵宾一同为国际年庆祝活动揭幕。/pp以下是各类元素周期表盘点:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d25fb8ae-1f83-417f-aae5-af7713343143.jpg" title="10.jpg" alt="10.jpg" width="576" height="442" style="width: 576px height: 442px "//pp style="text-align: center "NIST 标准版元素周期表/pp style="text-align: justify text-indent: 2em "这张应该是目前最新最标准的元素周期表了,由美国国家标准与技术研究院发布。最后更新时间为2017年2月./pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d7a978e3-3e38-4b89-a843-6ad1eefde2d6.jpg" title="11.jpg" alt="11.jpg" width="565" height="328" style="width: 565px height: 328px "//pp style="text-align: center "strongIUPAC版 元素周期表/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/aac00d83-8dec-4b6a-8951-d6aa928c8e32.jpg" title="12.jpg" alt="12.jpg"//pp style="text-align: center "人教版 元素周期表/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/2043c8e3-5792-4163-ae7a-8a018ee755b6.jpg" title="13.jpg" alt="13.jpg" width="618" height="443" style="width: 618px height: 443px "//pp style="text-align: center "span style="text-align: center "立体版 元素周期表/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/9d561ec3-06d9-4169-afea-231dd4a94148.jpg" title="21.jpg" alt="21.jpg"//pp style="text-align: center "图标版 元素周期表/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/1e0067a1-a79e-4e63-857f-44c7480d7c0d.jpg" title="28.jpg" alt="28.jpg" width="573" height="407" style="width: 573px height: 407px "//pp style="text-align: center "原子轨道版 元素周期表/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/8adb6732-5bd4-4c14-88ab-0656a4894846.jpg" title="42.jpg" alt="42.jpg"//pp style="text-align: center "科学趣闻:世界上最大的元素周期表/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/5d925c66-2d39-4731-b297-02d124250e88.jpg" title="微信图片_20190201151120.jpg" alt="微信图片_20190201151120.jpg"//pp style="text-align: center "WIFI 版 元素周期表/pp 是否勾起了你中学时的回忆?欢迎网友投稿发送你们喜欢的元素周期表给小编。邮箱:liuld@instrument.com.cn/p
  • 魔性洗脑:化学元素之歌
    p style="text-align: center "但凡我上学时候有这么魔性的元素之歌,化学肯定及格了。/pp style="text-align: center "点击下方查看视频/pscript src="https://p.bokecc.com/player?vid=A7988ACBBF7C745B9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script
  • 元素小百科丨上天下海,这种金属“钛”强了 ​
    钛金属日益被人们重视,被誉为“现代金属”和“战略金属”,是提高国防装备水平不可或缺的重要战略物资,由于钛具有熔点高、比重小、耐腐蚀、导热系数低、高低温度耐受性能好、在急冷急热条件下应力小等特点,其商业价值在二十世纪五十年代被人们认识,被应用于航空、航天、化工、石油、电力等高科技领域。 元素特征 钛是一种化学元素,化学符号Ti,原子序数22,在化学元素周期表中位于第4周期、第IVB族。是一种银白色的过渡金属,其特征为重量轻、强度高、具金属光泽,耐湿氯气腐蚀。钛的密度为4.54g/立方厘米,比钢轻43% ,比久负盛名的轻金属镁稍重一些。机械强度却与钢相差不多,比铝大两倍,比镁大五倍。钛耐高温,熔点1942K,比黄金高近1000K ,比钢高近500K。液态钛几乎能溶解所有的金属,因此可以和多种金属形成合金。钛加入钢中制得的钛钢坚韧而富有弹性。钛与金属Al、Sb、Be、Cr、Fe等生成填隙式化合物或金属间化合物。 钛元素的发现 (图片来源网络,如有侵权请联系我们删除)钛最早的发现者是来自于英国的格雷戈尔(Reverend William Gregor),1791年,他在英国马纳坎附近的一条小溪旁发现一些会被磁铁吸引的黑沙,分析出里面含有氧化铁和一种无法鉴别的金属氧化物。1795年,德国化学家克拉普鲁斯(Martin Heinrich Klaproth)在研究金红石时也发现了该种氧化物,并以希腊神Titans命名了其中的未知金属物质,中文音译为“钛”。当他知道格雷戈尔之前的发现后,也取得了一些马纳坎矿物的样本,并证实它含钛。1795年,德国化学家克拉普鲁斯(Martin Heinrich Klaproth)在研究金红石时也发现了该种氧化物,并以希腊神Titans命名了其中的未知金属物质,中文音译为“钛”。当他知道格雷戈尔之前的发现后,也取得了一些马纳坎矿物的样本,并证实它含钛。 钛元素的分布 钛属于稀有金属,实际上钛并不稀有,其在地壳中的丰度占第七位,占0.45%,远远高于许多常见的金属。但由于钛的性质活泼,对冶炼工艺要求高,使得人们长期无法制得大量的钛,从而被归类为“稀有”的金属。用于冶炼钛的矿物主要有钛铁矿(FeTiO3)、金红石(TiO2)和钙钛矿等。矿石经处理得到易挥发的四氯化钛,再用镁还原而制得纯钛。中国钛资源总量9.65亿吨,居世界之首,占世界探明储量的38.85%,主要集中在四川、云南、广东、广西及海南等地,其中攀西(攀枝花西昌)地区是中国最大的钛资源基地,钛资源量为8.7亿吨。中国探明的钛资源分布在21个省(自治区、直辖市)共108个矿区。主要产区为四川,其次有河北、海南、广东、湖北、广西、云南、陕西、山西等省(区)。钛的应用01在军工方面的应用钛在军事工业方面有着十分广阔的用途。核动力潜艇、水翼艇、迫击炮身管、反坦克导弹、导弹发射器、坦克防护板、防弹背心等大量用钛。据资料介绍,一艘台风级核潜艇,用钛量高达9000吨,由此可见军工对钛材的需求巨大。02在航天航空方面的应用钛广泛用于航空工业,民用飞机用钛量约占构架重量的20~25%。此外,战略火箭发动机、宇宙飞船、人造卫星天线等也大量用钛。03在海洋产业方面的应用在海水中,钛具有其他金属材料无法比拟的耐蚀性能,特别是耐受海水的高速冲刷腐蚀。目前,美国、日本、法国等国家都已研制出各种先进的钛制深潜器、潜 艇、海底实验室装置来进行海洋研究。此外,沿海电站、海上采油设备、海水淡化、海洋化工生产、海水养殖业等都广泛采用钛制设备和装置。04在化工方面的应用目前钛设备的应用已从最初的“纯碱与烧碱工业”扩展到整个化工行业,设备种类已从小型、单一化发展到大型、多样化。据化工部门预计,化工行业的年用钛 量将超过1500吨。二十世纪70~80年代以后,我国真空制盐企业逐步开始采用钛金属材料制造设备,结果设备腐蚀情况大大改观。05在石油精炼中的应用 在石油精炼过程中,石油加工产品与冷却水中的硫化物、氯化物和其他腐蚀剂,对炼油装置特别是低温轻油部位的常减压塔顶冷凝设备的腐蚀性严重,设备腐蚀 问题已经成为困扰炼油工业的突出问题之一。近年来美国、日本等国将钛制设备引入到这些高腐蚀的环节,取得了很好的效果。06在汽车工业方面的应用钛的轻质、高强度等性能早已被汽车制造商所关注,钛在车上的应用已有许多年的历史,目前车几乎都使用了钛材,日本汽车用钛已超过600吨,随着全球汽车工业的发展,汽车用钛还在快速增加。07在医学中的应用随着医疗技术的提高,在人体内植入金属是十分常见的外科手术,由于钛金属具有与人体组织排异反应弱,目前被广泛于人工骨骼、人工关节、人造牙等人体植入物方面得到广泛的应用。此外,钛在制药机械、医疗器械方面的应用也得到进一步的认识,未来需求不可低估。08在体育和日用品方面的应用钛在全球高尔夫球具制造领域的消耗数量巨大,每年用于钛高尔夫球具制造的钛材量高达6000多吨。此外,网球拍、羽毛球拍、滑雪杖、雪铲、登山冰杖、登山钉、雪撬、击剑防护面罩、钓鱼杆、自行车、眼镜架、手表、工艺品以及其它生活用品都广泛使用钛材。09在能源材料中的应用除上述用途外,钛在电池材料、核工业、建筑材料、地热开发、电力、尤其探勘与开发等方面都有广泛应用。
