当前位置: 仪器信息网 > 行业主题 > >

坦敏感内酶分析仪

仪器信息网坦敏感内酶分析仪专题为您提供2024年最新坦敏感内酶分析仪价格报价、厂家品牌的相关信息, 包括坦敏感内酶分析仪参数、型号等,不管是国产,还是进口品牌的坦敏感内酶分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合坦敏感内酶分析仪相关的耗材配件、试剂标物,还有坦敏感内酶分析仪相关的最新资讯、资料,以及坦敏感内酶分析仪相关的解决方案。

坦敏感内酶分析仪相关的论坛

  • 【分享】敏感高分辨离子探针

    敏感高分辨离子探针II(shrimpII)是一个高精度的二级离子质谱(SIMS)粒子探针通过用几微米的离子束轰击固体样品的方法探测同位素和进行化学表面分析(也称科勒聚焦)。SHRIMPII通过双聚焦的方法(能量和质量的双聚焦)的质谱达到高质量分辨率。这种方法将使用有很大旋转半径的磁场和电场分析仪。

  • 乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法

    乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法杯碟法1、范围本标准规定了乳及乳制品中舒巴坦敏感β-内酰胺酶类药物的检验方法。本标准适用于乳及乳制品中舒巴坦敏感β-内酰胺酶类物质的检验。本方法的检出限为4U/mL。2、原理该方法采用对青霉素类药物绝对敏感的标准菌株,利用舒巴坦特异性抑制β-内酰胺酶的活性,并加入青霉素作为对照,通过比对加入β-内酰胺酶抑制剂与未加入抑制剂的样品所产生的抑制圈的大小来间接测定样品是否含有β-内酰胺酶类药物。3、设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1 抑菌圈测量仪或测量尺。3.2恒温培养箱:36℃±1℃。3.3 高压灭菌器。3.4 无菌培养皿:内径90 mm,底部平整光滑的玻璃皿,具陶瓦盖。3.5 无菌牛津杯:外径(8.0士0.1) mm,内径(6.0士0.1) mm,高度(10.0士0.1) mm。3.6 麦氏比浊仪或标准比浊管。3.7 pH计。3.8 无菌吸管:1mL(0.01mL刻度值),10mL(0.1mL刻度值)。3.9 加样器:5μL~20μL,20μL -200μL及配套吸头。4、培养基和试剂 除另有规定外,所用试剂均为分析纯,水为GB/T6682中规定的三级水。4.1 试验菌种:藤黄微球菌(Micrococcus luteus) CMCC(B) 28001,传代次数不得超过14次。4.2 磷酸盐缓冲溶液:按附录A中A.1规定。4.3生理盐水(8.5 g/L):按附录A中A.2规定。4.4 青霉素标准溶液:按附录A中A.3规定。[size=1

  • 水敏感有机物的分析

    近日污水厂进水表面“浮”一层白色物质(打捞上来,静置20min白色物质可沉淀),经灼烧其有机物含量高达99%,该物质不溶于酸不溶于碱,烘干后有一定硬度(用手可以捏成粉末),其进入沉淀池后混入污泥中产生不利因素。 有朋友说该性质类似于水敏感材料,请教各位大侠有什么建议或是猜测可能的水敏感有机物。谢谢!

  • 【资料】乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法

    乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法指定检验方法4.乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法杯碟法1、范围本标准规定了乳及乳制品中舒巴坦敏感β-内酰胺酶类药物的检验方法。本标准适用于乳及乳制品中舒巴坦敏感β-内酰胺酶类物质的检验。本方法的检出限为4U/mL。2、原理该方法采用对青霉素类药物绝对敏感的标准菌株,利用舒巴坦特异性抑制β-内酰胺酶的活性,并加入青霉素作为对照,通过比对加入β-内酰胺酶抑制剂与未加入抑制剂的样品所产生的抑制圈的大小来间接测定样品是否含有β-内酰胺酶类药物。3、设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1 抑菌圈测量仪或测量尺。3.2恒温培养箱:36℃±1℃。3.3 高压灭菌器。3.4 无菌培养皿:内径90 mm,底部平整光滑的玻璃皿,具陶瓦盖。3.5 无菌牛津杯:外径(8.0士0.1) mm,内径(6.0士0.1) mm,高度(10.0士0.1) mm。3.6 麦氏比浊仪或标准比浊管。3.7 pH计。3.8 无菌吸管:1mL(0.01mL刻度值),10mL(0.1mL刻度值)。3.9 加样器:5μL~20μL,20μL -200μL及配套吸头。4、培养基和试剂 除另有规定外,所用试剂均为分析纯,水为GB/T6682中规定的三级水。4.1 试验菌种:藤黄微球菌(Micrococcus luteus) CMCC(B) 28001,传代次数不得超过14次。4.2 磷酸盐缓冲溶液:按附录A中A.1规定。4.3生理盐水(8.5 g/L):按附录A中A.2规定。4.4 青霉素标准溶液:按附录A中A.3规定。4.5 β-内酰胺酶标准溶液:按附录A中A.4规定。4.6 舒巴坦标准溶液按附录A中A.5规定。。4.7 营养琼脂培养基:按附录A中A.6规定。4.8 抗生素检测用培养基Ⅱ:按附录A中A.7规定。5、操作步骤5.1 菌悬液的制备将藤黄微球菌接种于营养琼脂斜面上,经36士1℃培养18h-24 h,用生理盐水洗下菌苔即为菌悬液,测定菌悬液浓度,终浓度应大于1×1010 CFU/mL,4 ℃保存,贮存期限2周。5.2 样品的制备将待检样品充分混匀,取1 mL待检样品于1.5 mL离心管中共4管,分别标为:A、B、C、D,每个样品做三个平行,共12 管,同时每次检验应取纯水1 mL加入到1.5 mL离心管中作为对照。如样品为乳粉,则将乳粉按1:10的比例稀释。如样品为酸性乳制品,应调节pH值至6-7。5.3 检验用平板的制备取90mm灭菌玻璃培养皿,底层加10 mL灭菌的抗生素检测用培养基Ⅱ,凝固后上层加入5 mL含有浓度为1×108 CFU/mL藤黄微球菌的抗生素检测用培养基Ⅱ,凝固后备用。5.4 样品的测定按照下列顺序分别将青霉素标准溶液、β-内酰胺酶标准溶液、舒巴坦标准溶液加入到样品及纯水中:A 青霉素5 μL。B 舒巴坦25 μL、青霉素5 μL。C β-内酰胺酶25 μL、青霉素G5 μL。D β-内酰胺酶25 μL、舒巴坦25 μL、青霉素5 μL。混匀后,将上述A~D 试样各200 μL 加入放置于检验用平板上的4个无菌牛津杯中,36士1℃培养培养18~22 h ,测量抑菌圈直径。每个样品,取三次平行试验平均值。5.5 结果报告纯水样品结果应为:(A)、(B)、(D)均应产生抑菌圈;(A)的抑菌圈与(B)的抑菌圈相比,差异在3 mm以内(含3 mm),且重复性良好;(C)的抑菌圈小于(D)的抑菌圈,差异在3 mm以上(含3 mm),且重复性良好。如为此结果,则系统成立,可对样品结果进行如下判定:7.1 如果样品结果中(B)和、(D)均产生抑菌圈,且(C)与(D)抑菌圈差异在3 mm以上(含3 mm)时,可按7.1.1、7.1.2 判定结果。7.1.1(A)的抑菌圈小于(B)的抑菌圈差异在3 mm以上(含3 mm),且重复性良好,应判定该试样添加有β- 内酰胺酶,报告β- 内酰胺酶类药物检验结果阳性。7.1.2(A)的抑菌圈同(B)的抑菌圈差异小于3 mm,且重复性良好,应判定该试样未添加有β- 内酰胺酶,报告β- 内酰胺酶类药物检验结果阴性。7.2 如果(A)和(B)均不产生抑菌圈,应将样品稀释后再进行检测。附 录 A(规范性附录)培 养 基A.1 磷酸盐缓冲溶液(pH6.0)无水磷酸二氢钾8.0 g无水磷酸氢二钾2.0 g蒸馏水加至1000 mLA.2 生理盐水(8.5 g/L)氯化钠8.5 g蒸馏水1000 mL121℃高压灭菌15 min。A.3 青霉素标准溶液准确称取适量青霉素标准物质,用磷酸盐缓冲溶液溶解并定容为0.1mg/mL的标准溶液。当天配制,当天使用。A.4 β-内酰胺酶标准溶液准确量取或称取适量β-内酰胺酶标准物质,用磷酸盐缓冲溶液溶解并定容为16000 U/mL的标准溶液。当天配制,当天使用。A.5 舒巴坦标准溶液准确称取适量舒巴坦标准物质,用磷酸盐缓冲溶液溶解并定容为1 mg/mL的标准溶液,分装后-20 ℃保存备用,不可反复冻融使用。A.6 营养琼脂蛋白胨10 g牛肉膏3 g氯化钠5 g琼脂15-20 g蒸馏水1000 mL将上述成分加入蒸馏水中,搅混均匀,分装试管每管约5~8 mL,120℃高压灭菌15 min,灭菌后摆放斜面。A.7 抗生素检测培养基Ⅱ蛋白胨10 g牛肉浸膏3 g氯化钠5 g酵母膏3 g葡萄糖1 g琼脂14 g蒸馏水1000mL将上述成分加入蒸馏水中,搅混均匀,120 ℃高压灭菌15 min,其最终pH 值约为6.6。

