当前位置: 仪器信息网 > 行业主题 > >

太阳雨太阳模拟器

仪器信息网太阳雨太阳模拟器专题为您提供2024年最新太阳雨太阳模拟器价格报价、厂家品牌的相关信息, 包括太阳雨太阳模拟器参数、型号等,不管是国产,还是进口品牌的太阳雨太阳模拟器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳雨太阳模拟器相关的耗材配件、试剂标物,还有太阳雨太阳模拟器相关的最新资讯、资料,以及太阳雨太阳模拟器相关的解决方案。

太阳雨太阳模拟器相关的资讯

  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • 三永发布高准直太阳光模拟器新品
    日本SAN-EI公司推出高准直太阳光模拟器(高平行太阳光模拟器),准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。AM1.5G /AM0 太阳光光谱;准直接半角0.3度(可定制其他角度);不稳定性2% 均匀性可定制;照射距离可定制;照射角度和方向可定制;创新点:高准直稳态太阳光模拟器,准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。高准直太阳光模拟器
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格)作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。关于海洋光学(Ocean Optics)和豪迈(HALMA):总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 太阳雨国家CNAS认可实验室正式揭牌(附图)
    2011年9月16日,备受业界关注的“中温太阳能集热器试验技术会议”在江苏连云港隆重举行。本次会议由中国可再生能源学会太阳能热利用专业委员会、中国农村能源行业协会太阳能热利用专业委员会、中华全国工商联合会新能源商会主办,太阳雨太阳能有限公司承办。  朱俊生、贾铁鹰、殷志强等行业领导以及连云港市委常委、常务副市长张同生,北京、武汉、云南三大太阳能国家检测中心专家,清华大学、上海交通大学、东南大学等著名院校专家,以及相关太阳能检测设备制造公司出席此次会议。   中华全国工商业联合会新能源商会副会长、太阳雨集团董事长徐新建  近年来,太阳能热利用中温研发技术的不断突破,将太阳能热利用领域扩展到了热能应用领域,而中温太阳能集热器试验技术无疑是研发环节中的关键。在本次会议上,来自全国各地的行业专家、学者就目前中温太阳能集热器试验方法以及测试技术进行了全面的展示和深入的研讨。无疑,中温太阳能集热器试验技术的不断提升,对于太阳能光热产业的快速发展具有十分重要的意义,一是促进了整个太阳能热利用行业的产业升级 二是拓展了太阳能热利用领域扩展到了热能应用,使太阳能采暖、太阳能空调、海水淡化、工业动力和农业烘干等成为现实 三是中温真空管集热器的应用,使得煤、石油等传统化石能源的用量有所减少,将改善我国的能源结构,节能减排效果更加突出。   中国可再生能源学会副理事长朱俊生、全国太阳能标准化技术委员会秘书长贾铁鹰 为太阳雨CNAS国家认可实验室揭牌  太阳雨CNAS国家认可实验室检测能力范围包括真空管、热管、太阳能集热器、太阳能热水器、太阳能系统共5大项102小项,成为目前中国太阳能热利用行业检测能力最全、最强的检测中心。无疑,该实验室的投入使用将助推太阳雨缩短成果转化周期,加快科技成果向生产力转化效率,同时提高现有全行业科技成果的成熟性、配套性,加速企业生产技术改造,促进产品更新换代。  另据了解,中国合格评定国家认可制度已经融入国际认可互认体系,并在国际认可互认体系中有着中重要的地位,发挥着重要的作用。目前我国已与其他国家和地区的35个质量管理体系认证和环境管理体系认证认可机构签署了互认协议,与其他国家和地区的54个实验室认可机构签署了互认协议。太阳雨将有更多机会参与国际间合格评定机构双边、多边合作交流,可在认可的范围内使用CNAS国家实验室认可标志和ILAC国际互认联合标志。  太阳雨检测中心升级“国家队”,必将进一步推动我国可再生能源替代战略的实施,促进行业技术进步和产业化进程。
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 全国首个城市双碳模拟器在济南发布
    6月8日,第一届城市碳达峰碳中和高端战略研讨会暨济南双碳模拟器发布会召开,全国首个城市双碳模拟器——济南双碳模拟器正式发布。据介绍,济南双碳模拟器主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟等功能板块。模拟器的研发以济南市为应用目标,充分考虑了通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,服务各级政府、各行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。目前,济南双碳模拟器的大气二氧化碳模拟和同化反演子模块已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市双碳模拟器将对城市绿色低碳高质量发展提供重要数值模拟技术平台,能为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为我国众多城市实现碳达峰目标和碳中和愿景保驾护航。济南市科技局党组书记、局长陈西武介绍到,近年来,济南市紧紧围绕“双碳”工作目标,加快推动绿色低碳发展,成功申报国家碳监测评估试点城市,成为全国8个综合试点之一,率先开展了城市大气温室气体监测评估工作,为城市碳监测评估体系建设贡献了“济南案例”。中科院大气所在济南成立齐鲁中科碳中和研究院,为济南市聚集和培养了一批技术创新团队,为济南市碳排放监测和评估提供了技术支撑,特别是此次发布的济南双碳模拟器,必将推动相关绿色科技成果在济南落地转化,为济南市实现“双碳”目标奠定坚实基础。
  • 国内首个自主研发的地球模拟器正式投入使用
    p  记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。/pp  207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。/pp  据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。/pp  后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。/p
  • MTS 发布新模拟器——地下设施和管道的守护者
    p style="text-align: justify text-indent: 2em "全球知名高性能试验机和传感器供应商MTS系统公司于9月25日宣布,已开发出一种独特的土壤-结构相互作用模拟器,该模拟器可在地下基础设施的保护工作中发挥重要作用。/pp style="text-align: justify text-indent: 2em "这一全新的系统将首先亮相于于英国伯明翰大学的新国家地下基础设施(NBIF)中,用以研究土壤位移和地面移动对地下设施、管道以及地下结构的影响。沉降和变形常使土壤发生位移,形成地下空洞和不稳定断裂区域,由此而产生的压力对埋在地下的管道施加了巨大的作用力,造成地下管道失效、泄漏和破裂的潜在风险,如果破裂的管道是天然气管道或石油管道,那很有可能将对人类、野生动物和财产带来极其严重的危害。运用MTS的这一新模拟系统,伯明翰大学大学将能够更好地研究复杂的土体变形过程及其对地下结构的影响。/pp style="text-align: justify text-indent: 2em "这个巨大的模拟系统有一个5× 10米的可移动地板,可以埋在地下5米深的设计复杂的坑内。可移动地板的运动依靠50个MTS DuraGlide制动器提供动力,额外的地面制动器将可以控制土壤的运动,并在尺度模型和全尺度试验中模拟灰岩坑等地面位移。据悉,伯明翰大学计划在未来利用这一革命性的新系统来改进管道检测和评估的地球物理遥感技术。/pp style="text-align: justify text-indent: 2em "MTS总裁兼CEO Jeffrey Graves博士接受采访时表示:“基础设施老化是一个全球性的问题,用MTS这一新模拟系统来开发的土壤稳定解决方案将对保护看不见的地下基础设施大有裨益,让建筑物和整个人类赖以生存的环境更加安全。”他告诉记者,这一模拟系统是MTS在众多应用领域成功经验的高度结晶。融合了汽车设计和构造、地震研究、航空航天多通道控制等各个维度的先进技术手段。伯明翰大学土木工程系主任 Nigel Cassidy教授补充说:“MTS在液压试验机等领域积累了大量专业知识和经验,我们很高兴能与他们合作,共建这一创新性的新设施。”/p
  • 中国首发城市双碳模拟器,助力城市绿色低碳高质量发展
