当前位置: 仪器信息网 > 行业主题 > >

坦敏感内酶分析仪

仪器信息网坦敏感内酶分析仪专题为您提供2024年最新坦敏感内酶分析仪价格报价、厂家品牌的相关信息, 包括坦敏感内酶分析仪参数、型号等,不管是国产,还是进口品牌的坦敏感内酶分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合坦敏感内酶分析仪相关的耗材配件、试剂标物,还有坦敏感内酶分析仪相关的最新资讯、资料,以及坦敏感内酶分析仪相关的解决方案。

坦敏感内酶分析仪相关的资讯

  • 国家重点研发计划 | 疾病标志物单分子免疫敏感元件及分析仪器 项目启动
    4月26日,以“聚焦智能传感器 厚植新质生产力”为主题的国家重点研发计划“智能传感器”重点专项“疾病标志物单分子免疫敏感元件及分析仪器”启动暨实施方案论证会在杭州市滨江区聚光中心召开。本项目由聚光科技(杭州)股份有限公司(以下简称:聚光科技)生命科学板块旗下杭州聚致生物科技有限公司(以下简称:聚致生物)牵头。由中科院上海微系统与信息技术研究所、中科院苏州生物医学工程技术研究所、上海交通大学、上海交通大学附属医学院第九人民医院、浙江大学、广州市第一人民医院协办,浙江省科学技术厅、杭州市科学技术局、滨江区科学技术局出席了会议,共30余人参加会议。“聚焦智能传感器 厚植新质生产力”主题会议成功举办2024年中央经济工作会议提出,要以科技创新推动产业创新,发展新质生产力。为更好地发挥智能传感器在新质生产力发展浪潮中的“先行官”作用,进一步推动智能传感器在生命健康领域的高质量发展,我们借此项目启动会的契机,举办了“聚焦智能传感器 厚植新质生产力”主题会议。杭州市科学技术局党组成员、副局长 楼立群指出,聚光科技在环境等领域做出的重要贡献,并表达了对其在生命医学领域发展的支持。他进一步表示,希望国产仪器可以不断提升仪器的灵敏度、精密度、重复性,逐步替代进口仪器,提高国产仪器在全球医疗行业的影响力。聚光科技生命科学事业部总经理 吕全超对各位领导与专家对本项目的支持表示衷心的感谢,并在会上表示,期望本项目可以突破关键技术瓶颈,从科学研究到技术创新形成综合解决方案,推动我国科学技术的健康发展。中国科学院上海微系统与信息技术研究所 曹俊诚作为本项目负责人,分享了项目立项情况,并表示希望通过本领域多家优势单位的协同创新,提升我国在生物医学领域核心关键器件自主研制和系统可控开发的核心竞争力。随后,吕全超与曹俊诚在浙江省科学技术厅高新处 张毫杰、杭州市科学技术局党组成员、副局长 楼立群,滨江区科学技术局党组成员、副局长 孔照哲,杭州市科学技术局办公室主任 姚寿坤,以及现场众人的见证下,共同宣布了国家重点研发计划“智能传感器”重点专项正式启动。项目组全体成员承诺,将以百分百的热情和专业精神,全力以赴,为项目的成功而努力奋斗。会上,曹俊诚为五位特聘专家,中国人民解放军总医院教授 张立海、中国科学院北京纳米能源与系统研究所研究员 李舟、西安理工大学教授 施卫、西湖大学副校长 仇旻、复旦大学附属华山医院放射科主任 姚振威 颁发聘书。会议最后,吕全超宣布项目攻关单位组建创新联合体。创新联合体是一种实现科技创新发展、攻克关键核心技术的而有限组织形式。习近平总书记多次强调,“要发挥企业出题者作用,推进重点项目协同和研发活动一体化,加快构建龙头企业牵头、高校院所支撑、各创新主题相互协同的创新联合体,发展高效强大的共性技术共给体系,提高科技成果转化成效。”聚光科技绿色科技展厅参观交流在本次会议中,各方领导和专家们在吕全超的带领下参观了聚光科技绿色科技展厅,全面了解了聚光科技的发展历程、业务布局以及在智慧环境、智慧工业、智慧实验室、生命科学等领域的自主创新成果以及产业化应用。吕全超表示,聚光科技作为高端科学仪器领军企业,是新质生产力的典型代表企业。在未来,公司将坚持开放共赢的态度,以解决制约产业发展的关键核心技术问题为目标不断前行。项目启动暨实施方案论证会圆满召开在主题会议成功举办后,吕全超宣布进行“疾病标志物单分子免疫敏感元件及分析仪器”的项目汇报。汇报会上,各项目负责人依次对项目取得的重要研究成果、具体工作及未来规划进行了阐述和说明。各课题小组负责人分别分享了相关课题内容、原理及创新方向,并对课题具体的实施方案进行了详细阐述。报告结束后,线上线下专家针对该项目进行了热烈的讨论。随着医疗行业的发展,市场对产品的要求也在不断提高,相较于化学发光,单分子免疫产品能更好地适应低丰度蛋白检测的需求,有较好的发展前景。当然,中国人民解放军总医院主任医师 张立海,中国科学院北京纳米能源与系统研究所研究员 李舟也从项目本身对我们提出了更高的要求,我们也将在方案实施的过程中予以提升。后续项目组将认真落实专家组建议,脚踏实地,高质量地完成项目研究任务,为癌症早期筛查指标、阿尔兹海默病指标以及细胞因子的联合检测做出重要贡献。微信扫一扫关注该公众
  • 褚君浩:传感器,让我们的敏感神经更敏感
    褚君浩,中国科学院院士,红外物理学家、半导体物理和器件专家,中国科学院上海技术物理研究所研究员,东华大学理学院院长。他是我国培养的第一个红外物理博士,从20世纪70年代末开始,他就专注于红外探测器的研究,并与汤定元、徐世秋两位科学家研究了一种全新的半导体材料,创造性地提出了测算这种材料特性的公式,该公式最终以三位中国科学家的名字命名,被称为CXT公式,成为判断红外探测器新材料、新结构的参照标准。他的专著《窄禁带半导体物理学》,被国外20多个研究机构作为相关材料和器件研究的理论依据。  智能时代,传感器无处不在。传感器与计算机、通信被称为信息系统的三大支柱,成为衡量一个国家科技水平以及是否处在国际战略竞争制高点的一个重要标志。各种机器设备中的传感器就相当于人类的五官和神经系统,它们让机器能听、能闻、能看,从而更好地感知、学习和进化,为我们提供高精度、智能化的服务。传感器家族有哪些成员?它们能为我们提供怎样的服务?高性能传感器的市场长期被美国、日本、德国的企业占据,我国科学家如何才能在这一领域拼出一席之地?  简单来说,传感器就是用材料经过一定的设计,做成的一个器件,取代耳朵、鼻子、舌头、眼睛、皮肤的功能。它能够看得见、听得见,能够闻得出味道,能够感知到。它可以比人类的功能更强大,所以传感器要具有高性能。传感器具有的高性能,一般要超过人类的五官,能够听得到很远的声音,能够看得见红外光。  日常生活当中传感器非常多,最敏感的一个传感器大家可能没注意:你把手机靠近耳朵的时候,手机的屏幕就暗了,所以随便怎么碰耳朵,照样可以打电话,这就是手机传感器在起作用。手机里面传感器最多,而且都很小、很灵敏。现在传感器的发展趋势就是高精度、高灵敏、高速响应、高稳定性、高可靠性、微型化、柔性化、多功能集成化、数字化、智能化、无线通信化,另外还要绿色环保。  没有传感器就无法数字化  2019年,嫦娥四号探测器成功着陆在月球背面。嫦娥四号搭载了多种科学探测仪器,可以探测月球表面的地形地貌、月表物质的成分和月球表层的结构。嫦娥四号的着陆器上还安装了4个与月壤直接接触的温度计,可每900秒测量一次月壤的温度,这也是人类首次实现在月球背面对月壤温度进行原位测量。我们进入了一个智能化的时代,上至宇宙探索,下至日常生活,数字技术已经渗透到方方面面,农业测产、荒野探矿、太空探月都离不开传感器,传感器信息采集功能的重要性也因此越来越凸显。物联天下,传感先行,无论是“大数据”“人工智能”,还是“物联网”,其最重要的“基石”就是传感器技术。那么,传感器技术怎样进行数据的采集、存储、计算?  智能时代的最大特点就是智能化系统的运用。智能化系统有三大支柱:动态感知、智慧识别、自动反应控制。比如机器人能够把乒乓球打到,首先是动态感知,看到这个球怎么过来;其次要分析这个球会从哪里进来,这是智慧分析;然后它采取措施,打到这个球。智能化系统最后的出路就是推动人工智能、智慧地球、数字城市的建设。这个系统最大的核心就是数字化,因为只有数字化才能定量化、精准化、规律化、智慧化,最后促进数字经济的发展。  数字经济的“数字”从哪里来?就是靠传感器来的,所以传感器是大数据的源头。数据有两类:一类是文本大数据,另一类是物理大数据。物理大数据是靠传感器实时获得的,这类数据好多都是声、光等类型的,它们属于一个波动世界。这个波动世界里面的数据量特别大,一个波有振幅、有位相、有频率,还有偏振等等,再加上时间、空间等海量的大数据,就可以告诉我们好多信息,然后对这些信息进行分析。  传感器和物联网是智慧地球、智慧城市两个核心技术。智慧分析就是从大数据分析出一些我们所需要的信息。现在浙江省义乌市有一座大桥里面安装了好多传感器,通过传感器看它里面振动的应力波形,不同的车辆开过去波形都会有变化。如果有一天发现应力情况异常,就会报警。  传感器是支撑智能化最重要的“一条腿”。无线通信接收信号要靠传感器,通信卫星主要就是发射和接收,接收需要传感器,没有传感器,通信就中断了,后面的智能化更无法实现。可以说没有传感器,就没有智能时代;没有传感器,也没有信息化时代。  我国传感器技术与国外的差距及优势  一部智能手机中有20多个传感器,一部汽车更是有多达上百个各类传感器。无处不在的传感器,已经成为全世界最具发展潜力的高新技术产业。但是,目前全球2万多种传感器产品中,我国能生产的只有大约6000种,远远不能满足国内市场的需求。智能手机中,传感器几乎均为国外产品,每年我国各种中高端传感器进口占比高达80%,传感器芯片进口的占比甚至要达90%。我国传感器技术与国外的差距究竟在哪里?如何才能打开自己的一片天地?  传感器国内一般来说都能制造,在一般的应用上面也都适用,但是在高端应用、精细应用方面和国外有差距,这就要发扬工匠精神赶超世界一流。  我们也有自己的优势领域,有一本最有名的科学手册叫《LandoldtBoerstein》,这本科学手册,到现在已经有140年历史了,它每隔10年到15年要修订一次,我就是负责碲镉汞材料修订的作者负责人,因为在这个领域,我国科学家做的工作国际上认可,所以我们有这个资格来承担这项工作。  发展传感器,我国过去有一个弊端,就是买得到自己就不做了,但是红外探测器高端的买不到,就只能自己做,我们反而做出来了。其实在有些核心的关键领域还是要自立自强。我们现在好多企业,在红外传感器方面,水平不断地在提升。另外,要发展智能化,把芯片技术感受到的传感信息,智能化地分析处理,这就是当前传感器发展的趋势。  智能时代的“桥梁”  2019年4月15日,法国巴黎圣母院起火,考虑到空中投水可能造成建筑及文物损毁,法方派遣无人机捕获实时图像,为消防员实现精确定点扑救提供了重要支持。这其实得益于物联网技术的普及。互联网、物联网,一字之差,但两者截然不同。如果说,互联网是人们用来进行信息传播和共享的平台,那么,物联网就是“物物相连的互联网”,所不同的是,物联网是通过传感器、红外等各种感知设备,将信息传送到接收器,再通过互联网实现远程监视、自动报警、控制、诊断和维护。如今,物联网已经广泛应用在智慧城市、智慧医疗、智慧农业等众多领域,而传感器作为智能时代的“桥梁”,在各个领域智慧建设中已不可或缺。未来,传感器在智慧城市、智慧医疗、智慧农业等领域还能起到怎样的作用?  江苏无锡有一家公司,在公司每个区域里所有的转动部分都安装了传感器,这样在办公室里可以监控所有的电梯、马达是否正常。如果哪个地方不正常,控制室就亮黄灯了,马上就可以派人去修理。这就是智慧城市管理的一方面。  现在抑郁症很多,还有一些小孩患抑郁症,抑郁症当然有多种识别方法,也可以做成一个小的设备,定量分析患者的抑郁程度,这都是传感器信息获取分析的可能应用。如果我们人体里面都有传感器,比如口袋里放个心脏传感器,心电图随时可以拿到,如果一个人心脏有点不舒服了,跟医生打个电话,说我现在心脏不舒服,或者发条微信给他,这个是互联网技术的应用;但如果这个传感器的信号直接送到分析中心,分析中心就能够根据GPS定位知道人在什么位置,马上通知相关机构采取措施,这就是物联网技术应用。物联网技术在人类健康上面大有用处。  人类现在要进入智能时代,智能时代的最大特点就是智能化系统的运用,智能化系统非常重要的核心就是传感器,传感器就是我们的敏感神经。在智能时代的背景下,我们要努力打造敏感神经,通过科技创新手段不断提升信息传感水平,不断提升智慧分析水平,从而发展物联网、人工智能、智慧地球的事业,促进数字经济的发展和城市数字化转型,最终提升人们的生活水平。
  • 德国政府资助研发新型高敏感快速光学测量技术
    现代日常生活已离不开技术复杂的产品,高技术产品的生产工艺也在不断改变,关注产品质量之外也致力于采用高效、的生产方式,通过改善程序循环来尽可能避免产品污染或是毒性负载。尤其在产品销量大的工业领域,制造方式的修正对经济与环境有显著影响。 优化生产工艺的基本条件是拥有合适的、尽可能普遍适用的高水准传感测量仪器,而目前市场上提供的设备多数不适用,或速度太慢,或对必要的检测限度不够敏感。 为解决这个现实问题,德国联邦教研部近日斥资40,4万欧元,支持联合研发项目&ldquo 基于中红外激光源的光学直列流体分析仪(OIFA)&rdquo 。该项目于今年6月正式启动,为期三年,目标是研发新型高敏感快速光学测量仪器,成品将是模块化的、坚固的光学传感器现场设备,可以普遍用于测量各种不同的流体&mdash &mdash 气体或液体,可测量出最少量的毒素污染。应用这项技术,原先复杂的样本制备与提取、用于运行实验室分析仪器的基础设施等均可放弃。 新测量技术的设计全靠新红外激光器,这种不过大头针针头般大小的激光器在中红外波段发光,非常适宜测量多种在这个范围内吸收光的物质,既便是十亿分率范围内(parts-per-billion)的浓度也可检测出来,通过测量装置上的信号变化,显示出尽管含量极低却对工业程序、对环境与人体具有很大影响的物质。 极其出色的敏感度及快速是这项技术的独到之处。结合针对工业用户与未来潜在用户方面的必要知识,新的光学传感器可为填补市场空缺作出贡献。为评估其适用性,该项目在进程中将先生产出样机,试验应用的领域是测量高压、高温下可燃气体中的一氧化碳,之后还将投入实际生产场地经受检验。 以上信息有HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱等设备。
  • “一闹就停”、“迁址复出”,环境敏感项目靠什么脱敏?