  • 【资料】乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法 杯碟法

    1 范围本标准规定了乳及乳制品中舒巴坦敏感β-内酰胺酶类药物的检验方法。本标准适用于乳及乳制品中舒巴坦敏感β-内酰胺酶类物质的检验。本方法的检出限为4U/mL。 2 原理该方法采用对青霉素类药物绝对敏感的标准菌株,利用舒巴坦特异性抑制β-内酰胺酶的活性,并加入青霉素作为对照,通过比对加入β-内酰胺酶抑制剂与未加入抑制剂的样品所产生的抑制圈的大小来间接测定样品是否含有β-内酰胺酶类药物。 3 设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1 抑菌圈测量仪或测量尺。3.2恒温培养箱:36℃±1℃。3.3 高压灭菌器。3.4 无菌培养皿:内径90 mm,底部平整光滑的玻璃皿,具陶瓦盖。3.5 无菌牛津杯:外径(8.0士0.1) mm,内径(6.0士0.1) mm,高度(10.0士0.1) mm。3.6 麦氏比浊仪或标准比浊管。3.7 pH计。3.8 无菌吸管:1mL(0.01mL刻度值),10mL(0.1mL刻度值)。3.9 加样器:5μL~20μL,20μL -200μL及配套吸头。 4 培养基和试剂 除另有规定外,所用试剂均为分析纯,水为GB/T6682中规定的三级水。4.1 试验菌种:藤黄微球菌(Micrococcus luteus) CMCC(B) 28001,传代次数不得超过14次。4.2 磷酸盐缓冲溶液:按附录A中A.1规定。4.3生理盐水(8.5 g/L):按附录A中A.2规定。4.4 青霉素标准溶液:按附录A中A.3规定。4.5 β-内酰胺酶标准溶液:按附录A中A.4规定。4.6 舒巴坦标准溶液按附录A中A.5规定。。4.7 营养琼脂培养基:按附录A中A.6规定。4.8 抗生素检测用培养基Ⅱ:按附录A中A.7规定。

  • 为什么从鸭血中提取的胆碱酯酶对含硫元素的农药不敏感?

    最近我从鸭血中提取的胆碱酯酶对乐果、氧化乐果、辛硫磷、对硫磷等含硫农药不敏感,而对呋喃丹、敌敌畏等不含硫农药相当敏感。即使克百威(呋喃丹)与丁硫克百威(好年冬)结构很相似,只是因为丁硫克百威多了硫元素,该酶对丁硫克百威的检出限高了近50倍,想跟高人交流其中的原因!并求能提高酶对含硫农药敏感性的解决办法!

