当前位置: 仪器信息网 > 行业主题 > >

颗粒杂质扫描分析

仪器信息网颗粒杂质扫描分析专题为您提供2024年最新颗粒杂质扫描分析价格报价、厂家品牌的相关信息, 包括颗粒杂质扫描分析参数、型号等,不管是国产,还是进口品牌的颗粒杂质扫描分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒杂质扫描分析相关的耗材配件、试剂标物,还有颗粒杂质扫描分析相关的最新资讯、资料,以及颗粒杂质扫描分析相关的解决方案。

颗粒杂质扫描分析相关的论坛

  • 扫描电镜下的雾霾颗粒

    星球?胶囊?果冻?不,都不对,这些其实是扫描电子显微镜下的雾霾颗粒。昨日,西安交通大学师生将收集的西安雾霾颗粒,放大数十万倍呈现在记者眼前,复杂的形貌和成分令人震惊。http://www.tianjinwe.com/rollnews/201410/W020141023154816568703.jpg硫酸盐颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154817343457.jpg富钛合包壳颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154818129466.jpg烟尘集合体颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154819219347.jpg铁氧化物颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154819840103.jpg未知颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154823437238.jpg附着的超细颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154824069781.jpg铁氧化物颗粒群http://www.tianjinwe.com/rollnews/201410/W020141023154824848817.jpg含铬、铅颗粒  星球?胶囊?果冻?不,都不对,这些其实是扫描电子显微镜下的雾霾颗粒。昨日,西安交通大学师生将收集的西安雾霾颗粒,放大数十万倍呈现在记者眼前,复杂的形貌和成分令人震惊。  好奇 雾霾到底是什么 师生研究了两个月  “很多人都知道雾霾,但雾霾到底是什么?”今年春季雾霾困扰时,西安交大微纳中心执行主任单智伟教授提出了这个问题,但周围没人能回答他。  “雾霾是什么成分?长什么样?”在单智伟指导下,研究生丁明帅和同学开始了一项特殊研究。他们3月至4月连续两个月,每天用硅片收集空气中沉降的颗粒物,然后通过扫描电子显微镜放大数万至数十万倍。  丁明帅说,他们从中选取了1081个颗粒分析,其中PM2.5颗粒494个。显微镜下的雾霾颗粒令他大开眼界。  分析 扬尘颗粒占比最高 主要是汽车尾气  根据形貌和成分,他们把空气颗粒分为七大类。占比最高的是扬尘颗粒,达到33.4%,主要成分是硅铝酸盐、富钙颗粒,形状极不规则。  其次是含硫颗粒,占14.8%。外形有的像盐粒,有的像绒球。“主要来源是汽车尾气。其中的硫酸物一旦进入空气中和水蒸气结合,易生成弱酸性物质,有腐蚀作用。”单智伟说。  燃煤飞灰和烟尘集合体的比例,分别占9.5%、6.1%。燃煤飞灰的形貌大多是规则的球形。他们认为,这两种成分应与煤炭和天然气燃烧有关。  还有一些成分来源很难确定,如硅氧化物、铁氧化物。  惊叹 外貌好奇特 含锌颗粒像一串葡萄  含微量元素颗粒最为奇特。其中含钛颗粒是半透明的球体,内部装满了钛氧化物微粒;含碲颗粒像长满枝杈的竹子,来源不明;含锌颗粒则像一串葡萄。  最让单智伟担心的是含铅、铬颗粒。“这种颗粒多次观察到。铅本身比重比较大,但与其他物质结合后,就像坐了小飞机,悬浮在空气中到处传播,对健康的危害尤其严重。”  他们还测试了一些颗粒的力学性能,发现部分颗粒硬度达到钢铁的5~10倍。颗粒内部也很奇特,把燃煤飞灰颗粒切开,内部全是泡状。  建议 锁定雾霾来源 采取措施降低危害  “明白了雾霾成分,就便于锁定来源,有针对性采取措施。”单智伟说。  他建议,对于扬尘颗粒,要通过立法规范建设行为;对于汽车尾气,可以加装装置进行有效过滤;对于燃煤飞灰和烟尘集合体,可采取新技术和调整能源结构加以解决。  单智伟还提醒,在关注健康危害的同时,也不要忽视PM2.5对工业的影响。“高硬度的颗粒可能给高精度机械设备带来损害,造成损失。要改进封装工艺、封装环境,降低雾霾对工业的影响。”

  • 气相色谱的样品颗粒杂质极多,怎么处理

    样品颗粒杂质特别多,高速离心后取上清液可以用吗,我怕堵柱子。微孔过滤膜可以用吗,我看液相上用得多,SPE柱子呢。大家一般用还有别的什么好办法吗?哪种最优?GC7820,毛细管柱DB-5,0.25μm。

  • 【原创大赛】颗粒粉末中杂质选别与测量

    【原创大赛】颗粒粉末中杂质选别与测量

    颗粒粉末压铸高温烧结后出现断裂缝:http://ng1.17img.cn/bbsfiles/images/2011/12/201112222126_340534_2100780_3.jpg经调查为压铸使用颗粒粉末中有杂质混入,故对该使用同批此乃粉末颗粒进行检测:http://ng1.17img.cn/bbsfiles/images/2011/12/201112222127_340535_2100780_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/12/201112222129_340537_2100780_3.jpg下图是上图颗粒粉末中杂质选别测量http://ng1.17img.cn/bbsfiles/images/2011/12/201112222133_340539_2100780_3.jpg上图中被测量物表面颜色是人为渲染,以突出测量http://ng1.17img.cn/bbsfiles/images/2011/12/201112222138_340540_2100780_3.jpg左右两帧为实时观察、测量对比仪器型号:KYENCE VCH1000C倍率:见各图片

  • 【求助】请教TEM图片颗粒统计分析方法

    我的许多TEM照片都是由底片用扫描仪扫描来的,现在在找一些个颗粒数量,粒径统计软件。因为数量大的关系,在photoshop用直接测量和数数,工作量太大。 发现好些软件(image pro plus,digitalmicrograph等)不能识别我图片上的颗粒(不论是扫描仪扫来的图,或是CCD照的数码照片),都是把背底勾勾圈圈一塌糊涂。 也想试着用photoshop这样类似的软件先把我原先图片处理一下,例如把粒子从背底抠图出来,研究了好长时间效果也不理想,因为有的TEM照片上是密集的许多点,边界复杂、不清晰,用photoshop魔术棒、橡皮擦一点点修改很麻烦的,所以想请教大家,有没有好的办法,哪怕用到几种软件,曲折一点的,可以尽可能地分析我这种图像质量不够高的TEM照片。万分感谢!!!

