当前位置: 仪器信息网 > 行业主题 > >

废水中重金属检测

仪器信息网废水中重金属检测专题为您提供2024年最新废水中重金属检测价格报价、厂家品牌的相关信息, 包括废水中重金属检测参数、型号等,不管是国产,还是进口品牌的废水中重金属检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合废水中重金属检测相关的耗材配件、试剂标物,还有废水中重金属检测相关的最新资讯、资料,以及废水中重金属检测相关的解决方案。

废水中重金属检测相关的资讯

  • 废水中重金属元素怎么测?莱伯泰科有妙招!
    随着现代工业的发展和人类生活水平的提高,越来越多的重金属污染物被排放到地表水中。地震、泥石流等自然灾害也可能会导致地下、地上的矿物大量浸入地表水,上游的化工厂等一旦被破坏,更是会严重污染水源,造成水中重金属元素超标,威胁人类健康。准确测定废水中重金属含量是废水治理中重要的一环,对如何合理选择治理方案,评估治理结果及后续工作的开展具有重要的指导作用。分光光度法、原子荧光法、原子吸收光谱法、电感耦合等离子体发射光谱法被广泛应用于废水中金属元素的测定。但是,分光光度法、原子吸收光谱法、原子荧光法只能单元素逐一测定,且不同元素需要不同的前处理方法,测定多个元素耗时时间长,工作效率低。电感耦合等离子体发射光谱法(ICP-OES),具有多元素同时测定,检出限低,精密度高、干扰小等优点,并且分析时间短,准确度高,线性范围宽,广泛用于水中重金属含量的测定。本文采用硝酸+盐酸+过氧化氢辅以微波消解的样品前处理技术,结合ICP-OES法测定废水中Pb、Cd、Cr、As、Se、Cu、Ni、Hg等8种重金属元素,方法检出限为0.023~0.089mg/L,RSD为2.37~4.25%,加标回收率为84.1~107.6%。结果表明,微波消解样品处理具有较好的准确性和重现性、操作简单、快速高效、污染小、检出限低、基体干扰小等优点,可用于废水样品的批量分析。具体操作方法主要仪器与试剂ETHOS UP微波消解仪(意大利MILESTONE公司) iCAP7400电感耦合等离子体发射光谱仪(美国赛默飞世尔科技有限公司)10mg/L等离子发射光谱分析混合离子标准物质(Pb、Cd、Cr、As、Se、Cu、Ni)上海市计量院测试技术研究院GBW(E)080124汞单元素标准溶液100mg/L硝酸、盐酸、过氧化氢优级纯实验室用水为超纯水。标准曲线的配制 分别吸取0,0.50,1.00,2.50,5.00,10.00mL混合标准溶液和0,0.05,0.10,0.25,0.50,1.00mL汞元素标准溶液于50mL容量瓶中,用3%的硝酸定容,最终得到浓度分别为0.00,0.10,0.20,0.50,1.00,2.00mg/L的标准溶液。实验步骤 吸取25mL废水于微波消解罐中,然后加入2.5mL硝酸,2.5mL盐酸和2mL过氧化氢。另取1个消解罐做空白实验。安装好消解罐,设置消解程序如表1。消解完成后,待消解罐冷却至室温后再通风柜内打开消解罐,用去离子水定容至50mL。表1 微波消解条件步骤时间t/min功率P/W温度℃1518001202518001203518001804151800180仪器工作条件冲洗泵速100rpm;分析泵速50rpm;RF功率1150W;雾化器流量0.5L/min;辅助气流量0.5L/min;冷却气流量12L/min。微波消解-ICP-OES法测定废水重金属的线性范围、准确度、精密度和检出限3.1 线性范围用浓度为0.00mg/L,0.10mg/L,0.20mg/L,0.50mg/L,1.00mg/L,2.00mg/L的标准溶液,做标准曲线。表2 各元素的曲线拟合方程元素曲线拟合方程相关系数Pby=866.6x+8.30.9999Cdy=45192x+245.50.9999Asy=1974.4x+34.80.9998Sey=2246.8x+53.90.9999Cuy=33768x+299.70.9999Niy=13515x+102.70.9999Hgy=5482.6x+76.30.9995Cry=33132x+249.70.9999《污水综合排放标准》中**类污染物**允许排放的浓度要求,各重金属限值在0.05~1.5mg/L。因此选择以上浓度点来做标准曲线。由上表可知,待测的8个重金属元素的相关系数都在0.995以上。3.2方法的检出限方法的检出限通过分析检测连续的11个测试空白进行计算。计算公式为:MDL=3s,s指连续11次测试空白的标准偏差,结果见表3。表3 ICP-OES测定水中各元素的方法检出限(mg/L)测定元素检出限测定元素检出限Pb0.079Cu0.089Cd0.043Ni0.031As0.028Hg0.027Se0.032Cr0.023各元素的检出限在0.023~0.089mg/L之间,低于《污水综合排放标准》**类污染物**允许排放浓度要求中各种金属元素的限值,符合分析要求。3.3方法精密度与准确度实验 取一所采水样,加入标准溶液,原样和加标样分别测定6次,计算精密度和回收率,测试结果见表4,加标回收率在84.1~107.6%之间,RSD为2.37~4.25%。表4 加标回收试验元素本底值(mg/L)加标量(mg/L)测定值(mg/L)回收率/%RSD/%Pb0.21170.20000.4187103.52.57Cd0.19240.20000.387897.72.37As0.15780.20000.356799.53.02Se0.19080.20000.386597.92.92Cu0.21220.20000.403495.62.87Ni0.22020.20000.410395.02.73Hg0.15110.20000.319384.14.25Cr0.19150.20000.4068107.62.64微波消解-ICP-OES法是测定废水中重金属的有效方法。该方法消解时间短,试剂用量少,检出限低,具有良好的精密度和准确度,加标回收率结果满意,完全满足当前环境监测中测定废水中重金属含量的要求。
  • 重金属元年:水中重金属自动监测现状与对策
    政策解读重金属具有较强的迁移、富集、潜伏性和生物毒性,威胁生态环境安全和人体健康。“十三五”时期,重金属污染防控取得积极成效,但重金属污染防控仍任重道远,党中央、国务院对此高度重视,于3月7日发布了《关于进一步加强重金属污染防控的意见》。《意见》明确指出强化重点区域、重点行业重金属污染监控预警,对有色金属冶炼企业集中的工业园区、重点区域及其周边水、气、土壤等开展重金属长期跟踪监测,对铅、汞、镉、铬和砷五种重金属污染物排放量实施总量控制。管控的重点行业包括重有色金属矿采选业,重有色金属冶炼业,铅蓄电池制造业,电镀行业,化学原料及化学制品制造业,皮革鞣制加工业等6个行业。因此,为了贯彻落实“十四五”规划,切实抓好重金属污染防治,保护人民群众身体健康、促进社会稳定和谐,亟需开展重金属污染环境监测工作,提高生态环境监测现代化水平,为生态环境持续改善和生态文明建设实现新进步奠定坚实基础。1监测技术目前,我国重金属的测定方法包括前处理和测定两个部分,前处理主要采用传统酸消解及微波消解。测定方法包括分光光度法、电化学分析法、原子吸收法、原子荧光法、电感耦合等离子体质谱法等。 分光光度法具有设备简单、 方法可靠、 简便快速 、 应用广泛等优点 , 已成为测定重金属的重要方法之一 ,但是其存在易被其他离子干扰等问题。电化学分析法在环境监测中占有重要地位。电化学方法主要是阳极溶出伏安法,大大降低了重金属的检出限值 。原子吸收法该方法具有灵敏度高 、检出限低、 分析速度快、选择性好、抗干扰能力强等优点 , 被列为测定地表水、废水中金属元素的标准分析方法。电感耦合等离子体质谱法(ICP-MS)检出限低,主要用于痕量重金属的检测,但目前由于仪器价格高、检测成本高等问题,尚未得到广泛应用。2重金属自动监测行业现状01标准规范方面l 自动在线监测仪标准不全:目前近年来,中国生态环境部陆续发布了总铅、总镉、总砷、六价铬在线监测仪标准规范,通过对产品性能检测、实际应用等进行定性评价。但目前,标准规范还不全面,需要进一步补充完善,为规范重金属在线监测行业提供技术保障l 目前尚未发布重金属自动在线监测仪的运行、安装、验收等标准规范02监测技术方面l 测定准确度低:市面上部分重金属自动监测产品无前处理过程,加之现场水样复杂,缺乏抗干扰能力,标液能测准,但面对实际水样测试,频繁“超标”、测定不准等问题就逐渐暴露出来;l 测定易受干扰:含重金属废水成分复杂,重金属测定过程中易受其它因素(色度、浊度、其他离子)干扰,监测过程中易发生沉淀,系统管路易堵塞,需要定期手工清洗;l 检测方法不适用:不同应用场景中(地表水、水源地、排放废水等)重金属浓度不同,对水质监测设备的检出限值、检测方法的适用性方面提出要求;l 创新性不强:目前整个重金属检测行业创新性不强,很多技术面临卡脖子问题,如ICP-MS中关键元器件国内尚不能实现自主研发;l 远程运维能力不足:目前,国家要求运维人员每周须到现场进行运维,耗费人力物力,且运维效率低,运维成本高。3对策(1)应该进一步完善重金属监测方面的法律法规,制定更合理、更严格的标准规范。加快重金属监测的先进技术分析方法的标准化工作,进一步完善重金属自动监测仪表(技术要求、运行、安装、验收等)的相关规范,为重金属精准管控提供有力保障;(2)目前能用于重金属监测的方法多,每种方法都具有一定的检出限值,在实际的监测过程中能够根据水质的实际情况针对性地选择一种或者两种配合使用。通常来说,对含量比较低的地表水和饮用水源地的重金属监测,使用电化学法和原子吸收法;而对于污染源企业排放废水来说,经济、准确的分光光度法也是一个好的选择;(3)企业自身应加强关键核心技术研发,建立以质量为基础的品牌发展战略。开展关键材料、设备的研发和生产,推进产学研用协同创新,解决卡脖子技术难关,全面提高我国重金属监测能力和水平;(4)加强智慧感知-远程运维监测体系建设。综合运用“监测数据+质控数据+流程日志+参数识别+平台反算”的数据防伪技术,结合远程质控测试、仪器校准、故障诊断等功能,建立自动预判、智能审核及人工审核相结合的多级数据审核机制,增强异常数据报警诊断。运用GIS定位、AI智能、自动控制等技术对运维人员、车辆、仪器设备、备品备件、运维维护等信息进行动态管理,实现运维全过程留痕。关于我们朗石是水质监测领域公认的技术领先企业,自成立以来一直潜心研究重金属监测技术:阳极溶出伏安法、化学比色法、冷原子吸收法以及适应各种应用场景的前处理技术。产品系列齐全,环境保护产品认证证书齐全,监测参数包括铅、汞、镉、总铬、六价铬、砷、锌、铜、镍、锰、银、铁等,覆盖了国内现阶段重点关注的重金属污染物,可以满足不同场景的应用,为了满足运维需要,还推出了WEIMS智慧运维平台,欢迎前来咨询。
  • 实时在线监测工业废水重金属
    p style="text-indent: 2em text-align: left "科研新发现:工业废水重金属可实时在线监测/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/f21563ff-5403-443b-895f-14a7a7b41682.jpg" title="201812101132205080.jpg" alt="201812101132205080.jpg"//pp style="text-indent: 2em text-align: left "在线监测示范运行。(科研人员供图)/pp style="text-indent: 2em text-align: justify "从中科院安徽光学精密机械研究所获悉,该所科研人员研发出工业排放废水重金属实时在线监测“利器”,将为工业排放废水重金属实时管控装上“安全闸门”。/pp style="text-indent: 2em text-align: justify "赵南京研究员承担的安徽省科技计划项目“工业排放废水重金属在线监测技术系统”日前已通过专家验收。该系统在国际上首次实现了工业排放废水重金属的实时在线自动监测。/pp style="text-indent: 2em text-align: justify "随着我国经济的迅猛发展,重金属污染事件时有发生。其中,铅(Pb)、镉(Cd)、铬(Cr)、汞(Hg)、砷(As)等对生态环境及人体健康有较重危害。目前,水体重金属在线测量主要采用比色法和电化学分析方法。比色法受技术本身限制,不能实现多种离子同时测定,且灵敏度较低;电化学方法主要适用于“相对”干净水体,对于工业废水重金属的测量易受检测条件等影响,准确度降低甚至引起二次污染等问题。/pp style="text-indent: 2em text-align: justify "“工业排放废水重金属在线监测技术系统”基于激光诱导击穿光谱技术,以石墨基片为水样载体,通过自动加载与卸载石墨基片、水样自动进样与精确滴定、样品烘干、光谱测量与分析,从而实现废水重金属含量的连续在线自动检测,可同时测量铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、Ni(镍)、锌(Zn)等多种重金属元素。/pp style="text-indent: 2em text-align: justify "项目设计了样品专用工作台和电磁加热富集装置,开发了基片自动装卸载模块、样液添加模块、样品加热模块及光谱检测模块,研制了基于激光击穿光谱技术的废水重金属自动在线监测系统。该项目在激光诱导等离子体光谱增强技术、废水重金属自动富集方法及数据定量处理算法等方面取得了创新性成果。2017年10月,样机在某金属冶炼厂开展了为期两周的外场示范运行试验。结果显示,样机测量稳定性误差在5%以下,相对误差在0.02%-9.1%之间。连续在线运行期间,无人值守,运行稳定、可靠。/pp style="text-indent: 2em text-align: justify "该系统是在行业重金属污染减排实施中,针对污染源监督性监测和重点污染源在线监测技术和设备的需求而研发,突破了一系列关键技术。/p
  • 重金属废水处理技术汇总!