  • Nature杂志封面成果---光敏感通道

    http://www.biomart.cn//upload/userfiles/image/2012/02/1329478430.jpg光遗传学技术Optogenetics(optical stimulation plus genetic engineering 光刺激基因工程/光遗传学)是2010年Nature杂志评出的年度技术,近年来在这一领域获得了不少重要的成果,近期来自日本东京大学,美国斯坦福大学等处的研究人员发表了题为“Crystal structure of the channelrhodopsin light-gated cation channel”的文章,报道了两个光敏感通道构成的一个嵌合体的X-射线晶体结构,这将有助于光遗传学的发展,这一成果公布在2月16日Nature杂志上,并被作为封面文章推荐。领导这一研究的是东京大学Osamu Nureki,与斯坦福大学的Karl Deisseroth副教授,其中Deisseroth副教授曾开发出多种光遗传学技术新方法,比如其研究组曾经利用光遗传学技术开展多项试验对工程动物的中枢神经系统进行研究。光敏感通道(channelrhodopsins)是一种受光脉冲控制的具有7次跨膜结构的非选择性阳离子通道蛋白,自1991年从莱茵衣藻中发现后被许多实验室所关注,由于这一通道可以快速形成光电流,使细胞发生去极化反应的电生理特性,因此已被广泛应用于神经系统的研究。与传统的神经系统研究方法如电生理技术、神经药理学方法相比,这一方法具有更高的空间选择性和特异性,作为光遗传学技术的核心组成部分,这一领域的研究吸引了不少科学家的关注。在这篇文章中,研究人员报道了两个光敏感通道构成的一个嵌合体的X-射线晶体结构(2.3 Å ),光敏感通道在神经科学研究中扮演了重要角色,但是有关它的分子作用机制至今了解的并不多,这项研究就通过其晶体结构,揭示了光敏感通道的结构,及电生理作用机制,结果表明这一离子通道的分子架构包括与视网膜相结合的区域和阳离子通道。这将有助于揭示光敏感通道的功能,并且为光遗传学更好的利用光敏感通道提供了更加精确的信息。生命现象离不开细胞发挥着各种功能。实时了解细胞间的活动状况是揭开复杂生命谜团和疾病治疗方法获取的重要途径。在保护头盖骨的同时,对处理大脑庞大信息的大量神经细胞活动进行实时性成像是非常困难的。因此研究人员开发了各种方法,包括光遗传学技术进行探索。去年来自斯坦福大学的华裔研究组则接连设计了几种新颖的光遗传学工具,可以更好的分析活体哺乳动物大脑神经环路生理现象,比如他们将光遗传学技术结合细菌人工染色体(BAC)转基因策略成功构建了四种神经元可被蓝光激活的转基因小鼠动物模型。除此之外,Bamberg研究组的一项最新成果:看似简单的融合方法解决了光遗传学研究的一大问题。之前的研究表明channelrhodopsin-2受到蓝光的刺激时,会导致阳离子通过细胞膜,细胞去极化,神经元激活,而盐菌紫质(halorhodopsin)在受到橙色光的刺激时,则会引发氯离子通过细胞膜,细胞极化,阻止细胞激活。这些成果都有利用更好的通过光遗传学分析生物现象,当然要实现这些方法并不容易,比如Bamberg研究组这项成果,因为当细胞表达两种光遗传学蛋白的时候,它们表达两种蛋白的表达水平不均衡,一种可能很多,而另一种可能很少。而且不同细胞的表达比率也不一致。

  • 气候变化新疆是响应敏感区域

    记者从自治区科协了解到:在日前召开的新疆气候变化与可持续发展高端学术论坛上,与会专家分析认为,新疆是全国对气候变化响应较为敏感的区域之一。论坛汇聚了包括张新时、李崇银等5名院士在内的区内外30多位专家。专家围绕气候变化在新疆的响应,气候变化对新疆水资源、农业与社会经济发展的影响等进行了研讨,对新疆应对气候变化特别是新疆跨越式发展和资源开发可持续与生态环境可持续等,提出了相应的对策和建议。