    记者8日从中国科学院大气物理研究所(中科院大气所)获悉,由该所主办、济南市科学技术局协办的“城市碳达峰碳中和高端战略研讨会”当天下午在山东济南举行,中国首个城市双碳模拟器在会上发布,将对城市绿色低碳高质量发展提供重要数值模拟技术平台,为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为中国众多城市实现碳达峰目标和碳中和愿景做出贡献。中科院大气所主办“城市碳达峰碳中和高端战略研讨会”并发布首个城市双碳模拟器。 当天首发的城市双碳模拟器,是由齐鲁中科碳中和研究院研究团队,基于中科院大气所牵头建立的地球系统数值模拟国家大科学装置——地球模拟器“寰”(EarthLab),以及配套的国际先进水平的地球模型系统研制而成,充分考虑到城市双碳功能定位和需求,对复杂系统进行顶层构建和精细化设计。“寰”是中国首个具有自主知识产权的专用地球系统数值模拟装置,它以地球系统各圈层数值模拟软件系统为核心,实现软、硬件最佳适配,具有建构数字“孪生”地球系统的能力,其综合技术水平位于世界前列。最新发布的城市双碳模拟器被称为1.0版系统,其主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟、碳达峰碳中和预测和路径优化、城市风光资源评估与模拟预测、双碳与气候效应以及跨界碳输送模拟和预测等功能板块。该模拟器的研发以济南市为应用目标,充分考虑通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,通过提供碳达峰与碳中和进程、碳源汇时空变化、碳污动态协同演进、未来双碳情景预测、双碳全景可视化等,可服务各级政府、各个行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。据了解,目前,济南版城市双碳模拟器的大气二氧化碳模拟和同化反演子模块,已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市碳达峰碳中和高端战略研讨会上,与会专家学者代表围绕城市尺度碳达峰碳中和科技支撑工作进行深入研讨,聚焦碳达峰碳中和最新科技进展,包括碳源汇宏观管理、城市和区域温室气体监测、碳模拟和同化反演技术方法等议题,针对城市碳达峰碳中和实施工作中的难点与挑战建言献策。
  • Bruel & Kjaer 5128型高频头和躯干模拟器问世
    5128型高频头和躯干模拟器问世全新“小绿人” Bruel & Kjaer的全新高频头和躯干模拟器已问世。 它解决了可听声范围内逼真、精确和可重复的声学测量需求。 为了满足越来越高的手机音频品质需求,以及耳机在通信及娱乐中的日益普及,我们的电信/音频团队开发了5128型高频头和躯干模拟器(HATS)。 高频HATS解决了可听声范围内逼真、精确和可重复的声学测量需求。人工头还提供大面积的硅胶围绕耳廓,以实现头戴式耳机的完美密封。高频HATS将音频性能测量的频率范围扩展到比目前市场上的头和躯干模拟器更高的频率范围。此外,人工头的结构更易接近内部组件。 高频HATS具有真实人耳结构的耳道,可在整个频率范围内实现正确的声阻抗并通过传感器电子数据表(TEDS)提供耳模拟器相关的校准信息。通过精确地复现人耳的音频响应,高频HATS可以前所未有的精确度提供高达20 kHz的音频测试。此外,口模拟器的性能也得到提高,可提供12 kHz及以上的均衡输出。这显著提高了智能设备及其配件的音频性能的主、客观评估之间的相关性,确保了新产品在市场上的先进地位,缩短了开发时间。 请访问Bruel & Kjaer官方网站,查询有关5128型高频头和躯干模拟器的详细信息。 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的官方网站。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团2016年销售额达13亿英镑,集团的4个业务板块在全球共有大约7,500名员工。
  • 钙钛矿太阳能电池研究的前8种需要仪器:在科学期刊上发表文章的全面指南(上)
    对于希望在重要科学期刊上发表的钙钛矿太阳能电池研究者来说,某些仪器对于生成高质量、可发表的数据至关重要。以下是列出这些关键仪器的表格:1. 钙钛矿太阳能电池研究的太阳光模拟器1.1 什么是太阳光模拟器?定义:太阳能模拟器是一种人工光源,模拟自然阳光的光谱功率分布、强度和其他特性。它主要用于需要受控且一致的阳光条件的研究和测试环境。类型:有各种类型的太阳能模拟器,如稳态和脉冲型,主要差异在于它们提供光的方式(持续或短暂爆发)。1.2 钙钛矿太阳能电池研究中的重要性测试和特性分析:太阳光模拟器在评估钙钛矿太阳能电池性能中至关重要。他们提供了一个受控环境来测量效率、稳定性和对不同光强的反应等参数。测试的标准化:使用太阳光模拟器确保了太阳能电池在标准化条件下进行测试,使不同研究和实验室之间的结果比较更容易。1.3 钙钛矿电池太阳光模拟器的关键特性光谱匹配:模拟器的光应尽可能接近太阳光谱,因为电池的性能可能会随着不同波长的变化而变化。辐照度水平:精确控制光强是必要的,因为它会影响电池的功率转换效率和其他指标。均匀性:光的均匀分布对于确保一致和可靠的测试结果至关重要。1.4 挑战复制真实的阳光:可复制阳光的所有方面,包括其可变性,是一项挑战。长期稳定性测试:模拟阳光长期暴露的效果需要模拟器的长时间和一致的运行。1.5 在钙钛矿太阳能电池开发中的应用材料优化:研究人员使用太阳能模拟器测试不同钙钛矿组成对阳光的反应。设备工程:这对于测试钙钛矿太阳能电池的整体设计和架构至关重要。寿命和退化研究:理解这些电池在模拟阳光条件下随时间的退化情况。1.6 未来方向增强的模拟技术:正在进行的进步集中在更好的光谱匹配和包括温度和湿度等环境因素。高通量筛选:在自动化测试设置中使用,以快速评估多种钙钛矿配方。总的来说,太阳能模拟器在钙钛矿太阳能电池研究领域是重要的工具,使科学家能够在模拟真实世界阳光暴露的受控条件下,精确评估和优化这些有前途的材料。2. 钙钛矿太阳能电池研究的I-V曲线跟踪仪在钙钛矿太阳能电池研究中应用I-V曲线跟踪仪是评估和理解这些光伏设备性能特性的基本方面。以下是概述:2.1. 何为I-V曲线跟踪仪?定义:I-V (电流-电压) 曲线跟踪仪是一个用来测量光伏电池电气特性的电子仪器。它绘制出在不同条件下电池上的电流 (I) 与电压 (V) 的关系。功能:它提供了一个图形表示,显示太阳能电池的电流输出如何随电压变化。2.2. 在钙钛矿太阳能电池研究中的重要性性能分析:I-V曲线跟踪仪在钙钛矿太阳能电池研究中的主要用途是分析电池的性能。这包括确定参数,如开路电压(Voc)、短路电流(Isc)、最大功率点和填充因子。效率计算:这些测量对于计算太阳能电池的总体效率至关重要。2.3. 与钙钛矿电池相关的关键特性灵敏度和准确性:由于钙钛矿材料的性质,需要高灵敏度和准确性。动态测试能力:鉴于钙钛矿太阳能电池可能的不稳定性和滞后效应,进行动态I-V测量的能力是需要的。2.4. 挑战和注意事项滞后现象:钙钛矿太阳能电池经常在其I-V曲线中表现出滞后,这可能使得测量和解释其性能变得复杂。环境因素:温度、湿度、光强对钙钛矿太阳能电池I-V特性的影响是一个活跃的研究领域。2.5. 在钙钛矿太阳能电池开发中的应用材料和工艺优化:研究人员使用I-V曲线跟踪仪来测试不同的制造方法、材料和电池结构如何影响电性能。退化研究:通过监测I-V特性随时间的变化,可以研究长期稳定性和在运行条件下的退化。2.6. 进步和未来方向自动化和高通量测试:I-V曲线跟踪技术的进步正在朝向自动化系统发展,允许对多个电池进行高通量测试,加快研发过程。与其他测量技术的整合:将I-V曲线跟踪与其他分析技术,如光致发光或阻抗谱,结合起来,以更全面地理解钙钛矿太阳能电池。在变化环境条件下的实时监控:增强I-V曲线跟踪仪以在变化的光强、温度和湿度等环境条件下监控实时性能,这对于理解钙钛矿太阳能电池在实际条件下的实用性能至关重要。总之,I-V曲线跟踪仪是钙钛矿太阳能电池研究中需要的工具。它为这些电池的电性能和效率提供了关键的见解,帮助研究人员优化材料和工艺,并理解钙钛矿太阳能电池在不同条件下的行为和稳定性。随着钙钛矿太阳能电池背后的技术的发展,I-V曲线跟踪仪在这个激动人心的研究领域中的能力和应用也将随之发展。3. 钙钛矿太阳能电池研究的量子效率测量系统当量子效率(QE)测量系统应用于钙钛矿太阳能电池研究时,是理解和优化这些新型光伏设备的光响应和总体效率的必要工具。以下是其角色和重要性的概述:3.1. 什么是量子效率测量系统?定义:量子效率测量系统是一种用来评估太阳能电池量子效率的仪器。量子效率指的是太阳能电池将光子转化为电子的能力,这对于确定其功率转换效率至关重要。类型:主要有两种 - 内部量子效率 (IQE) 和外部量子效率 (EQE) 测量系统。IQE考虑到电池吸收的光,而EQE测量转化为电子的入射光子的比例。3.2. 在钙钛矿太阳能电池研究中的重要性光响应分析:QE测量提供了关于钙钛矿太阳能电池在不同波长下如何有效地将光转化为电的见解。这对于理解电池在太阳光谱中的性能至关重要。材料和设计优化:通过分析QE数据,研究人员可以优化钙钛矿太阳能电池的材料成分、结构和设计,以提高其效率。3.3. 关键特性和考虑因素光谱范围:广泛的光谱范围对于评估电池在整个太阳光谱中的性能至关重要。准确性和灵敏度:由于钙钛矿电池可能由于其特殊的材料性质而表现出复杂的行为,因此高准确性和灵敏度至关重要。3.4. 钙钛矿电池的QE测量挑战不稳定性和滞后:钙钛矿材料可能表现出不稳定性和滞后效应,这可能影响QE测量的准确性和重复性。环境敏感性:钙钛矿太阳能电池对环境因素如湿度和温度敏感,这可能会影响QE测量。3.5. 在钙钛矿太阳能电池开发中的应用效率基准测试:QE测量是用于将钙钛矿太阳能电池的效率与其他光伏技术进行基准测试的标准方法。损失分析:它有助于识别和量化太阳能电池内部的损失机制,比如非辐射复合损失。层优化:研究人员使用QE数据来优化太阳能电池结构中的各个层,如吸收层、传输层和接触层,以实现更好的光吸收和电子传输。3.6. 进步和未来趋势整合新的测量技术:QE测量系统的进步包括整合其他技术,如时间分辨光致发光,以深入了解载流子的动态。高通量和原位测量:开发更快、更自动化的QE系统,用于高通量筛选材料,以及在制备过程中进行原位实时分析。环境条件模拟:增强QE测量系统的能力,以模拟各种环境条件,使得钙钛矿太阳能电池在实际运行环境中的性能评估更为真实。总之,量子效率测量系统是钙钛矿太阳能电池研究的基础工具。它提供了关于这些电池将光转化为电能的效率的关键见解,指导材料选择、电池设计和工艺优化。随着钙钛矿太阳能电池领域的不断发展,QE测量的作用在推动太阳能电池效率和性能的边界方面仍然至关重要。待续:钙钛矿太阳能电池前8需要仪器:科学期刊发表文章全面指南(中)
  • 美国NREL-研究人员应如何测量基于钙钛矿的单片多结太阳能电池的性能?