  • 元素分析仪器发展概况及未来拓展之路
    元素分析仪概况   元素分析仪器作为一种实验室常规仪器,对固液气三种形态的元素都可进行检测,对多种元素进行联测分析,例如有机的固体、高挥发性和敏感性物质中的碳、氢、氮、硫等元素的含量进行定量分析测定,在现代社会中发挥着不可替代的作用。目前,元素分析仪器主要分为金属多元素分析仪、电脑多元素分析仪、有机元素分析仪以及电脑多元素一体化分析仪。  我国化学分析仪器行业发展现状  我国化学元素分析仪器产业从无到有、从小到大,但整体综合技术水平仅达到发达国家20世纪80年代中期水平,在全球市场中只占有较小的市场份额。目前我国约73%的化学分析仪器需要进口,在一些高档精密仪器领域比例更高,部分高端产品甚至完全依赖于进口,可以说落后的化学分析仪器成为制约我国经济快速发展的瓶颈。  我国一直重视化学分析仪器的研制与开发工作,“九五”和“十五”期间都将其列为国家科技攻关计划的重要组成部分。通过科技攻关,国内分析仪器市场正逐步改变着技术密集的高端仪器长期以来完全依赖进口的市场格局。随着我国对化学分析仪器行业的重视以及下游需求的不断增加,化学分析仪器市场发展速度高于国际平均水平,整体规模快速扩大。  中国分析仪器未来之路  中国的分析仪器既要抓创新、抓前沿,又要抓基础,二者紧密结合.但是,目前中国的钢铁分析仪器企业应以抓基础仪器为主.创新、前沿技术目前应在产学研用四结合的队伍中以科研院校为主,企业积极参加 而基础的炉前分析仪器的研制、产业化,企业的条件比科研院校好,所以应以企业为主,科研院校参与.但抓创新、抓前沿、抓基础都必须走产、学、研、用结合的道路。
  • 红外碳硫分析仪检测不锈钢中的常用元素
    红外碳硫分析仪检测不锈钢中的常用元素目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 1).各种元素对不锈钢的性能和组织的影响和作用 1-1.铬在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。迄今为止,还没有不含铬的不锈钢。铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。1-2. 碳在不锈钢中的两重性 碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成&mdash 系列复杂的碳化物。所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。 为了能准确的检测不锈钢的多种元素:碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁等。麒麟品牌QL-S3000C型电脑红外全能联测多元素分析仪是本公司独家拥有、国内最先进的一款多元素联测分析仪,QL-S3000C型全能元素分析仪经由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!在国内首创元素分析仪用衍射光栅数码电机波长可调光学系统。产品采用可由计算机控制的元素分析仪专用的衍射光栅单色体,实现波长数码可调,即任意输入所需波长,光学系统即调整至指定波长,从而使产品可以实现由计算机控制,根据被测材料元素的要求,方便的迅速设定所需波长,可用于不锈钢、钢铁、铜铝等各种金属、非金属材料及其合金的多种元素分析。红外碳硫分析仪参考网站:http://www.jqilin.com
  • 奥林巴斯XRF元素分析仪助力工业检测更方便
    随着国内经济的发展,轻工业和重工业领域为了满足生活需要不断进行产业革新。为了匹配生产,产业检测领域出现了不少检测设备,其中奥林巴斯XRF元素分析仪便是在产业线生产检测中使用较为广泛的一个。  奥林巴斯XRF元素分析仪助力国内元素分析仪的发展,具备全天候持续对产品进行质量检测的能力,采用创新的Axon技术,装备新型的四核处理器和超低噪音处理器,提高X射线频率,在提高检测速度的同时也提高检测的准确度,降低容错率。  奥林巴斯XRF元素分析仪以X射线荧光技术为基础,X射线荧光可以对生产线上的产品进行材料分析,尤其是合金材料,可以快速分析其中的元素成分,非常适合应用于流水生产线。它工作的核心是针对化学元素进行分析,适用于各种生产合金的企业和产品中含有金属元素的生产企业。  奥林巴斯XRF元素分析仪应用的领域十分广泛,常见的一种便是阀门材质检测。生活中的阀门随处可见,水龙头、燃气阀门、汽车排气阀门等等,为了耐高温和防止变形,阀门通常是采用金属材质。奥林巴斯XRF元素分析仪可以对这些合金材料进行元素分析,确定合金材料成分,检测材料的化学成分是否合规,从生产线保障产品质量,保护使用者的安全。  还有一种则应用于水泥行业,水泥在生活中使用的地方比较多,特别是建筑领域都会用到水泥,因此把控水泥质量至关重要。奥林巴斯XRF元素分析仪可以对水泥生产过程中的各种金属元素含量和氧化物的成分进行分析,这也是检验水泥质量的一项重要指标。奥林巴斯XRF元素分析仪也可以应用于水泥窑协同处置,进行工业固体分废弃物中有毒或有害的重金属分析,防止有毒或有害金属进入土壤,污染环境。  综合来说,奥林巴斯XRF元素分析仪具有三大特点,分别是高分辨率、高准确率、高效率。高分辨率体现在对生产线产品金属元素的区分度方面,不仅能够分辨重金属元素,还能够分辨轻金属元素。高准确率主要体现在Vanta系列XRF元素分析仪运用核心技术装备了承载力更强的电子元件,能够适应通量更大的产品生产线,提供更加稳定的短时快速质量检测。  以上就是关于“奥林巴斯XRF元素分析仪让工业检测更方便”的相关介绍,如需了解更多关于XRF元素分析仪的特点,可联系赢洲科技(上海)有限公司。
  • 应用案例 | J200 LIBS元素分析仪在植物组织元素空间分布研究中的应用
    化学元素空间分布制图(Mapping)及深度剖析分析法在生物组织、法证分析、生物医学等领域,有着十分广泛的应用前景,如植物修复(利用绿色植物来转移、容纳或转化环境中的污染物,是当前植物学、生态学、环境科学等领域研究的热点)。基于激光剥蚀技术的激光诱导击穿光谱(LIBS)法成功地应用于生物样品化学元素空间分辨分析,实现多种元素同时检测,且不需或仅需简单样品制备,同时避免了污染物的产生及误差的引入。Kaiser等采用LIBS和LA-ICP-MS技术(J200 Tandem系统)检测处理后的向日葵叶片上元素Pb、Mg、Cu的空间分布情况,来探寻和验证样品元素分布研究手段。 1 实验方法 将向日葵水培,按0、100、250、500 μM的浓度梯度加入Pb-乙二胺四乙酸溶液进行处理,处理后的幼苗定期进行取样。采用LIBS和LA-ICP-MS方法对叶片的Pb、Mg、Cu元素分布进行测量,并采用AAS对三种元素的总量进行检测。 2 实验结果 下图为LIBS光谱图a)及LA-ICP-MS信号图b)。在LIBS光谱中,选择283.31nm及277.98nm分别作为Pb和Mg的特征峰,用以检测两种元素。 下图为Pb和Mg在样品取样区域内的元素分布情况。处理过的叶片,在叶脉周围组织中有更高的目标元素的含量。LIBS和LA-ICP-MS两种方法得到的元素分布有所不同,这是由于他们的剥蚀采样方式不同造成的。 Kaiser对不同时期收获的样品,分别进行了LIBS和LA-ICP-MS累计定量分析,得到元素的平均信号强度。下图显示Mg含量随着Pb含量的变化而变化。 下图为空白处理叶片上1×1cm取样区域内Cu元素分布情况。采用的Cu的特征峰为324.75nm。在取样区域内,进行20×20的单次剥蚀。 Kaiser认为LIBS激光技术非常适合样品的元素空间分析工作,例如用于监测元素在植物样品中的迁移及空间分布等研究。
  • 我国绘制土壤重金属污染图 元素增多污染扩大
    清除&ldquo 镉米&rdquo 背后的土壤污染,最重要任务之一就是全面会诊土壤重金属污染现状。记者近日从国土资源部、中国地质调查局获悉,我国正在绘制土壤重金属&ldquo 人类污染图&rdquo 。  正在绘制人类污染图  据悉,我国正建立涵盖81个化学指标(含78种元素)的地球化学基准网:以1:20万图幅为基准网格单元,每一个网格都布设采样点位,每个点位各采集一个深层土壤样品和一个表层土壤样品。深层样品来自1米以下,代表未受人类污染的自然界地球化学背景 表层样品来自地表25厘米以浅,是自然地质背景与人类活动污染的叠加。用表层含量减去深层含量,即得出重金属元素&ldquo 人类污染图&rdquo 。  据介绍,从1994年起,中国地质科学院地球物理地球化学勘查研究所等机构就对全国土壤51种化学元素进行监测,1999年起对东部农田区54种化学元素进行填图,2008年起建立全国地球化学基准网,对含78种元素的土壤81个化学指标进行探测。数据显示,重金属等污染物指标在大的流域及局部工矿业和农业区上升较快。  重金属污染显著扩大  全国多目标区域地球化学调查项目已发现局部地区土壤污染严重。如长江中下游某些区域普遍存在镉、汞、铅、砷等异常。城市及其周边普遍存在汞铅异常,部分城市明显存在放射性异常。湖泊有害元素富集,土壤酸化严重。研究证实,镉、汞等重金属元素与人类污染存在密切关系。重金属元素在土壤表层明显富集并与人口密集区、工矿业区存在密切相关性。与1994~1995年采样相比,土壤重金属污染分布面积显著扩大并向东部人口密集区扩散。  土壤危险元素在增多  地质学家指出,研究表明,我国土壤正出现越来越多本来没有或微不足道的危险元素。土壤一旦被污染,通过自净能力完全复原周期长达千年。为人类健康,必须持续加大对污染行为监管和惩治力度。对已被污染土地,要把污染源搞清楚并加以切断。土壤污染物不仅有重金属,还有大量有机污染物。国土、地质、环境、水利等部门要通力合作为大地&ldquo 排毒&rdquo 。  ■链接  湖南&ldquo 镉米&rdquo 背后2/3耕地酸化  加剧重金属污染的危害  近期,湖南大米不时被检出镉超标,&ldquo 鱼米之乡&rdquo 光环被罩上一层阴影。事实上,土壤污染已成我国众多地方的&ldquo 公害&rdquo 。很多业内专家认为,湖南的&ldquo 镉米&rdquo 危机是一场迟早要来的危机。全国1/5耕地重金属污染  湖南省地质研究所专家童潜明认为,我国土壤污染形势已十分严峻。中国水稻研究所与农业部稻米及制品质量监督检验测试中心2010年发布的《我国稻米质量安全现状及发展对策研究》称,我国1/5的耕地受重金属污染,其中镉污染耕地涉及11省25个地区。在湖南、江西等长江以南地带,这一问题更加突出。  童潜明认为,土壤重金属污染的成因,既有工业造成的点源污染,也有农业投入品滥用造成的面源污染。重金属对土壤的污染首先来自于工业&ldquo 三废&rdquo 。湖南是全国闻名的有色金属之乡,有色金属采选开发已有数百年,历史包袱沉重。在衡阳常宁水口山、株洲清水塘、湘潭竹埠港等涉重金属企业密集地区,许多耕地早已不适合继续耕种。来自农业的污染也是土壤重金属污染的重要来源。目前全球每年进入土壤的镉总量为66万公斤左右,其中经施用化肥进入的比例高达55%左右。  30年酸化相当于300年  对土地的&ldquo 掠夺式&rdquo 开发更加剧了重金属进入土壤的步伐。近年来,出于对产量和经济效益的追求,农民大量施用氮肥和磷肥,土壤酸性急速飙升。湖南省权威部门统计显示,由于不合理耕作、过度种植、农用化学品的大量投入,与上世纪80年代第二次土壤普查时比较,目前湖南省耕地土壤pH值已由6.5降至6.0,30年土壤酸化程度相当于自然状态下300年的酸化程度。&ldquo 研究表明,土壤pH值每下降一个单位值,土壤中重金属流活性值就会增加10倍。&rdquo   湖南省一位农业专家说,湖南是目前全国土壤酸化面积最大的一个省,全省耕地中有2/3存在不同程度的酸化现象。土壤酸化带来的直接影响,是增加重金属在土壤中的活性使其更容易被作物吸收,从一定程度上加剧了重金属污染的危害。  湖南将严控污染增量  &ldquo 在经历了镉米危机之后,治理土壤污染的重要性与紧迫性已更加凸显。&rdquo 湖南省环保厅副厅长谢立说,针对全省土壤重金属污染现状,目前环保、国土、农业等部门已在联合开展抽样调查。对重金属造成的土壤污染,湖南省的治理思路是严控增量,逐步消化存量。
  • 元素小百科丨世界上最昂贵的贵金属—铑
    铑俗称“黑金”,是铂族金属中资源量及产量最少的那一个,在地壳中的含量仅有十亿分之一,大多分散在不同的矿石中,很少聚集在一起。所以物以稀为贵,论身价,铑的身价可一点也不比黄金低。据报道,2022年贵金属铑的人民币标价,约为黄金价格的10倍、铂金的19倍,那么是谁发现了这么贵重的金属呢?铑的发现在1803年英国化学家和物理学家威廉海德沃拉斯顿通过溶解、沉淀和过滤等一系列操作提取出一种红色溶液,并在蒸发和分析后首次获得铑这种金属。在化学元素周期表中,钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)称为铂系金属。铑(Rh),原子序数45,原子量102.9055,希腊文是Rhodium,意为“玫瑰”。铑的沸点为3695℃,密度为12.41gcm−3。铑的特征铑是一种坚硬的银色金属,非常稳定且熔点高。铑金属耐腐蚀,并且作为一种铂族金属,它具有该组卓越的催化性能。该金属具有高反射率,坚硬耐用,同时具有低电阻以及稳定的接触电阻。铑的分布在我国铂系资源比较缺乏,储量仅约占全球0.4%,而且铂族金属通常与铜、铁、铝、铅、锌、镍等共伴生。铑在地壳中的含量极低,其质量分数仅为0.001*10-6,主要生产国:南非,俄罗斯,加拿大和其他生产国。我国的铂族金属资源95%以上分布于甘肃、云南、四川、黑龙江和河北5省,其中仅甘肃省就占全国储量的57.5%。铑的应用铑具有催化活性高,抗氧化、耐腐蚀性强的特点,在航空航天、玻璃纤维、电气工业珠宝首饰表面的制造等多领域都发挥着重要的作用。根据美国地质调查局的数据,汽车催化剂占2010年所有铑需求的77%。汽油发动机的三元催化转化器使用铑催化将氮氧化物还原为氮。全球大约5%到7%的铑消耗量用于化学行业。铑和铂-铑催化剂用于生产羰基合成醇以及生产一氧化氮,它是化肥、炸药和硝酸的原料。玻璃生产每年占铑消耗量的3%至6%。由于它们的高熔点、强度和耐腐蚀性,铑和铂可以合金化以形成容纳和成型熔融玻璃的容器。同样重要的是,含铑合金在高温下不会与玻璃反应或氧化玻璃。其他用途:作为镜子的饰面 在光学仪器中 在电气连接中 在热电偶中 作为珠宝饰面(电镀白金) 在核反应堆中作为中子通量水平的探测器 在航空航天领域中,用于飞机涡轮发动机和火花塞的合金 在医药领域,可以形成一种高活性的反应中间体,从而促进反应的进程。
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。  元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。  测量元素的形态,可以通过以下一些方法来实现:  分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。  原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。  色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。  预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。  色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。  1、液相色谱-ICP-MS联用  液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。  2、离子色谱-ICP-MS联用  离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。  3、气相色谱-ICP-MS  气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。  4、毛细管电泳-ICP-MS  相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。  5、液相色谱-AFS  由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。  食品中元素形态分析的标准:  1、砷的形态分析标准  根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:  GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。  GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。  有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法  2、汞的形态分析标准  根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:  GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。  无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。  3、溴酸盐的形态分析标准  由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:  GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法  SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法  水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。  4、铬的形态分析标准  六价铬的检测方法有一个行业标准:  SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法  水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。    (撰稿人:上海出入境检验检疫局 杨振宇 博士)  注:文中观点不代表本网立场,仅供读者参考
  • 南京古生物所研发大型化石表面元素分析仪器
    近日,中国科学院南京地质古生物研究所研究员王伟团队研发的“非破坏性立体化石及文物表面化学元素分布特征分析方法”获得国家发明专利授权。常见的化石多为硬体骨骼化石,软躯体化石可提供更多生物信息,但由于生物死亡后腐败降解等原因通常难以保存。然而,软躯体在降解过程中会释放不同类型的有机物,这些有机物与周围的沉积物发生反应,往往会在化石周围的岩石中留下一些化学元素信息。此前通常用电子显微镜的能谱(EDS)或同步辐射X射线荧光光谱(SXRF)检测化石表面的化学元素分布。这些分析需将样品-X射线光源-探测器(简称“样-源距离”)之间的距离保持一致,才能获得化石形状和元素浓度的综合图像。如果开展一定面积的检测,就需将化石及围岩磨成平面(或不断调整样品位置,几乎较难实现),才能保持“样-源距离”不变。然而,磨平这种破坏性方法对于重要化石来说是难以接受的,因此无损伤检测手段亟待探寻。王伟团队研发的三维X射线荧光扫描仪通过建立化石及围岩表面的空间数学模型,实时移动检测器和X射线光源的空间位置,实现它们与化石及围岩表面保持同等距离。该方法克服了化石及围岩立体表面对分析结果的干扰,也避免了样品需磨平带来的损害。此外,该扫描仪还增加了惰性气体喷气口,可降低大气中的氧气、氮气对测量结果的影响,使得测量环境可与真空媲美。激光漫反射能量检测反馈系统可实现非光滑表面的精准检测,从而使大型化石表面化学元素分布的无损测量成为可能。三维X射线荧光扫描仪的研发为古生物学-地质学研究提供了新工具,并可为文物等相关领域开展元素级样品鉴定提供参考。研究工作得到中科院、国家自然科学基金、现代古生物学和地层学国家重点实验室的支持。三维X射线荧光扫描仪通过三维X射线荧光扫描仪对贵州龙化石进行检测并得到元素分布示意图。其中,左边为待测样品贵州龙化石,右边为Ca元素含量分布图,元素含量越高,则在图中显示的颜色越深。
