当前位置: 仪器信息网 > 行业主题 > >

无线打印电子吊秤

仪器信息网无线打印电子吊秤专题为您提供2024年最新无线打印电子吊秤价格报价、厂家品牌的相关信息, 包括无线打印电子吊秤参数、型号等,不管是国产,还是进口品牌的无线打印电子吊秤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无线打印电子吊秤相关的耗材配件、试剂标物,还有无线打印电子吊秤相关的最新资讯、资料,以及无线打印电子吊秤相关的解决方案。

无线打印电子吊秤相关的资讯

  • 新一代无线吊秤PCA765上市啦
    梅特勒托利多PCA765系列高能效智能无线吊秤上市啦,并且从2012年9月至2013年1月我们将会推出一系列促销活动,敬请期待! PCA765系列高能效智能无线吊秤是全球首创的免充电智能电子吊秤,秤体无需充电,超长待机时间。 PCA765特别适合应用于钢铁冶金、有色金属、物流仓储、铁路装卸、港口码头、能源矿山等行业与场合,帮助客户实现简单的称重、重量累计、称重次数统计、目标称重等功能,同时具备日志管理功能,有效监督规范使用,满足用户的不同需求。
  • 无线科技 精彩无限—奥豪斯无线感应技术带来称量新体验!
    科技发展让我们的生活发生日新月异的变化,科技改变生活每时每刻都在发生,我们越来越依赖这样的舒适和便捷。广泛应用于现代科技领域的无线感应技术也已出现在称重行业,奥豪斯将这一技术加入称量产品中,只为带给您更为高效和轻松的称量体验。双手拿着试验品的您还需要亲手开天平风罩门和按键才能开始称量吗?就让带有红外无线感应装置的Explorer系列和NAVIGATOR™ 系列天平,让您即刻轻松享受 “解放双手,挥之即来”的称量体验吧!Explorer系列电子天平独有4个无线感应器提供非接触式去皮清零操作、自动开启风罩门、静电消除等功能,带给您轻松的操作体验。解放双手的同时也可有效减少样品的交叉污染。对于精度高达十万分位的准微量天平而言,自动开启和关闭防风罩门可有效减少人为操作的失误,确保更精确的测试结果。该系列产品除了无线感应技术还配备直观的操作界面,现代化用户体验 —— SmarText™ 2.0 全新图标界面软件,彩色触摸显示屏,使Explorer系列电子天平操作更加直观便捷。*EX124ZH/AD,EX224ZH/AD,EX324ZH/AD,EX225/AD,EX225D/AD,EX225DZH/AD,EX225ZH/AD具有自动门功能! Explorer客户案例闻霾色变的今天,大家越来越关注环境健康。江苏疾病防控中心选择奥豪斯Explorer准微量天平开展PM2.5专项研究。研究人员需要根据滤膜上采样前后的质量差和采样体积来获得PM2.5的数据,滤膜的平均重量仅为410mg左右。众所周知,当称量微小样品时,自动开关门能有效减少环境对样品的干扰。对于每天需要频繁取样、称量和比对的研究人员而言,自动开关门能减少称量的误差,满足实验需要精准到0.01mg的要求。NAVIGATOR™ 系列电子天平两个无线感应器,无需按键,在无线感应器上方轻松挥手即可控制去皮、打印、功能或置零操作,可提高操作效率,避免样品残留物腐蚀按键,延长产品使用寿命。 NAVIGATOR™ 客户案例英国伦敦日均人流量800人次的Federation 咖啡屋,选择奥豪斯Navigator系列天平,以确保每一杯咖啡粉的含量可以精确到0.01g。便捷的红外感应去皮功能可轻松解放咖啡师双手,无需接触秤体就可完成称量,从而降低对产品的损耗,提高称量效率!让每一位客户都能品尝到殿堂级咖啡。奥豪斯无线感应技术为您实现前所未有的轻松称量体验!是否已经让您心动了呢?欲了解更多产品及相关信息请与我们联系!
  • 生物3D打印市场巨大潜力等待挖掘
    2014年4月,国家食品药品监督管理总局授予一种人工硬脑膜产品注册证,这标志着中国第一个生物3D打印产品正式开始应用,随着生物3D打印技术的发展,未来的医疗技术手段将充满想象空间。    人的大脑头皮与头骨之间,有着一层薄薄的脑膜。如果要做脑部手术,就要先将这层薄膜切开一个口,手术后再用人体自身或其它动物的皮肤缝合。这样的程序扩大和延长了手术者的痛苦,而且有感染传染病的风险。而如今,用一种看上去像普通膏药一般的材料贴上去,就可简便快速地解决这一问题。    获得产品注册证的人工硬脑膜产品名为“睿膜”,其研发单位首席技术官徐弢博士表示,该产品2011年已经在欧洲应用,迄今病例达一万多例。除此之外,一系列具有自主知识产权的核心平台技术和产品,包括个性化颅骨、无张力尿失禁悬吊带修复系统、骨盆底修复补片等新型人体组织再生修复产品,也相继在国内外完成或即将完成上市注册。    业内专家介绍,3D打印技术最早是被用以制造工业零部件的3D模型。如果说3D打印技术已经是一门最新最热的高新技术,那么生物3D打印技术则像是皇冠上的明珠一样高新尖。生物3D打印技术是跨学科和领域的新型再生医学工程技术,其首先是通过计算机处理CAD数据模型,进行逐层累加材料的3D打印,加工细胞或者生物构造块等活性材料,以重建人体组织和器官等生物产品。    目前,3D打印技术在医疗领域应用可分为三个层次,离人体越近的应用难度越大,离人体远一点的相对简单,比较容易实现。第一层是人体外应用。例如,利用3D打印机可将CT、MR的二维图像生成三维图像和模型,大夫分析病情时更直观,也能帮助他们术前分析和规划,降低手术风险。如果做S型的脊柱侧弯手术,可以利用3D打印机打印一个模型,分析问题能纠正到什么程度。3D打印技术应用于手术指导很早就有了,技术上比较成熟,产品审批也相对简单,因此靠市场自身推广作用就可以了。但软组织模型只能用于培训和手术预演,做手术要看具体情况。    第二层离人体更近一步,是一些医疗辅助工具。例如,种植牙时为了种得比较准确,可以利用3D打印技术将患者的牙齿模型打印出来,先用计算机模拟种牙的位置、角度和深度,再打印出“导板”,有了“导板”牙齿就能非常准确地植进去。    第三层,即植入人体内的组织、支架、骨骼和器官,这一层的应用就需要很高的技术含量,就目前来说距应用还有一定的距离。    3D打印技术发展了几十年,3D打印的部分器官可能在已知科学范畴内没有问题,但生物技术领域有很多人类不掌握、没有探究到的信息。即使器官在体外功能正常,一旦植入体内,是否能运作、是否产生毒素以及有哪些副作用都不得而知。    人体系统是不可想象的复杂,万不得已,不能用有限技术制成的器官去对接无限复杂的人体系统。生命是第一大事,也是3D生物打印发展的第一大困难。    业内专家表示,如果3D打印技术是皇冠,那3D生物打印技术就是皇冠上的明珠,市场潜力巨大。二三十年后,3D打印器官技术真正成熟时,3D打印器官移植一定是高端消费,因为整个研发、细胞培养等一系列的成本非常高。等到实现规模化生产时,成本会有所降低。另外,要降低成本就一定要拿到原创性的核心技术,模仿没有出路。
  • 摩方Show | 带你探索内镜 3D 打印的无限可能!
    作为推进国产医疗内镜产业发展的重要会议,中国内镜大会(以下简称:CCME)通过整合优势供应链、促进医工融合、增强行业技术交流、组织企业攻关关键技术等方式,有效推动了产业的发展。同时,也进一步推动了高端医疗器械国产化的进程。第七届CCME再度启航,将于2023年10月17日-18日在南京扬子江国际会议中心一楼(主展厅)召开。届时,重庆摩方精密科技股份有限公司(以下简称:摩方精密)将携多款内镜精密部件及高精密3D打印解决方案重磅亮相B060展位,诚邀您与摩方精密共赴CCME大会现场,感受3D打印与中国内镜产业新技术的应用与创新。01 千亿内镜市场,国产化进程加速据Markets and Markets今年的报告显示,全球内镜设备市场预计将从2022年的289亿美元增长到2024年的406亿美元,复合年增长率为7.0%。内镜市场的蓬勃发展,源于医疗机构大力投资购置高精尖的内窥镜设备,以及扩展内镜科室的规模,目的在于全力保障患者的生命安危,从而实现更加精准、精确和可靠的诊断与治疗。Markets and Markets:Endoscopy Equipment Market By Product然而,国内市场增速更是高于全球水平,医用内镜领域吸引了国内资本和政策的强烈关注,为我国国产产品的市场占有率提升提供了强大的推动力。数据显示,我国国产医用内镜的市场份额在 2020 年的基础上,已经于 2022 年实现了翻倍增长,占比达到了 26%,年度平均增长率更是超过 60%。这意味着,国产医用内镜替代进口产品的进程正在加速,成为全球市场主流只是时间问题。Frost&Sullivan,中国银河证券研究院02 摩方应用,引领3D打印内镜风潮摩方精密在内镜医疗器械领域坚持创新研发,利用面投影微立体光刻技术(PμSL)不仅支持复杂部件的一体成型生产,还可满足客户更多样件尺寸的需求。在内镜体积微型化的发展趋势下,帮助实现更精确、更复杂的组件打印需求,极大扩充了内镜在临床诊断的应用场景。摩方精密积极推动 3D 打印技术在内镜医疗器械领域的应用,与多家医疗机构和医疗器械企业展开密切合作:①摩方精密&开立医疗摩方精密作为开立医疗在3D打印领域的战略合作伙伴,将传统4-6周的开发周期,缩短至2日内,提高效率90%以上,助力高端内镜快速开发。②摩方精密&RNDR Medical摩方精密帮助RNDR Medical在规模上快速地迭代和开发远端尖端组件,推动他们工程团队以最少的时间和费用进行优化设计,实现从原型到生产的大规模增材制造的优势。此次CCME现场,摩方精密将带来多款精密内镜样件,不仅有光敏树脂型内镜端座,更展示了氧化铝陶瓷型内镜样件,满足用户需求的多样化。microArch S240作为摩方精密10μm光学精度的3D打印系统,极大拓展了在精密内镜打印的应用,可高效实现小批量规模化的打印制作。我们诚挚邀请您莅临CCME 2023主展厅摩方精密 B060 展台,现场更多精彩活动,期待您的参与!展馆:南京扬子江国际会议中心一楼(主展厅)地址:江苏省南京市浦口区滨江大道299号交通方式:698路公交:江北新区市民中心北站
  • 慕尼黑电子展圆满落幕,期待相约TCT亚洲3D打印展
    7月3-5日,为期三天的“2020慕尼黑上海电子展”在国家会展中心(上海)正式落下帷幕。本次展会吸引了不少行业厂家参展,为大家带来了一场行业盛宴,作为高精密微尺度3D打印的先行者和领导者,BMF深圳摩方在此次展会中也收获颇丰。穿梭不息的参展人流,见证了BMF所收获的热情与期待。下面,请跟随我们的镜头一起来回顾下BMF展位那些不容错过的精彩画面~此次展会,BMF深圳摩方主要展示以连接器为主的高精密3D打印工业应用案例,现场受到安费诺、ERNI等众多连接器领域企业的重点关注,并与我们的工作人员进行了密切沟通与交流。同时,许多展会观众还对展位上的内窥镜、生物医疗等其他领域的相关应用案例表现出浓厚的兴趣与深切的认可。凭借在高精密3D打印领域的领先技术与产品优势,BMF深圳摩方在展会上获得高度瞩目,让人眼前一亮。来自四面八方的厂家、经销商和预约客户通过本次展会,对BMF的产品和技术能力有了更深入的了解。 自2016年成立以来,BMF深圳摩方始终专注于高精密微尺度3D打印领域,秉承将3D打印转变为真正的精密快速成型及直接生产制造的理念,其nanoArch系列3D打印系统为精密增材制造量身定做。如今,BMF已发展成为高精密3D打印领域的最具实力的代表企业之一,在同行业中的销量也稳居前列。截止到本次展会结束,BMF在本次展会收获众多客户的深度合作意向,为BMF今后的发展奠定了更为坚实的基础。TCT亚洲展展会预告:NEXT亚洲3D打印、增材制造展览会(TCT Asia)展会时间:2020年7月8-10日展会地点:上海新国际博览中心展位信息:E5/C65观展预约网址:www.tctasia.com.cn
  • 勤卓科技发布勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H新品
    勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H产品用途吊篮式冷热冲击试验机用于光伏组件、LED灯管、LED灯具、电子电器零组件、自动化零部件、通讯组件、汽车配件、金属、化学材料、塑胶等行业,测试其材料对高、低温的反复抵拉力及产品于热胀冷缩产出的化学变化或物理伤害,可确认产品的品质,从精密的IC到重机械的组件,无一不需要冷热冲击试验箱的鉴定。勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H产品用途产品特点 通过气动方式将样品放置篮在蓄冷箱和蓄热箱两者之间快速移动,有测试孔,可带电,带信号,带气源测试。新一代外观设计,箱体结构、制冷系统、控制技术均做较大改进,技术指标更加稳定,运行更可靠。维护更方便,备有gao挡万向滚轮,方便在实验内移动。超大触摸屏操作,外观更加简洁大方,操作更加容易,设定值实际值实时显示。 真空双层玻璃:大视窗设计,飞利浦高亮度照明,加热无雾气 为编程和文档处理提供更多的接口选项 USB 输出,电脑连接打印可靠性高:主要配件选配zhu名专业厂商,保证提高整机可靠性一、产品属性1.1容积:80L1.2工作室尺寸500*400*400mm (宽×高×深)1.3 外形尺寸1400*2000*2100mm (宽×高×深)1.4 冲击形式低温高温按程序自动交变,转移样品提篮,提篮式.1.5供电电源380V±10%,50Hz±1 三相四线+接地线,保护接地电阻小于 4Ω1.6 总功率15KW主要技术参数 2.1 高温室高温蓄温箱温度范围+60℃~+200℃高温冲击温度+60~150℃2.2 低温室低温蓄温箱温度范围-10℃~-65℃低温冲击温度-10℃~-40℃ 2.3.工作室 温度波动度≤0.5℃温度偏差≤±1℃温度均匀度≤2.0℃高低温转换时间5~15S高低温恢复时间3~5min(空载下非线性)预热区升温速度≥3℃/min(非线性)预冷区降温速度≥2℃/min(非线性)2.4噪音65dB 2.5 满足试验标准1、1.IEC 60068-2-14环境试验 第2部分:试验方法 试验N:温度变化,2、GB/T 2423.22环境试验 第2部分:试验方法 试验N:温度变化,3、GJB 150.5军用装备实验室环境试验方法第5部分:温度冲击试验,4、JESD 22-A106B.01-2016温度冲击 三、试验箱结构(水冷式)3.1、结构方式预热室、预冷室与制冷机组一体式.通过气动方式使样品吊篮在高温和低温测试区上下移动 3.2、材料构成3.2.1 外壁材料:冷轧钢板静电双面喷塑,颜色为象牙白3.2.2 内壁材料:SUS304 不锈钢板3.2.3 绝热材料:100mm 玻璃棉保温层3.3、结构强度试验箱承重能力:≤100Kg3.4、大门全开单翼型箱门一扇,带门锁。门框两道硅橡胶密封条,低温室门框防结露电热装置3.5、观察窗门上有 1 个多层观察窗,低温室门上观察窗带镀膜加热以防止其冷凝和结霜3.6、冷凝出水孔具有工作室冷凝水和机组凝结水的引出孔3.7、引线孔在试验箱一侧设定一个直径为5cm的引线孔,便于样品通电\通讯号之用。3.8、照明灯工作室顶部设低压照明灯,控制屏开关控制四、试验箱空气调节系统4.1、调控方式空气强制循环平衡调温4.2、空气循环装置离心式风机,长轴外置电机驱动。4.3、加热方式镍铬合金电热丝式加热,PID 调节,执行元件:固态继电器4.4、空气冷却方式翅片式蒸发器 五、试验箱制冷系统5.1、工作方式复叠汽体压缩式制冷5.2、冷凝方式水冷5.3、制冷压缩机国际品牌法国泰康压缩机5.4、制冷机控制根据试验条件,控制系统自动调节制冷机运行工况、冷量大小,确保压缩机 工作在合适状态,延长压缩机使用寿命5.5、制冷剂环保制冷剂 R404a ;R235.6、减振、降噪制冷机系统减振、降噪措施六、试验箱控制系统6.1、传感器铠装铂电阻6.2、控制器进口彩色液晶触摸控制屏 6.3、人机界面中文、彩色 LCD 显示、触摸屏方式输入设定。6.4、分辨率温度 0.1℃,时间 1min6.5、运行方式定值运转、程序运转6.6、试验数据显示设定温度、实测温度、冲击次数、总运行时间、段运行时间、加热制冷状态6.7、制冷机工况自动选择根据试验条件控制器能自动配置制冷机的工况或开/停。6.8、其他功能6.8.1 故障报警及原因、处理提示功能6.8.2 断电保护功能6.8.3 上下限温度保护功能6.8.4 日历定时功能(自动启动及自动停止运行)6.8.5 自检功能。6.8.6 密码保护控制器设置参数6.9、功能自动调用分组 PID 参数。6.10、接口选配 RS232/RS485 电脑接口及控制操作软件系统。能实现计算机控制、数 据采集控制计算机的数据通讯功能。 七、试验箱安全保护装置 7.1、工作室7.1.1 独立式工作室超温保护器7.1.2 风机过热保护7.2、制冷系统7.2.1 压缩机超压7.2.2 压缩机过流7.2.3 压缩机过热8.2.4 排气温度保护7.2.6 压缩机缺油保护7.3、电源系统7.3.1 电源缺相及相序错误保护7.3.2 漏电保护7.3.3 加热器短路等过流保护7.4、其他试验箱外壳接地保护八、试验箱标准附件及随机资料8.1、产品使用说明书1 份8.2、产品合格证1 份8.3、质量保证书1 份8.4、出厂检验报告1 份九、项目说明说 明电 压三相五线制 380VAC±10%; 50Hz±2%。环境湿度≯85%R.H;大气压86~106Kpa;环境条件设备现场周围无强烈振动、无强电磁场干扰、无高浓度粉尘及腐蚀性物质、无阳光直接照射或其它热源直接辐射设备水平放置通风良好的试验室内,周围应留有充足的空间供操作及维护之用。十、安装场所为了便于箱体散热及维修保养,安装本设备的场所必须符合下列条件:)1、与相邻的墙壁或器物之间的距离。2、为了稳定地发挥试验箱的功能、性能,应选择常年温度为30 ℃以下,相对湿度小于 85%的场所。3、安装场所的环境温度切忌急剧变化。4、应安装在无直射阳光的场所。5、应安装在通风良好的场所。6、应安装在远离可燃物、爆炸物及高温发热源的地方。7、应安装在灰尘少的场所。8、尽可能地安装在靠近供电电源的场所。9、尽可能地安装在靠近水塔管道连接的场所 创新点:一台品质精密的试验设备,让您的产品品质稳中获胜.采用进口智能触摸屏,温控器显示不失真,操作灵敏 散热孔加装过滤棉,内部选用耐腐蚀、易清洗优质304钢材。内置过滤器,隔绝灰尘深入,以保证部件清洁,延长使用寿命.设备底部采用高品质福马脚轮,稳定性好,更顺滑,不卡顿.选购品质风扇,强大的散热系统,告诉循环散热,温控精准。勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H
  • PEJET发布PeJet 多通道微电子喷墨打印机 新品
    PeJet-ElectroJet多材料多通道微电子打印机 ? Multi-Channels Process 业内独创八通道可同时装载多种材料混合叠层打印技术 ? Multi-Materials Jettable 高性能导电材料, 电介质绝缘材料及抗刻蚀剂材料等 ? Low Cost & High Efficient Production & All in one Electronics Printer 低成本, 高的生产效率, 真正微电子打印设备创新点:1.可同时打印多种材料2.独创8通道喷墨打印3.可进行不同材料叠层打印
  • 湖南大学王兆龙课题组:3D打印超抗冻多功能柔性电子器件
    柔性电子作为一种新兴的电子技术,以其独特的柔性/延展性(弯曲、折叠、扭转、压缩或拉伸)和高灵敏特性,在信息、医疗等领域具有广泛应用前景,如电子皮肤、柔性屏、脑机接口等。水凝胶材料以其独有的特性(柔性、导电性、高拉伸性)在柔性电子领域被广泛研究和使用。采用诸如光学光刻、微接触印刷等微纳制造技术可实现图案化水凝胶柔性电子器件的制造,但是上述技术加工步骤复杂、加工成本高、幅面较小,难以实现复杂三维结构信号强化效应。微纳3D打印技术很好地平衡制造成本、加工精度和幅面的问题,可快速制造并成型任意形状和定制设计的水凝胶跨尺度结构,而且,对水凝胶进行图案化设计可进一步提高柔性电子器件的灵敏性;同时通过对水凝胶的性能诸如自粘附、导电、抗冻等性能的优化,可拓展水凝胶柔性电子的应用范围,如自粘附电子、极端温度环境工作的柔性器件等。近日,湖南大学王兆龙、段辉高教授与上海交通大学郑平院士合作,基于面投影微立体光刻技术,采用摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,通过引入粘附性的光固化单体及材料配比优化,设计了水凝胶诸如强粘附性、导电性和抗冻性等性能。通过水凝胶的结构设计提高运动信号监测的应变灵敏度,实现宽范围的运动信号传感。作者设计3D打印水凝胶柔性电极采集人体的肌电信号,将水凝胶柔性电极采集的肌电信号作为用户界面控制机械手的同步运动,以准确的完成弹奏不同音符的动作,甚至可以控制-80℃低温环境下机械手的运动。该工作引入微尺度3D打印技术使得复杂3D结构多功能柔性电子和复杂人机接口的快速制造成为可能。文章以“3D printed super-anti-freezing self-adhesive human-machine interface”为题发表在Materials Today Physics上。原文链接:https://doi.org/10.1016/j.mtphys.2021.100404该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等基金支持。图1 面投影微立体光刻技术(摩方精密,nanoArch S/P140)原理及水凝胶材料设计,利用共价键交联和氢键网络结合优化水凝胶性能图2 3D打印水凝胶诸如超拉伸、强粘附、抗冻等性能设计图3 基于面投影微立体光刻技术加工跨尺度结构的水凝胶制备高灵敏度的应变传感器,用于监测宽范围的人体运动信号图4 基于面投影微立体光刻技术加工水凝胶用于肌电信号的采集,将采集的肌电信号作为人机接口控制机械手的同步运动,以完成弹奏不同音符、甚至低温环境的动作控制官网:https://www.bmftec.cn/links/10
  • 湖南大学王兆龙课题组:3D打印超抗冻多功能柔性电子器件
    柔性电子作为一种新兴的电子技术,以其独特的柔性/延展性(弯曲、折叠、扭转、压缩或拉伸)和高灵敏特性,在信息、医疗等领域具有广泛应用前景,如电子皮肤、柔性屏、脑机接口等。水凝胶材料以其独有的特性(柔性、导电性、高拉伸性)在柔性电子领域被广泛研究和使用。采用诸如光学光刻、微接触印刷等微纳制造技术可实现图案化水凝胶柔性电子器件的制造,但是上述技术加工步骤复杂、加工成本高、幅面较小,难以实现复杂三维结构信号强化效应。微纳3D打印技术很好地平衡制造成本、加工精度和幅面的问题,可快速制造并成型任意形状和定制设计的水凝胶跨尺度结构,而且,对水凝胶进行图案化设计可进一步提高柔性电子器件的灵敏性;同时通过对水凝胶的性能诸如自粘附、导电、抗冻等性能的优化,可拓展水凝胶柔性电子的应用范围,如自粘附电子、极端温度环境工作的柔性器件等。近日,湖南大学王兆龙、段辉高教授与上海交通大学郑平院士合作,基于面投影微立体光刻技术,采用摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,通过引入粘附性的光固化单体及材料配比优化,设计了水凝胶诸如强粘附性、导电性和抗冻性等性能。通过水凝胶的结构设计提高运动信号监测的应变灵敏度,实现宽范围的运动信号传感。作者设计3D打印水凝胶柔性电极采集人体的肌电信号,将水凝胶柔性电极采集的肌电信号作为用户界面控制机械手的同步运动,以准确的完成弹奏不同音符的动作,甚至可以控制-80℃低温环境下机械手的运动。该工作引入微尺度3D打印技术使得复杂3D结构多功能柔性电子和复杂人机接口的快速制造成为可能。文章以“3D printed super-anti-freezing self-adhesive human-machine interface”为题发表在Materials Today Physics上。该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等基金支持。图1 面投影微立体光刻技术(摩方精密,nanoArch S/P140)原理及水凝胶材料设计,利用共价键交联和氢键网络结合优化水凝胶性能图2 3D打印水凝胶诸如超拉伸、强粘附、抗冻等性能设计图3 基于面投影微立体光刻技术加工跨尺度结构的水凝胶制备高灵敏度的应变传感器,用于监测宽范围的人体运动信号图4 基于面投影微立体光刻技术加工水凝胶用于肌电信号的采集,将采集的肌电信号作为人机接口控制机械手的同步运动,以完成弹奏不同音符、甚至低温环境的动作控制官网:https://www.bmftec.cn/links/10
  • 西湖大学周南嘉/陶亮合作《Nature Electronics》:3D打印软水凝胶电子器件!