    【重点摘要】由国家可再生能源实验室(NREL)的研究团队发表如何从校准实验室的角度来衡量钙钛矿基单片多接面太阳能电池的性能。对钙钛矿多接面太阳能电池进行精确的标准测试条件(STC)测量至关重要,但具有挑战性。提出了优化的测量方法,能够实现精确的性能特征化。标准化、与生产相关的量化协议持续进步是实现商业可行性的关键。【研究背景】钙钛矿多接面太阳能电池(PVSK MJs)在与硅能源电池结合时已经取得了显著的功率转换效率提升,效率超过30%。这些高效率是在标准测试条件(STC)下报告的,以便进行比较。准确的多接面太阳能电池在STC下的性能测量至关重要,但比单接面器件更加复杂,需要进行光谱模拟并限制每个子电池。需要谨慎的方法,因为快捷方式可能导致误导性的效率评级。【研究结果】提出的钙钛矿多接面太阳能电池的优化测量方法能够在标准测试条件下准确地表征电流-电压曲线和效率评级。通过调整模拟光谱和平衡每个子电池的电流,可以避免与快捷方法相比的误导性能评级。正在开发的高通量测量程序展示了减少测试时间一个数量级而不影响准确性。进一步改进加速测试协议并在研究团队间标准化方法可以促进持续的效率提升。在标准条件下准确评估效率仍然对评估新型多接面结构中的损失机制至关重要。【研究方法】准确测量PVSK MJ性能需要具有光谱可调的太阳模拟器来调节照射在器件上的光谱。测量过程包括确定每个子电池的光谱响应,调整模拟器光谱以实现电流匹配,并在STC下测量IV曲线和功率输出。讨论了在无法使用光谱模拟器时的常见错误和准确性评估方法。【结论】准确的标准测试条件(STC)下的钙钛矿基多接面太阳能电池测量需要具有光谱可调的太阳模拟器。优化的定量方法包括确定每个子电池的光谱响应,调整模拟器光谱以实现电流匹配,并在STC下精确测量功率输出。随着钙钛矿子电池的串联太阳能电池快速发展,防止误导性效率评级的需求使准确的标准测试量化变得更加迫切。最近更新的IEC 60904-1-1要求对于多接面测量中使用的模拟器提出了严格的规范,包括可调输出光谱范围为300-1700nm,符合AM1.5G标准,平均光谱不匹配率低于6%(A++等级)。这种最先进的设备克服了以往双源系统的可靠性问题。Enlitech的SS-PST利用创新的单氙弧灯基础的光谱控制,独特地满足这些新一代标准。Enlitech SS-PST在400-1100nm波长范围内的光谱偏差为11.2%,在300-1200nm范围内为13.1%。300-1700nm的输出光谱可以满足AM1.5G光谱的要求,平均光谱不匹配率低于6%(IEC 60904-9:2020)。输出光谱可调。校准设施采用这些先进工具有望有助于保持使用校准设备的各组报告性能值之间的一致性。朝着负担得起且标准化的定量技术取得进展是促进高效率多接面概念转化为具有商业竞争力的光伏产品的重要基础。可靠的准确测量消除了最终制造规模扩大和部署具有超越传统技术效率潜力的钙钛矿串联结构的障碍。Figure S1.左图:随着钙钛矿/Si串联电池顶部钙钛矿结构的辐照变化,VMPP、IMPP和ISC的变化。右图:二接面电池的示意IV曲线及其组成部分结构,其中顶部结构限制了电流。图S2. 左图:双结钙钛矿/钙钛矿电池的光电流-电压曲线。右图:顶部钙钛矿结构的辐照变化与双结钙钛矿/钙钛矿串联电池的VMPP、IMPP和ISC的关系。
  • Fluxim发布多通道太阳能电池稳定性测量系统新品
    多通道太阳能电池稳定性测试系统整合了AAA级稳态LED太阳光模拟器和56通道的独立测试单元,配合光强稳定反馈控制系统和光谱调节功能,同时密闭的腔室可对样品的温度、湿度等进行控制,达到ISOS测试要求,从而对太阳能电池的长时间稳定性进行准确的测量与分析。 主要特点: * 集成了A++AA+级/AAA级稳态LED太阳光模拟器; * 寿命超过10000小时的LED灯; * A++级/A级光谱,并可根据应用调节; * 光强稳定性反馈控制系统; * 多达56通道的多路数据采集系统; * 高精度JV和稳定性测量; * 最大功率点追踪,Voc和Jsc每个通道独立选择; * 扫描电压±10V; * 最大电路50mA/通道; * 温度控制范围RT~150℃; * 测试环境控制(氧气、湿度度);创新点:1)多达56通道测试;2)整合3A级LED太阳光模拟器3)温度、湿度和光照强度控制4)长时间太阳能电池稳定性测试5)LED灯泡长寿命,A级或A+级光谱6)自动化程序控制多通道太阳能电池稳定性测量系统
  • 为太阳能行业提供专业的光谱测量方案——海洋光学圆满参加SNEC展
    2013年5月14日至16日,SNEC第七届(2013)国际太阳能产业及光伏工程(上海)展览会暨论坛圆满举办。海洋光学在展会上首次展示了其为太阳能行业提供的专业的光谱测量方案,包括薄膜测量、透反射率测量和太阳能模拟器测量,引起了高度关注。全新的NanoCalc光学膜厚测量系统解决方案,可以对各类型的太阳能系统生产中的薄膜厚度进行测量。便携、灵活、快速的透反射率检测方案,搭配多种采样附件,在镜片、滤光片、薄膜等多个行业都有广泛的应用。计量级光学测量系统RaySphere,用以测量太阳光模拟器和其他辐射源从紫外线到近红外(350-1700nm)的绝对辐射。太阳能作为已知最为清洁且几乎取之不尽用之不竭的新型能源,是未来科技的重点发展方向。海洋光学致力于为太阳能行业提供专业、便捷的光谱测量方案,为其健康发展&ldquo 保驾护航&rdquo 。
  • 2023 Nano-Micro (IF:26.6)阳军亮團隊通过晶化和定向调制提高刮刀法钙钛矿太阳能
    在太阳能技术不断发展的领域中,钙钛矿太阳能电池(PSCs)因其出色的光电特性而成为一个有前途的竞争者。然而,挑战在于开发可商业化的可扩展制造技术。在一项重大突破中,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队引入了一种新型添加剂——甲胺盐酸盐(MACl),以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。这种创新的方法极大地改善了钙钛矿薄膜的质量,使其具有令人瞩目的23.14%的转换效率(PCE)。钙钛矿太阳能电池的潜力:钙钛矿太阳能电池因其高吸收系数、长载流子扩散长度和低陷阱密度而成为密集研究的对象。这些特性使得PSCs的认证PCE达到25.7%。然而,大多数高效率的PSCs是通过实验室规模的旋涂沉积制备的。虽然这种方法在受控实验室环境中被证明是有效的,但对于工业应用而言,它不具备可扩展性。因此,发展可扩展的大面积制造技术对于PSCs的商业化至关重要。可扩展性的挑战:PSCs可扩展的两步序列沉积制造的电池的转换效率远远落后于最先进的旋涂法制备的电池。两步序列沉积工艺涉及有机盐与铅卤化物反应,绕过了钙钛矿薄膜在一步过程中不可控的成核过程。然而,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究重点就是解决这种性能差异。甲胺盐酸盐(MACl)的作用:该研究团队引入MACl以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。MACl在改善钙钛矿薄膜质量方面起着关键作用。它增加了晶粒尺寸和结晶度,从而降低了陷阱密度并抑制了非辐射复合。非辐射复合是太阳能电池中的一个重要损耗机制,吸收光能转化为热能而不是电能。通过抑制非辐射复合,MACl显著提高了太阳能电池的效率。此外,MACl促进了钙钛矿薄膜(100)面向上的优先定向。这种定向更有利于载流子的传输和收集,从而显著提高了填充因子。填充因子是太阳能电池的一个关键参数,代表电池的最大可获得功率,并指示电池的质量。填充因子越高,太阳能电池的效率越高。令人印象深刻的结果:引入MACl导致基于ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag结构的PSCs取得了23.14%的最佳转换效率和优异的长期稳定性。该结构是PSCs的常见架构,其中ITO/SnO2是电子传输层,FA1-xMAxPb(I1-yBry)3是钙钛矿吸收层,Spiro-OMeTAD是空穴传输层,Ag是电极。该研究团队还分别实现了1.03 cm2的PSC和10.93 cm2的小型模块的卓越PCE,分别达到21.20%和17.54%。这些结果代表了大规模两步序列沉积高性能PSCs在实际应用中的重大进展。研究的影响:中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究在钙钛矿太阳能电池的可扩展制造技术发展中迈出了重要一步。引入MACl来调节钙钛矿薄膜的晶化和定向被证明是一个改变游戏规则的举措,极大地改善了钙钛矿薄膜的质量,并显著提高了转换效率。此外,该研究团队采用了Enlitech光焱科技的SS-X太阳光模拟器来测试太阳能电池的性能。SS-X模拟器采用氙气短弧灯作为宽带光源,具备A+级别的光谱模拟能力,并提供多种光斑面积选择,范围从50mm到220mm。该模拟器具有独家专利的自动变光强功能,精度高达1%。它还具备可变光谱功能,适用于测试叠层太阳能电池。使用先进的等离子沉积技术制造的AM1.5G滤光片确保光谱精度高,并具有长使用寿命。SS-X模拟器的优越光谱等级使其比其他模拟器更适合表征各种新型太阳能电池,例如低带隙有机太阳能电池和钙钛矿/Si串联太阳能电池。SS-X模拟器能够提供稳定且连续的照射强度,避免由于被测试太阳能电池的响应时间较慢而引起的表征误差。两步刮刀法制备的钙钛矿薄膜的表征。 a. 湿态原始钙钛矿薄膜的XRD图谱。b. 热退火后的钙钛矿薄膜的XRD图谱。c. 稳态光致发光(PL)发射光谱。d. 时间分辨PL衰减曲线。使用不同MACl比例制备的两步刮刀法钙钛矿薄膜的PSCs的光伏性能和光电特性。a. 典型PSCs的J-V曲线和相应参数。b. PSCs的Voc光强依赖关系。c. PSCs的莫特-肖特基图谱。d. 填充因子限制包括非辐射损耗(蓝色区域)和传输损耗(粉色区域)。e. 钙钛矿薄膜的空间电荷限流(SCLC)测量。f. EIS的Nyquist图谱。Performance of OAI-modified PSCs and mini-module. a. J-V曲线。b. 在最大功率点(MPP)测量的稳定功率输出。c. 在约30%相对湿度的环境条件下,未封装的OAI改性器件的长期稳定性测量。d. 1.03 cm2 PSCs和10.93 cm2 mini-module的J-V曲线。插图为1.03 cm2 PSCs和10.93 cm2 mini-module的图片。
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 尚德实验室获北京鉴衡认证中心太阳能光伏产品金太阳认证认可
    2010年6月7日电 尚德电力控股有限公司今天宣布, 尚德光伏产品检验实验室近日参加并通过北京鉴衡认证中心授权的总共27个测试项目,涵盖 IEC61215:2005全部18个测试项目、IEC 61730-2:2004 9个测试项目(除燃烧实验外的全部组件测试项目),由此而获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可。北京鉴衡认证中心万琳副主任说:“尚德公司是国际领先的光伏龙头企业,产品在国内外有着广泛的应用和良好的声誉。鉴衡认证中心是中国光伏产品认证的权威机构和倡导者,通过认可企业的实验室,可以极大地帮助企业缩短认证周期,节省认证费用 同时也将促进双方在产品质量保证、检测技术交流、实验室管理等领域的广泛合作,达到共同促进光伏产业健康可持续发展的目的。”  尚德公司副总裁张光春先生表示:“我们非常高兴能成为鉴衡认证中心认可工厂实验室,鉴衡认证中心是国内光伏产品认证和检测的领跑者,此次合作,有助于促进我们实验室的不断进步,同时也缩短了产品的认证周期。一直以来,尚德始终把产品质量放在首位,对实验室的建设非常重视,投入也很大,并在今年2月获得了中国合格评定国家认可委员会(CNAS)的国家实验室认可,成为国内得到认可项目最多、最全的企业光伏实验室,这标志着尚德光伏产品检验实验室具备了世界一流的管理水平和检测技术能力,确保了实验数据的准确性、可靠性和公正性。我们将不断加强和扩大与鉴衡认证及其他一些著名的国际认证机构合作,确保把具备世界一流品质的产品交给我们每一个客户。”  尚德光伏产品检验实验室致力于开展与国内外知名测试认证机构的合作,在2009年06月,获得了 UL 授予的中国光伏行业第一个 WTDP(Witness test Data Program)证书 在2009年12月,获得 VDE 授予的 TDAP(Test Data Acceptance Program)证书,成为亚洲首个获得 VDE 认可的目击光伏测试实验室,并在2010年2月荣获中国合格评定国家认可委员会(CNAS)国家实验室认可证书。此次获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可工厂实验室,意味着尚德生产的新型号组件产品在国内外市场的认证周期将会大幅度的缩减,这有助于尚德的组件更快的投放市场,并在竞争中获得先机。  关于鉴衡认证中心  鉴衡认证中心(China General Certification Center)是由中国家认证认可监督管理委员会(CNCA)2003年批准成立,由中国计量科学研究院组建,致力于可再生能源产品认证、检测等技术服务的专业机构,是我国第一家开展太阳能光伏、光热产品认证的机构,是目前我国光伏行业制订认证技术规范最多、技术能力最强、认证范围覆盖领域最广的专业可再生能源认证机构,也是唯一合法拥有“金太阳”认证标志知识产权的认证机构。  关于尚德电力控股有限公司  尚德电力控股有限公司是全球领先的太阳能光伏企业,公司专业从事晶体硅太阳能电池、组件,硅薄膜太阳能电池、光伏发电系统和光伏建筑一体化(BIPV)产品的研发、制造与销售。2009年,尚德电力实现晶体硅太阳能电池、组件产能达1100兆瓦,全年组件出货量达704兆瓦,是全球最大的晶体硅太阳能电池、组件生产商。其自主设计、研发、生产和销售高质、高产、价优、环保的太阳能产品,被广泛应用于住宅、商用建筑、工业和公共设施等领域。尚德电力在全球设有三大区域总部,分别位于中国、瑞士和旧金山,在中国拥有无锡、上海、洛阳、青海四大生产基地。尚德电力积极致力于改善人类的生活环境,并通过研发先进的太阳能解决方案实现可持续性发展。  尚德光伏产品检验实验室是尚德公司下设的专业从事太阳能光伏组件检测的独立测试机构,严格按照 ISO/IEC17025:2005《检测和校准实验室能力的通用要求》(CNAS-CL01《检测和校准实验室能力认可准则》)的要求,逐步建立了完善的质量管理体系,规范管理和运作。经过不断努力,已经成长为世界一流,国内最大,技术顶尖的光伏组件检测实验室。实验室分室内和室外两部分,室内面积1800平方米,室外面积7000平方米,下设性能检测室、安全检测室和环境检测室三个专业检测室,引进国内外先进仪器设备30余台,拥有包括脉冲及稳态太阳模拟器、多台步入式环境实验箱、机械载荷、冰雹测试机,EL(电致发光)及高精度红外相机等尖端检测设备,能够检测和评估光伏组件质量和性能方面的所有指标。同时拥有一批高素质的、富有经验和专业知识背景的技朮团队。
  • UCLA杨扬教授团队以定向成核机制达到钙钛矿太阳能电池效能至25.4%!
