当前位置: 仪器信息网 > 行业主题 > >

危险气体浓度检测

仪器信息网危险气体浓度检测专题为您提供2024年最新危险气体浓度检测价格报价、厂家品牌的相关信息, 包括危险气体浓度检测参数、型号等,不管是国产,还是进口品牌的危险气体浓度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合危险气体浓度检测相关的耗材配件、试剂标物,还有危险气体浓度检测相关的最新资讯、资料,以及危险气体浓度检测相关的解决方案。

危险气体浓度检测相关的论坛

  • 氰化氢气体对人体有什么危害?氰化氢HCN浓度检测仪

    氰化氢主要应用于电镀业(镀铜、镀金、镀银)、采矿业(提取金银)、船舱、仓库的烟熏灭鼠,制造各种树脂单体如丙烯酸树酯、甲基丙烯酸树酯等行业,此外也可在制备氰化物的生产过程中接触到该物质。氰化氢标准状态下为液体。氰化氢易在空气中均匀弥散,在空气中可燃烧。氰化氢在空气中的含量达到5.6%~12.8%时,具有爆炸性。剧毒且致命,无色而苦,并有杏仁气味,沸点26°C(79°F)略高于室温。根据《大气污染物综合排放标准》规定,氰化氢的最高排放浓度为1.9mg/m3,为1.79PPM。空气中最高容许浓度为0.3mg/m3,为0.27PPM。氰化氢吸入可抑制呼吸酶,造成细胞内窒息。致人死量为1mg/kg(体重),短时间内吸入高浓度氰化氢气体,可立即呼吸停止而死亡。[align=center][img]https://p9.itc.cn/images01/20200623/4eca520434964f2398750e1f21aa46b6.png[/img][/align]非骤死者临床分为4期:前驱期有粘膜刺激、呼吸加快加深、乏力、头痛 口服有舌尖、口腔发麻等。呼吸困难期有呼吸困难、血压升高、皮肤粘膜呈鲜红色等。惊厥期出现抽搐、昏迷、 呼吸衰竭。麻痹期全身肌肉松弛,呼吸心跳停止而死亡。可致眼、皮肤灼伤,吸收引起中毒。长期接触小量氰化物出现神经衰弱综合征、眼及上呼吸道剌激。可引起皮疹。安全常识1.接触机会:其主要应用于电镀业(镀铜、镀金、镀银)、采矿业(提取金银)、船舱、仓库的烟熏灭鼠,制造各种树脂单体如丙烯酸树酯、甲基丙烯酸树酯等行业,此外也可在制备氰化物的生产过程中接触到本物质。2.就地治疗:立即将亚硝酸异戊酯1-2安瓿包在手帕内打碎,贴在口鼻前吸入,同时进行人工呼吸,注意生命体征。3.防毒面具的选择:因为氢酸气的剧毒性,在选择和佩戴防毒面具时一定要谨慎,国内常用GB2890-82 IL型滤毒罐,在使用其他型号滤毒罐时应认真阅读说明书和生产日期,一般在3g/m3氰酸气浓度中有效滤毒时间仅为50分钟左右;在使用前应用氯化苦测试一下滤毒罐的有效性和防毒面具的穿戴是否要当,若进行大型氢氰酸熏蒸时建议一个熏蒸队至少有一套自给式呼吸装置,以防不测。因此为了维护生命及财产的安全;保护我们共同的环境;我们在排放氰化氢气体时,需要检测氰化氢气体的浓度,以达到国家排放标准,这个时候就需要用到氰化氢HCN气体浓度检测仪了。[align=center][img]http://p6.itc.cn/images01/20200623/e5cc082cfe344a96a0a9f96dbf9cf319.png[/img][/align]氰化氢HCN气体浓度检测仪适用于各种环境和特殊环境中的氰化氢HCN气体浓度和泄露,在线检测及现场声光报警,报警声音空旷距离远达200米;对危险现场的作业安全起到了预警作用,此仪器采用进口的高精度电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC, DCS等控制系统,同时实现现场报警和远程显示,报警功能,可客户自由选定4-20mA; 485输出,继电器开关量等输出方式。氰化氢HCN浓度检测仪特点:1.带有国家权威机构证件及检定报告。2.高清LCD显示;高精度,高分辨率,响应迅速快.3.上、下限报警值可任意设定,自带零点和目标点校准功能,内置温度补偿,维护方便.4.数据恢复功能,免去误操作引起的后顾之忧.5.外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新.

  • 【转帖】有关气体检测仪的检测范围和%LEL的含义

    “LEL”是指爆炸下限,它是针对可燃气体的一个技术词语。可燃气体在空气中遇明火种爆炸的最低浓度,称为爆炸下限—简称"LEL"。英文:Lower Explosion Limited。 可燃气体在空气中遇明火种爆炸的最高浓度,称为爆炸上限—简称“UEL”。英文:Upper Explosion Limited。 爆炸下限LEL是可燃气体报警器和可燃气体检测仪的一个重要指标。如果环境中的可燃气体处于爆炸上限和爆炸上限直接,并有以下三个条件成立,就会发生爆炸。1 可燃物(燃气);2 助燃物(氧气);3 点火源(温度)。报警浓度一般设定在爆炸下限的“25%LEL”以下。 我公司生产的各种可燃气体检测仪的测量范围为“0-100%LEL”。 固定式可燃气体检测仪的通常设有两个报警点(具体值与报警主机的型号有关):“10%LEL”为一级报警,“25%LEL”为二级报警。 便携式可燃气体检测仪的通常设有一个报警点:“25%LEL”为报警点。那这里的“10%LEL”和“25%LEL”到底是什么意思呢? 我们来举例说明,例如甲烷的爆炸下限为“5%”体积比(即空气中的甲烷的体积含量达到5%时达到爆炸下限),把这个“5%”体积比,一百等分,让“5%”体积比对应“100%LEL”,也就是说,当检测仪数值到达“100%LEL”报警点时,相当于此时甲烷的含量为“5%”体积比。当可燃气体检测仪数值到达“25%LEL”报警点时,相当于此时甲烷的含量为“1.25%”体积比。 所以,您不必担心可燃气体检测仪报警后是不是随时就会有危险了,它离达到爆炸还有一定的距离。马上采取相应的措施,比如开启排气扇或是切断一些阀门或者开启喷淋系统等,爆炸的危险就不会出现。离真正有可能出现危险的爆炸下限还有很大一段差距进行报警,这样才会起到报警提示的作用。

  • 【分享】有毒有害气体检测仪在工业中的应用

    在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。 有毒有害气体检测仪的分类和原理: 气体检测仪的关键部件是气体传感器。 气体传感器从原理上可以分为三大类: A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。 B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。 C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。 根据危害,我们将有毒有害气体分为可燃气体和有毒气体两大类。 由于它们性质和危害不同,其检测手段也有所不同。 可燃气体是石油化工等工业场合遇到最多的危险气体,它主要是烷烃等有机气体和某些无机气体:如一氧化碳等。 可燃气体发生爆炸必须具备一定的条件,那就是:一定浓度的可燃气体,一定量的氧气以及足够热量点燃它们的火源,这就是爆炸三要素(如上左图所示的爆炸三角形),缺一不可,也就是说,缺少其中任何一个条件都不会引起火灾和爆炸。 当可燃气体(蒸汽、粉尘)和氧气混合并达到一定浓度时,遇具有一定温度的火源就会发生爆炸。我们把可燃气体遇火源发生爆炸的浓度称为爆炸浓度极限,简称爆炸极限,一般用%表示。实际上,这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围。 如上右图所示的阴影部分。当可燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸。不同的可燃气体的LEL和UEL都各不相同(参见第八期的介绍),这一点在标定仪器时要十分注意。为安全起见,一般我们应当在可燃气体浓度在LEL的10%和20%时发出警报,这里,10%LEL称。作警告警报,而20%LEL称作危险警报。这也就是我们将可燃气体检测仪又称作LEL检测仪的原因。 需要说明的是,LEL检测仪上显示的100%不是可燃气体的浓度达到气体体积的100%,而是达到了LEL的100%,即相当于可燃气体的最低爆炸下限,如果是甲烷,100%LEL=4%体积浓度(VOL).在工作中,以LEL方式测量这些气体的检测仪是我们常见的催化燃烧式检测仪。它的原理是一个双路电桥(一般称作惠斯通电桥)检测单元。在这其中的一个铂金丝电桥上涂有催化燃烧物质,不论何种易燃气体,只要它能够被电极引燃,铂金丝电桥的电阻就会由于温度变化发生改变,这种电阻变化同可燃气体的浓度成一定比例,通过仪器的电路系统和微处理机可以计算出可燃气体的浓度。 直接测量可燃气体的体积浓度的热导式VOL检测器也可以在市场上得到,同时,也已经有了LEL/VOL合二为一的检测器。VOL可燃检测器特别适合于在缺氧(氧气不足)的环境中测量可燃气体的体积(VOL)浓度。 有毒气体既可以存在于生产原料中,如大多数的有机化学物质(VOC),也可能存在于生产过程的各个环节的副产品中,如氨、一氧化碳、硫化氢等等。它们是对工作人员造成危害最大的危险因素。这种危害不仅包括立即的伤害,如身体不适、发病、死亡等等,而且包括对于人体长期的危害,如致残、癌变等等。对于这些有毒有害气体的检测是我们发展中国家应当开始引起充分重视的问题。 表 常见有毒有害气体的TWA(8小时统计权重平均值)、STEL(15分钟短期暴露水平)、IDLH(立即致死量)(ppm)和MAC(车间最大允许浓度)mg/m3。 有毒气体 TWA STEL IDLH MAC 氨气 (NH3) 25 35 500 30 一氧化碳(CO) 25 -- 1500 30 氯气 (Cl2) 0.5 1 30 1 氰化氢 (HCN) 10 4.7 50 0.3 硫化氢(H2S) 10 15 300 10 一氧化氮 (NO) 25 -- 100 -- 二氧化硫(SO2) 2 5 100 15 VOC* 50 100 -- -- 随气体种类不同,其TWA、STEL、IDLH、MAC等值会有一定的不同 目前,对于特定的有毒气体的检测,我们使用最多的是专用气体传感器。它可以包括上面。所列的所有气体传感器,也包括前两章所介绍的光离子化检测仪。其中,检测无机气体最为普遍、技术相对成熟、综合指标最好的方法是定电位电解式方法,也就是我们常说的电化学传感器。 电化学传感器的构成是:将两个反应电极--工作电极和对电极以及一个参比电极放置在特定电解液中(如上图如示),然后在反应电极之间加上足够的电压,使透过涂有重金属催化剂薄膜的待测气体进行氧化还原反应,再通过仪器中的电路系统测量气体电解时产生的电流,然后由其中的微处理器计算出气体的浓度。 目前,可以检测到特定气体的电化学传感器包括:一氧化碳、硫化氢、二氧化硫、一氧化氮、二氧化氮、氨气、氯气、氰氢酸、环氧乙烷、氯化氢等等。 检测VOC检测 器可以使用前章介绍的光离子化检测器。氧气也是在工业环境中,尤其是密闭环境中需要十分注意因素。一般我们将氧气含量超过23.5%称为氧气过量(富氧),此时很容易发生爆炸的危险;而氧气含量低于19.5%为氧气不足(缺氧),此时很容易发生工人窒息、昏迷以至死亡的危险。正常的氧气含量应当在20.9%左右。氧气检测仪也是电化学传感器的一种。 目前在选择有毒有害气体检测仪时的问题: 在我国,由于历史和认识上的原因,我们在选用各类检测仪时存在的问题还比较多,具体体现在: 1) 对可燃气体的检测重于对有毒气体的检测。 2) 对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。 由于众多可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测十分重视,可以讲,任何一个石化、化工厂,绝大多数的危险气体检测仪都是LEL检测仪。但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。 不可否认的是,大多数的挥发性危险气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对所有的可燃气体检测都是最佳选择。它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。 比如:对于苯、氨气等危险有毒气体,单纯使用可燃气体检测仪就是一个十分危险的做法。比如,苯的爆炸下限是1.2%,它在LEL检测仪上的校正系数是2.51,也就是说,苯在一个用甲烷标定的LEL检测仪上的显示的浓度只是其实际浓度的40%!!这样,用LEL可以检测到的苯的最低警报浓度是10%LEL=10%*1.2%*2.51=3.0*10-3,这个浓度同苯的允许浓度5*10-6相比要高近600倍!!。同样,氨在LEL检测仪上得到的警报浓度1.5*10-2也要比其允许浓度2.5*10-5高大约600倍。因此根据所检测气体的不同,选择特定有毒气体检测仪要比单纯选择LEL检测仪更加安全可靠得多。 另外,目前我们对于可以引起急性中毒的气体,比如硫化氢、氰氢酸等的检测较为重视,但对于可以引起慢性中毒的气体,比如芳香烃、醇类等的检测重视不够,其实后者对于工人健康和安全的危害丝毫不逊于可以引起急性中毒的气体!它们可能引起癌变和其它的隐形病症,影响工人的寿命和健康。这种现象的出现,除了认识上的原因以外,以前市场上缺乏合适的、可以检测较低浓度的有机气体检测仪也是一个重要的原因。 随着科学技术水平的发展和人们健康认识的提高,人们已经不满足于仅仅"高高兴兴上班来,平平安安回家去",而是追求着更高的生活质量和生活条件。人们不仅关心着今日的工作,更关心着明天----退休以后的生活。 因此在工业卫生和工业安全工作中要不断地引入新观念、新思路才能不仅要避免眼前的危险发生,而更要注意避免日后悲剧的发生,所有这些,都需要通过法规制定和人们素质的提高得到不断地改善和提高。我们将在下节内容中探讨如何选择和维护各类有毒有害气体传感器。