    “一闹就停”、“迁址复出”,成为一些地方政府面对公众反对惯用模式如今,反对立项、反对投产,已经成为群体过敏反应的本能姿态。公众担心重化工、垃圾焚烧等项目的环境风险,地方政府和企业则力证其安全。上马还是暂停,成了一个谁也说服不了谁的问题。反思诸多因环境敏感项目上马而引发的群体性事件,从源头上看,很大程度上归因于我国当前环境敏感项目决策机制的不完善。当前,我国环境敏感项目决策机制存在哪些问题?如何杜绝一起起类似事件的一再重复?在日前召开的环境健康风险交流科普会上,专家、企业代表及公众代表在同一平台上,围绕环境敏感项目上马的决策机制问题,进行了充分的对话和交流。问题一公众为何患上过敏症?与现代科技相伴而生的环境污染、生态破坏等风险不断加大,公众关注度日益提升,在诸多风险中,应对环境风险的紧迫性日益凸显。近年来,因环境敏感项目引发的群体性事件大约以年约29%的速度递增,而且对抗程度明显高于其他群体性事件。环境类群体性事件凸显了公共危机管理和风险评估与控制决策的重要性。中国科学院大学教授胡志强向记者介绍说,目前中国乃至全球都面临着风险治理的危机,这种危机表现为在面对一项公共风险决策的时候,公众与政府、专家之间存在着观点和态度上的分歧。不久前,福建省漳州市古雷腾龙芳烃PX项目开工不到两年再次发生爆炸事件,引起了社会各界对PX等环境敏感项目决策机制问题的强烈关注。从漳州古雷PX项目的来龙去脉可以看到,其先后经历了厦门阶段和漳州阶段。不难发现,在厦门阶段,这一项目采用了相对民主的决策模式,进行了比较充分的风险沟通和公众参与,经过一系列的专家提案、网络投票和座谈会,决策方最终放弃了在厦门兴建PX项目。但在漳州阶段,对于专家和公众观点充分听取和考量则存在不足。《环境保护法》和《环境影响评价法》明确规定,未依法进行环境影响评价的开发利用规划和建设项目,不得组织实施和开工建设。漳州古雷PX项目在环境影响评价尚未经过批准时,即擅自开工建设,因此受到了环境保护部的行政处罚。虽然之后这一项目也得到了国家发改委的“发展规划批复”,但因其环评未通过环保部门的审查,再次擅自开工建设的行为违反了《环境保护法》等法律的相关规定。记者在采访时了解到,在一些地方,环境问题引发群体性事体的一个重要诱因就是地方政府片面强调GDP,为了经济增长而不惜上马公众反对的项目,甚至以破坏生态环境为代价而换取经济增长。而这种现象并非个案。按照人类趋利避害的本能,综观世界各地的经验,环境敏感项目上马引发公众反对在所难免。公众对诸如PX、垃圾焚烧等环境敏感项目风声鹤唳、草木皆兵,其“罪魁祸首”缘于一些地方政府相关部门的职能缺位。“这无疑对目前我国社会治理提出了一系列的挑战。”胡志强说。风险沟通是风险管理者以及其他相关各方为了更好地理解风险及相关问题并进行决策,就风险及相关评估相互交流以期达成共识的过程。漳州古雷PX项目从选址、论证到投入生产,未见到其进行充分的风险沟通,自始至终仅有2013年3月进行了短暂的环评公示。在采访中,一些业内专家表示,公众反对PX项目,目前还很难说是“无条件拒绝”,问题的根源还是一些地方政府将公众视为环境决策的局外人。不知情反而加重了人们对自身环境权益不保的担忧。如果政府严格进行环评,环评报告真正公开,民众充分知情,即使民众心存疑虑,政府也可以一方面答疑解惑,另一方面持续完善环保设计。在浙江省宁波市民对镇海炼化一体化项目不知情的情况下,当地政府已经“累计投入资金64亿元”。当人们提出质疑,政府又未能与公众平等对话,局面终至不可收拾。只有政府信息充分透明、征求民意,谣言才能止于公开。公众对PX、垃圾焚烧等项目敏感,既是由于知情权未得到充分保障,也是对政府信息公开历史欠账的裂变反应。网民的抵制情绪与信息神秘化有关,同样,有些网友的认知也在偏向理性,“请依法公布所有的信息,不要担心我看不懂。”如今,伴随着环境权利意识普遍觉醒,人们担心重化工、垃圾焚烧等一些项目引发环境问题。地方政府事先不对项目环评进行全面公示,公众被蒙在鼓里,而项目“前期工作”却开展得如火如荼。正是这种做法引起公众心中的愤怒,并引发猛烈的情绪暴发。在采访中,一位长期从事环评工作的业内专家向记者介绍说,风险沟通至少需要风险评估者、风险管理者和普通公众三大群体进行充分的信息交流和讨论,不同的观点应当得到充分的表达。然而一些项目的决策过程,专家和公众的观点被忽略,专家、公众和政府之间缺乏有效的沟通。事实上,政府即使搞了环评,企业环保规划周详,也仍有可能陷入纸上谈兵的困局。企业环保投入越大,后期运行成本越高,建而闲置的可能性就会越大。大连PX项目搞了环评,却相继发生相邻中石化输油管线爆炸和厂区溃堤,充分暴露出单方环评的漏洞。所以,公众参与环保博弈至关重要。公众参与环保可以对企业与地方政府形成监督与制衡,有利于环境风险控制。公众参与一方面为风险项目的决策提供了合法性的来源,另一方面也最大限度地消除了公众对风险项目的疑虑。环境影响评价听证会是环评公众参与的重要形式之一,通过不同利益相关者面对面博弈,既提高了公众参与的广泛性,又提高了环境影响评价的科学性。在风险项目决策中,公众参与的方式还有许多,包括咨询会、公众调查、网络投票等。据了解,漳州古雷PX项目未进行充分的公众参与。这一重要环节的缺失,对风险沟通、风险管理都造成了不良影响,从某种角度来说,也是引发事故的一个因素。问题二如何让各方理性沟通与交流?透过漳州古雷PX等环境敏感项目,我们从中可以看到我国当前环境敏感项目决策机制普遍存在的问题:公共决策过程有法不依,执法不严;信息交流不充分;缺乏公众参与。正如一位业内专家所言,我国当前的环境风险决策机制没有有效地区分科学事实与民主价值,没有充分结合专家模式和民主模式,没有发挥出专家和公众应有的功效,只是片面地由行政机关单方面做出决策。从厦门、大连的PX项目到什邡的钼铜项目,事态发展最终都以官方向民意妥协而缓和。看起来民意似乎是取得了一个又一个的胜利,但严格说来没有赢家。一起起类似事件的一再重复,无疑是对社会的一次次割裂。我们应该找到一种机制,让决策能够最大限度实现民主化,让博弈不以公众与地方政府对抗的方式进行,让妥协和理解不是在撕裂之后再出现。尽管我国目前尚未有环境风险决策领域的专门法律,但涉及环境风险预防的法律却已形成了庞大的体系。据统计,我国当前至少有《环境保护法》、《环境影响评价法》、《安全生产法》、《消防法》等22部法律将日常管理工作中的风险预防作为其规范的主要内容之一。另外,还有多部法律虽然不以风险预防为主要内容,但也涉及了日常风险规制的内容。对于已有的法律规定,各方主体必须严格遵守,做到有法必依、违法必究。胡志强认为,环境敏感项目的决策过程必须依照法定程序,政府和企业违反法定程序进行审批和投产的,应当依法追究法律责任,对知法犯法、执法犯法的人员应当加大处罚力度。完善的风险沟通机制至少应当做到4点:信息充分公开、过程充分开放、进行充分辩论和反思、对自身行为负责。与漳州PX项目当初的情形相似,许多环境敏感项目决策中面临的难题是公众担心项目的环境风险,地方政府和企业则极力想证其安全,此时专家的意见就显得格外重要。由于专家掌握有大量的知识,在沟通中往往会表现出一种科学“自负”,但沟通的过程不是一个简单“科普”的过程,而是一个专家、公众和政府三方多向交流、倾听和学习的过程。“通过风险沟通可以弥补公众知识不足,有利于利益相关方在协商过程达成理性共识。”胡志强说。一方面,要恰当发挥专家的优势,既不能过度依赖专家的意见,也不能忽略专家完全由公众说了算。另一方面,要保障公众的知情权,因为知情是公众参与风险沟通的基础,相对于政府和专家,公众在风险信息的获取方面处于十分弱势的地位。在日前召开的环境健康风险交流科普会上,与会者认为,公众参与应当融入风险评估、风险沟通和风险决策的全过程。风险评估虽然科技性强,主要由风险评估专家主导,但是评估阶段如果公众能够适当参与,将极大地消除公众对项目环境风险的忧虑,有利于风险沟通和决策。在风险沟通阶段,公众应是主要的沟通对象。公众充分参与可以平衡专家的观点,可以监督地方政府的决策行为,可以支持或改进风险项目的规划,同时也有利于分担日后可能出现的环境责任。我国现阶段的环境敏感项目决策多由地方政府单方面做出,公众意见往往得不到采纳。因此,我国当前更应当特别强调公众参与,由政府引导公众积极参与环境敏感项目的决策,丰富和完善公众参与的形式,使公众参与成为环境敏感项目决策的新常态。令人欣喜的是,一些地方政府认识到上马环境敏感项目公众参与的重要性。公众环境研究中心和自然资源保护协会联合发布的120城市污染源环境公开指数(PITI)评价报告显示,29个城市在近3年内召开过环境影响评价听证会,占总评价城市24.17%,盐城、贵州、北京在召开听证会前通过媒体等广泛告知公众,尤其今年4月北京市在昌平区环保局召开的阿苏卫循环经济园项目环评审批听证会还邀请了环保组织自然大学等参与,突破了目前我国公众参与主体的局限性。来源:中国环境报
  • 为疫苗和其他敏感药品使用正确的数据记录器
    2019冠状病毒病的黑暗隧道已初见曙光,随之而来的是分发方面的挑战。每种疫苗都面临着其自身的管理挑战,例如温度要求和分发问题。利用数字数据记录器来监测疫苗冷链运输中的温度变化对于疫苗的效力至关重要。无论您是在处理国药、科兴、辉瑞、莫德纳、阿斯利康还是其他敏感药品,您都需要优质的数据记录器来跟踪温度。随着2019冠状病毒病危机的持续,我们希望在解决这些问题时为您提供一些重要提示。随着免疫领域的发现日益增加,可靠且合规的冷链监测是确保可行和有效的疫苗分发的关键。冷链依赖于一些重要因素,例如专业的送货员、合适的包装和可靠的物流系统,这些方面都需要实现良好的控制和监测。想一想,当箱子被密封、门被关闭时,如何解决疫苗的完整性和效力问题。没有人知道容器内部发生了什么变化,以及它必须面对什么样的环境。这就是为什么温度数据记录器十分重要的原因,因为它们在疫苗的运输和储存过程中发挥了非常关键的作用。在这里,我们将提供一些有用的信息,帮助您选择适合冷链监测的数据记录器。01 温度范围和精度选择数据记录器时,首先要考虑温度范围和精度。确定您处理的药品的温度范围。例如,复星-辉瑞疫苗应当储存在超低温冷冻箱中,温度介于-80°C和 -60°C(-112°F和-76°F)之间。如果您有超低温冷冻箱 (ULT),则需要一个合适的数据记录器来监测其温度。不过,美国和欧盟的监管机构最近提出了一种替代解决方案——现在,疫苗可以在-25°C至 -15°C(-13°F至5°F)温度下储存最长2周。[1]应跟踪疫苗在此温度范围内储存的总时间,不应超过2周。莫德纳疫苗可以储存在-50°C至-15°C(-58°F至5°F)的冷冻箱中。此外,在小瓶被刺破之前,它们也可以在 2°C至 8°C(36°F至46°F)的冰箱中储存长达 30天。到目前为止,强生和阿斯利康的疫苗最容易运输——它们可以在 +2°C 和 +8°C(36°F和46°F)(即正常的冰箱温度)之间储存长达六个月 [2], [3]。根据所需的温度范围选择合适的数据记录器极其重要。另一个关键点是精度。在监测对温度敏感的产品的存储条件时,高达±0.5°C的精度是值得信赖的。选择数据记录器时,应当寻找所需的规格,并注意不要在不必要的功能上支付过多成本。02 数据记录器的放置为确保理想的存储温度,每个纸箱或容器通常会使用两个数据记录器。一个应当放置在疫苗旁边,第二个则放置在容器外面。箱子里的数据记录器应当放置在疫苗存货处的中央。确保疫苗存货处和温度传感器不与冰袋直接接触,以最大程度地降低冻结风险。箱子外的第二个数据记录器必须放置在可见位置,以监测存储环境温度。产品包装好之后,记录器应立即运行,并继续运行直至到达目的地。要测量箱内温度,可能需要选择配有延长电缆的记录器,因为超低温(例如-70°C/-57°F)可能会冻结所有电子设备。对于莫德纳和阿斯利康等疫苗,建议使用 USB 类型的数据记录器。它们通常小而薄,易于放置在疫苗旁边。现在还提供多通道设计,只需一个记录器即可同时测量内部和外部温度。如何包装疫苗和准备运输03 读取数据另一个需要考虑的重点是,“谁”将读取记录器数据以及如何读取?收货人是否来自同一个国家/地区?一些数据记录器需要一个特定的读出接口,其他数据记录器则使用通用接口,例如通过 USB。对于较远的收货人或较远的目的地(例如国际运输),考虑到回运和管理,监测可能会花费很多精力。因此,一次性数据记录器可能是一种理想且经济高效的解决方案。有许多新技术可以通过蓝牙、Wi-Fi或5G等方式读取数据;但是,务必确保数据全面且不存在数据泄露风险。无论您选择哪种技术,软件都应当简单易用并且支持自动生成PDF报告。04 重新校准和校准证书WHO(世界卫生组织)建议每一到两年返回您的温度监测设备和控制传感器进行校准。正确的校准报告通过根据国际公认的校准和可追溯性标准测试仪器来证明数据记录器的准确性。购买具有校准证书的数据记录器。由于每个温度监测设备都会随着使用时间的增加而损失效率,因此,应当在到期日期之前预先制定一个重新校准计划。一种替代解决方案是使用一次性数据记录器。另一种解决方案是使用传感器可更换的数据记录器。此类产品包括具有唯一对应序列号的一次性插入式传感器。这种类型的设备(包括可更换传感器)通常会随校准证书一同交付给您。05 FDA 21 CFR Part 11 合规性由于数据记录器的品牌众多,因此制造商可能会使用许多不同类型的数据采集和分析软件包。但是,选择数据记录器的最重要标准之一是它是否符合FDA 21 CFR Part 11的规定。FDA 21 CFR的一个具体重点是第11部分。它包括对电子记录和电子签名的使用。对于依靠数字数据来监测其商品的公司,尤其是制药、食品和医疗保健行业的公司,确保符合21 CFR Part 11的规定至关重要。根据21 CFR Part 11法律,系统进入需要由每个用户的唯一登录名和密码控制。此外,它还提到了“使用安全的、计算机生成的、带时间戳的审计追踪来独立记录操作员进入以及创建、修改或删除电子记录的操作的日期和时间。”选择带有合规软件的数据记录器有助于确保相关领域中的数据安全和审计日志。我们希望上述5条提示能帮助您选择合适的数据记录器。如果您需要数据记录器和监测计划方面的支持,请联系我们——我们很乐意为您提供冷链流程和设置方面的指导。