    加州大学洛杉矶分校(UCLA)的杨扬教授领导的研究团队在太阳能领域取得了重大进展。他们专注于开发高效光伏材料甲酰胺铅碘(FAPbI3)钙钛矿太阳能电池,研究结果於2023年6月21日被发表在《NATURE》。尽管在室温下结晶过程中存在不希望出现的黄色相,但该团队开发出一种定向成核机制来避免这些相并提高装置性能。他们的创新方法使得装置达到了25.4%的功率转换效率(认证为25.0%)。更令人惊艳的是,该模组在27.83平方公分的面积上,达到了21.4%的认证开路效率。该研究使用Enlitech的QE-R量子效率测量系统和SS-X系列太阳光模拟器进行的效率量测。这些精准且快速的量测设备工具在研究团队的成功中起到了关键作用,提供了整个研究过程中准确且可靠的数据。该研究还包括对钙钛矿薄膜结晶过程以及其光学性质的详细研究。该团队使用了各种方法来监测和分析这些过程,从而对材料的行为有了全面的理解。
  • 河南大学宋金生团队通过宏环封装策略实现四噻吩非全融合型有机太阳能电池15.1%高效率
    【重点摘要】提出了宏环封装策略,通过在四噻吩外围导入融合烷基侧链实现。将该策略应用于非全融合四噻吩类受体材料。实现了高达15.1%的转化效率。【宏环封装策略实现高效有机太阳能电池】有机光伏一直被视为下一代可再生能源的重要候选技术。但是其光电转换效率一直无法达到与无机光伏装置媲美的水平。非全融合四噻吩类受体材料被认为是实现高效有机太阳能电池的一个有前景的方法。【宏环结构限制分子构象,提升分子堆积效率】在美国伯明翰南方研究院的最新研究中,通过在四噻吩外围导入环烷基侧链,形成宏环封装结构。这种设计可以锁定中央分子部分的构象,生成平面分子骨架,有利于分子的高效堆积。【对照组件构象扭曲,分子堆积效率降低】相比之下,没有宏环封装限制的对照分子则出现了扭曲变形的构象。这种构象变化会降低分子堆积的有效性,进而影响相关器件的性能。【噻吩宏环受体器件效率达15.1%】基于四噻吩宏环受体R4T-1的有机太阳能电池成功实现了15.1%的高效率。【宏环封装策略指明下一步优化方向】这项研究为构建高性能有机太阳能电池提供了新的思路。随着在分子设计和器件工程方面的持续优化,有机太阳能电池20%效率的目标指日可待。研究使用光焱科技太阳光模拟器SS系列 与量子效率测试系统 QE-R来协助量测。通过在简单的四噻吩上进行宏环封装设计出非全融合受体R4T-1,该结构实现了构象的单一性,消除了分子中心的电子跨效应,并保证了高效电荷传输通道的形成。因此,实现了高达15.10%的转化效率,短路电流密度显著提高至25.48 mA/cm2。图S7. JD40:4T-5和JD40:R4T-1的J1/2-V曲线,(a)空穴型器件和(b)电子型器件。
  • 藉由以GDA和SnO2形成的分子桥接触的材料介面达成高效且稳定的太阳能电池
    █ 重点摘要最近,陕西师范大学向万春团队利用光焱科技公司的测试设备,开发出以甘蓝胺(GDA)埋入SnO2/钙钛矿界面上分子桥优化钙钛矿太阳电池。该研究结合先进的测试设备与材料开发策略,实现了电池转换效率从22.6%提升到24.7%,并显著改善了稳定性。1. 使用分子改性剂甘蓝胺(GDA)在SnO2/钙钛矿的埋底界面上构建分子桥,从而产生优异的界面接触。2. 通过GDA和SnO2之间的强烈相互作用实现的,明显调节能级。此外,GDA可以调节钙钛矿晶体的生长,产生晶粒尺寸增大且无针孔的钙钛矿薄膜,缺陷密度显着降低。3. 经过 GDA 修改的钙钛矿太阳电池表现出开路电压(接近1.2V)和填充因子的显着改善,从而使功率转换效率从 22.6% 提高到 24.7%。此外,GDA 器件在最大功率点和 85°C 热量下的稳定性均优于对照器件。█ 研究背景钙钛矿太阳能电池因具理论上可达25%的高转换效率,受到广泛关注,但钙钛矿材料易受温湿度影响降解,SnO2与钙钛矿界面难以实现有效电荷传输,使实际效率较预期低,制约了商业化进程。如何提升钙钛矿太阳电池转换效率和长期稳定性是当前研究热点。充分发挥精密量测设备的优势,开发高性能钙钛矿材料与界面工程技术,实现电池效率和稳定性的同步提升,是目前的研究方向。█ 研究成果陕西师范大学向万春团队设计开发出甘蓝胺(GDA)分子材料,优化SnO2与钙钛矿界面。X射线衍射分析表明,GDA调控钙钛矿晶粒生长,生成高质量钙钛矿薄膜,增加晶粒尺寸,降低缺陷密度。此外,GDA 可以调节钙钛矿的生长以形成高质量的薄膜,从而减少缺陷和相关的非辐射电荷复合。因此,经过GDA修饰的 PSC 表现出接近1.2 V的令人印象深刻的VOC和 24.70%的效率,高于对照器件的22.60%和离子类似物醋酸胍(GAAc)修饰的PSC的24.22%,同时迟滞现象减少最后,与对照和GAAc修改的器件相比,GDA 修改也大大提高了最大功率点 (MPP)跟踪和85 °C热量下的器件稳定性。该研究成果发表在《Angewandte Chemie International Edition》█ 研究方法采用设备本研究采用光焱科技AM1.5G太阳光模拟器(AAA class solar simulator)以及Si标准参考电池SRC2020(NREL-certified silicon cell ),量子效率量测设备 QE-R。█ 结果与讨论要点1:分子与SnO2和钙钛矿的桥接作用研究团队选择GDA作为钙钛矿界面改性剂的原因有两方面:其一,GDA具有高热稳定性和良好的溶解性,在界面形成和沉积过程中能够提供稳定的支撑。其二,GDA分子含有羧基和GA基团,可以与SnO2和钙钛矿形成强的配位作用,从而在两者之间建立桥梁,改善界面接触,有助于提高载流子传输效率和减少电荷复合。研究团队通过实验和密度泛函理论计算证明了GDA与SnO2之间的化学相互作用,主要源于GDA中的羧基与SnO2表面的欠配位Sn4+结合。傅里叶变换红外光谱(FTIR)测量也支持了这一观点,显示出GDA分子与SnO2层之间的相互作用。要点2:GDA对SnO2层的改性研究团队使用顶视扫描电子显微镜(SEM)和原子力显微镜(AFM)表征了GDA对SnO2层形貌和粗糙度的影响。GDA修饰导致SnO2表面的纳米粒子层变得更加均匀和连续,粗糙度减小,有利于钙钛矿薄膜的均匀成核和结晶,从而提高界面电荷转移效率。通过紫外光电子能谱(UPS)测量,研究团队观察到经过GDA修饰的SnO2能级发生改变,费米能级上升,有利于界面电荷传输。这些结果进一步表明,GDA修饰影响了SnO2的能级结构,从而改善了PSC界面性能。要点3:下界面改性对钙钛矿层的影响研究团队研究了经过GDA改性和未经GDA改性的SnO2层上钙钛矿层的性能。通过SEM和XRD表征,研究团队发现GDA修饰有助于形成更平坦和致密的钙钛矿薄膜,提高了结晶度。这对于减少电荷缺陷和提高电荷传输效率非常重要。要点4:下界面改性对钙钛矿薄膜结晶的影响通过原位XRD测量,研究团队研究了GDA修饰对钙钛矿薄膜结晶过程的影响。结果显示,GDA改性影响了中间相的形成,导致晶格膨胀。此外,研究团队发现GDA修饰还影响了钙钛矿薄膜的晶粒尺寸和结晶动力学,进一步改善了薄膜质量。要点5:器件性能与稳定性研究团队制备了经过GDA修饰和未经GDA修饰的PSC,并评估了它们的性能和稳定性。结果显示,经过GDA修饰的器件在光电转换效率(PCE)和稳定性方面都表现出优势。GDA改性有助于抑制非辐射电荷复合,提高载流子提取效率,并减少界面陷阱密度。这导致了更高的PCE和更好的稳定性。█ 结论该研究运用精密的光伏测试设备,开发出甘蓝胺分子材料修饰SnO2/钙钛矿界面,显著提升了钙钛矿太阳电池的转换效率和长期稳定性。研究证明先进测试设备的应用为材料开发提供了有力支撐,也为实现高效稳定钙钛矿太阳电池的低成本批量生产提出了新的设计思路。期待不同领域的产学研单位通力合作,加快高效钙钛矿太阳电池的实际应用进程。
  • Nano-Micro Letters陈棋&陈煜改进空穴传输层的胶凝性能提高鈣鈦礦太阳能电池的性能
    顶尖团队的选择在2023年7月10日出版的《纳米-微米快报》期刊上,北京理工大学材料科学与工程学院的研究人员在陈棋教授和陈煜教授的带领下,发表了一项有关提高钙钛矿太阳能电池稳定性的研究。该研究集中于通过改进空穴传输层的胶凝性能来提高太阳能电池的性能和寿命。这项研究提出了一种新的方法,通过使用对苯二甲酸(TA)修饰spiro-OMeTAD空穴传输层(HTL),形成凝胶状结构,从而提高钙钛矿太阳能电池(PSCs)的性能和稳定性。将TA添加到spiro-OMeTAD中会形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。HTL的凝胶化有效地提高了所得HTL的紧密性,并防止水分和氧气的渗透。此外,TA能够使钙钛矿缺陷被钝化,并促进从钙钛矿层到HTL的电荷传输。研究团队制备的基于凝胶化HTL的优化PSCs表现出PCE (22.52%)的高的转换效率和良好的器件稳定性。凝胶化的HTL还可以防止LiTFSI盐的聚集,并在潮湿条件下保持高导电性。研究团队开发的凝胶化HTL的PSCs,在25°C下连续照射1000小时后仍保持其初始PCE的85%,在25°C环境空气中连续照射2500小时后保持其初始PCE的92%。凝胶化HTL策略也应用于PTAA,并观察到类似的湿度稳定性改进。这些研究团队获得的发现为改进基于spiro-OMeTAD的HTL以实现高效稳定的PSCs提供了简单且有前景的策略。空穴传输层(HTL)。HTL是一种薄膜,有助于从钙钛矿层中提取正电荷(空穴)到电极。常用的HTL材料是spiro-OMeTAD,它具有良好的空穴迁移率和与钙钛矿材料的兼容性。然而,spiro-OMeTAD也存在一些缺点,如其原始状态下的导电性差和对湿度的敏感性。为了克服这些问题,通常会在spiro-OMeTAD中掺杂锂盐,例如LiTFSI,以提高其导电性并降低其能级。然而,掺杂锂盐也会引入新的问题,如由于LiTFSI的吸湿性导致HTL和钙钛矿层的降解,以及由于Li+离子的迁移导致J-V滞后现象的形成。因此,研究团队一直在探索各种改善HTL性能和稳定性的策略,例如开发新的HTL材料,使用替代掺杂剂,以及优化掺杂方法。在本文中,研究团队将回顾该领域最近的一些进展,并讨论其优点和局限性。