  • 【分享】有毒有害气体检测器在劳动安全和工业卫生中的应用

    在这里我们将着重讨论其它无机有毒有害气体检测仪的原理和应用,但实际上,我们很难将有毒有害气体简单地分为有机、无机两大类。因为在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。有毒有害气体检测仪的分类和原理: 气体检测仪的关键部件是气体传感器。气体传感器从原理上可以分为三大类:A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。 根据危害,我们将有毒有害气体分为可燃气体和有毒气体两大类。由于它们性质和危害不同,其检测手段也有所不同。 可燃气体是石油化工等工业场合遇到最多的危险气体,它主要是烷烃等有机气体和某些无机气体:如一氧化碳等。 可燃气体发生爆炸必须具备一定的条件,那就是:一定浓度的可燃气体,一定量的氧气以及足够热量点燃它们的火源,这就是爆炸三要素(如上左图所示的爆炸三角形),缺一不可,也就是说,缺少其中任何一个条件都不会引起火灾和爆炸。 当可燃气体(蒸汽、粉尘)和氧气混合并达到一定浓度时,遇具有一定温度的火源就会发生爆炸。我们把可燃气体遇火源发生爆炸的浓度称为爆炸浓度极限,简称爆炸极限,一般用%表示。 实际上,这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围。如上右图所示的阴影部分。当可燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸。不同的可燃气体的LEL和UEL都各不相同(参见第八期的介绍),这一点在标定仪器时要十分注意。 为安全起见,一般我们应当在可燃气体浓度在LEL的10%和20%时发出警报,这里,10%LEL称作警告警报,而20%LEL称作危险警报。这也就是我们将可燃气体检测仪又称作LEL检测仪的原因。需要说明的是,LEL检测仪上显示的100%不是可燃气体的浓度达到气体体积的100%,而是达到了LEL的100%,即相当于可燃气体的最低爆炸下限,如果是甲烷,100%LEL=4%体积浓度(VOL)。 在工作中,以LEL方式测量这些气体的检测仪是我们常见的催化燃烧式检测仪。它的原理是一个双路电桥(一般称作惠斯通电桥)检测单元。在这其中的一个铂金丝电桥上涂有催化燃烧物质,不论何种易燃气体,只要它能够被电极引燃,铂金丝电桥的电阻就会由于温度变化发生改变,这种电阻变化同可燃气体的浓度成一定比例,通过仪器的电路系统和微处理机可以计算出可燃气体的浓度。 直接测量可燃气体的体积浓度的热导式VOL检测器也可以在市场上得到,同时,也已经有了LEL/VOL合二为一的检测器。VOL可燃检测器特别适合于在缺氧(氧气不足)的环境中测量可燃气体的体积(VOL)浓度。 有毒气体既可以存在于生产原料中,如大多数的有机化学物质(VOC),也可能存在于生产过程的各个环节的副产品中,如氨、一氧化碳、硫化氢等等。它们是对工作人员造成危害最大的危险因素。这种危害不仅包括立即的伤害,如身体不适、发病、死亡等等,而且包括对于人体长期的危害,如致残、癌变等等。对于这些有毒有害气体的检测是我们发展中国家应当开始引起充分重视的问题。表 常见有毒有害气体的TWA(8小时统计权重平均值)、STEL(15分钟短期暴露水平)、IDLH(立即致死量)(ppm)和MAC(车间最大允许浓度)mg/m3。有毒气体 TWA STEL IDLH MAC 氨气 (NH3) 25 35 500 30 一氧化碳(CO) 25 -- 1500 30 氯气 (Cl2) 0.5 1 30 1 氰化氢 (HCN) 10 4.7 50 0.3 硫化氢(H2S) 10 15 300 10 一氧化氮 (NO) 25 -- 100 -- 二氧化硫(SO2) 2 5 100 15 VOC* 50 100 -- -- *随气体种类不同,其TWA、STEL、IDLH、MAC等值会有一定的不同 目前,对于特定的有毒气体的检测,我们使用最多的是专用气体传感器。它可以包括上面所列的所有气体传感器,也包括前两章所介绍的光离子化检测仪。其中,检测无机气体最为普遍、技术相对成熟、综合指标最好的方法是定电位电解式方法,也就是我们常说的电化学传感器。 电化学传感器的构成是:将两个反应电极--工作电极和对电极以及一个参比电极放置在特定电解液中(如上图如示),然后在反应电极之间加上足够的电压,使透过涂有重金属催化剂薄膜的待测气体进行氧化还原反应,再通过仪器中的电路系统测量气体电解时产生的电流,然后由其中的微处理器计算出气体的浓度。 目前,可以检测到特定气体的电化学传感器包括:一氧化碳、硫化氢、二氧化硫、一氧化氮、二氧化氮、氨气、氯气、氰氢酸、环氧乙烷、氯化氢等等。 检测VOC检测器可以使用前章介绍的光离子化检测器。 氧气也是在工业环境中,尤其是密闭环境中需要十分注意因素。一般我们将氧气含量超过23.5%称为氧气过量(富氧),此时很容易发生爆炸的危险;而氧气含量低于19.5%为氧气不足(缺氧),此时很容易发生工人窒息、昏迷以至死亡的危险。正常的氧气含量应当在20.9%左右。氧气检测仪也是电化学传感器的一种。目前在选择有毒有害气体检测仪时的问题: 在我国,由于历史和认识上的原因,我们在选用各类检测仪时存在的问题还比较多,具体体现在:1) 对可燃气体的检测重于对有毒气体的检测。2) 对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。 由于众多可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测十分重视,可以讲,任何一个石化、化工厂,绝大多数的危险气体检测仪都是LEL检测仪。但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。 不可否认的是,大多数的挥发性危险气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对所有的可燃气体检测都是最佳选择。它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。比如:对于苯、氨气等危险有毒气体,单纯使用可燃气体检测仪就是一个十分危险的做法。比如,苯的爆炸下限是1.2%,它在LEL检测仪上的校正系数是2.51,也就是说,苯在一个用甲烷标定的LEL检测仪上的显示的浓度只是其实际浓度的40%!!这样,用LEL可以检测到的苯的最低警报浓度是10%LEL=10%*1.2%*2.51=3.0*10-3,这个浓度同苯的允许浓度5*10-6相比要高近600倍!!。同样,氨在LEL检测仪上得到的警报浓度1.5*10-2也要比其允许浓度2.5*10-5高大约600倍。因此根据所检测气体的不同,选择特定有毒气体检测仪要比单纯选择LEL检测仪更加安全可靠得多。 另外,目前我们对于可以引起急性中毒的气体,比如硫化氢、氰氢酸等的检测较为重视,但对于可以引起慢性中毒的气体,比如芳香烃、醇类等的检测重视不够,其实后者对于工人健康和安全的危害丝毫不逊于可以引起急性中毒的气体!它们可能引起癌变和其它的隐形病症,影响工人的寿命和健康。这种现象的出现,除了认识上的原因以外,以前市场上缺乏合适的、可以检测较低浓度的有机气体检测仪也是一个重要的原因。 随着科学技术水平的发展和人们健康认识的提高,人们已经不满足于仅仅"高高兴兴上班来,平平安安回家去",而是追求着更高的生活质量和生活条件。人们不仅关心着今日的工作,更关心着明天----退休以后的生活。因此在工业卫生和工业安全工作中要不断地引入新观念、新思路才能不仅要避免眼前的危险发生,而更要注意避免日后悲剧的发生,所有这些,都需要通过法规制定和人们素质的提高得到不断地改善和提高。

  • 有害气体检测仪选用原则

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。  有害气体检测仪选用原则:  1、明确检测目的,选择仪器类别  简而言之,有害气体的检测有两个目的,第一是测爆,第二是测毒。所谓测爆是检测危险场所可燃气含量,超标报警,以避免爆炸事故的发生;测毒是检测危险场所有毒气体含量,超标报警,以避免工作人员中毒。测爆的范围是0~100%LEL,测毒的范围是0~几十(或几百)ppm,两者相差很大。  危险场所有害气体有三种情况,第一、无毒(或低毒)可燃,第二、不燃有毒,第三、可燃有毒。前两种情况容易确定,第一测爆,第二测毒,第三种情况如果有人员暴露测毒,如无人员暴露可测爆。  测爆选择可燃气体检测仪,测毒选择有毒气体检测仪。  2、明确检测用途选择仪器种类(便携式或固定式)  生产或贮存岗位长期运行的泄漏检测选用固定式检测仪;其他象检修检测、应急检测、进入检测和巡回检测等选用便携式(或袖珍式)仪器。  3、明确检测对象,择优选择仪器型号仪器型号包含了生产厂家、功能指标和检测原理三项主要内容,选择仪器型号时要考虑以下几点原则:  ①生产厂家讲诚信、信誉好、生产的质量有保证,通过了ISO9002质量体系认证,具有技术监督部门颁发的CMC生产许可证,具有消防、防爆合格证。  ②选择的型号产品功能指标要符合国标GB12358-90,GB15322-94,GB16808-1997等标准的要求。  ③仪器的检测原理要适应检测对象和检测环境的要求。

  • 气体检测仪

    T40单气体检测仪:检测一氧化碳(CO)或硫化氢(H2S)· 可持续显示CO或H2S浓度· 高低浓度声、光、振动报警· 一节AA/5号碱性电池可连续运行500小时· 超大液晶(LCD)显示:PPM读数和电池寿命· 峰值保持· 美国专利:一体化标定罩和单键自动标定· 保质一年 T40单气体检测仪旨在保护人员生命安全,检测暴露在极端环境中危险气体H2S或CO的浓度。该仪器能使用在诸如沙漠或北极圈这类多变异常的气候环境中。 该仪器小巧轻便,能很容易地夹在皮带,衬衫口袋或安全帽上.超大LCD液晶显示屏能清晰地读出气体浓度、种类、峰值和高、低浓度报警水平.如果当前气体高、低浓度值超出预设限度值时,仪器以声、光和振动报警提醒用户。 峰值保持功能可以捕捉并记录自第一次开机起监测到的最大读数。独特而简单的翻盖操作即可完成标定。此设计已获美国专利。技术指标壳 体:抗冲击复合材料,抗射频干扰(RFI)尺 寸:86 mm x 58 mm x 19 mm重 量:98 g传 感 器:电化学原理量 程:[/fo

