当前位置: 仪器信息网 > 行业主题 > >

双向精密自准直仪

仪器信息网双向精密自准直仪专题为您提供2024年最新双向精密自准直仪价格报价、厂家品牌的相关信息, 包括双向精密自准直仪参数、型号等,不管是国产,还是进口品牌的双向精密自准直仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向精密自准直仪相关的耗材配件、试剂标物,还有双向精密自准直仪相关的最新资讯、资料,以及双向精密自准直仪相关的解决方案。

双向精密自准直仪相关的资讯

  • 【好光机卓立造】看卓立汉光如何打磨出高质量光学精密机械产品
    光机产品质量的检验方法是否正确关系产品质量的好坏,看卓立汉光光机产品出厂前如何严把质量关?卓立汉光自1999年成立以来,不断深耕细作,我们从研发生产光学精密机械产品起步,目前公司的电控位移台、手动位移台、光学调整架等产品已经形成产品系列化,规格多元化,国内多家科研单位、激光加工设备厂商、光纤设备厂商在使用我们的产品。“好光机,卓立造”我们坚持从设计、零件选型、制造、装配、检验、包装、运输、直到售后服务做好质量保证,就是要让您 “付有所值”。公司的产品出厂前均按照国家标准、行业标准、或企业标准(部分高于上述同类标准)进行检验,我们根据 ISO9001 :2015 国际质量管理体系的要求,对于产品的技术指标负责,我们所使用的检测仪器定期送至国家计量单位进行校准。卓立汉光所使用的测量仪器和实验仪器:名称检验精度或范围厂家国别说明5维激光干涉仪长度方向:0.02μm角度:0.1"美国成品检测三坐标测量仪(也称三次元测量仪)系统分辨率:0.078μm测量精度:2.8μm+L/300合资(瑞典)零件检测、成品检测平面度检测仪0.01~0.001mm/m中国成品检测振动频率检测仪0.06~1000Hz中国成品检测安规综合测试系统漏电流:0.01mA接地电阻:0.01Ω英国成品检测(电子类)数显测微自准直仪0.1"中国成品检测齿轮双面啮合综合检查仪1μm中国零件检测万能工具显微镜1μm中国部分成品及零件检测洛氏硬度计20~70HRC中国部分成品及零件检测机械振动台加速度:10g;频率:10~80Hz中国成品检测高低温循环实验箱-40~150°C中国成品检测常规检测设备:包括000级大理石测试平台、万用表、示波器、光栅尺及数显表、万能角度尺、卡尺、刀口尺、卓立汉光可检测项目(部分)1、零件检测项目卓立汉光零件检测中除了常规检测手段外,针对 FA 工业品中的若干系列,如 :CXP 系列、SIN 系列、TBR 系列、XYR 系列电动滑台,核心零件采用 :洛氏硬度计、齿轮双面啮合综合检查仪、三坐标测量仪等进行检测,确保零件质量。检测零件检测项目检测范围检测设备常规机加工零件物理尺寸及图纸要求所有产品常规检测设备关键机加工零件有关键指标的基准面、定位面的精度等所有产品三坐标测量仪蜗轮蜗杆材料TBR系列、TBG系列等第三方检测机构蜗轮蜗杆硬度TBR系列、TBG系列等洛氏硬度计蜗轮蜗杆啮合精度限TBR系列齿轮双面啮合综合检查仪丝杠物理尺寸及图纸要求所有产品常规检测设备丝杠同轴度限CXP系列、SIN系列、XYR系列抽检三坐标测量仪、齿轮双面啮合综合检查仪导轨及轴承物理尺寸及图纸要求所有产品常规检测设备导轨及轴承基准面、定位面精度所有产品三坐标测量仪、常规检测设备常规外购零件物理尺寸及图纸要求所有产品常规检测设备关键外购零件有关键指标的基准面、定位面的精度等所有产品三坐标测量仪2、成品检验项目卓立汉光成品检测中除了常规检测手段外,针对 FA 工业品中的若干系列,如 :CXP 系列、SIN 系列、TBR 系列、XYR 系列电动滑台,新增:微步能力、微步运动时重复定位精度、微步运动时回程间隙、静态平行度、背隙等指标的检测,确保成品更符合工业设备使用要求。