  • 在线中子活化煤质分析仪在煤矿的应用

    在线中子活化煤质分析仪在煤矿的应用 [澳]M艾德沃兹  在线煤质分析仪应用于煤炭业已有20多年的历史,其稳定的销量足以证明其价值。在线分 析仪通过提供实时信息为煤厂各煤种的质量控制和生产管理提供了极大的帮助, 如果依赖化验室,这些数据只能在采样后的数小时甚至数天后才能得到。 近年来, 随着经济下滑,生产优化和料堆控制变得尤为重要。煤炭业的持续下滑导致该行业重新关注 煤炭质量管理,从而提高客户满意度最终增加煤炭销量。同时也提高矿区资源的有效利用, 使原先认为煤质不达标的资源可以有选择地开采。为达到上述目的,煤炭生产商和煤炭用户 开始寻找更为经济且仍然高精度煤质分析仪。随着人们对环境的日益关注,特别是对硫释放的关注导致法律对污染控制更加严格。 新近设计的皮带在线中子活化煤质分析仪(PGNAA)恰好可以满足上述要求。  1 在线煤质分析技术与设备  1.1  双能量伽玛传输技术(DUET)  DUET仪器自20世纪80年代早期上市以来,已成为在线煤质监测设备家族中的重要一员。 该设备价格相对低廉,安装便捷,可以直接在皮带上进行在线煤质分析,只要是分析固定煤 种,DUET分析仪测定煤质灰分就可以达到相当的精度。它利用两个γ射线源贯穿煤层而测量 灰分。对给定的煤种,该设备的测定精度为:一个标准偏差下0.5%~1%。该设备的主要缺点 是其标定与煤种有关,特别是在灰中的铁和钙元素变动很大的情况下。  该设备的用途包括:监测运送到选煤厂的原煤;监测洗净的精煤;给选煤厂提供反馈信息; 通过混煤优化资源利用,使之达到一定的质量目标;监测送往用户的煤质是否达到合同要求 的质量。  1.2  自然伽玛射线技术  另一种广泛使用的简单的分析仪能够测定煤中的自然放射性大小,并将其与灰分联系起来。 这种煤质分析仪不需要放射源,对影响DUET系统的铁和钙元素的变化不敏感。  然而,作为一种“被动”的系统,该分析仪的精度大约只为1%~2%,其理想应用是测量厚煤 层的灰分,例如原煤输送机或选煤厂入料输送机上的煤质,在煤层很厚时,这仍然是测定灰 分的唯一技术。然而,该分析仪同样与煤种有关,因为它依赖与灰分相关的自然伽玛放射素 的存在(如钾)。    1.3 快速伽玛中子活化分析技术(PGNAA)  为满足市场上对具有高精度却与煤种无关的灰分仪的需求,上世纪80年代中期开发了首 台PGNAA旁线分析仪。该分析仪最常用于电厂配煤控制,以及选煤厂控制和煤的分选和销售 煤的质量控制。除了测定人们通常感兴趣的灰分,水分,发热量以外,还可以测定灰分中的 硫分,美国清洁空气法案要求电厂对SO2的排放进行控制,该分析仪也可以测定对锅炉结 焦有影响的Na和Cl。  这种旁线分析仪需要采样设备把煤从皮带上采初样。煤样通过垂直溜槽进行中子照射分析 。在几分之一秒的时间内,吸收的能量以伽玛辐射的形式释放出来。由于每一元素具有特定 的伽玛射线光谱,光谱可以拆解成组成元素的光谱,从而确定煤中的元素成分。 。该技术与煤种无关,所以很有吸引力。  元素分析通过计算组合,可以得出灰分,发热量和挥发分。该分析仪对灰分的分析精度0.25 %~0.4%。  该分析仪本身价值数十万美金,而且配套的采样和传输系统也价格不菲,这就限制了分析仪 的广泛使用。  2  PGNAA皮带在线分析仪的应用  直到最近,把PGNAA直接用于在线测量输送机上的煤质测试才获得成功。实验结果虽不能达 到通常旁线PGNAA分析仪低于0.4%的精度,但使得系统成本大为降低。理论计算表明,溜槽 通过式的PGNAA分析仪不存在皮带在线分析时受到煤层厚度变化和煤质垂直方向分布不均匀 的问题。  与PGNAA旁线分析仪相比,PGNAA在线分析仪的优势体现在该设备不需要安装采样楼,可以直 接放在主皮带上使用。因此,大大节省了采样和传输设备的安装和维护成本。除此之外,也 避免了采样偏差,因为在线分析仪是对整个煤流进行分析。  除了煤层很厚的现场之外,在线分析仪可以在任意位置安装。在煤层厚度超过35cm ,使用通过自然放射性来测定灰分的分析仪仍然是合适的。  PGNAA在线分析仪的适用性意味着它可以分析各种不同的煤种,工厂试验已经证明了其准确 测定煤质的能力。由于该设备能够准确、实时地分析灰分、水分、硫分、发热量、灰分中的 氧化物和其他参数,能进行更好的配煤和选煤。因此,降低了工厂的生产成本。分析结果可 以实现每两分钟更新一次,便于工厂相应进行快速调节。  3  皮带在线分析仪的发展  3.1  工厂测试  以PGNAA旁线分析仪的技术为基础,加上经济、可靠和高速的现成的电脑处理芯片,克服了 早期PGNAA在线分析仪遇到的困难。工厂测试首次表明可以对输送机上煤质成分的变化进行 修正补偿,基于此结果,就可以进行分析仪的现场试验了。   3.2  现场试验  2000年3月,Scantech公司在澳大利亚昆士兰州进行了COALSCAN9500X型PGNAA在线分析仪的 商业化现场试验。在现场,卡车把煤运到料仓中,然后三级破碎机把煤加工成最大粒度为90 mm。分析仪安装在破碎机之后的1050mm宽的输送机上,把煤送入1000t的料仓。皮带上煤 层 在厚度100~400mm之间变动。分析仪后面装有皮带刮扫式自动采样系统,煤可以直接从缓 冲仓装到火车上或者地面运输至电厂,电厂的自动采样系统测定每个班的结果,并与分析 仪的分析结果相比较以进行核实,这是PGNAA分析仪的典型应用。  通过动态采样可以检验仪器在工厂里按静态煤样所作的标定是否准确。将所有的动态采样均 按双倍收集以评估采样误差,化验室的误差,以及分析仪误差。当年进行了6次采样比较, 使分析仪涵盖了一系列不同煤种、煤厚以及皮带垂直方向上不均匀的分布。每次采样比较会 收集10份双倍样本,送到两个权威化验室进行分析。因此每一样本会有三个结果(分别来自 化验室1、化验室2和分析仪)。由于一些外部因素的影响,每次收集的样本数量比预定的30 个(10×3)要少。  3.3  现场试验的结果  每个样本均在PGNAA分析仪后的某一位置由皮带刮扫双倍收取,奇数样本送往化验室1,偶数 样本送往化验室2,每90秒采样一次,根据选煤厂的工作状况,样本在1~3小时内采完,每 次采样均依照ASTM标准。  尽管该试验原先并不研究采样和化验室的精度,但任何一项新技术都必须与现有的方法进行 比较,再来讨论彼此之间有哪些不同。两个样本分析结果的不同使检验分析仪标定结果变得 更加不确定。样本按照GRUBBSESTIMATOR方法进行评估。  双倍收集样本提供了公平、独立地评估化验室和分析仪的误差手段。事 实上,由于试验中动态样本的收集特别仔细和严格,化验室结果的准确性很可能优于日常进 行的传统化验结果。我们预见分析结果会有发散分布,但是7月份两组化验室结果的灵敏性 不同,8月份出现了偏移误差。化验室结果的不可靠性增加了需要用现场数据标定分 析仪的困难,两组化验室灰分结果的标准偏差是1.02%。如果这一结果是在线分析仪和 化验结果的偏差,通常是不能被接受的。  表1 皮带在线分析仪灰分精度的Grubbs估算值(略)  通过G RUBBSESTIMATOR方法可以单独估算分析仪精度以及每一个化验室的精度。表1汇总了这些估 算精度,分析仪的估算精度高于化验室的估算精度。数据中有明显的偏离点,因此在舍弃了这些偏离点数据后对估算精度重新进行了计算。舍弃 这些数据采用两级步骤,即分别对35个样本,32个样本以及全部36个样本进行了评估。分析 仪的灰分估算精度达到了0.25%,对适当标定的PGNAA分析。

  • 提个建议行吗?请贵坛将“敏感词”弄个列表,行吗?

    昨天、今天,用了将近4个小时(不算写具体内容的时间),才发了个帖子!原因仅仅是“敏感词”被封贴!我们都是搞技术的,并不涉及"整治、广告”内容。浪费太多时间研究你的“规则”,有违初衷!请贵坛将“敏感词”弄个列表,行吗?