  • 中科院王伟研究员团队研发大型化石表面元素分析仪器
    近日,中国科学院南京地质古生物研究所研究员王伟团队研发的“非破坏性立体化石及文物表面化学元素分布特征分析方法”获得国家发明专利授权。常见的化石多为硬体骨骼化石,软躯体化石可提供更多生物信息,但由于生物死亡后腐败降解等原因通常难以保存。然而,软躯体在降解过程中会释放不同类型的有机物,这些有机物与周围的沉积物发生反应,往往会在化石周围的岩石中留下一些化学元素信息。此前通常用电子显微镜的能谱(EDS)或同步辐射X射线荧光光谱(SXRF)检测化石表面的化学元素分布。这些分析需将样品-X射线光源-探测器(简称“样-源距离”)之间的距离保持一致,才能获得化石形状和元素浓度的综合图像。如果开展一定面积的检测,就需将化石及围岩磨成平面(或不断调整样品位置,几乎较难实现),才能保持“样-源距离”不变。然而,磨平这种破坏性方法对于重要化石来说是难以接受的,因此无损伤检测手段亟待探寻。王伟团队研发的三维X射线荧光扫描仪通过建立化石及围岩表面的空间数学模型,实时移动检测器和X射线光源的空间位置,实现它们与化石及围岩表面保持同等距离。该方法克服了化石及围岩立体表面对分析结果的干扰,也避免了样品需磨平带来的损害。此外,该扫描仪还增加了惰性气体喷气口,可降低大气中的氧气、氮气对测量结果的影响,使得测量环境可与真空媲美。激光漫反射能量检测反馈系统可实现非光滑表面的精准检测,从而使大型化石表面化学元素分布的无损测量成为可能。三维X射线荧光扫描仪的研发为古生物学-地质学研究提供了新工具,并可为文物等相关领域开展元素级样品鉴定提供参考。研究工作得到中科院、国家自然科学基金、现代古生物学和地层学国家重点实验室的支持。三维X射线荧光扫描仪通过三维X射线荧光扫描仪对贵州龙化石进行检测并得到元素分布示意图。其中,左边为待测样品贵州龙化石,右边为Ca元素含量分布图,元素含量越高,则在图中显示的颜色越深。来源:中国科学院南京地质古生物研究所
  • 从原理到应用,6大类元素分析仪大比拼
    p  元素定义:是strongspan style="color: rgb(0, 0, 0) "具有相同质子数(核电荷数)的同一类原子的总称/span/strong,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种./pp  元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。/pp  明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。/pp style="text-align: center "strongspan style="text-align: center color: rgb(0, 112, 192) "主要元素分析仪器/span/strong/pp  strongspan style="color: rgb(0, 0, 0) "1.紫外\可见光分光光度计(UV) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  2.原子吸收分光光度计(AAS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  3.原子荧光分光光度计(AFS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  4.原子发射分光光度计(AES) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  5.质谱(MS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  6.X射线分光光度计(XRF ) /span/strong/pp  常见分析仪器的归属类型:/pp  ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /pp  ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /pp  FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "各种元素分析仪器分析过程、特点及应用/span/strong/pp  strongspan style="color: rgb(192, 0, 0) "紫外\可见光分光光度计(UV)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title="1.jpg" alt="1.jpg"//pp  strong2.原理:/strong/pp  利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。/pp  strong3.主要特点/strongstrong:/strong/pp  (1)灵敏度高/pp  (2)选择性好/pp  (3)准确度高/pp  (4)适用浓度范围广/pp  (5)分析成本低、操作简便、快速、应用广泛/pp  strongspan style="color: rgb(192, 0, 0) "原子吸收和荧光分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title="2.jpg" alt="2.jpg"//pp  strong2.原子吸收光谱法原理:/strong/pp  原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。/pp  公式:A=KC/pp  式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。/pp  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。/pp  strong3.原子吸收主要特点:/strong/pp  (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /pp  (2)原子吸收谱线简单,选择性好,干扰少。/pp  (3)操作简单、快速,自动进样每小时可测定数百个样品 /pp  (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10%/pp  (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。/pp  strong4.原子荧光主要特点:/strong/pp  (1)有较低的检出限,灵敏度高。/pp  (2)干扰较少,谱线比较简单。/pp  (3)仪器结构简单,价格便宜。/pp  (4)分析校准曲线线性范围宽,可达3~5个数量级。/pp  (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。/pp  strongspan style="color: rgb(192, 0, 0) "原子发射分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em "strong2.原理/strong/pp  原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。/pp  发射的光波长为:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title="0.png" alt="0.png"//pp  每个元素有自己独特的特征光谱,从而进行元素定性分析。/pp  strong3.主要特点/strong/pp  (1)高温,104K /pp  (2)环状通道,具有较高的稳定性 /pp  (3)惰性气氛,电极放电较稳定 /pp  (4)具有好的检出限,一些元素可达到10-3~10-5ppm /pp  (5)ICP稳定性好,精密度高,相对标准偏差约1% /pp  (6)基体效应小 /pp  (7)光谱背景小 /pp  (8)自吸效应小 /pp  (9)线性范围宽。/pp  span style="color: rgb(192, 0, 0) "strong质谱分析法/strong/span/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title="4.jpg" alt="4.jpg"//pp  strong2.原理/strong/pp  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。/pp  strong3.主要特点:/strong/pp  (1)质量测定范围广泛 /pp  (2)分辨高 /pp  (3)绝对灵敏度,可检测的最小样品量。/pp  strongspan style="color: rgb(192, 0, 0) "X荧光光度计(XRF)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title="5.jpg" alt="5.jpg"//pp  strong2.