    近年来开发了许多用于医疗保健的软性电子设备,它们提供了包括生物信号检测、健康监测、神经刺激、脑机接口等一系列的功能。为了实现可伸展性,电路和互连是通过将刚性导电材料图案化为蛇形几何形状或使用内在可伸展的导体。然而,弹性体和生物组织的力学和化学特性不匹配的情况不可避免地存在,这可能导致免疫反应,损害电子产品的功能。基于水凝胶的电子器件可以与生物组织有内在的相似性,在生物医学应用中具有潜在的用途。理想情况下,这种水凝胶电子器件应该提供可定制的三维电路,但用现有的材料和制造方法制作封装在水凝胶基质中的复杂三维电路是具有挑战性的。鉴于此,西湖大学周南嘉、陶亮团队报告了使用基于可固化水凝胶的支撑基质和可拉伸银水凝胶墨水的水凝胶电子器件的三维打印。支撑基质具有屈服应力流体行为,因此移动打印机喷嘴产生的剪切力会产生暂时的流体状状态,从而可以在银水凝胶墨水电路和电子元件的基质中准确放置。印刷后,整个矩阵和嵌入式电路可以在 60°C 下固化,形成柔软(杨氏模量小于 5 kPa)和可拉伸(伸长率约为 18)的单片水凝胶电子器件,而导电油墨表现出约1.4×103 S cm-1。研究人员进一步使用该三维打印方法来创建应变传感器、电感器和生物电极。相关研究成果以题为“Three-dimensional printing of soft hydrogel electronics”发表在最新一期《Nature Electronics》上。本文第一作者为西湖大学Hui Yue 与Yao Yuan 。【EM3DP的材料设计】作者通过利用海藻酸盐-PAM双网络水凝胶的正交交联机制开发了一种可固化的水凝胶基质:海藻酸盐链与Ca2+形成离子交联,而PAM网络是由丙烯酰胺和交联剂通过自由基聚合共价交联形成的(图1a)。然后将这种离子交联的凝胶粉碎、过滤和脱气,以产生平均直径约为20μm的透明的水凝胶微粒,并表现出屈服应力流体行为;并将它作为EM3DP的支持基质(图1b)。接下来作者通过将准备好的支撑基质凝胶与5μm大小的Ag薄片以及甘油和水溶性聚合物(例如聚乙烯吡咯烷酮)混合来开发导电油墨(图1a),EM3DP在定制的直接墨水书写平台上进行(图1b)。印刷后,水凝胶在60°C下加热以触发PAM的自由基聚合,固化整个基质和嵌入式电路(图1c(i),(ii)),Ag薄片在水凝胶中形成渗透通道,在墨水和基质之间没有观察到明显的接缝(图1c(iii),(iv))。如图1d所示,固化后的嵌入电路的水凝胶可以承受较大程度的拉伸和扭曲,一旦应力消除,可以完全恢复到原来的形状。图1e进一步证明EM3DP在制造自由形式3D结构方面的能力。图 1. 通过 EM3DP 制造水凝胶电子器件【基质和导电油墨的流变特性】在固定的交联剂/单体质量比下,无论藻酸盐含量如何,所有支撑基质都表现出剪切稀化行为(图2a),并且它们的粘度、储能模量(G')和损耗模量(G”)随着藻酸盐含量从0.99%上升到2.31%(图2b)。藻酸盐含量为0.99%的基质像液体一样流动,而藻酸盐含量为1.65%和2.31%的基质表现为凝胶(图2c)。考虑到其中间的流变特性,使用藻酸盐含量为1.65%的基质凝胶来制备导电油墨。将Ag薄片添加到基质凝胶中会增加其粘度(图2d)),表明Ag薄片既充当导电填料又充当流变改性剂。与原始基质凝胶相比,1.5×Ag墨水(Ag/水凝胶质量比=1.5)显示出大约十倍的粘度增加,而其剪切稀化行为保持不变。随着Ag/水凝胶质量比从0增加到1.5,墨水的G'和G”值也显示出大幅增加(图2e)。作者通过优化打印参数,包括压力和喷嘴移动速度,可以精确控制打印出的墨丝宽度与喷嘴内径一致(图2f),并且所有灯丝都呈现出近乎圆形的横截面。打印的长丝在热固化过程中没有表现出明显的形状变化或起泡。图 2. 支撑基质和导电油墨的流变特性【固化水凝胶基质的机械性能】图3a、b比较了通过传统的一锅法(非粉碎)和本文方法(粉碎)制备的藻酸盐-PAM水凝胶在固定交联剂/单体质量比和不同藻酸盐含量下的拉伸应力-应变曲线。随着藻酸盐含量从0.99%增加到2.31%,未粉碎和粉碎水凝胶的拉伸杨氏模量分别从5.35增加到7.69kPa和从2.80增加到3.71kPa(图3c)。在固定的藻酸盐含量(1.65%)下,将水凝胶的交联剂/单体质量比从0.016%提高到0.082%会导致拉伸杨氏模量从3.05略微增加到3.30kPa,但λ从11.3大幅提高到19.5(图3e、f)。图 3. 固化水凝胶基质的拉伸机械性能【导电油墨的电性能】作者制备了具有随机和分离分布的Ag薄片的Ag-水凝胶复合材料。具有随机分散的Ag薄片的复合材料未能形成相互连接的导电通路(图4a)。相反,在分离的复合材料中,Ag薄片在水凝胶域之间的边界处密集堆积并彼此紧密接触(图4a(右红线))。结果,随着Ag/水凝胶质量比分别从0增加到0.5、1.0和1.5,分离的Ag-水凝胶复合材料的电导率从1.5×10–3增加到2.1×101、4.0×102和1.4×103&thinsp S cm–1(图4b)。在相同的Ag/水凝胶质量比(0.5、1.0和1.5)下,具有随机分布的Ag薄片的Ag-水凝胶复合材料的电导率分别仅为6.9×10–3、6.9×101和3.4×102&thinsp S cm–1。作者接下来表征了Ag-水凝胶复合材料在拉伸应变下的电性能(图4c)。作者使用0.5×Ag、1.0×Ag和1.5×Ag的油墨印刷了线宽为250μm、长度为18mm的线性水凝胶电阻,显示初始电阻(R0)分别为246.5、10.9和3.7 Ω(图4d)。在慢速(5mm/s)循环拉伸试验(300%的应变)下,1.5×Ag电阻的R/R0值在前50个循环中从2.7略微增加到3.1,但之后保持稳定(图4e)。打印的气动执行器可以通过测量曲率传感器的R/R0变化来检测(图4g,f)。图 4. Ag-水凝胶导电油墨和印刷的可拉伸水凝胶电子器件的电特性【功能性水凝胶电子产品的制造及生物医学应用】为了说明EM3DP技术的多功能性,作者制造了一系列不同的水凝胶电子设备:电阻传感器、配备曲率传感器的执行器、电感器和生物医学电极。印刷设备表现出出色的机械稳定性和电气性能(图5a-f),以及与外部环境(如商业组件、设备引线和生物组织)的简单和保形接口(图6a-k)。与现有的水凝胶电子产品制造方法相比,本文的材料和制造方法可提供高精度、可设计性和自动化。因此,该方法应该为用于诊断和治疗设备的柔软、可定制的3D水凝胶电子设备开辟新的设计可能性。图 5. 功能性水凝胶电子器件的制造图 6. 3D 打印全水凝胶电极的生物医学应用【小结】作者报告了使用可固化的基于水凝胶的支撑基质和导电银(Ag)水凝胶墨水的水凝胶电子的EM3DP。颗粒状的离子交联水凝胶表现出一种屈服应力的流体行为,使其能够适应具有高导电性(1.4×103 Scm-1)和伸展性的导电油墨的沉积。当喷嘴产生的剪切应力大于屈服应力时,3D打印机喷嘴的运动会使水凝胶基质过渡到暂时的流体状态,然后再返回到固体状态。打印后,基质和墨水可以通过激活共价交联机制而固化在一起,从而形成柔软(杨氏模量,5Ka)和可拉伸(伸长率约18)的整体水凝胶,将电路包裹起来。作者使用3D打印方法来创建一系列基于水凝胶的电子设备,包括应变传感器、配备曲率传感器的执行器、电感和生物医学电极。发光二极管(LED)和射频识别(RFID)芯片等电子元件也可以通过自动混合打印工艺轻易地纳入电路中,以扩大打印设备和电路的功能。来源:高分子科学前沿
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 对生命进行远程控制:无线生物工程学成为医学研究的前沿领域
    据英国《新科学家》周刊网站近日报道,随着纳米技术、生物技术以及无线通讯技术等领域的迅猛发展和交叉融合,现在,科学家们已经能够使用无线电信号来对细胞、药品甚至动物等进行控制了。尽管远程无线控制医学这一前沿领域可能面临着安全性等问题,但是,其发展潜力和蕴藏的好处都让人不容小觑。  无线生物工程学方兴未艾  美国纽约州立大学水牛城分校的阿诺德普拉勒制造出的线虫看起来与其他蠕虫毫无二致,体长约为1毫米。接着,当普拉勒打开一个磁场,这些滑溜的、不断蠕动的蠕虫会停止动作,随后,在犹豫了片刻之后,接着开始向后退。然后,普拉勒将磁场关闭,再打开,一遍又一遍地重复这个动作,蠕虫会随着他的拍子跳舞,协调一致地前后移动。  这些都是可以进行远程控制的蠕虫。此前,普拉勒和同事已经将纳米大小的接收器植入线虫头部的神经细胞中。无论何时,只要该接收器探测到高频磁场,神经细胞就会通电,蠕虫也因此会转动。  普拉勒的远程控制蠕虫仅仅只是个开始。目前,生物学家们正在研究对其他宿主进行控制 也在研究将接收器植入离子通道、DNA片段和抗体中。他们的目标是使用比无线电更小的电波来控制活体细胞。  这个方兴未艾的无线电远程医学技术融合了纳米技术、生物技术和无线电物理学技术,该领域目前正在为研究人员提供一个强大的研究工具,而且也在创造一类新科学:科学家们将其称为无线生物工程学或者电磁药理学。不管叫什么名字,该领域目前正吸引着很多科学家为之而倾倒,而且,其应用潜力也非常大。  美国西北大学的物理学家贝纳尔多巴尔别利尼-阿米德去年帮助美国国家科学基金会组织了一场与这个课题有关的研讨会。巴尔别利尼-阿米德指出,一个新的医学领域正慢慢向我们走来。很多疗法,包括基于免疫系统、基因甚至干细胞的疗法都有潜力被远程控制。  与传统药物需要经过几小时才会起作用而且会一直停留在身体里不同,使用无线方法激活的药物几乎能立刻起作用或者随时关闭。美国洛克菲勒大学的萨拉史坦利表示:“使用无线电场能诱导细胞提供具有治疗效果的蛋白质,而采用其他方法做到这一点的成本很高。”  他所在的研究团队也已经找到了使用无线电波来控制胰岛素的生产和释放的方法。我们甚至能够大胆设想:下一代用智能手机应用程序激活并起作用的药物距离我们并不遥远了。巴尔别利尼-阿米德说:“纳米无线系统在医学治疗领域拥有巨大的应用潜力。”  电磁场能“遥控”体内细胞  在很多疗法中,科学家们和医生都会使用强大的磁场来作为治疗手段。例如,名叫经颅磁刺激(TMS)的技术通过诱导大脑内的电流来工作,鉴于其具有一定的疗效,使用该技术治疗抑郁症在美国已经获批。  但是,TMS并非一种十分精确的方法,而且,目前,很多科学家正在研发其他专门使用磁场进行疾病治疗的方式。2005年,加拿大蒙特利尔综合理工大学纳米机器人实验室的西尔万马特尔就想出了一个点子:使用磁感应细菌来制造“迷你型”的药物递送系统。  马特尔的具体想法是,使用一种名为MC-1的菌株作为小拖船。MC-1会沿着地球磁场的磁力线游动——它们使用嵌入身体内名为磁小体的结构中的氧化铁粒子链来感应地球的磁场。马特尔解释道:“每个磁小体就像一根指南针或者一个纳米导航系统。”  2007年,马特尔的团队将细菌同大小为其数倍的塑料小珠连接在一起,并且使用由一台MRI扫描仪产生的、由计算机控制的磁场证明,细菌会遵循精确的路线行进,并且,将它们身上负载的东西铺展在特定的目标上。随后,该研究团队用像细胞一样的胶囊(脂质体)替换下这种塑料小珠子,接着,再让脂质体胶囊负载抗癌药物,该计算机控制的磁场能引导该脂质体胶囊通过血管到达肿瘤所在地。  科学家们已经使用这种方法,引导了很多同纳米尺度的磁体依附在一起的抗癌药物阿霉素通过一只实验老鼠的肝脏的动脉到达肿瘤。科学家们认为,最新方法可以让健康的细胞尽量少暴露在强大的药物下,因此,在治疗时副作用应该可以达到最低。马特尔团队目前正在研究如何使用这一方法治疗直肠癌。  科学家们表示,这一方法真的好处多多,电磁场或许可以通过操控身体内细胞的生物化学特性,从而直接干预身体内的这些内部细胞。这样的无线控制方法提供的精确度很少有药物能够做到。  2002年,美国麻省理工学院的约瑟夫雅各布森领导的科研团队证明了这一点。在研究中,他们认识到,金属纳米粒子能够像天线一样并从以无线电频率振动的磁场那儿吸收能量。这些能量可以被转化为热,而且,雅各布森还认为,这或许对触发细胞内部的生物化学变化非常有用。  随后,他和同事决定用DNA来测试这一想法。他们制造出了DNA片段,其中的碱基对相互依附在一起形成一个像束发夹一样的圆环。接下来,他们让一个个金纳米粒子依附到每个DNA片段上。当他们打开一个高频磁场时,来自于纳米粒子的热量会破坏这些碱基对之间的链接,而且,这个束发夹一样的圆环也会弹开。随后,他们将磁场关闭,分子冷却下来,链接也重新形成。这个循环能够一遍一遍地重复进行,而且,雅各布森也表示,它或许会成为一个有用的工具,可以用它来控制基因的功能。  普拉勒则认为,这种方法还有其他用途:打开和关闭细胞壁上的小孔。这些以蛋白质为基础的小孔调节着离子进出细胞的通道,如果能对这一关键的过程进行很好的控制,会有非常大的用处。  作为美国加州大学伯克利分校的博士后研究员,普拉勒已经研究了一个名为TRPV1的离子通道,疼痛感应神经元中经常会发现这个离子通道。在身体体温为正常的37摄氏度时,这个离子通道是关闭着的,但是,如果温度上升到43摄氏度,TRPV1会打开,而且,钙离子会通过该通道,触发一个会制造出热感的神经脉冲。具体到人体上,辣椒等产生的灼热感也同TRPV1通道脱不了干系。  刚开始,普拉勒考虑使用一个红外激光器来打开该通道,但随后,他无意中看到了雅各布森的研究。他说:“我开始思考另外一个方法,那就是我们能够使用温度来直接刺激TRPV1。”计算结果显示,单个纳米粒子无法聚集到足以打开离子通道那么多的能量。但是,他推断,固定到嵌入有TRPV1的细胞膜上的一小撮纳米粒子提供的热量足以将小孔加热到43摄氏度。  为了测试这一想法,普拉勒和同事修改了位于细胞膜内的TRPV1附近的一个蛋白质,使得该蛋白质同几个由铁锰制成的磁纳米粒子依附在一起。随后,事情果然按照普拉勒他们所想象的那样进行:他们打开一个强大的40兆赫兹的磁场,在短短的10秒钟内,通道的温度上升了6摄氏度,并且,细胞壁上的小孔张开了。  普拉勒的团队使用秀丽隐杆线虫(现代发育生物学、遗传学和基因组学研究重要的模式材料)进行了同样的测试。他们将他们制造出的TRVP1天线系统添加到线虫对热敏感的“鼻子”内,果然不出所料,当鼻子内经过修改的神经细胞探测到磁场时,线虫避开了对它们来说像热源一样的事物。  科学家们几个月前才开始关注这个开关并研究这个开关的应用前景(《科学》杂志第336期第604页)。