材料:本文中的实验采用商业获得并按原样使用的材料,例如碘化铯(CsI,99.9%,Sigma-Aldrich)、碘化铅(PbI2,Xi’an Polymer Light Technology)、氯化甲基铵(MACl,Xi’an Polymer Light Technology)以及用于电荷传输层的材料(SnO2(15 wt%胶体分散液,Alfa)、2,2′,7,7′-四[N,N-二-4-甲氧基苯基]胺基]-9,9′-二苯并螺[5,5′-二(苯并)二噁咯](spiro-OMeTAD,Xi’an Polymer Light Technology)、三氟甲磺酰亚胺锂盐(LiTFSI,99.95%,Sigma-Aldrich)、硫辛酸(TA,99%,Sigma-Aldrich))。使用的溶剂包括氯苯(CB,Sigma-Aldrich,99.9%)、N,N-二甲基甲酰胺(DMF,99.99%,Sigma-Aldrich)、二甲基亚砜(DMSO,99.5%,Sigma-Aldrich)、异丙醇(99.99%,Sigma-Aldrich)、乙腈(ACN,99.95%,Sigma-Aldrich)和tBP(99.9%,Sigma-Aldrich)。此外,氟甲酸铵(FAI,Dyesol)在购买后进行了进一步纯化。器件制备:研究团队将ITO基底用超纯水、丙酮和乙醇在超声系统中清洗30分钟。然后,用N2气干燥并经过UV-O3处理30分钟,以提高其润湿性。在基底上以4000 rpm的速度旋涂一层致密的SnO2层,并在150°C下热处理30分钟。在沉积钙钛矿薄膜之前,基底暴露于紫外光10分钟。对于PbI2前体,研究团队将PbI2和CsI溶解在DMF:DMSO的混合溶剂中,并在70°C下搅拌5小时。有机阳离子前体通过将FAI和MACl溶解在异丙醇中制备。两个溶液均经过0.22 μm的PTFE过滤器过滤。采用两步法制备钙钛矿薄膜:首先旋涂PbI2前体,然后是有机阳离子前体。在150°C下热处理10分钟后,旋涂空穴传输层(HTL)在钙钛矿薄膜上。使用了两种类型的HTL前体。对于参考HTL,使用了CB中的spiro-OMeTAD、TBP和LiTFSI的溶液。对于目标HTL,将TA加入到参考HTL溶液中。经过过夜氧化后,沉积了100 nm厚的Au膜作为背接触。使用金属阴影掩模定义了器件面积为0.0805 cm2。表征:研究团队使用Anton Paar仪器(Physica MCR 301,德国)进行了poly(TA)的流变学测量,采用平行板几何形状。应变扫描测量在25°C下进行,角应变范围为0.1至2500%,频率为0.5 Hz。温度扫描测量在25至100°C之间进行,应变为1%,频率为0.5 Hz。傅里叶变换红外光谱(FTIR)采用Magna-IR 750(Nicolet,美国)进行。采用Bruker AVANCE III 300 MHz NMR Spectrometer获得1H NMR光谱。使用Al Kα辐射采集了XPS数据的Axis Ultra XPS光谱仪(Kratos,英国)。使用Hitachi Regulus 8230进行了SEM成像。使用带有PRUM-TNIR-D-10探头的Bruker Dimension Icon IR进行了纳米FTIR实验。ToF–SIMS测量采用PHI NanoTOF II仪器(ULVAC-PHI,Inc.)与30 keV Bi+脉冲主离子束。使用UV–vis漫反射光谱仪(UV–vis DRS,日本Hitachi UH4150)获取了UV–vis吸收光谱。使用具有470 nm脉冲激光和基于galvo的扫描仪的激光扫描共焦显微镜(Enlitech,SPCM-1000)用于2D PL映射。使用带有Cu Kα辐射的Bruker D8 Advanced获得XRD数据。使用FLS1000(Edinburgh Instruments Ltd)和450 W的Xe灯进行了稳态PL和TRPL测量。使用源表(Keithley 2400)和AM1.5G光照从1000 W m-2太阳模拟器(SS-F5-3A,Enlitech)评估了PSC的光伏性能。J-V扫描以50 mV s-1的扫描速度在正向和反向方向进行。使用Enli Technology(中国台湾)EQE测量系统记录EQE曲线。校准的硅二极管用作EQE测量的参考。结果和讨论空穴传输层(HTL)的凝胶化TA是一种天然存在的小分子,具有疏水的1,2-二硫代璘和烷基链基团,以及亲水的羧酸基团。TA的结构包括动态共价二硫化键和非共价氢键,使其成为形成稳健连续网络的潜在交联剂。当TA溶解在氯苯中,并加入LiTFSI,它会发生凝胶化,形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。研究团队进行了流变学测量,研究了凝胶化行为。应变扫描测试显示,在约340%的振荡应变幅值处,凝胶向溶胶转变。在这个临界应变以下,凝胶网络保持稳定,但在存储模量(G’)和损耗模量(G")交叉点附近的340%处发生失效。通过流变分析观察到,凝胶在50°C以上发生可逆的固态到液态转变。这种超分子聚合物在温度升高或被水稀释时会转变为黏稠的聚合物溶液。通过增加单体溶液的浓度或加入Fe3+,Pb2+,Zn2+和Ca2+等金属离子,可以提高凝胶的转变温度。FTIR分析证实了TA与LiTFSI之间的强相互作用,导致交联结构的形成。TA的添加促进了空穴传输层(HTL)前体溶液中凝胶的形成。如甲酸或乙醇等溶剂可以溶解凝胶,使研究团队能够在钙钛矿上制备HTL薄膜。与参考HTL相比,带有TA的凝胶HTL表现出了改善的薄膜形貌。SEM和AFM分析显示凝胶HTL薄膜具有均匀且致密的表面,表明TA在提高薄膜质量方面起到了作用。AFM-IR确认了凝胶HTL薄膜中TA的空间分布。a TA 交联聚合的示意图。 b TA聚合的图片。 c 应变扫描时聚 (TA) 凝胶的储能模量 (G’) 和损耗模量 (G")。 d TA(红色)、LiTFSI 和 TA 混合物(蓝色)、LiTFSI(黄色)的 FTIR 光谱。 e spiro-OMeTAD 和掺杂 TA 薄膜的 spiro-OMeTAD 的扫描电子显微镜 (SEM) 图像。 f 目标薄膜的 AFM 图像和 g 相应的纳米 FTIR 图像。红外频率为 1693 cm–1 的纳米 FTIR(与 TA 的 C&thinsp =&thinsp O 伸缩吸收共振)提高湿度稳定性研究团队使用ToF-SIMS映射评估了凝胶HTL薄膜中添加TA的成分分布。观察到在高湿度条件下,参考薄膜表面明显出现LiTFSI的聚集,而带有凝胶HTL的目标薄膜显示出减轻的LiTFSI聚集。这表明在高湿度条件下,凝胶HTL更加坚固。发现TA与LiTFSI之间的相互作用能够延缓Li的聚集。AFM-IR和深度剖面ToF-SIMS测量进一步证实了凝胶化在防止LiTFSI聚集和迁移方面的有效性。还研究了凝胶HTL策略对钙钛矿薄膜湿度稳定性的影响。将覆有HTL的钙钛矿薄膜在湿润空气中老化,并监测UV-vis吸收光谱。参考薄膜在暴露于湿润空气后显示出吸光度的急剧下降,而目标薄膜显示出微不足道的变化。XRD测量证实参考薄膜分解为PbI2和光不活性的δ相,而目标薄膜显示出延缓的α向δ相转变。经过老化的薄膜的PL映射显示,与参考薄膜相比,目标薄膜具有更窄的波长范围,表明其稳定性更好。凝胶HTL策略也适用于PTAA,观察到了类似的湿度稳定性改进。接触角测量表明,与参考薄膜相比,凝胶HTL薄膜的吸湿性降低。这些发现表明,使用凝胶HTL覆盖的钙钛矿薄膜的湿度稳定性得到了显著改善。a 参考膜和 b 目标膜在 25°C、85-90% 的高相对湿度下老化 200 小时之前和之后的 Li+ 的 2D ToF-SIMS 元素图。 c 参考钙钛矿薄膜和目标钙钛矿薄膜在 700–850 nm 处随时间变化的紫外可见吸收光谱。 d 参考膜和目标膜在 750 nm 处的归一化吸收。参考文献的 e PL 峰位置图和统计图。 f 目标薄膜在 25°C、85–90% 的高相对湿度下老化 500 小时之前和之后设备性能和稳定性的提高:研究团队研究了凝胶空穴传输层(HTL)对器件的光电性能和稳定性的影响。使用ITO/SnO2/钙钛矿/ spiro-OMeTAD(TA)/Au的n-i-p型平面太阳能电池结构来评估光伏性能。使用研究团队开发的凝胶HTL的目标器件显示出较高的平均光电转换效率(PCE),为20.22%,而参考器件为18.11%。它们还显示出改善的重复性和HTL薄膜的致密性。最佳目标器件的PCE达到22.52%,其VOC、JSC和FF的值较参考器件更高。研究团队开发的目标器件的稳定性显著提高,在暴露于环境大气条件(RH约30-60%)下2500小时后,保留了92%的初始PCE。相比之下,参考器件在1000小时后只保留了60%。未封装的目标器件在高湿度(85-90%)下也显示出良好的稳定性,在1000小时后保留了85%,而参考器件在530小时后只保留了75%。此外,目标器件在持续LED照明1000小时后保持了超过85%的初始PCE,而参考器件仅保持约40%。这些结果证实了凝胶HTL策略显著改善了太阳能电池的长期稳定性。a PSC 的结构以及钙钛矿和凝胶 HTL 之间的界面。 b 参考设备和目标设备的 PCE 统计分布。孔径面积为 0.0805&thinsp cm2 的最佳性能目标器件的 c J-V 曲线。 d 参考器件和目标器件的 EQE 曲线及其综合 JSC 曲线。 e 最大功率点附近偏置电压 (1.00 V) 对应的稳定功率输出数据。在 MPP 条件下 f ≈30–50% RH、g 85–90% RH 和 h 连续照明下参考器件和目标器件的归一化 PCE 演变提高光伏性能:为了理解凝胶空穴传输层(HTL)器件中增强的效率和稳定性的原因,研究团队研究了spiro-OMeTAD和凝胶HTL薄膜的电导率。与纯净的spiro-OMeTAD相比,凝胶HTL中TA的存在显著提高了电导率。这种增强归因于TA中S原子的强电负性,促进了spiro-OMeTAD的氧化。稳态光致发光(PL)和时间分辨光致发光(TRPL)光谱表明,凝胶HTL促进了光生空穴在钙钛矿/spiro-OMeTAD界面的传输和提取。光电压与光伏性能改善的关系与PL和TRPL测量结果一致。综上所述,研究团队通过改进空穴传输层(HTL)的胶凝性能,提高了钙钛矿太阳能电池(PSCs)的性能和稳定性。他们使用对苯二甲酸(TA)修饰的spiro-OMeTAD HTL形成了凝胶状结构,防止了水分和氧气的渗透,并促进了电荷传输。研究团队开发的凝胶HTL策略显著提高了钙钛矿太阳能电池的转换效率和稳定性,为实现高效稳定的太阳能电池提供了有前景的策略。a ITO/spiro-OMeTAD/Au 和掺杂 TA/Au 电阻器件的 ITO/spiro-OMeTAD 的 I-V 曲线。 b 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 PL 曲线。 c 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 和 PL 是在短路时测量的。钙钛矿和钙钛矿/TA 薄膜的 Pb 4f 的 d XPS 谱。 TA 和含 PbI2 粉末的 TA 的 e FTIR 光谱。 f 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 是在开路条件下测量的