  • 【转帖】薄层扫描法测定活血通络颗粒剂中黄芪甲苷的含量

    活血通络颗粒是由黄芪、丹参、当归、赤芍、地龙、川芎等多味中药组成的复方制剂,具有益气活血、抗凝、降脂等功效。主要用于中风后遗症、脑血栓、脑动脉硬化及高血压、高血脂、心绞痛等心脑血管疾病。黄芪为方中君药,黄芪甲苷为其指标成分,中药复方中黄芪甲苷含量测定已有文献报道。本研究参考文献方法,建立测定活血通络颗粒中黄芪甲苷含量的方法,为控制本品质量打下基础。 1 仪器与试药 薄层扫描仪(日本岛津CS一9000),硅胶G薄层板(青岛海洋化工厂,10cm×10cm),定样毛细管(美国Drumond公司),电子分析天平(梅特勒一托利多仪器上海有限公司),黄芪、丹参、当归等原料药(医药公司),黄芪甲苷对照品(中国药品生物制品检定所),活血通络颗粒剂(本院自制,批号20020326,20020410,20020419)。所用试剂均为分析纯。

  • 【求助】扫描电镜杂志

    请问大家知道有什么扫描电镜,特别是场发射扫描电镜相关的期刊杂志吗?不是关于具体材料的,就这一仪器应用特性方面的。谢谢大家!

  • 关于丙酸中杂质的分析

    各位大侠,我最近在做丙酸酐中杂质的检测,水解过后用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分析,没有找到合适的方法,于是转用液相来做,就遇到了下面的问题。我使用的是waters的HSS杂化颗粒25cm柱子,流动相是pH3.0磷酸缓冲液和甲醇的梯度,缓冲液起始比例是95%,波长210,检测出的杂质在丙酸峰之前,分离度1.5,保留时间7、8分钟。分析合成路线根本没有头绪,直接走[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]没有响应,后来把样品接出来旋蒸浓缩后进[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]也没有响应,因为溶剂是高比例的水相,怀疑是旋蒸过程中挥发。开发HILIC方法,使用95%乙腈冲洗,丙酸保留时间也只有1分多,而且未检出其他杂质峰,现在想用正相来做,不知道各位大侠还有什么方法?

  • 头孢克洛有关物质——与9种杂质的共同分析

    头孢克洛有关物质——与9种杂质的共同分析

    [align=center][b]头孢克洛有关物质——与9种杂质的共同分析[/b][/align]头孢克洛(cefaclor)为白色至微黄色粉末或结晶性粉末的化学品,微臭,本品在水中微溶,在甲醇、乙醇、三氯甲烷或二氯甲烷中几乎不溶,分子式:C15H14ClN3O4S。头孢克洛是β-内酰胺类抗生素,头孢菌素类药,是第二代头孢菌素,主要适用于敏感菌所致的急性咽炎、急性扁桃体炎、中耳炎、支气管炎、肺炎等呼吸道感染、皮肤软组织感染和尿路感染等。[align=center][img=,144,171]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140859582934_5220_2222981_3.gif!w144x171.jpg[/img][/align][align=center]头孢克洛[/align][align=center]M.W.: 367.81[/align]本实验对客户提供的头孢克洛原料药以及9种杂质(杂质A、B、C、D、E,7-ACCA,头孢克洛δ-3异构体,α-苯甘氨酸,苯甘氨酸甲酯盐酸盐)进行分析,希望得到杂质混合对照溶液及供试品溶液中各杂质的良好分离。客户反馈,将流动相磷酸盐体系的pH值由4.0提高到4.5可得到杂质混合对照溶液中7-ACCA和α-苯甘氨酸之间的良好分离,但头孢克洛与其相邻杂质E峰之间分离较难。客户前期使用了CAPCELL PAK C[sub]18 [/sub]MGII S3 4.6 mm i.d. × 250 mm色谱柱进行分析,在此基础上,我们尝试了其他填料的几款色谱柱进行分离尝试,分别为CAPCELL PAK C[sub]18[/sub] AQ(S3& S5)、CAPCELL PAK ADME(金刚烷基)、SUPERIOREX ODS、CAPCELL PAK PFP(五氟苯基)、CAPCELL PAK CN(氰基)。首先,参考客户提供的液相条件,使用高极性色谱柱[b]CAPCELL PAK C[sub]18 [/sub]AQ[/b]对杂质混合对照溶液进行分析尝试;为了得到杂质间的更好分离,粒径选择3 μm,如图1,[color=#2F5496]各杂质间均能得到良好的分离结果,头孢克洛与杂质[/color][color=#2F5496]E[/color][color=#2F5496]的分离度为[/color][color=#2F5496]2.70[/color][color=#2F5496],达到基线分离。[/color][color=#2F5496][/color][align=center][img=,690,405]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140902184290_9307_2222981_3.png!w690x405.jpg[/img][/align][align=center]图1 AQ S3 分析杂质混合对照溶液结果[/align][align=center] [/align][align=center]1.α-苯甘氨酸 2. 7-ACCA 3. 杂质A 4. 杂质B 5. 苯甘氨酸甲酯盐酸盐 6.杂质C[/align][align=center]7. 头孢克洛δ-3异构体 [color=#ff0000]8. 头孢克洛 9. 杂质E [/color]10.杂质D[/align][color=#2F5496][img=,555,311]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140902187828_2715_2222981_3.png!w555x311.jpg[/img][/color]进一步分析供试品溶液,如图2,由于样品浓度较高,导致头孢克洛主峰向后展宽,进而将杂质E包于其中。[color=#2F5496][/color][align=center][color=#2F5496][img=,659,441]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140915544228_5404_2222981_3.png!w659x441.jpg[/img][/color][/align][align=center]图2 AQ S3 分析供试品溶液结果[/align][align=center][/align][align=left]为使头孢克洛和杂质E之间得到更好的分离,我们尝试对色谱条件进行调整。[/align][align=left][/align][align=left][b]1.调整柱温[/b][/align][align=left][b][/b]首先对温度进行调整:实验过程中发现柱温对头孢克洛与杂质E的出峰行为有较大影响——当柱温设置为20 ℃时,头孢克洛和杂质E之间能够得到良好分离;将温度提高到30℃时,杂质E向前移动趋势较大。为使杂质E峰出在头孢克洛峰前,避免由于供试品中头孢克洛峰的展宽而使杂质E被包于其内,进一步将柱温提高到40℃,发现头孢克洛与杂质E峰重合;最终,将柱温提高到45℃,此时杂质E峰移至头孢克洛峰前,但未能得到理想的分离结果。[/align][align=left][/align][align=center][img=,659,430]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140916597550_373_2222981_3.png!w659x430.jpg[/img][/align][align=center]图3 不同柱温条件下AQ S3分析杂质混合对照溶液结果[/align][align=center][/align][align=left][b]2.调整流动相[/b][/align][align=left][b][/b][/align][align=left]考虑到提高柱温对色谱柱寿命的影响,仍选择初始使用的20℃,对流动相梯度条件进行调整。在增强整体保留时间的同时,发现[color=#538135]头孢克洛和杂质[/color][color=#538135]E[/color][color=#538135]的出峰顺序发生了颠倒[/color],且[color=#538135]分离良好[/color],进而有效避免了杂质E被包于头孢克洛主峰中的问题;而在主峰后出峰的杂质D与头孢克洛之间分离度亦较高,即使供试品溶液中的头孢克洛峰展宽,也不会出现将杂质D包于其中的问题。[/align][align=left]因此我们在此梯度条件下进一步对供试品溶液进行分析,如图4,头孢克洛与各杂质峰之间均能得到良好的分离结果。[/align][align=left][/align][align=center][img=,679,417]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140917450308_6331_2222981_3.png!w679x417.jpg[/img][/align][align=center]图4 AQ S3分析杂质混合对照溶液及供试品溶液结果(调整梯度)[/align][align=center] [/align][align=center]1.α-苯甘氨酸 2. 7-ACCA 3. 杂质A 4. 杂质B 5. 苯甘氨酸甲酯盐酸盐 6.杂质C[/align][align=center]7. 头孢克洛δ-3异构体 [color=#ff0000]8. 杂质E 9. 头孢克洛[/color] 10.杂质D[/align][align=left][img=,587,335]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140918136074_9375_2222981_3.png!w587x335.jpg[/img][/align][align=left][/align][align=left]为使客户有更多的色谱柱选择,本实验室也尝试使用键合金刚烷基的高极性色谱柱CAPCELL PAK ADME分析杂质混合对照溶液和供试品溶液,如图5,在分析杂质混合对照溶液时,能够得到各组分的良好分离,同时发现杂质E和头孢克洛出峰顺序发生颠倒,但同时也发现头孢克洛峰与其后相邻杂质D峰之间分离度较低(Rs=1.71);因此,如图6,在分析供试品溶液时,由于色谱峰向后展宽,使得杂质D被包于头孢克洛主峰中,未能得到理想分离结果。[/align][align=left][/align][align=center][img=,690,426]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140918484278_6616_2222981_3.png!w690x426.jpg[/img][/align][align=center]图5 ADME 分析杂质混合对照溶液结果[/align][align=center] [/align][align=center]1.α-苯甘氨酸 2. 7-ACCA 3. 杂质A 4. 杂质B 5. 苯甘氨酸甲酯盐酸盐 6.杂质C[/align][align=center]7. 头孢克洛δ-3异构体 [color=#ff0000]8. 杂质E 9. 头孢克洛[/color] 10.杂质D[/align][align=left][/align][align=center][img=,689,417]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140918485898_9906_2222981_3.png!w689x417.jpg[/img][/align][align=center]图6 ADME 分析杂质混合对照溶液结果[/align][align=left][img=,585,336]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140919331328_5070_2222981_3.png!w585x336.jpg[/img][/align][align=left][/align][align=left][/align][align=left]之后,我们也尝试使用了CN(氰基柱)和PFP(五氟苯基)以及高碳载量的SUPERIOREX ODS色谱柱,在客户提供的色谱条件下对杂质混合对照溶液进行分析,均未能得到更理想的分离结果。[/align]