由美国洛克菲勒大学的杰弗瑞弗里德曼领导的科研团队制造出了经过遗传修改的细胞,在这些细胞中,由TRVP1通道释放出的钙离子触发了胰岛素的产生。接着,科学家们直接将铁纳米粒子添加到TRVP1通道内,并将细胞直接注射进入实验老鼠体内。当他们开启一个以无线电频率震动的磁场时,实验老鼠的血糖浓度下降,这意味着胰岛素已经生成并开始在老鼠体内“发威”。  弗里德曼的团队甚至想出了方法让细胞制造出自己的铁纳米粒子,他们的方法就是赋予细胞合成铁蛋白(铁蛋白是一种将铁原子收集成簇的蛋白质)所必需的遗传机制。科学家们表示,他们也可以对这一方法稍作改变,使用其来远程触发诸如依靠钙离子的肌肉收缩等过程。它甚至可以用来处理大脑内的肿瘤,这里的肿瘤很难对付,因为血脑屏障让血液中的大分子无法进入大脑中。  史坦利表示,他们可以通过修改病人自己的干细胞,制造出一种对无线电信号做出反应的重组抗体,而且,他们也可以将其植入中央神经系统中以递送治疗抗体。普拉勒表示:“很多无线控制方法都有望通过这种方法或者其他方法来实现,这很酷。”  如果这类远程加热方法能起作用,那么,这种方法也不必破坏铁通道中的蛋白质或者伤害附近的分子。普拉勒认为,其中一个原因在于它使加热过程变得更有效。如果他能够在接下来的研究中,找到方法减少提高离子通道的温度所耗费的时间,那么,让附近的分子受到影响的热能也会相应减少。为此,他正在设计更好的纳米大小的热吸收器。  无线拉伸细胞可诱使肿瘤细胞凋亡  科学家们发现,除了可以使用热来对细胞进行远程控制之外,还有其他方法也能对细胞进行远程控制。美国哈佛医学院的唐因格伯进行的研究表明,细胞会通过使用自己身体的扭转来相互交流。他的团队发现,他们可以仅仅通过采用特别的方式来拉伸细胞,从而改变细胞内的基因活动的模式甚至触发细胞自杀——也就是所谓的细胞凋亡。  因格伯的研究团队采用的方法是,将具有磁性的纳米小珠依附到整联蛋白上,整联蛋白是一种出现在细胞的外膜内的蛋白质,其会将纳米小珠锚定到细胞的外基质上。打开一个磁场会对塑料小珠施加一种力,这个力会拖动整联蛋白并将细胞拉变形。  2007年,因格伯就已经证明,他能够将细胞拖成扁平的形状,而且,当磁场关闭时,细胞会死亡。他表示:“这表明,我们可以通过磁场的关闭这种方式来控制细胞的命运。”而且,他和他的团队也已经发现,让一个干细胞变形可以决定它会发育成为哪类身体组织。因格伯解释道:“力学在发育过程中和基因一样重要。”  使用磁场拖拉细胞也能影响我们的免疫系统。在另外一套实验中,因格伯团队让磁性纳米粒子依附到肥大细胞表面的抗体受体上,这种抗体受体会对特定抗原产生过敏免疫反应。在一个磁场中,纳米粒子形成一簇,将这些抗体受体聚拢到一起,其采用的方式与抗原依附于其上一样。在一般情况下,这个聚簇行为会触发一系列的生物化学事件,导致组织胺释放出来——这是一种免疫反应。结果表明,磁场是这一切事件背后的幕后推手。因格伯说:“磁场在这方面表现得非常好。”  因格伯表示,这样通过无线触发方法释放出的组织胺可以更好地控制炎症。组织胺影响血管扩张、肌肉收缩以及肠道内的胃酸分泌。它也能像神经传递素一样影响人的清醒和睡眠状态。而且,这种聚簇效应也能同细胞表面的其他分子结合在一起以制造抗癌药物,例如,制造能触发肿瘤细胞死亡的抗癌药物。  目前,普拉勒打算厘清一个问题,那就是,这种远程加热技术是否能通过激活动物嗅球内特定的神经元(嗅球是大脑内与处理气味有关的组织)来刺激老鼠的触觉。实际上,也就是通过这种方法,让老鼠“闻到”并不存在的物质。去年,他的团队接受了美国国立卫生研究院(NIH)提供的130万美元的资助来研发这项技术。他说:“嗅觉提供了一个大的实验场地,因为嗅球能够从外面送达,因此,递送纳米粒子相对来说也比较容易。”  细胞自身或许就拥有无线机制  要想对细胞进行无线控制,小磁铁可能并非最好的接收器。据《科学美国人》杂志报道,早在2007年,美国加州大学伯克利分校的物理学家亚历克斯策特尔就已经证明,纳米管完全可以作为无线电接收机来使用:可以被当做一个配备了放大器和谐调器的天线来使用。  为了制造出一个能对无线电波做出反应的纳米管,策特尔团队在该碳纳米管的尖端施加了一个电荷。当出现无线电波时,电荷会在管内制造出振动,这种振动能被转化回来成为一个震动的电磁信号。通过改变碳纳米管的长度可以改变其共振频率——策特尔发现,采用这种办法能让纳米管与特定的无线电频率保持一致。策特尔甚至也证明,他的碳纳米管无线电接收机能够通过播送与披头士乐队齐名的沙滩小子乐队的歌曲《Good Vibrations》来重复产生传送信号。在纳米管接收器的音频输出那儿,很容易看到这种谐调。  策特尔宣称,纳米收音机可以被“轻松嵌入一个活细胞中,届时,科学家们可以制造出一个与大脑或肌肉功能接口的装置,用无线电控制在血管中游动的器件也将不再只是梦想”。  然而,甚至纳米无线电接收机可能也并不是必须要有的。科学家们表示,细胞或许拥有自己的无线机制。2009年,法国免疫学家、2008年诺贝尔生理学或医学奖获得者之一吕克蒙塔尼断言,DNA分子可以使用无线电波来传送信息,他之所以做出这一判断是因为,他找到了从富含细菌的水中传来的无线电信号,而且,即使当细胞被杀死时,只要他们的DNA完好无损,信号就会保持。  不过,很少有科学家接受这个观点。但是,去年,美国西北大学的物理学家阿兰维多姆计算出,这样的信号可能源于细菌染色体内的DNA环周围的电子,此前,科学家们就认为,循环的电荷能产生电磁波。维多姆指出,人们很早就知道,有些古老的细菌能够通过导电的纳米线将其同电网相连。维多姆预测道:“那么,或许会有很多现代细菌会使用无线电来做事。”  安全问题首当其冲  然而,尽管一切看上去都很美好,这项技术的应用潜力似乎也非常大,但是,我们仍然不能忽视可能会存在的问题。其中一个关键的挑战是,如何将所有这些功能(包括感应无线信号并将其变成有用的反应)整合为一个安全的集成系统。很多科学家们也认为,手机等发射出的电磁信号对细胞具有危险的影响,其会改变基因表达甚至诱发癌症。因此,迄今为止,无线生物工程学这一理念还存在诸多争议。  安全问题则紧随其后。今年2月,西雅图信息安全测试公司McAfee的主管巴纳比杰克表示,他找到了一种方法,可以用无线信号探测糖尿病患者所携带的胰岛素泵,同时控制这些胰岛素泵。他随后进行的初步研究也证明,依靠无线连接的胰岛素递送系统、起搏器、除纤颤器有可能受到黑客的攻击或者被修改。有鉴于此,美国政府问责局目前正着手进行调查,以弄清楚是否应该为医疗设备工业制定更加严苛的安全规则,研究报告预计今年出炉。  显然,不管是无意的还是有意为之的,任何这样的干扰和破坏都会带来令人担忧的问题。巴尔别利尼-阿米德表示:“我们应该关注纳米世界内计算机和通讯领域的安全问题。未来的医用无线纳米设备必须包含更加严谨的安全机制。”  科学家们也表示,尽管面临着一定的风险,但是,我们应该花大力气来解决目前面临的挑战。这是值得的,因为,无线生物工程学具有非常巨大的应用潜能。
  • 435万!共建泉州知创园实验室(无线电产品检测平台)仪器采购
    项目概况共建泉州知创园实验室(无线电产品检测平台)检测服务能力提升 招标项目的潜在投标人应在福建省集英项目管理有限公司获取招标文件,并于2022年02月11日 15点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:FJJYPM2021032项目名称:共建泉州知创园实验室(无线电产品检测平台)检测服务能力提升预算金额:435.0000000 万元(人民币)最高限价(如有):435.0000000 万元(人民币)采购需求: 福建省集英项目管理有限公司(代理机构)受泉州丰泽华大知创园有限公司(采购人)的委托,采用公开招标方式组织共建泉州知创园实验室(无线电产品检测平台)检测服务能力提升(以下简称:“本项目”)的采购活动,欢迎符合资格条件的供应商前来投标。1.招标编号:FJJYPM2021032。2.项目名称:共建泉州知创园实验室(无线电产品检测平台)检测服务能力提升。3.预算金额、最高限价:详见《项目货物(服务)一览表》。4.招标内容及要求:详见《项目货物(服务)一览表》及招标文件第五章。5.投标人的资格要求:5.1 投标人应是中华人民共和国境内注册的企业法人或分支机构,所投的货物或服务必须全部在投标人营业执照允许经营的范围内,且企业经营符合国家法律法规等;5.2 具有独立承担民事责任的能力;5.3 具有良好的商业信誉和健全的财务会计制度;5.4 具有履行合同所必需的设备和专业技术能力;5.5 有依法缴纳税收和社会保障资金的良好记录;5.6 参加本项目投标前三年内,在经营活动中没有重大违法记录;5.7 投标人应在招标文件要求的截止时间前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图);5.8 法律、行政法规定的其他条件;5.9 本项目不接受联合体投标。6.报名及招标文件的获取凡有意参加投标者,自招标公告发布之日起至2022年01月25日17时30分前,向福建省集英项目管理有限公司购买招标文件。招标文件每份售价人民币300元,售后不退。逾期或未按上述方式获取招标文件的,其投标将被拒绝。7.评标办法本招标项目采用的评标办法:综合评分法。8.投标截止时间、开标时间和地点8.1 投标截止时间:2022年02月11日15时00分(北京时间),投标人应在此之前将密封的投标文件送达指定地点,逾期送达的或不符合规定的投标文件将被拒绝接受。8.2 开标时间:2022年02月11日15时00分(北京时间)。8.3 递交投标文件和开标地点:泉州市丰泽区田安南路158号央街商务楼3楼。9.有关本次招标的相关信息(包括招标文件若有修改)都将在以下招标信息发布媒体(中国政府采购网http://www.ccgp.gov.cn/)上公布,请潜在投标人随时关注相关网站,以免错漏重要信息。合同履行期限:详见招标文件。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:详见招标文件。3.本项目的特定资格要求:详见招标文件。三、获取招标文件时间:2022年01月18日 至 2022年01月25日,每天上午8:30至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:福建省集英项目管理有限公司方式:凡有意参加投标者,自招标公告发布之日起至2022年01月25日17时30分前,向福建省集英项目管理有限公司购买招标文件。招标文件每份售价人民币300元,售后不退。逾期或未按上述方式获取招标文件的,其投标将被拒绝。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年02月11日 15点00分(北京时间)开标时间:2022年02月11日 15点00分(北京时间)地点:泉州市丰泽区田安南路158号央街商务楼3楼五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜无七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:泉州丰泽华大知创园有限公司     地址:泉州市丰泽区高新产业园区科技路育成基地综合办公楼三楼        联系方式:郑先生,0595-22900002      2.采购代理机构信息名 称:福建省集英项目管理有限公司            地 址:泉州市丰泽区田安南路158号央街商务楼3楼            联系方式:吴女士,0595-28565558            3.项目联系方式项目联系人:吴女士电 话:  0595-28565558
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • 《Materials Today Physics》:3D打印超抗冻多功能柔性电子器件
    柔性电子作为一种新兴的电子技术,以其独特的柔性/延展性(弯曲、折叠、扭转、压缩或拉伸)和高灵敏特性,在信息、医疗等领域具有广泛应用前景,如电子皮肤、柔性屏、脑机接口等。水凝胶材料以其独有的特性(柔性、导电性、高拉伸性)在柔性电子领域被广泛研究和使用。采用诸如光学光刻、微接触印刷等微纳制造技术可实现图案化水凝胶柔性电子器件的制造,但是上述技术加工步骤复杂、加工成本高、幅面较小,难以实现复杂三维结构信号强化效应。微纳3D打印技术很好地平衡制造成本、加工精度和幅面的问题,可快速制造并成型任意形状和定制设计的水凝胶跨尺度结构,而且,对水凝胶进行图案化设计可进一步提高柔性电子器件的灵敏性;同时通过对水凝胶的性能诸如自粘附、导电、抗冻等性能的优化,可拓展水凝胶柔性电子的应用范围,如自粘附电子、极端温度环境工作的柔性器件等。近日,湖南大学王兆龙、段辉高教授与上海交通大学郑平院士合作,基于面投影微立体光刻技术,采用摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,通过引入粘附性的光固化单体及材料配比优化,设计了水凝胶诸如强粘附性、导电性和抗冻性等性能。通过水凝胶的结构设计提高运动信号监测的应变灵敏度,实现宽范围的运动信号传感。作者设计3D打印水凝胶柔性电极采集人体的肌电信号,将水凝胶柔性电极采集的肌电信号作为用户界面控制机械手的同步运动,以准确的完成弹奏不同音符的动作,甚至可以控制-80℃低温环境下机械手的运动。该工作引入微尺度3D打印技术使得复杂3D结构多功能柔性电子和复杂人机接口的快速制造成为可能。文章以“3D printed super-anti-freezing self-adhesive human-machine interface”为题发表在Materials Today Physics上。原文链接:https://doi.org/10.1016/j.mtphys.2021.100404该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等基金支持。图1 面投影微立体光刻技术(摩方精密,nanoArch S/P140)原理及水凝胶材料设计,利用共价键交联和氢键网络结合优化水凝胶性能图2 3D打印水凝胶诸如超拉伸、强粘附、抗冻等性能设计图3 基于面投影微立体光刻技术加工跨尺度结构的水凝胶制备高灵敏度的应变传感器,用于监测宽范围的人体运动信号图4 基于面投影微立体光刻技术加工水凝胶用于肌电信号的采集,将采集的肌电信号作为人机接口控制机械手的同步运动,以完成弹奏不同音符、甚至低温环境的动作控制