原理:/strong/pp  受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。/pp  strong3.主要特点:/strong/pp  (1)快速,测试一个样品只需2min-3min /pp  (2)无损,测试过程中无需损坏样品,直接测试 /pp  (3)含量范围广 /pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "几种元素分析仪器对比/span/strong/pp  strong1.工作范围/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title="6.jpg" alt="6.jpg"//pp  strong2.无机分析产品的检出限/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title="7.jpg" alt="7.jpg"//pp  strong3.干扰/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title="8.jpg" alt="8.jpg"//pp  strong4.费用/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title="9.jpg" alt="9.jpg"/  /pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/818.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "医用原子吸收光谱仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/646.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "金属多元素分析仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/476.html" target="_self" style="text-decoration: underline color: rgb(192, 0, 0) "span style="color: rgb(192, 0, 0) "有机元素分析仪会场/span/a/p
  • 金属材料元素分析仪器的基本使用
    金属材料元素分析仪器的基本使用 金属材料元素分析仪器可检测普碳钢、低合金钢、高合金钢、生铸铁、钢、铁、有色金属、金属材料、球铁、合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。每个元素可储存99条工作曲线,品牌电脑微机控制,全中文菜单式操作。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。金属材料元素分析仪器产品专利号:ZL2008 2 0041074.X一、仪器的联接与通电 用电源线将主机电源插座与市电连接,并将仪器可靠接地,(否则易受干扰,引起数据波动);检查排液胶管安装是否牢固(不要将放液胶管的出口端没入废液中,以免放液不畅),并向比色杯中注入蒸馏水(参比液),打开仪器电源开关,打开电脑电源,运行QL-1000A应用程序,波长初始化调整。二、零点输入和满度调整 仪器在日常使用中,需进行调整零点及满度的工作,一般零点不需经常调整,每次开机后调整一次即可。零点输入:将灵敏度档位切换到档位0,稍等片刻,零点的值将等于满度值,然后将档位切换到档位1。 满度调整:按调满按扭,自动调满。金属材料元素分析仪器的详细请参考http://www.jqilin.com南京麒麟分析仪器有限公司技术部
  • 安捷伦: ICP-MS让元素分析“如虎添翼”
    p style="text-align: justify text-indent: 2em "自1983年第一台商品化a href="https://www.instrument.com.cn/zc/293.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong电感耦合等离子体质谱仪(ICP-MS)/strong/span/a问世以来, ICP-MS技术迅速发展成为一种应用广泛且受到高度评价的分析技术。随着相关应用领域对该技术需求的不断拓展和应用基础研究的不断深化,以及ICP-MS仪器的不断改进和完善,该技术已进入了成熟阶段。在学术交叉和应用方面,ICP-MS渗透到环境、物理、化学、生物、医学、食品、环境、材料、核科学等诸多领域,很多成熟的方法已经发展成为标准化的方法。近年来,ICP-MS在贵金属、类金属和非金属元素分析,联用技术与形态分析,单颗粒和单细胞分析等方面取得了重要的进展,同时也在免疫分析、疾病诊断、药物筛选、纳米分析等方面得到越来越多的应用。/pp style="text-align: justify "  国际上ICP-MS的主要生产商有安捷伦、赛默飞、珀金埃尔默、岛津、耶拿等,同时国产仪器厂商也在积极研制ICP-MS产品,厂商分别有聚光科技、谱育科技、天瑞仪器、东西分析、钢研纳克、博晖创新、毅新博创、北京衡昇等。为帮助用户更好地学习、了解ICP-MS技术及应用的最新进展内容,仪器信息网特别策划了a href="https://www.instrument.com.cn/zt/icpms" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong“精进不休:ICP-MS新技术新应用”/strong/span/a专题,并邀请到ICP-MS市场上的主流生产商们,请他们谈谈对ICP-MS技术发展及最新应用进展的看法。/pp style="text-align: justify "  近日,仪器信息网采访了安捷伦科技(中国)有限公司实验室解决方案市场总监郑欣、无机分析应用经理宋娟娥、大中华区光谱产品市场经理冯旭,与他们就ICP-MS技术与应用发展、未来市场趋势等进行了深入的交流。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201907/uepic/bbed1ec1-fa04-4a90-a618-0d8558971f4b.jpg" title="zhengxin.jpg" alt="zhengxin.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "安捷伦科技(中国)有限公司实验室解决方案市场总监郑欣/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 472px " src="https://img1.17img.cn/17img/images/201907/uepic/519af90f-ba89-4d72-a1ea-81f23b3fb47e.jpg" title="songjuane_meitu_1.jpg" alt="songjuane_meitu_1.jpg" width="600" height="472" border="0" vspace="0"//pp style="text-align: center "安捷伦科技(中国)有限公司无机分析应用经理宋娟娥/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strong安捷伦ICP-MS技术发展史——不断创新/strong/span/pp style="text-align: justify "  说到安捷伦ICP-MS技术的发展历程,可以追溯到1963年。当年,惠普公司(安捷伦前身)与日本横河(Yokogawa)电气达成合作,创建了他们的第一家联合企业横河惠普,并于1987年推出首台由计算机控制的ICP-MS仪器。该仪器结合了惠普公司的专利技术与日本横河在测量分析领域的领导地位,推向市场的过程中受到用户的普遍欢迎。/pp style="text-align: justify "  1994年,横河惠普乘胜追击,推出首台台式的ICP-MS 产品HP 4500,在业内率先采用屏蔽炬、帕尔帖控温雾室、双曲面四极杆等全新技术。1998年推出Plasma-Chrom色谱联用技术,推动了色谱与ICP-MS联用技术的发展 2000年,从惠普独立后的安捷伦推出了7500系列ICP-MS,仪器搭载了具有9个数量级范围的检测器,并首先提出碰撞/反应池在单氦模式下消除质谱固有干扰 2009年推出的7700系列配有安捷伦专利的耐高盐进样系统,并从碰撞池消除干扰能力、灵敏度以及软硬件的操作与数据处理方面全面提升仪器性能 2012年,安捷伦推出业内首款三重四极杆ICP-MS/MS产品8800,进一步消除复杂样品中未知元素带来的干扰,为用户高端研究和复杂分析难题带来变革… … 。/pp style="text-align: justify "  目前安捷伦主要的ICP-MS产品有单四极杆型的7800、7900系列,以及三重四极型的8900等。宋娟娥介绍到,安捷伦一直以来对耐高盐技术进行着升级和改善,早期推出的 7700系列具有独特的耐高盐进样系统(HMI),使其耐盐能力由传统的0.1-0.2%显著提高至2-3%,因此更适合食品、废水、土壤消解物等复杂样品的分析。同时,凭借全新设计的离子透镜,7700系列ICP-MS提高了整个质量范围的灵敏度,降低了背景噪音。后来推出的7900系列采用了超耐高盐进样系统 (UHMI),其高盐基质耐受能力比传统 ICP-MS 限量高 100 倍,使实验室可以测量含有高达25%总溶解固体的样品,该技术克服了局限ICP-MS发展的瓶颈,拓展了其在高基体领域的应用。