  • Phenom 飞纳颗粒统计分析测量系统在中国计量院的应用

    Phenom 飞纳颗粒统计分析测量系统在中国计量院的应用

    最近实验室买了一批 PS 聚苯乙烯小球做实验模板,形状非常规则,直径也非常均匀,标称直径分别为 1.5 μm 和 10 μm 。为了验证其准确性,我们使用复纳科学仪器(上海)有限公司北京实验室的 Phenom 飞纳台式扫描电镜观察并统计。在本试验中,利用 Phenom 飞纳电镜的颗粒统计分析测量系统帮助我们获得了漂亮的统计结果,同时极大简化实验流程,加快了实验进度。下图为北京实验室的 Phenom 飞纳台式扫描电镜,小而精致,左边的显示器用于呈现样品在扫描电镜下的微观形貌,右边的电脑及软件可以做能谱分析,超大视野全景拼图,3D 粗糙度重建,纤维统计分析测量,颗粒统计分析测量,孔径统计分析测量等,每个软件在完成统计后,会输出相应的报告,本文截取颗粒统计分析测量系统的部分报告说明。http://ng1.17img.cn/bbsfiles/images/2015/08/201508261325_562983_2913526_3.jpg实验室的 Phenom 飞纳台式扫描电镜在使用颗粒统计分析测量系统之前,先借助扫描电镜观察 PS 聚苯乙烯小球的微观形貌。这个过程类似于搜集样本,借助 Phenom 飞纳电镜的光学导航,自动马达样品台,找样的过程非常简单。光学导航相当于有了地图,从而有了找到最佳位置的方向,自动马达样品台可以在瞬间将视野移动到需要观察位置,只需点击该位置一次。借助 Phenom 飞纳电镜颗粒统计分析测量系统可以一次处理大量数据,该软件最多可以一次读取 400 张扫描电镜图片,完成对所有图片的分析统计,给出统计结果的图表报告。如果一次需要几百张扫描图片作为样本的话,不用担心拍照取照时间过长,结合 Phenom 飞纳电镜超大视野全景拼图,可以自动完成拍照取照的功能,原因是飞纳电镜有光学导航,自动聚焦,和自动马达样品台,这些设计通过计算机的指令控制,可以自动连续扫描指定大小区域,每分钟可采集超过 100 张 1024 x 1024 分辨率的图像,这些图像自动存储在电脑的指定文件夹内,同时,这些图像可以自动拼合为一副全景图像。Phenom 飞纳电镜颗粒统计分析测量系统可以快速读取指定文件夹内的图像,即可以读取由 Phenom 飞纳电镜超大视野全景拼图自动采集的图像。因此可以快速处理样本量大的统计工作,节省人力。以下是本次实验中使用的 PS 聚苯乙烯小球在Phenom 飞纳台式扫描电镜下的部分图片,低倍下可以观察到小球的排列情况,高倍可以观察小球表面的细节。http://ng1.17img.cn/bbsfiles/images/2015/08/201508261328_562984_2913526_3.jpgPS 聚苯乙烯小球放大倍数:1万倍http://ng1.17img.cn/bbsfiles/images/2015/08/201508261329_562985_2913526_3.jpgPS 聚苯乙烯小球放大倍数:2万倍样本准备好后,开始用 Phenom 飞纳电镜颗粒统计分析测量系统进行试验,我们最先使用标称直径 1.5 μm 的 PS 聚苯乙烯小球试验。http://ng1.17img.cn/bbsfiles/images/2015/08/201508261331_562986_2913526_3.png上图为标称直径 1.5 μm 的 PS 聚苯乙烯小球的识别效果,识别得非常完美,5 秒钟快速给出结果,同时给出关于该小球的众多如长轴,短轴,面积,周长等参数,大大方便了我们去识别买来的 PS 聚苯乙烯小球的质量。下图为其众多参数,可以看到该小球的平均直径为 1.4 μm,总的来说质量还不错。http://ng1.17img.cn/bbsfiles/images/2015/08/201508261331_562987_2913526_3.png[

  • 液质联用全扫描有两个杂质峰:255和283

    thermo TSQ quantiva[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url] 负离子全扫描(只有流动相甲醇和水1:1),有两个杂质峰:255和283,不知道污染源是什么?[img]https://ng1.17img.cn/bbsfiles/images/2019/01/201901091012072618_4356_2823651_3.png[/img]