  • 太阳能薄膜电池研究获得重要进展
    德国美因茨大学13日发表公报说,该校研究人员参与的太阳能薄膜电池研究项目取得重要进展,有望使太阳能薄膜电池突破目前20%光电转化率的纪录。  目前光电转化率最高的是铜铟镓硒(CIGS)太阳能薄膜电池,可达20%,但与超过30%的理论值仍相距甚远,其主要难题是材料中的铟、镓分布和比例难以达到理想值。  美因茨大学的研究人员与IBM公司德国美因茨分部以及生产特种玻璃的德国肖特公司等合作,借助电脑模拟程序发现铜铟镓硒材料的铟镓分离温度,即在稍低于正常室温的情况下,铟镓会完全分开且分布不均匀,从而导致材料的光电作用减弱。而超过这个温度后,铟镓会相互融合,且温度越高其分布得就越均匀。这表明太阳能薄膜电池生产过程需要较高的温度,只要最后的制冷步骤足够快就能使这种均匀性“定格”。  以往生产工艺受生产必需的玻璃底板的耐热性限制,无法提高温度。为此肖特公司研发了一种能够耐受超过600摄氏度的特殊玻璃材料。研究人员说,此项成果是一个重大突破。  这一成果发表在美国《物理评论快报》上。
  • 氯仿(Cl2-CF)光解生成氯气诱导钙钛矿晶体重构:华侨大学魏展画、谢立强等人实现高效钙钛矿太阳能、
    《Nature Communications》氯仿(Cl2-CF)光解生成氯气诱导钙钛矿晶体重构:华侨大学魏展画、谢立强等人实现高效、高稳定性的钙钛矿太阳能电池构建二维/三维鈣钛矿异质结是鈣钛矿太阳能电池表面钝化的有效方法。然而,过去的研究显示,仅通过沉积二维鈣钛矿物理地覆盖在三维鈣钛矿表面,体部三维鈣钛矿仍存在缺陷。近日,华侨大学魏展画、谢立强等人的研究团队在《Nature Communications》发表论文指出,他们提出采用氯气溶解氯仿(Cl2-CF)作为多功能溶剂,同时构建二维/三维鈣钛矿异质结以及诱导体部晶粒二次生长和缺陷钝化。这项研究为实现高效、高稳定性的鈣钛矿太阳能电池提供了新思路。首先,研究团队进行了一系列化学分析实验证实了Cl2-CF的组成。具体而言,他们利用硫酸钡、硝酸银试剂检测确认Cl2-CF中存在CO2和Cl- 使用碘化鈣试纸检测确认存在Cl2。UV-vis吸收光谱结果显示,Cl2-CF具有氯气特征吸收峰,证实了氯仿在光照湿气条件下发生光解生成Cl2。为揭示Cl2-CF的反应活性,团队通过UV-vis光谱观察了不同鈣钛矿前驱体溶解在Cl2-CF中的吸收峰变化,证明Cl2-CF具有强氧化性,可以使碘离子氧化生成碘分子。接着,研究人员采用X射线衍射、GIWAXS等手段研究了Cl2-CF对鈣钛矿晶体结构的影响。结果显示,Cl2-CF处理鈣钛矿薄膜后,衍射峰强度提高、位置发生移位,证明处理过程中发生了Cl掺杂和鈣钛矿晶粒二次生长。通过XPS和EDS表征,团队进一步证实Cl2-CF处理可以将Cl-阴离子引入鈣钛矿体部并扩散到薄膜底侧,实现了鈣钛矿的Cl掺杂。基于上述发现,研究人员提出Cl2-CF溶剂既可诱导鈣钛矿晶粒二次生长,又可作为溶解大体积阳离子的后处理溶剂构建二维/三维异质结。为验证此设想,团队利用六氢溴化铵钝化鈣钛矿薄膜。结果表明,Cl2-CF溶解的六氢溴化铵可以与缺陷表面反应生成二维钝化层,与此同时Cl2诱导鈣钛矿晶粒二次生长,实现了表面钝化和体部结晶再生长的双重效应。SEM、AFM结果显示,二次生长后的鈣钛矿薄膜表面更加平滑。XRD和GIWAXS证实了二维鈣钛矿的形成。最后,通过氧化还原反应机理研究,团队指出Cl2与鈣钛矿中碘离子的反应是实现上述效果的关键所在。反应生成的Cl-扩散进入鈣钛矿体部和界面区域,降低了缺陷密度并抑制了非辐射复合。依托这一多功能溶剂体系,研究团队使用光焱科技Enlitech的太阳光模拟器SS-X系列以及量子效率检测仪QE-R检测实验结果,最终制备出效率高达24.21%的鈣钛矿太阳能电池,并得到显著提升的工作稳定性,在最大功率点持续一太阳光照条件下保持80%的初效率达905小时。该研究成果为实现高效、高稳定的鈣钛矿太阳能电池提供了崭新的思路。综合运用氯气溶解氯仿溶剂的氧化性质诱导鈣钛矿晶体缺陷钝化与二次生长,以及溶解大体积阳离子构建异质结的策略,或将为鈣钛矿太阳能电池的构装工艺提供新的灵感。当然,要实现商业化应用,还有待于进一步优化工艺以降低成本和提高重复性。a.Cl2-CF 形成过程图。 b. CF 和 Cl2-CF 以及溶解在 CF 和 Cl2-CF 中的 c. FAI 的紫外可见吸收光谱。 d. PVSK、PVSK-CF 和 PVSK-Cl2-CF 的晶粒尺寸分布。 e. Cl2-CF 和钙钛矿薄膜之间氧化还原反应的示意图。a PVSK、PVSK-CF 和 PVSK-Cl2-CF 的 Cl 2p XPS 谱。 b 钙钛矿薄膜底面的Cl含量。 c PVSK、PVSK-HABr/CF 和 PVSK-HABr/Cl2-CF 的晶粒尺寸分布。 d-f 掠入射广角 X 射线散射 (GIWAXS) 表征,掠射角为 0.5°。 g 纯电子器件的空间电荷限流(SCLC)测量。 h 钙钛矿薄膜的时间分辨光致发光(TRPL)和 i 稳态光致发光(PL)光谱。a 陷阱态密度 (tDOS)。 b 黑暗条件下偏压 0.9&thinsp V 的电化学阻抗谱 (EIS)。 c 开路瞬态光电压测量 (TPV)。 d 莫特-肖特基分析。 e 短路时的瞬态光电流 (TPC)。 f J-V 曲线在黑暗条件下测量。
  • 大规模设备更新:中等职业学校太阳能与沼气技术利用专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校太阳能与沼气技术利用专业(太阳能技术利用专业方向)仪器设备装备规范:表 2 基础实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范电 工 电 子 实 验 室1.掌握电 工、电子电 路的基本 原理;2.掌握万 用表等常 用仪器、仪 表的使用 方法及基 本电量参 数的测量 方法;3. 学 会 常 用电子元 器件的识 别和测量。1通用电 工、电 子综合 实验装 置1.具有电工、电子学基本定理的验证功能;2.具有常用电工、电子仪表的使用及基本电参数的测 量功能;3.具备完成 R、L、C 等电路元件的特性分析及电路 实验的功能;4.具备完成与教学要求相关的单相、三相交流电路 应用实验的功能;5.具有基本放大器电路、稳压电源电路实验功能; 6.具有基本逻辑门电路的逻辑功能;7.具有常用电子元器件识别及测量的实验功能; 8.具有漏电保护功能。台1020GB 21746、GB 217482万用 表1.直流电压:(0~25)V;20000Ω/V;(0~500)V; 5000Ω/V; ±2.5%;2.交流电压:(0~500)V;5000Ω/V; ±5.0%;3.电阻:量程:0~4kΩ~40kΩ~400k Ω~4M Ω~ 40MΩ 25Ω中心; ±2.5%。只10203双踪示波器1.频宽: 20MHz;2.偏转因数:5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式:CH1、CH2、ALT、CHOP、ADD; 5.扫描时间因数:0.5s/div~0.2 μs/div ;6.触发方式: 自动、常态、TV-H、TV-V。台5104数字 式交 流毫 伏表1.测量范围:0.2mV~600V; 2.频率范围:10Hz~600kHz; 3.电压测试不确定度:±1%; 4.输入阻抗:1MΩ 5.显示位数:3-1/2 以上。只5105信号发 生器1.频率范围:0.1Hz~1MHz;2.输出波形:正弦波、方波、三角波、脉冲波; 3.输出信号类型:单频、调频、调幅、扫频;4.外测频灵敏度:100mV;5.外测频范围:1Hz~10MHz; 6.输出阻抗:600Ω 7.输出电压:≥20Vp-p(1MΩ),≥10Vp-p(50Ω); 8.数字显示、TL/CMOS 输出;9.输出端口具有短路保护。台520表 3 专业实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备配备要求序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 原 理 及 应 用 实 验 室1.能通过 实验装置 了解光伏 技术的基 本原理;和 光伏发电 系统各个 组成单元 的作用;2.学会测 量发电输 出电压、发 电 输 出 电 流及湿度、 照度、温度 等物理量 的方法,并 理解相关 物理量的 含义;3.能对离 网光伏发 电系统装 置进行装 配和线路 连接;。4.能了解 各组成单 元的作用。1离网光 伏发电 教学装 置应包括实训工作台、监测仪表单元、交直流稳压 单元、充放电控制单元、可调负载单元、模拟光 源单元、光伏组件单元、离网逆变单元、电池组 单元等部件构成。各单元应达到如下主要要求: 1.光伏组件单元:开路电压 15V;输出功率:≥ 20W;2.交直流稳压单元:输入电压 220V;输出交直流 电压 0~18V 可调、,输出电流:≥1A;3.监测仪表单元:直流数字电压表:0~20V,精 度 0.5 级: ±(0.5%+3);直流数字电流表:0~ 10A,精度: ±(0.5%+3);精度 0.5 级;交流数 字电压表:0~500V,精度 0.5 级;交流数字电 流表:0~5A,精度 0.5 级;监测仪表应具备温 度、湿度、照度等参量的计量测量功能;4.可实现恒流、恒压和涓流模式下的充电,充放 电时间及充放电过程可控,具有防过充、防过放、 过载保护、短路保护、防反接等功能;5.模拟光源单元:能模拟 AM1.5 光谱;光源亮度 具备无级调节功能;具备光源到光伏组件距离可 调和可计测量功能;6.