  • 【转帖】危险物质应急监测方法简介

    危险物质应急监测方法简介试纸法使被测空气通过用试剂浸泡过的滤纸,有害物质与试剂在纸上发生化学反应,产生颜色变化;或者先将被测空气通过未浸泡试剂的滤纸,使有害物质吸附或阻留在滤纸上,然后向纸上滴加试剂,产生颜色变化;根据产生的颜色深度与标准比色板比较,进行定量。前者多适合于能与试剂迅速起反应的气体或蒸气态有害物质;后者适用于气溶胶的测定,允许有一定的反应时间。试纸比色法的特点是操作简便、快速,测定范围广,适合于工矿、农村、山区的广大群众使用;但它的测定误差较大,是一种半定量的方法。使用方法与通常使用的pH试纸一样。如用于氯气应急监测的联苯指示纸法。水质速测管法-显色反应型将有关试剂做成细粒或粉状装入检测管内。使用时将检测管刺一小孔,排出管内空气后插入水样并吸入约半管水样,待反应数分钟后,将其与标准比色卡对比找出颜色最接近的色阶,读出浓度值。如用于六价铬应急监测的速测管法:先将装有测Cr(Ⅵ)试剂的检测管刺一小孔,排出空气后插入水样并吸入约半管水样,待反应1至2分钟后,将其与标准比色卡对比找出颜色最接近的色阶,读出浓度值即可。气体速测管法-填充管型有毒气体检测管是一种内部充填化学试剂显色指示粉的小玻璃管,一般选用内径为2~6mm、长度为120~180mm的无碱细玻璃管。指示粉为吸附有化学试剂的多孔固体细颗粒,每种化学试剂通常只对一种化合物或一组化合物有特效。当被测空气通过检测管时,空气中含有欲测的有毒气体便和管内的指示粉迅速发生化学反应,并显示出颜色。管壁上标有刻度(通常是mg/m3),根据变色环(柱)部位所示的刻度位置就可以定量或半定量地读出污染物的浓度值。如用于苯应急监测的苯蒸汽快速检测管:用注射器采进气样,再用胶管将注射器与检测管连接,按规定速度将气样注入检测管中,注完即可得出可靠数据。便携式分析仪器测定法利用有害物质的热学、光学、电化学、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]学等特点设计的能在现场测定某种或某类有害物质的仪器。如一氧化碳红外线检测仪;磷化氢、氯气、一氧化碳、砷化氢定电位电解式检测仪;硫化氢、一氧化碳库仑检测仪;氨气、硫化氢敏电极检测仪;氰化氢胶比电解式检测仪;一氧化碳固体热传导式检测仪;苯系物等便携式[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]等。如用于硫化氢应急监测的硫化氢库仑检测仪。将被测气体导入滴定池,池内装有溴化钾的酸性溶液,池内即发生电解。电解电流与被测物质的瞬时浓度呈线性关系,由此得出被测物质的浓度值,并由微安表指示读数。

  • 【分享】可燃气体和蒸气的检测

    在任何场所,我们都会遇到各种各样的可燃气体和蒸气。当它们的浓度足够时,许多物质的蒸气和气体都变成了可燃性危险气体,如果此时遇到火源并提供一定的能量就会发生燃烧。可其中的火源可能包括我们并不在意的东西比如:光源、电动工具、电子仪器甚至静电等等。发生燃烧(即,在点燃后,火焰会由燃点开始扩散)必须符合四个条件:气体中必须含有适量的氧气、适量的燃气、火源以及足够的分子能量维持火链反应。这四个条件一般被称为“火四边体”。如果这四个其中的任何一个没有或不足,燃烧都不可能发生。在火四边形的其它条件满足后,任何一种气体或蒸气都存在一个特定的最小浓度,只有在此浓度之上的气体或蒸气同空气或氧混合才会发生燃烧。我们将混合物发生燃烧的最低浓度称为燃烧下限(LFL,Lower Flammable Limit);一个混合物可能被点燃而后爆炸的最低浓度为爆炸下限(即常说的LEL,Lower Explosive Limit)。可以看出,二者在定义上并不完全相同,但在实际上却可互相替代使用。不同的可燃物有不同的LFL/LEL,低于LFL/LEL的气体或蒸气对氧气的比例太低而不会燃烧。大多数(不是全部)的可燃气体或蒸气还具有一个高限浓度,在此之上,也不会发生爆炸。燃烧高限UFL (Upper Flammable Limit) 是蒸气和气体在空气中支持燃烧的最大浓度。在表述上,它与爆炸高限UEL (Lower Explosive Limit)通常也不加区分。高于UFL/UEL时,蒸气或气体同氧气的比例太大以至于无法反应使燃烧扩散。在LFL/LEL和UFL/UEL之间的差值就是可以燃烧的浓度区间。如果符合了燃烧四边形的条件,在此之间的浓度的可燃气体或蒸气就可能发生燃烧。各类气体或蒸气间的燃烧范围有很大的不同。这也导致了一般我们要使用百分比浓度而不是用g/m3来表示LFL/LEL和UFL/UEL。当使用g/m3表示时,大多数的物质LFL/LEL都是相近的,平均在45-50g/m3。表3 给出了常见物质的燃烧限度: 表3 燃烧极限的例子 (NFPA 可燃性液体、气体和挥发性固体,1977) 物质 LFL/LEL (% Vol.) UFL/UEL (% Vol.) 丙酮 2.6 12.8 乙炔 2.5 100 氨气 16 25 一氧化碳 12.5 74 氧化乙烯 3 100 氢气 4 75 硫化氢 4.3 46 甲烷 5 15 丙烷 2.2 9.5 通常在资料上所列出的燃烧限度都是在标准大气中氧的浓度(20.9%V/V)和温度压力下得到的数据。任何情况下的氧气富裕都会导致对燃烧过程的加速而使得燃烧限度范围发生改变。可燃性气体的监测仪器读数大都是“%LEL”而不是“%VOL”,这是相当重要的。为了说明这一问题,假设一个仪器读数为3%VOL的环境。如果得到这个读数的气体/蒸气或者混合物的精确组份是已知的,那么它的可燃性就是已知的,而在另一方面,如果不知道它们的准确组成,也就无法决定它的可燃性。假设这个读数是由甲烷引起的(甲烷的LEL是5%VOL),这个浓度就低于它的LEL/LFL,但如果这个读数是由丙烷引起的,那么这个浓度就高于LEL(丙烷的LEL是2.2%VOL),就会有爆炸的危险。大多数易燃易爆气体监测仪器的读数是在0-100%LEL之间,这是因为大多数的标准都使用LEL/LFL的百分数来制定危险程度指标。一般的警报限度是5%或10%的LEL/LFL,在许多仪器上的缺省值都设为10%LEL/LFL。不论何时,一旦读数超过10%LEL都意味着可能存在燃烧的危险或者非正常情况,10%LEL是监测易燃易爆气体或混合物的最保守的(或最高可以接受的)警报设置点。绝对安全的环境中一定是0%LEL/LFL!用%VOL(体积)浓度检测仪可以测得较高水平的易燃易爆气体的浓度,即可以检测高于LEL/LFL的浓度。有些仪器还可以检测ppm级的爆炸气体。有些仪器还可以在不同浓度间进行切换。 图3,既可监测LEL%又可监测ppm级烷烃浓度的iTx复合式气体检测仪(ISC公司)蒸气是液体和固体的在室温下的气体状态。气化或蒸发的速度,或者说由液体或固体转化为气体的速度是我们考虑形成可燃气体混合物的一个重要因素。蒸发是温度的函数,温度增加,液体转化为气体的量也增加。相反,温度降低可能会降低气体的量,有些气体可能还会冷凝为液体。爆炸的前提是空气中存在可燃物物质的蒸气。一般规律下,液体是不会燃烧的。防火的重要概念是避免足够量可燃气体的存在。闪点是液体释放蒸气的最低温度,也是LEL/LFL形成的温度,它是物质的固有特征。表4 常见物质的闪点标4 闪点 闪点 物质 °C °F 汽油(航空级)a - 46 - 50 丙酮 - 20 - 4 甲基乙级酮 - 9 16 乙醇 (96%) 17 62 柴油(#1-D)a 38 100 a 大致最低温度 因此,如果工作人员需要检测易燃易爆物质,那么他还要考虑工作场所中可能存在的液体的闪点。在检测过程中,待测周围环境的温度变化是必需要注意到的因素。检测前后温度的增加会显著地增加蒸气的量。温度增加的因素包括:太阳光对物体(固体及液体、气体)的直射;一般的工作行为(焊接、研磨、切割、钻孔等等在局部加热过程)等等。温度增加使得危险性增加,如果不注意这一点,就会导致工作过程中的爆炸和火灾。因此,有必要在工作过程中对气体进行连续监测。例如,在 10 °C 时,乙醇的蒸气还不会达到点燃程度。而在21 °C时, 乙醇的蒸气就很容易被点燃。在使用易燃易爆监测仪器时可能遇到其他的问题还包括:首先,测定的仪器必须用要检测的气体进行校正,例如,用甲烷标定的仪器对煤油就不是很灵敏。第二,将气体引入仪器的较长的探杆可能会吸收某些气体,使之无法到达传感器,从而使得仪器的实际读数有很大的降低。第三,温度的影响不容忽视。比如,某些密闭空间内的温度通常要比它外面高许多,空间内部的煤油蒸气在导到外部仪器时可能会冷凝成了液体,而无法被气体传感器检测到。另一个问题是仪器的分辨率,一个可以读出百分比LEL的仪器的增量是1%LEL/LFL,它就不可能读出小于1%LEL/LFL变化的数值。例如,一个可燃气体的浓度是0.7%LEL/LFL,低于了仪器的分辨率,此时仪器的读数可能是零。因此当用仪器去检测高闪点的液体时,比如对于松节油、汽油或柴油等,了解仪器的分辨率是非常重要的。在这种情况下,只能读取%LEL的仪器就不太够用,就可能需要光离子化检测器。在检测过程中,还要注意到待测气体或蒸气的密度,那些比空气轻的气体会上升到空间的上部,而比空气重的气体会积聚到空间的底部。这在实际的空间分布上就有所不同。轻的气体包括氢气、甲烷和氨气等,而重的气体包括丙烷、硫化氢、汽油和其他很多常见的有机溶剂。