    p style="text-indent: 2em "一、 沉淀法/pp style="text-indent: 2em "1.氢氧化物沉淀法/pp style="text-indent: 2em "往重金属废水中加入碱性溶液,利用OH-与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废水中的各种重金属离子同时以氢氧化物沉淀的形式析出。/pp style="text-indent: 2em "2 .硫化物沉淀法/pp style="text-indent: 2em "将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分离。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此,硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。/pp style="text-indent: 2em "3. 还原一沉淀法/pp style="text-indent: 2em "这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。/pp style="text-indent: 2em "4. 絮凝浮选沉淀法/pp style="text-indent: 2em "通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。/pp style="text-indent: 2em "二、 物理化学法/pp style="text-indent: 2em "1. 吸附法/pp style="text-indent: 2em "(1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。/pp style="text-indent: 2em "(2)树脂吸附。环保是树脂吸附法的一个重要的特点,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。/pp style="text-indent: 2em "(3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,/pp style="text-indent: 2em "而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。/pp style="text-indent: 2em "2. 浮选法/pp style="text-indent: 2em "往重金属废水中通人气体产生气泡,废水中的胶体颗粒会附着在气泡表面,这些胶体粒子可随气泡的上浮从而实现将依附在粒子上的重金属离子加以分离。该方法具有如下优点:对粒子的去除效果好,操作省时,费用低廉,在一定条件下,既可消除重金属污染,又可回收金属,并且还能避开某些重金属氢氧化物或碳酸盐过滤困难的问题。/pp style="text-indent: 2em "3. 离子交换法/pp style="text-indent: 2em "用离子交换树脂把废水中的重金属离子交换出来,从而除去重金属离子。不过,离子交换树脂价格昂贵,其再生费用也比较高,所以,在废水处理中使用很少。但对于少量有回收价值的有毒金属来说是个不错的方法。/pp style="text-indent: 2em "4.溶剂萃取分离/pp style="text-indent: 2em "溶剂萃取法是分离和净化物质常用的方法。由于液一液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。/pp style="text-indent: 2em "三、 电化学处理技术/pp style="text-indent: 2em "1. 电解法 br//pp style="text-indent: 2em "电解法的主要原理,是对重金属废水进行电解时,重金属离子在阴极得到电子被还原,这些重金属要么沉淀在电极表面,要么沉淀到反应槽底部,从而起到降低废水中重金属含量的效果。/pp style="text-indent: 2em "2 .电沉积 br//pp style="text-indent: 2em "这种方法的原理是,在传统的化学沉淀方法中,加入电压,通过改变溶液的电势,促进重金属离子更好地沉淀。电沉积在酸性和碱性废液中都适用。/pp style="text-indent: 2em "3. 膜分离技术/pp style="text-indent: 2em "膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。/pp style="text-indent: 2em "四、生物化学法/pp style="text-indent: 2em "1. 生物塘净化法 br//pp style="text-indent: 2em "该方法的原理,是利用复合的水生生态系统的协同作用,完成对重金属污染物的吸收、积累、分解以及净化作用。/pp style="text-indent: 2em "2. 动物处理/pp style="text-indent: 2em "动物法处理重金属废水现今尚处于起步阶段。尤其是无脊椎动物对Zn和Cd具有很大的富集能力。可见,利用水生动物处理重金属废水存在一定的可行性。研究发现,利用双壳(河蚌)处理重金属废水,在重金属浓度为3.125 mg/L时,双壳生物对重金属Zn、Cd、Pb2+ 、Ag 的脱除系数达到72.0%~89.9%,对双壳法处理重金属废水的可行性作了肯定。/pp style="text-indent: 2em "3. 微生物及藻类处理/pp style="text-indent: 2em "通过生物絮凝,生物吸附,生物沉淀等作用实现废水中重金属的转化,沉积和固定。研究表明,废水中金属污染浓度为10~l000 时,传统的处理工艺成本很高,而廉价、易得的微生物可从稀溶液中富集、分离,通常能将浓缩几千倍或更多。目前,微生物处理工艺得到工业应用较多的是生物硫化法,其他的如,生物吸附,生物絮凝等尚未得到大规模的工业应用。/pp style="text-indent: 2em "4. 植物修复法 br//pp style="text-indent: 2em "重金属污染植物修复,是指利用植物的生命活动,提取,吸收并固定被污染水体中的重金属离子,从而达到减轻重金属废水危害的目的。/pp style="text-indent: 2em "5.生物絮凝法/pp style="text-indent: 2em "生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、 Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来。应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点。此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株。因而微生物絮凝法具有广阔的应用前景。/pp style="text-indent: 2em "6. 生物吸附法/pp style="text-indent: 2em "生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用。/pp style="text-indent: 2em "7.生物化学法/pp style="text-indent: 2em "生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法。该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2S的还原作用可将SO42-转化为S2-而使废水的pH值升高。因许多重金属离子氢氧化物的离子积很小而沉淀。有关研究表明,生物化学法处理含Cr6+浓度为30~40mg/L的废水去除率可达99.67%~99.97%。有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属。赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8 mg/L的溶液,当pH为4.0时,去除率达99.12%。/ppbr//p
  • 湖南省站重金属废水在线监测系统数据有效性审核课题通过验收
    近日,环保部监测司组织来自中国环境监测总站、山东省环境监测中心、上海市环境监测中心等单位的专家对湖南省环境监测中心站承担的《固定污染源排放重金属废水在线有效性审核技术规程》课题进行验收,胡克梅副司长到会指导。  该课题于2013年4月立项,旨在研究重金属废水在线监测数据有效性审核的内容和方法,对加强重金属废水在线监测系统设备的监管和数据应用具有重要意义。湖南省站接受课题任务后,高度重视,组织湖南慧正环境科技发展有限公司、聚光科技(杭州)股份有限公司和长沙华时捷环保科技发展有限公司等5家公司共同开展现场调研、实验室分析、试验等工作,并对取得的成果进行分类、归纳和总结,形成《固定污染源排放重金属废水在线有效性审核技术规程研究报告》。  验收会上,课题组就课题研究内容、开展和完成情况进行了详细介绍。专家评审后一致认为,该课题从重金属废水在线监测系统的安装、验收、日常运维、现场核查等方面进行了大量的调研,技术路线合理,提出的操作规程科学、合理 送审的基础资料齐全,内容翔实,较好的完成了合同规定的研究任务,符合结题要求,同意通过验收。  据课题组介绍,该项目的完成为确保重金属废水在线监测系统的数据质量和考核奠定了基础。下一步,课题组将继续凝炼成果,形成技术指南,为保证在线监测系统长期稳定的运行,规范排放企业运行,提供实用、有效的技术工具。
  • 日立ZA3000原子吸收双孔注入连续进样快速检测水中重金属含量
    近期,兰州自来水污染,江苏靖江因长江水源出现水质异常,8吨有毒化学物流入富春江等系列水污染事件引发了公众对水质安全的关注。水环境是同人民生活息息相关的几大自然要素之一,快速检测水环境中重金属等有毒有害元素是水环境安全的重要保障之一。  天美公司高度关注水环境安全问题,日立ZA3000原子吸收分光光度计最新搭载的双孔注入连续进样功能在快速检测水中重金属含量方面具有独特的优势,参照《水和废水检测分析方法(第四版)》,我们为您提供了检测地表水,地下水及废水中铅、镉、铜的解决方案。http://www.instrument.com.cn/netshow/SH100322/s327145.htm 公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 重金属污染严重,常用五大检测方法要了解
    重金属的污染主要来源工业污染,其次是交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害,工业污染的治理可以通过一些技术方法、管理措施来降低它的污染,最终达到国家的污染物排放标准。重金属一般以天然浓度广泛存在于自然界中,但由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染,危害人类健康!   针对重金属废水的特性,目前常用的处理重金属污水方法有:化学沉淀法、氧化还原处理、溶剂萃取分离、吸附法、膜分离法、离子交换法。通过这些方法对其检测治理,采取将有毒化为无毒、将有害转化为无害,并且回收其中的珍贵金属,将净化后的废水循环使用等措施,消除和减少重金属的排放量。检测时所需的标准物质都可以找专业的检测机构或平台进行购买,如BePure。   1、化学沉淀法  化学沉淀法是使重金属废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。   2、氧化还原处理(化学还原法)  电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离往除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操纵易于把握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。   应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂用度高,处理本钱大,这是化学还原法的缺点。   3、溶剂萃取分离  溶剂萃取法是分离和净化物质常用的方法。由于液一液接触,可连续操纵,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操纵时留意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。   4、吸附法  吸附法是利用吸附剂的独特结构往除重金属离子的一种有效方法。利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理。腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量明显低于污水综合排放标准。   5、膜分离法膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀产业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进进到初步产业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。 以上就是常见的五种检测方法,但想要有效的控制与消除污染源,须源头控制———过程阻断———末端治理相结合,其中,源头控制是关键。如若短期内不能做好源头控制,就必须做好检测,购买检测相关的标准物质都可以找我们BePure。 曼哈格BePure专注于标准物质的研发和生产已有20多年,推出过多种重金属污染检测的相关标准物质,如土壤中重金属(铅)、土壤中的重金属 砷铜镍铅镉汞等,帮助您快速完成检测项目。
  • 青岛成功开发水质重金属监测仪
    工作人员展示仪器  含重金属离子的废水是对水污染最严重、对人类危害最大的工业废水之一。12月9日记者了解到,青岛市正开发能自动监测水中重金属元素含量,并在线发送数据的仪器——水质重金属监测仪。这种机器可监测多种地表水和工业废水中含有的重金属离子,给环保帮上大忙。  12月10日,记者来到位于城阳区的水质重金属监测仪生产厂家,在厂房里看到了两个高约一点五米的“柜子”,这就是水质重金属在线自动监测仪。两台机器的外观相似,都由上下两个柜门、一个小型显示屏、一个类似自动取款机凭条口的小口组成。“两台仪器都是监测水中重金属元素浓度的,原理不同。左边利用的是光学法,右边利用的是电化学法。”该厂研发部的工作人员陈丽华告诉记者。  “光学法”指的啥?“不同的重金属离子和不同的药品反应,会生成新的物质,这些物质对各种光强的光吸收不一样。通过分析生成物对光的吸收量,就可以监测出离子浓度了。”陈丽华介绍说。电化学法就是把需要监测的水样中加上一些化学试剂,再插上电极,通电之后,这个构造相当于一个电池,会产生电压。离子的浓度不同,产生的电压也不同,通过已经设定好的浓度和电压的曲线关系来计算重金属离子的浓度。  记者看到,两台机器中间都固定着一个小容器,上方是两个泵,下方有五个贴着小标签的阀门,各个部件由细小的管子上下连通。陈丽华告诉记者,泵用来抽取水样和储存在下面“柜子”里的化学药品,打开阀门,泵会自动把需要的药品和水样抽到中间的反应杯里,结果经检测会在屏幕上显示。  陈丽华告诉记者,检测完之后的水样,如果重金属离子浓度大,会经过处理再排放出去,如果达标直接通过废水口排出。陈丽华告诉记者,“这台仪器可自动完成取水、反应、检测、显示结果等多个步骤,同时它相当于一台小电脑,把数据自动发送到外部连接的电脑上,随时报告水源地的重金属浓度,监测水质。”  “只要是排放废水的企业,这台机器都适用,环保局等环境监测单位也会用到它。”陈丽华告诉记者。据了解,目前电化学法在线自动监测仪正在改进中,预计2011年投入生产,光学法在线自动检测仪已经在东北、上海等地开始发挥作用了。
  • 重金属镍在线监测最新应用动态来啦!