离网逆变单元:额定输出功率≥20W;逆变输 出电压 220V;输出波形:正弦波,失真度≤3%; 具有输出短路、过温、过载、欠压保护功能;7.电池组单元:采用太阳能专用胶体电池,电池 额定电压 12V,电池总容量≥18Ah;8.配备功率大于 50W 的 1 Ω~2K2k Ω 连续可调的 阻性负载;9.配备容性负载、感性负载;10.实训工作台采用整体框架式结构。台10202附件配套电缆、配套连接线等套1020表 3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备 注合 格示 范光 伏 材 料 检 测 实 验 室1.能理解IS© VOC 、FF、IMAX 、 VMAX、PMAX、电阻率等 物理量的含 义;2.学会电池 片和硅片常 用参数的测 量;3.能通过测 量,简单分析 和辨别材料 的性能优劣。1游标卡尺3-1/2 位数显把2040GB/T 213892数字多用表3-1/2 位台2040GB/T 139783四探针电阻 率测试仪具备双数字表头显示方式;电压表量程:0mV~199.9mV;电阻率测量范围:1.0³ 10-3 Ω² cm~200³ 103 Ω² cm;可测硅片大小:Φ15mm~Φ200mm。台484EL 缺陷测试 仪应具备测试显裂、隐裂、暗裂、微裂纹、结晶 缺陷、焊接缺陷等功能;有效测试面积:≥1200mm³ 2000mm; 分辨率:≥140 万像素;测试方式采用无接触式;配套专业测试分析软件及计算机系统。台135电池片 I-V 特性分析系 统可精确测量和计算包括 ISC、VOC、FF、IMAX 、 VMAX、 PMAX 在内的各种参数,能生成可打印的测试报 告,并保存测试数据台016电子金相显 微镜目镜倍数:≥10X;物镜倍数: ≥100X; 配套计算机系统;配套图像分析系统台8167P/N 测试仪具备判别半导体硅材料导电类型功能; 具备准确判定电阻率为 0.1Ω² cm 和 0.5 Ω² cm 以下的重掺硅料功能。台128测量用硅片多晶硅片、单晶硅片各 50 片套129测量用电池 片多晶硅电池片、单晶硅电池片各 50 片套1210测量用组件1W~185W 各类型多晶硅组件,共 50 块; 1W~185W 各类型单晶硅组件,共 50 块; 配备一定数量的薄膜组件。套1211存储柜用于存储配套工具及硅片等材料套2040表 4 专业实训仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 组 件 加 工 实 训 室1.学会使 用划片机、 层压机等 常用 的组 件加工设 备;2.学会单 晶硅及多 晶硅 组件 加工各工 序的操作 方法;能按 规范的工 艺要求封 装层压组 件和滴胶 组件。3. 能按规 范完成光 伏应用类 电子产品 的组装与 调试。1焊接台1.配备防静电皮层及吸烟装置; 2.焊台功率: ≥60W;3.焊台控温范围:200℃~480℃ 4.焊台温度稳定度为:±1℃ 5.配备烙铁头:5 种。工位20402激光划 片机激光波长:1064nm;激光输出最大功率:≥50W;划片速度:≥100mm/s;划片精度:≤10 μm;最大划片厚度:≥1.2 mm;工作台幅面:≥350mm³ 350mm;冷却方式采用恒温循环水冷方式; 工作台采用双气仓负压方式吸附。台243半 自 动 层压机有效层压面积:≥350mm³ 550mm;温控方式:采用 PID 智能温度控制;温控精度:≤±1.5℃ 温控范围:室温~180℃ 抽气速率:30L/s~70L/s;层压时间:≤14min(含固化时间);加热方式:采用电加热或油加热。台114组件周 转车可一次性放置 10 套待压 185W 组件,下部安装 万向滚轮台125裁剪台采用铝合金框架,不锈钢滚轴; 板面上镶嵌双边不锈钢刻度尺; 采用钢化玻璃工作台面。台126电池片 周转车采用整体框架结构,工作面贴橡胶皮。辆127敷设检 测台采用铝合金框架,射灯数:≥12 盏,可测量组 件输出电压和输出电流。台12表 4 专业实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示范光 伏 组 件 加 工 实 训 室同上8装框机1.采用组框铆角一体方式;2.最大组框长度:≥2100mm; 3.最大组框宽度:≥1200mm;4.最大铆接力: ≥25kN;5.驱动电机功率: ≥1.5kW。台119焊带裁剪 机全自动控制方式,数显;带打折弯装置和动力放料架.台1110烘干箱1.容积:≥100L;2.最高工作温度:≥80℃ 3.采用无氧化电热管加热; 4.温度控制精度:±1℃ 5.加热时间在 24h 内可调。台1211真空箱1.容积:≥100L;2.真空度:≤0.1MPa;3.抽真空时间:≤5min。台1212滴胶台整体框架结构; 配备滴胶托盘。台2413滴胶机自动定时分档并可调; 滴胶精度: ≥0.5%;最小滴胶量:≤0.01ml。台2414配胶台整体框架结构、工作面贴橡胶皮; 含计量工具。台1115配套工作 台包括:工作台、电池片分选台、组件修边台、 电池串暂放架等组1116万用表3-1/2 位数显台204017配套工具含焊接辅助工具、安装工具等套204018其它单晶硅、多晶硅硅片及电池片生产视频或仿 真软件。套11表 4 专业实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范光 伏 发 电 技 术 实 训 室1.能按规 范要求安 装光伏发 电设备, 并能对设 备进行简 单的调试 操作;2.会测量 光伏发电 技术实训 中基本的 物理量;3.会进行 简单的设 备维护和 数 据 分 析。1光伏组件 及支架组件总功率:≥2kW,组件效率:≥15%; 支架采用模块化、可重复拆解式结构;支架倾角可调,采用螺栓固定方式。组8162并网逆变 器1.额定功率:≥2kW;2.输出波形:正弦波,谐波失真:≤3%; 3.隔离方式:变压器方式;4.具备电网故障检测和断电保护(防孤岛) 功能;5.具备最大功率点跟踪(MPPT)功能。只816GB/T 199393光伏直流 汇流箱1.防护等级:≥IP65,满足室外安装的使用 要求;2.配备直流高压防雷器;3.配备耐高压的直流熔断器和断路器两级 安全保护装置,直流耐压值:≥1000V。套8164交流配电 柜含功率表、电压表、电流表、组合开关等套8165配套软件光伏发电监测分析软件及配套系统控制软 件套8166配套工具安装拆解用组合工具套8167配套电缆 和附件与上述序号 1~6 设备配套套8168户外光伏 发电跟踪 演示系统1.采用双轴自动跟踪、倾角调节方式;2.采用PLC 或其它嵌入式系统控制方式; 3.跟踪精度:≤1° 4.发电输出功率:≥2kW。台14
  • 科研用户特价 | 钙钛矿/有机太阳能电池组件仿真软件
    ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍Laoss是一款用于设计、构建、仿真、优化钙钛矿/有机太阳能电池组件和OLED面板,对其热学、光学和电学性能进行仿真的软件。对于提高面板和组件效率、优化其性能、缩短研发周期、节省材料成本等有着具大的帮助。目前,针对中国科研单位用户,Fluxim 团队决定给予最大幅度的优惠,详情请与我公司联系。主要特点• 简单易用,快速有限元分析模拟仿真• 直观图像化用户界面以及Workflow• 普通计算机即可快速运行仿真计算• 具备可视化大范围输出数据及结果的功能分析方法• 基于电&热仿真的有限元分析法• 焦耳(电阻)加热的电热耦合• 强大的3D-Ray追踪光学模拟仿真计算,模拟&优化• 分析大面积组件/面板电极电损耗 for PV and OLED• 评估电极中的电流 for PV and OLED• 计算大型器件的 I-V 曲线 for PV and OLED• 优化太阳能电池组件效率 for PV• 计算组件/面板上的温度分布 for PV and OLED• 量化像素串扰效应 for OLED• 优化电极的几何形状 for LED and PV• 模拟缺陷和电分流对组件/面板的影响 for PV and OLED‍‍三大主功能‍‍‍‍‍‍‍‍‍‍‍‍‍‍1.电学模块• 仿真大面积OLED面板和太阳能电池组件的特性(填充因子vs电导率,2D电位分布,电流密度,欧姆损耗,总输出功率等)• 优化OLED面板和光伏组件中的电极设计以减少电功率损失• 研究非理想效应(例如电分流)• 自动化优化电极的几何形状‍‍‍‍‍‍‍‍• 了解RGB OLED像素数组中的电串扰‍‍‍‍‍‍‍‍优化电极设计:电势图电极优化:电势图非理想效应(电分流)研究自动优化电极几何形状:输出功率vs钙钛矿太阳能电池的电极宽度OLED 像素数组中的电势图:层与层之间的漏电流造成OLEDs未正常工作‍‍2.热学模块• 模拟OLED面板或太阳能电池组件中的热学和电流(电热耦合)之间的双向相互作用• 在标准作业程序下计算OLED面板和太阳能电池组件中的温度分布• 分析由于电热耦合导致的OLED面板和太阳能电池组件中的非理想I-V特性曲线• 电热耦合可模拟热产生和电学性能两者之间相互作用‍‍‍‍‍‍‍‍‍‍‍‍(1)具有六角形栅极的组件中的电位分布(2)对应(1)的温度分布(1)双向电热耦合相互作用引起的温度分布(2)模拟I-V特性曲线3.光学模块• 仿真研究具有复杂3D光学组件或表面纹理化的OLED面板和太阳能电池的组件• 通过构建独立的3D光学组件来仿真其对OLED面板和太阳能电池组件的贡献• 仿真OLED面板中的光学串扰• 可与SETFOS结合方便地分析光耦合几何特性‍‍仿真菲涅耳透镜或其他3D光学组件与太阳能电池或OLED耦合以提高效率光学串扰仿真曲面显示仿真更新后的4.1版本增加了以下功能1.交流模拟2.Laoss-Setfos整合集成一体化全面仿真3.金属栅线预定义:栅线数量、角度和base offset等4.预先定义像素形貌:XY方向像素数量5.几何设计导入和预定义几何设计6.可跳过在Laoss光学模块中切割三角形步骤7.固定偏振角 Phi 对于非偏振BSDFs8.关闭Laoss前检查改变参数,运行一个仿真或者加载一个不同的仿真9.Laoss光学:设定每个主要方向的独立边界形式10.Laoss光学模块:光谱图11.在XY结果图表中显示界面几何结构12.项目和模拟结果保存‍‍‍‍‍‍‍‍‍‍‍‍‍‍