  • TA仪器推出Discovery系列新品DMA-850:力学敏感度达0.1mN
    p  strong仪器信息网讯/strong 从美国TA仪器公司获悉,2018年2月26日,位于美国特拉华州纽卡斯尔市-TA仪器推出Discovery 系列DMA850动态机械分析仪——Discovery 系列热分析仪器的新锐产品。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/5f3da626-3356-44dc-964c-01acadc6e87f.jpg" title="1.jpg"//pp  DMA主要用于表征材料在一定温度、环境以及机械刺激(应力/应变)下的黏弹力学性能。TA仪器在引领DMA测试技术基础上,再次突破测试敏感度及精度标准,将测试通用性带到一个全新高度。/pp  据称,DMA850是目前市场上独特的采用无摩擦空气轴承的热分析仪器。它的最高力学敏感度达到0.1mN,最宽动态位移连续测试范围居远超其他商业DMA,达到25mm。线性光学编码器确保了整个测试范围内位移控制稳定、精准、高分辨率,最小动态位移控制能达到难以企及的5nm。/pp  新型直接应变控制及智能自动应变测试控制减少了选择测试参数时的臆测,使测试在较宽温度及材料刚性范围内都能成功。TA仪器表示,这些着眼于用户便利性的产品特色将是第一次,也会在以后用户的每一次测试中给用户提供优异的数据。/pp  DMA850的另一特色是多步仪器指令可以在组合后在一个测试程序中进行测试,甚至控应力和控应变测试以及瞬态,振荡及更多测试类型均可以组合成一个程序。这使得可以对同一个测试样品上执行全系列测试或在对样品测试之前制造一个变形历史。/pp  同Discovery系列其他热分析仪一样,DM850由功能强大的TRIOS软件进行控制及完成数据处理。对于DMA850,TRIOS软件第一次内置了两种操作界面:快捷操作界面和高级操作界面. 快捷操作界面应用于常规的简单测试,高级操作界面则应用于高级复杂测试方法。/pp  DMA 850可以配置高温炉、相对湿度控制系统以及五种新型冷却系统中的任何一种,其中包括TA独有的、无液氮冷却的空气冷却系统。DMA850配备超过30种样品夹具,每一种夹具的设计都着眼于样品的测试精度及使用的便利性。/pp style="text-align: left " span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于TA仪器/strong/span/pp img style="width: 100px height: 100px " src="http://img1.17img.cn/17img/images/201803/insimg/f80c6317-957f-4f3e-8cbe-544a99b57552.jpg" title="2.jpg" height="100" hspace="0" border="0" vspace="0" width="100"//pp  TA仪器-Waters Corporation(纽交所:WAT)子公司-世界领先的热分析仪、流变仪及微量热仪制造商。总部位于美国特拉华州纽卡斯尔,目前已经在全球24个国家设立直接运营分公司。/p
  • 【瑞士步琦】收集氧气敏感及水分敏感的粉末样品解决方案
    收集氧气敏感及水分敏感的粉末样品解决方案喷干应用”喷雾干燥技术常用于制备电池材料、多孔材料及粉末剂量药物和易挥发的香精香料物质。对于这类样品如何保证喷干后的粉末颗粒在收集时免于环境中氧气及水分的交互影响,是作为工艺开发流程中最后一个关键步骤。 研究者通常会考虑充满惰性气体的箱体作为收集这类粉末产品的实验场地,例如手套箱;同时选用惰性气体作为雾化气源,在操作过程中保证氧气及水分处于极低状态;然而,即便是小型实验级喷雾干燥仪器的体积也初具规模(步琦小型喷雾干燥仪 S-300 的高度超过1m),定制大尺寸的手套箱会增加额外费用且仪器配件的操作和拆卸极其不便。针对这种情况,步琦最新推出喷雾干燥突破性的解决方案——环境守护者(Enviro Guard),站在防御存在于外界环境中氧气和水分干扰的顶峰。1从需求、想法到解决方案Enviro Guard 具有特殊设计的玻璃组件,配有旋塞和气体入口,可以采用氩气形成强大的氧气和水分屏障,保持材料的性质。在惰性气体条件下使用实验室型喷雾干燥仪 S-300 制备粉体颗粒后,通过气体入口引入氩气可以保护您的材料,使其免受潜在的损害。粉体制备完成后,将整个旋风分离器及收集瓶迅速移到小尺寸手套箱内,是样品处于受控的环境中。严格的实验室试验证实了该系统的有效性,可将氧气和湿度水平保持在 2% 以下,持续时间可达 5 分钟。这证明了它在实际操作中的可行性,为研究员提供了处理、转移和加工材料的灵活性,而不会受到环境干扰。无论是追求创新还是保存精致的配方,Enviro Guard 都能确保您的材料不受污染。与环保守护者一起体验未来的材料保护,创新与保护相结合!环境守护者 Enviro Guard (11080767) 由以下部分组成:11080595Enviro 玻璃件11068575旋塞046357螺旋盖033577盖帽040023硅胶垫022352软管夹11080766灰色橡胶塞2气体要求由于氩气的密度明显高于空气,因此 Enviro Guard 与氩气具有良好的兼容性。在大约 130°C 时,氩气的密度为 1.21 Kg/m³ ,与 17.5°C 时的空气密度非常相似。这种密度上的相似性使得氩气能够在粉末上形成稳定的保护层,在这个温度下有效地取代周围的空气并保持其位置。值得注意的是,对于这种特定的应用,我们只建议使用氩气,因为它具有创建和维护保护气层的理想特性。小型喷雾干燥仪 B-290/S-300瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 西安光机所成功研制出“敏感器光学系统测试设备”
    近日,中科院西安光学精密机械研究所研制成功“敏感器光学系统测试设备”并已正式投入使用。“敏感器光学系统测试设备”系高精度、多功能、全自动化的专用测试设备,可以对各类恒星敏感器、地球敏感器、月球敏感器光学系统及其它小型光学系统的弥散斑、色偏差、畸变、焦距、入瞳、工作距进行测试,测试光谱范围0.3μm~1.5μm,弥散斑测试精度优于0.5μm,色偏差测试精度优于0.2μm,畸变测试精度可达到0.01%。该设备的成功研制,在提高测试精度的同时大大提高了测试效率,原来测试一套常规的敏感器光学系统需要三天左右时间,现在只用一天即可完成测试。  该测试设备的成功研制,填补了国内敏感器光学系统测试设备的空白,必将极大地促进所内创新事业的发展。
  • 专家称别对食品添加剂太敏感
    《食品添加剂生产监督管理规定》6月1日开始实施后,所有食品添加剂成分必须在外包装上注明。这样一来,以往隐身于“食品添加剂”、“防腐剂”、“增稠剂”等笼统说法背后的各种添加剂统统浮出水面。这虽能让消费者知道其成分,但是新包装上动辄五六种、甚至是10种以上的添加剂吓坏了消费者。  每天吃进几十种食品添加剂  6月30日,记者在超市的食品柜台看到,大多数食品都标明了食品添加剂的种类,少则四五种,多则十多种,记者拿起一包蛋黄派数了一下,食品添加剂总共有14种,如麦芽糖醇、山梨糖醇、增稠剂、膨松剂等。在奶制品柜台,上架的多是生产日期在6月份的产品。记者随意拿起一袋核桃奶一看,配料表的成分只有4种,而食品添加剂的种类却高达9种,占了包装袋好几行的位置。记者又拿起一根火腿肠数了一下,食品添加剂有10种。“不看不知道,一看吓一跳,我每天都会吃掉几十种添加剂呢。”正在省会某超市选购食品的单身白领小王对记者说,她早餐通常喝牛奶吃面包,中午经常用方便面加火腿肠“对付”。为了提神,她每天还会喝一到两杯速溶咖啡或奶茶,口香糖和其他的饼干、糖果等小零食也常备。可是她拿着经常食用的早餐奶仔细一数,里面的添加剂竟多达10种!而她经常吃的速食面、火腿肠、奶茶的添加剂起码也各含七八种,更让她想不到的是,她每天不离口的一款口香糖竟含了13种食品添加剂!“不算其他的,光是这简单的几样加起来,我每天吃进肚子里的添加剂就有三四十种,真是不敢想象长期这样吃对身体会产生哪些副作用!”小王担忧地对记者说。“乳酸、柠檬酸钠、果胶、黄原胶、海藻酸丙二醇酯、瓜尔胶、阿斯巴甜……”正在为孩子选购乳制品的陈大姐对记者说,常喝的一种乳制品最近换了新包装,仔细看吓了一跳,一小盒饮料竟然含有10种食品添加剂!一连串陌生的化学名词,真让人担心,这些食品添加剂都是些什么东西?食用后对孩子身体有没有害处?  在省会超市,记者随机采访了10位市民。多数市民对维生素、食用香精、柠檬酸、β-胡萝卜素、色素等添加剂有一定的认识,但对类似六偏磷酸钠、乳化硅油、果胶这类添加剂普遍缺乏相关知识。  专家称别对食品添加剂太敏感  食品添加剂已经成为我们生活中无法绕开的弯道。添加剂是不是有害物质?针对消费者对食品添加剂存在的疑虑,记者采访了河北农业大学食品科技学院分析营养系的副教授田益玲。  “没有食品添加剂,就没有现代食品工业。只要生产者严格按照国家标准使用食品添加剂,对人体是不会有害的。”田益玲告诉记者,几乎所有的工业加工食品都需要食品添加剂。食品添加剂对于提高食品质量、改善色香味和口感,保障食品安全和防腐,改进食品工艺都起着重要的作用。比如我们平时食用的酱油里面就含有防腐剂,如果不加入防腐剂,酱油3天就会长毛变质了,防腐剂的合理使用不仅不会对人体造成危害,而恰恰是能够防止因食品腐败给人体带来更大的伤害。  “有些食品包装上标注不含防腐剂是迷惑消费者。”田益玲说,比如方便面经过油炸之后不需要使用防腐剂了,但是需要加入抗氧化剂,消费者看到包装上标注“不含防腐剂”的字样以为食品没有添加剂,其实不是的。到目前为止,我国已批准2500余种食品添加剂,按其功能和作用可大体分为22大类,如增稠剂、乳化剂、着色剂、甜味剂、防腐剂、膨松剂等,主要作用是改善食品的品质,增加色、香、味及防止食品腐败变质,延长保存时间等。  “有些消费者谈‘添加剂’色变,其实没有必要。”田益玲表示,目前国家对食品添加剂的监管力度在不断加大,只要食品企业遵循《食品安全法》等相关法律法规,在生产过程中按照国标《食品添加剂使用卫生标准》规定的限量范围内合理使用食品添加剂,那消费者购买的食品就是安全的,所以市民对此不用太担心。她建议消费者一定要选择正规厂家生产的产品,比如看产品包装上是否标注企业食品生产许可证编号、QS标识及产品标准等。
  • 量子物理学促进电镜技术两大新成果:敏感样品高分辨成像和原子级粒子相互作用测量
    作者:俄勒冈州大学Laurel Hamers   UO CAMCOR工厂的扫描电子显微镜。物理学家Ben McMorran和他的团队想出了一种改进研究工具性能的方法。图片来源自俄勒冈州大学  量子怪诞正在为电子显微镜打开新的大门,成为高分辨成像的强大工具。  UO物理学家Ben McMorran实验室的两项新进展正在改进显微镜。这两种方法都源于量子力学的一个基本原理:电子可以像波和粒子一样同时运动。这是许多奇怪的量子级怪诞的例子之一,在这些怪诞中,亚原子粒子的行为似乎往往违反了经典物理定律。  其中一项研究发现了一种在显微镜下研究物体而不与之接触的方法,从而防止显微镜损坏易碎样品。第二种方法设计了一种同时对一个样本进行两次测量的方法,提供了一种研究该物体中的粒子如何跨距离相互作用的方法。  McMorran和他的同事在两篇论文中报告了他们的发现,这两篇论文都发表在《物理评论快报》杂志上。  “通常很难在不影响它的情况下观察到一些东西,尤其是当你观察细节时。”McMorran说道:“量子物理学似乎为我们提供了一种在不破坏事物的情况下更深入地研究它们的方法。”  电子显微镜被用来近距离观察蛋白质和细胞以及非生物样本,比如新材料。电子显微镜将电子束聚焦在样品上,而不是传统显微镜中使用的光。当光束与样品相互作用时,其某些特性会发生变化。探测器测量光束的变化,然后将其转换为高分辨率图像。  但这种强大的电子束会对样品中的脆弱结构造成破坏。随着时间的推移,它可能会削弱科学家试图研究的细节。  作为一种解决方法,McMorran的团队使用了20世纪90年代初发表的一项理想实验,该实验提出了一种在不触碰敏感炸弹、不冒引爆风险的情况下探测敏感炸弹的方法。  这个技巧依赖于一种叫做衍射光栅的工具,衍射光栅是一种带有微小缝隙的薄膜。当电子束击中衍射光栅时,它被一分为二。  McMorran实验室的研究生Amy Turner是第一项研究的主导人,她解释说:“在这些分束衍射光栅正确对准的情况下,电子进入并分裂成两条路径,但随后重新组合,使其只流向两种可能输出中的一种。