  • 【分享】可燃气体和蒸气的检测

    一般概念在任何场所,我们都会遇到各种各样的可燃气体和蒸气。当它们的浓度足够时,许多物质的蒸气和气体都变成了可燃性危险气体,如果此时遇到火源并提供一定的能量就会发生燃烧。可其中的火源可能包括我们并不在意的东西比如:光源、电动工具、电子仪器甚至静电等等。发生燃烧(即,在点燃后,火焰会由燃点开始扩散)必须符合四个条件:气体中必须含有适量的氧气、适量的燃气、火源以及足够的分子能量维持火链反应。这四个条件一般被称为“火四边体”。如果这四个其中的任何一个没有或不足,燃烧都不可能发生。在火四边形的其它条件满足后,任何一种气体或蒸气都存在一个特定的最小浓度,只有在此浓度之上的气体或蒸气同空气或氧混合才会发生燃烧。我们将混合物发生燃烧的最低浓度称为燃烧下限(LFL,Lower Flammable Limit);一个混合物可能被点燃而后爆炸的最低浓度为爆炸下限(即常说的LEL,Lower Explosive Limit)。可以看出,二者在定义上并不完全相同,但在实际上却可互相替代使用。不同的可燃物有不同的LFL/LEL,低于LFL/LEL的气体或蒸气对氧气的比例太低而不会燃烧。大多数(不是全部)的可燃气体或蒸气还具有一个高限浓度,在此之上,也不会发生爆炸。燃烧高限UFL (Upper Flammable Limit) 是蒸气和气体在空气中支持燃烧的最大浓度。在表述上,它与爆炸高限UEL (Lower Explosive Limit)通常也不加区分。高于UFL/UEL时,蒸气或气体同氧气的比例太大以至于无法反应使燃烧扩散。在LFL/LEL和UFL/UEL之间的差值就是可以燃烧的浓度区间。如果符合了燃烧四边形的条件,在此之间的浓度的可燃气体或蒸气就可能发生燃烧。各类气体或蒸气间的燃烧范围有很大的不同。这也导致了一般我们要使用百分比浓度而不是用g/m3来表示LFL/LEL和UFL/UEL。当使用g/m3表示时,大多数的物质LFL/LEL都是相近的,平均在45-50g/m3。表3 给出了常见物质的燃烧限度: 表3 燃烧极限的例子 (NFPA 可燃性液体、气体和挥发性固体,1977) 物质 LFL/LEL (% Vol.) UFL/UEL (% Vol.) 丙酮 2.6 12.8 乙炔 2.5 100 氨气 16 25 一氧化碳 12.5 74 氧化乙烯 3 100 氢气 4 75 硫化氢 4.3 46 甲烷 5 15 丙烷 2.2 9.5 通常在资料上所列出的燃烧限度都是在标准大气中氧的浓度(20.9%V/V)和温度压力下得到的数据。任何情况下的氧气富裕都会导致对燃烧过程的加速而使得燃烧限度范围发生改变。可燃性气体的监测仪器读数大都是“%LEL”而不是“%VOL”,这是相当重要的。为了说明这一问题,假设一个仪器读数为3%VOL的环境。如果得到这个读数的气体/蒸气或者混合物的精确组份是已知的,那么它的可燃性就是已知的,而在另一方面,如果不知道它们的准确组成,也就无法决定它的可燃性。假设这个读数是由甲烷引起的(甲烷的LEL是5%VOL),这个浓度就低于它的LEL/LFL,但如果这个读数是由丙烷引起的,那么这个浓度就高于LEL(丙烷的LEL是2.2%VOL),就会有爆炸的危险。大多数易燃易爆气体监测仪器的读数是在0-100%LEL之间,这是因为大多数的标准都使用LEL/LFL的百分数来制定危险程度指标。一般的警报限度是5%或10%的LEL/LFL,在许多仪器上的缺省值都设为10%LEL/LFL。不论何时,一旦读数超过10%LEL都意味着可能存在燃烧的危险或者非正常情况,10%LEL是监测易燃易爆气体或混合物的最保守的(或最高可以接受的)警报设置点。绝对安全的环境中一定是0%LEL/LFL!用%VOL(体积)浓度检测仪可以测得较高水平的易燃易爆气体的浓度,即可以检测高于LEL/LFL的浓度。有些仪器还可以检测ppm级的爆炸气体。有些仪器还可以在不同浓度间进行切换。 图3,既可监测LEL%又可监测ppm级烷烃浓度的iTx复合式气体检测仪(ISC公司)蒸气是液体和固体的在室温下的气体状态。气化或蒸发的速度,或者说由液体或固体转化为气体的速度是我们考虑形成可燃气体混合物的一个重要因素。蒸发是温度的函数,温度增加,液体转化为气体的量也增加。相反,温度降低可能会降低气体的量,有些气体可能还会冷凝为液体。爆炸的前提是空气中存在可燃物物质的蒸气。一般规律下,液体是不会燃烧的。防火的重要概念是避免足够量可燃气体的存在。闪点是液体释放蒸气的最低温度,也是LEL/LFL形成的温度,它是物质的固有特征。表4 常见物质的闪点标4 闪点 闪点 物质 °C °F 汽油(航空级)a - 46 - 50 丙酮 - 20 - 4 甲基乙级酮 - 9 16 乙醇 (96%) 17 62 柴油(#1-D)a 38 100 a 大致最低温度 因此,如果工作人员需要检测易燃易爆物质,那么他还要考虑工作场所中可能存在的液体的闪点。在检测过程中,待测周围环境的温度变化是必需要注意到的因素。检测前后温度的增加会显著地增加蒸气的量。温度增加的因素包括:太阳光对物体(固体及液体、气体)的直射;一般的工作行为(焊接、研磨、切割、钻孔等等在局部加热过程)等等。温度增加使得危险性增加,如果不注意这一点,就会导致工作过程中的爆炸和火灾。因此,有必要在工作过程中对气体进行连续监测。例如,在 10 °C 时,乙醇的蒸气还不会达到点燃程度。而在21 °C时, 乙醇的蒸气就很容易被点燃。在使用易燃易爆监测仪器时可能遇到其他的问题还包括:首先,测定的仪器必须用要检测的气体进行校正,例如,用甲烷标定的仪器对煤油就不是很灵敏。第二,将气体引入仪器的较长的探杆可能会吸收某些气体,使之无法到达传感器,从而使得仪器的实际读数有很大的降低。第三,温度的影响不容忽视。比如,某些密闭空间内的温度通常要比它外面高许多,空间内部的煤油蒸气在导到外部仪器时可能会冷凝成了液体,而无法被气体传感器检测到。另一个问题是仪器的分辨率,一个可以读出百分比LEL的仪器的增量是1%LEL/LFL,它就不可能读出小于1%LEL/LFL变化的数值。例如,一个可燃气体的浓度是0.7%LEL/LFL,低于了仪器的分辨率,此时仪器的读数可能是零。因此当用仪器去检测高闪点的液体时,比如对于松节油、汽油或柴油等,了解仪器的分辨率是非常重要的。在这种情况下,只能读取%LEL的仪器就不太够用,就可能需要光离子化检测器。在检测过程中,还要注意到待测气体或蒸气的密度,那些比空气轻的气体会上升到空间的上部,而比空气重的气体会积聚到空间的底部。这在实际的空间分布上就有所不同。轻的气体包括氢气、甲烷和氨气等,而重的气体包括丙烷、硫化氢、汽油和其他很多常见的有机溶剂。

  • 【分享】气体检测仪的特征及功能

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,可以灵活配置的单种气体或多种气体检测仪器。气体检测仪可以配备氧气传感器、可燃气体传感器和有毒气体传感器或任选四种气体传感器或任选单种气体传感器,主要利用气体传感器来检测环境中存在的气体种类,用来检测气体的成份和含量。 气体检测仪采用高性能检测元件,具有灵敏度高和重复性好的优点,采用先进的超低功耗微控制器,探测器外壳采用高强度ABS工程复合防滑塑胶制成,强度高、手感好,防水、防尘、防爆。气体检测仪拥有非常清晰的大液晶显示屏、背光照明、声光报警提示,高对比度的液晶显示屏能够连续实时显示气体的积聚浓度,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。气体检测仪具有开机或需要时对显示、电池、传感器、声光报警功能自检,测试程序由人工智能微电脑控制,工作流程合理、简洁便利、功能齐全,具有多种自适应能力。 气体检测仪由功能强大的微处理器控制,配合大规模数字集成电路和微功耗元器件,将空气中气体浓度信号转化为电信号,由液晶屏直观数字显示,主要适用于防爆、有毒气体泄漏抢险、地下管道或矿井等场所危害气体的现场检测。气体检测仪被广泛应用于是化工、冶炼、燃气、制药、市政、电力、消防煤炭、冶金、电力安全检测等行业。

  • 检测甲苯气体的浓度

    [color=#444444]从用的第一台色谱到现在换了一台新的色谱,只是做一件事情,用来检测甲苯气体的浓度,其中涉及到测甲苯初始浓度,这个时候发现同样的甲苯气体,但是出来的峰会越出越高越出越高,峰面积一直增大。之前怀疑是用的塑料管会吸附甲苯,换了不锈钢管之后,这个问题依然存在。想问一下各位,这个问题的原因是什么?[/color]

  • 关于气体检测仪的专业知识指导

    我们对于气体检测的知识了解多少,对于检测气体的仪器又都知道什么。即使现在你不知道也没有关系,小编在这里就为大家介绍关于气体检测仪的专业知识指导,请注意看看。  气体检测仪主要利用气体传感器来检测环境中存在的气体种类,气体 传感器是用来检测气体的成份和含量的传感器。也叫气体报警器是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作 气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它 们有时使用大体一致的检测原理。  目前流行于市场的气体传感器大约有如下一些种类:  1、半导体式气体传感器  它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。比如,酒精传感器,就是利用二氧化锡在高温下遇到酒精气体时,电阻会急剧减小的原理制备的。 半导体式气体传感器可以有效地用于很多气体地检测。这种传感器成本低廉,适宜于民用气体检测的需求。  下列几种半导体式气体传感器是成功的:甲烷(天然气、沼气)、酒精、一氧化碳(城市煤气)、硫化氢、氨气(包括胺类,肼类)。高质量的传感器可以满足工业检测的需要。  缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。  目前这种传感器的主要供应商在日本(发明者),其次是中国,最近有新加入了韩国,其他国家如美国在这方面也有相当的工作,但是始终没有汇入主流!中国在 这个领域投入的人力和时间都不亚于日本,但是由于多年来国家政策导向以及社会信息闭塞等原因,我国流行于市场的半导体式气体传感器性能质量都远逊于日本产 品,相信,随着市场进步,民营资本的进一步兴起,中国产的半导体式气体传感器达到和超越日本水平已经指日可待  2、催化燃烧式气体传感器  这种传感器是在白金电阻的表面制备耐高温的催化剂层,在一定的温度下,可燃性气体在其表面催化燃烧,燃烧是白金电阻温度升高,电阻变化,变化值是可燃性气体浓度的函数。  催化燃烧式气体传感器选择性地检测可燃性气体:凡是可以燃烧的,都能够检测;凡是不能燃烧的,传感器都没有任何响应。当然,『凡是可以燃烧的,都能够检测』这一句有很多例外,但是,总的来讲,上述选择性是成立的。  催化燃烧式气体传感器计量准确,响应快速,寿命较长。传感器的输出与环境的爆炸危险直接相关,在安全检测领域是一类主导地位的传感器。  缺点:在可燃性气体范围内,无选择性。暗火工作,有引燃爆炸的危险。大部分元素有机蒸汽对传感器都有中毒作用。  目前这种传感器的主要供应商在中国、日本、英国(发明国)!目前中国是这种传感器的最大用户(煤矿),也拥有最佳的传感器生产技术,尽管不断有各种各样的代理商在宣传上干扰社会对这种传感器的认识,但是毕竟,催化燃烧式气体传感器的主流制造商在国内。

  • 浅谈电化学式气体检测仪的具体分类情况

    在某些特殊的环境里,周围的空气里有可能含有有毒、可燃等的气体。如果人们进入这样的环境里,是非常危险的。因此我们若想要知道空间范围内空气的气体的种类,那么气体检测仪就可以派上用场了。目前在市场上气体检测仪的中类非常之多,其中的电化学式气体检测仪人们所常用到的气体检测仪之一,那么下面我们就来了解下电化学式气体检测仪的具体分类情况。  一、原电池型气体传感器  也被称为:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器,他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。  二、恒定电位电解池型气体传感器  这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。  三、浓差电池型气体传感器  具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。  四、极限电流型气体传感器  有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。  以上的内容就是电化学式气体检测仪的具体分类情况,电化学式气体检测仪相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。

  • 中国计量院出台《电子气检测报警器校准规范》 为危险气体监控预警器提供量值溯源依据

    [align=left] 针对目前我国化学品生产企业和实验室等使用的有毒有害危险气体监控和预警仪器的计量评价需求,日前,中国计量科学研究院(简称“中国计量院”)出台了由能源环境所编制的《电子气检测报警器校准规范》,对相关仪器仪表的示值误差、重复性、漂移、响应时间等技术参数和测量方法进行了明确规定,对校准用计量器具和溯源性提出了确切要求,并就校准结果的[url=http://www.jlck.net/forum-279-1.html]不确定度[/url]来源进行了充分的评估。[/align][align=left] 据了解,随着我国电子科技和制造水平的高速发展,电子工业企业和实验室数量也出现迅猛增长。由于电子工业中会用到多种有毒有害气体,所以在生产和实验场所必须安装相应的监控和预警用的仪器仪表。但目前我国在电子工业气体检测和报警用仪器仪表的计量校准和评价方面,还缺乏相应的技术规范。[/align][align=left] 为此,作为国家级法定计量技术机构和我国最高的计量科学研究中心,中国计量院组织气体计量与检测专家编制了《电子气检测报警器校准规范》,为电子行业报警器的计量校准和量值溯源提供了技术依据。该校准规范的实施将有效保障电子工业企业以及实验室所用电子气检测报警仪器仪表的计量校准和量值溯源的规范性和可靠性,提高电子工业生产和实验场所的监控和管理的科学性和客观性,为确保企业工厂和实验室的安全运行和从业人员的生命和财产安全做出了计量技术支撑[/align]

  • 【资料】便携式气体检测仪使用注意事项

    注明:由于便携式可燃性气体测试仪属精密仪器,对环境温度要求比较严格,所以在使用时必须注意环境温度与仪器要求是否相符。另外从以下几方面也要注意:1)防止气体检测仪从高处跌落或受剧烈震动2)需在无腐蚀性气体、油烟、尘埃并防雨的场所使用3)勿使气体检测仪经常接触浓度高于检测范围以上的高浓度气体,并严禁碰撞和拆卸传感器,否则会损失传感器工作寿命4)若机器长时间出现无反应现象,请关闭电源重新启动5)为保证测量精度,机器应定期进行标定,检定周期不得超过一年6)在非危险地区,正常环境条件下开机7)正常工作环境下检测,传感器工作寿命两年以上8)不可把气体探测仪浸泡在液体中,这样会导致气体探测仪无法报警9)气体探测仪发出电力不足警报时,应立即更换电池(请查阅说明书查看电池类型) 10)测试仪应轻拿轻放,避免剧烈震动,以免损坏仪器敏感元件