  • 【原创大赛】锡球杂质分析

    【原创大赛】锡球杂质分析

    最近在生产线出现废品率很高,经过调查,发现根本原因可能是最新用的一批焊料(锡球)(下面是锡球的电镜图)出了问题。通过显微镜检查,发现新锡球中混入了一些绿色杂质。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301509_520885_2942222_3.jpg1.杂质分析经显微镜放大,发现混入的绿色杂质有点像晶体或者无机物,而且是多种颜色。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301510_520886_2942222_3.jpg为了分析这个杂质,首先把这杂质挑出出来放在碳胶布,进行SEM/EDX分析,确定它的成分从而找到它的来源。SEM观察http://ng1.17img.cn/bbsfiles/images/2014/10/201410301510_520887_2942222_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410301511_520888_2942222_3.jpg EDX分析http://ng1.17img.cn/bbsfiles/images/2014/10/201410301534_520904_2942222_3.jpgSEM观察显示这个杂质的外观不太像常见的脏污;而EDX的分析显示这个杂质主要含有元素C,O,Al,Si,Cl;很奇怪。2. 存放锡球的瓶子分析这些杂质是哪里来的呢?首先考虑到是杂质存在的地方:存放锡球的瓶子。因为这个瓶http://ng1.17img.cn/bbsfiles/images/2014/10/201410301514_520891_2942222_3.jpg子肉眼看起来也是绿色的,特别是瓶盖和瓶子内部,如果这两个地方表面不平或者很粗糙,就可能会导致一些本身材料的颗粒掉到瓶子里,跟里面的锡球混在一起。下面是对瓶子分析:首先,用手术刀在瓶子内壁刮下一些碎片放在硅片上,然后进行显微镜观察和SEM/EDX分析。显微镜观察显示瓶子材料跟杂质明显不同,也不像杂质那样有多种颜色。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301519_520892_2942222_3.jpgSEM观察也发现瓶子材料跟杂质明显不同;瓶子材料的表面也非常光滑,所以表面材料脱落的可能性也很小。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301520_520893_2942222_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410301521_520894_2942222_3.jpgEDX[font=

  • 动态颗粒图像分析仪的研制

    动态颗粒图像分析仪的研制摘要:本文论证了研制动态颗粒图像分析仪的必要性与背景, 介绍了winner100实现动态颗粒测试的方法以及技术特征。评价了动态颗粒图像分析仪的实用价值与科学意义。关键词.. 动态颗粒, 图像分析, 粒度与形状,3 维一、问题的提出颗粒是组成材料的基本单元, 影响材料的性能的不仅是颗粒的化学组成, 颗粒的大小与颗粒的形态对材料的性能影响巨大, 因此颗粒粒度与形态的检测越来越受到各行业的重视。目前检测颗粒大小和颗粒形态的方法有多种,激光粒度分析仪、沉降粒度仪、电阻法粒度亦、颗粒图像分析技术是最常用的技术。激光粒度分析仪、沉降粒度仪、电阻法粒度仪, 只能检测颗粒大小, 不能检测颗粒形状;颗粒图像分析技术是一种不仅可以检测颗粒大小也可以检测颗粒形状对唯一方法, 但是由于此种技术有几个致命的缺点限制了它的进一步发展:1.样品制备困难。颗粒在载玻片上很难得到充分的分散, 由于颗粒粘连使得颗粒分析的准确性大受影响; 2.颗粒处于静态, 非球形颗粒的取向会对测试结果造成偏离;3.由于显微镜的视场有限, 被测得颗粒数目受到很大限制, 因此取样的代表性差, 重复性不好。由于以上问题, 颗粒测试中急需一种性能更加优越的测试装置, 能够获得颗粒的准确图像, 操作简便, 满足颗粒形状和颗粒粒度分析的更高要求。国际上荷兰安米德公司、德国新帕泰克公司、德国莱驰公司均推出了同时测定颗粒粒与形状的图像分析仪。国内尚无此种产品, 济南微纳公司通过3年的攻关研制的winner100 颗粒图像分析仪填补了此项空白。二、动态颗粒测试的方法与技术特征Winner100突破了传统的颗粒图像仪的工作模式, 采用超声样品分散系统分散颗粒, 高速摄像头对动态颗粒图像进行采集, 1微秒可以采集一幅颗粒图像, 用计算机对图像进行分析处理, 达到对颗粒粒度与形态进行三维同时测试的目的。其主要技术特征有:1.彻底改变了手工制样操作繁琐的局面, 样品制备操作非常简单, 分散效果好; 2.采用功能强大的动态颗粒图像分析软件, 具有高速采样、自动颗粒图像处理, 实时显示当前图像、实时分析粒度分布、连续统计分析结果, 处理策略自行编程, 多种粒径定义选择, 粒度统计、形状分析等多种功能。打印报告允许自行编辑。3.动态测试使颗粒采样数量无限增加, 统计结果真实可靠, 代表性好、重复性高;4.动态测试使颗粒不同侧面得到采样, 实现了三维测试, 彻底消除了二维测试的颗粒取向误差;粒度测试结果可以与激光粒度分析仪比美。5.winner100动态图像分析专用软件具有强大的图像处理功能;6.支持多种粒径选择和多种粒度分布, 具有多种图像处理功能及其集成处理, 支持图像采集间隔设定与实时显示颗粒形貌与当时粒度分布和累计粒度分布, 记录并显示粒度波动图, 可以输出多种分析图表, 高性能的软件使使用者的颗粒分析工作变得十分轻松方便。7.本成果不仅可用于实验室颗粒分析, 也适用于颗粒在线粒度与粒形监测。对杜会经济发展和科学进步的意义本项目突破了显微静态图像分析的局限, 在国内率先提出动态颗粒图像分析的概念;由于颗粒运动中测试, 克服了二维颗粒图像分析的弊病, 大大提高了采样代表性, 消除了颗粒取向误差, 使颗粒粘连问题彻底解决。本项成果克服了静态颗粒图像仪的缺陷, 提供了一种对运动颗粒同时进行粒度与形状分析的先进手段, 具有操作简单, 测试范围广, 代表性好, 准确可靠, 直观可视, 适用于1-6000微米的各种固体颗粒。可以广泛应用于建材、化工、石油、金属与非金属、环保、轻工、国防等众多领域的实验室和在线颗粒粒度与形状分析。无疑, 对于提高我国各行业颗粒测试水平和经济发展具有重要的实用价值。颗粒测试的基础是颗粒的表征, 本项成果提供了一种颗粒动态测试的实用手段, 因此颗粒的三维表征问题就提到了议事日程上来, 颗粒的三维表征对颗粒学的进步与发展具有重要的意义。[color=blac