其原理是,当你放入样品时,电子与自身的相互作用会被打断。”  在这种装置中,电子不会像传统的电子显微镜那样击中样品。相反,电子束重组的方式揭示了范围内样本的信息。  在另一项研究中,McMorran的团队使用类似的衍射光栅装置同时在两个地方测量样品。他们将电子束分开,使其在一个小金粒子的两侧通过,测量电子传递到每一侧的粒子的微小能量。  这种方法可以揭示样本在原子水平上的敏感细微差别,了解样本中粒子相互作用的方式。  劳伦斯伯克利国家实验室的博士后研究员Cameron Johnson在McMorran的实验室做了博士研究,并领导了这项研究。他认为:“这项研究的特殊之处在于,你可以观察它的两个独立部分,然后将它们结合在一起,看看这是一种集体振荡,还是它们之间不相关。我们可以超越显微镜的能量分辨率和通常无法达到的探针相互作用的极限。”  虽然这两项研究进行了不同类型的测量,但它们使用的是相同的基本设置,即所谓的干涉测量法。McMorran团队的成员认为,他们的工具可能在他们自己的实验室之外有用,可以用于各种不同类型的实验。  Turner自豪道:“这是第一台此类电子干涉仪。人们以前使用过衍射光栅,但这是一种功能灵活的版本,可以根据不同的实验进行调整。”  McMorran谈到,如果有合适的材料和说明,这种装置可以被添加到许多现有的电子显微镜上。他的团队已经引起了其他实验室研究人员的兴趣,他们希望在自己的显微镜中使用干涉仪。参考资料:Amy E. Turner et al, Interaction-Free Measurement with Electrons, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.127.110401Cameron W. Johnson et al, Inelastic Mach-Zehnder Interferometry with Free Electrons, Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.147401
  • 新型高敏感度成像技术研发成功
    英国《自然》杂志28日公开的一篇论文,描述了一种集磁共振成像和伽马射线成像优点于一身的新型光谱成像技术,有望为开发新型医学诊断工具打下基础。  磁共振成像是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。这是医学领域非常重要的诊断工具,因为它具有卓越的空间分辨率,能够分辨图像中的个体特征。而伽马射线探测器则具有高度敏感性,可用于探测微量放射性示踪剂。这些示踪剂能够定位特定的目标,因此这种图像可用于诊断癌细胞的分布和数量以及脑和心血管畸形。一直以来,这两种技术各有千秋,但双方的优点却很难兼得。  此次,美国弗吉尼亚大学研究人员高登盖茨、威尔逊米勒及其团队成员,发明了一种全新的成像技术,先利用磁共振收集空间信息,再利用伽马射线收集图像信息。研究人员通过在玻璃槽中进行放射性原子成像操作,证明了该技术的可行性。而传统的磁共振成像方法需要几十亿甚至更多的原子才能生成图像。  在目前阶段,如使用该技术获取示例图像的数据,大约需要60个小时,这对于临床应用而言并不理想。不过论文作者提出,虽然该技术手段在某些方面仍需改进,譬如说处理速度,但提高探测器的规模或者放射性示踪剂的数量或有助于克服这些问题。  在论文随附的新闻与观点文章中,英国诺丁汉大学科学家认为,该技术将有助于生物学和非生物学系统的研究。
  • 专家共识!可通过类器官药物敏感性检测与分析,为难治性肺癌患者用药提供参考
    肺癌在我国的发病率及病死率均居恶性肿瘤之首,严重危害人民的生命健康。难治性肺癌指对标准治疗反应低,或尚无标准治疗,缺乏高效低毒治疗方案的肺癌。目前对于难治性肺癌尚缺乏明确定义及治疗相关共识。 为了更好地指导临床合理、安全、有效地治疗难治性肺癌,中华医学会呼吸病学分会肺癌学组的专家,针对我国肺癌实际诊疗情况,参考了国内外新研究数据、相关指南共识及专家临床实践经验,制定了本共识。 共识围绕难治性SCLC、难治性驱动基因阳性NSCLC、难治性驱动基因阴性NSCLC、精准诊疗新技术方案等四个方面分别给出推荐意见,为我国医师提供难治性肺癌的用药建议和参考。 难治性肺癌精准诊疗新技术方案难治性肺癌患者会面临多重耐药等复杂情况,临床医师可在取得患者知情同意前提下,利用类器官芯片技术、人源肿瘤异体移植瘤模型(patient-derived tumor xenograft,PDX)及MiniPDX技术开展药物敏感性检测,结合基因测序,综合判断,制定个体化用药方案,推荐如表6。 其中,多数专家(64%)推荐,难治性肺癌患者可通过类器官药物敏感性检测与高通量药物筛选,为后续用药提供参考(证据水平:Ⅱ级)。患者来源的类器官(patient-derived organoid,PDO)在新药靶点发现和验证、肿瘤药物筛选、个体化治疗和转化医学等临床癌症研究中有重要价值。 在临床实践中,医师可在征得患者知情同意情况下,选择性建议其进行类器官药物敏感性检测,为后续用药选择提供参考。一项合并17项肿瘤类器官药物性敏感检测的临床疗效预测结果显示,类器官技术在精准医学的临床应用价值(总体敏感度为84%,特异度为81%)。 此外,利用胸腔恶性积液构建肺癌类器官、进行个体化药敏检测取得了积极进展,可用于记录肿瘤类器官对化疗药物敏感性以预测体内药物反应。因此,利用肺癌类器官进行化疗药物和靶向药物高通量药物筛选是可行的。 艾玮得类器官药物敏感性分析服务肿瘤患者的是试药替身艾玮得生物专注于人体器官芯片及配套生命科学设备的创新研发。艾玮得药敏分析方案以器官芯片为核心,类器官+微环境实现人体高仿真模拟,构建出临床治疗有效性评估理想的预测模型,为医生与患者的治疗提高效率和有效性。 艾玮得药敏分析服务通过仿真的体外模型模拟肿瘤微环境,更准确呈现药敏反应。利用摇摆灌注仪提供动力系统,实现自动化、高通量样本动态培养。类器官/器官芯片智能成像分析系统配备智能实时拍摄、智能定位、智能AI图像处理及分析功能,数据结果更客观,节约人力的同时提升效率。所有实验操作均在智能类器官培养工作站中进行,减少污染风险,降低人员操作的批次间差异。
  • “中国好电镜”系列研讨会丨电子束敏感多孔材料的透射电子显微镜表征
    在材料显微结构表征方面,电子显微镜(包括SEM、FIB、TEM)有着无可比拟的优势,在科学研究,工业领域等作用日益增长。为了有效推动电子显微镜表征技术的发展,深入了解不同电子显微镜的性能特点,充分发挥仪器功效,提高广大用户的分析测试水平及解决实际使用中的难题,赛默飞将在2023年举办“中国好电镜”系列研讨会,特别邀请国内著名的专家学者和赛默飞资深电镜应用科学家与大家交流前沿电镜表征技术。 扫描/透射电子显微镜(S/TEM)可以对材料的结构进行直接成像,能在原子尺度上建立材料的性质与其局域结构之间的相关性。虽然高分辨率 TEM 和 STEM是大多数材料结构的常规表征手段,但由于电子束敏感材料(如典型的多孔材料分子筛、金属有机骨架(MOFs)、共价有机骨架(COFs)等)极端的不稳定性,以常规方式观察它们的局域结构仍然是一个极大的挑战。电子束敏感材料对电子束辐照极为敏感,在常规S/TEM成像模式下,其结构会被立即破坏变为非晶,从而无法得到其局域结构的原子排列信息。因此,如何在无损伤的条件下以高分辨率和高信噪比在实空间中对典型的电子束敏感材料的结构直接成像是TEM和STEM技术应用的难点。 本次研讨会特别邀请清华大学陈晓老师为大家从原子尺度解析多孔材料分子筛局域结构及主客体相互作用,分享其使用超低电子剂量高分辨电子显微技术在电子束敏感多孔材料结构表征中的成功案例。同时邀请赛默飞透射电镜应用科学家刘苏亚博士为大家直播演示如何在球差校正透射电子显微镜Spectra 300平台上对电子束敏感多孔材料进行超低电子剂量下原子尺度直接成像。 特 邀 报告 陈晓 清华大学化工系助理研究员 多孔材料局域结构及主客体相互作用原子尺度结构研究2023.04.20----14:30-15:30个人简介其研究方向主要是发展多孔材料低剂量原子尺度成像方法,致力于分子筛中单分子成像以及主客体相互作用的直接观测,以期从分子层面甚至是原子层面理解和探索这些化学反应过程中的分子进出机制以及客体分子与主体骨架间的作用行为。目前已发表文章50余篇,其中(共同)第一作者/通讯作者12篇,包括 Nature(3篇)、Science(1篇)、Nat. Commun.(4篇)、Adv. Mater.(1篇)、JACS(1篇)等。其中“A single molecule van der waals compass”(Nature. 592, 541(2021))的工作入选 2021 年度“中国高等学校十大科技进展”,获得第三届中国分子筛新秀奖、2022 年度清华大学优秀博士后,入选2022年度中国区“35岁以下科技创新35人”榜单。报告摘要多孔材料由于其特殊的孔道结构成为了催化、分离、医药等多个领域不可替代的原材料,分子筛作为典型的多孔材料在石油化工、煤化工裂解、异构化、芳构化及烷基化等反应中同样发挥着不可替代的作用。因此从分子层面甚至是原子层面理解和探索这些化学反应过程中的分子进出机制以及客体分子与主体骨架间的作用行为对于理解和认识这些工业化背后的微观行为尤为关键,尤其是工况服役状态下的催化剂的本征行为至关重要。该报告将以分子筛催化剂为研究对象,尤其是对工业化中应用最为广泛的ZSM-5进行了系统的研究。首先研究了在超低电子剂量的条件下研究分子筛亚纳米尺度局域结构解析和原位观察限域分子动态行为的方法,在常温甚至是高温的条件下“冷冻”分子,观测了单分子进出孔道的行为,研究限域小分子动态行为和主客体相互作用以及这类折形分子筛中单个芳烃分子的转动行为、加入氢键力作用后定量化了分子在孔道中的作用方式,在原位观测分子进出孔道的基础上解决了60年来困扰科研人员分子筛筛分比孔道稍大点的分子的微观机制。在不断对分子筛有深入理解的过程中希望能够为十万亿产值的工业化过程提供新的见解。扫描上方二维码报名线上网络研讨会Demo演示 刘苏亚 博士超低电子剂量下对电子束敏感多孔材料进行原子尺度直接成像2023.04.21----14:30-15:302019年毕业于浙江大学材料科学与工程专业,主攻非晶合金的结构表征及相关应用。同年入职赛默飞世尔科技,主要从事透射电镜的应用支持工作,拥有十余年的电镜使用经验。扫描上方二维码报名线上Demo演示
  • 中科院光电所研制星敏感器助力新一代北斗卫星
    p style="line-height: 1.75em " 近日,由中国科学院光电技术研究所研制的星敏感器,协助我国第五颗新一代北斗导航卫星精确调整姿态,顺利进入既定轨道。/pp style="line-height: 1.75em " 光电所光电传感技术研究室赵汝进博士介绍,星敏感器安装于卫星平台,隶属于卫星姿轨控分系统,承担了卫星姿态测量任务,通过对多颗恒星成像、识别、跟踪、解算等流程实现卫星全自主姿态测量。相对于姿轨控中其他姿态测量设备,星敏感器作为测姿精度最高的单机,测姿精度可达到角秒级甚至亚角秒级,是卫星平台不可或缺的测量设备,也代表了现代先进卫星姿轨控技术发展方向。/pp style="line-height: 1.75em " 据了解,光电所从上世纪90年代起在国家“863”计划支持下开展星敏感器技术攻关。先后研制成功我国首台接入卫星姿轨控系统的国产星敏感器和我国首台在轨应用的国产高轨星敏感器。目前该所在研星敏感器达十余种型号,超过100台(套)。/ppbr//p
  • 新型高敏感成像技术研发成功 集磁共振和伽马射线优点于一身
    英国《自然》杂志28日公开的一篇论文,描述了一种集磁共振成像和伽马射线成像优点于一身的新型光谱成像技术,有望为开发新型医学诊断工具打下基础。  磁共振成像是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。这是医学领域非常重要的诊断工具,因为它具有卓越的空间分辨率,能够分辨图像中的个体特征。而伽马射线探测器则具有高度敏感性,可用于探测微量放射性示踪剂。这些示踪剂能够定位特定的目标,因此这种图像可用于诊断癌细胞的分布和数量以及脑和心血管畸形。一直以来,这两种技术各有千秋,但双方的优点却很难兼得。  此次,美国弗吉尼亚大学研究人员高登盖茨、威尔逊米勒及其团队成员,发明了一种全新的成像技术,先利用磁共振收集空间信息,再利用伽马射线收集图像信息。研究人员通过在玻璃槽中进行放射性原子成像操作,证明了该技术的可行性。而传统的磁共振成像方法需要几十亿甚至更多的原子才能生成图像。  在目前阶段,如使用该技术获取示例图像的数据,大约需要60个小时,这对于临床应用而言并不理想。不过论文作者提出,虽然该技术手段在某些方面仍需改进,譬如说处理速度,但提高探测器的规模或者放射性示踪剂的数量或有助于克服这些问题。  在论文随附的新闻与观点文章中,英国诺丁汉大学科学家认为,该技术将有助于生物学和非生物学系统的研究。
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.27.Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.