    1背景介绍 镍具有磁性和良好的可塑性和耐腐蚀性,广泛用于飞机雷达等各种军工制造业、民用机械制造业和电子电镀工业等。然而,镍摄入过多会导致人体皮肤炎、呼吸器官障碍及呼吸道癌症,也会对环境产生较大的污染。正因为此,镍被列为第一类污染物,国家制定了相应的标准,严控涉镍企业排出污水中总镍污染物的浓度。因此镍指标的监测非常重要。表1 相关水环境质量标准和行业标准规定的镍排放限值2镍的在线监测技术目前镍的测量方法主要有原子吸收分光光度法(AAS)、电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-AES)、化学比色法和电化学分析法,但是AAS、ICP-MS等方法无论是设备费用还是设备运维维护费用,成本较高。目前国内外真正应用于水中金属镍在线监测技术主要是化学比色法和电化学分析法。化学比色法:比色法还可分为丁二酮肟分光光度法和双硫腙分光光度法。丁二酮肟分光光度法准确度高、重现性好,测量范围较宽,仪器结构和操作较为简单。但是灵敏度较低,合适于高浓度废水中镍的检测——例如电镀废水、采矿废水和钢铁冶炼废水等在线监测。部分厂家采用双硫腙分光光度法,但是双硫腙试剂是剧毒品,采购困难。电化学分析法:检测限低,可以对水中μg/L数量级的镍进行精确地定量分析。但是其检测条件苛刻,仪器操作难。表2 国内和行业水质中镍的测定标准方法3镍在线监测痛点1. 目前市场上很多产品对高色度、浊度和成分复杂的水样的预处理和抗干扰能力较差,测量不准确。2. 检测出的并不是水样中的总镍含量,只是简单的游离态镍(镍离子),消解不完全或无消解过程,测量数据不可靠(仅能测准标液)。3. 定量下限较高,无法满足城镇污水处理厂总镍的排放要求。4应用情况监测设备:PhotoTek 6000 总镍水质自动在线监测仪应用场景:近年来,电镀在冶金、机械、电子等领域不断有新的配套进展,然而,电镀生产过程中产生了包括酸碱废水、含氟废水、金属废水、有机废水、氰化物废水等。这些废水必须经过处理达标后才能排放。长期以来,电镀行业一直是生态环境部门重点监管和规范整治的污染行业之一。浙江省某电镀园区采购了数台PhotoTek 6000 总镍在线监测仪,用于进出口废水总镍的监测。去年9月安装至今,用户反馈仪器稳定运行,测量数据准确。定期核查标液,结果偏差在3%之内。应用现场和运行数据如下:应用现场图 图2 PhotoTek 6000总镍在线监测仪现场运行部分数据关于朗石朗石是水质监测领域公认的技术领先企业,自成立以来一直潜心研究重金属监测技术:阳极溶出伏安法、化学比色法、冷原子吸收法以及适应各种应用场景的前处理技术。产品系列齐全,环境保护产品认证证书齐全,监测参数包括铅、汞、镉、总铬、六价铬、砷、锌、铜、镍、锰、银、铁等,覆盖了国内现阶段重点关注的重金属污染物,可以满足不同场景的应用,为了满足运维需要,还推出了WEIMS智慧运维平台,欢迎前来咨询。
  • 农产品重金属快速检测关键技术理论取得重要进展
    工业废气和工业废水中含有大量的重金属,没有经过处理后直接排放到土壤、水、气的生态环境中会对生态环境造成巨大的危害。资料显示,环境(土、水、气)中的污染物主要以镉(7%)、镍(4.8%)、砷(2.7%)、铜(2.1%)、汞(1.6%)、铅(1.5%)、铬(1.1%)等污染为主。资料显示,我国土壤点位总超标率为16.1%,其中1.1%为重度、1.5%为中度;耕地土壤点位超标率为19.4%,其中重度1.1%、中度1.8%。土壤、地表水和地下水中未消解的重金属进入作物和水产品,这些产品被人类食用后这些重金属在人体内累积,会对人的身体健康造成严重损害,近些年频发来的食品安全事件就是重金属污染的一个缩影。近年来农产品特别是粮食、蔬菜、水产品的重金属污染问题备受关注,但是常规的重金属检测技术耗时、费力,无法现场快速分析,难以在田间地头和生产一线及时发现重金属污染,从而采取有效防控措施。其中,电热蒸发技术(ETV)可以直接分析固体样品,无需复杂样品处理,具有快速、绿色、高效的特点。但是,该技术一直困囿于目标元素传输效率低、复杂样品基质干扰,从而影响重金属的精准测定。近日,中国农业科学院农业质量标准与检测技术研究所“农产品质量安全风险评估”创新团队,在重金属快速检测的关键技术理论方面取得重要进展,首次提出了基于电热蒸发微等离子体的重金属元素传输增强技术,揭示了重金属原子及其纳米颗粒物在传输过程中的形态演变机理。该研究首次开发了基于介质阻挡放电的微等离子体传输增强技术,电热蒸发导入砷元素的传输效率达到100%,并利用微等离子体石英阱技术,实现固体进样的基体干扰消除;同时,揭示了重金属砷在蒸发、传输、捕获和释放过程中的分子原子形态演化机理,为进一步实现重金属速测仪器的现场化和小型化提供了基础理论和技术储备。
  • 废水中余氯的检测方法
    余氯是指水中加氯后会与水中的细菌、微生物、有机物等作用,这个过程会消耗一些氯,一段时间后水中还剩下一些氯。这些氯通常被称为余氯,通常是游离氯。一般饮用水、自来水、泳池池水、医疗废水等都需要检测余氯,余氯含量过高,对人体健康有较大的危害,因为其可以刺激眼鼻喉等呼吸道系统,浓度过高还会麻痹中枢神经,长期饮用或接触含余氯的水也会慢性中毒,致癌。基于以上危害,对于水中余氯我们要如何实现快速检测呢?解决方案检测方法:DPD法依据标准:HJ586-2010 水质游离氯和总氯的测定 N.N-二乙基对苯二胺(简称:DPD法) 分光光度法方法原理:在PH6.2-6.5条件下,游离氯直接与(DPD)发生反应,生成红色化合物,在相对应的波长下,采用分光光度法测定其吸光度。检测仪器:SH-3900A型多参数水质分析仪SH-3900A型多参数水质分析仪用于水样检测的智能仪器,可以快速、准确的检测水中主要污染物,如氨氮、总磷、总氮、化学需氧量(COD),各类阴离子如氯化物、硫酸盐、硝酸盐、亚硝酸盐、氰化物、挥发酚、余氯、总氯等,重金属元素等,广泛应用于环境、医疗、卫生、食品、造纸、印染、石化、冶金等行业的水质检测。仪器特点:◆显示界面:8寸彩色触屏液晶显示,中文菜单人机交互,数据直读;◇仪器光源:进口光源,稳定可靠,自动开启与关闭,延长使用寿命;◆测试方式:支持比色管360°旋转比色及4联池比色皿自动比色两种测定方式;◇项目参数:支持所有水质常规项目及可定制化扩展项目;◆曲线调用:分类别标准曲线,简单直观,支持客户自定义及编辑曲线;◇曲线校准:具有标样一键校准功能;◆数据编辑:可对测量数据实时编辑及保存,方便客户整理检测结果;◇仪器校准:开机自动校准及预热;◆数据平台:支持物联网功能,数据实时上传至盛奥华云数据服务中心,方便客户日常管理及分析,为污水处理的平稳运行提供数据支持;◇光学结构:采用凹面闪耀全息光栅,性能卓越,3秒内切换至任意波长;◆领域扩展:支持光度计功能,可实现光度测量及全波长扫描功能;◇软件升级:可实现软件版本远程升级;◆散热方式:优化结构,配以大风量静音风扇高效降温,延长仪器使用寿命;◇流程优化:配套专用检测试剂及配件,减少客户操作步骤,简便安全;技术参数:性能参数物理参数波长范围190-1100nm屏幕参数8寸高清触摸彩屏光路稳定性≤±0.002Abs/h比色方式比色杯(皿),比色管光度重复性0.2%T用户曲线>240条杂散光≤0.005%T数据传输远程物联网光谱带宽2nm打印方式内置热敏型光度准确性±0.5%T操作界面中文AOS操作波长分辨率1nm仪器电源AC(220±10%)50Hz波长准确度±1nm使用环境温度0-50℃湿度10-90%波长重现性0.2nm仪器尺寸460*320*350mm吸光度重现性±0.003Abs仪器重量约20kg吸光度准确性230-900nm±0.005abs额定功率60W序号测定项目测量范围序号测定项目测量范围1COD5-6000mg/L(分段)21氰化物0-0.5mg/L2氨氮0.01-100mg/L(分段)22磷酸盐0-0.5mg/L3总磷0.001-8mg/L(分段)23铜0-2.5mg/L4总氮0.01-100mg/L(分段)24铁0-5mg/L5色度0-400度25锌0-1mg/L6浊度0-200NTU26镍0-5mg/L7悬浮物0-200mg/L27银0-1mg/L8硫化物0-1mg/L28锰0-5mg/L9总油0-16mg/L29总铬0-2mg/L10余氯0-3mg/L30六价铬0-2mg/L11苯胺0-2mg/L31氨氮(水杨酸)0-1mg/L12挥发酚0-2.5mg/L31硝酸盐氮(可见光)0-10mg/L13高锰酸盐指数0-10mg/L(分段)33总氮(可见光)0-10mg/L14硝酸盐氮(紫外)0-10mg/L34总硬度10-600mg/L15亚硝酸盐0-0.2mg/L35二氧化氯0-3mg/L16硫酸盐1-150mg/L36铝0-0.25mg/L17氟化物0-1.5mg/L37硅酸盐0.2-40mg/L18臭氧0-2mg/L38二氧化硅0.2-30mg/L19总氯0-3mg/L39氯离子10-400mg/L20甲醛0-4mg/L40阴离子表面活性剂0.1-2.5mg/L检测试剂:余氯试剂量程:0-3mg/L应用范围:适用于地表水、工业废水、医疗废水、生活污水、中水和污水再生的景观用水中的游离氯的测定。实验步骤:1、向试管1/2中加入水样2、分别加热专用试剂1和试剂2 0.5ml3、试管1/2中分别加入纯净水5ml4、摇匀调出曲线57号5、试管外壁擦干净后放入仪器中读数
  • 国产原子光谱检测污水重金属新方法通过验收
    上海市科委于2010年11月23日对中国科学院上海硅酸盐研究所承担的“改性介孔材料分离富集和原子光谱鉴定污水体系重金属的新方法研究”(项目编号:09142201800)项目组织并通过了验收。  该项目是上海市科委2009年度投入的十项国产科学仪器应用新方法之一。是基于上海光谱仪器有限公司研发生产的流动注射分析系统与SP-3801型火焰原子吸收光谱仪平台上研发的一种针对污水与废水中重金属检测的新方法。  专家组听取了项目总结报告、技术报告和验证报告,审阅了有关技术资料后一致认为:通过改性获得介孔材料,利用一步合成法进行改性后对Hg(Ⅱ)有较高的选择性吸附 基于改性的介孔材料,建立了国产流动注射固相萃取与火焰原子吸收光谱法联用技术实现了在线分离富集Cu(Ⅱ) 、Cr(Ⅵ) 、Cd(Ⅱ)、Hg(Ⅱ)等痕量分析方法 建立了“胺基改性介孔材料对废水中Cr(Ⅵ)在线分离吸附与火焰原子吸收光谱法测定”的方法。该分析方法具有低成本、快速和绿色环保的特点,并能显著提高检测灵敏度 完成促进了国产流动注射分析系统与火焰原子吸收光谱仪联用技术的发展,将有利于拓展国产仪器的应用。项目研究成果在国内核心学术期刊和学术会议上已发表论文3篇。
  • 哈希:重金属在线监测仪市场或将迎来爆发
    水质重金属在线监测仪是现场自动监测水中重金属污染物含量的在线监测仪器,该仪器市场是目前环境监测仪器市场中最引人注目的新兴市场之一。为让广大业内人士了解重金属在线监测仪技术发展情况,各品牌产品的特点,以及该类仪器目前的市场情况,仪器信息网编辑将陆续走访或采访水质重金属在线监测仪国内外主流供应商。  日前,美国哈希公司发布了HMA-TCR总铬在线分析仪、HMA-CR6六价铬在线分析仪、HMA-总铜在线分析仪3款重金属在线分析仪,仪器信息网编辑(以下简称:Instrument)就这3款新品采访了该公司中国区负责水质重金属在线监测仪产品线的产品经理周恒安。  Instrument:贵公司此次推出的重金属在线分析仪,为什么选择光度法,而不是阳极溶出法?  周恒安:在产品开发的前期,哈希对两种方法进行了很多比较,包括技术上的比较与市场需求方面的比较。我们觉得光度法比较符合目前的需求。光度法与阳极溶出法,其实各有各的优缺点,但综合评比起来,在总铬、六价铬、总铜的在线检测上,光度法的优势更明显。  阳极溶出法比较容易受到干扰,测到的数据比较不稳定,电极需要经常更换,如果是用于污染源废水监测的话,估计每半年就要换一次。用户需要打磨电极,电极打磨不好的话,也会影响到测试的准确度。目前阳极溶出法使用的电极基本是汞电极,电极本身含有汞,会带来较严重的二次污染。  相比而言,光度法的运行成本比较低,量程更宽,适用范围也比阳极溶出法更广,既可以应用在地表水,也可以用在废水排放口。  阳极溶出法虽然可以同时测多个参数,但是我们在对用户进行调查时发现,用户对多参数的重金属在线监测仪需求并不大。地表水监测是需要多参数的仪器,但数量更多的工业用户其实只需要针对特定参数的仪器,比如电子行业的用户需要测镍,或者只需要测铅,电镀行业只需要测总铬或者总铜。这些工业用户如果购买基于阳极溶出法的重金属在线分析仪,花钱多还不说,有的参数还用不上。所以综合下来,光度法会比较有用些。  Instrument:贵公司未来是否会推出基于阳极溶出法的重金属在线分析仪?  周恒安:对于哈希公司来说,我们追求的目标是提供给客户测量准确、操作安全简单且维护量低的产品。基于上述理念,我们会综合评估所有可能的测量方法及技术,选择其中我们认为最优的、能够给客户带来最大利益的方法开发成产品推向市场。目前在线重金属检测领域,可用于重金属检测的方法不仅仅包括光度法、阳极溶出法还包括X射线荧光法、原子吸收法、离子选择性电极法。对于后续的重金属产品的开发,我们会综合评估上述所有方法,找出最优。  Instrument:光度法测量结果的准确性可能会受到样品的浊度、色度、掩蔽剂等的影响,贵公司此次推出的新品是如何克服这些不利影响的?  周恒安:HMA系列(六价铬除外)均配有高温消解装置,能彻底消解水样,降低水中杂质及有机物干扰,能更好消除浊度、色度对测量的影响。我们曾经用浊度、色度很高的水样进行过实验,消解后水样变得很澄清。如果色度很高本身是因为水中重金属浓度过高导致,此时可以先稀释后测量,HMA系列本身是带有自动稀释功能的。而且仪器会自动选择稀释倍数,保证测量结果的准确性。  至于掩蔽剂的影响,主要通过仪器设计和试剂配方来消除。我们的试剂配方是哈希化学家们多年经验的沉积,并经过多次实验的优化。我们有数据证明我们的试剂配方可以消除各种常见的隐蔽剂的影响。我们会在产品使用手册中附带试剂配方,以方便用户自动调制试剂。  Instrument:为什么会选择总铬、六价铬、铜这三种参数,而不是汞、铅、镉、砷、锌、镍?  周恒安:这三款产品是专门针对中国的法律法规为中国用户开发的。之所以先推出这三种参数的监测仪器,是因为这三个参数的产品只需要在目前哈希成熟的产品平台上稍作改良就可以满足市场需求并成功上市了,且目前这三种参数的重金属在线监测仪的市场需求可能更旺盛。哈希后续也会推出监测镍、锰、铅、镉、砷等其他参数的产品。  Instrument:之前许多仪器厂商已经先于哈希推出了重金属在线分析仪,有的还取得了不错的销售业绩与市场份额。哈希在此时推出新产品是否稍微有点晚?  周恒安:其实就目前市场和法规的情况来看,推出时机倒还不算晚。虽然现在市场上有很多此类仪器,但国家目前还没有就此类仪器推出规范。因为没有规范去检验仪器,所以市面上大家都是各说各的好,市场并不规范,关键在于谁家的仪器能真正做到准确测量、稳定运行。这点哈希有信心在产品上市后取得优势。  Instrument:此次所推出新品的市场竞争优势是什么?哈希准备如何打开市场局面?  周恒安:哈希用了大量时间调研客户的需求,评估选择最优化的检测方法,因此虽然较其他品牌推出的时间稍晚,但我们还是有自身优势的。这一系列仪器零部件的选用,测量流程的设计,以及所用试剂的研发,都紧紧围绕着仪器的准确性展开。经过哈希多个研发中心综合评价,此次推出的这三款重金属在线分析仪在准确性与稳定性上具有优势。这三款产品的定价也考虑到目前市场上的情况,定价绝对合理,是一款拥有高性价比的产品。  哈希已经开始推广这些新品,一些工业企业已经在试用,同时我们也会通过参加各种活动深入环保单位去推广我们产品。另外,这些产品将搭配着哈希本来比较全的产品线一起出售,相信还是有机会在市场中占有一席之地的。  Instrument:未来几年(“十二五”期间),重金属在线监测仪的市场容量会有多大?  周恒安:按照相关“十二五”规划,这五年间国家会投入750亿元去治理重金属污染,用于相关清洁工艺的改造、监测设施建设等方面。我们预计750亿元中预计有至少30%的资金是用于水质分析仪器的购置,这还不包括企业自身在这方面的投入。  就在线监测而言,该类仪器的市场容量主要看国家政策导向以及地方政府对这些政策执行的力度有多大。我们乐观地估计,政府层面的资金投入预计有十分之一是用于购置重金属在线监测仪的。  Instrument:目前重金属在线监测仪市场似乎相对“寂静”,未来是否会迎来市场爆发?如果会有爆发,预计什么时候能够到来?  周恒安:目前市场相对而言还是寂静。未来如果国家对重金属污染防治抓得紧,确实是有爆发的可能。但如果相关法规落实不到位,那么这个市场就可能有平稳的、渐进式的增长。我们估计市场爆发的可能性还是很大的。  这两年,市场对重金属在线监测仪的需求会慢慢地增加。但从国家政策的颁布,到落实到地方政府,地方政府再制定相应的措施,最后再落实到环境监测部门与工业企业,是需要一个过程的。重金属在线监测是这个过程的最末端,所以如果按照这个流程,该类仪器的市场预计会在后面两年有较大增长。(撰稿编辑:杨丹丹)  附录1:美国哈希公司  http://www.hach.com.cn   http://hach.instrument.com.cn/   附录2:哈希公司重金属在线分析仪介绍  http://www.hach.com.cn/qita/zhongjinshu.shtml   附录3:水质重金属监测仪专场  http://www.instrument.com.cn/zc/HeavyMetal.asp