  • 【分享】气体分析仪的各种分析原理

    测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。1、热导式气体分析仪  一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。

  • 碳硫分析仪器、碳硫仪

    碳硫高速分析仪,用于对钢、铁及其他材料中的碳、硫元素进行分析,测碳采用气容量法(液体收),测硫采用碘液滴定法。分析仪器采用微机及单片机自动控制电路及进口压力敏感传感器和先进的冷光源光电转换技术,使碳硫的测量完全自动化,测试结果数码显示并由打印机打印测量记录。仪器采用不定量称样,配合电子天平可以经济有效地实现不定量称样功能,从而有利于方便检测人员的操作。碳硫分析仪器的概述 碳硫分析仪器可测定铸铁、球铁、生铁、不锈钢、普碳钢、合金钢、合金铸铁、各类矿石、有色金属中碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁、稀土等元素的含量。仪器测量范围广、精度高,高、中、低档齐全,并能接受用户特殊定货。产品广泛应用于钢铁、冶金、铸造、采矿、建筑、机械、电子、环保、卫生、化工、电力、技术监督等部门和大专院校,深受广大用户的喜爱碳硫分析仪的主要技术指标1、称样量与分析范围:   1.0g(850mg-1150mg)测: C:0.05-1.60%; S:0.003-0.060%;   0.5g(450mg-550mg)测: C:1.60-3.50%; S:0.060-0.120%;   0.25g(225mg-275mg)测: C:3.50-6.50%; S:0.120-0.240%;   2、分析时间:65秒左右(不含取样、称样时间)   3、分析误差:符合下列国标要求   GB/T223.69~1997   GB/T223.68~1997   4、电源:220V±10% 50Hz   5、消耗功率:50VA   6、气源:氧气 压力40Kpa   7、使用环境温度:5℃-40℃ 碳硫分析仪的主要特点:   ◇ 气体容量法差压式定碳,由高灵敏度的气压传感器检测结果,单片机自动进行数据处理,实现碳读数自动化;   ◇ 定硫采用碘量法自动滴定,排除人为误差,实现了分析结果数显直读;   ◇ 电子天平联机不定量称样,单片机自动读入重量或人工键入可选,提高了分析速度;   ◇ 硫滴定加液无电极控制专利技术,降低故障率;   ◇ 采用隔离式触摸按键消除干扰降低故障率,操作方便,结构新颖。碳硫分析仪仪器结构及工作原理:◇ 气体容量法差压式定碳,由高灵敏度的气压传感器检测结果,单片机自动进行数据处理,实现碳读数自动化;   ◇ 定硫采用碘量法自动滴定,排除人为误差,实现了分析结果数显直读;   ◇ 电子天平联机不定量称样,单片机自动读入重量或人工键入可选,提高了分析速度;   ◇ 硫滴定加液无电极控制专利技术,降低故障率;   ◇ 采用隔离式触摸按键消除干扰降低故障率,操作方便,结构新颖。 碳硫分析仪仪器结构及工作原理  下面介绍仪器基本工作原理和使用过程如下:   1、初始状态时,所有电磁阀关闭,不消耗氧气。水准瓶、集气瓶和硫滴定液瓶中都存有一定量的相应液体。   2、对零。按“对零”键,电磁阀D3打开,量气筒通大气,水准瓶与量气筒成连通状态,两边液面最终保持相平状态即液面为零位,调节碳的“调零”电位器使碳的显示值接近于0.00。   3、 准备。点击“准备”键:   3.1、电磁阀D1和D3通电打开,氧气将液体从水准瓶压入量气筒,直到液体注满量气筒碰到J1时,D1和D3断电关闭。   3.2电磁阀D1、D3打开的同时,D5和BF阀通电。硫杯下的BF双浮阀打开,放去硫吸收杯中的多余液体。D5打开,氧气将硫滴定液压入滴定管,直到液体碰到J2,使D5自动断电关闭,多余的硫滴定液因虹吸作用自动回到滴定瓶,硫准备完成。调节硫的“调零”电位器使硫的显示值为接近于0.000。   4、重量输入   4.1天平联机输入   待天平显示值稳定后按“天平”→显示出天平称样重量→按“分析”开始分析。如需修改输入则按“取消”则将重新采集天平重量,无须再按“天平”键。   4.2按键手动输入   按“按键”→输入称样重量“×.×××”(注意:必须输满五位)输入结束,如需修改输入则按“取消”重新输入→按“确认”确认输入重量→按“分析”开始分析。

  • 国家将对PX等敏感产品实施严管

    国家将对PX等敏感产品实施严管 今年8月8日,受强热带风暴“梅花”的影响,大连福佳·大化石油化工有限公司PX(对二甲苯)项目防波堤发生溃坝,虽未发生泄漏等连带事故,但引起了部分大连市民对PX项目的关注,并引发了群体性事件。目前,我国列入《危险化学品名录》的品种有3823个,列入《剧毒化学品目录》的品种有335个,PX只是其中危险性相对较低的一种。但值得注意的是,近几年一些企业忽视危险化学品安全生产管理,相继发生生产安全和环境污染事故,在社会上造成了不良影响,稍有不慎,就会引发群体性事件。为加强PX等敏感产品尤其是剧毒化学品的安全环保工作,国家发展和改革委员会、工业和信息化部、环境保护部、国家安全生产监督管理总局和国土资源部近日联合发出《关于加强PX等敏感产品安全环保工作的紧急通知》(发改产业2079号)就有关事项作出如下要求:    一、开展安全环保大检查  按照《安全生产法》和《环境保护法》的要求,开展安全环保大检查。各PX等敏感产品生产企业和建设项目业主单位要立即开展安全环保自查,对自查中发现的问题,认真分析原因,迅速采取有效措施,及时消除事故隐患。地方发展改革委要会同有关职能部门对辖区内PX等敏感产品生产企业和建设项目业主单位开展专项督查,进一步加强安全环保事故源头治理,并将督查情况及时上报国家发展改革委等有关部门。在此基础上,国家发展改革委将会同有关部门组织开展安全环保现场检查。  现有PX等敏感产品生产企业要实行全员、全过程、全方位的安全环保管理,健全管理机制,落实责任制,完善规章制度,严格遵守法律法规;要加强职工宣传教育,定期开展安全环保检查;对于发生的事故要坚持“四不放过”原则,即事故原因未查明不放过、防范措施不落实不放过、事故责任人未处理不放过、职工未受到教育不放过;对存在问题及时整改,整改不达标的,必须立即停产。  对于在建项目,项目业主单位要确保选址符合国家安全环保标准规范要求,从设计、施工等环节把安全环保措施落实到位,严格执行安全环保设施“三同时”,即与主体工程同时设计、同时施工、同时投用,及时解决工程建设中存在的问题;按照《安全生产法》和《环境保护法》要求,项目建成后,必须通过安全环保等部门审查验收,方可投入生产。  二、完善安全环保事故应急预案  为降低事故危害和减少人员伤亡,消除灾后隐患,地方各级政府和生产企业必须严格按照危险化学品管理规定,建立并完善应对安全环保事故的预案。地方政府要加强领导,统一指挥,分级负责,区域为主,按照企业自救与社会救援相结合的原则,充分发挥部门协同配合优势,进一步提高应对突发事故的能力。PX等敏感产品生产企业要加强组织领导,健全应急队伍,完善物资储备,定期开展应急演练,增强防止事故扩大和蔓延的能力。当突发地震、台风、海啸、洪水等自然灾害时,及时启动科学有效的应急预案。  三、严格执行项目审批规定  国家发展改革委、工业和信息化部、国土资源部、环境保护部、国家安全监管总局等部门要按照国家有关规定和程序,对建设项目安全、环保、土地等审批环节严格把关,从严审查。加强要素资源管理,地方各有关部门不得向未经审批核准的违规项目配置要素资源。项目业主单位要依法依规履行项目的审核程序,不得未批先建、边批边建。对于违法违规行为,要依法依规追究相关单位和主要责任人的责任。  四、提高产业准入标准  由国家发展改革委、工业和信息化部等部门抓紧完善产业准入标准,从安全防范、环境保护及资源利用等方面,对类似PX等敏感行业现行准入标准进行深入研究,提高行业准入门槛,开展项目建设风险评估,并将社会风险评估作为项目审批的前置条件。统筹兼顾区域产业发展与城市建设需要,适当扩大安全防护距离和环境余量,推动产业升级和技术进步,促进经济社会健康发展。  地方各级政府有关职能部门要清醒认识近期重特大事故多发的严峻形势,本着对党和人民高度负责的精神,进一步增强安全环保意识和责任感、紧迫感,切实加强安全环保监管。