  • 【分享】气体检测仪术语

    气体检测仪术语 Accelerant (促进剂) 任何物质 (诸如油, 汽油等) 应用在燃料层来加速燃烧过程. Alarm  (警报) 通过声音、视觉、机械结构警告仪器使用者危险气体/蒸汽浓度已经达到或超过设定浓度等级。 Alarm Only Instrument (单警报器) 仪器提供警报,但不包含仪表或其他读取设备指示当前浓度水平。 Alarm Set Point (警告点设置) 选择激发警报时气体浓度水平。 Ambient Air (环境空气) 敏感元件正常暴露的空气。 Analyzer (分析器) 可以在混合物中确定组分质量和数量的仪器。 Area Monitor (特定范围放射线检测器) 真正的特定范围放射线检测器必须能够在特定容积中的三维空间的任何一点测量物质浓度或必须指示已经弥漫特定容积中的物质总数。 Calibration  (标定) 调整仪器正确响应的常用程序. Calibration Gas (标定气体) 已知浓度气体用来设置仪器取值范围或警报等级。 Calorie  (卡路里) 在一个大气压下将1克水从某标准起始温度加热到温度升高1°C所需的加热量。 Combustible (易燃物) 闪点在100°F (38°C)或更高的物质。 Conduction (传导) 物质间通过彼此接触传递热量。热量从温度高的物体传递到温度低的物体。比如:工人的皮肤可以通过接触比工人皮肤更凉爽的物体表面传递热量。反之也一样。 Convection (对流) 在流动的气体(液体)中传递热量。如果空气温度凉爽,当气流经过身体时能使身体感到凉爽。同样,空气温度超过 35°C (95°F) 就会增加身体的热负荷。 Dry Bulb Temperature (干球温度) 以标准温度计测得得空气温度。 Evaporative Cooling (蒸发冷却) 当汗水从皮肤上蒸发时发生。高湿度环境将降低蒸发速度并降低身体主要降温功能的效力。 Fixed Installation (固定装置) 术语学通常用来指示气体监测仪被永久性的安装,就好象在控制室中安装的控制面板一样。有时候气体监测仪被安置在交通工具上,比如消防车或油轮。通常是指的固定式监测仪。

  • 【转帖】气体快速检测技术及在消防上的应用

    气体快速检测技术及在消防上的应用邵建章"武警学院消防工程系廊坊’摘要( 在消防工作和突发事件的抢险救援中)经常涉及危险性气体的检测*本文针对危险性气体的检测)介绍了仪器法+传感器法+化学检测法和生物芯片法等气体现场快速检测技术)并着重对化学检测技术进行了详细的阐述*’关键词( 气体快速检测在消防工作中)经常涉及到对危险性气体的检测*这些危险性气体主要包括易燃+易爆+有毒+有害气体及易挥发性液体的蒸发*这些气体和液体在生产+储存+运输和使用过程中)一旦发生泄漏)极易引发中毒+火灾甚至爆炸事故)造成群死群伤)严重危害人民的生命和财产安全*并且)当世界各国不断出现恐怖分子和邪教组织投毒危害社会安定的恐怖事件*为了及时处置这些突发事件)制定处置方案)组织抢险救援)以及采取有效的防护措施)保障救援人员的生命安全)就必须迅速而准确地对事发现场的气体进行快速检测)确定气体的种类和含量*因此)气体现场快速检测技术对于处置这些突发事件具有十分重要的意义*一+气体快速检测技术的应用在防火安全检查+火灾扑救+火灾原因调查和抢险救援中)气体快速检测技术都有着广泛的应用*在防火安全检查中)气体快速检测技术可用于检测可燃气体及可燃液体的蒸气)确定有无可燃气体和可燃液体的泄漏,确定输气和输油管道是否有泄漏及确定泄漏区段,确定可燃液体的生产和贮藏场所"如生产车间+油库+油罐区&是否有可燃液体泄漏+可燃气体或可燃液体的蒸气在空气中的浓度是否达到爆炸极限*在火灾现场一次爆炸发生后)由于可燃气体继续泄漏或可燃液体的蒸气继续产生)当达到一定浓度时又会发生二次爆炸或燃烧*为了防止可燃气体或可燃液体蒸气的二次爆炸或燃烧对灭火指战员的伤害)防止毒性气体对消防指战员的危害)利用气体快速检测技术测出火灾现场空气中气体的种类和浓度)为灭火指挥员制定灭火预案+采取相对应的防护措施提供依据*在刚扑灭的火灾现场的空气中和液体燃烧痕迹表面常含有残留的可燃性气体+可燃性液体的蒸气和可燃性物质分解出来的气体产物"纵火犯常利用易燃液体纵火&*利用气体快速检测技术检测火灾现场空气中和液体燃烧痕迹表面残留的可燃气体的种类)就能为火调人员及时分析火灾原因)为侦破纵火案件提供依据和证据*有毒有害气体和液体物质在生产+储存和运输过程中)由于事故发生泄漏或爆炸以及恐怖分子和邪教组织投毒)这些突发事件都极大危害人民群众的生命和健康*为了有针对性地处置这些突发事件)及时组织抢险救援)就必须及时快速准确地对有毒气体进行检测)确定气体的种类和浓度*只有这样才能正确地制定出处置方案)采取有效的防护措施)保障救援人员的生命安全和受毒人员的救治*如日本地铁沙林毒气事件)如果当时在事发现场及时的检测出是沙林毒气)那么就能及时地采取相应的防护措施和救援对策)就不会造成那么严重的后果*二+气体快速检测方法当前)易燃+易爆+有毒+有害气体的快速检测技术较多)发展也很快*主要包括仪器法+传感器法)化学检测法和目前世界上研究十分活跃的生物芯片技术*"一&仪器法利用各种气体快速测定仪器)对易燃+易爆+有毒+有害气体进行快速测定*-.热学式气体测定仪利用可燃气体在催化剂作用下)燃烧产生的热量改变热敏电阻的阻值)测定易燃易爆气体的浓度*如常用的易燃易爆气体测爆仪)一氧化碳测定仪)爆炸粉尘测定仪等*/.光电式气体测定仪利用气体对某种单色光的吸收)改变入射光的强度)在光电池中产生电信号)通过测定电信号而测定气体的浓度*如对芳烃气体及对紫外和可见光有一定吸收的有毒+有害气体的测定*0.电导式气体测定仪利用易燃+易爆+有毒+有害气体溶于某种电解质中)改变了这种电解质的组成和电导)通过测定电解质溶液的电导测定气体的浓度*如氨气测定仪)二氧化氮测定等*"二&气体传感器法气体传感器的研究开发的较早)过去气体传感器主要用于煤气+液化石油气+天然气及矿井中的瓦斯气1 0/1万方数据体的检测!报警和自动控制"目前气体传感器检测的气体种类已由原来的还原性气体发展到有毒气体的检测"用于气体检测的传感器主要有#$%半导体气体传感器半导体气体传感器主要使用半导体气敏材料&具有灵敏度高!响应快的优点而得到广泛的应用"目前已成为世界上产量最大!使用最为广泛的一种气体传感器"例如#’()气体传感器可检测氨气的浓度*+,(-./(气体传感器对一氧化碳气体非常敏感"0%固体电解质气体传感器固体电解质气体传感器使用固体电解质气敏材料作气敏元件"由于这种传感器电导率高&灵敏度和选择性好&因而也得到了广泛的应用&仅次于金属氧化物半导体气体传感器"如检测硫化氢气体的123-4/-’()传感器&检测氨气的5678-.9.()传感器等")%接触燃烧式气体传感器接触燃烧式气体传感器分为直接接触燃烧式和催化接触燃烧式两种"这种传感器只能检测可燃气体&对不燃性气体不敏感"例如&在: 丝上涂敷活性催化剂等制成的传感器&具有光谱特性&可以检测各种可燃气体"8%高分子气体传感器利用高分子气敏材料的气体传感器近年来得到了很大的发展"高分子气体传感器具有对特定气体分子灵敏度高!选择性好的优点&并且结构简单&能在常温下使用&可以弥补其它气体传感器的不足"仪器法和气体传感器法检测危险性气体&操作简便&检测速度快&定量效果好"但不易进行气体定性鉴定&不利于气体种类的鉴定"?三@化学检测法利用化学试剂制成的指示剂与被检测气体发生化学反应&使指示剂的颜色发生变化&根据指示剂颜色的变化检测气体的种类和浓度"化学检测法除检测灵敏度较高&测定速度快&定性能力强等特点外&它的最大优点是可随时通过实验找出显色反应&自己动手制作检测器材&最大限度地满足未知检测气体种类多对检测技术的要求&而且检测成本低&便于携带"因此&化学检测法是应用十分广泛的气体快速检测技术"气体快速化学检测方法主要包括检气管法&试纸法&溶液快速法"本文将着重介绍这三种方法的检测器材的制作技术和气体检测方法"$%检气管法检气管是用化学试剂浸泡过的载体作指示剂&将指示剂装入细长的玻璃管中制成"检气管通常有两种类型#一种是比色型检气管&一种是比长度型检气管"由玻璃管?白塑料管@!载体!指示剂和固定物组成"使用时&将现场气体以一定的速度抽过检气管&被测气体与指示剂发生化学反应&使指示剂呈现一定的颜色&根据指示剂显现的颜色进行定性鉴定&确定被测气体的种类"根据指示剂颜色的深浅或变色柱的长短与事先制成的标准色板或浓度标尺进行比较&测定气体中被测气体的浓度"?$@检气管的制作A载体的选择载体是比表面较大&具有一定吸附能力的粒状物质&它的作用是将化学试剂吸附在它的表面上"装入玻璃管中的载体颗粒间要留有空隙&能让气体通过并与指示剂有足够的接触时间&以便发生化学反应使指示剂发生颜色变化"用于检气管的载体应具备#不与被测气体和所用试剂发生化学反应&质地较牢固&能被粉碎成一定大小的颗粒&呈白色!多孔或表明粗糙的固体形态"最常用的载体为硅胶和素陶瓷&有时也用浮石!活化氧化铝!石英砂等"B试剂的选择与填充物的制备用于检气管的试剂有指示剂和保护剂"指示剂#选择能与被测气体发生颜色反应的物质&并且尽量在较小的载体表面上能与最小量的被测气体作用&生成明显的带色物质"制备指示剂时载体上的试剂量对变色柱长度或颜色深度影响相当大&增加试剂的量可使变色柱长度缩短或颜色加深*反之则增长或变浅"同时用于溶解试剂的溶剂对变色柱的长度也有影响&均需在制作过程中加以选择"载体的粒度对变色柱长度!界限清晰与否也有影响&粒度大&抽气阻力小&变色柱增长&界限不清晰*粒度小&抽气阻力大&变色柱变短&界限清晰"这些在制备指示剂时&应通过实验进行选择"常用检气管的指示剂及其颜色变化和检测方法见表$"保护剂#防止干扰物质与指示剂发生反应而产生干扰和防止指示剂吸收水分而变质"所以应采用能与干扰物质发生反应而不与被测气体发生反应的试剂作保护剂"填充物的制备#将试剂配成一定浓度&再将适量的载体置于溶液中&进行搅拌&使载体上均匀地吸附一层试剂&然后用蒸发或减压蒸发的方法除去溶剂&干燥"干燥的填充物应颗粒松散&无粘结现象"C装管与封管将内径为0%D-0%EFF的管径均匀的玻璃管?或白塑料管@切成长度为$0G-$HGFF&用清洗液浸泡!I ))I万方数据表! 常见检气管检气管灵敏度 抽气量 抽气速度颜色变化所用试剂类型一氧化碳*+ ,-+ ./- 黄0绿0蓝硫酸钯1硫酸铵1硫酸1硅胶比色型二氧化碳,++ .++ ./- 蓝0白百里酚蓝1氢氧化钠1氧化铬比长型二氧化硫.+ .++ +/- 棕黄0红亚硝基铁氰化钠1氯化锌1乌络托品1素陶瓷比长型硫化氢.+ *++ * 白0褐醋酸铅1氯化钡1素陶瓷比长型氯* .++ * 黄0红荧光素1溴化钾1碳酸钾1氢氧化钠1硅胶比长型氨.+ .++ * 红0黄百里酚蓝1硫酸1硅胶比长型氧化氮.+ .++ . 白0绿联邻甲苯胺1硫酸铜1硅胶比长型磷化氢& .++ * 白0黑硝酸银1硅胶比长型氰化氢+/* .++ * 白0蓝绿联邻甲苯胺1硫酸铜1硅胶比长型丙烯睛+/, .++ * 白0蓝联邻甲苯胺1硫酸铜1硅胶比长型苯.+ .++ . 白0紫褐发烟硫酸1多聚甲醛1硅胶比长型洗净1烘干2将管的一端熔封3用固定物"玻璃棉1棉花或其它塑料纤维’塞紧3再装入用指示剂或保护