  • 地表水重金属专项监测方案征求意见
    关于征求《地表水重金属专项监测方案》意见的通知  总站水字[2011]177号  内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省、重庆市、贵州省环境监测中心(站):  为配合《重金属污染综合防治“十二五”规划》的实施,结合2011年6月在京召开的重金属专项监测研讨会的有关精神,我站编制了《地表水重金属专项监测方案》(征求意见稿)(详见附件)。方案中监测断面由各省环境监测中心(站)根据重点区域情况设置,同时总站增加了部分重点区域内的国控监测断面(含“锰三角”地区15个监测断面),共计299个。  现就《地表水重金属专项监测方案》向你站征求意见,同时,请你站补充监测断面表中相关断面的具体地理位置(表中指标项为“所在地区”具体到某县、某乡镇、某村)和经纬度(详见方案中表5)。请于8月21日前,将意见或建议电子版发送至总站水室邮箱(Email:water@cnemc.cn),纸质版请邮寄至总站水室。  根据安排,我站拟定于今年9月份正式开展地表水重金属专项监测工作,具体开展时间和工作安排,我站将另行通知。  联系人:姚志鹏 电话:010-84943091  附件:《地表水重金属专项监测方案》(征求意见稿)  二〇一一年八月五日  地表水重金属专项监测方案  (征求意见稿)  中国环境监测总站  二〇一一年八月  一、 目的  为配合《重金属污染综合防治“十二五”规划》(以下简称“规划”)的实施,结合重点地区、重点企业重金属排放状况,以全面、准确、客观地反映重点地区地表水重金属污染状况为目的,通过开展重点地区地表水重金属专项监测工作,及时发现重点地区地表水重金属污染状况和潜在风险,为重金属环境治理提供数据支持和技术支撑,制定本方案。  二、 监测范围和期限  监测范围主要是《重金属污染综合防治“十二五”规划》中重点省份(内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省)的重点地区(名单见附表1)、“锰三角”地区和其他存在重金属污染风险的地区,同时增加重金属经常超标的国控地表水监测断面和饮用水源地断面。  地表水重金属专项监测工作,原则上由地市级环境监测站承担监测任务,结合《重金属污染综合防治“十二五”规划》开展为期5年的专项监测工作。  三、 监测断面设置原则  监测断面(点位)设置原则上采用现有国控、省控、市控断面,各省环境监测中心(站)结合本辖区内重点区域污染源排放情况设置监测断面(点位),主要原则如下:  1、重点区域内受现有或潜在重金属污染风险的主要干流、湖(库)体及一级支流的的国控、省控、市控断面   2、重点区域内受重金属污染潜在影响的河流型或湖库型的集中式饮用水源地  3、重点区域内受重金属重点污染源影响的河流设置监测断面。  4、将“锰三角”监测断面纳入到重金属专项监测之中   四、 监测指标  开展重金属监测工作前,各承担重金属监测工作的单位每年开展一次重金属全分析监测工作,筛选重金属特征污染物,作为当年度的选测指标。  1、监测指标  监测指标包括必测和选测指标,必测指标为:铅、汞、镉、铬(六价)、砷 选测指标:铜、锌、硒、镍、钒、铊、锰、钴、锑或其他当地特征污染物。  2、每年在枯水期开展一次重金属全分析工作,监测指标为:铅、汞、镉、铬(六价)、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑及当地特征污染物。  3、底泥监测,每年开展一次底泥全分析监测,监测指标与水体相同,监测结果不参与评价,作为水体中重金属含量的参考。  五、 监测方法  1.分析方法  我国重金属监测的标准分析方法主要以分光光度法和原子吸收分光光度法为主。由于我国环境监测仪器的分析能力近年来有较大提高,因此本工作主要推荐使用国内应用较多的原子吸收法、原子荧光法以及较先进的电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体-质谱法(ICP-MS)作为分析方法。  当选择原子荧光法、原子吸收法、电感耦合等离子体发射光谱法(ICP-AES)分析地表水中重金属指标时,可依据我国水环境中重金属监测常用标准分析方法进行(表1、表2)。由于我国目前缺少电感耦合等离子体-质谱法(ICP-MS)的现行标准分析方法,故选择电感耦合等离子体-质谱法分析地表水中重金属指标时,本监测方案推荐统一采用EPA标准分析方法 200.8(1994)《Determination Of Trace Elements In Waters And Wastes By Inductively Coupled Plasma - Mass Spectrometry》(电感耦合等离子体-质谱法测定水和废物中痕量元素)。  必测与选测重金属指标的推荐标准分析方法见详见表1、表2。  表1 5种必测重金属指标推荐标准分析方法监测项目监测方法方法来源铅螯合萃取-火焰原子吸收分光光度法GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法石墨炉原子吸收分光光度法水和废水监测分析方法(第四版增补版)电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8汞冷原子吸收分光光度法HJ 597-2011水质 总汞的测定 冷原子吸收分光光度法冷原子荧光法HJ/T 341-2007 水质 汞的测定 冷原子荧光法(试行)原子荧光法水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8镉螯合萃取-火焰原子吸收分光光度法GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法石墨炉原子吸收分光光度法水和废水监测分析方法(第四版增补版)电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8铬(六价)二苯碳酰二肼分光光度法GB7467-87水质 六价铬的测定 二苯碳酰二肼分光光度法砷氢化物发生 原子吸收分光光度法水和废水监测分析方法(第四版增补版)原子荧光法水和废水监测分析方法(第四版增补版)电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8表2 9种选测重金属指标推荐标准分析方法监测项目监测方法方法来源铜螯合萃取-火焰原子吸收分光光度法GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法石墨炉原子吸收分光光度法水和废水监测分析方法(第四版增补版)电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8锌火焰原子吸收分光光度法GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8硒石墨炉原子吸收分光光度法GB/T 15505-1995水质 硒的测定 石墨炉原子吸收分光光度法原子荧光法水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8镍电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8钒石墨炉原子吸收分光光度法GB/T 14673-1993水质 钒的测定 石墨炉原子吸收分光光度法电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8铊萃取石墨炉原子吸收分光光度法水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8锰火焰原子吸收分光光度法GB 11911-89水质 铁、锰的测定 火焰原子吸收分光光度法电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8钴电感耦合等离子体发射光谱法(ICP-AES)水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8锑原子荧光法水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS)EPA 200.8  2.前处理方法  2.1 样品采集  样品采集后均现场沉降30分钟,取上清液保存,24小时内回实验室分析。如现场不具备沉降条件的,可在24小时内回实验室沉降30分钟后取上清液测定。24小时内不能及时分析的,需酸化保存。  2.2 样品制备  样品均按照水和废水监测分析方法(第四版增补版)中前处理要求(除非国标有特殊规定要求),消解后上仪器进行测定。所有前处理消解过程中均不加氢氟酸。选用ICP-MS方法分析地表水中重金属元素时,前处理过程按照EPA200.8方法中相关要求进行消解处理,详见表3。  表3 ICP-AES与ICP-MS分析样品的前处理方法监测项目监测方法前处理方法方法来源 铅、镉、砷、铜、锌、镍、钒、锰、钴电感耦合等离子体发射光谱法(ICP-AES)取一定体积的均匀样品(自然沉降30min取上层非沉降部分),加入(1+1)硝酸若干毫升(视取样体积而定,通常每100mL样品加5.0mL硝酸)置于电热板上加热消解,确保溶液不沸腾,缓慢加热至近干取下冷却,反复进行这一过程,直到试样溶液颜色变浅或稳定不变。冷却后加入硝酸若干毫升,再加入少量水,置电热板上继续加热使残渣溶解。冷却后用水定容至原取样体积,使溶液保持5%的硝酸酸度。水和废水监测分析方法(第四版增补版) 铅、汞、镉、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑电感耦合等离子体-质谱法(ICP-MS)前处理时,将水样摇匀,量取(100±1)ml水样于250ml烧杯中。加入2ml(1+1)硝酸和1.0ml(1+1)盐酸于上述烧杯中。电热板(置于通风柜中)上加热消解,加热温度不得高于85℃。消解时,烧杯应盖上带架的表面皿,或采取其他措施,保证样品不受通风柜周边的环境污染。在85℃持续加热,直至样品蒸发至20ml左右。在烧杯口盖上表面皿,以减少过多的蒸发,并保持轻微持续回流30min。待样品冷却后,将其全部转移至50ml容量瓶或A级具塞比色管中,用试剂水定容,加盖,摇匀保存。若消解液中存在一些不溶物可静置过夜或离心以获得澄清液。样品在上机前,应调节水样中氯离子的浓度,取20ml已制备的样品于50ml容量瓶中,用试剂水定容,混匀若溶液中溶解性固体含量>0.2%,需要进一步稀释,以防固体颗粒堵塞采样锥和截取锥。若执行的是直接加入程序,内标在上机前即加入样品中。因为无法估计不同基体对被稀释溶液稳定性的影响,所以一旦样品前处理完毕,应尽快进行分析。EPA 200.8   3.方法选择原则  3.1各承担重金属监测工作单位依据现有实验室仪器条件,选择相应的重金属标准分析方法(表1,表2),具备ICP-MS与ICP-AES的监测单位可优先选用推荐的ICP-MS与ICP-AES标准分析方法,监测项目和前处理步骤见表3及方法文本。  3.2 若ICP-AES、火焰原子吸收分光光度法等方法检出限高于或接近地表水环境质量标准《GB3838-2002》中该重金属标准限值时,应选择检出限较低,灵敏度较高的石墨炉原子吸收分光光度法或ICP-MS方法。  3.3 若承担监测的单位不具备实验室仪器条件的,也可选用分光光度方法(国标)进行分析。  六、 监测时间频次  手工监测:每月1—10日 逢法定假日监测时间可后延,最迟不超过每月15日。每月开展一次。  重金属全分析在每年枯水期开展一次。  七、 数据报送及报告编制  各有关环境监测站20日前向相关省(自治区)环境监测中心(站)报送水质监测数据。数据报送参照附表3、4,各省(自治区)环境监测中心(站)审核后,在每月25日前暂以excel格式数据通过FTP(地址ftp://11.200.0.101)报送中国环境监测总站水室。“锰三角”地区监测结果按照原有的方式报送。  重金属全分析结果通过FTP报送总站水室。  八、 数据报送格式  报送监测数据时,若监测值低于检测限,在检测限后加“L”,未监测项目填写“-1”,超标项目由相关监测站组织核查,并向总站报送超标原因分析,数据报送格式表见附表4、5。  九、 质量控制和保证  监测数据实行三级审核制度,省站对报送的监测结果负责。  质量保证按照《地表水和污水监测技术及规范》(HJ/T 91-2002)及《环境水质监测质量保证手册》(第二版)有关要求执行。  十、 附表  表1:重金属污染重点区域序号省份重点区域1内蒙古巴彦淖尔乌拉特后旗2赤峰巴林左旗3赤峰克什克腾旗4江苏无锡惠山区5泰州姜堰市6泰州靖江市7泰州海陵区8浙江温州鹿城区9温州平阳县10宁波鄞州区11宁波余姚市12嘉兴海宁市13台州玉环县14湖州长兴县15江西赣州大余县16赣州南康市17上饶市上饶县18上饶弋阳县19赣州章贡区-赣县20南昌进贤县21赣州崇义县22河南焦作济源市23三门峡灵宝市24安阳龙安区25洛阳栾川县26焦作孟州市27三门峡义马市28周口项城市29湖北黄石市区30黄石大冶市及周边31襄樊谷城县32十堰郧县33荆门钟祥市34孝感大悟县35湖南株洲清水塘及周边地区36湘潭竹埠港及周边地区37郴州三十六湾及周边地区38长沙七宝山地区39娄底冷水江地区40岳阳原桃林铅锌矿及周边地区41意义按桃江安化涉砷锑地区42怀化沅陵、辰溪、溆浦等涉砷镉地区43邵阳邵东县44永州东安县45张家界慈利县镍钼矿开采区46常德石门县雄黄矿地区47广东韶关乐昌市48韶关浈江区49清远清城区50珠三角电镀区51韶关大宝山矿区及周边区域52韶关凡口铅锌矿周边53汕头潮阳区54广西河池金城江区55河池南丹县56河池环江县57四川凉山会东县58凉山会理县59德阳什邡市60凉山西昌县61内江隆昌县62宜宾翠屏区63绵阳安县64云南昆明东川区65红河个旧市66曲靖会泽县67怒江兰坪县68文山马关县69昆明安宁市70曲靖陆良县71保山腾冲县72红河金平县73玉溪易门县74陕西安康旬阳县75宝鸡凤县76渭南潼关县77宝鸡凤翔县78商洛商州区79汉中略阳县80汉中宁强县81商洛洛南县82商洛镇安县83宝鸡陈仓区84甘肃白银市85金昌金川区86陇南成县87酒泉瓜洲88陇南西和县89陇南徽县90嘉峪关甘肃矿区91酒泉玉门市92酒泉肃北县93西宁湟中县94海西格尔木市95西宁城东区96西宁大通县97吴中青铜峡市98锰三角地区贵州松桃县、重庆秀山县、湖南花垣县  表5 重金属监测断面表(略)  表6 锰三角地区监测断面表(略)  表7 河流监测断面数据报送格式表(略)  表8 湖库监测点位数据报送格式表(略)
  • 苏州采购7套在线ICPMS用于监测水中重金属