  • 印度出台电子产品强制检验制度
    原标题:印度出台电子产品强制检验制度,广大生产企业应密切关注  据悉,印度标准局(BIS)发布公告称,将于2013年3月7日开始实施电子产品强制检验制度,其目的是为了遏制劣质电子产品在印度市场的泛滥。首批实施的包括15种电子产品目录,分别是笔记本电脑、平板电脑、电视机(LCD和LED)、光盘播放机、微波炉、打印机、扫描仪、无线键盘、视频监控器、电话答录机、放大器、音响系统、电子表和机顶盒。同时,移动电话等其他电子产品随后也将纳入检验目录。  根据规定,实施管制的产品生产商都需将产品送交指定的机构进行检验,检验合格后由BIS签署合格证书并在产品上粘贴醒目的标识。从海外进口的管制产品在印度市场销售前,也需获得检验合格证书,检验可由产品原产地的当地机构来进行,但这些机构必须获得印度标准局的许可。  今年1至11月,宁波地区出口印度机电产品6873批,2.09亿美元,其中即将受管制的产品183批,612万美元,主要包括手持式无线电话机、音箱、喇叭等通信及视听设备。  为此,检验检疫部门提醒广大生产企业:一是改变对第三世界市场“重价格,低品质”的传统观念,重视新兴市场出台的各种技术性贸易壁垒 二是尽快与获得印度许可的认证机构取得联系,收集相关的最新进口国标准,尽早取得认可,以免影响出口 三是借此机会提高产品档次,对照标准要求做好产品的设计开发工作。
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • TCT访谈|硬核科技全球首发,摩方精密加速发力工业级3D打印
    摩方精密,这是全球唯一能将3D打印精度精确到2微米、兼具超高公差控制能力、实现工业化应用的企业,也是为数不多的将精密加工设备出口到全球各大应用市场的企业。持续不断的产品研发能力一直是业内关注的焦点。近期,TCT亚洲视角团队前往摩方精密深圳公司,与副总裁周建林先生从公司当年选择入局微纳3D打印聊起,回顾8年的发展历程。他用冷静、克制的眼光,分析看待国内外3D打印市场的竞争现状。秉持初心,摩方精密在产品研发与应用拓展方面不断发力。今年5月,他们将在TCT亚洲展现场,发布新一代3D打印力作。摩方精密 副总裁周建林先生“在国内外金属3D打印技术蓬勃发展的情况下,大家都很好奇,摩方精密为何在多数人选择做“大尺寸”的环境下,选择微纳级3D打印技术这个“小而精”的赛道?选择这一赛道的基础和背景是什么?”这是一个很好的问题。我们公司很早就参加全球各地的TCT品牌展览会,除了我们TCT亚洲展,还有英国的TCT 3Sixty,美国的Rapid+TCT,以及TCT Japan等,所以对3D打印整个行业的发展是持续关注着的。2023年RAPID+TCT现场你提到金属这一块,近几年确实在全球发展都比较快,尤其是在大型的航空航天这个领域做的业务越来越多,当然是一个很好的趋势。但是增材制造它是一个平台性的技术,也属于材料加工的范畴,所以从材料加工这块来分的话,金属只是其中的一块。我们一直聚焦在做树脂和陶瓷这两块材料的加工,公司的核心竞争力就是精密制造和精密加工。2023年TCT 3Sixty现场微纳3D打印是3D打印大行业中的细分领域,它主要用于解决任何传统技术都很难处理的精密小型产品和复杂器件的加工、制造问题。那么,市场需求和发展趋势是什么?我们就做什么?这是由市场驱动的。目前看来,不管是在电子、通信,还是医疗,工业发展的更新迭代非常快,尤其是一些我们比较熟悉的一些消费产品,比如手机越做越薄,越造越轻,还有折叠功能的等等。那么这些设计里面的一些元器件在结构复杂的情况下,肯定要做得特别轻巧才能满足需要。以及一些可穿戴的产品,比如TWS耳机,相对以前头戴式和入耳式的,现在无线蓝牙的设计是非常智能化的。由此可见,兼具微纳细节尺寸和复杂构型的精密器件,遍布工业生产和人们生活的方方面面,当然也出现在大量“高精尖”、国外制造技术垄断的领域。相比较而言,传统制造方法在日新月异的技术进步面前,常常瓶颈显著。市场是一直都存在的,但以前为什么很多下游的厂家会选择比较昂贵,或者说比较不方便的一些传统方式去做,是因为咱们的打印技术它达不到这个要求。那么,摩方精密就通过这七八年的发展,技术不断成熟,已经在上述这些应用领域中做了很多应用案例,那就进一步坚定了我们的信心,找到了比较好的定位,笃定地在这个行业不断地深入下去。“具体是如何做到如今全球超高精密3D打印的领导企业?”首先还是前面提到的市场驱动。公司成立初期,正值 3D 打印技术在全球范围内逐渐兴起。就我们中国企业而言,有很多在产品方面做得很好,但真正能够将基础设备出口到海外的还是比较少的。尤其过去这些年,中国在很多产业中、在核心高端设备上更是受到限制。在这样的背景和使命下,摩方精密在设备制造方面,稳操基本盘,在25μm、10μm、2μm微纳3D打印机都有主打的设备,且在科研及工业领域有着非常扎实的客户基础。microArch S230(2μm)其次原创技术驱动。摩方精密在这8年发展中,不断进行技术上的突破革新。在2021年,凭借超高精密3D打印系统microArch S240荣获2021年度全球光电科技领域最高奖“棱镜奖”,这也是中国企业第一次凭借本土原创精密制造技术的领先性获得此奖项。再者不断探索创新应用,不断赋能、孵化相关应用领域产品,发力开启终端应用产品布局。目前,“极薄强韧牙齿贴面”是摩方精密利用颠覆性技术带来的突破性应用产品之一,是在生物医疗领域的全新应用。依托于长期积累的核心技术,摩方精密的3D 打印技术已经广泛应用于多个垂直领域,如医疗器械、精密连接器等,与多家知名企业建立了合作关系。“摩方精密在国内/亚太区当前的布局情况如何?未来计划呈现一个怎样的“版图”?如何做到?”我们本身的定位是做全球性市场的一个企业,所以除了亚太地区,我们的另一大市场是在欧美地区。因为目前整个3D打印它主要的市场还是分布在欧洲和北美,以及亚洲地区更多集中在东亚,而中国也的确是一大主力市场,所以除了澳洲、新加坡等,我们在中国国内的布局是比较深的。我们总公司是在重庆,近两年发展的比较快,已在厦门、北京、深圳、武汉、南京、西安、杭州等多地设立办事处,同时也在日本、美国等地设立海外分公司,进一步加速全球市场拓展和持续增长未来。短期来看,我们首先确保稳步推进装备销售,并进一步加强后续客户跟踪售后及技术支持。即将在今年5月TCT发布的新设备,也是摩方精密这几年的研发力作,将为客户提供更高效、更智能、更友好的使用体验。其次我们持续加紧创新技术研发,拓展终端应用。以牙齿贴面领域为例,当牙齿表面出现缺损、着色等疾病时,采用陶瓷修复材料“贴”在表面,可以恢复形态、改善色泽。目前全球基于机加工的氧化锆牙齿贴面最低厚度在300μm以上。而我们与北大口腔医院合作打造的牙齿贴片,厚度大幅降低至40μm,最大程度地减免患者磨牙步骤,保留牙釉质。长期布局方向,摩方精密将致力于建立一个更加完善的全球市场网络,加快研发、创新、展示中心和销售为一体的战略布局。希望让摩方可以进入更多的领域,同时,我们会在终端、产品端去和上下游客户相互合作,把摩方的材料和设备进一步地推入到终端产品中去,最终过渡成为技术赋能性平台公司。“通过各个渠道新闻了解到,摩方精密将在TCT现场正式发布Dual系列设备,首次实现复合精度在同层和不同层间的自由切换,也请您具体谈谈摩方本次在新技术及系列新品的突破?”我们公司一直是聚焦在做精密生产或者说微纳生产,所以一直非常重视研发和技术创新。这些年一直也在不断的推出新的产品,包括2μm精度、10μm精度,还有25μm精度,来填补一些技术上的空白,满足市场的需要。你刚才提到的Dual系列设备搭载的是摩方全新科技-复合精度光固化3D打印技术。这款设备主要针对工业制造中复杂结构件的精细处理需求,通过组合不同打印精度,突破大尺寸和高精度的固有矛盾,使大幅面与极小特征尺寸完美结合,有效解决了传统打印中大尺寸与高精度难以兼得的问题。“非常期待这款全球首发的双精度打印设备。那么,周总可以跟大家讲讲这款设备未来会在哪些场景出现?它具体可以解决哪些应用领域的难题?”这个应用场景是非常多的,大家也都有一个共性的需求:同时满足高精度和高效率的双重需求。10年前我就已经收到客户有这方面的需求,他希望设备在打得好的情况下,速度和效率方面也有所提高,降低成本的同时,还能满足产品更快的迭代需求。那么比如在精密电子领域,这款设备能打印芯片接插件、连接器、传感器等复杂精密结构件,用于小批量、规模化精密仪器的生产制造,充分满足生产商对精密复杂连接器等零部件的批量生产需求,能极大提升生产效率。比如说AI芯片,它上面用的一些封装的背板或连接器。一块AI的CPU上要打很多芯片,背板的面积是固定的,但其表面布满了上千个小孔,所需精度要求很高,那么就需要2μm精度去做,但是其他部分的精度要求相对没那么高,可能10微米或者25微米就能满足了。以及在精密医疗领域,其复杂结构制造、个性化定制、材料多样性、快速原型与迭代等方面的优势,为高端医疗器械与生物制造技术领域的发展提供了强有力的技术支撑和新的可能性。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。这样的案例非常多,这项技术的出现可以改变一些设计师的思路,以前敢想但是做不了,那么现在就可以“敢想敢做”。当我收到客户的积极反馈,评价我们是“灵魂工程师”的时候,我觉得我们投身在这个行业是很有成就感的。“就光固化3D打印领域而言,您是如何看待其他的海内外企业竞争者?”是的,我们用的技术是光固化,所以我们一直是有在关注光固化这个行业的发展。那么,光固化它有高精度,也有低精度,以及树脂打印、陶瓷打印等等,都是同行。那国内外的竞争环境也是有所差别的,国外厂商更注重去做一些基础创新、原始创新的事情,呈现的是差异化的竞争格局,良性发展。国内的话,我的一个感受是与国外恰恰相反,大家的角力点是在市场营销、文案美化等方面,这对我们在国内的竞争也算不上是一种挑战,但是这对终端用户会造成一定的误导,干扰大家对这个细分技术作出真实、准确的判断。近年来,我国增材制造产业发展迅速,涌现出一批知名的增材制造企业,大家是对手,更是战友。作为加工厂商,摩方精密一直保持敬畏之心,向下游领域的客户虚心学习,共同成长。“摩方精密面临的挑战有哪些?未来产品与技术的发展方向是什么?”在这个行业中,我觉得挑战是一直存在的。主要分两大块,首先3D打印技术毕竟是一项材料加工的技术,如何推动技术去找到合适的应用,怎么落地,都是需要花费长时间地积累、优化,才能呈现出最终大家都满意的一个产品。第二点,我们知道客户要的是一个综合的解决方案,并非靠售出一台设备就能解决的。这就回到我刚才说的,公司要需要不断修炼内功,跟客户一起去攻克过程中的难关,才能真正满足客户端的需求。如果说我们一直停留在原型制造,仅仅是卖设备,那么这个行业的天花板就在那儿了,没办法真正的解决行业应用的问题,这就造成市场空间的局限性。那么投资人也好,从业者也好,就都会纷纷离开这个行业,更别谈未来还有更多的可能性了。“谢谢周总分享的深刻洞察。那么5月份,TCT亚洲展就要在上海召开了,周总对此有哪些期待?”我先讲一下我的感受,我觉得TCT是一个很好的展会平台,包括不管是国外的,还是咱们亚洲展。我们对TCT亚洲展的期待有很多,其中一方面是希望TCT亚洲展能更加国际化。随着国内增材行业的发展,现场国内厂家的占比也越来越大。TCT作为一个桥梁和一面窗口,我们也希望有更多的海外展商可以参与进来,同时也包括会议论坛方面,未来邀请更多的国内外专家、从业者、应用端用户参与进来,相互交流,了解彼此的发展情况,开拓视野。
  • 印度将实施电子产品强制检验制度
    印度标准局近日发布公告称,印度将于2013年3月7日开始实施电子产品强制检验制度,所有印度生产和从国外进口的电子产品在销售前都必须得到印度标准局(BIS)的认证许可。这是印度首次针对全球产品出台类似规定。  根据规定,所有电子产品生产商都需将产品送交指定的机构进行检验,检验合格后由印度标准局签署合格证书并在产品上粘贴醒目的标识。从海外进口的电子产品在印度市场销售前,也需获得检验合格证书,检验可由产品原产地的当地机构来进行,但这些机构必须获得印度标准局的许可。  印度电子和信息技术部(DEITY)此前已经发布命令,公布了首批15种需要进行强制检验的电子产品目录,包括笔记本电脑、平板电脑、电视机(LCD和LED)、光盘播放机、微波炉、打印机、扫描仪、无线键盘、视频监控器、电话答录机、放大器、音响系统、电子表和机顶盒,移动电话等其他电子产品随后也将纳入检验目录。  根据印度电子工业协会(ELCINA)的数据,印度电子产品销售额2015年预计将达到1,580亿美元。印度大约30-40%的电子产品在地下市场交易,其中不乏质量低劣的产品。业内人士表示,印出台强制检验制度是为了遏制劣质电子产品在市场的泛滥。
  • 四十年前IEEE国际代表团眼中的中国电气电子技术