  • 敏感点噪声执行哪个标准?

    如题:1、如果委托单位是一个KTV,是社会生活噪声,但是噪声源没有办法监测,必须要在敏感建筑物窗外1m测,那么报告上被测单位是这家KTV,但是监测点位是敏感建筑物,那么怎么写执行标准,是写敏感建筑物符合社会生活噪声,还是结论写KTV满足社会生活环境噪声? 2、如果上面这种是投诉噪声, 那么被测单位写KTV,还是敏感建筑物,最后监测点位还是在敏感建筑物那,那么结论写敏感建筑物执行社会生活还是敏感建筑物执行声环境

  • 【我们不一YOUNG】+pH计中玻璃敏感膜损坏的原因分析及解决方法

    在使用pH计是如果发现玻璃敏感膜损坏一般有以下几种情况:1. 玻璃老化,原因是设备处于高温环境,且电极使用时间过长导致;需将电极玻璃膜浸入再生溶液中不超过2分钟。2. 膜上有划痕,原因是因清洁操作手法错误导致;需要更换电极。3. 膜或杆断裂,原因是机械撞击或热冲击导致;需要更换电极。4.凝胶层损坏或脱水,低离子浓度介质、非水相应用导致;需要使用电解液活化。5.有未知物质沉淀,原因是未进行清洁导致测量介质遗漏;需先用脱脂棉清洁,然后用去离子水清洗,最后在pH为4的缓冲液中平衡电极。

  • 商业广场算不算环境敏感点

    根据《建设项目环境影响评价分类管理名录》(国家环保总局令第14号)中对环境敏感区有定义。所称环境敏感区,是指具需特殊保护地区、生态敏感与脆弱区、社会关注区。那么大型商业广场算不算环境敏感点?

  • 煤气在线分析仪的工作原理图

    监测目的:冶炼产生的烟气中含CO,CO2,N2,O2等成分,通过煤气分析仪将烟气中的CO,CO2,O2等含量分析出来,再选择C0含量、02含量合格的烟气进行回收利用,将大大降低冶炼的成本。 分析仪组成:煤气分析仪系统一般由取样单元、气体处理单元、气体分析仪、标校单元、反吹单元、PLC控制单元组成。 工作原理:样气从采样探头进来后分2个支管,一支到放散管路,另一支经过采样泵、过滤器、冷却器,然后分两路分别进人氧气分析仪及红外分析仪,出来的气体经过缓冲罐后进行放散。 红外分析仪用来分析C0、C02的成分。氧分析仪采用磁力机械式原理。 煤气分析仪维护要点:1) 排水:每天检查冷凝器、汽水分离器、排水蠕动泵的状态,确保流量计内无积水,如有积水应查明原因并排除;2) 流量调整:进人分析仪的流量确保在1L/min,放散流量计的流量等于泵的额定流量减去进人分析仪的流量;3) 探头:每2个月对探头不锈钢烧结滤芯进行清洗,并对采集管进行清灰除尘;4) 滤芯、滤纸更换:雾过滤器滤芯应2月更换一次,高分子薄膜过滤器滤纸每周更换一次;5) 标定:每3个月对氧分析仪和红外线分析仪进行一次标定。

  • 【原创】敏感的ICP-OES

    今天ICP-OES在測試過程中突然熄火,顯示循環冷凝水出現故障,溫度一直降不下去,還叫個不聽!研究了半天,發現過濾空氣的網上面沾了厚厚的一層灰,就趕緊將其徹底清潔了,將裡面的水也換了。終於搞定,隻有感慨,ICP-OES,你真的好敏感哦,夏天到了,還要經常給你洗澡!不知道大家有沒有遇見這樣的問題,至少我知道有個朋友的實驗室也出現了同樣的問題。特此提出來,希望大家不會發生同樣的問題![em0815]

  • 近红外对无机成分的检测不敏感问题

    近红外我接触没多长时间,最近发现一个问题,对盐含量0.6%左右的玉米和豆粕进行扫描时,光谱一切正常,没有报警。这说明近红外对无机成分的检测很不敏感啊!那近红外测饲料钙、磷、盐会不会也出现这种情况,我们又该怎么办呢?希望能有老师帮忙解答一下。