    p  对于水质重金属分析仪,目前市场上大部分产品采用分光光度法或者阳极溶出伏安法,但是近期苏州市吴江区环境保护局采购了七套水中锑等重金属自动监测站,此次采购的产品采用ICPMS原理,总中标金额1350万元。/pp  详情如下:/pp  一、项目名称及项目编号:/pp  项目名称::水中锑等重金属自动监测站,7套(本项目不接受进口产品投标,具体要求详见招标文件)。/pp  项目编号:SZYC2018-WJ-G-014-B/pp  二、采购项目的简要说明:/pp  水中锑等重金属自动监测站,7套(本项目不接受进口产品投标,具体要求详见招标文件)。采购预算: 1380.00万元。/pp  五、中标信息:/pp  中标单位:苏州远正科学仪器有限公司/pp  中标单位地址:苏州工业园区东长路18号中国节能环保科技产业园41栋903/pp  中标金额:壹仟叁佰伍拾万元(13500000.00)/pp  中标项目内容:谱育科技SUPEC7010水中锑等重金属自动监测站7套(含二年运维服务,4套简易站房)。/p
  • 岛津推出海水中微量重金属元素的直接分析方法
    目前,我国水体重金属污染问题十分突出。重金属通过矿山开采,金属冶炼,金属加工及化工生产废水,化石燃料的燃烧,施用农药化肥和生活垃圾等人为污染源,以及地质侵蚀,风化等天然源形式进入水体。重金属具有毒性大,在环境中不易被代谢,易被生物富集并有生物放大效应等特点,不但污染水环境,也严重威胁人类和水生生物的生存。   污染海洋的重金属元素主要有汞、镉、铅、锌、铬、铜等。海域受重金属污染,治理困难,应以预防为主,控制污染源;改进生产工艺,防止重金属流失,回收三废中的重金属,切实执行有关环境保护法规。对海域进行监测和监视是防止海域受污染的重要措施。 岛津公司长期关注环境污染问题,已拥有丰富的重金属元素检测手段和应用经验,为各国用户提供了一系列的相应解决方案。此次,为您介绍岛津公司推出的基于电加热原子吸收法的海水中微量元素的直接分析方法。在分析中使用的石墨炉原子化器GFA-EX7采用数字温度控制和数字气体控制,通过改造石墨炉和管道,可高精度地分析基体含量高的试样。本文介绍海水中重金属微量元素(Pb、Cd 、Cr)的分析。 有关“岛津电加热原子吸收法海水中微量元素的直接分析”的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_162812.htm。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 水质六价铬检测仪-一款检测水质重金属铬的仪器【恒美新品】
    点击此处可了解更多详情→水质六价铬检测仪 水质六价铬检测仪能够迅速准确地检测水中六价铬的浓度,使用户能够及时了解水质状况,并采取相应的措施进行处理。水质六价铬检测仪采用先进的分析技术,能够对水样中微量的六价铬进行精准测量,确保测试结果的准确性和可靠性。 水质六价铬检测仪广泛应用于环境监测领域,可用于对工业废水、地下水、河流湖泊等水体中的六价铬进行实时监测,帮助环保部门及时发现和解决环境中六价铬超标问题。水质六价铬检测仪可用于监测自来水中的六价铬浓度,确保饮用水的安全性。当六价铬超标时,可以及时采取相应的水处理措施,保证居民饮用水的质量。 水质六价铬检测仪也被广泛应用于工业生产中,特别是涉及到铬盐、电镀、皮革、印染等行业。通过对工业废水中六价铬的监测,可以帮助企业合理控制六价铬排放,避免对环境造成污染。 水质六价铬检测仪主要检测水质六价铬重金属含量指标,兼具智能数据分析功能,图表、列表显示数据,分析一目了然;高清晰度彩色液晶触摸显示屏,Android智能操作系统,中文显示界面,中英文键盘,人性化操作,使用更简单。
  • 饮用水中痕量重金属的快速检测方法介绍
    p style="text-align: center "strong饮用水中痕量重金属的快速检测/strong/pp style="text-align: center "上海仪电科学仪器股份有限公司/ppstrong摘要:/strong饮用水中痕量重金属的快速检测是分析测试技术上的一个难点。本文尝试使用阳极溶出伏安法,实现了饮用水中痕量重金属离子的检测。结果显示,饮用水中痕量的铅、镉和汞离子可以通过阳极溶出法进行检测,其检测下限可以达到ppb级。与其他分析测试技术相比,阳极溶出伏安法具有设备体积小,操作简单,使用成本低廉等独特优点,使得其在饮用水的现场快速分析中拥有广阔的应用前景。/ppstrong关键词:/strong饮用水,重金属,阳极溶出伏安法/pp /ppstrong一、实验原理/strong/pp长期以来电化学溶出伏安法一直被认为是检测水环境中痕量重金属的一个有效方法[8]。溶出伏安法是基于电化学原理进行的(如图1)。在一定电压条件下,先将溶液中的待测元素通过还原反应沉积在电极表面,随后通过施加反向电压,使沉积在电极表面的重金属发生氧化反应而溶解,形成峰电流,峰电流的大小或峰面积与被测金属离子浓度成正比。由于电沉积过程中的富集作用,溶出伏安法可以达到1 μg/L以下的检测下限。/ppbr//ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/09550700-f887-41a8-947c-4d9cb9759796.jpg" title="1.png" style="width: 402px height: 309px " width="402" vspace="0" hspace="0" height="309" border="0"//pp style="text-align: center "strong图1. 溶出伏安法原理图/strong/ppstrong二、 使用仪器/strong/pp便携式重金属分析仪(SJB-801,上海仪电科学仪器股份有限公司),工作电极为玻碳电极,辅助电极为铂电极,参比电极为银/氯化银双盐桥电极;纯水机(GT-30,上海仪电科学仪器股份有限公司);微量进样器(WKYVI-1000,上海求精生化试剂仪器有限公司);分析天平(BSA224S,德国赛多利斯科学仪器有限公司)。/ppstrong三、溶液和试剂/strong/pp铅标准溶液(标准物质编号GBW(E)082058,浓度1000mg/L),镉标准溶液(标准物质编号GBW(E)082061,浓度1000mg/L),汞标准溶液(标准物质编号BW085523,浓度100mg/L)采购自深圳市华测标准物质研究所,使用18.2 MΩ实验室超纯水稀释到指定浓度。/pp铅/镉电解液、汞电解液、汞清洗液、镀金液等为便携式重金属分析仪的配套试剂,由上海仪电科学仪器股份有限公司提供。/pp浓硝酸、浓盐酸等试剂为分析纯,采购自国药集团试剂有限公司。/ppstrong四、操作过程/strong/pp1、电极的准备/pp工作电极:工作电极为玻碳电极。每次使用之前需要在抛光绒布上加抛光粉进行打磨,并用去离子水冲洗,处理好的工作表面应该覆盖一层均匀的水膜。/pp参比电极:参比电极为饱和氯化钾式银/氯化银双盐桥电极。第一次使用参比电极时,配置好内溶液,打开加液塞将配备好的参比内溶液加入到参比电极内腔中(注意参比内腔要保留一小段空隙),然后将该参比电极在盛有饱和氯化钾溶液的保护瓶中浸泡至少1小时,最好浸泡一上。参比电极平时不用时要塞上加液塞和底部浸泡在保护瓶中,保护瓶中要保持有饱和氯化钾溶液。每次使用前,将电极的保护瓶拿掉用水将氯化钾溶液清洗干净,开始测试时,将加液塞打开。/pp对电极:对电极为铂电极,一般不需要处理,可直接使用。/pp2、重金属离子的分析/pp溶出伏安法测定铅、镉、汞标准溶液:准确量取超纯水100mL至烧杯中,加入1mL铅镉电解质溶液,取20mL溶液至测量杯中。仪器选择“铅镉”测定模式,扫描溶出伏安法曲线,测定结束后,记下峰面积。随后依次添加10μL、20μL、30μL、40μL20mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。仪器选择“预镀金膜”模式,在镀金液中完成金膜于都操作。准确量取超纯水100mL至烧杯中,加入汞电解质溶液20mL,取20mL溶液至测量杯中。仪器选择“汞”测定模式,扫描溶出伏安曲线,测定结束后,记下峰面积。随后分别添加5次40μL 1mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。/pp饮用水中铅、镉、汞的测定(标准曲线法):测定水中铅和镉离子时,先使用40 μg/L和100μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入铅/镉电解质溶液1mL。量取20mL测试水样至测量杯中。仪器设定为测定“铅镉”,测定3次浓度值,记下数据;测定结束后,往测量杯中添加20μL 20mg/L铅/镉离子标准溶液,测定3浓度值,记下数据。测定水中汞离子时,先对工作电极进行预镀金膜操作,随后使用4 μg/L和10μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入汞电解质溶液20mL。量取20mL测试水样至测量杯中。仪器设定为测定“汞”,开始测定3次浓度值,记下数据;测定结束后,往测量杯中添加40μL 1m g/L汞离子标准溶液,测定3次浓度值,记下数据。/pp饮用水中汞的测定(二次添加法):准确量取自来水样100mL至烧杯中,加入汞电解液20mL得到测试水样。量取20mL测试水样至测量杯中。选定测定金属“Hg”,选择标准添加法,设定第一次和第二次分别添加40μL 1mg/L汞标准液,确认后开始测量,测试结束后,记下测定的汞离子的浓度值。/ppstrong五、结果与讨论/strong/pp1、溶出伏安法测定铅、镉、汞标准溶液:/pp为验证溶出伏安法对于重金属铅、镉离子的测量性能,对0μg/L、10μg/L、30μg/L、60μg/L、100μg/L铅镉标准溶液进行分析测试。由于支持电解液中含有一定浓度的铋离子,在富集过程中,铅离子、镉离子和铋离子可以在玻碳电极表面形成共沉积。在随后的伏安扫描过程中,几种元素又可以被氧化和释放,形成尖锐的溶出峰,如图2所示。铅离子和镉离子的溶出电位分别为-0.5V和-0.8V,峰形尖锐,对称性较好,相互之间不产生干扰,因此铅离子和镉离子可以使用溶出伏安法同时测定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/5b435af9-24f2-4698-9f3c-c62f714dd98a.jpg" title="2.png"//pp style="text-align: center "strong图2 铅离子和镉离子标准溶液的测定曲线/strong/pp采用峰面积作为相应信号,根据峰面积和浓度关系,绘制标准曲线(图3),R2分别为0.9961(Pb),0.9952(Cd),标准曲线的线性均良好,可见在0-100μg/L的浓度范围,铅离子和镉离子可以通过溶出伏安法进行同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/066e6e59-eae1-4430-baa3-d45c431d2e2a.jpg" title="3.jpg" style="width: 600px height: 194px " width="600" vspace="0" hspace="0" height="194" border="0"//pp style="text-align: center "strong图3(a)铅离子标准曲线;(b)镉离子标准曲线/strong/pp汞离子标准溶液使用类似的方法进行分析。为提高汞离子的富集效果,在富集和测定前,需要对玻碳电极进行预镀金膜操作。该操作可以通过使用仪器自带的预镀金膜模式和镀金液进行。随后,不同浓度的汞离子标准溶液通过循环伏安法进行分析测试,结果如图4A所示。汞离子在金膜上的溶出电位约为0.55mV,峰形较好,对称性良好。/pp汞离子的标准曲线如图4B所示,R2为0.9878,标准曲线线性良好,可见浓度范围在0-10μg/L的汞离子,可以通过溶出伏安法进行测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6512c3c9-4202-40c0-91fb-7e5f1e594607.jpg" title="4.jpg"//pp style="text-align: center "strong图4 (A)汞溶出伏安曲线;(B)汞离子标准曲线/strong/pp2、饮用水中铅、镉、汞含量的测定/pp饮用水中铅镉汞离子含量采用标准曲线法进行测定,结果如表1所示。饮用水中的铅离子浓度约为1.90μg/L,重复性为± 0.4μg/L;镉离子浓度约为0.01μg/L,重复性为± 0.01μg/L;而饮用水中的汞离子浓度极地,低于溶出伏安法的最低检出限。/pp为验证溶出伏安法在饮用水中测定的可靠性,在饮用水样品中添加铅、镉、汞离子标准溶液,使得离子浓度分别提高了20μg/L、20μg/L和2μg/L。加标后的样品溶液在同样方法下进行测试,结果显示,对于铅离子、镉离子和汞离子,其加标回收率分别为98%,81%和50%。通过三种离子加标回收率,可以看出,标准曲线法在测定饮用水中铅、镉离子时,回收率较高,测试具有较高的可靠性。而对于饮用水中的汞离子,标准曲线法的测试回收率较低,测试可靠性和误差较大,这可能是由于饮用水中背景离子的存在干扰了汞离子的富集和测试过程。/ppstrong表1 使用标准曲线法测定饮用水中铅、镉、汞离子/strong/ptable width="577" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="86" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="175" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="200" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定值/span/pp style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style="font-size:15px font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="116" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"回收率/span/p/td/trtr style=" height:4px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"铅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.90/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "98%/span/p/td/trtr style=" height:4px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "21.40/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"镉/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.01/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.01/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "81%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "16.20/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.20/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "50%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.99/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.6/span/p/td/tr/tbody/tablep二次添加法是电化学分析中的常用方法,该方法通过将一定已知浓度的标准溶液加入到待测样品中,通过对加标前后的样品溶液进行分析建立标准曲线,从而进行浓度分析。