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strongElectrotechnologyin China/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong电工技术在中国/strong/span/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "原文出版在”IEEE Spectrum”,1978年2月刊。/span/strong/pp  1977年9月27日,应中国电子学会的邀请,由十名代表组成的IEEE代表团抵达中国开始对零件,计算机,通信,和电力领域进行了为期三周的访问,这篇文章是基于代表团成员的贡献,使得当时的美国读者可以近距离了解中国的先进技术。/pp  span style="color: rgb(0, 112, 192) "strong中国电气和电子技术中最引人注目的方面在哪里?发展方向在哪里?正在以何种速度发展呢?/strong/spanstrongspan style="color: rgb(0, 112, 192) "总体来说,中国落后于欧美地区10-15年左右,大致的发展起始于1948年。/span/strong但是政府号召人民在2000年之前追平或超越工业化国家。西方访问者,如近期的IEEE代表团,也认为中国是可以做到的 -- 当然,意识形态的和谐统一将转化为现代化的驱动力,从而克服国家在研究领域、工业发展,特别是教育系统中的严重缺陷。/pp  现今,中国似乎进入了一个稳定时期。各项条件可满足于真正的发展。在9月18日的声明中,中国共产党中央委员会提出“技术革命”和“重要的理论创新和技术发明”,为中国人民设定了目标:在重大科技领域,《声明》指出:“中国要逐步接近、追平,甚至超越世界最先进水平,使我国国民经济处于世界前列。”为此,中央对国家科学技术委员会进行了改革,要求各部门制定三年、八年、以及粗略的二十三年计划,以协调纳入国家计划。/pp  以下是一些IEEE代表团成员近日来访中国的印象汇总。三周以来,中国电子协会(CES)陪同美国的参观者先后去了工厂、研究实验室,以及大学。参观者的观察虽然有限且不完整,但仍旧展示出了一幅复杂且充满活力的技术画面。/pp  虽然来访的IEEE主要集中在通信方面,但CES也安排了对计算机、电力设备、和集成电路工厂的访问,以下将有完整的介绍。/ppspan style="color: rgb(0, 112, 192) "strong  Integrated circuits/strong/span/ppspan style="color: rgb(0, 112, 192) "strong  集成电路/strong/span/pp  根据这一次对集成电路工厂的访问来判断,中国人似乎有能力胜任任何西方IC制造商所做的事情。研究人员充分了解更先进的集成电路制造技术。但是这项专业技能的应用需要混合开发,导致只能生产出25%的标准集成电路产品和不到10%的简单大规模集成电路。/pp  上海芯片厂坐落在一个老街区,由一个老旧校舍改建而成,这从根本上来说便是不合适的。尽管环境艰苦,但确实做出了努力建立现代化的设施。据报道,当时的生产率、设备,以及技术,在1976年设备的总产量为二百万。工厂拥有员工八百人,一百人是“技术人员”,其中十人是工程师。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/noimg/5935cd63-dd1c-42e8-95ac-ddba1296a7df.jpg" title="001.png"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "上海线圈机械厂/span/strong/pp  集成电路产品包括互补金属氧化物半导体(CMOS),p-channel金属氧化物半导体(p-channelMOS),以及双极器件,主要用于计算机和过程控制机。然而,对大规模集成电路的需求远远大于生产能力。尽管产量是全数字集成电路,模拟集成电路也正在考虑中。/pp  目前离子注入设备(中国制造)用来制造CMOS电路。相反,所有电路的照相平版印刷技术都是手工的,按照最小线条宽度10微米的西方标准制造。/pp  小型计算机用于测试大型集成电路随机存储器。除了表示接受或拒绝外,小型计算机可识别电路的故障部分。小型计算机由冶金研究所、电器厂和上海复旦大学联合开发。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/noimg/576d60b9-79f4-419e-a38d-65d6d290d3df.jpg" title="002.png"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "上海无线电工厂/span/strong/pp  目前,一切都在改进当中。在与IC工厂毗连的位置,一座大型的新建筑正在崛起,那就是专门为LSI电路制造而设计的。/pp strong span style="color: rgb(0, 112, 192) "Telecommunications/span/strong/ppspan style="color: rgb(0, 112, 192) "strong  电信/strong/span/pp  一个拥有十亿人口的国家只有500万的电话设备,由此可见,中国的电信行业还有充足的增长空间。甚至北京,作为国家的首都和主要城市,这座900万人口的城市也只有20万部电话。/pp  国内的电话用户需要每月付电话费。市内电话不收费,但长途电话费用按照时间和距离收取。其收费标准与美国相比如何,这点IEEE代表团无法给出准确的答案。/pp  在中国,电话设备和设施是一个既古老又新奇的事物。例如,远距离传输仍然很大程度上是通过明线(每对开放导线最多有16个话音通道),在某些地区,这种介质将在未来几年提供足够的容量。(在美国,除了一些农村地区外,在20世纪50年代末,明线连接几乎已经不再使用了。)与此同时,现代同轴电缆系统(目前正在从960个扩大到1800个通道)连接北京和上海,并延伸到广东。微波无线链路(960个频道)正在全面生产 1800个频道的扩展也正在开发中。/pp  用于语音信道的频分多路复用信道组信道组设备是全固态的。该设备大致相当于西方已生产多年的设备。同样,除行波管之外,6-GHz终端和无线电中继器也是全固态的。这些设备的生产制造现已达到了国际电报电话咨询委员会(CCITT)的国际标准水平。/pp  长途电话仍然归属于接线员负责。例如,在北京长途电话中心,每天大约有五万个电话,这些通常是由两个接线员安排的。打电话的人给接线员一个长途电话号码,然后挂断电话。接线员填写通知单后将其放入所需分配位置。最终,该通知单将交由另一个接线员,他来负责拨出被叫号码和原来的呼叫者,并记录回答和断线时间。/pp  这些由接线员拨打的电话通过HDW类型转换后,接下来使用的设备可服务于400个端口和100个接线位。然后,更先进的方法是,全自动代码条交换设备--其总功率可达6000端口 -- 北京正在使用,也将被用于其他八个大城市。/pp  北京长途电话中心拥有员工1300人,其中包括500名接线员和800名工程师与技术人员。其中,15%-18%的员工是女性,在这些人中25%的员工负责技术工作。该中心的设备大多都坐落在一个全新的九层楼高的大厦里,这提供了丰富的扩建空间。建筑中所有的设备都是中国制造。/pp  国际间的通讯依旧是容易的。在北京中心每天大约有2000个国际电话。仔细观察可以发现,通往美国的两大电路是未被充分利用的,每个月只有大概300-500个电话。高频单边带无线电(2至30MHz)仍然广泛用于与偏远的公社和村庄交流。/pp  卫星系统似乎是解决国家孤立地区问题的一种天然方法。中国已经在1979申请了两颗通信卫星,但其实际的国内应用计划还不清楚。一个人造卫星地面站正在北京展出。它具有的30英尺的抛物面天线有限方位运动可能意味着它是专为同步卫星。/pp  鉴于此,没有看到任何形式的数字传输或交换,中国也没有表示任何发展和应用的计划。然而,中国已经发布了一个数字卫星地球站。/pp  大多数的电话是旋转式拨号盘类型 按键类型的电话生产数量有限,机电电传打字机复古设计仍然是大批量生产。它们看起来像是西方人使用的老式设备,但坚固耐用且可靠。/pp  北京计算机技术研究所研制了一种1024针静电打印纸矩阵线打印机。工程师使用了字母数字字符的7到9矩阵--这是一个具有挑战性的问题,其解决方案将需要至少一个20乘20矩阵。/pp  在各种工业展览会上,最新的图形和传真终端都有所展示,但目前还不清楚它们是否已投入使用。这些终端包括:阴极射线管显示图形 喷墨传真终端 以及印刷式发送传真电报终端。/pp  汉字的广泛使用有利于传真传输,但趋势是开始利用罗马文字取代汉字。/pp  邮电部负责全国网络规划和电话设备生产控制。然而,只要工厂的产量和技术质量符合卫生部的标准,各省在设备制造方面似乎有一定的独立性。/pp  该部首先把扩大长途城际连接放在首位,之后将网络扩展到全国2000个县。上海的一个中央研究所由该部运营,负责电信的研究和开发。与贝尔实验室和欧美地区的类似机构不同,上海研究所没有制作设计图纸。相反,调查结果会被传送给铁道部,该部使用它们来制定规范,中国工程师称之为“主要图纸”。实际的生产设计和图纸是在工厂完成的。/pp  该部拥有三个开关设备工厂,但也有许多省级工厂,这意味着可以随意改变基本设计。但是,尽管有这种权力下放,设备也必须集中建造,必须符合中央一系列电阻抗、信号等既定标准。因此,互连是可能的。设备的设计和制造的预期寿命为40年。/pp  在电信业,与其他中国产业一样,新产品和服务由设计师、制造商和用户组成的“三合一”小组来构思和评估。政府部门支持各组之间的联合讨论。小问题通常可以在没有政府部门的干预下解决,而一些更重要的问题或分歧则是向政府部门提出并解决。从观念到生产的孕育期与西方差不多 -- 简单产品的三到四年,更复杂的产品所需时间也更长。/pp  中国的工厂建设一丝不苟,一尘不染,但同时也为员工提供丰富的福利-- 住房补贴等。例如,北京微波设备厂为1400名员工提供餐厅、托儿所、幼儿园、鱼塘和菜园。/pp  机床和其他零件设备都可制造。大部分的装配工作都是手工完成的。西方访问者经常会被工厂中昏暗的照明吓一跳,然而这在中国许多工厂是很平常的事情 通常,只有组装线上的工作照明比较好,光线会通过窗户照射进来。使用放大镜可以缓解眼部疲劳,同时也能加速生产。但是,中国工厂的一些安全标准仍需改进 -- 例如中国工人不屑于美国工人工作时所佩戴的安全眼镜和口罩。对比新旧生产方式,可以看出变化的迅速。例如,在南京电信工厂,一个房间里的金属棒(用于同轴电缆系统的机械过滤器)用手工打磨,用磨石和砂纸打磨。而在相邻的房间里,其他的金属棒则被自动送入脉冲激光束中,燃烧棒的末端直到频率计信号停止。/ppspan style="color: rgb(0, 112, 192) "strong  The motor works/strong/span/ppspan style="color: rgb(0, 112, 192) "strong  电机工程/strong/span/pp  motor和generator这两个词语在中文的意思表达相同,所以上海电机厂的名称意味着工厂不仅生产大型工业用的同步和直流电动机,同时也制造容量为300兆瓦的汽轮机和低速发电机。工厂位于城市的郊区位置,共有8000名工人,其中大约一半人住在附近。其他人来自上海本地,通常会在工厂宿舍住六个晚上(周一到周六)。/pp  这种工厂在世界各地都非常典型。其具备很多重型机械,其中大部分来自捷克和俄罗斯,也有些是现代化中国的产物。产品在转子和定子的大机器冷却蒸馏水使用显著,其空心轴转子,和扭曲在低速机极槽的缺失。/pp  上海电机厂的电镀车间装备精良。其半自动浸胶线可用在其他产品上,利用锌对功率因数的电容器罐–由分隔区域镀数控(纸带输入)。操作员可通过视窗或闭路电视查看进程。/pp  从300-MW,18-Kv,3000-r/min的发电机设计来看,均与西方标准大致相同。据报道,发电机的效率为98.5%,包括励磁机损耗。它被设计为在0.85功率因数下运行。绕组与玻璃纤维/环氧树脂复合材料绝缘。绝缘测试在两倍额定电压加上3000伏特一分钟(这种做法与美国相当),直接连接励磁机是一个500伏,100赫兹交流发电机与整体安装整流单元。/pp  “为了办好社会主义企业,我们需要且有必要重视规章制度,”一位工程师对美国IEEE代表团这样解释道。当材料进入工厂时,应认真进行进货检验,并在生产过程中再次检查。如果来料检验没有做好,这将严重影响产品质量。/ppspan style="color: rgb(0, 112, 192) "strong  Computers/strong/span/ppspan style="color: rgb(0, 112, 192) "strong  计算机/strong/span/pp  虽然中国在社会主义国家传统上比较薄弱的两个领域——软件和外围设备——取得了一定的成功,但总体进步率必须被判断为相当缓慢。在中华人民共和国,操作系统仍处于起步阶段。程序员用纸带代替穿孔卡片。用户语言在中文版本的Algol中仍占主导地位,虽然Fortran Ⅳ和Basic语言也在迎头赶上。甚至没有提到Cobol -- 事实上,大型计算机目前似乎只用于科学工作而非商业用途。/pp  北京计算机技术研究所开发了一款名为013的计算机,这是一台大容量的48位字科学机器,每秒可完成200万指令。其外围设备包括磁带机、线号打印机,文本和图形点阵打印机,一对10字节的可移动头磁盘驱动器,一个阴极射线管显示器,和一个本地制造的“golf-ball”打字机--类似于IBM Selectric。/pp  013计算机的特点相当于美国第三代计算机(具有中小型集成逻辑、输入/输出通道和操作系统),类似于1965年的美国机器。尽管如此,013也不能给参观者留下深刻的印象,因为它是由一个规模不大的群体(大约100人)在一幢陈旧的老式建筑中产生的。据悉,计算机的每一个部件都是中国制造。这是少数访问者被要求不可以拍照的地方之一,中国方面表示,“我们还未发布过任何关于该机器的信息。”/pp  国家有计划将013投产,同时另一款大型机TQ-6,已在上海计算机厂小批量开始生产了。上海计算机厂的位置过去曾是一家学校,而TQ-6是第三代机器。/pp  显然,上海无线电工厂的工程师们在他们的领域内是能干的,并且撑起了这个国家重要的制造工厂之一。然而,他们也很清楚自己的产品是落后于时代的。/pp  一位工程师表示:“中国和西方的计算机技术之间的差距应该在缩小。现在,我们期待着可以提高我们的发展水平。”随着中国在计算机领域具有强烈的发展愿望,上海集团必须找机会扩张并实现现代化。/pp  在小型机方面,中国工厂生产了多种型号。事实上,功能似乎有太多的重复和重叠——太多的机器模型和一些通用模型对各种各样的应用没有足够的灵活适应。与中国工程师的讨论表明,他们意识到在大型和小型计算机的开发中需要国家协调工作,从而可以大规模地生产一些模型。/pp  在计算机规模的矮端板,台式计算器正在南京批量生产。该装置可编程多达128个步骤,但程序必须输入十六进制代码。