  • 石油深加工中常见杂质分析的研究

    [align=center][b][font=楷体]石油深加工中常见杂质分析的研究[/font][/b][/align][b][font=黑体]摘[/font][font=黑体]要:[/font][/b][font=宋体]本文针对石油深加工中常见杂质分析进行了研究,通过对常见杂质的种类、来源、分析方法以及提高分析精度的措施进行系统总结和分析,对于保证石油产品质量和安全具有重要意义。[/font][align=left][b][font=黑体]关键词:[/font][/b][font=宋体]石油;深加工;杂质分析[/font][/align][align=left][b][font='Times New Roman','serif']1[/font][font=宋体]前言[/font][/b][/align][align=left][b][font='Times New Roman','serif']1.1[/font][font=宋体]研究背景[/font][/b][/align][font=宋体]石油深加工是将原油经过一系列的物理和化学处理过程,从中分离出石化产品的过程。石油深加工涉及的产品种类多样,如燃料油、润滑油、化学品、塑料、橡胶等。然而,在石油深加工过程中,常常存在着各种杂质,如金属离子、酸性物质、水分、沉淀物、固体颗粒等。这些杂质会影响产品的质量、稳定性和性能,甚至会影响生产设备的寿命和安全性。[/font][align=left][b][font='Times New Roman','serif']1.2[/font][font=宋体]研究意义[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])石油深加工中常见杂质分析是确保产品质量和安全的重要手段。杂质的存在会影响产品的性能和品质,甚至会导致生产设备的损坏和安全事故。因此,石油深加工企业需要及时、准确地分析常见的杂质,以确保产品符合相关标准和规定,同时保证生产设备的正常运行。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])石油深加工中常见杂质分析的研究对于改进生产工艺具有重要作用。通过对常见杂质进行分析,可以识别和定位生产过程中存在的问题,进而改进生产工艺,提高生产效率和产品品质。例如,通过分析润滑油中的金属杂质,可以确定生产设备的磨损情况,进而进行适当的维护和保养,提高设备的使用寿命。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])石油深加工中常见杂质分析的研究有助于提高企业的竞争力。在当今激烈的市场竞争中,不断提高产品的质量和性能是企业取得竞争优势的关键。通过对石油深加工中常见杂质进行分析,企业可以更好地控制生产过程,提高产品的一致性和可靠性,从而满足客户的需求,提高市场占有率。[/font][align=left][b][font='Times New Roman','serif']2 [/font][font=宋体]石油深加工中的[/font][font=宋体]常见杂质分析[/font][/b][/align][align=left][b][font='Times New Roman','serif']2.1[/font][font=宋体]常见杂质来源[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])原油中的杂质[/font][font=宋体]原油是石油深加工的原料,其中含有多种杂质,如水、机械杂质、沙、泥等,这些杂质会在炼制过程中随着原油进入各个装置和设备,成为常见杂质的来源之一。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])生产设备和管道中的杂质[/font][font=宋体]石油深加工设备和管道在长时间的使用过程中,容易产生氧化、腐蚀、磨损等问题,导致设备和管道内部出现沉积、锈蚀等杂质。这些杂质会影响产品的质量和稳定性,因此需要对生产设备和管道进行定期检查和维护。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])催化剂中的杂质[/font][font=宋体]催化剂是石油深加工过程中常用的催化剂,它在反应过程中可以起到加速反应、提高产品质量等作用。然而,催化剂本身也可能含有杂质,如金属离子、硫化物等,这些杂质会在反应过程中释放出来,影响产品的质量和稳定性。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])生产过程中人为因素的影响[/font][font=宋体]石油深加工过程中,人为因素也可能成为常见杂质的来源之一。例如,操作不当、污染源的存在、加工工艺不合理等因素都可能导致产品中含有一定的杂质。因此,在生产过程中需要加强对操作流程和环境的监管和管理。[/font][align=left][b][font='Times New Roman','serif']2.2 [/font][font=宋体]常见杂质特点[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])常见杂质在化学和物理性质上具有复杂性[/font][font=宋体]石油深加工过程中,常见的杂质包括铁、铜、镍、钒等金属离子,有机酸、树脂、胶体等有机杂质,以及沉淀物、水分、固体颗粒等无机杂质。这些杂质的化学和物理性质多种多样,如有机酸的极性较强,容易溶解在水中,而金属离子具有比较强的电化学反应活性,容易发生氧化还原反应,对分析方法提出了较高的要求。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])常见杂质的浓度较低,分析方法的灵敏度要求较高[/font][font=宋体]石油深加工过程中,常见的杂质浓度一般较低,如有机酸的浓度通常在数毫克[/font][font='Times New Roman','serif']/[/font][font=宋体]升以下,金属离子的浓度常常在微克[/font][font='Times New Roman','serif']/[/font][font=宋体]升以下,对分析方法的灵敏度要求较高。因此,在进行常见杂质分析时,需要选择灵敏度高、选择性好、可靠性高的分析方法。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])样品的处理过程中易受到污染[/font][font=宋体]在样品的制备和处理过程中,会受到空气中的灰尘、化学试剂、实验器皿等的污染。这些污染物会对样品的分析结果产生干扰,降低分析方法的准确性和可靠性。因此,在样品制备和处理过程中需要注意避免污染,采取严格的控制措施。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])常见杂质的种类和含量随着加工工艺的变化而变化[/font][font=宋体]石油深加工中,常见杂质的种类和含量随着加工工艺的变化而变化。例如,润滑油中的重金属杂质在炼制过程中的含量和种类会发生变化,而在不同种类的润滑油中,重金属杂质的含量和种类也会有所不同。因此,在进行常见杂质的分析和控制时,需要结合具体的加工工艺和产品特性,选择适当的分析方法和控制策略。同时,需要建立完善的质量控制体系,对各个环节进行严格的监管和管理,确保产品的质量和稳定性。[/font][align=left][b][font='Times New Roman','serif']2.3[/font][font=宋体]常见杂质的分析方法[/font][/b][/align][font=宋体]石油深加工中常见杂质的分析方法包括物理方法、化学方法和仪器分析方法,具体如下:[/font][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])物理方法[/font][font=宋体]物理方法是通过物理原理对样品进行分离和提纯,来检测其中的杂质的方法。如沉淀、过滤、萃取等方法。其中,沉淀法适用于固体颗粒和大分子有机杂质的分离;过滤法适用于固体颗粒和大分子有机杂质的分离;萃取法适用于有机杂质的提取和分离。这些方法具有简单、快速、易于操作的特点,但是灵敏度和选择性相对较低。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])化学方法[/font][font=宋体]化学方法是通过化学反应对样品中的杂质进行分析和定量。如络合滴定法、显色滴定法、酸度滴定法等。其中,络合滴定法适用于金属离子、有机酸等杂质的测定;显色滴定法适用于酸性物质的测定;酸度滴定法适用于酸性物质、碱性物质等的测定。这些方法具有比较高的灵敏度和选择性,但需要较长的分析时间和复杂的样品处理步骤。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])仪器分析方法[/font][font=宋体]仪器分析方法是通过各种分析仪器对样品中的杂质进行分析和检测。如质谱仪、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]、红外光谱等。其中,质谱仪适用于金属离子、有机酸等杂质的检测;[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]适用于大分子有机杂质的检测;[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]适用于小分子有机杂质的检测;[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]适用于金属离子的检测;红外光谱适用于有机杂质的检测。这些方法具有高灵敏度、高分辨率、高选择性等特点,但设备和分析成本较高,需要较为专业的技术支持。[/font][align=left][b][font='Times New Roman','serif']3 [/font][font=宋体]提高[/font][font=宋体]常见杂质分析精度的措施[/font][/b][/align][align=left][b][font='Times New Roman','serif']3.1 [/font][font=宋体]严格控制分析条件[/font][/b][/align][font=宋体]分析条件的控制直接影响分析结果的准确性和精度。