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 335px " src="https://img1.17img.cn/17img/images/201907/uepic/589b77a6-0d98-49eb-9543-7040688fb7a3.jpg" title="HMI.jpg" alt="HMI.jpg" width="300" height="335" border="0" vspace="0"//pp style="text-align: center "  高盐进样系统(HMI)/pp style="text-align: justify "  碰撞反应池(CRC)技术的突破可以有效消除一些特定的质谱干扰,使低浓度元素的分析取得重大改进。因此,各主流厂商ICP-MS都拥有其专利技术的碰撞反应池系统,但各家的碰撞反应技术各不相同,这也成为ICP-MS仪器最有区别的一部分。安捷伦采用的八极杆反应池系统(ORS),引进了单氦碰撞模式,利用惰性气体碰撞消除多原子离子的干扰是基于物理方法消除的,而并非与反应气体的特殊反应。由于所有的多原子干扰离子体积都大于受其干扰的被测物,因而与He池气体碰撞的机会大于体积相对较小的待测离子。多原子离子因而会失去更多的能量,在正的歧视电压下不能进入质量分析器:该过程称为动能歧视(KED)。KED成功消除干扰的需要具备两个条件:第一,进入池内离子的能量范围必须足够窄-----安捷伦通过采用屏蔽炬技术实现,它严格限制了离子能量范围小于1 eV 第二,在碰撞池中,多原子离子必须经历足够多次的碰撞,以便在碰撞池出口处与目标元素离子分开。“因为八极杆比六极杆和四极杆系统具有更高的池内压力和更好的聚焦效率,其碰撞频率大大增加,同时其良好的聚焦效果确保了待测离子的灵敏度受到的影响最小”。宋娟娥说到。/pp style="text-align: justify "  关于ICP-MS的检测器部分,宋娟娥表示:“安捷伦的ICP-MS采用离轴检测器技术,该专利技术可提供低背景、宽线性范围等优势,该技术也应用在安捷伦的单四极杆及三重四极杆质谱中”。/pp style="text-align: justify "  strongspan style="color: rgb(0, 112, 192) "巩固优势领域 合作为核心/span/strong/pp style="text-align: justify "  在新材料的生产、合成过程中,各类重要元素,特别是金属离子或金属化合物的加入或使用至关重要,因而半导体/高纯材料领域的各种元素分析成为令人关注的课题。/pp style="text-align: justify "  从安捷伦ICP-MS技术的发展历程中可以看出,安捷伦深耕在半导体行业已三十余年,从1994年推出4500系列开始,每个时期安捷伦都为半导体行业推出其专用的ICP-MS型号,包括HP4500-300、7500s、7500cs、7700s,这些型号采用了屏蔽炬和冷等离子体的技术,非常适用于半导体工业的超痕量杂质分析,因此也得到广泛的应用。在高纯材料领域,与高分辨ICP-MS依靠物理原理进行分辨不同,安捷伦的三重四极杆ICP-MS可以靶向针对该领域用户的痛点,通过物理和化学的原理进行分辨。“元素杂质含量是影响集成电路良率的关键因素,也是半导体行业核心的质控指标,而近些年发展起来的纳米颗粒污染,也成为该行业需要扩展的重要质控项目。而安捷伦在纳米颗粒的技术积累和解决方案以及配套的ICP-MS产品很好的满足了该需求。目前对于半导体行业的一些高端用户来说,纳米颗粒杂质检测已经成为他们日常质量控制工作的一部分”。宋娟娥说到。/pp style="text-align: justify "  宋娟娥还提到,在半导体元素分析领域30多年的技术积淀,为安捷伦在奠定了该市场的领导地位。此外,为更好的经营中国半导体行业的业务以及更好地为半导体行业的用户服务,安捷伦在中国设立半导体技术支持团队包括专职的产品工程师,应用工程师以及售后服务工程师等体系,同时还提供半导体定制化应用方案。。/pp style="text-align: justify "  关于ICP-MS在制药领域的应用,郑欣说,“化学药分析时需使用有机溶剂进行前处理,而仪器对有机溶剂的耐受性有限 另外,该领域的特点是对法规的依赖性很强”。基于此,安捷伦ICP-MS的仪器硬件经过多年在半导体行业的考验,其仪器耐受性方面具有一定的优势。此外,美国药典、欧洲药典以及中国药典中都收录了ICP-MS方法,因此安捷伦在研发时就将药典方案配套嵌入系统中,并与其气相、液相色谱系统等进行联用,同时可定制操作软件。不仅如此,安捷伦还针对药典开发的方法设立了专门的应用课程,真正为用户提供更多的便利。/pp style="text-align: justify "  谈到金属组学相关的研究,宋娟娥表示,该领域的研究一般分为基础研究和临床研究,而安捷伦很早就介入了该领域,她举例说:“2007年安捷伦与辛辛那提大学联合成立金属组学研究中心,也与西班牙奥维耶多大学、斯坦福大学等合作进行金属蛋白、金属酶作用途径和代谢组学、元素成像等相关的研究。”宋娟娥表示,三重四极杆ICP-MS的出现,使其更多地被用于痕量硫磷的蛋白绝对定量、硫同位素比值分析等,就该方向安捷伦也与许多高校及科研院所合作,比如北京大学、四川大学和东北大学等。/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strongICP-MS市场:提效降速 高质量发展/strong/span/pp style="text-align: justify "  就未来ICP-MS技术的发展趋势,宋娟娥表示,ICP-MS产品技术已发展到成熟阶段。未来的发展将集中在三个方向:从用户角度来看,对有机溶剂的耐受以及复杂基质分析的需求将不断增加 就技术角度而言,未来仪器操作将会结合人工智能和大数据,使得操作更加简单便捷 站在应用的角度,ICP-MS串联质谱的出现目前在某些行业正在制定标准,未来需要不同行业的用户开发更多的应用方法,继续发挥其潜能和优势。宋娟娥认为:“相较于常见的无机质谱技术,ICP-MS联用分析技术拥有很多优势及发展潜力,该技术未来将会成为主要的发展方向”。/pp style="text-align: justify "  此外,就各有优缺点的原子吸收光谱法(AAS)与ICP-MS方法,郑欣表示,未来ICP-MS取代AAS的趋势还将取决于市场需求与检测方法的要求。/pp style="text-align: justify "  关于ICP-MS在临床应用领域未来的发展,郑欣表示,虽然现在并没有必须使用ICP-MS方法检测的项目,但代谢相关的研究,比如通过金属元素在体内分布的含量表征生命的行为特征,将是未来的主要发展方向。目前,质谱仪可在医院检验科发挥着分析测试检验的作用,但它对操作者要求较高且并未做到真正意义上的临床诊断。因此,质谱仪器除要对本身性能进行提升外,与其配套的试剂盒、操作软件等更需进行改善,以适配临床应用的需求。郑欣说到:“从市场角度来看,整个临床质谱的市场是动态的,ICP-MS在该领域刚起步,因此我们保持观望等待机会、选择方向”。/pp style="text-align: justify "  就ICP-MS的两大话题行业,食品安全及环境领域的市场发展,“食品、环境行业经过了一波非常快速的增长,用户采购和使用的“主力军”从政府到企业再转到外包第三方,这过程中ICP-MS也经历了大量技术和标准的提升与完善,相信未来这两个行业还将是ICP-MS的热点需求市场”。郑欣如是说道。/pp style="text-align: justify "  关于制药领域,郑欣表示,中国药典以前主要集中在中药重金属的ICP-MS检测,但根据美国药典、欧洲药典的发展来看,未来将会更多地涉及临床药物、药包材以及辅料的金属元素检测。“药典每五年更新一版,2020版中将首次把化学药的元素杂质检测列入药典,以前关于重金属的检测多是比色法,未来我们非常看好ICP-MS为制药行业提供的解决方案”。/pp style="text-align: justify "  ICP-MS技术经过近四十年的发展取得了一些重大的突破,其技术本身已经较为成熟。未来仪器将以自动化、智能化,提高效率为发展方向,满足各领域对分析的要求。此外,中国市场ICP-MS的应用发展整体上与全球的情况较为一致,从欧美国家的应用情况可以看出中国ICP-MS的应用发展趋势,如食品、环境、制药等热点市场将继续保持对ICP-MS的需求,地质、半导体、生物医学、石油石化、科学研究等前沿领域ICP-MS也将发挥其联用优势,助力更灵敏、更准确的分析。/pp style="text-align: justify "  采访的最后,郑欣表示,中国分析仪器行业经过了20年的高速发展,未来整个市场的发展将由其体量决定,将呈现降速但高质的发展趋势。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201907/uepic/a1f9d911-d5d0-4e50-81e8-80e455a34682.jpg" title="合影.jpg" alt="合影.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "  合影/ppbr//p
  • 铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法
    铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法 一、硅之测定(亚铁还原硅钼蓝光度法)1、方法提要试样溶于稀硝酸,滴加高锰酸钾氧化,硅酸离子全部转化成正硅酸离子,在一定酸度下与钼酸铵作用,生成硅钼杂多酸。然后在草酸存在下用亚铁还原成硅钼蓝,借此进行硅的光度测定。2、试剂(1)稀硝酸(1+5)(2)高锰酸钾溶液(2%)(3)碱性钼酸铵溶液:A、钼酸铵溶液(9%)B、碳酸钾溶液(18%)A、B两溶液等体积合并,贮于塑料瓶中备用。(4)草酸溶液(2.5%)(5)硫酸亚铁铵溶液(1.5%)称硫酸亚铁铵15g,先将稀硫酸(1+1)1ml湿匀亚铁盐,然后以水稀释至1L,溶解后摇匀备用。3、分析步骤称取试样30mg,加至高型烧杯(250ml)中,杯内有预热之稀硝酸(1+5)10ml,样品溶清,逸去黄色气体,加高锰酸钾(2%)2-3滴,继续加热至沸,立即加入碱性钼酸铵溶液10ml摇动10秒钟,再另入草酸(2.5%)40ml,硫酸亚铁铵(1.5%)40ml摇匀以水作参比,扣除空白倾入比色杯,在JSB系列或JQ系列分析仪器上测定,直读含量。4、注意事项溶解样品时应低温溶解。 二、锰之测定(过硫酸铵银盐光度法)1、方法提要钢铁试样,在耨、磷介质是,以银离了为催化剂,用过硫酸铵氧化将低价锰子变成高锰酸,借此进行锰的光度测定。2、试剂(1)定锰混合液硝酸450ml,磷酸72ml,硝酸银7.2g,用水稀释至2L,摇匀,贮于棕色瓶中备用。(2)过硫酸铵溶液(15%)或固体。3、分析步骤称样50mg,置于高型烧杯(250ml)中,溶于预热定锰混合液15ml,等试样溶解毕,加入过硫酸铵溶液(15%)10ml(联测时加固体过硫酸铵约1g)继续加热于沸并出现大气泡10秒钟后,加入40ml倾入比色杯中,在JSB系列或JQ系列分析仪器上测定,直读含量。4、注意事项(1)过硫酸铵加入后,需要控制煮沸10秒。(2)记取含量时,要等少量小气泡逸去后读取。 三、磷之测定(氟化钠-氯化亚锡磷)1、方法提要试样在硝酸介质中,以高锰钾氧化,使偏磷酸氧化成正磷酸,与钼酸铵生成磷钼杂多酸,以氯化亚锡还原成磷钼蓝进行光度测定。酒石酸离子消除硅的干扰。氟化钠络合铁离子,生成无色络合物,并抑制硝酸分子的电离作用。2、试剂(1)稀硝酸(1+2.5)(2)高锰酸钾溶液(2%)(3)钼酸铵-酒石酸钾溶液 取等体种的钼酸铵溶液(10%)与酒石酸钾钠(10%)混合备用。(4)氯化钠(2.4)-氯化亚锡(0.2%)溶液: 氯化钠24g溶于800ml水,可稍加热助溶,氯化亚锡2g,以稀盐酸(1+1)5ml,加热至全部溶清;加入上述溶液稀释至1L,必要时可过滤。当天使用,经常使用时,配大量氟化钠溶液,使用时取出部分溶液加入规定量之氯化亚锡。3、分析步骤称试样50mg,置于高型烧杯(250ml)中,加入预热稀硝酸(1+2.5)10ml,加热至试样溶解,逸去黄色气体,滴加高锰酸钾溶液(2%)2-3滴。再加氟化钠-氯化亚锡溶液40ml。水作参比,倾入比色杯。在JSB系列或JQ系列分析仪器上测定,读取含量。4、注意事项(1)氧化时应使溶液至沸,并保持5-10秒钟。(2)分析操作手续相对保持一致致,以保证分析结果重现性和准确度。(3)含量高至0.050%以上,色泽稳定时间较短,读数不就耽误,在0.080%时更短,要即刻读取。
  • 地质地球所发明使用二次离子质谱仪同时分析非金属元素和金属元素的系统和方法
    p  二次离子质谱(SIMS)和溅射中性粒子质谱(SNMS)是表面分析科学和材料科学中广泛应用的分析技术。使用离子溅射固体表面能够引起光子、电子、中性粒子和二次离子的发射。SIMS技术探测溅射产生二次离子,SNMS技术探测溅射产生中性粒子。由于二次离子的产率和基体相关,SIMS技术具有显著的基体效应,需要标准样品进行分析校正。中性粒子是溅射产物的主要组成部分,SNMS将中性粒子后离子化进行质谱分析,定量更加可靠。IMS1280型SIMS通常使用O2-分析金属元素,使用Cs+分析非金属元素,很难同时对金属元素和非金属元素进行分析。/pp  中国科学院地质与地球物理研究所工程师唐国强等人在以上背景下,发明了一种使用二次离子质谱仪同时分析非金属元素和金属元素的系统和方法,并于近日获得国家发明专利授权(发明名称:使用二次离子质谱仪同时分析非金属元素和金属元素的系统和方法 发明人:唐国强,赵洪 专利号:ZL 2013 1 0654614.7)。/pp  该发明使用SIMS分析二次离子,用SNMS对中性粒子分析,可以在线获得样品中更多的信息,保留了微区分析的特点,没有基体效应。其特点有:分隔的真空腔体有利于溅射中性粒子的收集和离子化 中性粒子的离子化可以使用电子轰击、热电离、激光共振等成熟的离子化技术 质量分析器可以使用小型的四极杆或者飞行时间质量分析器,基于电场的独立小型质量分析器有利于减小仪器体积和缩短分析时间。/pp  该发明将SIMS和SNMS两种技术结合起来应用在IMS1280型SIMS上,能够同时分析样品中的金属元素和非金属元素,具有很大的进步意义。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/insimg/8eb1bbcd-7c77-43e4-9eeb-d923de6e388c.jpg" title="W020151218354254671408.jpg"//pp  图1:2.一次离子 7.样品 8.真空腔 9.二次离子 21.中性粒子 22.中性粒子 23.泵 24.小型质量分析器 25.离子 26.真空腔 27.接口 28.接口 29.接口。/p
  • 玩具中有害重金属元素的ICP-AES分析
    本文介绍了利用ICP-AES对玩具中有害重金属元素的分析研究。文中详述了实验方法,适用范围以及结果和讨论,并运用干扰系数法校正元素间光谱干扰,结果较为满意,这在玩具日常检验的光谱分析中具有重要的实际意义。  关 键 词 ICP-AES,玩具,有害重金属元素,干扰系数法,中阶梯光栅。1 前言  我国是世界主要生产玩具出口国之一,而出口玩具的质量和安全卫生直接涉及到人身健康问题,尤其是玩具中有害重金属元素将危及儿童的心身健康,因此强制玩具中有害重金属元素的检验尤为重要[1]。目前,人们对玩具的分析方法进行了广泛的研究, 而用ICP-AES对玩具中有害重金属元素进行分析测试是一个比较新的课题。由于ICP光源激发温度高,谱线比较丰富,可选择的谱线范围大,另外,ICP是单、多元素同时进行扫描测定,故分析速度快。 为此,我们应用ICP-AES中的分析法对玩具中有害重金属元素在进行了较深入的研究,并运用干扰系数法扣除元素间的光谱干扰引起的分析偏差[2],通过实验研究结果较为满意,这对玩具日常检验的光谱分析及研究过程中具有非常重要的实际意义。 2 实验部分2.1 仪器装置   LEEMAN PS3000型ICP-AES,分辨率0.0075nm,三通道蠕动泵   样品提升量:1.0mL/min   高频振荡发生器,频率40.68MHz   双铂网雾化器   分光系统:中阶梯光栅,焦距0.75m   观察高度:用仪器自动对锰(259.373nm)作Peak both,调准锰的最佳观察区,以作为折衷观察高度   方式:单、多元素同时顺序扫描测定。2.2 工作条件   耦合功率:1.0kW,氩冷却气流量:14L/min,氩辅助气流量:0.2L/min,雾化器中氩气压力是40PSI。2.3 试剂   HNO3 、HCl均匀G.R.级   高纯水:普通蒸馏水再经离子交换   As、Sb、Pb、Se、Ba、Cr、Cd、Co的国家标准溶液,浓度为1000?g/mL或500?g/mL   As、Sb、Pb、Se、Ba、Cr、Cd、Co的系列标准溶液,浓度分别为1?g/mL、5?g/mL、10?g/mL。2.4 样品处理   总量:准确称取0.5g样品于50mL平底烧瓶,加入10mL浓硝酸,在电热板上加热硝化至溶液体积约5mL(需要时可加数滴过氧化氢以利硝化),加10mL水,再在电热板上加热硝化至溶液体积约10mL,取下冷却到室温,过滤,用去离子水洗涤,将滤液定容到50mL容量瓶。  可溶:准确称取0.5g样品于25mL比色管中,加入温度为(37± 2℃)的0.07mol/L盐酸溶液与之混合,摇动1min,然后检查混合溶液的酸度,调节pH达到1.0-1.5之间,置于温度为(37± 2℃)的恒温振荡器中,避光摇动1h,再静置1h,接着立刻将混合物中的固体物有效分离出来,溶液供分析各元素含量用。  备注:总量是指玩具中所含某元素总的含量 可溶是指模仿人的胃酸(0.07mol/L盐酸溶液)的条件下玩具表面某元素可以被溶出的含量。3 结果与讨论3.1 分析线的选择   用待测元素的标准溶液和空白溶液在各波长处进行扫描,得到这些元素在这些波长处的扫描轮廓图,然后输入干扰元素溶液,得到相应的扫描峰形图。计算机联用贮存这些图谱,并可将它们同时显示。从所示的谱线及背景的轮廓和强度值,可以很直观地看到干扰的类型和程度,能方便地选择合适的分析线和设置背景校正位置。  分析波长与检出限见表1。表 1 元素分析波长,扣背景点,检出限及相对标准偏差元素波长背景BKP1背景BKP2检出限相对标准偏差 (nm)(nm)(nm)(?g/mL)(%)As193.695193.680193.7100.0655.6Sb231.147231.129231.1650.0734.0Ba455.403455.351455.4390.0015.3Se196.026196.010196.0420.0435.8Pb220.353220.335220.3710.0643.4Cd214.438214.421214.4550.0043.3Cr267.716267.695267.7470.0054.13.2 工作参数的选择[3]3.2.1 功率的影响   由实验结果可知大多数元素随功率的增加谱线强度增加,但功率增大到一定程度信背比反而下降,同时也易烧掉炬管。综合考虑选1.0kW较合适。3.2.2 氩辅助气流量   考虑到有些玩具样品含有机物成份,燃烧时易破坏热平衡导致烧炬管,故选择氩辅助气流量为0.2L/min。3.2.3 酸度的影响   由于玩具前处理好的样品的酸度是严格按照ASTM标准或EN71标准确定的,故不考虑酸度的影响。3.2.4 观察高度的影响   用Mn(波长259.373nm)线作Peak both,调整其最佳观察区以作为测量观察高度。3.3 校准曲线的绘制   分别将国家标准溶液配制成系列标准溶液,以高纯水作空白,分别作出各标准的校准曲线。