  • 赛默飞推出应用于敏感培养的新型轨道式摇床
    新型 Thermo Scientific MaxQ HP 数显轨道式摇床可提供 24/7 的精准性能2012 年2 月3 日,中国上海 &ndash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)有限公司,日前推出了Thermo Scientific MaxQ 高性能 (HP) 数显轨道式摇床。该设备型号包括户外和台式培养型摇床及培养或冷冻板型摇床,MaxQ HP 摇床的振幅很适合在敏感培养应用。固件震荡速度范围为 25 至 525 rpm,可为细菌提供&ldquo 强有力的震荡&rdquo ,而无刷直流电机的应用可使设备免于维护,实现长时间连续运行。MaxQ HP 摇床易于进行运行设置,且该设备还具备一项功能,能够限制对主要功能系统进行未经许可或不慎的更改。MaxQ HP 空气浴和台式摇床的操作平台有多种尺寸,因而只需改变操作平台就能增加样品容量。台式培养摇床包括有同类产品中领先的+/-0.3º C 的温度均匀性,可实现最佳生长 ,而宽敞的操作室可容纳6个2L的锥形瓶。MaxQ HP 培养摇床和冷冻板摇床都配有 HEPA 过滤器,能提供最大限度的保护,防止污染,气流系统可使温度均匀性达到 +/-0.2 º C ,实现理想培养条件,符合人体工程学的设计可方便使操作人员操作设备内部。温度可选范围广,几乎可以满足任何要求,培养摇床内部温度为5 º C 至80 º C,冷冻摇床的内部温度为4&ndash 60 º C。背光显示屏使 MaxQ HP 数显轨道式摇床具备了多项功能,可同步显示温度、速度及时间的运行值和设置值,还可在设置运行状态时减少误差。设计先进的平衡机械和耐用的部件能够消除摇床在震荡过程中所产生的振动,保障其使用寿命。实时报警提示(包括温度传感器故障和电力中断),加强了操作人员控制设备操作的信心。新型 MaxQ HP 摇床免维护,具备高端性能,是为严苛的分子生物学应用而设计的,该设备现已作为摇床产品中的最佳型号增加到了赛默飞的产品手册中。获取更多有关新型Thermo Scientific MaxQ HP 数显轨道式摇床系列产品的信息,请登录www.thermo.com.cn/shaker。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.cn
  • 智慧农业团队在多尺度稻叶瘟敏感光谱指数构建及遥感监测方面取得重要进展
    近日,农学院智慧农业团队在国际顶级遥感期刊《Remote Sensing of Environment》发表了题为“A disease-specific spectral index tracks Magnaporthe oryzaeinfection in paddy rice from ground to space”的研究论文,报道了他们在多尺度稻叶瘟敏感光谱指数构建,以及小农户田块稻叶瘟发生时空动态遥感监测方面的重要进展。稻瘟病(Magnaporthe oryzae)是威胁全球水稻生产的最具破坏性的真菌病害。现有的稻叶瘟发病信息主要通过田间调查来获取,这种方法不仅费时费力,而且存在代表性差等弊端,难以满足大范围稻瘟病高时效高精度监测的需求。构建适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,对于遏制病害蔓延、病害定损评估、早期病害预测预警至关重要。现有研究多集中在基于机器学习或统计模型的单一尺度稻叶瘟识别和病情指数估算,缺乏对稻叶瘟高度敏感、可适用于叶片(个体)和冠层尺度(群体)的光谱指数。该研究综合分析了从单叶到冠层尺度稻叶瘟侵染引起的光谱响应(图1),基于单波段可分性和特异性光谱响应规律创建了一对稻叶瘟敏感植被指数(RIce Blast Indices, RIBIs),进一步通过光谱指数波段优化方法确定了三波段具体位置(R665, R753和R1102)。利用叶片、近地面冠层和卫星平台获取的多年多试验点实测数据,系统评价了RIBIs在不同尺度对稻叶瘟病害严重程度的估算能力。结果表明,在叶片尺度RIBIred对感染和健康样本的识别表现出最高的分类精度(图2),而在冠层尺度RIBInir则表现出与病情指数最高的相关性(图3)。图1. 稻叶瘟侵染下不同病害严重程度的水稻光谱反射率。A. 单叶尺度不同接种后天数(Days after inoculation, DAI);B. 近地面冠层尺度不同病情指数(Disease index, DI)。图2. RIBIs与传统光谱植被指数在温室(2018和2019)和自然条件下(2020)对健康与感病叶片分类精度的比较。RBVI:前人研究中对稻叶瘟较敏感的植被指数,SVI:类似RIBI的植被指数,TBVI:传统三波段植被指数,OD:其他类型病害指数,CW:叶绿素及水分敏感植被指数。图3. RIBInir和传统指数NDVI在近地面(A和C)及卫星尺度(B和D)与稻叶瘟病情指数DI的相关性。不同颜色散点代表在不同时期和试验点获取的样本。该研究进一步对Sentinel-2卫星影像提取的RIBInir进行时间序列分析和热点分析发现,在时间维度上,基于RIBInir的时间序列能准确追踪小农户田块中稻叶瘟的爆发与恢复态势,而传统植被指数NDVI对自然条件下稻瘟病发生过程的敏感性更差(图4)。空间维度上,RIBInir对稻叶瘟发生区域的刻画更加准确,稻叶瘟时空动态传播规律的与实地调查一致性更好(图5),卫星影像分析结果中表征病害恢复的绿色像素与呈现恢复趋势的黑色调查点吻合度更高。该研究构建了适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,显著提高了对多尺度稻叶瘟发生的识别精度和对病情指数的估算能力;首次提出了基于光谱指数图的小农户田块稻叶瘟爆发热点识别思路,为基于卫星遥感的稻叶瘟传播概率等级划分和病害流行风险评估奠定基础。图4.试验区(以江苏省淮安市唐曹村为例)Sentinel-2影像植被指数的时间序列结果比较(A. RIBInir B. NDVI)。红色星号表示不同水平下的显著性差异。图5.两个典型研究区卫星影像RIBInir和NDVI的热点分析结果(左:江苏省淮安市唐曹村;右:江苏省淮安市太平村)。黑色点代表实地调查点。该研究由南京农业大学国家信息农业工程技术中心完成,农学院博士研究生田龙为论文第一作者,程涛教授为通讯作者。据了解,智慧农业团队在国家自然科学基金等项目,以及现代作物生产省部共建协同创新中心等平台的资助下,瞄准作物病虫害高时效高精度监测预警难题,持续开展了多年温室与田间试验,近两年连续在Remote Sensing of Environment上发表稻叶瘟光谱监测机理与方法方面的创新成果,对于作物病虫害天空地一体化监测预警和作物绿色智慧生产具有重要价值。
  • 美研制寨卡病毒快速检测工具 成本极低敏感性堪比PCR
    p  《科学· 转化医学》杂志近日载文称,美国科学家研制出一种快速、高灵敏且便宜的新型检测工具,不仅能直接检测到蚊子体内和人体体液中的寨卡病毒,还能区分寨卡病毒的非洲株和亚洲株,可更有效地追踪寨卡病毒的传播。/pp  寨卡病毒是一种虫媒传播病毒,与登革热、黄热病和西尼罗河病毒同属。寨卡病毒属于单链RNA病毒,分为亚洲系和非洲系两大谱系。感染后常见症状包括发烧、疹子、关节疼痛、肌肉疼痛、头痛和结膜炎等。孕妇感染可导致婴儿小头症等严重出生缺陷。/pp  科罗拉多州立大学的纽恩雅· 朝迪万等研究人员设计的新工具,基于一种叫做“环介导等温扩增”技术(LAMP),能直接从蚊子体内以及人的血液、唾液和精液中检测到寨卡病毒,其敏感性堪比目前的标准PCR(聚合酶链反应)检测技术。但PCR仪器的价格从1.5万美元至2.5万美元不等,仅在实验室内使用 而新工具初步估计成本为250美元左右,能在野外使用。/pp  研究人员利用人为掺入病毒的健康人样本及寨卡病毒感染者身上采集的临床样本,验证了LAMP的有效性。LAMP还足够灵敏,能从50只蚊虫中找出唯一受到感染的蚊子。此外,LAMP对样本处理的要求很低,而检测时间却缩短很多,这有利于对寨卡病毒的监控。更重要的是,它不会把登革病毒和基孔肯雅病毒等与寨卡病毒相似的病原体误检测成寨卡病毒。/pp  不过,研究人员表示,尽管这种新工具对监控寨卡疫情很有价值,但要通过审批进而大范围使用,估计还要很长时间。/pp/p
  • 43亿借壳后 贝瑞和康首次回应PE估值等敏感问题
    基因科技公司“贝瑞和康”拟43亿元借壳“天兴仪表”引发行业广泛关注。2016年12月14日,天兴仪表与贝瑞和康在深圳证券交易所召开媒体说明会,回应包括“PE估值远高于借壳价格”等诸多敏感热门问题。  据媒体信息,贝瑞和康董事长、实际控制人高扬14日在媒体说明会上介绍,检测例数方面,贝瑞和康无创产前基因检测23.76万例差不多占中国大陆市场的40%左右。  高扬介绍,贝瑞和康目前的思路是全产业链、上中下游扩展。据国家食品药品监督管理总局(CFDA)数据库信息显示,2015年3月20日,贝瑞和康基因测序仪NextSeq CN500、胎儿染色体非整倍体(T13/T18/T21)检测试剂盒(可逆末端终止测序法)分别获得医疗器械产品注册。目前,贝瑞和康业务已经从基因科技的基因测序服务延伸至上游测序仪和检测试剂的研发生产和销售上,实现了全产业链的扩张和布局。  据天兴仪表《草案》显示,2015年度其检测业务占比71.52%,为贝瑞和康最核心的业务 相对比而言,华大基因的生育健康类服务占比31.52%(2015年1-6月数据)。贝瑞和康董事会秘书、财务总监、副总王冬在说明会上介绍,相较于业务线较长的华大基因,贝瑞和康业务主要聚焦于医疗应用领域。  2015年12月,贝瑞和康进行D轮融资,投资方包括海通兴泰、尚融宁波、中信锦绣、鼎锋明德致知、鼎锋明德正心、鼎锋海川、珠海睿弘等,此时贝瑞和康估值达百亿元。然而,日前披露的43亿元的借壳价格却与此估值有巨大出入,并且远低于市场预期。  对此问题,贝瑞和康董事会秘书、财务总监、副总王冬介绍:  从收购说明书披露的过程来看,近一年我们一级市场PE估值快速增长,增长的原因首先是基因测序行业由于测序成本的下降和应用项目的增加,尤其是以NIPT为代表的落地项目发展非常迅速,大家看到了基因测序这个技术在人类医疗领域、大健康领域应用的前景。  二是贝瑞和康的经营业绩,有这么好的行业,贝瑞和康的管理团队在这个行业凭借我们的能力,把它反映出来,反映成经营成果,收入快速增长,年化增长率超过30%。  三是行业内对相关政策的落地有很强的预期,所以我们2013年、2014年、2015年PE估值上升速度比较快。  四是这种预期反映到二级市场上,从2014年开始,2014年、2015年二级市场相关基因概念股估值上升非常快,基本上这些基因概念股的平均估值都在200多倍。  这四个原因使得PE阶段进入贝瑞和康的股东能够给予贝瑞和康很高的估值,前段时间(2015年12月)华大基因也披露了招股说明书,它的PE股东给它的估值也很高。  为什么我们这次以43亿,比对折还要多一点的情况(价格)进入到上市公司呢?可以说这是交易目的的不同,前几次增资股权转让是为了融资发展业务,本次交易目的是为了实现贝瑞和康的借壳上市,既然借壳上市,就要遵守证监会和相关监管机构的技术性要求。监管机构对评估技术有非常明确的要求,大家可以看到2016年上半年监管机构对这方面更加重视,所以在符合相关监管法律法规技术性要求的情况下,要考虑对上市公司中小投资者的保护,所以在符合技术要求的前提下,跟上市公司商量,本次作价以审慎的角度出发,给予贝瑞和康比较合适的估值。
  • 杨茂君教授、肖百龙研究员、高宁研究员课题组合作在《自然》发文揭示哺乳动物机械敏感离子通道的冷冻电镜结构
    p  2015年9月21日,清华大学生命学院杨茂君教授,高宁研究员和医学院肖百龙研究员研究组合作在《自然》(Nature)杂志上以长文形式在线发表了题为《哺乳动物机械敏感Piezo1离子通道的结构》(Architecture of the Mammalian Mechanosensitive Piezo1 Channel)的研究论文,首次报道了哺乳动物机械力敏感离子通道Piezo蛋白的高分辨率冷冻电镜结构,并以此为基础对Piezo蛋白的作用机理进行了分析。/pp  Piezo蛋白是由美国加州Scripps研究所Ardem Patapoutian教授研究组在 2010年首次鉴定得到的第一个真核生物机械力敏感离子通道。该蛋白与目前已知的所有离子通道蛋白均没有同源性,尤其值得一提的是,该蛋白是目前已知所有膜蛋白中跨膜区最多的蛋白。自从该蛋白被发现以来,在世界范围内掀起了一股Piezo蛋白研究的热潮,多个研究组先后在世界顶级杂志发表多篇研究论文阐述了该蛋白的重要生理功能。与低等生物中只存在一个Piezo蛋白不同,在高等生物中存在两类Piezo蛋白,Piezo1和Piezo2,在人类中二者具有47%的同源性。Piezo2蛋白主要在感觉背根神经节中高表达,近年来的研究表明其主要与生物体感受外界触碰即感觉相关。Piezo1主要在肺、膀胱、红细胞和皮肤细胞中高表达,在红细胞中功能获得性突变可导致干瘪细胞增多症和裂口红细胞症等遗传性疾病。2014年,利兹大学的David Beech教授和加州Scripps研究所Ardem Patapoutian教授研究组分别独立发现Piezo1蛋白可以为血管中的传感器提供指令,能够使身体感受到血液正在流动,进而给出信号指示形成新的血管结构。这一发现奠定了Piezo1蛋白作为靶标在心血管疾病和癌症等重大疾病治疗过程中的重要研究意义。Piezo1结构的解析为深入理解Piezo家族蛋白在这些疾病中的作用以及生物体感知外界信号的分子基础奠定了良好的基础。机械力敏感离子通道蛋白结构研究先驱,美国加州理工学院(Caltech)化学和化工系教授/霍华德休斯医学研究所(HHMI)研究员,美国科学院院士Douglas C. Rees教授在给杨茂君教授的贺信中写到“This is a great accomplishments - congratulations!”。/pp  Piezo1结构不仅完美的解释了以往的细胞、生化研究数据,而且还纠正了以往研究中对Piezo蛋白的错误认识。在以往的研究中Piezo1蛋白被认为可能是以同源四聚体形式发挥离子通道功能,而我们的生化及结构证明,Piezo1蛋白主要是形成类似于螺旋桨一样的同源三聚体(图a)。同时,结构分析表明Piezo1蛋白仅含有16个左右的跨膜区,且形成两两配对的阵列结构(图b),这一点与以往生物信息学预测的含有30-40个跨膜区不同。Piezo1蛋白的胞外区由两部分组成,其N端形成一个大的螺旋状胞外区分布在三聚体中心的远端,而在三聚体的正中间有一个球状的“帽子”结构。结构分析表明这一“帽子”结构是由三个CED(C末端胞外区结构域)构成的,而CED由该蛋白的最后一个跨膜区(IH)与只有59个氨基酸的CTD(C末端结构域)相连接。CED-IH-CTD形成三聚体,其正中间为离子透过的通道区域。有趣的是倒数第二个跨膜螺旋(OH)形成了一种功能区替换(domain swap)的结构,其由埋在细胞膜内的四个螺旋形成Anchor结构域与最后一个跨膜螺旋连接,以顺时针的方式分别插入到相邻分子的跨膜区,进而稳定了三聚体的形成(图a)。数据分析表明:Piezo1蛋白位于胞外区的N端螺旋状结构域具有非常高的柔性,其可以左右摆动也可以上下平移,推测其与感受来自不同方向的外界剪切力有关。此外该结构域还由一个具有两个大约80埃长度的在细胞膜内紧贴着跨膜区的Coiled-coil结构(Beam)与CTD相连接,该Coiled-coil结构域可能起到将N端胞外区螺旋结构的形变向胞内区CTD区域传导的功能,进而促进离子通道的开放(图c)。/pp  清华大学生命学院博士研究生盖景鹏、李婉秋、赵前程和李宁宁为本文并列第一作者 高宁研究员、肖百龙研究员和杨茂君教授为本文共同通讯作者。此外生命学院博士研究生陈懋斐、李若翀和医学院博士研究生支鹏也参与了部分研究工作。上海同步辐射及清华大学蛋白质研究技术中心(凤凰工程基础设施)为晶体及冷冻电镜数据收集提供了及时有效的支持。本项目受到清华-北大生命联合中心、清华大学自主科研计划、国家自然科学基金委、科技部重大研究计划及中组部青年千人计划的支持。/pp  论文链接:/pp  a href="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15247.html" _src="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15247.html"http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15247.html/a /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/09d7cb9c-3894-4cfe-a575-c3672c66e507.jpg" title="0924_t.jpg"//ppbr//pp  图示(a)Piezo1冷冻电镜密度图及三维结构 (b)Piezo1跨膜区骨架形成两两配对的阵列结构 (c)Piezo1感受外界机械力的分子基础模型/p