由于该方法标准曲线的建立是在样品溶液背景下进行的,可以降低实际样品中背景离子的干扰,实得测量结果更准确。饮用水样样品、以及加标后的饮用水样品使用二次添加发进行了分析测试,结果显示,使用二次添加法进行测试时,汞离子测试的回收率提高到了92%,相对于标准曲线法,其测试的可靠性和准确性得到了大幅提高。/pp表2 使用二次添加法测定饮用水中汞离子含量/ptable width="570" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:32px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="83" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="180" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="170" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"测定值(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="137" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:宋体"回收率/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="83" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水水样/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="137" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:' Arial' ,' sans-serif' "92%/span/p/td/trtr style=" height:7px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样/span span style=" font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.83/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.16/span/p/td/tr/tbody/tablepstrong六、结论/strong/pp本文研究了阳极溶出伏安法在重金属离子铅、镉、汞测定中的应用。对标准溶液的测定结果表明,阳极溶出伏安法在0-100 ug/L的范围内可以实现铅、镉离子的同时检测,在0-10 ug/L的范围内可以实现汞离子的检测,结果呈现良好的重复性和线性相关性。阳极溶出伏安法可以被应用到生活饮用水中痕量重金属的检测中来。通过简单的两点校准,饮用水中的铅离子和镉离子即可被同时检测,其加标回收率在80%-100%,显示出方法具有较好的可靠性。由于饮用水中背景离子的干扰,汞离子使用标准曲线法测定的回收率仅为50%。二次添加法可以显著降低样品的背景干扰,通过采用二次添加法,饮用水中汞离子测量的可靠性和准确性得到明显改善,其测定回收率提高到92%。/pp本文使用基于溶出伏安法的便携式重金属分析仪,测定饮用水中的铅、镉、汞离子含量。实验中重金属的质量浓度和与阳极溶出的峰面积呈良好的线性关系,获得较高的回收率,实验结果较为满意,符合快速检测的要求。该设备操作简单,便于携带和操作,灵敏度和准确度高,选择性好,运行费用低,体积小,特别适合现场的快速检测。/ppbr//ppstrong作者:/strong孟旭,工程师,18616817423,mengxu@lei-ci.com, br//ppstrong通讯地址:/strong上海市嘉定区安亭镇园大路5号。/p
  • 安捷伦MP-AES仪器平台同时在线监测水中多种重金属
    近年来,水中重金属污染事件频发,包括2006年湖南省岳阳县饮用水源砷污染事件、2011年福建紫金矿业铜酸水渗透事故、2012年广西龙江河镉污染事件等。重金属污染毒性较大、易在生物链中富集和扩大且不会随时间降解,因此水中重金属超标及其造成的问题已经严重危害到生态环境和人类的生命健康。  利好政策加速监测体系建设  《水污染防治行动计划》和《国家环境保护“十三五”科技发展规划》都明确提出,要建立水污染监测预警机制,保障监测数据的准确性。为了进一步完善国家地表水环境监测网,环保部于2016年印发了《十三五环境监测质量管理工作方案》,在质控手段的创新、环境监测能力的建设等方面提出了更高的要求。方案指出,要完善自动监测数据采集和远程质控系统,开发自动监测仪器关键参数的实时采集和传输功能以及水质自动监测仪器远程校准、维护等质控功能。同时,加强国家质控平台及环境空气、地表水、土壤环境监测质量核查能力建设,完善环境空气和地表水自动监测在线质控系统、国家网环境监测数据采集和远程控制系统等,提高国家质控能力水平。  在线监测是构建全国统一的生态环境监测规范体系中的重要一环。目前,常用的在线水质重金属监测技术包括比色法、阳极溶出法和电位滴定法。针对从水质监测过程中产生的大量数据进行分析,能够有效地提高水质监测的效率并扩大水质监测的范围,也有利于全面提高环境监测数据的真实性、准确性和可比性,为环境管理科学决策提供重要保障。  合作创新引领技术发展  作为环境领域的技术领导者,安捷伦对重金属检测技术及国内外相关检测标准有着深入的研究。凭借在环境分析和法规遵从性方面 40 多年的专业经验,安捷伦能提供高分析效率、高通量的工具,帮助用户和合作伙伴对水质进行可靠和高效的监测。  2012年,安捷伦携手中国广州分析测试中心(中广测)和广州伊创仪器有限公司(伊创科技),成功将微波等离子体原子发射光谱仪(MP-AES)系统应用到在线监测领域,助力伊创科技和中广测研发出基于安捷伦MP-AES仪器平台的Online 5100 MP多参数重金属在线分析仪(5100 MP)。  伊创仪器负责人王加勇先生介绍搭载安捷伦MP-AES的5100 MP  在伊创科技负责人王加勇先生看来,MP-AES独特的优势就是可以使用空气运行、实现无人操作和远程控制的情况下实现多元素监测。通过搭载安捷伦MP-AES的5100 MP,可以通过一次采样分析即获得多个重金属元素的数据结果,及时了解水质情况。“远程监测还可以帮助用户进行快速响应。假如某条河流的成分在夜晚发生了一些变化,用户可以一边进行远程监测,一边派人过去,这样可以保证第一时间控制污染事件。”王加勇先生表示。  中广测是华南地区唯一的国家级分析测试中心,2013年与安捷伦合作建立了安捷伦-中广测联合技术中心,借助安捷伦先进的仪器平台,继续推动分析测试的新方法、新技术研究,共同提升行业的分析测试水平。中广测新技术实验室副主任郭鹏然研究员表示:“安捷伦的4210 MP-AES操作简单,以氮气作为工作气体,运营成本较低,安全性高,适用范围广,而且其自动化软件允许进行远程的元素分析,这就为环境的在线监测提供了可能性。”  MP-AES助力24小时监测  安捷伦行业领先的MP-AES系统是一款功能强大、低成本和易于使用的系统,适用于从常规分析到复杂贵金属分析等多种应用。安捷伦 MP-AES 系统使用空气运行,既可节约成本,又比需要可燃性气体的替代方法更为安全。全新推出的Agilent 4210 MP-AES 系统配备了先进阀切换系统、惰性矩管、温控雾室、多模进样系统和增强型诊断软件等,新的配置扩展了仪器的分析性能、样品通量和易用性。与传统的在线监测技术方法相比,MP-AES具有更低的检测限、更强的重复性、更好的稳定性和更高的安全性。  得益于安捷伦提供的MP-AES仪器平台,伊创5100 MP可以同时在线分析包括镉、铅、铜、锌、铬等在内的十几种重金属元素,并且能够实现远程监测、远程监控和远程服务,适合大型水质自动站进行省与省之间的断面监测和超级水质自动站的24小时在线监测工作。据王加勇先生介绍,搭载安捷伦MP-AES的5100 MP已投入应用到多个省市的水中重金属在线监测系统中,并且获得了来自终端用户的积极反馈。  结语  水是人类生命之源,是自然界和人类生存发展过程中不可或缺的重要因素。安捷伦作为业界公认的行业领导者和实验室首选合作伙伴,为客户提供全方位的解决方案,推动行业稳步健康发展,应对全球性的挑战。随着中国人民对生活品质和安全关注度的不断提高,安捷伦科技致力于为中国客户提供值得信赖的解决方案,共同提升生活质量。
  • 电镀业重金属监测未来2年市场规模为3-9亿元
    电镀作为制造业的四大基础工艺之一,广泛应用于各种行业,如高端的电子、航空、航天、能源、核工业,低端的日用五金、汽车配件、文具类产品等,是无法取代的服务性行业。  据不完全统计,2009年我国电镀企业数量(规模以上企业)总计1.5万家,5000多条生产线和2.5~3亿平方米电镀面积生产能力。近几年,随着各地政府对重污染企业的整治,电镀企业数量有减少的趋势。  2008年,环境保护部颁布了《电镀污染物排放标准》(GB21900-2008),标准的颁布为重点行业及重点污染源的管理提供了依据。  排放新标遭遇哪些问题?  需要寻求达标与投资、运行成本之间的平衡  根据电镀水污染物的理化特性、危害性以及污染控制的需要等,新标准共选择了20项污染物作为水污染控制项目,其中金属污染物11项,非金属污染物9项。与欧盟部分国家表面处理废水排放浓度限值比较,标准中金属污染物排放标准严格程度均处于中上游水平。而化学需氧量、磷等非金属污染物几项指标由于列入地表水体污染物排放总量,控制也较严格。  调查发现,各地电镀企业/园区在执行标准中普遍存在一些问题:  首先,COD、氨氮、总氮、总磷等生化指标由于废水生化性比较差,常规AO或A2O工艺无法处理,是超标的主要因子。电镀废水中COD的来源主要为:前处理废水(除油、除蜡)中的酯类 镀液中的各种添加剂(表面活性剂、光亮剂、络合剂等) 还原剂的过量添加产生的&ldquo 假性COD&rdquo 。虽然电镀废水的COD浓度不高(200~300mg/L),但由于其生化性较差而造成常规的生物法无法有效处理。  其次,Cu离子在化学法处理工艺中是重金属离子的主要超标因子。电镀工序产生的络合剂(EDTA、酒石酸钠等)与铜螯合形成络合铜,以及其他工序也会产生相应的含铜络合物,这造成在化学沉淀法中容易破络或沉淀不完全而造成铜超标。  再次,达到标准中水污染物特别排放限值的投资及运行成本压力大。园区或者企业为了达到标准,重金属废水及可回用的废水多数采用了膜技术工艺。调查发现电镀废水大型集中式污水处理厂膜处理的投入成本约占总成本的20%~30%,运行成本约增加25%~40%,中小型电镀废水处理厂膜处理投入成本及运行成本更高,这对于已经改造或新建的电镀废水污水处理厂而言,压力有点大。  园区成主要发展形式  由广泛式分布向集中式发展,但企业入园情况不理想  调查发现,标准颁布4年后,电镀行业及相应治理行业格局已经发生了变化。  首先,行业形态由广泛式分布向集中式分布发展。电镀园区集中化发展已成为电镀行业目前及未来的主要发展模式。电镀园区的建设,能够实现统一生产、统一管理和统一治污,有利于实现对一个地区电镀行业的监管。但同时,电镀企业入园发展也意味着电镀企业规模、自动化程度、管理水平及要求的提高以及近半的搬迁损失和客户流失,这对于政府部门形成了较大的挑战。调查发现,目前全国共有已建及在建的电镀园区或集聚区100多个。  调查发现,虽然广东、重庆等省市均在积极推动电镀企业入园发展,并采取了一定的强制手段,但入园情况仍不太理想。如广东中山、惠州等地的入园率约为50%,而重庆市园区外电镀企业仍占50%以上。  2010年以后,浙江省针对电镀企业制定了越来越严格的综合整治标准和验收标准,发布了一系列的政策。比如浙江省环保厅印发的67号文件中提出,&ldquo 2012年底前,电镀企业众多的县(市、区)建成电镀园区,除保留少数标杆式企业外,原则上所有电镀企业完成搬迁入园或在园区租赁厂房设备整合发展。&rdquo 同时制定了56条电镀企业污染综合整治验收标准,涉及9条废水处理、6条废气治理、3条固废处理验收标准。56条严格的验收标准在浙江省电镀企业中留下了深刻的印象,调研中发现,当地几乎所有电镀企业都会提到这个标准。  浙江省通过两年对电镀企业的综合整治取得了明显成效,如宁波市210家电镀企业(含配套电镀车间)中,位于电镀园区(集聚区)和工业功能区中的共196家,占比达到93.3%。建议其他地区可借鉴浙江省的经验结合本地方特色,采用引导和强制并用的手段,积极引导规模以上企业入园,取缔小、黑、散企业。  第三方运营找到商机  专业治理公司发展迅速,为园区电镀废水治理提供环境服务  新标准颁布后,有技术和有实力的治理企业认为这是一种机遇,迅速开拓市场,做大做强,逐渐垄断市场,而技术实力偏弱的企业只能分浅浅一杯羹。  值得注意的是,随着电镀园区的集中化发展以及排放标准的严格,园区集中式污水处理设施对专业化运营商的需求越来越大,针对电镀行业污染治理的第三方专业运营公司由此得到发展。  目前,各电镀园区的集中式污水处理厂运营模式主要为自运营(政府自运营或投资商自运营)和第三方运营两种模式。  如浙江省主要以第三方运营为主,其中温州已投运的4个电镀园区全部为第三方运营,而宁波、衢州等市也以第三方运营为主。统计发现,浙江省20多个电镀园区75%以上为第三方运营,广东省第三方运营的比例约为50%,重庆市第三方运营比例低于50%。  浙江海拓环境技术有限公司作为第三方运营公司的代表,近几年其运营规模以每年翻番的速度增长。公司成立于2007年,2008年公司营业额约400万元,2012年公司营业额就达1.6亿元。  据了解,海拓环境目前对浙江省12个电镀园区及企业进行第三方运营,总运营规模达到4万吨/天(设计规模)。而随着各地区对标准实施的严格要求及整治力度的加强,第三方运营企业的数量及规模也将呈现出快速发展的趋势。  在线监测开始成新热点  重金属污染企业强制安装,国内外厂家纷纷抢占市场  根据《电镀污染物排放标准》规定,新建设施应按照《污染源自动监控管理办法》的规定,安装污染物排放自动监控设备,并与环保部门的监控中心联网。这对在线监测的发展起到了积极促进作用。同时,随着国家对重金属污染控制的重视,部分省市逐渐开始关注重金属排放的在线监测,重金属监测成为水质在线监测市场一个新的热点领域。  目前国内市场上的重金属监测仪主要有铜、镍、锌、铅、铬、砷、锰等。调查发现,2008年重金属在线监测仪国内需求较少,生产厂家也很少。在《电镀行业污染物排放标准》颁布一年后市场开始预热,直至2010年才开始真正引爆市场,各地政府相继出台政策,强制要求重金属污染企业安装在线监测仪。  在各地需求激增的情况下,老牌的在线仪器厂家利用已有的技术积累和市场渠道策马圈地,占据了大半江山 一些本不是从事环保仪器的厂商也从中看到了商机,加入竞争行列中。同时,国外厂家(比利时的Applitek、澳大利亚的MTI、捷克的Istran、意大利SYSTEA等)也纷纷通过经销商向国内输入产品。  专家预测,未来2~3年,重金属在线监测仪的规模约为5000套。考虑电镀行业重金属在线监测40%的占比,未来2~3年电镀行业重金属在线监测的市场规模约为500~1500套,市场金额约为3~9亿元。   作者单位:李瑞玲 江苏省(宜兴)环保产业研究院 卢然 李小朋 环境保护部环境规划院
  • 什么是大米重金属镉含量检测仪【2023现场检测】大米重金属镉含量检测仪