3.4 干扰系数的测定   干扰系数是指单位浓度的干扰元素的纯溶液在待测元素波长处测得的数值。通过测干扰系数,来校正主量元素及其它杂质元素对待测元素的光谱干扰。见表2。表 2 待分析元素的干扰系数待分析元素干扰元素干扰系数(× 10-3)SbCo7.330PbCo1.540BaCr0.0353.5 样品分析  按本文拟定方法,分析HOKLAS提供的样品,分析测试结果全部落入可接受范围内,结果见表3。3.6 回收实验   为了考查测定结果的准确性,在样品中加入标准溶液,按上述方法及条件对样品进行测定,回收率见表4。表 3 HOKLAS实验室认证考核样品测试结果重金属元素稀释5倍后的结果(?g/mL)Pb0.461As0.636Sb3.03Ba5.46 Cd0.605Cr0.982Se1.46 表 4 杂质元素测试结果及回收率元素空白读数加入量测得值回收率  (?g/mL)(?g/mL)(%)As0.01525.05.544110.6Sb0.00015.05.355107.1Se0.03635.05.733113.9Ba0.00035.05.111102.2Pb0.01065.05.577111.3Cd0.00065.05.456109.1Cr0.00985.05.165103.1 注:玩具中有害重金属元素一般指As、Sb、Ba、Se、Pb、Cd、Cr、Hg。3.7 元素间的干扰情况   经过干扰条件试验得知:  (1) 溶液中1?g/mL以上的Cr对Ba的测定有影响,需用干扰系数法去校正Cr对Ba测定的光谱干扰,以得到较准确的分析结果。  (2) 由于玩具中经常含有大量的Co,所以也要考虑Co的干扰。溶液中1?g/mL以上的Co对Pb的测定有影响,对Sb的测定影响较大,故需用干扰系数法去校正Co对Pb以及Co对Sb测定的光谱干扰,以得到较准确的分析结果。  (3) 除上面所述的情况外,其余元素间测定时相互不影响。3.8 注意事项   测定玩具中有害重金属含量一般用多道同时测定,当Co和Cr有一定含量时,用单道对Sb和Ba及Pb进行校正(因单道已设置干扰系数自动校正程序)。4 结论   通过上述系列试验及结果可知,采用ICP-AES对玩具中有害重金属元素的光谱分析可用于出口玩具的日常检验方面。
  • 有色金属行业发布6项元素分析测试国家标准,多为光谱、质谱法
    2024年4月25日,国家标准委公布了有色金属行业6项检测标准,涉及多种金属元素检测,大多为ICP-AES和ICP-MS法。《铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定》采用惰性气体熔融-红外吸收法/热导法测定氧、氮含量和惰性气体熔融-红外吸收法或热导法测定氢含量。采用的仪器为惰性气体熔融-红外或热导检测系统(包括电极炉、吸尘装置、载气净化及分析气体转化系统、红外检测器和热导检测器、计算机及软件控制系统)。仪器分析条件可参考下图:
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止.今日话题古生物的发现与研究是一件辛苦却也颇具趣味的事情,其实很多科研工作也都是如此。如果您正在从事的研究跟古生物有关,可以留言分享您科研中有趣的地方;又或者您有对古生物研究感兴趣,有推荐的书籍电影,欢迎留言分享~我们会在今日话题发布后的三个工作日内,为点赞数高的读者送出星巴克咖啡券一份~ 点击查看更多往期精彩文章 生物传感器,让人工智能真正活过来|国际用户简讯牛津大学开创单细胞水平微生物代谢研究新方法|海外用户简讯解一颗石榴石,梦回千年“海上丝路”|光机所考古中心前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”,咨询相关技术服务。
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 人和科仪亮相2022年第八届太阳电池浆料与金属化技术论坛
    上海人和科学仪器有限公司携带具有物联网功能的智能三辊机、超高压纳米均质机、稳定分析仪等在浆料行业具有广泛应用的仪器设备。参加了在常州富力喜来登酒店举办的第八届太阳电池浆料与金属化技术论坛。 TRILOS 智能三辊机 应用于: 浆料的均匀分散 TRILOS 超高压纳米均质机 应用于: 有机载体经微射流均质机预处理后, 可提高分散性,然后与玻璃粉、 银粉混合,制得浆料。 LUMiSizer稳定性分析仪 应用于: 浆料的稳定性的精确快速评价 该论坛主要探讨光伏行业展望与浆料市场前景,太阳电池技术与金属化工艺发展趋势,银浆金属化导电机理与接触机制研究,SE PERC、异质结和TOPCon电池进一步提效降本的浆料和金属化解决方案,激光转印技术实现路径与产业化进展,先进铜电镀技术与应用,银包铜浆料成本优势与电池稳定性研究,丝网印刷和电池烧结技术与设备,钙钛矿叠层电池金属化工艺展望等。会议现场,这些仪器设备一经展出就吸引了大家的目光。通过人和科仪技术工程师们的认真耐心的讲解以及现场样品的演示,使得大家对这些仪器设备有了一个更为直观和细致的了解。现场让大家最感兴趣的就是TRILOS特有的物联网功能。该功能可以全程自动设置并记录设备运行全过程,在方便客户进行数据分析的同时避免人为因素造成的误差。此外,物联网平台还可以接入投料、配料、预混以及在线监测等设备进行联用。 人和公司(www.renhe.net)始终聚焦行业痛点,在解决方案中不断融入符合中国制造2025标准,具有自动化、智能化、数字化、微型化、模块化并带物联网的仪器设备。让客户通过这些仪器设备实时获取生产过程中的信息反馈,进行综合分析,不断优化生产工艺,从而实现在提高产品质量的同时,降低生产成本。
  • 元素周期表喜添新成员:4种新元素获提名
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/6ad50889-8ac2-4e11-bf4c-a9d2ea60289e.jpg" title="catchpic-c-ca-ca89266a8a16b76a4976f81c482bacda.jpg"//pp style="text-align: center "4个获提名的新元素(元素周期表的右下角)/pp 化学管理机构、总部位于瑞士苏黎世的国际纯粹与应用化学联合会(IUPAC)于6月8日在一份提案中宣布,113号元素将被命名为nihonium(Nh) 115号元素将被命名为moscovium(Mc) 117号元素将被命名为tennessine(Ts) 118号元素将被命名为oganesson(Og)。/pp  该联合会去年年底宣布,确认上述4种新元素的存在。这些元素由俄罗斯、美国和日本的科研团队发现,他们也获得了对这些元素的正式命名权。/pp  根据IUPAC的规定,发现方对新化学元素拥有命名权,而新修改的命名原则是可根据神话概念及人物、矿物和其他相似物质、地名与地理区域、元素性质或科学家姓名来命名新元素。/pp  IUPAC下属无机化学部门主席Jan Reedijk在一份媒体声明中表示:“尽管这些元素的名称看起来多少有些任性,但它们完全与IUPAC的规则相一致。”或许这其中最引人注目的命名要数第118号元素oganesson。该元素以俄罗斯杜布纳市核研究联合学院(JINR)83岁研究人员Yuri Oganessian命名。Yuri曾帮助发现了大量的超重元素。第118号元素是人类目前合成的最重元素。/pp  这是有史以来第二次用一个健在的科学家为新元素命名。而之前的一次曾引发了巨大的争议——1993年,美国加利福尼亚州劳伦斯· 伯克利国家实验室的研究人员提议用该国核化学先驱Glenn Seaborg的名字为第106号元素seaborgium命名。起初,IUPAC通过了一项决议,表示元素不能以健在的科学家命名,从而拒绝了美国科学家提议,但最终IUPAC还是妥协了。/pp  IUPAC表示,以莫斯科地区命名的第115号元素Moscovium向“JINR所在地、古老的俄罗斯土地表达了敬意” 而第117号元素tennessine则“赞扬了美国田纳西地区——包括橡树岭国家实验室、范德堡大学和诺克斯维尔的田纳西大学——在超重元素研究中作出的贡献”。/pp  JINR的研究人员与加利福尼亚州劳伦斯· 利物莫尔国家实验室、橡树岭国家实验室合作,共同发现了上述两种元素。/pp  第113号元素nihonium则是第一个以东亚国家命名的人造元素。日本在2004年就宣布合成了第113号元素,这也是亚洲科学家首次合成的新元素。日本理化学研究所仁科加速器研究中心的科研人员将第113号元素以日本国名(Nihon)命名为nihonium。IUPAC表示:“这个元素的名称与发现它的国家直接联系起来。”/pp  在此之前,最近添加到元素周期表上的是flerovium(Fl,第114号元素)和livermorium(Lv,第116号元素)。所有这些人造元素——包括最新的4个元素——都是在实验室中通过粉碎更轻的原子核创造的微量元素,并且它们在分裂成更小、更稳定的片段之前仅存在了几分之一秒的时间。/pp  自从19世纪门捷列夫首创现在通行的化学元素周期表以来,人类已发现了118种元素。它们在元素周期表上按原子序数排列,每一列称作一个族,每一行称作一个周期。/pp  研究人员表示,这4种新元素将完成元素周期表中第七周期元素的排列,并为寻找元素“稳定岛”提供证据。现在的元素周期表只有七行,其中第七行中原子序数在93号及以上的元素都在自然界中不稳定,是人工合成的。然而核物理学家早就预言说,可能存在一个超重“稳定岛”,岛内元素原子的质子和中子数量超越元素周期表内的元素,但十分稳定。/pp  这4种新元素将接受为期5个月的公众评议。除非有公众抗议,否则,按计划IUPAC理事会将在今年11月初正式批准4种新元素加入化学元素周期表大家庭。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制