  • 煤气分析仪在煤气化行业的应用

    我国是以煤炭为主要一次能源的国家,一次能源消费中煤炭的占比达到62%。但我国的煤炭利用技术总体上是落后的,在煤炭的转化利用过程中普遍存在效率低、污染严重等问题。随着能源问题的日益突出,洁净煤技术越来越多地应用于实际生产过程中,其中大规模煤气化、煤气化多联产技术成为了煤炭综合应用的主要方向之一。“十一五”期间,煤气化属于国家鼓励项目,其中明确指出新型煤化工领域将重点开发和实施煤的焦化技术、大型煤气化技术和以煤气化为核心的“多联产”技术。2. 煤气化原理煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。气化过程发生的反应包括煤的热解、气化和燃烧反应。煤的热解是指煤从固相变为气、固、液三相产物的过程。煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]反应。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。煤气化工艺根据气化炉内煤料与气化剂的接触方式不同可区分为固定床(移动床)、流化床、气流床,此外还有地下煤气化工艺。3. 煤气分析仪的原理和技术特点近年来红外煤气分析仪越来越多地应用于实际煤气化煤气分析当中。 红外煤气分析仪采用红外传感器测量煤气成分中的CO、CO2、CH4、CnHm的浓度,使用热导传感器测量H2的浓度,使用电化学传感器测量O2浓度,同时根据测量成分的浓度,计算得到煤气的理论热值。红外煤气分析仪取代了奥氏气体分析仪的人工取样和人工分析环节,可实现自动化测量,避免了人工误差;同时预处理系统和仪器相对燃烧法热值仪具有结构简单,操作维护方便的特点,更加适合煤气化实时在线的分析要求。红外煤气分析仪具备H2测量补偿功能,保证了H2浓度的准确测量。热导传感器用于测量多种混合气体时,必然要考虑到煤气中其他气体的影响因素。煤气主要成分中CO、O2 与背景气N2的热导系数相当,对H2的测量结果影响不大,但是CO2 、CH4 对H2测量影响明显。通过理论分析及实验表明,如果气体成分中含有CO2,会使H2的测量读数偏低;如果气体成分中含有CH4,会使H2的测量读数偏高。因此为了得到准确的H2含量,应对H2浓度进行CO2 、CH4的浓度校正。煤气分析仪对煤气的各气体成分进行分析,并将各种气体的相互影响进行了浓度修正和补偿,消除煤气中其他成分对H2的影响,保证了H2测量值的准确性。此外 煤气分析仪采用了旁流扩散式的热导检测池,流量在0.3―1.5L/min的范围内变化对热导的测量没有影响,减少了因流量波动造成H2测量的误差影响。煤气化过程中产生的煤气中的碳氢化合物除了CH4外,还有少量的CnHm,大多数红外分析仪仅以CH4为测试对象,折合成碳氢化合物总量计算热值。根据红外吸收原理,如图1,乙烷等碳氢化合物在甲烷的特征波长3.3um左右有明显吸收干扰。当煤气中其他碳氢化合物含量较大时,CH4的测试值会明显偏大,导致热值测试不准,其热值测试值也无法保证精度。甲烷、乙烷、丙烷、丁烷的红外吸收光谱图1:甲烷、乙烷、丙烷、丁烷的红外吸收光谱红外煤气分析仪采用了特殊的气体滤波技术,可实现无干扰的CH4测量,准确反应混合煤气中CH4和CnHm成分的实际变化,有利于热值的准确分析。4. 煤气分析仪在煤气化中的应用根据煤气化应用领域的不同,煤气分析仪可实现煤气热值分析和煤气成分分析两种用途。通常的应用如下:4.1 工业燃气应用作为工业燃气,一般热值要求为1100-1350大卡热的煤气,可采用常压固定床气化炉、流化床气化炉均可制得。主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。实际应用中通常需要控制加热温度,以达到工艺或质量控制目的,燃气的热值稳定性就尤为重要。红外煤气分析仪针对H2和CH4的测量采用了测量补偿技术,可保证实际热值测试结果的准确性,为燃气的燃烧测控提供了有效有力的数据依据。4.2 民用煤气应用民用煤气的热值一般在3000-3500大卡,同时还要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。 红外煤气分析仪测试煤气热值可知道气化站的煤气混合,保证燃气热值;同时可测得CO、H2、CH4的实际浓度,有效控制CO浓度,保证燃气安全。4.3 冶金还原气应用煤气中的CO和H2具有很强的还原作用。在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。因此,冶金还原气对煤气中的CO含量有要求。 红外煤气分析仪可实时有效测量CO或H2浓度,指导调整气化工艺,保证产气效率。4.4 化工合成原料气随着新型煤化工产业的发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐、二甲醚等。化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell气化炉较为合适。目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。若煤气成分中CO2浓度过高,直接会影响合成工序压缩机的运行效率(一般降低10%左右),必然造成电耗和压缩机维修费用增加。红外煤气分析仪用于CO、CO2、H2等气体的浓度测量,用于指导合成气工艺控制,可保证化工产品的产量和质量,同时可达到节能的目的。4.5 煤制氢应用氢气广泛的用于电子、冶金、玻璃生产、化工合成、航空航天、煤炭直接液化及氢能电池等领域,目前世界上96%的氢气来源于化石燃料转化。而煤炭气化制氢起着很重要的作用,一般是将煤炭转化成CO和H2,然后通过变换反应将CO转换成H2和H2O,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。实际应用中由于CO含量的增加,必然会导致变换工序中变换炉的负荷增加。它不但会使催化剂的使用寿命缩短,而且使变换炉蒸汽消耗增加。红外煤气分析仪用于煤气成分分析,提供煤气中各气体成分的浓度数据,指导气化和转换工艺的控制,可起到节能增效的作用。此外, 红外煤气分析仪还可在煤气化多联产的应用中提高化工生产效率,提供清洁能源,改进工艺过程,以达到效益大化,有助于提升产业技术水平。5. 结论随着煤气化技术在国内的应用和发展,对于煤气化过程的监测和控制提出了更高的要求。 红外煤气分析仪集成了红外、热导和电化学三种气体传感器技术,可实现对煤气的成分分析和热值分析。在实际应用中解决了H2测量补偿和CH4测量抗干扰的问题,更广泛地应用于工业燃气、民用煤气、冶金、化工等行业,可指导工艺控制和改善,并达到节能增效的作用,有利于促进煤气化技术的提升。