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 我国学者在近红外吸光聚合物太阳电池领域取得重要进展
    p style="text-align: justify "  /pp style="text-align: center "img title="tpxw2019-01-08-09.jpg" alt="tpxw2019-01-08-09.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/8f85fe5b-35ad-4005-9e82-3608bdf73b66.jpg"//pp style="text-align: center "  图. 近红外吸光电子受体分子设计与合成、吸光和荧光谱图、叠层太阳能电池器件结构、能级和光伏特性曲线/pp style="text-indent: 2em "在国家自然科学基金项目科学部前沿导向重点项目和国家优秀青年科学基金项目(项目编号:21722404,21734008)等资助下,我国学者在近红外吸光聚合物太阳电池研究中取得进展。研究成果以“Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells”(具有氟化骨架异构的近红外电子受体实现高效聚合物太阳电池)为题,于2018年11月06日发表在Advanced Materials(《先进材料》)上。/pp style="text-indent: 2em "论文链接:a href="https://doi.org/10.1002/adma.201803769" target="_blank"https://doi.org/10.1002/adma.201803769/a。/pp style="text-align: justify "  聚合物太阳电池近年取得了不断突破,很大程度得益于新型有机半导体分子和聚合物的快速发展。有机分子和聚合物通过结构裁剪可大范围调制其光、电和薄膜性质,从而实现区别于传统无机太阳电池的多功能性的太阳电池器件,例如可见区透过,近红外区高光谱响应度的半透明器件和全光谱吸收的叠层器件等。其中,发展新型近红外吸光的有机半导体材料(带隙Eg 1.4 eV)成为领域关注热点。/pp style="text-align: justify "  浙江大学高分子科学与工程学系的有机半导体实验室已发展一系列基于非稠合或稠合骨架的近红外电子受体分子。最近,该实验室的李昌治研究员和陈红征教授等设计发展了一类近红外电子受体分子,通过非对称桥连基团的区域异构化和调控氟原子取代数目,改善分子共轭结构和轨道能级,获得了性能优异的近红外电子受体分子并成功建构响应波长可达1000 nm光谱的高效率聚合物太阳电池。通过进一步与吸光带边800 nm的前电池搭配,制备得到高效率聚合物叠层太阳电池。该工作得到华南理工大学叶轩立教授和香港中文大学路新慧教授在光学模拟和薄膜形貌测试方面的支持。这一成果从分子骨架结构设计入手,通过探索理解其分子结构-薄膜特性-器件性能之间的构效关系,为发展近红外电子受体分子和近红外区高光谱响应度的聚合物太阳电池提供了新方法和新途径。/pp style="text-align: justify "附件:/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="chen2018.pdf" href="https://img1.17img.cn/17img/files/201901/attachment/a4dc0b99-2bf7-4de1-8fa0-11d21bce1737.pdf" target="_blank" textvalue="Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells"Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells/a/pp /p
  • 美研制出增强薄膜太阳能电池吸光技术
    据英国《自然》杂志网站近日报道,尽管薄膜太阳能电池应用广泛,但其也有“先天不足”:薄膜越薄,制造成本越低,但当其变得更薄时,会失去捕光能力。美国科学家表示,当薄层厚度等于或小于可见光的波长时,其捕光能力会变得很强。科学家们可据此研制出厚度仅为现在商用薄膜太阳能电池厚度的1%、但捕光能力却大有改善的薄膜太阳能电池。  科学家们用射线—光极值这一理论最大捕光值来标识一种材料最多能捕获多少光线,但是,只有当材料具有一定的厚度时,才能达到这一峰值。目前,科学家们已经制造出了吸光层的厚度仅为0.1纳米的薄膜太阳能电池,但这样纤细的薄膜会漏掉很多光。  然而,现在,加州理工学院应用物理和材料科学教授哈里阿特沃特和同事在最新一期《纳米快报》杂志上指出,他们找到了一种巧妙的方法,使薄层能帮助太阳能电池超越射线—光极值。他们发现,当薄层的厚度小于可见光的波长(400到700纳米)时,薄层会同这些可见光的波特性相互作用而不是将可见光看成一条直直的射线。阿特沃特说:“当我们制造出的薄层厚度等于或小于可见光的波长时,一切规则都改变了。”这样,一种材料的吸光能力不再取决于厚度,而取决于光线和吸收材料之间的波作用。  通过计算和计算机模拟,阿特沃特团队证明,让一种材料对光更有“胃口”的技巧在于,制造出更多“光态”让光来占领,这些“光态”就像狭缝一样,能吸收特定波长的光。一种材料的“光态”数量部分取决于该材料的折射率,折射率越高,其能支持的“光态”就越多。  其实,早在2010年,斯坦福大学的教授范汕洄(音译)和同事就将“光态”数确定为一种材料能吸入多少光线的主要因素。他们用一种折射率较高的材料将一种折射率低的材料包围,结果发现,高折射率材料的出现能有效提高低折射率材料的折射率,增强其捕光能力。  阿特沃特团队对上述结论进行了延伸,最新研究表明,薄膜吸光器内挤满 “光态”会大大增强其捕光能力。而且,可通过几种方式(比如,用金属或晶体结构包住吸光层或将吸光器嵌入一个更复杂的三维阵列中)来提高吸收器的有效折射率。范汕洄表示:“最新研究表明,我们可以采用多种不同的方法有效地突破射线—光极值。”  美国托莱多大学的罗伯特柯林斯表示,阿特沃特团队的研究是“非常关键的第一步”。但他也认为,这项技术还面临着诸多挑战,比如,需要额外的工业过程来制造这些超薄的薄膜,这会导致成本增加。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。  新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。  美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。  加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。  据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。  本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。  模拟执行太空任务  据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。  当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。  据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。  训练海中溅落  哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。  在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。  据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • 量子点太阳能电池外量子效率首超100%
    据美国物理学家组织网12月16日(北京时间)报道,美国国家可再生能源实验室(NREL)研制出一种新式的量子点太阳能电池,当其被太阳能光谱的高能区域发出的光子激活时,会产生外量子效率最高达114%的感光电流。发表于12月16日出版的《科学》杂志上的这一最新研究为科学家们研制出第三代太阳能电池奠定了基础。  当光子入射到太阳能电池表面时,部分光子会激发光敏材料产生电子空穴对,形成感光电流,此时产生的电子数与入射光子数之比称为感光电流的外量子效率。迄今为止,还没有任何一种太阳能电池在太阳能光谱内光波的照射下,显示出超过100%的外量子效率。  现在,NREL团队首次在量子点太阳能电池上实现了这一点。他们在一个叠层量子点太阳能电池上获得了114%的外量子效率。该电池由具有减反光涂层的玻璃(其包含有一薄层透明的导体)、一层纳米结构的氧化锌、一层经过处理的硒化铅量子点以及薄薄一层用作电极的金组成。  太阳能光子产生超过100%外量子效率基于载子倍增(MEG)过程,借助这一过程,单个被吸收的高能光子能激发多个电子空穴对。NREL团队首次在量子点太阳能电池的感光电流内展示了MEG,科学家们可借此改善太阳能电池的转化效率。研究结果显示,在模拟太阳光的照射下,新量子点太阳能电池的光电转化效率高于4.5%。目前,这种太阳能电池还没有达到最优化,因此,其能源转化效率相对来说偏低。  与传统的太阳能电池相比,量子点太阳能电池内的MEG能将电池的理论热力能转化效率提高35% 量子点太阳能电池也可使用廉价且产量高的卷对卷制程制造而成 其另外一个优势是每单位面积的制造成本很低,科学家们将其称为第三代(下一代)太阳能电池。(记者 刘霞)  所谓第一代太阳能电池是指目前最常见的晶体硅电池,第二代是薄膜电池 第三代,则应该是具有更高转化效率的新型电池的总称。而让单个高能光子激发多个电子空穴对正是提高转化效率的途径之一。不过现有技术并不能有效分离、收集大量的电子空穴对,这也就是新电池转化效率偏低的主要原因。虽然现在看起来,让这么多自由电子白白溜走显得过于奢侈,但如此高的外量子效率还是让我们备受鼓舞——一旦突破电子空穴对收集的技术瓶颈,太阳能电池的发展将会翻开全新一页!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制