  • 仕富梅推出全新SERVOPRO NanoChrome超痕量气体分析仪
    仕富梅全新的SERVOPRO NanoChrome 超痕量气体分析仪 彻底改变了半导体行业中的超高纯气体分析  通过引进最先进的气体传感技术和信号处理方法, 仕富梅新的SERVOPRO NanoChrome彻底改变了超高纯气体的超痕量纯度测量。  专为半导体生产中处于超痕量水平的杂质气体和烃类测量而设计,NanoChrome在一定范围的常见背景气体包括氦气,氢气,氮气,氩气和氧气的存在下,可以对氢气,甲烷,一氧化碳,二氧化碳和非甲烷烃类提供良好稳定的sub-ppb级测量。其结果是分析仪不仅提供优于传统火焰点火检测器(FID)和还原气体检测(RGD)技术的众多测量和性能优势,而且提供实际性的成本和安全效益,是依靠气体最高纯度维持产品质量的客户先前无法达到的。  卓越的NanoChrome采用由仕富梅特别开发的一种创新高灵敏度的等离子体发射探测器(PED)从而能够提供超低检测限度。已通过氩气和氮气的超痕量测量测试,扩展的测量波长使测量H2, CH4, CO 以及CO2以及直链烃的测量无需甲烷转化器。由于无需可燃气体,仕富梅PED传感器增加了安全性,同时降低了运营成本。  NanoChrome利用先进的信号复苏技术增强了分析灵敏度和可靠性,采用专门研制的可调色谱滤波方法和ProPeak色谱峰检测技术,来进行比先前超高纯气体更敏感的和更具有选择性的测量。仕富梅的直接分析方法,使得对FID和RGD测量特殊精度的疑虑烟消云散。  结合ServomexDF - 500超痕量分析仪系列和DF- 700微量水分析仪系列,仕富梅现在能为半导体行业提供单一、完整的可靠超高纯气体分析解决方案, 支持全球网络销售、服务和维护,仕富梅是目前唯一为所有超高纯气体纯度测量提供完整解决方案的气体分析制造商。  仕富梅集团有限公司董事Chuck Hurley指出,&ldquo SERVOPRO NanoChrome是对超高纯气体杂质测量的重大突破,因为仕富梅运用全新的方法应对超高纯气体客户的需求:通过单一分析仪提供更灵活、准确、可靠的测量,从而提供即时的性能、成本和安全效益,&rdquo 。  &ldquo 一旦了解用户的真正需求,仕富梅研发团队就采用了一种全新的方法开发超高纯气体传感技术。他们不仅彻底改进了PED传感技术,而且在创新ProPeak处理技术过程中,我们开发了新方法来解释和处理数据。使超高纯气体分析有了真正的飞跃&mdash 我们确定这将对半导体行业产生积极的影响。&rdquo
  • 微结构敏感的增材合金超高周疲劳裂纹萌生/扩展新理论
    增材制造金属作为新一代“高设计自由度”材料,虽具有传统铸轧工艺无法比拟的优势,但其长期服役疲劳性能仍有不足。航空发动机、燃气轮机和高铁等关键零件,在服役过程中承受107~1010及以上的循环载荷,材料微结构敏感性显著增强,实验寿命分散性大,传统基于疲劳极限(107)的疲劳强度与寿命设计理论不再适用。因此研究增材制造金属材料的超高周疲劳(VHCF)失效机理,建立量化内部缺陷和微结构的超高周疲劳裂纹萌生/扩展理论框架具有重要的科学意义和工程应用价值。增材制造金属超高周疲劳裂纹通常萌生于内部缺陷,裂纹萌生阶段通常占总寿命的95%以上。对于内部裂纹尚无合适的原位观测手段捕捉纳米级的裂纹长度变化,同时由于缺陷尺寸与晶粒在同一数量级,材料的各向同性假设不再适用。在理论层面,现有循环内聚区模型难以处理低于应力强度因子阈值的损伤演化,同时塑性变形和损伤是历史相关的内变量,现有数值模拟方法无法处理超高周次的循环载荷数。本研究旨在发展考虑材料微结构的超高周裂纹萌生/扩展机理的力学模型及超高周次循环载荷下的数值加速等效方法。本研究建立了耦合的晶体塑性/循环内聚区模型,引入单元通信机制,建立裂纹萌生演化准则,提出适用于超高周疲劳载荷的加速算法,对增材制造铝合金疲劳裂纹萌生和扩展过程进行预测,并通过实验验证了该方法的有效性。主要成果如下:(1)捕捉到了超高周疲劳早期的裂纹萌生/扩展过程。揭示了增材制造铝合金的VHCF裂纹萌生/扩展机理,建立了1:1还原实验的缺陷、晶粒织构和载荷条件的有限元模型。图1 (a)早期裂纹捕捉,(b)由内部缺陷诱发的次生裂纹,(c)早期裂纹形貌,对应载荷循环数3.63×108,(d)有限元模型及边界条件,(e)内聚区单元网络,(f)缺陷附近的内聚区单元(2)构建了超高周疲劳裂纹萌生及扩展的理论框架。首次将裂纹萌生过程中实体单元计算得到的晶体滑移内变量作为损伤参量引入内聚区模型,建立裂纹萌生和扩展准则,提出了基于向前欧拉法和频率等效的加速算法,实现超高周疲劳裂纹萌生和扩展的全过程模拟,很好地模拟了裂纹萌生早期缺陷附近最大激活滑移系的演化。图2 裂纹萌生早期缺陷附近最大激活滑移系的演化(a) N=1×104, (b) N=5×105, (c) N=2.5×106, (d) N=4.5×106, (e) N=6.5×106, (f) N=8.5×106(3)验证了模型在超高周疲劳载荷下的有效性。计算结果表明由于裂纹表面的相互挤压,裂纹面附近产生大量高局部累积塑性区,有力地支撑了大数往复挤压模型(NCP)所预测的FGA细晶区形成机理。同时模型可以有效地计算裂纹闭合效应,预测的裂纹扩展速率与实验结果吻合很好。图3 模型验证:(a)KAM图, (b)计算结果, (c)裂纹扩展速率该研究成果近期以“A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy”为题,发表在固体力学旗舰期刊Journal of the Mechanics and Physics of Solids 2023,175, 105293上(https://doi.org/10.1016/j.jmps.2023.105293),论文作者为中国科学院力学研究所孙经雨、钱桂安、洪友士等人。该项研究工作得到了国家自然科学基金(12002185,12272377,12072345,11932020)的资助。
  • 电导率方法转换的桥接试验:从使用台式仪和探头转换为使用自动化的Sievers M9 TOC分析仪
    究目的本研究的目的是证明使用配置了电导率选项的Sievers M9总有机碳(TOC)分析仪和使用台式仪表和探头来测量《中国药典》2020版通则与USP 规格样品水第1阶段电导率这两种方法同样有效,并帮助用户从使用台式仪表和探头转换为使用配置电导率选项的Sievers M9 TOC分析仪。制药用水的电导率是指样品水在已知电势差上传导因离子运动而形成电流的能力值。电导率的计算方法是用电流强度除以电场强度。可以用离线的台式仪表和探头或者在线的电导率传感器来测量电导率1。随着温度和pH值变化,水分子自然离解成离子,从而使样品水具有可计算的电导率。外来离子也会影响样品水的电导率,并对样品水的化学纯度以及样品水在制药应用中的适用性产生较大影响。因此,国际通用的药典都有关于测量制药用水电导率的专论,给出了水的纯度和适用性的接受标准。USP 还对测量电导率的仪器规定了具体要求,并规定了具有不同接受标准的三个测量阶段,以帮助用户进行在线或离线测量。第1阶段测量的接受标准最严格,但此阶段最容易实施。第2和第3阶段测量则要求实验室人员进行离线的、耗时的实验台操作。对于制药商而言,最想进行的测量是离线或在线的第1阶段测量。根据USP ,如果要进行离线测量,测量就必须在合适的容器中进行。离线测量电导率所使用的合适容器的制造材料,不可以在与样品接触时浸出离子。传统的硼硅酸盐玻璃瓶会在样品水中浸出钠离子和其它离子,因此不适用于测量制药用水。Sievers电导率和TOC双用途瓶(DUCT,Dual Use Conductivity and TOC)的瓶体、瓶盖、垫片的测试表明,即使用DUCT瓶保存样品长达5天,也不会对样品的TOC和电导率产生明显的贡献。2,3目前许多制药商在测量制药用水的电导率时使用台式仪表和探头离线进行第1或第2阶段测量。这种测量方法有几个无法避免的缺点,比如数据不安全、样品的安全性不足、样品暴露于空气中、资源的使用效率低等。测量制药用水电导率的先进方法应当是进行自动化的第1阶段电导率测量,而存放和传输数据的电子安全数据库应完全符合21 CFR Part 11法规和最新的数据完整性法规。配置了电导率选项的Sievers M9 TOC分析仪就为用户提供了这种理想的第1阶段电导率测量方法。以下路线图显示如何从使用台式仪表和探头来离线测量第1阶段电导率,转换为使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量第1阶段电导率。料配置了电导率选项的Sievers M9便携式TOC分析仪(SN#0043)配置了InLab 741 ISM电导率探头的梅特勒-托利多SevenCompact 仪(Mettler Toledo SevenCompact Meter)一盒Sievers DUCT电导率和TOC双用途样品瓶(HMI 77500-01)两套Sievers 100 μS/cm KCl电导率校准标样(STD 74470-01)(如果适用)一瓶500毫升Ricca 100 μS/cm KCl标样,25°C(CAT#5887-16)10毫升和1000微升移液器和吸头析步骤01通过DataPro2(请见下图)中的“样品电导率校准(Sample Conductivity Calibration)”系统任务,或者用M9的触摸屏,用100 μS/cm标样组(STD 74470-01)来校准M9分析仪,确保校准正确。02用100 μS/cm标样组(STD 74470-01)来校准梅特勒-托利多SevenCompact仪和InLab 741 ISM电导率探头,确保校准正确。请务必选用正确的电导率校准值。对于梅特勒-托利多SevenCompact仪,请选择以下校准标样路径:菜 单(Menu)/校准(Calibration),设置(Settings)/校准标样(Calibration Standard)/定制标样(Customized Standard)。输入100 μS/cm KCl标样,25°C。03为了最大程度上减少样品在传送过程中或转移到二级容器过程中被空气中的二氧化碳所污染,所有标样都应直接制备在DUCT样品瓶中² 。请采用正确的样品制备技术,用100 μS/cm KCl储备溶液分别制备30毫升DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1 μS/cm浓度的标样² 。最佳做法是按从高浓度到低浓度的顺序来制备标样,这样就可以在制备和分析各种敏感的低浓度标样之间花费最短的时间。所需要的稀释体积,请参考表1。04低浓度电导率标样非常敏感,因此必须先运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。M9分析仪报告原始电导率、温度、温度补偿电导率。USP 指出,对未知水样的所有阶段1的电导率测试是非温度补偿的。在进行校准、确认、比较研究时,应使用已知化合物的纯标样。例如,上述校准标样在25°C时为100 μS/cm KCl。为了正确地将测量值与此标准值进行比较,必须将电导率测量值补偿回参考温度25°C时的标准值。同样,由于是在两个电导率测量平台上测量这些纯净的已知标样,因此必须进行温度补偿以确保进行正确的比较。05采用正确的取样技术,用100 μS/cm KCl储备溶液分别制备DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1.00 μS/cm浓度的标样,用于台式仪表和探头测量。低浓度标样非常敏感,因此必须最先在仪表和探头上运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。确保将探头完全浸入DUCT瓶中。样品水在转移时可能会洒出来,因此建议将样品瓶放在二次容器(即防洒容器)中,以便在操作过程中用二次容器接住洒出来的水。06对于梅特勒-托利多SevenCompact仪表,确保选择25°C作为参考温度,并对测量值进行温度补偿。在仪表和M9上选择准确的补偿曲线和参考温度,这一点非常重要。KCl在低浓度时有非线性温度校正曲线,因此建议在仪表上选择非线性补偿曲线。测量时请将探头放入样品中,然后按“读取(Read)”键。待测量稳定后,表会提示“保存(Save)”或“退出(Exit)”。所有样品的测量数据都会记录在仪表上,然后导出用于分析。结果和讨论图2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值连成直线,可以看到R² 值和斜率,便于进行方法比较。图2中的数据显示,配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的电导率线性非常适用于测量制药用水的第1阶段电导率。图3是Sievers M9 TOC分析仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值也连成直线,可以看到R² 值和斜率,便于进行方法比较。图3中的数据显示,Sievers M9 TOC分析仪的电导率线性也适用于测量制药用水的第1阶段电导率。表2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪和配置了电导率选项的Sievers M9 TOC分析仪的线性方法对比数据。这两种不同设备的实测响应数据显示,Sievers M9的R² 和斜率响应均略优于配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的R² 和斜率响应。本研究中的数据不仅确认了这两种设备方法都可以有效地测量电导率,更进一步证明了配置电导率选项的Sievers M9 TOC分析仪更具优势。用这两种设备方法的结果差异,部分归因于样品与周围空气能否有效隔离。当使用Sievers M9 TOC分析仪时,电导率和TOC标样都装在DUCT样品瓶里进行分析,从而有效地隔离了空气。而当使用梅特勒-托利多仪和探头时,需在测量过程中打开样品瓶的盖子以便插入探头。打开瓶盖后,空气中的二氧化碳就会污染样品。在测量电导率时,Sievers M9分析仪比传统的台式仪表和探头有更好的线性、斜率响应、样品处理。除此之外,Sievers M9分析仪还有其它优势。台式仪表和探头测量的数据通常以txt或csv格式存放在仪表上。这都不是安全的数据格式,容易被审计机构审查。而Sievers M9分析仪采用安全的数据文件格式,数据不会受到机构审查。此外,在使用台式仪表和探头时,通常需要用USB设备来从仪表向电脑传送数据,而使用USB来传送数据时,容易被审计机构审查数据完整性。M9分析仪的数据可以通过以太网自动导出到LIMS系统、SCADA系统、或其它数据管理平台。最后,台式仪表和探头需要专门的操作人员来制备和运行样品,费时费力。由于对温度、搅拌、测量稳定性的要求,每份样品的第2阶段电导率测量时间需长达30分钟。而将自动进样器和配置了电导率选项的Sievers M9 TOC分析仪一起使用时,就可以实现自动化的样品分析和数据采集。考虑到Sievers M9 TOC分析仪的上述诸多优点,及其卓越的分析结果,那么制药商放弃使用传统的台式仪表和探头,转而使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量电导率,就成为非常明智的选择。两种设备方法的优缺点比较,请见表3。结论改变现行的分析方法通常是复杂的过程,而从传统的台式分析转换为自动分析可能更加复杂。本研究旨在说明如何从使用台式仪表和探头转换为使用配置了电导率选项的Sievers M9 TOC分析仪来测量电导率。本研究证明了台式设备和自动设备在测量USP 第1阶段电导率时具有同等分析性能,从而证明了从台式分析转换为自动分析的可行性。本研究还显示,用户可以相对容易地完成这一转换。最后如表3所示,当使用Sievers M9分析仪代替台式仪表和探头来测量电导率时,可以有诸多优点,例如数据可靠性、样品完整性、自动化运行等,这就使得从台式分析到自动分析的转换对寻求精益工艺流程的制药商极具吸引力。参考文献Sievers Lean Lab: Simultaneous Stage 1 Conductivity and TOC Lab Testing of Pharmaceutical Water (300 40030).DUCT Vial Performance and Stability (300 00297).Reserve Sample Bottles for Conductivity and TOC (300 00299).Low Level Linearity Conductivity Study on the Sievers M9 TOC Analyzer (300 00339).◆ ◆ ◆联系我们,了解更多!