在分析过程中,需要严格控制温度、[/font][font='Times New Roman','serif']pH[/font][font=宋体]值、流速、反应时间等分析条件,避免影响分析结果的因素干扰。[/font][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])确定合适的温度控制:对于热敏感的样品,需要严格控制分析过程中的温度。可以使用水浴或加热器来控制温度,确保样品在分析期间保持稳定的温度。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])确定合适的[/font][font='Times New Roman','serif']pH[/font][font=宋体]值:不同的样品需要不同的[/font][font='Times New Roman','serif']pH[/font][font=宋体]值来达到最佳分析效果。因此,在分析过程中,需要根据样品的特性和分析方法的要求来调整[/font][font='Times New Roman','serif']pH[/font][font=宋体]值,以确保分析结果的准确性和精度。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])控制流速和反应时间:流速和反应时间也是影响分析结果的因素。在分析过程中,需要确保流速的稳定,并根据反应时间要求来控制反应时间,以保证分析结果的准确性和精度。[/font][align=left][b][font='Times New Roman','serif']3.2 [/font][font=宋体]优化样品处理方法[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])确定样品处理方法。在进行样品处理之前,需要确定样品处理方法。样品处理的方法包括沉淀、过滤、萃取等。需要根据待测样品的性质和组成,选择合适的样品处理方法。例如,对于含有大量固体颗粒的样品,需要进行适当的沉淀和过滤处理,以减小对分析结果的影响。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])选择合适的试剂和溶剂。在进行样品处理过程中,需要选择合适的试剂和溶剂。试剂和溶剂的选择需要考虑其化学特性和物理特性,以及对分析结果的影响。例如,选择酸、碱、氧化剂等试剂时,需要考虑其对杂质的溶解能力和分析结果的影响。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])控制样品处理条件。样品处理条件对分析结果有重要影响。需要控制样品处理条件,包括温度、时间、[/font][font='Times New Roman','serif']pH[/font][font=宋体]值等。需要根据具体情况选择合适的处理条件,以提高分析精度和准确度。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])避免交叉污染。在样品处理过程中,需要避免样品之间的交叉污染。交叉污染会导致杂质的混淆,影响分析结果的准确性。需要采取相应的措施,如更换操作用品、严格控制操作流程等,避免交叉污染。[/font][font=宋体]([/font][font='Times New Roman','serif']5[/font][font=宋体])进行空白实验和对照实验。空白实验和对照实验可以评估样品处理方法的准确度和可靠性。空白实验可以检测样品处理过程中的污染来源,对照实验可以评估样品处理方法的准确性和可靠性。通过空白实验和对照实验,可以确定样品处理方法的适用性,并纠正分析结果的误差。[/font][align=left][b][font='Times New Roman','serif']3.3 [/font][font=宋体]做好仪器设备校准工作[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])定期检验和校准仪器设备。定期检验和校准仪器设备可以保证仪器设备的准确度和可靠性。需要根据仪器设备的使用频率和使用环境,定期进行检验和校准。对于一些需要精确测量的仪器,需要更加频繁地进行校准。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])选择适当的标准物质。校准仪器设备需要使用标准物质。选择适当的标准物质对校准结果具有重要影响。需要根据待校准的仪器设备和待测杂质的性质,选择合适的标准物质。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])控制环境因素。环境因素对仪器设备的准确度和可靠性有重要影响。在进行校准过程中,需要控制环境因素,包括温度、湿度等。需要根据具体情况选择合适的校准环境。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])按照标准操作流程进行校准。校准仪器设备需要按照标准操作流程进行。校准操作流程需要详细记录,包括校准步骤、校准结果、校准时间等。需要根据具体情况选择合适的校准操作流程。[/font][align=left][b][font='Times New Roman','serif']3.4 [/font][font=宋体]采用内标法和外标法[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])内标法的具体措施[/font][font=宋体]内标法是在样品中加入已知浓度的内标物质,用内标物质的响应与待测物质的响应比较,计算出待测物质的浓度。具体措施包括:[/font][font=宋体]选择合适的内标物质。内标物质应与待测物质具有相似的化学特性和物理特性,同时需要与待测物质分离度高、信号稳定等。[/font][font=宋体]确定内标物质的加入量。内标物质的加入量需要保证与待测物质的量在同一量级,以保证计算结果的准确性。[/font][font=宋体]进行内标物质的响应比较。待测物质和内标物质的响应需要通过仪器设备测量得到。对于一些需要高精度测量的分析,需要进行多次测量,取平均值。[/font][font=宋体]计算待测物质的浓度。通过内标物质的响应比较,计算出待测物质的浓度。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])外标法的具体措施[/font][font=宋体]外标法是使用已知浓度的标准物质,建立标准曲线,然后根据待测样品的响应值,计算出待测物质的浓度。具体措施包括:[/font][font=宋体]选择合适的标准物质。标准物质需要与待测物质具有相似的化学特性和物理特性,同时需要纯度高、溶解度好等。[/font][font=宋体]建立标准曲线。通过测量不同浓度的标准物质,建立标准曲线。标准曲线需要经过回归分析,计算出待测物质浓度的相关参数。[/font][font=宋体]测量待测样品的响应值。使用仪器设备测量待测样品的响应值,需要注意避免测量误差。[/font][font=宋体]计算待测物质的浓度。通过标准曲线的相关参数和待测样品的响应值,计算出待测物质的浓度。[/font][align=left][b][font='Times New Roman','serif']3.5 [/font][font=宋体]引入质量控制[/font][/b][/align][font=宋体]([/font][font='Times New Roman','serif']1[/font][font=宋体])制备质控样品[/font][font=宋体]制备质控样品是质量控制的关键环节。质控样品需要与待测样品具有相似的化学特性和物理特性,同时需要纯度高、浓度稳定等。通过制备质控样品,可以评估分析方法的准确度和可靠性。[/font][font=宋体]([/font][font='Times New Roman','serif']2[/font][font=宋体])建立质量控制系统[/font][font=宋体]建立质量控制系统是保证分析质量的重要措施。质量控制系统需要包括内部质量控制和外部质量控制。内部质量控制需要对分析仪器设备和分析流程进行控制,保证分析结果的准确性和可靠性。外部质量控制需要参加国内外的质量控制项目,评估分析方法的准确度和可靠性。[/font][font=宋体]([/font][font='Times New Roman','serif']3[/font][font=宋体])确定质量控制标准[/font][font=宋体]质量控制标准是评估分析结果的依据。需要根据待测物质的特性和分析要求,制定合适的质量控制标准。质量控制标准需要包括测量范围、检测限、准确度、精密度等。[/font][font=宋体]([/font][font='Times New Roman','serif']4[/font][font=宋体])进行质量控制实验[/font][font=宋体]质量控制实验可以评估分析结果的准确度和可靠性。需要在每次分析前,加入质控样品,进行实验验证。通过比较实验结果和质量控制标准,评估分析方法的准确度和可靠性。[/font][font=宋体]([/font][font='Times New Roman','serif']5[/font][font=宋体])记录质量控制数据[/font][font=宋体]质量控制数据需要记录和统计,包括质控样品的制备和使用、质量控制实验的结果等。通过记录和统计质量控制数据,可以评估分析方法的稳定性和可靠性,并进行相应的纠正。[/font][align=left][b][font='Times New Roman','serif']4 [/font][font=宋体]结语[/font][/b][/align][font=宋体]总而言之,石油深加工中常见杂质分析的研究对于保证石油产品质量和安全具有重要意义。通过选择合适的分析方法和措施,可以提高常见杂质分析的精度和准确度,为石油深加工的稳定和可持续发展提供有力保障。未来,还需要进一步加强常见杂质的检测和分析研究,提高石油产品的质量和安全水平。[/font][align=center][font='Times New Roman','serif'] [/font][/align]