  • 【第二届原创作品大赛】浅谈煤气分析仪的维修

    浅谈煤气分析仪的维修 煤气分析仪广泛应用于煤气柜前回收的浓度检测及煤粉中氧气浓度的安全检测,近年来,由于各大冶金企业的处理方式不当如巡检不及时或维护不到位,导致分析仪出现故障的现象屡次发生,成为每一位维护工作者的一块心病,由于现场条件的限制,维修人员水平参差不齐,那么在处理故障时往往无从下手,本文结合个人的维修经验谈谈煤气分析仪的故障处理过程。一、煤气分析仪的工作原理该系统由预处理部分及分析主机组成,工艺样气经过预处理系统后变为干燥的适合于主机传感器分析的样气,在取样探头处有恒温及过滤装置,对取自工艺管道的样气进行初步的恒温过滤处理,从取样点到分析仪主机处的取样管为紫铜管,并敷设伴热带,给样气在取样过程中进行保温加热,经储水罐再次进行过滤,再经压缩冷凝器进行冷却脱水,并由精细过滤器对样气进行精密过滤,然后通过样气流量计(注意:流量不可太高,否则容易损坏传感器,一般设为0.5mL)进入分析仪器主机由顺磁氧传感器和红外传感器分别对氧气和一氧化碳进行检测。最后由分析主机通过4-20mA模拟信号上传到主控室监控系统,自动或手动强制对煤气进行回收和放散操作。 二、故障现象、原因分析及处理分析仪分析数据不准的原因及处理过程:可分为仪器故障和非仪器故障1非仪器故障煤气管道内部积水严重,对于此类故障应立即检查仪器的预处理部分中的氮气过滤器、储水罐等内部是否存水,如有存水应立即将分析仪真空泵电源关掉以免水汽进入仪器的传感器内部将其损坏,另外,应立即向上级汇报,处理煤气管道的存水并应远离该区域以免发生爆炸或阀门泄露煤气的情况2.仪器故障排除了仪器外围原因后应仔细查找仪器故障,此时可以先观察控制室内的气体浓度的监控曲线的变化趋势,而氧气曲线偏高及一氧化碳偏低的情况较为常见,仪器的预处理部分主要看仪器的分析检测流量计的流量大小,对于仪器故障的检查应首先将自动转换到手动状态利用标气即不经过预处理对仪器进行零点和量程进行校准,据此来判断仪器的准确度,对于仪器的零点漂移可以先通过仪器内部程序进行手动修改,如果不起作用必须打开仪器主机用螺丝刀调节传感器。一般仪器主机本身故障的问题不大,主要是预处理部分出现故障,解决此类问题主要联系监控曲线及预处理部分进行综合诊断和检测,监控曲线出现氧气高,一氧化碳低,而在仪器主机上也显示该情况并浓度基本不动,分析流量计偏低,这样主要对气路系统进行检测,可以利用观察法,检查滤芯的颜色(如太黑),过滤器内是否有水,利用检漏法,开抽气泵,用手堵住泵前端的管路看流量计的变化情况,并逐端进行排查直到查出故障为止,需要维修的或更换的一并进行处理。3.典型常见故障-------分析流量偏低3.1流量计浮球太脏,(对策:清洗浮球或更换流量计)3.2泵前管路堵塞(1)煤气水汽严重,探头、储水罐内滤芯注满水,将取样管路堵塞。(对策:通过泄水阀对煤气管道进行放水,对探头储水罐进行防水处理并更换烘干滤芯)(2)仪器的长期运行使探头滤芯太脏导致取样管路堵塞。(对策:更换滤芯再进行取样反吹)3.3取样泵工作效率低或泵不工作。(对策:此时应将电源关掉,将取样泵拆下对泵膜内部进行检查清洗。)3.4 泵前管路漏气(1)探头内滤芯长度不合适,笔者曾遇到过此类情况,由于操作人员水平不足,将较短的滤芯更换到探头内,使得探头安装时上不紧,出现漏气,(2)探头密封圈磨损(对策:更换密封圈)(3)接头处压环损坏或不合格应该为铜压环实际为塑料压环,铜管连接口不圆不光滑,接头松动(对策:更换为铜压环,紧固接头)(4)时间长腐蚀使铜管破损(对策:更换铜管)(5)电磁阀、排水阀动作不灵活,关不严,气动三通球阀关不严导致漏气,(对策:维修或更换电磁阀或排水阀)三、结束语煤气分析仪作为一种精度、准确度较高的仪器,从安装、巡检到后期的维护都必须到位,尤其是安装地点必须保证干燥、清洁、无易燃易爆和腐蚀性气体,无机械震动,附近不应有强电场磁场干扰,避免阳光直射及周围高温物体的热辐射,环境温度应保持在-10-50℃之间,环境湿度小于80%,并且煤气分析仪应单独安装在分析小屋内,并配有空调,屋内保持良好的通风。另外,定期巡检更是日常作业中必不可少的一环,必须定期进行仪器零点、量程的校准,检查储水罐、过滤器及探头内的滤芯,必要时应及时进行更换。发现异常及时处理,并做好定期的检查维护,确保仪器处于正常的分析状态。

  • 【原创大赛】“敏感”的水—近红外光谱技术用于定性和定量分析的“好帮手”

    近红外(near-infrared,NIR)光谱是当分子受到近红外区域的电磁辐射后,吸收一部分近红外线,使分子中原子的振动能级与转动能级跃迁而产生的分子吸收光谱。主要反映的是含氢基团(C-H,O-H,N-H,S-H)基频振动的倍频和合频信息,其波长范围为780-2500 nm。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术以其快速分析、无损检测、操作简便等优点而成为一种重要分析手段,但其吸收信号弱,谱带重叠,需要通过化学计量学方法解析重叠光谱及消除干扰。目前结合化学计量学方法的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已在农业与食品工业、生命科学与医药、烟草工业、环境工程及石油化工等领域得到了广泛的应用。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已被公认为一种精确的水含量测定方法,由于溶剂的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中包含了有关溶质的重要信息,因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术不仅可以作为探测水结构的工具,还可以用来确定水与环境中其他成分的相互作用。水光谱组学作为[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的一项新兴内容,借助化学计量学方法,分析不同扰动因素(温度、压强、溶质等)下水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,在分子水平上反映溶液中其他分子的信息。大量研究工作表明,温度或溶质等扰动因素的变化会引起水中氢键数目的变化,使水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]谱带的位置和强度发生改变。因此,通过分析光谱中水的谱峰变化,可以反映溶液中溶质的结构信息。由于水光谱组学能够特征识别与水结构相关的水吸收模式,近红外结合水光谱组学可以提供发掘隐藏在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的信息的可能性,为分析水溶液提供新的途径。据报道,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合水探针不仅被用作分析水和金属离子之间相互作用的生物标志物,还被用作反映蛋白质变性过程的指针。除此之外,水探针也实现了水溶液和血清中葡萄糖的准确定量。可见,“敏感”的水是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于定性分析和定量分析的“好帮手”。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制