  • 南京麒麟分析仪器解决压力容器中的难题
    南京麒麟分析仪器解决压力容器中的难题2017年5月份,江苏中电环境工程有限公司从南京麒麟科学仪器集团引进了一套QL-CS3000型电脑智能碳硫分析仪器,主要检测锅炉钢件中的特殊元素,公司专业代表专心为用户推荐配套检测方案,最经济型的碳硫分析仪器与分光光度计来检测原材料。刘工程师免费上门安装调试并培训化验操作人员,为客户现场检测锅炉钢件中的各种元素含量,产品的成份控制在国标范围内,准确度和精密度都得到了客户的认可。南京麒麟分析仪器客户检测现场该公司是以先进的技术、高品质的产品、优质的售后服务为主导的规模化股份制企业。主营:锅炉、锅炉配件、电力设备、环保设备、净化设备、工业成套设备、空调、采暖、制冷设备等生产。该公司检测中心配套多种检测设备:碳硫分析仪器、分光光度计、拉力试验机、金相、探伤仪、磨样机等。高品质的追求,销售网络及全国的集团化公司,成为极具实力的环保产业生产基地。全能元素分析仪客户检测现场碳硫分析仪器来检测碳硫两元素,采用微机及单片机自动控制电路及进口压力敏感传感器和先进的冷光源光电转换技术,使碳硫的测量完全自动化,测试结果数码显示并由打印机打印测量记录。采用国家专利技术的硫滴定液无电极控制加液技术,更方便于客户,利用碳硫分析仪精确检测钢件中的碳硫两元素。南京麒麟科学仪器集团有限公司检测中心2017年8月8日
  • 单细胞电学特性流式分析方法及分析仪器研究取得进展
    近日,中国科学院微电子研究所健康电子中心研究员黄成军、副研究员赵阳团队,在单细胞电学特性流式分析方法及高通量实时分析仪器研究方面取得重要进展。 单细胞电学特性生物传感与分析技术为单细胞生物物理学研究提供了新维度。该技术已被证明在全血分析、肿瘤细胞分型和免疫细胞状态评估方面具有重要的应用潜力。然而,现有的电学检测方法难以实现高通量实时性分析,限制了需要大量系统实验的单细胞电学特性研究的开展。 面该团队提出了快速并行物理拟合求解器,仅需0.62 毫秒即可在线求解出单个细胞膜比电容和细胞质电导率。与传统求解器相比,在不损失准确度的前提下,速度提升了27000倍,且不需要任何数据预采集和预训练过程,进一步实现了基于物理模型信息的实时阻抗流式细胞分析仪(piRT-IFC)(图1)。该技术可在50分钟内实时表征高达100902个单细胞,具有高稳定性、高通量、实时化和全流程自动化等特点。作为示范应用,该团队对药物处理后HL-60中性粒细胞脱粒现象这一典型的快速变化的生物过程进行实时表征分析。与普遍采用的神经网络辅助加速方法对比研究表明,piRT-IFC具有速度快、准确度高和泛化能力强的优势,具备广泛的应用潜力。 相关研究成果以piRT-IFC: Physics-informed real-time impedance flow cytometry for the characterization of cellular intrinsic electrical properties为题,发表在《微系统与纳米工程》(Microsystem and Nanoengineering)上。该研究由微电子所和计算技术研究所合作完成。近年来,该课题组面对单细胞物理特性检测存在敏感机理不明和技术实现困难等关键技术瓶颈,开创性提出了基于微流控技术的“交叉压缩通道”敏感新原理和单细胞电学模型,建立了基于微流控芯片的单细胞电学特性高通量定量检测方法,检测参数包括细胞膜比电容和胞浆电导率,通量比膜片钳等常规方法高10000倍,并进一步研发出实时高通量单细胞电学特性流式分析仪(图2)。仪器入选中国科学院自主研制科学仪器名录,与首都医科大学宣武医院、首都医科大学附属北京胸科医院、计算所等单位合作,成功用于脑卒中动物模型、癌症病人样本、药物模型等领域的多种细胞的分析,为肿瘤/脑卒中等精准诊断、药物筛选等提供了有力工具,并发现了新型标志物,验证了相关药物候选分子的作用、获得授权专利。研究工作得到科学技术部、国家自然科学基金委员会、北京市、中国科学院的支持。阻抗流式细胞分析仪(piRT-IFC)原理样机、核心微流控芯片、设备交互界面、典型结果和自动化实时数据处理流程 图2. 基于微流控芯片技术的单细胞电学特性活体单细胞分析仪(左)及核心微流控芯片(右)
  • 十亿分之一测量灵敏度——聚光科技高精度温室气体分析仪
    为什么需要高精度温室气体分析仪?2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”。2021年9月12日,生态环境部发布《碳监测评估试点工作方案》,要求开展重点行业、城市、区域三个层面的碳监测评估试点工作,建立碳监测技术方法和评估体系,为应对气候变化工作成效评估提供数据支撑。温室气体监测是研究温室气体浓度变化趋势以及源和汇的构成、性质和强度等的基础,也是温室效应评价的依据和减排措施制定的标尺,它的准确监测与评估将成为降碳目标的根本前提。城市大气温室气体浓度低,变化幅度小,为准确获得其浓度水平及变化趋势,这就需要高灵敏度和高精密度的自动监测技术和仪器。新品介绍聚光科技推出的高精度温室气体分析仪(HPGA-3301)是当今国内最优异的同时测量CO2、CH4、H2O三气体浓度的高精度仪器,具有无可比拟的卓越性能。仪器界面友好,操作简单,坚固耐用,是空气质量监测和科学研究的理想工具。01高达十亿分之一的测量灵敏度HPGA-3301遵从世界气象组织 ( WMO )设立的关于大气监测站的性能规格。测量灵敏度达到十亿分之一( ppb ),在数月运行中的漂移可以忽略不计。仪器采用专有算法来校正样气中水汽的稀释效应,并输出 CO2 和 CH4 的干摩尔分数。02稳定到极致的测量体验HPGA-3301采用光腔衰荡光谱(Cavity Ring Down Spectroscopy, CRDS)技术,可在有限的光腔内实现长达20千米的有效测量光程,因此分析仪虽然尺寸小却能达到优异的精度与灵敏度。仪器独有的内部控温、控压算法,让分析仪具备了优异的精度、准确度、低漂移性能,为客户提供稳定到极致的测量。城市环境监测区域环境监测行业碳排放检测“聚靠谱”课堂(气博士篇)“十四五”是实现我国碳排放达峰的关键期,也是推动经济高质量发展和生态环境质量持续改善的攻坚期。那么,什么是碳中和,碳达峰呢?我们又可以通过制定并实施哪些方案来实现碳中和碳达峰的远景呢?我们在碳排放,碳交易,碳足迹,低碳,甚至零碳中所说的“碳”,指的是人类生产生活中排出的各类温室气体,为了便于统计计算,人们把这些温室按照影响程度不同,折算成二氧化碳当量(CO2e),所以大家常用二氧化碳表示温室气体而碳达峰是指某个地区或行业年度二氧化碳排放量达到历史最高值,然后经历平台期进入持续下降的过程,是二氧化碳排放量由增转降的历史拐点。标志着经济发展由高能耗,高排放,向清洁低能耗模式的转变。碳中和是指某个地区在一定时间内人为活动直接和间接排放的温室气体,与其通过植树造林,工业固碳等吸收的二氧化碳相互抵消,实现二氧化碳“净零排放”碳达峰与碳中和相辅相成,但植树造林,工业固碳等所能吸收的碳量相对固定,远少于工业排放产生的碳量,那么,我们可以通过制定并实施哪些方案来实现碳中和碳达峰的远景呢?聚光科技“算、估、管、评“一体化碳排放管理体系,实现碳的摸底核算、达峰预估、路径管控和成效评估,可服务于发改委、环保局、园区和企业等客户,应用于碳账户、减污降碳,碳交易等多个双碳应用场景助力于城市实现碳达峰、碳中和。与此同时,我们还可以通过如下四个途径实现达峰远景:一、碳减排:比如减少一次性物品的生产和使用,使用清洁能源,发展风能、光能、核能、太阳能等二、碳捕集:用生物捕集,让植物吸收大气中二氧化碳;还可以用技术捕集,给城市工厂烟囱装上吸附装置。三、碳封存:可以将捕获的碳排放物,储存到地下或海底的碳库中。四、碳利用:收集的二氧化碳还可以通过转化,再利用,做成建筑材料,饲料,肥料等等具体视频见聚光科技公-众号
  • ASD丨黑化型如何影响蜥蜴对气候变化的敏感性
    蜥蜴,俗称“四脚蛇”又称“蛇舅母”,栖息环境广布世界各地。蜥蜴是爬行动物纲中最庞大的家族,其种类繁多,我国已知的有150余种,大多分布在热带和亚热带,其生活环境多种多样,生活于水中、栖息于沙漠、潜藏于地下、攀爬于树林、甚至是飞翔在空中,而且会为了环境的差异而演化出各种不同形态。蜥蜴是变温动物,在温带及寒带生活的蜥蜴于冬季进入休眠状态,表现出季节活动的变化。在热带生活的蜥蜴,由于气候温暖,可终年进行活动。但在特别炎热和干燥的地方,也有夏眠的现象,以度过高温干燥和食物缺乏的恶劣环境。因为蜥蜴是变温动物,没有体内调温系统,大部分蜥蜴通过晒太阳来提高体温,需要一定温度才能活化身体,在身体晒暖之后才易于活动和进食。因此“晒太阳”吸收太阳光的能量这件事,对蜥蜴来说也尤为重要。种类繁多的蜥蜴,有各种各样的体表颜色,甚至有部分蜥蜴在不同环境下还可以通过改变肤色来保护自己。那么蜥蜴的体表颜色在气候变化时对其影响怎样呢?今天给大家推荐了解论文是“黑化型如何影响蜥蜴对气候变化的敏感性”。气候变化对全球生物多样性的影响已确立,但气候变化对同一物种内种群的不同影响很少考虑。在变温动物中,黑化型(即由于黑色素沉积较重,皮肤颜色较深)会显著影响体温调节,因此,深色变温动物可能更容易受到气候变化的影响。基于此,在本研究中,研究者们于2018年12月至2019年4月期间,以来自南非五个地点的56个健康成年多色蜥蜴 Karusasaurus polyzonus(有鳞目: 环尾蜥科)为研究对象,研究了气候变化对其种群活动模式的影响。作者假设在未来的气候预测下,由于对预测的更温暖的气候条件的不适性增强,所有种群的活动时间都会下降。此外,由于它们目前分布在南非的最南端,因此迁移到寒冷环境的机会有限,作者预测,由于深色皮肤可能产生更强的加热效应,深色个体将比非黑色化个体受到更严重的影响。为了考虑体型对体温调节的影响,作者对蜥蜴进行了称重测量。然后利用波长范围为350-2500 nm的ASD FieldSpec3光谱仪测量了蜥蜴背部14个斑点(头部3个,躯干9个,尾部2个)的反射率并计算其吸收率(假设没有透射,1-反射率)。同时测量了岩石样品的反射率。五个采样点Karusasaurus polyzonus蜥蜴的颜色非遗传多型性显示出不同程度的皮肤黑色素含量。【结果】与预期相反,所有种群都会增加活动时间,具体而言,深色种群将比明亮种群相对更活跃。这表明深色K. polyzonus 种群可能受益于全球变暖。南非 K. polyzonus 种群的预计活动模式和皮肤吸收率(a)个体吸收率与总活动时间的关系(b)与吸收率相关的相对于目前气候条件下活动的活动变化幅度偏秩相关系数(PRCC)测试三个时间段(当前、2040-2059年和2080-2099年)模型输出(即活动时间)和输入参数(吸收率、降雨量、微温度和体重)之间的线性关系【结论】作者提出了一种新方法以研究不断变化的气候条件下热黑化对蜥蜴生存能力的影响。与热黑色素假说(TMH)相一致,作者发现皮肤吸收率会影响体温,并最终影响变温动物的活动时间。而且,预测较暗个体的活动受升温影响比较亮个体更大。结果表明,有鳞类动物,仅次于昆虫,可能会因其有色皮肤而受到影响。研究强调了在研究对气候变化的响应时,考虑种群间差异的重要性,因为必须考虑这些差异来制定有效和具体的保护策略。未来的研究应该将这些发现延伸到其他变温物种,并可能确定有色皮肤的表型可塑性,以了解物种将如何应对快速变化的环境。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311980&idx=2&sn=45606049d85b1de792c1b3c6bbe6652f&chksm=bee1a1d3899628c5bb53bd6efe72b5f5e1558f4847a0ab1a7caeecc6a5ee8f723c44eaa228f7#rd
  • 浙大白瑞良团队发明新型分子磁共振成像技术,有望无创预测胶质瘤治疗敏感性