    【山东天研推荐&bull TY-JSZ】什么是大米重金属镉含量检测仪【2023重磅推荐】大米重金属镉含量检测仪→【م ا ه و م ح ت و ى ا ل ك ا د م ي و م ك ا ش ف ا ل أ ر ز 】提供食品安全检测、土壤检测、农残检测等行业快速仪器一站式配齐,支持定制,赠送全套实验器具,专业技术指导,免费提供综合解决方案,点击此处咨询有惊喜,欢迎新老顾客前来咨询!  大米重金属镉含量检测仪是一种高精度的仪器设备,可用于快速检测大米中的镉含量。镉是一种有毒的重金属元素,它会因为水土污染、工业废水等因素污染大米,对人体健康造成不可忽视的危害。因此,检测大米中镉的浓度是非常必要的。  该仪器设备采用先进的分析技术,通过扫描电子显微镜等方法来提高检测的准确性和精度。同时,该设备还具有操作简便、快速、安全等优点,使得大米重金属镉含量的检测工作可以更加高效地进行。  大米重金属镉含量检测仪的应用范围非常广泛,不仅可以用于大米的生产、加工环节中,还可以用于批发市场、超市等销售环节中,确保消费者的饮食安全。更重要的是,此仪器设备也可以用于监测大米生产的环境,及时发现并处理环境中的污染源,从源头上减少镉等重金属污染物质的排放。  随着人们对于食品安全的重视程度不断提高,大米重金属镉含量检测仪的市场需求也日益增加。这不仅促进了仪器设备的研发和改进,更为重要的是,有助于保障人们的健康饮食,维护社会的稳定和安全。因此,加强对大米质量的监督和检测,提高仪器设备的应用水平和精度,已经成为现代社会发展的必经之路。通过科学技术手段,保障食品的安全和质量,既关系到人民的生活安全,也是现代文明社会不可或缺的一部分。
  • 山西开始监测重金属污染
    近日从山西省环保厅获悉,山西省将专项监测重金属污染防治重点区域的水和空气。通过开展专项监测,山西省将及时发现重点区域水环境重金属污染状况和环境空气重金属污染状况及潜在风险。  据了解,山西省环保厅已下发《山西省重金属污染综合防治重点区域地表水、地下水、环境空气重金属专项监测方案》,并要求各地市照此方案认真执行,监测结果必须上报山西省环保厅,以全面、准确掌握重点区域水和环境空气重金属污染状况。  山西省重金属污染综合防治重点区域是垣曲县、大同南郊区、侯马市、襄汾县、原平市。按照属地化管理原则,由各市环保局组织辖区内地市级环境监测站对山西省重金属污染综合防治重点区域开展水和环境空气重金属专项监测工作。  山西省环保厅要求,重金属污染综合防治重点区域地表水及地下水监测每月开展一次,每月1~10日监测。重金属全分析在每年枯水期开展一次,同时进行底泥中重金属含量的测试。  山西重金属污染综合防治重点区域环境空气中铅、汞、砷、镉及六价铬等重点重金属将作为重金属监测因子。以重金属废气污染类型为主的区域,按月开展重金属污染物监测 以重金属废水污染类型为主的区域,按季度开展重金属污染物监测。
  • 糙米重金属检测仪终于迎来重金属快速检测时代
    糙米重金属检测仪YT-JSZ_@云唐厂家-【twou Nhyr gon?nANHo saaka】食品镉超标的问题一直持续不断,危害着人们的身体健康。无论是大米,蔬菜,饮用水,还是海鲜水产,甚至是宝宝的辅食,都曾被检测出镉超标。近日,在多地发布的食品不合格公告中,镉超标的问题又接连上榜。镉超标食品芜湖市食品药品检验中心:芜湖坤宇生态农业开发有限公司生产的虾田香米,镉(以Cd计)║0.3║≤0.2║mg/kg不符合食品安全国家标准规定。长沙市食品药品检验所:长沙市天心区郭宗德蔬菜店经营的食用农产品小米椒,经长沙市食品药品检验所检验发现,镉(以Cd计)不符合食品安全国家标准规定。大连市食品检验检测院:大连金发地市场国英水产品摊售卖的虾爬子(进货来源:辽渔国际水产品市场)以及大连市金州区三里桥市场小柯海鲜摊售卖的虾蛄(进货来源:大连杏树屯)镉(以Cd计)检测均超过食品安全国家标准规定。为什么会经常出现食物镉超标的问题呢?镉在自然界中分布广泛,但含量甚微,常伴生于硫化铅/锌矿之中。虽然镉的自然本底值较低,但是通过食物链的富集作用也会造成镉超标。而工业开采生产是镉的主要人为污染源。镉通过废气、废水排入环境中,污染水源,土壤以及粮食,牧草等,通过食物链也就进入到人体。除此之外,许多食品包装材料和容器也含有镉,也会对食品造成镉污染。1.仪器能同时检测粮食、粮食制品、饲料、饲料原料中重金属镉、铅等指标。2.具有免疫层析胶体金检测快速检测分析方法,可扩展检测真菌毒素、农药残留,系统采用手提或拉杆设计,满足现场及流动检测的需求。3.内置操作系统,一体式电脑控制,无需外接电脑,能耗≦15W,检测数据和位置信息可发送至网络或数据平台,能够与各类监测信息系统实现无缝对接。配合信息管理平台进行区域安全监管及大数据分析处理,方便食品安全问题预估、预警。4.内置无线传输模块,USB接口,RS232接口,以太网口,数据既可通过无线和有线连接传输,可添加内置GPS定位模块,可实时定位。5.检测仪尺寸:仪器重量3.0kg,7寸彩色电阻触摸显示屏,内存:≥2.05GB,内置微型打印机,无需外接打印设备即可现场打印数据。6.220V电源,车载电源,适合野外现场操作。7.完备的数据库功能(实时显示,存储/20000个以上测试结果、分析、导出、打印、处理检测数据),胶体金检测卡模块储存记录有检测时间、检测单位、检测人员、检测项目、样品编号、检测结果、参考值等。检测项目序号项目检出限检测范围1重金属镉0.02ppm0-1ppm2重金属铅0.02ppm0-1ppm3重金属铜0.2ppm0-20ppm4重金属汞0.01ppm0-0.3ppm5重金属铬0.05ppm0-5ppm6重金属砷0.02ppm0-1ppm
  • 重金属纳入环境监测质量管理监测能力考核 聚光针对发布解决方案
    近日,国家环境监测总站发布了《2015年国家环境监测网环境监测质量管理工作要点》,其中水中氨氮、苯并[a]芘、重金属(铅)及土壤重金属(镉、砷)监测能力将纳入到考核范围,说明国家对重金属的监测将加强。 作为国内环保行业监测仪器设备的领导者,聚光科技(杭州)股份有限公司一直致力于研发和生产应用于环境中的水、气、土壤、固废等介质中的有机污染物和无机金属元素的在线监测和实验室分析检测仪器设备,十几年来不断地推出新产品新技术以满足环境行业用户的检测需求。 聚光发布国内首台全谱直读型电感耦合等离子体发射光谱仪ICP-5000以来,聚光科技一直在与环保行业的用户共同协作开发满足行业检测需求的新应用新方法。仪器完美的精密度稳定性,加上强大的全中文分析应用软件系统,为用户带来高性价比、稳定、可靠、高效的全新体验。 聚光科技分析应用中心实验室于2013先后发布了《ICP-5000在土壤污染物检测中的应用》、《ICP-5000测定生活饮用水中28种金属元素》、《离子交换富集ICP-5000测定地表水中痕量铅和镉》、《离子交换-ICP-AES测定地表水中铬形态》等应用方案,完全满足国家标准的检测要求,并为行业用户提供专业的方法指导。聚光科技重金属检测解决方案:生活饮用水中金属元素的检测:http://www.instrument.com.cn/netshow/SH100312/s240669.htm地下水中痕量砷、汞和硒的检测http://www.instrument.com.cn/netshow/SH100312/s522163.htm地表水中铬的价态的测定http://www.instrument.com.cn/netshow/SH100312/s240643.htm地下水中铅和镉的检测http://www.instrument.com.cn/netshow/SH100312/s240670.htm土壤中金属元素的检测http://www.instrument.com.cn/netshow/SH100312/s255198.htm印染废水中金属元素含量的检测http://www.instrument.com.cn/netshow/SH100312/s255194.htm
  • 863计划“工业排放重金属监测技术”项目通过技术验收
    近日,863计划资源环境技术领域“工业排放重金属监测技术”项目通过技术验收。  该项目开发了工业排放重金属监测技术和产品,在工业环境空气重金属的X射线荧光监测方法、固体废弃物重金属的激光诱导击穿光谱检测技术、废水重金属监测新型电极和复杂水样预处理、烟气重金属采样与快速分析技术等方面取得了实用性成果,开发了具有自主知识产权的工业环境空气重金属自动监测仪、固体废弃物现场快速监测仪和废水重金属在线监测仪,建立和完善了工业排放重金属监测器研发平台。  验收会上,验收专家组听取了关于项目执行情况的汇报,审阅了相关验收材料,并进行了质询。经讨论,验收专家组同意该项目通过技术验收。
  • 土壤重金属检测仪【竞道光电新款发布】
    土壤重金属检测仪【竞道光电新款发布】JD-ZSBเครื่องวัดโลหะหนักในดิน,近年来环境污染越来越受到公众的关注。大量重金属通过污水,大气沉降,固体废弃物等沉积富集在土壤中,重金属具有较强的迁移性和生物毒性,对人类及动植物均会产生较大威胁和危害。目前,土壤中重金属检测国标方法多采用混酸加热进行湿法消解后的原子光谱法测定金属含量,该方法操作复杂,重复性较差,偶然误差大。  食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞、镍、铁、铝、锌、锰、铜等 重金属大量富积、积累,特别是城市郊区现象更为严重 加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致 消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤 繁琐且仪器昂贵。基于这种形势,我们开发出了重金属快速测定方法,可对蔬菜、食品、土壤、有机肥、烟叶等样品中的铅、砷、铬、镉、汞等进行快速联合测定。  一、土壤重金属检测仪检测原理:  (一)样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量。  (二)各项重金属的检测原理及采用标准  1、重金属砷的检测原理及采用标准  采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,形成砷化氢导入吸收液中呈黄色,经仪器检测得出砷含量。  2、重金属铅的检测原理及采用标准  采用国家标准(GB/T5009.12-2003)二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,溶于三氯甲烷后,比色测定。  3、重金属铬的检测原理及采用标准  样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量呈正比,比色测定可得出铬含量。  4、重金属镉的检测原理及采用标准  采用国家标准(GB/T5009.15-2003)比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,溶于三氯甲烷后,比色测定。  5、重金属汞的检测原理及采用标准  采用国家标准(GB/T5009.17-2003)二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,溶于三氯甲烷后,比色测定。
  • 盘点:重金属“铊”标准限量知多少
    2022年3月, 生态环境部发布《关于进一步加强重金属污染防控的意见》,文件明确指出要强化重金属污染监控预警,重点防控的重金属污染物包括铅、汞、镉、铬、砷、铊和锑,特别增加了铊和锑。其实,在2021年发布的《中共中央 国务院关于深入打好污染防治攻坚战的意见》中就已经提出要开展涉铊企业排查整治行动。为什么加入“铊”?生态环境部固体废物与化学品司负责人答记者问时介绍说,一些地区铊、锑重金属污染问题凸显,近2年发生多次涉铊涉锑环境事件。为加强环境风险管控,防控意见将铊、锑确定为重点重金属污染物,将锑矿采选、锑冶炼列为重金属污染防控的重点行业。《关于进一步加强重金属污染防控的意见》还提出四项管控措施:一是加强重金属污染源头防控,督促企业对矿石原料、主副产品和生产废物中铊成分进行检测分析,减少使用高铊的矿石原料。二是开展排查治理,开展重有色金属冶炼、钢铁等典型涉铊企业废水治理设施除铊升级改造,江西、湖南、广西、贵州、云南、陕西、甘肃等重点省份要制定铊污染防治方案,强化涉铊企业综合整治。三是加强监测预警,各地生态环境部门在涉铊涉锑行业企业分布密集区域下游,依托水质自动监测站加装铊、锑等特征重金属污染物自动监测系统。四是完善标准体系,对于涉锑产业集中分布的地区,要加快研究制定地方性生态环境标准,推动解决区域性特色行业污染问题。要监管,必然要有相应的标准可依。据不完全统计,国内外涉及水中铊含量的环境质量标准或排放标准如下:序号国家或地区标准名称标准限值(μg/L)排放监控位置一、水质基准与水质标准1美国水质基准(保护人体健康)0.24(摄入水和生物) 0.47(仅摄入生物)2美国饮用水水质标准2.0(饮用水最高允许值)0.5(饮用水最安全阈值)3加拿大水生生物基准0.84俄罗斯饮用水卫生标准(2002 年)0.15中国《地表水环境质量标准》 (GB 3838-2002)0.1(集中式生活饮用水 地表水源地特定项目标 准限值)6中国《生活饮用水卫生标准》 (GB 5749-2006)0.17中国《地下水质量标准》 (GB/T 14848-2017)≤0.1(I 类、II 类、III 类); ≤1(IV 类);>1(V 类)8上海《生活饮用水水质标准》 (DB 31/T1091-2018)0.1二、排放标准9中国《无机化学工业污染物排放 标准》 (GB 31573-2015)5车间或生产设施排 放口10中国湖 南《工业废水铊污染物排放标准》 (DB 43/968-2014)5总排放口11中国广 东《工业废水铊污染物排放标 准》 (DB 44/1989-2017)5(现有企业); 2(新建企业)车间或生产设施排 放口;总排放口12中国江 苏《钢铁工业废水中铊污染物 排放标准》(DB 32/3431-2018)2车间或生产设施废 水排放口13中国上 海《污水综合排放标准》 (DB 31/199-2018)5(向敏感水域直接排 放);300(向非敏感水 域直接排放;间接排放)总排放口14中国江 西《工业废水铊污染物排放标准》 (DB 36/1149-2019)5车间或生产设施排 放口;总排放口15美国美国含铊危险废物最佳示范技术背景 文件(1990年)140车间或生产设施排 放口16德国德国污水排放规定条例规定有色金属 制造废水(2004年)1000车间或生产设施排 放口17德国德国污水排放规定条例规定废物焚烧(2004年)50车间或生产设施排 放口随着铊排放污染问题的逐渐暴露,相关标准和规范也在不断地完善。2017年,原环境保护部水环境管理司制订《涉铊重点行业排放标准修改工作方案》,拟以标准修改单的形式,分批修改涉铊重点行业的污染物排放标准,纳入铊排放限值和相应管理要求。之后,《铅、锌工业污染物排放标准》(GB25466-2010),《钢铁工业水污染物排放标准》(GB 13456-2012)、《硫酸工业污染物排放标准》(GB 26132-2010),《锡、锑、汞工业污染物排放标准》(GB 30770-2014) 、《磷肥工业水污染物排放标准》(GB 15580-2011)等标准修改单相继发布。以上标准修改单中,不仅增加总铊排放限值要求,而且增加了相关的检测方法。由以上标准涉及的检测方法来看,电感耦合等离子体质谱、石墨炉原子吸收等仪器或将迎来一个新的发展机会。另外,文件还指出,标准实施后国家发布的污染物监测方法标准,如适用性满足要求,同样适用于本标准相应污染物的测定。标准污染物项目限值(mg/L)污染物排放监 控位置水污染物浓度测定方法标准直接排放间接排放《钢铁工业水污染物排放标准》(GB 13456-2012)修改单总铊钢铁联合企业:0.05 mg/L钢铁非联合企业:若仅有烧结(球团)工序,则总铊排放限值为 0.006 mg/L;若既有烧结(球团)工序也有其他工序,则总铊排放限值为 0.05 mg/L。)钢铁联合企业总铊排放限值为 0.05 mg/L。对于钢铁非联合企业,若仅有烧结(球团)工序,则总铊排放限值为 0.006 mg/L 若既有烧结(球团)工序也有其他工序,则总铊排放限值为0.05 mg/L车间或生产设 施废水排放口HJ 700-2014《锡、锑、 汞工业污染物排放标准》(GB 30770-2014) 修改单总铊0.0145车间或生产装置排放口HJ 700-2014;HJ 748-2015《硫酸工业污染物排放标准》 (GB 26132-2010)修改单总铊0.006(生产工艺:硫铁矿制酸)车间或生产装置排放口HJ 700-2014;HJ 748-2015《磷肥工业水污染物排放标准》(GB 15580-2011)修改单总铊0.006(过磷酸钙、钙镁磷肥、磷酸铵、重过磷酸钙、复混肥;硝酸磷肥按磷酸铵的排放限值执行。)车间或生产设 施废水排放口HJ 700-2014《铅、锌工业污染物排放标准》 (GB 25466-2010)修改单总铊0.017(0.005 适用于采矿或选矿生产单元废水单独排放的情形)车间或生产设施废水排放口HJ 700-2014;HJ 748-2015