上海无线电十三厂还制作了一个计算器--十位数,四种功能单元的设备,大约10*10*2英寸的尺寸。该计算器为有线供电,配有明亮的绿色显示屏,且带有一定的存储能力。它包含18个芯片,价格为2000元(1200美金),稍许小贵。中国人也意识到,在欧美地区,这种商品比较便宜。/pp  “是的,我们知道,”一位工程师表示。“HP-35最开始的售价为415美元,但现在仅需20美元即可购买到同等价值单元器件。”中国人更愿意接受中国制造的计算器,即使知道其成本比较高,只是因为大家是中国人。/pp  中国的电脑技术人员在选择是使用自主开发的软件,还是使用别人已开发的软件或机器制造方案时(如苏联生产的IBM-360-compatible Ryad机器),他们通常选择前者。/ppspan style="color: rgb(0, 112, 192) "strong  Data communications/strong/span/ppspan style="color: rgb(0, 112, 192) "strong  数据通信/strong/span/pp  除电传服务,似乎在中国很少甚至几乎没有数据通信,大概是因为远程计算机还没有熟练运用 -- 可能永远也不会像在欧美地区一样。由于微型计算机和小型计算机技术在发达国家已经发展得很先进,中国人可以通过在许多商场机器上进行大量的应用处理,而不是在远离终端用户的几个大的应用机上使用。/pp  尽管如此,中国工程师还是见多识广的,甚至对计算机网络和公共数据网络最前沿的想法也很感兴趣。在过去的几年中,他们作为代表出席了国际电报电话咨询委员会关于新数据网络、文本通信和数据传输技术的全体会议和研究小组。/ppspan style="color: rgb(0, 112, 192) "strong  Radio and TV/strong/span/ppspan style="color: rgb(0, 112, 192) "strong  广播电视/strong/span/pp  在中国,众所周知的著名晶体管收音机品牌“熊猫”,由南京无线电工厂生产。除了这些收音机,工厂的3000名员工还制造单通道、单边带发射机和接收机、医疗仪器和彩色电视机。许多小工厂也生产收音机,但品牌不同(广交会上共有19个不同品牌的收音机)。/pp  南京工厂的设计师通过向农民、工人、士兵测试原型机来确定消费者的反应。当这一切都批准通过时,有限的生产模式被送至国家商业部门进行进一步试验。当最终获批时,即可开始大规模生产。/pp  在装配线上,零件被手工插入到印刷电路板中,并且元件引线被自动地夹在适当的长度上,以便在小波峰焊接机上焊接。高效方便的装配台由三位一体的委员会打--专门从事夹具和夹具的生产,以降低生产成本。起初,一家非中国公司被认为是供应组装长凳,但给出的价格中国人认为过高了。因此,中国开始自行研发,不仅增加了一些其他功能,生产成本也才是原始报价的八分之一。/ppstrongspan style="color: rgb(0, 112, 192) "  Overview and prospects/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  综述与展望/span/strong/pp  中国是一个在许多领域中有着巨大的内部需求的大国,包括通信业。为了帮助满足需求,在2000年实现现代化,中国拥有以下宝贵的有利条件:相比于其他国家的低工资水平与熟练劳动力,熟练的规划与管理,在许多方面扎实的技术能力,技术转移能力的经济系统,且最终具备从欧美地区已开发的技术池中汲取的能力。一个强调技术创新的社会能够繁荣吗?这个问题的答案就是可能失败,亦或成功。/pp 这是一篇很久以前的文章,看完之后对照一下中国科学仪器产业的发展,也许会让大家有所思考。中国科学仪器产业发展了这么多年,取得了哪些长足的进步,又有哪些不足?您又如何看?/p
  • 港理工/港大/港城大《Nature Communications》:亚微米精度单光子3D打印熔融石英
    透明熔融石英玻璃作为一种不可或缺的重要材料,在现代社会中具备广泛应用价值。其卓越性能使得它在日常生活、科学和工业领域均发挥着重要作用。尽管熔融石英玻璃具备卓越的光学性能、热稳定性和化学耐久性等优异特点,但其高硬度和高脆性使得其可加工能性备受诟病。目前,传统熔融石英玻璃微结构制备工艺面临着流程复杂、成本高昂以及材料易碎等诸多挑战,并且在实现复杂三维(3D)结构方面仍然存在巨大困难。这给新型玻璃微纳米器件的开发、高效制造和在先进功能领域的应用带来了巨大的挑战。近年来,以3D打印/增材制造为代表的先进制造技术为玻璃加工行业带来了全新变革和重大突破。相较于传统的减材及等材成型工艺,这些新兴技术以数字设计和逐层累积为手段,成为赋予玻璃构件极高设计自由度和精确成型能力的强大工具,使得制造任意熔融石英玻璃三维结构成为可能。德国Karlsruhe理工学院科学家利用立体光刻(SLA)技术制备玻璃已取得重要突破(Nature, 2017, 544),成功实现了玻璃制品在质量、复杂度和精确度诸多方面的显著提升。这一里程碑式的进展也预示着通过3D打印技术制造具有出色光学性能的玻璃结构离普及更近了一步。随着时间的推移,全球范围内的研究者一直在不断努力提升玻璃打印技术的精确性。通过采用双光子飞秒激光直写(TPP-DIW)技术,实现了微纳米尺寸3D分辨率的玻璃结构的有效成形(Adv. Mater., 2021, 33)。然而,尽管立体光刻和双光子飞秒激光直写已分别实现了约50 μm和约100 nm的成型分辨率,并在宏观及纳观尺度上显著扩展了玻璃三维构件的应用领域,但由于3D打印技术在精度和效率方面存在固有矛盾,迄今为止,已有文献中报道的方法无法有效地制造出既具有毫米/厘米级尺寸又带有亚微米级特征的复杂玻璃三维结构。这一限制严重影响了该技术在微光学、微流控、微机械及微表面等先进领域上的应用。有鉴于此,香港理工大学3D打印中心温燮文教授联合香港大学机械工程系陆洋教授,在此前工作(Nat. Mater., 2021, 20, 1506)基础上更进一步,提出了一种通过摩方精密面投影微立体光刻(PμSL)3D打印技术制备同时具有亚微米特征及毫米/厘米级尺寸的熔融石英玻璃三维构件的方法。研究者选择了聚乙二醇功能化的二氧化硅纳米颗粒(平均直径~11.5 nm)胶体和两种丙烯酸酯作为聚合物前驱体,保证二氧化硅纳米颗粒良好的相容性和分散性。结合面投影微立体光刻3D打印灵活地创建具有复杂的三维亚微米结构的高性能透明熔融石英玻璃,其分辨率、构建速度及成型幅面均超越了目前大多数其他3D打印玻璃技术几个数量级。 图1:通过面投影微立体光刻3D打印所得透明熔融石英玻璃。(a)面投影微立体光刻3D打印示意图,呈现了打印所得熔融石英玻璃制成微缩维多利亚港的光学和电子显微镜图像。(b)复合纳米前驱体的各化学组分。(c)面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列在高温环境下展示了出色的稳定性。(d)4 × 6阵列的透明熔融石英玻璃蜂窝结构的光学和电子显微镜图像,其中央的细长悬线具有亚微米级别尺寸。(e)该方案所制备的熔融石英玻璃在分辨率及成型速度上的关系图,及与已报道的其他同类技术的比较。 图2:面投影微立体光刻3D打印所得具有多尺度临界特征的透明熔融石英玻璃多层级点阵。(a)多层级点阵结构;(b)多层级点阵网络;(c & d)单个多层级点阵胞元;(e)多层级架构;(f)基础点阵;(g & h)基础杆件及其具备的亚微米特征。尺寸跨度由mm逐步减少到nm,接近5个数量级。利用面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列,其具有亚纳米级别的表面粗糙度(Ra≈0.633 nm)。同时,研究者展示了通过3D打印制造的熔融石英玻璃微透镜阵列在成像方面的出色能力,具备优良的均匀性、清晰度、对比度和锐度。 图3:面投影微立体光刻3D打印的具有亚纳米级别表面粗糙度的熔融石英玻璃微透镜阵列。单个透镜的高精度光学显微镜图像,方框区域显示了白光干涉共聚焦显微镜测试结果,沿XY方向均能实现亚纳米级别表面粗糙度,以此制备高均匀性、高清晰度、高对比度和高锐度的微透镜阵列。面投影微立体光刻3D打印技术赋予了熔融石英玻璃微流体器件高精度、简化工艺、高直视性、大结构尺寸及复杂三维设计自由度,进一步展现出该器件出色的液滴/流体操控能力。 图4:面投影微立体光刻3D打印具备超疏水性能的仿生三维熔融石英玻璃微表面结构,以及具有Y型流道的免键合三维熔融石英玻璃微流控芯片。超疏水仿生三维熔融石英玻璃微表面展现了极佳的液滴黏附能力(即“花瓣效应”),即使在翻转180°后仍能牢固锁住液滴;在免键合Y型流道三维熔融石英玻璃微流控芯片,由于表面张力占主导,两种流体呈现了不互溶的“层流”现象。该工作进行于香港城市大学深圳研究院纳米制造实验室,相关成果以“One-photon Three-dimensional Printed Fused Silica Glass with Sub-micron Features”为题发表于国际期刊《自然通讯》(Nature Communications)上,课题组2020级博士研究生黎子永为该论文第一作者。在该研究中,熔融石英玻璃三维微纳样品由摩方精密2 μm精度的nanoArch P130超高精密3D打印系统制备。相关技术已申请专利,后续将与摩方精密合作进行商业化应用。
  • 梅特勒托利多ics系列电子台秤在制剂药行业的应用
    梅特勒托利多ics系列电子台秤在制剂药行业的应用 应用背景 客户介绍:该客户为广州某一具生产粉针剂、水针剂、滴眼剂、服剂、冲剂、片剂、胶囊剂、干混悬剂等剂型能力的大型企业。应用行业:生物制药 应用环节:制剂药-无菌粉针 -称量间称量配料 -固态粉体 -预置物料信息,仪表输入项 -中精度称重 -打印标签用于后道配料追溯 客户关注点 减少人工称量时的错误(选择物料,记录数据…) 实时标签打印和数据存储,提升追溯性 符合统一的标签信息要求,节省了额外的qc评审工作 解决方案 内置物料代码于仪表,自由选取物料,实现标签打印 仪表可以输入信息,并且储存称重记录 产品:ics685,gt800 ics685 多功能自动检重 从直观的用户菜单和计数、检重、累计、填充等称重应用功能中获益。 用户自定义功能键,大尺寸彩色 tft 显示屏,可自定义的用户提示功能可提高工作效率与精确度。 各种接口确保与您的系统集成,并实现至多四台秤的连接。 可单独定义的物品数据库存储多达 30,000 条数据记录,并可利用条形码扫描器或键盘调用数据。
  • 西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066
  • 全球最大射电天文望远镜阵列首台中频天线在华研制成功正式吊装
    全球在建最大射电天文望远镜阵列——国际大科学工程平方公里阵列射电望远镜(SKA)项目中,中国牵头研制成功的首台中频天线,9月20日在位于河北石家庄的中国电科网络通信研究院测试现场正式吊装。  这是中国作为创始成员国的SKA项目进入建设阶段以来建成的首台中频天线,也是继2022年底中国科技部联合SKA天文台,成功举办SKA中频天线结构实物贡献协议线上签署仪式后的又一里程碑事件,标志着中国在SKA核心设备研发中发挥引领和主导作用,为国际大科学工程提供天线研制的“中国方案”,为世界天文领域作出重要贡献。  中国电科网络通信研究院总监马英昌指出,该研究院作为SKA天线结构工作包联盟的牵头单位,联合来自南非、意大利等国家的科研及工业机构,在首台中频天线正式吊装的基础上,还将共同推进完成SKA天线结构工作包的后续建设任务。  SKA天文台宣传部主任威廉加尼尔(William Garnier)表示,中国电科网络通信研究院承建SKA项目首批共64台中频天线,这是对该院在复杂无线电系统方面专业知识的认可,也是对他们在望远镜设计、建设阶段所做伟大工作的认可。“未来一片光明,我们期待继续合作,共同交付世界上最强大的射电望远镜”。
  • 分析称3D生物打印技术即将快速成长并创收
    据著名投资网站Seekingalpha刊登署名为克里斯弗兰戈尔德(Cris Frangold)的评论文章称,3D打印技术已经成为目前最热门的新技术之一,其中3D生物打印技术发展潜力非常巨大,预计未来几年将实现快速成长和创造大量收入。  面向医学研究和医疗设备的3D人体组织开发商和制造商Organovo Holdings正在同云设计和技术软件厂商Autodesk合作开发首款生物打印3D设计软件。  这款软件将与Organovo的NovoGen MMX生物打印机配套使用,这表明人类在提高3D人体组织设计的可用性和功能上向前迈出了重要一步,有可能拓展生物打印用户的数量。Organovo的3D生物打印技术可以创造3维人体组织,从结构上纠正和构成人体细胞。利用这种方式创造出来的组织可以想原生的人体组织一样发挥功能,这也为先进药物发现和开发提供了机会,未来还有可能应用于临床治疗和组织移植。  Autodesk致力于开发人机互动、计算机图形和数字设计等最先进的技术。它打算将其技术拓展应用到设计和模拟分子和人体系统的软件开发之中。  3D生物打印是什么?  Organovo正在探索利用可以生产机体组件的材料来打印人体组织以及利用计算机化可适应制造工艺进行人体组织移植的新途径。定制样品和成品是利用廉价3D计算机打印机生产出来的。这些医学打印机并不使用挤压成型的塑料、金属或陶瓷材料,而是使用活体细胞材料。这种工艺被称作快速生物打印。它是对我们所熟悉的传统喷墨式打印机采用的标准技术的创新应用。这些打印机可以创造出任何形状的组织结构,比如血管、小块皮肤和肌肉等等。  Organovo和Autodesk之间的协同作用  这两家公司有很大的合作潜力。Organovo的NovoGen MMX Bioprinter是一种全新的、全自动化(定制图形用户界面)、专为满足生物研究和生物打印的各种需求而开发的软硬件平台。从硬件的角度来说,它是一种强大的工具,使用了最新的技术,但是它运行在目前最新的软件平台之上。科学家们每次想要使用打印机时,都必须从头编写相关的软件,这意味着科学家们要花大量的时间去调试软件,而不是进行技术研究。  