    2022年11月14日,浙江大学医学院系统神经与认知科学研究所、教育部脑与脑机融合前沿科学中心白瑞良团队联合山东省立医院刘英超团队,在Nature Biomedical Engineering杂志发表了题为“Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas” (DOI: 10.1038/s41551-022-00960-9)的研究论文。该文首次报道了一种水通道蛋白4(AQP4)的在体可视化技术,在胶质瘤治疗敏感性预测方面展现出初步效果。该技术可在临床环境中轻松实现,有望为未来胶质瘤精准诊断和治疗管理提供一种有效的影像学工具。胶质瘤是中枢神经系统最为常见的原发肿瘤,展现出高度异质性和难治性,是临床治疗中最棘手的难点之一。水通道蛋白4(AQP4)是中枢神经系统的主要水通道蛋白之一,在胶质瘤细胞命运决定中发挥重要作用,是胶质瘤精准诊疗的理想生物标记物。然而,AQP4的活体检测十分困难,尚缺乏有效手段。面对该重大临床问题,浙江大学白瑞良团队及山东省立医院刘英超团队,通过医工交叉的技术手段,在该领域取得重大突破,发明了一种快速、无创的全肿瘤AQP4高分辨磁共振成像技术,弥补了该领域的技术空白,并首次发现AQP4表达水平与胶质瘤治疗抵抗存在直接相关,能够有效预测胶质瘤放化疗治疗的敏感性。该工作为胶质瘤的精准诊断提供了一种有效的影像学工具技术,可为胶质瘤的预后评估发挥关键作用。AQP4是一种大分子膜蛋白,在常规MRS等磁共振成像技术中不可见。作者参考广泛应用于生命科学的荧光标记方法,利用AQP4能够介导水分子的跨膜运输活动这一现象,且单个AQP4分子能够每秒介导大量(~2.4pL)水分子通过细胞膜(胶质瘤细胞体积约为10pL),巧妙的提出了AQP4磁共振成像的新原理–即通过测量AQP4介导的水分子跨膜流出速率kio,从而实现对体内AQP4分子的特异性标记和信号放大。研究团队利用临床常规使用磁共振造影剂(例如Gd-DTPA)的胞外分布特性,通过进一步改造动态对比增强磁共振成像技术(dynamic-contrast-enhanced MRI, DCE MRI),极大提高了DCE-MRI对水分子跨膜运输测量的敏感度,在不增加患者经济和时间成本的情况下实现了对AQP4的精准测量。图1.新型AQP4磁共振成像原理和方法图解。通过测量AQP4介导的水分子跨膜流出速率(kio),特异性标记和放大AQP4在体磁共振信号,进而通过提升动态对比增强磁共振成像技术在kio测量方面的敏感度和特异性,最终实现在体AQP4高分辨成像。为了验证跨膜运输动态对比增强磁共振成像技术(water-exchange DCE-MRI)在检测AQP4方面的灵敏度和临床转化可行性,团队首先通过构建胶质瘤动物模型,将water-exchange DCE-MRI得到的水分子跨膜流出速率kio结果与AQP4免疫组化结果做空间分布对比,发现两者存在高度线性相关性;进而利用kio图谱引导立体定向活检,在胶质瘤病人中实现了磁共振图像与胶质瘤活检病理的空间点对点比较分析,发现新技术检测的AQP4表达依然与免疫组化结果存在高度线性相关性。最为重要的是,新技术不仅成功检测到肿瘤间AQP4表达差异,也准确检测出胶质瘤内AQP4分布的异质性以及替莫唑胺(TMZ)治疗下AQP4的动态变化。在检测特异性方面,研究团队发现通过AQP4敲除或特异性抑制均能有效减慢水分子跨膜流出速率,充分证明了新方法检测AQP4的特异性。图2.临床胶质瘤患者,Water-exchange DCE-MRI得到的kio参数图可以精准表征AQP4表达及其瘤内和瘤间异质性。为了进一步推动该技术的临床转化,研究团队利用新AQP4成像技术发现胶质瘤瘤间及瘤内均存在较强AQP4表达异质性。通过进一步的细胞实验及相关技术发现,低AQP4表达的胶质瘤组织(像素),以具有胶质瘤干细胞特性的慢增殖细胞为主,对替莫挫胺等放化疗治疗不敏感,耐药生物标志物(ZEB1)高表达;而高AQP4的胶质瘤组织(像素),以快增殖细胞为主,对替莫挫胺治疗敏感,ZEB1低表达。前期研究结果提示,AQP4成像有望揭示胶质瘤对放化疗治疗的敏感性。图3.AQP4表达水平提示胶质瘤对放化疗治疗的敏感性。低AQP4的胶质瘤组织以胶质瘤干细胞特征的慢增殖细胞为主(SCC),在替莫挫胺(TMZ)治疗下存活,并且表达更多的治疗抵抗标志蛋白ZEB1。综上所述,研究团队巧妙地设计了一种标记AQP4的磁共振成像新技术,实现了胶质瘤内AQP4的无创、高分辨、定量成像,成功揭示了胶质瘤内AQP4表达的空间异质性,并初步发现新技术能够提示胶质瘤对放化疗治疗的敏感性。该技术在常规3T及多种场强下均可实现,且可以在临床常规造影剂的配合下、无需额外增加扫描时间及成本的条件下完成,具有很强的普适性,有望为胶质瘤的个体化精准诊疗提供有效的影像学工具。浙江大学博士生贾银行为第一作者、山东第一医科大学附属省立医院神经外科主任医师许尚臣和浙江大学博士生韩广旭为共同第一作者,浙江大学医学院、教育部脑与脑机融合前沿科学中心白瑞良研究员为通讯作者,山东第一医科大学附属省立医院神经外科主任医师刘英超为共同通讯作者,研究得到了浙江大学段树民院士、刘冲教授,浙江大学附属第二医院神经外科张建民主任、美国国立卫生研究院Peter J. Basser教授、哈佛医学院和麻省总医院的Jonathan Polimeni教授、山东大学陈增敬教授等专家的指导。该研究得到了国家自然科学基金、科技部国家重点研发计划、浙江省自然科学基金以及浙江大学教育部脑与脑机融合前沿科学中心等的资助。原文链接:https://www.nature.com/articles/s41551-022-00960-9
  • 共话食品安全与功能性 分析仪器促进两国友谊——BCEIA 2019第九届中日科学仪器发展论坛在京举行
    p  strong仪器信息网讯/strong 2019年10月24日上午,第十八届北京分析测试学术报告会暨展览会(BCEIA 2019)同期会议——第九届中日科学仪器发展论坛在北京国家会议中心举行。自2011年在中国举办了第一届中日科学仪器发展论坛以来,在中国分析测试协会(CAIA)和日本分析仪器工业协会(JAIMA)的共同努力下,一共举办了八次中日科学仪器发展论坛:2011年、2013年、2015年、2017年在中国举办了四次 2012年、2014年、2016年和2018年在日本举办了四次,中日科学仪器发展论坛已经得到了中日双方的认可,也得到了中日双方听众的热烈欢迎。在本次中日科学仪器发展论坛上,除了日本分析化学最新动向外,还就中国高度关心的食品安全和质量管理、食品功能性等方面进行了探讨。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/201910/uepic/514165b8-cbc4-4ee3-9cf5-cb79adfb8b55.jpg" title="大会一角.jpg" alt="大会一角.jpg" width="500" height="333" border="0" vspace="0"//pp style="text-align: left "  中国分析测试协会汪正范主持了本次论坛。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201910/uepic/a1258cb8-249b-4fa5-8ec8-ba82403887ba.jpg" title="汪正范.jpg" alt="汪正范.jpg" style="max-width: 100% max-height: 100% width: 500px height: 295px " width="500" height="295" border="0" vspace="0"//pp style="text-align: center "strong中国分析测试协会 汪正范/strongbr//pp  中国分析测试协会科技委委员、北方工业大学校长丁辉首先致开幕词,并代表中国分析测试协会对论坛的召开表示热烈地祝贺,对以中本会长为首的日方报告团和参加论坛的专家、学者、来宾表示诚挚的欢迎。最后,预祝本次论坛圆满成功。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 315px " src="https://img1.17img.cn/17img/images/201910/uepic/f9c0cbe8-27b9-4731-a84d-67b06c97ec09.jpg" title="丁辉.jpg" alt="丁辉.jpg" width="500" height="315" border="0" vspace="0"//pp style="text-align: center "strong北方工业大学校长 丁辉/strong/pp  随后,日本分析仪器工业会副会长足立正之作开幕致辞,希望通过本届论坛促进中日双方的技术交流,携手走向未来,并预祝第18届BCEIA圆满成功。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 310px " src="https://img1.17img.cn/17img/images/201910/uepic/f77c5e6e-18a8-446f-85fd-12c4130619dc.jpg" title="中本晃 .jpg" alt="中本晃 .jpg" width="500" height="310" border="0" vspace="0"/ /pp style="text-align: center "strong日本分析仪器工业会副会长 足立正之/strong/pp  日本分析化学会会长内山一美作题为“日本分析化学的现在与未来”的报告,介绍了日本分析化学会组织架构、学会杂志及活动 介绍了日本分析化学会首席副会长早下隆士的研究的一种可识别水中离子和分子的新型超分子分析试剂 介绍了日本分析化学会首席副会长金泽秀子的研究工作,即利用功能性高分子的温度敏感型色谱(TRC)高效分离蛋白质和细胞 介绍了日本分析化学会分析化学编辑委员会会长涉川雅美研究的表面气泡介入液体色谱 最后介绍了内山一美自己的研究内容,即新型数字PCR法,该方法可用生命体征检测仪检出可疑感染患者,还有以毛细管孔内壁为反应场所的新型超灵敏免疫分析方法 介绍了清华大学Weifei Zhang研发的利用喷墨微芯片的定量在线PCR法。内山一美希望通过分析单细胞基因,实现癌症和感染性疾病的超早期诊断。/pp  当今世界的科学中心主要是美国和欧洲,内山一美相信今后亚洲将成为第三个新的研究中心,化身为巨大的市场。因此,日本、中国与韩国在分析化学领域的合作至关重要。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 296px " src="https://img1.17img.cn/17img/images/201910/uepic/c413ba9f-b39d-4dba-85e3-0bdc32ad0ceb.jpg" title="内山一美.jpg" alt="内山一美.jpg" width="500" height="296" border="0" vspace="0"//pp style="text-align: center "strong日本分析化学会会长 内山一美/strongbr//pp  一般财团法人日本食品分析中心多摩研究所品质保证科坂尾摄津子作“日本的食品安全与信赖性的确保”报告,其中介绍了日本食品分析中心的组织架构,谈到了食品领域中最新的分析需求——日本食品卫生法的修订,以及日本的食品进口制度,介绍了食品卫生法注册检验机构的业务管理要领,强调了日本食品分析中心积极履行的社会责任。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 348px " src="https://img1.17img.cn/17img/images/201910/uepic/f4666db8-c1f5-44c6-8098-f1fdc36cad23.jpg" title="坂尾摄津子.jpg" alt="坂尾摄津子.jpg" width="500" height="348" border="0" vspace="0"//pp style="text-align: center "strong坂尾摄津子/strongbr//pp  国立研究开发法人农业与食品产业技术综合研究机构本部企划战略本部研究管理员山本(前田)万里作了“日本功能性标识食品制度与功能性农产品开发”的报告,介绍了日本的功能性标识食品制度以及功能性农产品的开发,展示了宫崎县的青椒、新泻县的草莓、爱媛县的猕猴桃、德岛县的小番茄等大量的日本功能性农产品。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 313px " src="https://img1.17img.cn/17img/images/201910/uepic/4874513c-e1af-403e-9165-87b0dc431dfc.jpg" title="山本(前田)万里.jpg" alt="山本(前田)万里.jpg" width="500" height="313" border="0" vspace="0"//pp style="text-align: center "strong山本(前田)万里/strongbr//pp  第九届中日科学仪器发展论坛是继日本JASIS科学仪器展后的又一重要交流活动,此次会议为中日分析仪器行业的进一步合作奠定了良好的基础。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制