  • 大势已去还是蓄势待发?——中国水质重金属在线监测仪市场调研分析
    p  重金属原义是指比重大于5或者4的金属(一般来讲密度大于4.5g/cmsup3/sup的金属),包括金、银、铜、铁、铅等,重金属在人体中累积达到一定程度,会造成慢性中毒。对什么是重金属,其实目前尚没有严格的统一定义,在环境污染方面所说的重金属主要是指汞、镉、铅、铬以及类金属砷等生物毒性显著的重元素,也指具有一定毒性的一般重金属如锌、铜、钴、镍、锡等。/pp  水环境中的重金属存在形态包括溶解态和颗粒态,有研究表明,重金属通过矿山开采、金属冶炼、金属加工及化工生产废水、化石燃料的燃烧、施用农药化肥和生活污染源等人为污染源以及地质侵蚀、风化等天然源形式进入水体。/pp  重金属非常难以被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。/pp  从曾经轰动一时的“日本水俣病”事件,到近几年国内发生的儿童血铅中毒,重金属污染水源导致居民无法用水、水生生物大量死亡事件等,水质重金属污染给大家带来的经济、健康损失不计其数。/pp  水质重金属在线监测仪是当前水质重金属污染监控的重要手段,国产和进口的水质重金属在线监测仪不断涌现。为了解国内水质重金属在线监测仪的应用现状、各品牌占有率以及市场前景等内容,仪器信息网特组织了“水质重金属在线监测仪市场”调研活动。/pp  基于调研结果,我们了解到,水质重金属在线监测仪测量原理呈多元化趋势,目前有比色法、阳极溶出伏安法、催化极谱法、原子荧光光谱法、微波等离子体发射光谱法等。其中,基于比色法和阳极溶出伏安法的水质重金属在线监测仪相对成熟。/pp  据仪器信息网本次调研结果显示,水质重金属在线监测仪的用户单位以工业企业居多,在工业企业中,生产不同产品的工业企业使用水质重金属在线监测仪的比例存在着一定的差距。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201801/insimg/62079e39-4877-43a9-ad4b-11f7a532c441.jpg" title="123.png"//pp style="text-align: center " span style="color: rgb(0, 112, 192) " 图1 水质重金属在线监测仪使用单位性质分布/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201801/insimg/d6786a62-9477-4531-a622-3d16eb8ca7c2.jpg" title="不同工厂.png" width="500" height="299" border="0" hspace="0" vspace="0" style="width: 500px height: 299px "//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图2 工业企业单位性质分布/span/pp  2011年,环保部印发《重金属污染综合防治“十二五”规划》。自此,水质重金属在线监测仪市场被引起重视。2011年以后的几年,水质重金属在线监测仪市场相对寂静,有人认为水质重金属在线监测仪市场热度已然过去,到底是“大势已去”还是“蓄势待发”?更多详情请阅读:a href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=145" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "中国水质重金属在线监测仪市场调研报告(2017版)/span/strong/a/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201801/insimg/c16a614e-ac1f-428c-a30a-1da67bce4fa1.jpg" title="趋势.png"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "图3 水质重金属在线监测仪购买情况/span/pp  附:报告目录/pp  第一章 水质重金属在线监测仪市场调研目的、范围与方法 1/pp  第二章 水质重金属在线监测仪概述 3/pp  2.1水中的重金属 3/pp  2.2水质重金属在线监测仪 3/pp  2.2.1比色法原理重金属在线监测仪 4/pp  2.2.2电化学原理重金属在线监测仪 5/pp  2.2.3原子荧光光谱原理重金属在线监测仪 6/pp  2.2.4微波等离子体发射光谱原理重金属在线监测仪 7/pp  第三章 水质重金属在线监测仪市场抽样统计分析 10/pp  3.2水质重金属在线监测仪使用单位行业分布 12/pp  3.3水质重金属在线监测仪使用单位性质分布 13/pp  3.4水质重金属在线监测仪监测元素分布 15/pp  3.5水质重金属在线监测仪保有量分布 16/pp  3.6水质重金属在线监测仪购买年份分布 17/pp  3.7 2015-2017年水质重金属在线监测仪本网咨询量 18/pp  3.8 相关分析 19/pp  第四章 水质重金属在线监测仪主流品牌分析 21/pp  4.1水质重金属在线监测仪主流品牌产品及价格分析 21/pp  4.2水质重金属在线监测仪主流品牌2016年销量情况 24/pp  第五章 水质重金属在线监测仪用户使用评价 25/pp  第六章 水质重金属在线监测仪市场潜力 27/pp  6.1《关于汞的水俣公约》正式生效 27/pp  6.2环保税正式征收 27/pp  第七章 结论 30/pp  详情请阅:a href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=145" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "中国水质重金属在线监测仪市场调研报告(2017版) /span/strong/a/p
  • 重金属在线监测两法互补 仪器市场稳步增长
    水质重金属在线监测仪是现场自动监测水中重金属污染物含量的在线监测仪器,该仪器市场是目前环境监测仪器市场中最引人注目的新兴市场之一。为让广大业内人士了解重金属在线监测仪技术发展情况,各品牌产品的特点,以及该类仪器目前的市场情况,仪器信息网编辑将陆续走访或采访水质重金属在线监测仪国内外主流供应商。  日前,仪器信息网编辑(以下简称:Instrument)采访了聚光科技(杭州)股份有限公司(以下简称:聚光科技)环保监测业务部研发中心副总监项光宏。聚光科技环保监测业务部研发中心副总监 项光宏  Instrument:阳极溶出法与光度法,未来基于哪一种原理的重金属在线监测仪会更主流?  项光宏:目前应用于水质重金属在线监测的方法主要有阳极溶出法和光度法两种,业界关于这两种方法的讨论也比较多,但往往不够全面和客观,两种方法其实各有特点。   光度法有它的优势,该方法稳定性好,仪器维护也方便,在六价铬、总铬、铜、锰、镍等重金属监测上应用得非常好;但同时其也有其局限,比如方法灵敏度不高,个别元素检测选择性不强,易受共存离子干扰。比如铅和镉的检测,光度法是基于双硫腙试剂,显色剂的选择性不理想,对很多金属离子都有响应,灵敏度也不够,无法满足低浓度复杂水样的检测。  阳极溶出法是基于电极表面的电化学反应,检测机理比光度法要复杂些,方法也比较敏感,重复性要比光度法略差一些。另外,仪器维护工作的技术要求也比光度法高,尤其是电极打磨维护,维护工程师需要经过专业培训和一段时间的实践才能较好地掌握。尽管阳极溶出法有以上这些不足,但它的优点也是非常明显的。该方法灵敏度高,检测下限一般可达0.1-0.5ppb,能够满足低浓度水样的检测;选择性好,能够很好地同时实现铅、镉、铜的检测。这些优点很好地弥补了光度法在铅、镉、汞等重金属元素检测上的局限。  对于重金属监测方法谁优谁劣,应该更全面、客观地看待。从目前的技术来看,两种方法各有优劣,正好形成互补,用户可根据具体应用情况进行选择。  Instrument:目前水质重金属在线监测仪市场似乎相对“寂静“,未来是否可能会迎来市场爆发?  项光宏:结合重金属在线监测仪市场自身的特点和当前的市场情况,个人认为“该仪器市场寂静”的说法是不准确的。  重金属在线监测和常规的COD、氨氮在线监测不太一样。COD是规模以上排放污水的企业都要监控的,因此市场容量大,也比较容易估计,而重金属属于具有明显行业属性的特征性污染物,排放企业相对于COD排放企业在数量上要少很多,并且不同行业监测的重金属种类也有很大差异。从行业的比重和近年来的市场产品推广来看,国内的污染源重金属在线监测仪主要是以监测铬和铅为主。总的来讲,重金属在线监测仪的市场容量要小于COD在线监测仪和氨氮在线监测仪。  实际上相比于三、四年前,重金属在线监测仪的安装量已经有明显的增加,市场逐渐“热”起来。但因为市场容量本身相对较小,所以即便市场“热”起来了,也很难达到像COD在线监测仪、氨氮在线监测仪那样的市场规模。所以这就给人感觉这个市场比较“寂静”。事实上目前重金属在线监测仪的市场应该已经进入正轨,后续将保持一个平稳的持续增长趋势。  Instrument:有人认为,“阳极溶出法中,若采用毒性较小的铋代替汞作为电极,会导致检测下限提高,且会干扰一些重金属元素(比如铜)的检测,影响准确度。因此铋电极没有太大的应用前景。”您如何看待这种观点?  项光宏:任何一种方法都有优点和局限。从灵敏度上来说,铋电极与汞电极是相当的,并没有明显的差异,都能达到0.1~0.5ppb的检出限水平,但是铋电极相对于汞电极就没有汞污染的风险。当然,铋电极法也有自身的局限,铋自身的富集溶出电势和铜元素有重叠,当样品中铜离子浓度过大时,就会和铋发生竞争,从而产生干扰,也就是大家提出的铋电极不太适合含铜浓度比较高的工况应用。从技术发展趋势来讲,铋电极比汞电极更加环保、安全,只要避开不适用的工况,可以很好的替代汞电极使用。  鉴于铋电极和汞电极两种方法的各自优点和局限,聚光科技同时开发出了铋电极和汞电极两种应用方案。我们会根据客户的工况条件评估给出推荐性的方案,在保证仪器适合现场应用的前提下,尽最大努力避免监测自身带来的二次污染。  Instrument:请介绍聚光科技重金属在线监测相关产品线情况?  项光宏:聚光科技于2009年发布第一款重金属在线监测仪,目前拥有基于光度法和阳极溶出法两种原理的检测平台,基于光度法的产品可以监测总铬、六价铬、铜、锌、镍、锰等重金属;基于阳极溶出法的产品可以监测铅、镉、汞、砷、铜等重金属。  Instrument:面对众多竞争对手,贵公司重金属在线监测仪的市场竞争优势是什么?  项光宏:面对众多的国内外的竞争对手,我们通过多个层面来提高自己的竞争优势。  聚光科技的重金属在线监测仪借助公司专利的在线顺序注射分析平台,试剂非常节约,试剂消耗量为同类产品的1/5左右,按2小时1次的监测频率,500ml的试剂可以满足1个月使用。我们还同时开发光度法和阳极溶出发两种技术平台,产品系列齐全,已覆盖了国内现阶段各重点关注的重金属污染物,能够满足各种行业应用。  同时,我们非常重视产品的应用研究,在产品发布前开展了大量的行业应用研究,提前验证产品对于不同工况的适用性,并发布不同行业的应用方案,比如针对六价铬监测消除亚硫酸盐干扰的方案,针对制革废水总铬监测消除高浓度COD干扰的方案等。聚光科技还可根据客户需求,定制不同的量程、通讯协议、系统集成方案,能够快速响应客户各种特殊应用需求。  此外,聚光科技的重金属在线监测仪采用了平台化设计,同一技术原理的仪器在模块上完全一致。当客户因各种原因希望调整监测目标重金属污染物种类时,在原有的仪器上可以通过软件升级调整(有时还需要更换光源或电极)即可切换到其他重金属污染物的监测,而不需要更换仪器,可以大大节约客户经费投入。  Instrument:能否就重金属在线监测仪的仪器选型给广大用户一些建议?  项光宏:重金属监测是这两年才发展起来的,用户对重金属监测技术的了解有限,没有足够多的经验积累,不同厂商为了销售在产品宣传时可能存在一定的倾向性,所以导致用户在选型时会面临许多困难。  我这里建议用户在选型时要注意以下几点:(1)一定要充分了解与理解光度法与阳极溶出法这两种方法的优劣势;(2)多与技术专家交流,了解各个品牌的产品的特点;(3)与已经使用过此类产品的单位多交流,借鉴他们的经验。  (撰稿编辑:杨丹丹)  附录1:聚光科技(杭州)股份有限公司  http://www.fpi-inc.com   http://juguang.instrument.com.cn/   附录2:水质重金属监测仪专场  http://www.instrument.com.cn/zc/HeavyMetal.asp
  • 海能发布环保产品重金属检测前处理解决方案
    化学上根据金属的密度把金属分成重金属和轻金属,常把密度大于5g/cm3的金属称为重金属,如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种。重金属一般以天然浓度广泛存在于自然界中,但由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染。以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。  近年,关于重金属污染事件屡见不鲜,从湖南儿童血铅超标事件,陕西凤翔数百儿童铅超标到重金属污染“菜篮子”等等,还有报道称,饮水机内也存在重金属污染,可见重金属污染已影响到我们的生活环境。我们常见的塑料门窗也同样存在重金属铅的污染。塑料门窗属于PVC异型材,PVC异型材用热稳定剂体系主要有铅盐、有机锡、钙锌及其复合稳定剂。因铅盐稳定剂的稳定效果好,成为了目前我国塑料门窗生产中使用最多的稳定剂,但因铅的毒性,虽然并不直接与人体接触,仍对环境和人体健康造成威胁,因此重金属检测与人们健康息息相关。  竹炭一般是用老龄竹(3-5年以上)和竹材加工剩余物高温无氧干馏而成,竹炭用途很广,用竹炭作燃料,可散发清香使满室芬芳,闻之令人神清气爽。竹炭还可去除冰箱内异味,防止食物变质,延长食物保鲜期,用竹炭制成的毛巾,散发阵阵竹香。但是如果竹炭中重金属超标就会严重危害人们的健康,所以竹炭中重金属检测势在必行。由于竹炭成分中大部分为单质碳,较难消解,常规湿法消解要用到高氯酸高温消解,海能实验室人员通过大量实验,探索出微波消解竹炭方案,消解完成后,消解液完全澄清透明。  实验仪器:Hanon TANK微波消解仪;分析天平(万分之一);移液管等  实验试剂:浓硝酸(70%);双氧水(30%)  试验方法:取样量:0.2g 消解用酸:8mL浓硝酸,2mL双氧水 消解程序:工步爬坡时间(min)设定温度(℃)设定压力(psi)保温时间(min)113200800202121080020   消解效果:消解液完全澄清透明,没有固体存在,图片如下:  消解处理结果以消解液澄清程度而定,是定性而非定量的结论,因样品种类和来源等原因,消解程序可能需要适当调整,此方案只供大家参考,用户可根据具体情况和经验设计最佳消解方案。(海能应用实验室)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制