  • 可燃气体传感器在工业烤箱可燃性气体浓度检测中的应用

    首先工业烤箱,也就是涂层烘干室,是作为生产设备使用的,是生产和加工环节中的一个节点,一般是在产品涂装,烘烤阶段使用。[url=http://news.isweek.cn/wp-content/uploads/2022/10/QQ图片20221013104117.png][img=QQ图片20221013104117,467,300]http://news.isweek.cn/wp-content/uploads/2022/10/QQ图片20221013104117-467x300.png[/img][/url]当然形式是多样的,比如有些设备没有高温,也没有烘干的字样,但是也是属于这一类设备的。回流焊设备,回流焊技术在电子制造领域并不陌生,我们电脑内使用的各种板卡上的元件都是通过这种工艺焊接到线路板上的,这种设备的内部有一个加热电路,将空气或氮气加热到足够高的温度后吹向已经贴好元件的线路板,让元件两侧的融化后与主板粘结。这种工艺的优势是温度易于控制,焊接过程中还能避免氧化,制造成本也更容易控制。回流焊设备又分为多种:[b]根据技术分类热风回流焊:[/b]热风式回流焊炉通过热风的层流运动传递热能,利用加热器与风扇,使炉内空气不断升温并循环,待焊件在炉内受到炽热气体的加热,从而实现焊接。热风式回流焊炉具有加热均匀、温度稳定的特点,PCB的上、下温差及沿炉长方向的温度梯度不容易控制,一般不单独使用。自20世纪90年代起,随着SMT应用的不断扩大与元器件的进一步小型化,设备开发制造商纷纷改进加热器的分布、空气的循环流向,并增加温区至8个、10个,使之能进一步精确控制炉膛各部位的温度分布,更便于温度曲线的理想调节。全热风强制对流的回流焊炉经过不断改进与完善,成为了SMT焊接的主流设备。[b]热板传导回流焊:[/b]这类回流焊炉依靠传送带或推板下的热源加热,通过热传导的方式加热基板上的元件,用于采用陶瓷(Al2O3)基板厚膜电路的单面组装,陶瓷基板上只有贴放在传送带上才能得到足够的热量,其结构简单,价格便宜。中国的一些厚膜电路厂在80年代初曾引进过此类设备。[b]红外(IR)回流焊炉:[/b]此类回流焊炉也多为传送带式,但传送带仅起支托、传送基板的作用,其加热方式主要依红外线热源以辐射方式加热,炉膛内的温度比前一种方式均匀,网孔较大,适于对双面组装的基板进行回流焊接加热。这类回流焊炉可以说是回流焊炉的基本型。在中国使用的很多,价格也比较便宜。[b]红外线+热风回流焊:[/b]20世纪90年代中期,在日本回流焊有向红外线+热风加热方式转移的趋势。它足按30%红外线,70%热风做热载体进行加热。红外热风回流焊炉有效地结合了红外回流焊和强制对流热风回流焊的长处,是21世纪较为理想的加热方式。它充分利用了红外线辐射穿透力强的特点,热效率高、节电,同时又有效地克服了红外回流焊的温差和遮蔽效应,弥补了热风回流焊对气体流速要求过快而造成的影响。这类回流焊炉是在IR炉的基础上加上热风使炉内温度更加均匀,不同材料及颜色吸收的热量是不同的,即Q值是不同的,因而引起的温升AT也不同。例如,lC等SMD的封装是黑色的酚醛或环氧,而引线是白色的金属,单纯加热时,引线的温度低于其黑色的SMD本体。加上热风后可使温度更加均匀,而克服吸热差异及阴影不良情况,红外线+热风回流焊炉在国际上曾使用得很普遍。由于红外线在高低不同的零件中会产生遮光及色差的不良效应,故还可吹入热风以调和色差及辅助其死角处的不足,所吹热风中又以热氮气为理想。对流传热的快慢取决于风速,但过大的风速会造成元器件移位并助长焊点的氧化,风速控制在1.Om/s~1.8ⅡI/S为宜。热风的产生有两种形式:轴向风扇产生(易形成层流,其运动造成各温区分界不清)和切向风扇产生(风扇安装在加热器外侧,产生面板涡流而使各个温区可精确控制)。[b][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]回流焊接:[/b][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]回流焊接又称[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]焊(VaporPhaseSoldering,VPS),亦名凝热焊接(condensationsoldering)。加热碳氟化物(早期用FC-70氟氯烷系溶剂),熔点约215℃,沸腾产生饱和蒸气,炉子上方与左右都有冷凝管,将蒸气限制在炉膛内,遇到温度低的待焊PCB组件时放出汽化潜热,使焊锡膏融化后焊接元器件与焊盘。美国将其用于厚膜集成电路(IC)的焊接,气柏潜热释放对SMA的物理结构和几何形状不敏感,可使组件均匀加热到焊接温度,焊接温度保持一定,无需采用温控手段来满足不同温度焊接的需要,VPS的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中是饱和蒸气,含氧量低,热转化率高,但溶剂成本高,且是典型臭氧层损耗物质,因此应用上受到极大的限制,国际社会现今基本不再使用这种有损环境的方法。[b]激光回流焊,光束回流焊:[/b]激光加热回流焊是利用激光束良好的方向性及功率密度高的特点,通过光学系统将激光束聚集在很小的区域内,在很短的时间内使被加热处形成一个局部的加热区,常用的激光有C02和YAG两种,是激光加热回流焊的工作原理示意图。激光加热回流焊的加热,具有高度局部化的特点,不产生热应力,热冲击小,热敏元器件不易损坏。但是设备投资大,维护成本高。[b]热丝回流焊:[/b]热丝回流焊是利用加热金属或陶瓷直接接触焊件的焊接技术,通常用在柔性基板与刚性基板的电缆连接等技术中,这种加热方法一般不采用锡膏,主要采用镀锡或各向异性导电胶,并需要特制的焊嘴,因此焊接速度很慢,生产效率相对较低。[b]热气回流焊:[/b]热气回流焊指在特制的加热头中通过空气或氮气,利用热气流进行焊接的方法,这种方法需要针对不同尺寸焊点加工不同尺寸的喷嘴,速度比较慢,用于返修或研制中。[b]感应回流焊:[/b]感应回流焊设备在加热头中采用变压器,利用电感涡流原理对焊件进行焊接,这种焊接方法没有机械接触,加热速度快;缺点是对位置敏感,温度控制不易,有过热的危险,静电敏感器件不宜使用。[b]聚红外回流焊:[/b]聚焦红外回流焊适用于返修工作站,进行返修或局部焊接。[b]根据形状分类台式回流焊炉:[/b]台式设备适合中小批量的PCB组装生产,性能稳定、价格经济(大约在4-8万人民币之间),国内私营企业及部分国营单位用的较多。[b]立式回流焊炉:[/b]立式设备型号较多,适合各种不同需求用户的PCB组装生产。设备高中低档都有,性能也相差较多,价格也高低不等(大约在8-80万人民币之间)。国内研究所、外企、企业用的较多。[b]根据温区分类[/b]回流焊炉的温区长度一般为45cm~50cm,温区数量可以有3、4、5、6、7、8、9、10、12、15甚至更多温区,从焊接的角度,回流焊至少有3个温区,即预热区、焊接区和冷却区,很多炉子在计算温区时通常将冷却区排除在外,即只计算升温区、保温区和焊接区。按照我国的标准,SMT生产车间是需要配可燃气体浓度报警器的,事实上,在高温过程中,会产生气体,尤其是焊接的各种焊料和一些有机物料。 高温炉、高温烤箱由于原材料、设备运转在高温烘烤的环境下,产生热量,材料会进行分解,从而产生了可燃性的气体。可燃气体在烤炉、烤箱内部、进出气口以及空气中就会形成聚集。如达到燃烧的三要素,极有可能会发生燃烧爆炸的危险。可燃气体浓度报警器就是检测气体浓度泄漏报警的仪器。[b]当工业环境中可燃或有毒气体泄漏时[/b],当可燃气体浓度报警器检测到气体浓度达到爆炸或中毒报警器设置的报警点时,可燃气体浓度报警器就会发出报警信号,以提醒工作采取安全措施,并驱动排风、切断、喷淋系统,防止发生爆炸、火灾、中毒事故,从而保障人身财产安全。可燃气体浓度报警器中核心元器件可燃气体传感器可以采用进口[b]可燃气体传感器 [url=https://www.isweek.cn/127.html]TGS816[/url]:可燃气体传感器TGS816[/b]不仅可检测多种可燃气体,而且采用了陶瓷底座,可耐受200°C高温的使用环境,对甲烷、丙烷与丁烷气体具有很高的灵敏度,是监控LNG与LPG最为理想的传感器。由于其对多种气体拥有灵敏度,可广泛运用于各种领域,因此是一款价廉物美的优秀传感器。费加罗传感器的敏感素子由二氧化锡(SnO2)半导体构成,其在清洁的空气中电导率很低,当空气中被检测气体存在时,该气体的浓度越高传感器的电导率也会越高。使用简单的电路,就可以将电导率变化转换成与该气体浓度相对应的信号输出。[img=日本figaro 可燃气体传感器,300,300]https://www.isweek.cn/Thumbs/300/0171017/59e5b1e118d39.jpg[/img]那么报警器应该如何安装呢?[b]可燃气体浓度报警器安装位置:[/b]探测器应安装在气体易泄漏场所,具体位置应根据被检测气体相对于空气的比重决定。当被检测气体比重大于空气比重时,探测器应安装在距离地面(30~60)cm处,且传感器部位向下。当被检测气体比重小于空气比重时,探测器应安装在距离顶棚(30~60)cm处,且传感器部位向下。为了正确使用探测器及防止探测器故障的发生,请不要安装在以下位置:◆ 直接受蒸汽、油烟影响的地方;◆ 给气口、换气扇、房门等风量流动大的地方;◆ 水汽、水滴多的地方(相对湿度:≥90%RH);◆ 温度在-40℃以下或55℃以上的地方;

  • 气体检测浓度单位(毫克/立方米)与ppm为何关系?

    对环境大气(空气)中污染物浓度的表示方法有两种:质量浓度表示法:每立方米空气中所含污染物的质量数,即mg/m3 体积浓度表示法:一百万体积的空气中所含污染物的体积数,即ppm 大部分气体检测仪器测得的气体浓度都是体积浓度(ppm)。而按我国规定,特别是环保部门,则要求气体浓度以质量浓度的单位(如:mg/m3)表示,我们国家的标准规范也都是采用质量浓度单位(如:mg/m3)表示。 这两种气体浓度单位mg/m3与ppm有何关系呢?其间如何换算? 使用质量浓度单位(mg/m3)作为空气污染物浓度的表示方法,可以方便计算出污染物的真正量。但质量浓度与检测气体的温度、压力环境条件有关,其数值会随着温度、气压等环境条件的变化而不同;实际测量时需要同时测定气体的温度和大气压力。而在使用ppm作为描述污染物浓度时,由于采取的是体积比,不会出现这个问题。 浓度单位ppm与mg/m3的换算:按下式计算: mg/m3=M/22.4• ppm• [273/(273+T)]*(Ba/101325)上式中:M----为气体分子量 ppm----测定的体积浓度值 T----温度 Ba----压力 如果湿度很大时,例如在100%相对湿度下,还需另外一项:气体分子量。分子量的计算可在以下软件中输入分子式以后得出。

  • 一个气体浓度检测方案

    大家好: 我最近接到一个项目,用于检测各种气体浓度,要做成一个手持设备,大家有没有合适的解决方案啊!