  • 【求助】(求助)请问肌肉组织内的少量金属磨损颗粒扫描电镜如何鉴别

    上图是我用人工关节的界膜组织(也就是非正常的人体组织)富含金属磨损颗粒区域的一个扫描图,通过能谱可以知道它富含多种金属元素在内,但是我从上图分不清哪些是金属磨损颗粒,哪些是人体正常组织!请高手赐教下,并阐述下如何分辨金属颗粒与正常组织?谢谢[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802281718_80067_1113403_3.gif[/img]

  • 【转帖】吸附质氮气气源中的气体杂质对吸附过程的影响

    对于99.995%的高纯吸附载气和吸附质气体,其中的主要杂质气体为水份。假设气源气体中水份的含量为0.004%,则样品处在-195.8℃、30ml/min的流速中120min内停留在粉末表面的水的量为 0.14ml(标况下的体积),而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水蒸汽的量为:0.12 ml(标况),与实际停留在粉末表面的水量相当,材料表面已经被水分饱和;如果不吹扫处理继续测试,那测试结果将不可能正确。对于色谱法孔径测试需要测试三四十个分压点,影响更是显著,若分压点之间不做吹扫处理,最后得到的结果将不是固体材料本身对氮分子的吸附了,而是包覆了水分子的颗粒对氮分子的吸附了,孔隙也早已被高沸点易吸附气体杂质H2O、CO2饱和。 要消除吸附质气源中的气体杂质H2O、CO2等的影响, 可采用冷阱气体净化装置,冷阱是消除高沸点气体杂质的有效方式;比表面仪配备的冷阱,使本会被样 品吸附的水份等高沸点杂质提前被冷阱捕获,使得经过净化后的高纯氮和高纯氦气体中的水分含量低于10-17Pa,达到超高纯气体状态; 3H-2000系列比表面仪是国内唯一配备冷阱的比表面仪器,这也是该系列仪器能够取得高精度和高分辨率的因素之一。

  • 影响示差扫描量热分析的因素

    影响DSC的因素和差热基本类似,鉴于DSC主要用于定量测量,因此某些实验因素的影响更为主要。 一、试样特性的影响 (1)样品用量的影响 试样用量是一个不可忽视的因素。通常用量不宜过多。因为过多会使试样内部传热慢、温度梯度大,导致峰形扩大和辨别力下降,但可以观察到细微的转变峰。当采用较少的样品时,用较高的扫描速度,可得到最大的分辨力、可得到最规则的峰形、可使样品和可控制的气氛更好的接触,更好的去处分解产物。 (2)粒度的影响 粒度的影响比较复杂。通常由于大颗粒的热阻较大而导致测试试样的熔融温度和熔融热焓偏低,但是当结晶的试样研磨成细颗粒时,往往由于晶体结构的歪曲和结晶度的下降也可以导致类似的结果。对于带静电的粉状试样,由于粉末颗粒间的静电引力会引起粉状形成聚集体,这也会引起熔融热焓的变大。 (3)试样的几何形状 在高聚物的研究中,发现试样几何形状的影响十分明显。对丁高聚物,为了获得比较精确的峰温值,应该增大试样与试样盘的接触面积,减少试样的厚度并采用慢的升温速率。 二、实验条件的影响 (1)升温速率 升温速率主要影响量热仪曲线的峰温和峰形。一般升温速率越大,峰温越高,峰形越大,也越尖锐。与升温速率对差热的影响基本类似。 (2)气体性质 在实验中,一般对所通气体的氧化还原性和惰性比较注意。气氛对DSC定量的分析中峰温和热焓值影响很大。在氦气中所测得的起始温度和峰温都比较低,这是因为氦气热导性近乎为空气的5倍;相反,在真空中相应温度变化要慢得多,所以测得的起始温度和峰温都比较高。同样,不同气氛多热焓值得影响也存在着明显的差别,如在氦气中所测得的热焓值只相当于其他气氛的40%左右。

  • 半导体器件/材料焊接层\填充层空洞分析手段-超声波扫描显微镜

    半导体器件芯片内部失效分析 超声波扫描显微镜(扫描频率最高可以达到2G). 其主要是针对半导体器件 ,芯片,材料内部的失效分析.其可以检查到:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙http://simg.instrument.com.cn/bbs/images/brow/emyc1002.gif请点激链接:半导体器件芯片失效分析 芯片内部分层,孔洞气泡失效分析C-SAM的叫法很多有,扫描声波显微镜或声扫描显微镜或扫描声学显微镜或超声波扫描显微镜(Scanning acoustic microscope)总概c-sam(sat)测试。XRAY 与C-SAM区别XRAY:X射线可以穿过塑封料并对包封内部的金属部件成像,因此,它特别适用于评价由流动诱导应力引起的引线变形 在电路测试中,引线断裂的结果是开路,而引线交叉或引线压在芯片焊盘的边缘上或芯片的金属布线上,则表现为短路。X射线分析也评估气泡的产生和位置,塑封料中那些直径大于1毫米的大空洞,很容易探测到. 而小于1毫米的小气泡空洞,分层.就非常难检测到.用X射线检测芯片焊盘的位移较为困难,因为焊盘位移相对于原来的位置来说更多的是倾斜而不是平移,所以,在用X射线分析时必须从侧面穿过较厚的塑封料来检测。检测芯片焊盘位移更好的方法是用剖面法,这已是破坏性分析了。C-SAM:由于超声波具有不用拆除组件外部封装之非破坏性检测能力,根据其对空气的灵敏度非常强的特性.故C-SAM可以有效的检出IC构装中因水气或热能所造成的破坏如﹕脱层、气孔及裂缝…等。 超声波在行经介质时,若遇到不同密度或弹性系数之物质时,即会产生反射回波。而此种反射回波强度会因材料密度不同而有所差异.C-SAM即最利用此特性来检出材料内部的缺陷并依所接收之讯号变化将之成像。因此,只要被检测的IC上表面或内部芯片构装材料的接口有脱层、气孔、裂缝…等缺陷时,即可由C-SAM影像得知缺陷之相对位置C-SAM服务超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。主要应用范围:· 晶元面处脱层· 锡球、晶元、或填胶中之裂缝· 晶元倾斜· 各种可能之孔洞(晶元接合面、锡球、填胶…等)· 覆晶构装之分析C-SAM的主要特性: 非破坏性、无损伤检测内部结构 可分层扫描、多层扫描 实施、直观的图像及分析 缺陷的测量及百分比的计算 可显示材料内部的三维图像 对人体是没有伤害的 可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等)C-SAM的主要应用领域: 半导体电子行业:半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS等; 材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等; 生物医学:活体细胞动态研究、骨骼、血管的研究等;