Autodesk已经成为很多专业化设计领域的领军厂商,可能在过去的20年里被开发出来的所有产品都是利用Autodesk的软件开发出来的,但是这将是它第一次去开发能够创造活体事物的软件。未来5年内实现的第一款应用很可能会是准备用于临床试验的简单组织。与此同时,Organovo希望通过生产能够被用于药品研究、发现和开发的活体组织获得一个稳定而且可持续的创收源泉。  了解3D生物打印技术的发展潜力的最好办法就是对比研究其他技术的演变历程,那些技术可能在20年前完全是不可想象的。虽然技术不同,但是还是能够说明问题的,比如最典型的例子就是平板电脑和智能手机的发展历程。推动平板电脑和智能手机技术发展的主要动力可能是消费者需要一种多功能的、价格低廉的、实用性强的便携式设备。微软在2002年率先推出商业化平板电脑Microsoft Tablet PC,但是并未获得微软所希望的成功。8年后,苹果在2010年推出iPad,这才打破了技术上的壁垒。如今,平板电脑已经在全球市场畅销,预计它的销量很快就会超过笔记本电脑。  3D打印技术的开发已经成为当今最热门的新技术之一。3D打印技术最早可追溯至1984年。这种技术按照摩尔定律不断向前发展,同时成本则在不断下降,逐步降低到主流公司能够使用3D打印机的程度。在过去的2年里,3D打印领域的市场领先者3D Systems和Stratasys一直是最热门的两家公司。3D打印公司近几年一直在迅猛发展。预计3D打印机是今年1月初召开的拉斯维加斯CES展会上风头最劲的话题。3D Systems的股票自今年年初以来已经上涨了15%。  预计3D打印行业将在近几年实现快速成长和创造大量收入,因为越来越多的公司开始采用这种技术。如今,象福特、波音和通用电气那样的产业巨头都已经开始在它们的制造工艺中采用3D打印技术。  据Autodesk副总裁布莱恩马修(Brian Mathews)称:“3D打印是重新设想制造工艺的一种方法。”福特公司利用3D打印技术提高了样品制造的速度和成本效率。同样,波音将3D打印技术应用到了军用飞机的组件制造之中。2012年11月,通用电气收购了曾对3D打印设备投入大量资金的工程技术公司Morris Technologies,它将专注于打印最新喷气式飞机引擎的各种组件。  不难想象,人体组织3D打印技术很可能也会以类似的成长趋势发展下去。  据致力于增加人体器官、眼睛和组织捐献工作的美国非营利性组织Donate Life America称:“虽然医学技术和捐献一直在发展,但是市场对人体器官、眼睛和组织的需求仍然远远大于捐献的数量。仅在美国,就有超过11.5万人正在等待器官移植。”  CompaniesandMarkets.com是一家全球性的商业信息整合商,该公司旗下有很多专家分析师,他们编著了数百份市场研究报告。  据一位名叫麦克金(Mike King)的专家称:“预计到2017年的时候,全球人造器官市场将达到200亿美元的规模,这主要是由于需要器官移植的病人的需求不断增长所推动的。另外,技术进步、成本下降、人口老龄化和捐献器官数量少也是造成未来几年内人造器官市场需求猛增的因素。”  报告还指出,由于全球糖尿病患者超过了1亿人,预计人造胰腺将有很好的发展前景。人造器官的全球需求是由人造肾脏引发的。  结论  其他一些公司也在积极研究和开发组织重生和治疗技术,比如Tengion等,但它们使用的是传统的技术,而非生物打印技术 那些公司专注的重点都跟Organovo不同。3D打印技术可能还要较长的一段时间才能获利,尽管这个技术领域的投资风险很高,但是潜在回报可能非常巨大。  但是,这个技术领域也有一些短期利好因素存在,比如从药品发现和开发中获得收入等。2010年,Organovo与Pfizer签订了一份合作协议,预计Organovo在2012年底之前可以从中获得45万美元的收入。后来它又在2011年10月与United Therapeutics达成了一项为期30个月的合作,Organovo将利用其生物打印技术进行与肺动脉高压治疗有关的研究。Organovo已经承认它从这项合作中获得了61.8万美元的收入。
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 3D扫描技术助力古建筑浮雕文物数字化保护
    古建上的浮雕装饰不仅是建筑艺术的独特展现,更是建筑表现力的扩展。这些精美的浮雕记录了历史和传统文化,具有非常重要的历史和文化传承价值。然而因为岁月的侵蚀、自然的风华,这些瑰宝正在逐渐的消亡。古建保护迫不容缓,高精度三维扫描技术的引入为文物保护和研究工作提供了一种新的技术路径。本期我们将分享一则先临三维的伙伴——福建万象三维技术团队,通过EinScan Pro XS雕刻专用手持3D扫描仪采集存档古田临水宫的浮雕群的案例。项目需求&痛点分析客户的需求是对古田临水宫的浮雕群进行精细化的采集制作,数字化存档后可用以后续的研究以及衍生品创作。&bull 古田临水宫项目难点:1. 浮雕装饰在建筑表面,不便移动。2. 采集范围较广,如果贴点扫描,黏贴标志点过程耗时长,效率低。3. 浮雕装饰细节丰富,大场景扫描点距较为稀疏,采集数据细节难以满足浮雕纹饰复刻及研究需求。4. 浮雕离地较高,采集操作限制较大。3D数字化解决方案Step1:基于以上痛点,福建万象三维的技术工程师借助吊车,将工程师和手中的扫描设备托起与文物平行,在吊机师傅和扫描工程师的配合下,采用非接触式的手持三维扫描仪EinScan Pro XS进行采集作业。&bull 浮雕扫描现场EinScan Pro XS雕刻专用手持3D扫描仪小巧轻便,可直接携带到现场作业。它配置了多种拼接方式,支持不贴点扫描,有效避免了对于古建筑的物理接触和人为损伤。该扫描仪的最高扫描精度可0.045mm,最小点距可达0.2mm,能够细致还原浮雕的表面细节。扫描过程快速流畅,扫描速度最高可3,000,000点/秒,在高保真获取雕刻细节的同时,最大限度地提高了扫描效率,更好地满足了该项目复杂的使用场景。◆部分浮雕扫描数据展示&bull 浮雕三角网格细节Step2:基于精准的STL数据建立还原度极高的数字模型,可以在数字环境中永久保留和传播浮雕艺术作品的精准信息,保护文化遗产并促进艺术研究与传承。&bull 浮雕三维扫描模型整体展示Step3:结合3D打印技术来制作浮雕的复制品或模型,让文物不再局限于博物馆、古建之中,普通人也可近距离欣赏传统文化之美。&bull 3D打印浮雕模型Step4:使用细小的画笔和专业颜料,根据文物实际色彩进行仔细绘制。准确还原文物的形态、细节和色彩。文物还原模型以更直观、生动的方式展示文物的魅力,为观众提供更加丰富的历史、文化认知和体验。&bull 文物彩色模型制作&bull 文物还原整体展示文物保护是一项艰巨的任务,但三维扫描技术的出现为文物保护提供了新的可能性。这种技术可以全方位获取文物的详细信息,为高精度模型制作、研究和保护工作提供数据支持。此外,三维扫描技术还可应用于虚拟修复和复原,让历史文化遗产得到更好的传承和保存。这一技术的应用为文物保护注入了新的生命力,提供了更多的技术保障,使保护工作更加精确、高效。随着科技的不断进步,三维扫描技术在文物保护领域的应用将会越来越广泛,带来更多的突破和创新!
  • 食品吊白块检测仪是如何满足农副批发市场快速筛查的@2022新资讯
    【恒美】食品吊白块检测仪实现对食品中吊白块含量的检测。吊白块具有漂白、防腐、增强韧性的功能,常在工业中使用,然而有一些人将吊白块用于食品加工,达到增白、增色、改善食品口感及防腐的作用,对消费者造成了很大的危害。食品吊白块检测仪即可快速检测食品中吊白块的含量,防止危害的产生。点击此处可了解更多产品详情食品吊白块检测仪采用新型仪器结构设计,体积小,便于携带。无机械移动部件,抗干扰、抗振动。食品吊白块检测仪采用8通道设计,进行多个样品测量时,客户可根据 操作熟练程度,自行选择测量模式,消除测量误差。食品吊白块检测仪准确性高,自动化程度高,使用寿命长,自动存储8000条以上测量数据,内置微型热敏打印机,实时打印检测结果检测报告,利于公示。配备RS-232接口和USB口,可通过计算机进行数据处理、统计分析以及结果上传。食品吊白块检测仪适用于农副产品、日常食品、海产品及其制品等食品中吊白块的快速定量测定,目前广泛应用于产品质量监督检验、工商管理、粮油、农副批发市场、食品生产基地、超市、商场、各大食品安全监测系统等部门。
  • 高精密3D打印助推精密零部件低成本快速交付
    导语: 制造业是国家生命的命脉,精密制造是未来制造业发展的一种趋势。2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。精密制造业覆盖航空、医疗、汽车、消费电子、通信等各个领域。现阶段,中国精密制造业总体呈现区域发展不均衡、企业规模较小、实力较弱、产值增长较快等特点,且难以协调厂商需求的批量生产、成本可控与客户需求的产品质量稳定性、一致性之间的矛盾。高精密3D打印作为先进制造业的重要组成部分,解决了传统加工工艺过程复杂、成本高、难度大的痛点,成为现代精密制造业不可缺少的“产业新力量”精密制造业现状:需求大,难度高,投入大 精密制造业主要包括精密和超精密加工技术、制造自动化两大领域,前者追求加工上的精度和表面质量极限,后者包括了产品设计、制造和管理的自动化,两者是密切合作、相辅相成的关系,皆具有全局的、决定性的作用,是先进制造技术的支柱。精密和超精密机加工行业一直是劳动密集、资金密集和技术密集型行业,行业门槛较高,企业需达到一定规模才能产生利润。自动化精密模具包括结构工艺复杂的成型模具和高精度成型模具。结构工艺复杂的模具是在较小的模具体积上需要做出很多功能的实现;高精度模具主要是指成型的产品尺寸变化微小,一致性非常高,模具往往体积不大,但造价高昂。 根据罗兰贝格数据统计,2011-2018年,全球精密机加工市场规模复合年增长率为0.2%;到2018年,全球精密机加工市场规模达到2160亿美元,同比增长1.9%。其中,全球精密机加工外包市场规模达1480亿美元,占全球总规模的69%。资料来源:罗兰贝格 前瞻产业研究院整理 精密制造业提供的是制造业的关键零部件,是制造业的最顶端,利润最丰厚的核心部分。从规模上来看,精密制造业可以覆盖整个制造业的大约三分之一。精密制造主要用于生产复杂的零件及制成品的完整组建,具体领域包括航空、医疗、汽车、消费电子、通信等等。得益于这些下游领域的需求支撑,全球精密制造业市场保持稳定。 精密制造业技术永恒的主题就是高效率与高精度。目前,中国的制造业与世界制造业强国相比仍有较大差距,其中最突出的表现之一是精密零部件的加工能力滞后,主要因其在质量、一致性、耐用性等方面的要求非常高。虽然中国精密零部件加工厂商数量众多,但技术水平和加工能力参差不齐。即使部分的国内配套加工厂商通过购进先进的生产设备等方式可以达到精密零部件的加工质量要求,但却常常难以在批量生产、成本可控的条件下保持产品质量的稳定性和一致性。摩方批量打印齿轮 一般来说,高质量精密零部件加工制造不仅需要先进的生产设备等硬件配备,更需要根据部件的产品特点和客户需求,设计和实施科学合理的生产工艺,平衡加工质量、产品交期和成本控制等多个相互影响的制约因素,同时,还要实现设备、工具和人员等生产资源的优化组合。总体而言,这是一个需要多项投入、多方考量、环环把控的行业。 那么,面对精密制造业市场的巨大刚性需求,以及国家振兴精密制造业的发展趋势,是否可以实现既满足较高的精密产品质量与技术需求、又能实现可控的时间和成本投入?高精密3D打印——现代精密制造的“产业新力量” 在传统加工工艺无法满足高质量精密零部件快速交付需求的现状下,市场需求将目光逐步引导至近些年高速发展的增材制造工艺。增材制造是先进制造业的重要组成部分,随着全球范围内新一轮科技与产业革命的蓬勃兴起,世界各国纷纷将其作为未来产业发展的新增长点。中国《“十三五”国家战略性新兴产业发展规划》,《中国制造2025》等均把增材制造列入重点领域。 增材制造又称3D打印技术,它完全解决了传统加工工艺过程复杂、成本高、难度大等痛点,能够准确、快速、灵活设计各种复杂结构。而高精密3D打印更是成为现代精密制造业不可缺少的“产业新力量”,虽目前仍处于发展早期,但其突破复杂三维微纳结构器件的精密快速成型与直接生产制造,在微小精密部件的开发与小批量阶段,以“成型效率高、加工成本低”的突出优势受到高质量精密零部件加工市场的倍加青睐,而这种高效率的“时间差”带来的收益已经成为一些公司的利润来源。 目前在全球范围内,PμSL面投影立体光刻技术(Projection Micro Stereolithography) 是已经成熟商业化的能够实现高精密 3D 打印的的微纳光固化3D打印技术之一。PμSL在实验室阶段可实现几百纳米精度,已经商业化的产品可达几微米的打印精度,多见于深圳摩方科技的nanoArch系列微纳3D打印设备——全球首款商业化的 PμSL面投影微立体光刻技术微尺度3D打印设备产品,涵盖多款型号机型,可以提供2μm超高精度3D打印系统。PμSL 加工速度快、打印幅面大、加工成本低以及宽松的环境要求等特点,使其在工业应用领域已实现了内窥镜、导流钉、连接器、封装测试材料等部件的批量加工和应用,为国内外多个大型公司提供高精密加工方案。 在此列举2个高精密3D打印应用较为广泛的案例:连接器与内窥镜。连接器尺寸5.65mm*2mm*2.8mm,最小pin间距0.14mm,最小壁厚0.1mm;内窥镜端部座中的圆管壁厚为70μm,管径1mm,高度4mm。精度要求皆为±10-25μm。CNC和开模注塑很难加工这种逼近极限的结构,深圳摩方公司可以在约1-2小时内就加工出来,最快一天内交付。同时,也极大的降低了制造成本。深圳摩方——助力振兴中国精密制造业 振兴精密制造业是中国经济跨越发展的重要一环。着眼未来,借助高精密3D打印设备和技术来提升零部件制造的精度,将成为精密零部件制造的一大趋势。 从工业市场出发,效率和成本是决定盈利与否的关键因素。深圳摩方的高精密3D打印设备与技术,在缩短制造周期、降低制造成本、提升产品性能等方面,很好的契合了精密制造业创新发展的技术精度需求与市场盈利需求。中国精密制造实现振兴将如虎添翼,未来可期。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制