  • 【转帖】如何选择合适的有毒有害气体检测

    对于各类不同的生产场合和检测要求,选择合适的气体检测仪是每一个从事安全和卫生工作的人员都必须十分注意的。这里我们将就一些具体情况做一介绍,供大家参考。  确认所要检测气体种类和浓度范围:  每一个生产部门所遇到的气体种类都是不同的。在选择气体检测仪时就要考虑到所有可能发生的情况。如果甲烷和其它毒性较小的烷烃类居多,选择LEL检测仪无疑是最为合适的。这不仅是因为LEL检测仪原理简单,应用较广,同时它还具有维修、校准方便的特点。如果存在一氧化碳、硫化氢等有毒气体,就要优先选择一个特定气体检测仪才能保证工人的安全。如果更多的是有机有毒有害气体,考虑到其可能引起人员中毒的浓度较低,比如芳香烃、卤代烃、氨(胺)、醚、醇、脂等等,就应当选择前章介绍的光离子化检测仪,而绝对不要使用LEL检测器应付,因为这可能会导致人员伤亡。  如果气体种类覆盖了以上几类气体,选择一个复合式气体检测仪可能会达到事半功倍的效果。  确定使用场合:  工业环境的不同,选择气体检测仪种类也不同。  A)固定式气体检测议:  这是在工业装置上和生产过程中使用较多的检测仪。它可以安装在特定的检测点上对特定的气体泄漏进行检测。固定式检测器一般为两体式,有传感器和变送组成的检测头为一体安装在检测现场,有电路、电源和显示报警装置组成的二次仪表为一体安装在安全场所,便于监视。它的检测原理同前节所述,只是在工艺和技术上更适合于固定检测所要求的连续、长时间稳定等特点。它们同样要根据现场气体的种类和浓度加以选择,同时还要注意将它们安装在特定气体最可能泄漏的部位,比如要根据气体的比重选择传感器安装的最有效的高度等等。  B)便携式气体检测仪:  由于便携式仪器操作方便,体积小巧,可以携带至不同的生产部位,电化学检测仪采用碱性电池供电,可连续使用1000小时 新型LEL检测仪、PID和复合式仪器采用可充电池(有些已采用无记忆的镰氢或鲤离子电池),使得它们一般可以连续工作近12小时,所以,作为这类仪器在各类工厂和卫生部门的应用越来越广。  如果是在开放的场合,比如敞开的工作车间使用这类仪器作为安全报警,可以使用随身佩戴的扩散式气体检测仪,因为它可以连续、实时、准确地显示现场的有毒有害气体的浓度。这类的新型仪器有的还配有振动警报附件以避免在嘈杂环境中听不到声音报警,并安装计算机芯片来记录峰值、STEL(15分钟短期暴露水平)和TWA(8小时统计权重平均值)为工人健康和安全提供具体的指导。  如果是进入密闭空间,比如反应罐、储料罐或容器、下水道或其它地下管道、地下设施、农业密闭粮仓、铁路罐车、船运货舱、隧道等工作场合,在人员进入之前,就必须进行检测,而且要在密闭空间外进行检测。此时,就必须选择带有内置采样泵的多气体检测仪。因为密闭空间中不同部位(上、中、下)的气体分布和气体种类有很大的不同。比如:一般意义上的可燃气体的比重较轻,它们大部分分布于密闭空间的上讯一氧化碳和空气的比重差不多,一般分布于密闭空间的中慨而象硫化氢等较重气体则存在于密闭空间的下部(如图所示)。同时,氧气浓度也是必须要检测的种类之一。另外,如果考虑到罐内可能的有机物质的挥发和泄漏,一个可以检测有机气体的检测仪也是需要的。因此一个完整的密闭空间气体检测仪应当是一个具有内置泵吸功能以便可以非接触、分部位检测具有多气体检测功能以检测不同空间分布的危险气体,包括无机气体和有机气侬具有氧检测功能防止缺氧或富辄体积小巧,不影响工人工作的便携式仪器。只有这样才能保证进入密闭空间的工作人员的绝对安全。  另外,进入密闭空间后,还要对其中的气体成分进行连续不断的检测,以避免由于人员进入、突发泄漏、温度等变化引起挥发性有机物或其它有毒有害气体的浓度变化。  如果用于应急事故、检漏和巡视,应当使用泵吸式、响应时间短、灵敏度和分辨率较高的仪器,这样可以很容易判断泄漏点的方位。  在进行工业卫生检测和健康调查的情况时,具有数据记录和统计计算以及可以联接计算机等功能的仪器应用起来就非常方便。来源:气体检测网

  • 【求助】拉曼检测气体浓度时若干疑问。

    请教:我在学习拉曼散射有关知识的时候,看到拉曼散射普遍用于固体液体的检测,关于气体检测方面的应用较少,网络上只有一家美国公司出了一款相关产品。。搜索了一下大概是由于气体分子散射截面较小导致散射光强度太小,较难检测。看了一些论文后,了解到拉曼散射光(斯托克斯)和入射光功率以及气体浓度有一定关系。如果想利用拉曼散射检测气体浓度,主要工作就是想办法提高入射光功率(比如利用近共焦腔等)但是还有一些基本的原理没搞明白。。想在此请教下各位。1,受激拉曼散射是不是能较大的提高散射光功率,那能用受激拉曼散射光来检测气体浓度吗?2,受激拉曼和自发拉曼散射的产生区别是不是就是入射光功率达到拉曼阈值,如果受激拉曼光不包含气体浓度信息,那么提高入射光功率不也会产生一些受激拉曼散射光么?3,有没有利用拉曼检测气体浓度的实例?请介绍一下。所学尚浅,感谢各位解答

  • 【分享】如何选择有害气体检测仪

    对于各类不同的生产场合和检测要求,选择合适的气体检测仪是每一个从事安全和卫生工作的人员都必须十分注意的。这里我们将就一些具体情况做一介绍,供大家参考。确认所要检测气体种类和浓度范围:每一个生产部门所遇到的气体种类都是不同的。在选择气体检测仪时就要考虑到所有可能发生的情况。如果甲烷和其它毒性较小的烷烃类居多,选择LEL检测仪无疑是最为合适的。这不仅是因为LEL检测仪原理简单,应用较广,同时它还具有维修、校准方便的特点。如果存在一氧化碳、硫化氢等有毒气体,就要优先选择一个特定气体检测仪才能保证工人的安全。如果更多的是有机有毒有害气体,考虑到其可能引起人员中毒的浓度较低,比如芳香烃、卤代烃、氨(胺)、醚、醇、脂等等,就应当选择前章介绍的光离子化检测仪,而绝对不要使用LEL检测器应付,因为这可能会导致人员伤亡。 如果气体种类覆盖了以上几类气体,选择一个复合式气体检测仪可能会达到事半功倍的效果。确定使用场合:工业环境的不同,选择气体检测仪种类也不同。A)、固定式气体检测议:这是在工业装置上和生产过程中使用较多的检测仪。它可以安装在特定的检测点上对特定的气体泄漏进行检测。固定式检测器一般为两体式,有传感器和变送组成的检测头为一体安装在检测现场,有电路、电源和显示报警装置组成的二次仪表为一体安装在安全场所,便于监视。它的检测原理同前节所述,只是在工艺和技术上更适合于固定检测所要求的连续、长时间稳定等特点。它们同样要根据现场气体的种类和浓度加以选择,同时还要注意将它们安装在特定气体最可能泄漏的部位,比如要根据气体的比重选择传感器安装的最有效的高度等等。B)、便携式气体检测仪:由于便携式仪器操作方便,体积小巧,可以携带至不同的生产部位,电化学检测仪采用碱性电池供电,可连续使用1000小时 新型LEL检测仪、PID和复合式仪器采用可充电池(有些已采用无记忆的镰氢或鲤离子电池),使得它们一般可以连续工作近12小时,所以,作为这类仪器在各类工厂和卫生部门的应用越来越广。如果是在开放的场合,比如敞开的工作车间使用这类仪器作为安全报警,可以使用随身佩戴的扩散式气体检测仪,因为它可以连续、实时、准确地显示现场的有毒有害气体的浓度。这类的新型仪器有的还配有振动警报附件以避免在嘈杂环境中听不到声音报警,并安装计算机芯片来记录峰值、STEL(15分钟短期暴露水平)和TWA(8小时统计权重平均值)为工人健康和安全提供具体的指导。如果是进入密闭空间,比如反应罐、储料罐或容器、下水道或其它地下管道、地下设施、农业密闭粮仓、铁路罐车、船运货舱、隧道等工作场合,在人员进入之前,就必须进行检测,而且要在密闭空间外进行检测。此时,就必须选择带有内置采样泵的多气体检测仪。因为密闭空间中不同部位(上、中、下)的气体分布和气体种类有很大的不同。比如:一般意义上的可燃气体的比重较轻,它们大部分分布于密闭空间的上讯一氧化碳和空气的比重差不多,一般分布于密闭空间的中慨而象硫化氢等较重气体则存在于密闭空间的下部。同时,氧气浓度也是必须要检测的种类之一。另外,如果考虑到罐内可能的有机物质的挥发和泄漏,一个可以检测有机气体的检测仪也是需要的。因此一个完整的密闭空间气体检测仪应当是一个具有内置泵吸功能以便可以非接触、分部位检测具有多气体检测功能以检测不同空间分布的危险气体,包括无机气体和有机气侬具有氧检测功能防止缺氧或富辄体积小巧,不影响工人工作的便携式仪器。只有这样才能保证进入密闭空间的工作人员的绝对安全。另外,进入密闭空间后,还要对其中的气体成分进行连续不断的检测,以避免由于人员进入、突发泄漏、温度等变化引起挥发性有机物或其它有毒有害气体的浓度变化。如果用于应急事故、检漏和巡视,应当使用泵吸式、响应时间短、灵敏度和分辨率较高的仪器,这样可以很容易判断泄漏点的方位。在进行工业卫生检测和健康调查的情况时,具有数据记录和统计计算以及可以联接计算机等功能的仪器应用起来就非常方便。

  • 【转帖】如何选择合适的有毒有害气体检测仪?

    对于各类不同的生产场合和检测要求,选择合适的气体检测仪是每一个从事安全和卫生工作的人员都必须十分注意的。这里我们将就一些具体情况做一介绍,供大家参考。 1) 确认所要检测气体种类和浓度范围: 每一个生产部门所遇到的气体种类都是不同的。在选择气体检测仪时就要考虑到所有可能发生的情况。如果甲烷和其它毒性较小的烷烃类居多,选择LEL检测仪无疑是最为合适的。这不仅是因为LEL检测仪原理简单,应用较广,同时它还具有维修、校准方便的特点。如果存在一氧化碳、硫化氢等有毒气体,就要优先选择一个特定气体检测仪才能保证工人的安全。如果更多的是有机有毒有害气体,考虑到其可能引起人员中毒的浓度较低,比如芳香烃、卤代烃、氨(胺)、醚、醇、脂等等,就应当选择前章介绍的光离子化检测仪,而绝对不要使用LEL检测器应付,因为这可能会导致人员伤亡。 如果气体种类覆盖了以上几类气体,选择一个复合式气体检测仪可能会达到事半功倍的效果。 2) 确定使用场合: 工业环境的不同,选择气体检测仪种类也不同。A) 固定式气体检测仪: 这是在工业装置上和生产过程中使用较多的检测仪。它可以安装在特定的检测点上对特定的气体泄漏进行检测。固定式检测器一般为两体式,有传感器和变送组成的检测头为一体安装在检测现场,有电路、电源和显示报警装置组成的二次仪表为一体安装在安全场所,便于监视。它的检测原理同前节所述,只是在工艺和技术上更适合于固定检测所要求的连续、长时间稳定等特点。它们同样要根据现场气体的种类和浓度加以选择,同时还要注意将它们安装在特定气体最可能泄漏的部位,比如要根据气体的比重选择传感器安装的最有效的高度等等。B) 便携式气体检测仪: 由于便携式仪器操作方便,体积小巧,可以携带至不同的生产部位,电化学检测仪采用碱性电池供电,可连续使用1000小时;新型LEL检测仪、PID和复合式仪器采用可充电池(有些已采用无记忆的镍氢或锂离子电池),使得它们一般可以连续工作近12小时,所以,作为这类仪器在各类工厂和卫生部门的应用越来越广。 如果是在开放的场合,比如敞开的工作车间使用这类仪器作为安全报警,可以使用随身佩戴的扩散式气体检测仪,因为它可以连续、实时、准确地显示现场的有毒有害气体的浓度。这类的新型仪器有的还配有振动警报附件---以避免在嘈杂环境中听不到声音报警,并安装计算机芯片来记录峰值、STEL(15分钟短期暴露水平)和TWA(8小时统计权重平均值)---为工人健康和安全提供具体的指导。 如果是进入密闭空间,比如反应罐、储料罐或容器、下水道或其它地下管道、地下设施、农业密闭粮仓、铁路罐车、船运货舱、隧道等工作场合,在人员进入之前,就必须进行检测,而且要在密闭空间外进行检测。此时,就必须选择带有内置采样泵的多气体检测仪。因为密闭空间中不同部位(上、中、下)的气体分布和气体种类有很大的不同。比如:一般意义上的可燃气体的比重较轻,它们大部分分布于密闭空间的上部;一氧化碳和空气的比重差不多,一般分布于密闭空间的中部;而象硫化氢等较重气体则存在于密闭空间的下部(如图所示)。同时,氧气浓度也是必须要检测的种类之一。另外,如果考虑到罐内可能的有机物质的挥发和泄漏,一个可以检测有机气体的检测仪也是需要的。因此一个完整的密闭空间气体检测仪应当是一个具有内置泵吸功能----以便可以非接触、分部位检测;具有多气体检测功能----以检测不同空间分布的危险气体,包括无机气体和有机气体;具有氧检测功能----防止缺氧或富氧;体积小巧,不影响工人工作的便携式仪器。只有这样才能保证进入密闭空间的工作人员的绝对安全。 另外,进入密闭空间后,还要对其中的气体成分进行连续不断的检测,以避免由于人员进入、突发泄漏、温度等变化引起挥发性有机物或其它有毒有害气体的浓度变化。