  • 德国PVA超声扫描电镜,中国总代理,知识汇总贴

    超声波扫描显微镜是一种非破坏性的检测组件的完整性,内部结构和材料的内部情况的仪器,作为无损检测分析中的一种,它可以实现在不破坏物料电气性能和保持结构完整性的前提下对物料进行检测。被广泛的用在物料检验(IQC)、失效分析(FA)、质量控制(QC)、质量保证及可靠性(QA/REL)、研发(R&D))等领域。 其可以检查到:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙等。 近年来,超声波扫描显微镜(C-SAM)已被成功地应用在电子工业,尤其是封装技术研究及实验室之中。由于超音波具有不用拆除组件外部封装之非破坏性检测能力,故C-SAM可以有效的检出IC构装中因水气或热能所造成的破坏如﹕脱层、气孔及裂缝等。 超声波在行经介质时,若遇到不同密度或弹性系数之物质时,即会产生反射回波。而此种反射回波强度会因材料密度不同而有所差异.C-SAM即利用此特性来检出材料内部的缺陷并依所接收之讯号变化将之成像。因此,只要被检测的IC上表面或内部芯片构装材料的接口有脱层、气孔、裂缝等缺陷时,即可由C-SAM影像得知缺陷之相对位置。C-SAM服务 超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理[/siz

  • 【求助】纳米颗粒洗涤

    本人做出的是纳米银粉,要过滤,然后把杂志离子等洗涤。现在的问题是:我抽滤时,有一些银粉随水一起过滤出去了,损失了一部分产品,而我又要算银粉的产率。我想请教一下各位做纳米颗粒的大虾,你们在做纳米颗粒时,是怎么洗涤纳米颗粒的呢?又是怎么过滤的?

  • 网络讲堂:11月6日 3D颗粒图像分析技术及应用案例(最新3D颗粒图像PartAn 3D分析仪开发者主讲)

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif3D颗粒图像分析技术及应用案例(最新3D颗粒图像PartAn 3D分析仪开发者主讲)讲座时间:2014年11月06日 10:00主讲人:Dr. Terje JorgensenDr. Terje Jorgensen 专业从事动态颗粒图像研究超过30年,最新3D颗粒图像PartAn 3D分析仪开发者 全英文讲解,中文同声翻译http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】2014年麦奇克全新推出拥有专利技术的3D颗粒图像分析仪,实现动态颗粒图像实时分析,提供多于30种不同的形态参数,本次网络讲堂邀请到3D颗粒图像技术主研发者Dr. Terje Jorgensen 亲自讲解3D图像分析技术及应用案例。颗粒的大小形状与颗粒材料的结构和产生颗粒时的工艺工程有关,复杂的颗粒形状对粒径测量方法会产生很大的影响。目前,基于激光散射原理的颗粒测量仪器被广泛应用,适合不同类型的干法/湿法样品分析。但是,由于该方法是典型的统计分析方法,颗粒的散射信号由多元光电探测器接收,经过数学模型处理后得到相应的粒度分布结果,而不能得到颗粒的实际形状信息,而且,其粒度直径D定义为等效球形的光学当量体积直径。但实际上我们所测的颗粒形状千差万别,在很多对颗粒形状有要求的应用领域,例如,在磨料涂料,建筑材料,食品工业,矿物加工,制药原料,石油石化等领域会产生较大的影响。通常,一般采用显微镜法来观察颗粒的形貌和测量颗粒的大小,所谓“眼见为实”,但是所能测量的样品量极少(约0.01g),而且必须经过一定的样品制备程序,所以美国Microtrac推出了最新的动态颗粒图像分析方法,配合先进的3D图像分析技术,实时统计并显示颗粒图像及粒度分布信息,提供描述每个颗粒30多种的大小和形状的参数(直径,周长,面积,体积,圆度,球度,凹凸度,延伸度以及长宽比等),为颗粒的分析提供了最全面的参数分析。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年11月06日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/12225、报名及参会咨询:QQ群—231246773

  • 【原创】超声波扫描显微镜的应用领域 汇总贴

    超声波扫描显微镜的主要用途:(1)材料的密度及晶格组织分布(2)材料内部的裂纹(3)材料内部分层缺陷,夹杂物等(4)材料的杂质颗粒,夹杂物,沉淀物等(5)材料的空洞,气泡,间隙等超声波扫描显微镜的应用领域:(1)在半导体及太阳能晶锭材料上的应用:分析晶锭内部缺陷等。(2)在半导体Wafer和太阳能晶圆上的应用:涂覆后和印刷后晶圆片上的分层缺陷等。(3)在半导体封装检测上的应用:塑封层、芯片顶部、 芯片粘接层、导线框、BGA 样品以及Flip Chip Underfill 上的分层缺陷等。 (4)在SMT贴装电路器件上的应用贴装后的MLF器件检测的重点是金线周围、基底和引出线之间的的分层缺陷,检测SMD贴片电容的内部缺陷等。(5)在MEMS器件上的应用:晶圆键合的超声检测。(6)在其他工业产品上的应用:钻头材料焊接面的结合情况,电池密封性的超声检测。(7)在材料科学领域的应用:镀层界面、铬合金镀层界面、镀膜层界面、多碳合金的超声金相分析、材料的硬度分析、材料内部的裂纹分析、高性能陶瓷内部的裂纹分析等。 (8)在生物医疗研究领域的应用:活体细胞组织裂变过程,不同活体细胞组织裂变过程,骨骼切片的超声图像等。

  • 硒、碲、铋杂质的分析

    请问有版友做过Te9999、Bi99.997、Se-1、Sb-4N等的杂质分析吗?一个ICP-OES可以完成这些杂质分析吗?测试的标准方法是什么? 杂质有Cu,Pb,Al,Bi,Fe,Na,Si,S,Se,As,Mg,Zn,Ag,Te,Sb,Cl,Sn,Cd,Hg,Ni,Mn,B,C等。 现在正计划购买这些杂质标准溶液,如果都买单标的话,实在是太多了。您是怎么做的呢?杂质标准溶液哪里有混标卖?谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制