  • 【分享】VOC气体检测概述

    挥发性有机化合物检测仪采用先进的光离子化检测器(Photo lonization De-tector简称PID)可以检测在1ppb(十亿分之一)到10,000ppm(百分之一)浓度范围内的多种挥发性有机化合物(Volatile Organic Compound,简称VOC)。当电离电位(IP)小于紫外灯能量的化合物气体或蒸气通过离子化腔时,PID的紫外光源(UV)就会将该化合物击碎成可被检测到正负离子(该过程即离子化)。检测器测量离子化后的气体电荷并将其转化为电流信号,然后电流被放大并转化为浓度值。在被检测后,离子重新复合成为原来的气体和蒸气。可以被PID检测的挥发性有机化合物包括(详情请参阅校正系数表)饱和烃及不饱和烃:辛烷、乙烯、环已烷等芳香类:苯甲、甲苯、萘、硝基苯、氯苯等酮、醛、醚;丙酮,丙醛,苯甲醚等胺类:二甲基胺,丁胺等卤代烃类:三氯乙烯、三溴甲烷等硫代烃类:硫化氢、二硫化碳等醇类:乙醇、甲硫醇等脂类:醋酸丁脂,乙酰水杨酸甲脂等肼类:肼、甲基肼,二甲基肼等除了有机物,PID还可以测量一些不含碳的无机气体:氨气、砷化氢、硒化氢、溴和碘类化合物等 PID不能检测的气体和蒸气包括放射性气体(Rm)、空气(N2、O2、CO2、H2O)常见毒气(如CO、SO2),天然气(甲烷),酸性气体(如HCI、HF、HNO3)氟利昂气体、臭氧等。 PID仪器的特点 连续灵敏测量:PID可以实时检测低至PPb浓度(十亿分之一)的有机物。特别适合现代石油化工、劳动卫生、环境监测等部门健康、安全的需要。 快速:PID的反应较快,一般小于3秒,适合快速应急的需要。 便携测量:仪器仪器体积小巧、重量轻,可携至任何需要检测的地点。内置强力吸气泵可以吸取人员不便到达地点的待测气体。 安全性高:仪器本质安全,且无需氢气等危险载气。 适应性广:可以检测1ppb到10,000ppb浓度范围内的绝大多数的机物。 非破坏性测量:由于PID仅仅是使有机物电离,所以在有机组分离开检测器后会重新复合。因此用户可以利用PID的强力吸气泵进行采样操作,对被测样品做进一步的实验室分析。 传感器不会中毒:同大多数基它原理的检测器或传感器不同,采用光学原理的PID检测器不会被高浓度的被测物质损坏。 只对有机物反应:PID对常见气体如:氧气、氮气、一氧化碳、二氧化碳、甲烷、水蒸汽等没有反应,因此它在复杂环境中具有一定的指向性。

  • 【分享】气体检测仪的选型

    一、气体检测仪的用途:气体检测仪是专用的安全、防护检测仪器,用来检测化学品作业场所或设备内部空气中的可燃或有毒气体和蒸气含量并超限报警。主要有以下几方面的应用:(1)泄漏检测:设备管道现场可燃或有毒气体和蒸气泄漏检测报警,设备管道运行检漏。(2)检修检测:设备检修置换后检测残留可燃或有毒气体和蒸气,特别是动火前检测更为重要。(3)应急检测:生产现场出现异常情况或者处理事故时,为了安全和卫生要对可燃或有毒气体和蒸气进行检测。(4)进入检测:工作人员进入可燃和有毒物质隔离操作间,进入危险场所的下水沟、电缆沟或设备内操作时,要检测可燃和有毒气体或液体蒸气。(5)巡回检测:安全卫生检查时,要检测可燃和有毒气体或液体蒸气。 危险化学品要加强安全管理,完善安全措施、控制事故隐患。但是,不可能达到绝对安全,仍然会出现万有一失的情况。因此,事故隐患的检测报警,在危险化学品场所可燃和有毒气体或液体(蒸气)检测报警,是非常必要的。对避免和控制事故具有重要意义。二、气体检测仪的分类:(1)按检测气体可分为:可燃气体检测仪 (便携式可燃气体检测仪)和有毒气体检测仪(便携式有毒气体检测仪)。① 可燃气体检测仪(简称测爆仪,) 一般为催化燃烧式检测原理,可检测多种可燃气体或蒸气。 ②有毒气体检测仪一般为电化学式检测原理,根据选配传感器的不同可检测多种有毒气体,如CO、H2S、NO、NO2、CL2、HCN、NH3、PH3等多种有毒有机化合物。一氧化碳报警器 ,一氧化碳检测仪,t40,co检测探头,co检测仪,co报警器,一氧化碳报警仪,一氧化碳监测仪,一氧化碳探测器,一氧化碳检测报警仪 (2)按采样方式可分为:气体检测仪;扩散式气体检测仪。二、气体检测仪的分类:(1)按检测气体可分为:可燃气体检测仪 (便携式可燃气体检测仪)和有毒气体检测仪(便携式有毒气体检测仪)。① 可燃气体检测仪(简称测爆仪,) 一般为催化燃烧式检测原理,可检测多种可燃气体或蒸气。 ②有毒气体检测仪一般为电化学式检测原理,根据选配传感器的不同可检测多种有毒气体,如CO、H2S、NO、NO2、CL2、HCN、NH3、PH3等多种有毒有机化合物。三、可燃气体报警器器,气体检测仪选用原则 可燃气体检测仪,可燃气体探测器,可燃气体报警仪,测爆仪,可燃气体报警控制器,可燃气体检测报警器,可燃气体报警装置,可燃气体报警器,可燃气体检测器,可燃气体测爆仪,可燃气体检测报警仪(1)明确检测目的,选择仪器类别 简而言之,气体的检测有两个目的,第一是测爆,第二是测毒。所谓测爆是检测危险场所可燃气含量,超标报警,以避免爆炸事故的发生;测毒是检测危险场所有毒气体含量,超标报警,以避免工作人员中毒。测爆的范围是0~100%LEL,测毒的范围是0~几十(或几百)ppm,两者相差很大。 危险场所可燃及有毒气体有三种情况,第一、无毒(或低毒)可燃,第二、不燃有毒,第三、可燃有毒。前两种情况容易确定,第一测爆,第二测毒,第三种情况如果有人员暴露测毒,如无人员暴露可测爆。 测爆选择可燃气体检测报警仪,测毒选择有毒气体检测报警仪。 (2)明确检测用途选择仪器种类(便携式或固定式) 生产或贮存岗位长期运行的泄漏检测选用固定式气体报警器;其他象检修检测、应急检测、进入检测和巡回检测等选用便携式气体检测仪。 中国专业生产煤气报警器 可燃气体报警器 便携式可燃气体检测仪

  • 【转帖】气体检测浓度单位mg/m3与ppm为何关系?

    对环境大气(空气)中污染物浓度的表示方法有两种: 1、质量浓度表示法:每立方米空气中所含污染物的质量数,即mg/m3 2、体积浓度表示法:一百万体积的空气中所含污染物的体积数,即ppm 大部分气体检测仪器测得的气体浓度都是体积浓度(ppm)。而按我国规定,特别是环保部门,则要求气体浓度以质量浓度的单位(如:mg/m3)表示,我们国家的标准规范也都是采用质量浓度单位(如:mg/m3)表示。 这两种气体浓度单位mg/m3与ppm有何关系呢?其间如何换算? 使用质量浓度单位(mg/m3)作为空气污染物浓度的表示方法,可以方便计算出污染物的真正量。但质量浓度与检测气体的温度、压力环境条件有关,其数值会随着温度、气压等环境条件的变化而不同;实际测量时需要同时测定气体的温度和大气压力。而在使用ppm作为描述污染物浓度时,由于采取的是体积比,不会出现这个问题。 浓度单位ppm与mg/m3的换算:按下式计算: 质量浓度mg/m3=M气体分子量/22.4*ppm数值*[273/(273+T气体温度)]*(Ba压力/101325)M为气体分子量,ppm为测定的体积浓度值,T为温度、Ba为压力,如果湿度很大时,例如在100%相对湿度下,还需另外一项。气体分子量[常见气体分子量: 甲醛HCHO为30.0260,苯C6H6为78.1118,氨NH3为17.0306 】

  • PID光离子气体传感器在VOCs检测中的优势

    VOCs作为PM2.5和O3形成的关键前体物,是复合型大气污染的重要诱因。除此之外,其本身具有的刺激性和毒性,也会导致各种生物体产生癌变、畸形。 据有效数据显示,VOCs的种类多,目前能监测到的已达200多种;活性差异大,不同的VOCs组分的毒性和致癌性也各不相同。[img=20190225155321,419,300]http://news.isweek.cn/wp-content/uploads/2019/02/20190225155321-419x300.jpg[/img]国家对挥发性有机物的监测日益完善。2013年的《大气污染防治行动计划》、2014年7月环保部等六部委的《大气污染防治行动计划实施情况考核办法(实行)实施细则》、2014年12月环保部公布的《石化行业挥发性有机物综合整治方案》均对挥发性有机物的治理和排放做了详细规定。2017年,由环保部施行的《“十三五”挥发性有机物污染防治工作方案》中再次规定,将全面加强挥发性有机物的污染防治工作并加强基础能力建设。政策的支持,是推动VOCs监测工作全面展开的有力保障。我国现已建立国家大气光化学监测网,通过大气颗粒物组分监测网和光化学监测网结合,实现对挥发性有机物的层层监控。目前针对VOCs的监测需求主要分为以下几种:一是污染源VOCs排放谱监测,用以识别重点行业控制的VOCs组分,构建VOCs排放成分谱库和排放因子库,建立专门的VOCs排放清单;二是污染源VOCs排放监督监测,针对此类监测的标准有大气污染物综合排放标准GB 16297-1996、电池工业污染物排放标准GB 30484-2013、合成树脂工业污染物排放标准 GB 31572-2015等;三是环境空气VOCs监测,通过监测实现对挥发性有机物的来源识别。效应分析以及臭氧污染成因的诊断等;四是工业园区的监督监测、溯源分析,要求实施监测工业园区厂界VOCs浓度,获取排放状况和规律,提供监管依据,预防突发环境污染事、降低潜在环境风险。此外还有VOCs的应急监测,包括大气超级站、工业区和交通站的监测车建设等。现有的VOCs监测技术主要有传感器技术、色谱/质谱技术、选择性离子转移质谱技术以及光谱技术等,根据这些技术研发出了一批具有代表性的仪器:在线VOCs监测仪、便携式傅立叶红外仪、固定污染源废弃VOCs连续监测系统等。我国的VOCs监测虽然已经初具规模,但仍需漫长的时间来加以完善。相关科研人员除了要提升监测技术和设备水平外,还需完善VOCs评价及监测技术标准体系,提高VOCs监测质保质控水平和挥发性有机物的在线监测信息化水平。通过实现现有技术与监测需求的匹配,来为我国的环境监管及防治措施的制定提供技术支撑。光离子气体传感器PID是一种具有极高灵敏度,用途广泛的检测器,可以检测从极低浓度的1ppb到较高浓度的6000ppm的VOC气体。与传统检测方法相比,它具有便携式、体积小、精度高、高分辨、响应快、可以连续测试、实时性、安全性高等重要优点,可以为工作人员提供实时的信息反馈,这种反馈可以使检测人员确认他们处于没有暴露于危险化学品之中的安全状态,确保工作人员的安全,对于潜在的泄漏事故的防范自动监控报警,事故区域确认方面也有广阔的应用前景。[b]PID传感器的优点精度高[/b]高精度的光离子化传感器可以检测到ppb级别的有机气体,一般的光离子化气体传感器可以检测到ppm级的VOC气体,精度超过红外传感器等大多数常用传感器;[b]对检测气体无破坏性[/b]光离子传感器在将气体吸入后将其电离,而气体分子形成的离子在放电后又形成了原先的气体分子,对原气体分子无破坏性。[b]响应速度快[/b]除了在气体检测系统在开机后预热的一段时间,在正常工作状态下,光离子气体传感器几乎可以实时做出反应,可以连续测试。在这检测危险气体时,对保障检测人员健康有重要意义。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制