检测项目直线及升降滑台旋转、摆动滑台及对位平台检测设备行程所有产品所有产品常规检测设备重复定位精度所有产品所有产品常规检测设备微步运动重复定位精度限CXP系列/激光干涉仪回程间隙所有产品所有产品常规检测设备背隙CXP系列、KA系列、PA系列TBR系列、TBG系列推力计、千分表微步运动回程间隙限CXP系列/激光干涉仪运动性能(包括速度、加速度等)标称该技术指标的产品标称该技术指标的产品常规检测设备精度(绝对定位精度)CXP系列、KA系列、PA系列限TBR系列、DDR系列激光干涉仪微步能力限CXP系列/激光干涉仪或千分表运动直线度标称该技术指标的产品/激光干涉仪或自准直仪运动平行度标称该技术指标的产品/激光干涉仪或自准直仪静态平行度标称该技术指标的产品标称该技术指标的产品千分表或三坐标检测仪俯仰CXP系列、KA系列、PA系列/激光干涉仪或自准直仪偏摆CXP系列、KA系列、PA系列/激光干涉仪或自准直仪端面(轴向)跳动/限旋转滑台千分表径向跳动/限旋转滑台千分表最大净转矩/限TBR系列扭力扳手、测试工装
  • 市场监管总局批准启用激光小角度副基准装置
    近日,市场监管总局批准启用由北京航天计量测试技术研究所和中国航空工业集团公司北京长城计量测试技术研究所分别研制建立的两项“激光小角度副基准装置”。 激光小角度副基准装置是国家平面角基准的重要组成之一,可复现和保存平面角单位,并作为激光小角度基准装置的备份,可为激光小角度测量仪、自准直仪、光学角规等小角度器件进行量值传递,满足航空航天用激光陀螺、精密机床用高精密导轨、芯片制造用光刻机等高精尖领域的小角度量值计量需求,对航空航天、高端装备制造、精密光学器件、集成电路等领域高质量发展发挥基础性作用。 北京航天计量测试技术研究所建立的激光小角度基准装置突破了400mm超精密殷钢正弦臂、大口径空心角隅棱镜研制瓶颈,以及双频激光干涉差动测角等关键技术,实现了0.001"超高精度角度测量分辨力,相当于地球上的观察者能够看清400公里外空间站上宇航员手中的铅笔芯。中国航空工业集团公司北京长城计量测试技术研究所建立的激光小角度副基准装置实现了超高分辨力小角度量值复现,具有微小角度的测量能力,其分辨力近似一个圆周的1亿3千万分之一对应的角度量值,准确度可以达到0.03″,相当于一根100公里长的圆棒,一端抬高15毫米对应的角度量值。 当前,我国测量仪器产业正在高速向国际领先水平发展,激光小角度副基准装置的建立有助于解决当前面临的大量小角度精密测量和准确度评价问题,将为我国小角度测量技术的发展提供有力的计量支撑,并推动高精度大范围自准直仪、激光小角度测量仪等高端测量仪器加速实现国产化。
  • 安捷伦科技隆重推出新一代双向观测原子发射光谱仪
    安捷伦科技隆重推出新一代双向观测原子发射光谱仪以其前所未有的性能应对复杂应用的挑战创新的ICP-OES系统,分析样品更快速、使用气体更节省 2014年7月1日,北京——安捷伦科技公司(纽约证交所:A)于今日隆重推出Agilent 5100电感耦合等离子体发射光谱仪(ICP-OES),借此巩固其作为原子光谱仪领域创新者的地位。即使面对最复杂的样品,全新的系统都能更快速地分析样品,使用气体更节省,且不会影响其分析性能。这款全新的仪器是实验室进行食品、环境、药物检测以及采矿和工业应用的理想选择。 安捷伦光谱产品副总裁 Philip Binns表示:“新系统避免了与传统的双向观测分析相关的速度和稳定性方面常见的影响。作为ICP-OES领域性能领导企业,安捷伦此次又为行业标准树立了新的标杆。” 传统的双向观测系统需要对每个样品进行多达四次的连续测量,而Agilent 5100仅需一次,这得益于它创新的智能光谱组合技术和垂直火炬同步双向观测技术。这些创新可让客户以更快的速度、更高的准确度和易用性进行分析,大大节省了时间和运行成本。 Philip Binns继续表示:“安捷伦的目标始终都是提供最快速、最高效的原子光谱系统,以应对最复杂的样品。今年,随着4200 MP-AES、7900 ICP-MS,以及如今5100 ICP-OES 的陆续面世,我们继续在元素分析的创新方面引领着行业发展,这也印证了我们致力于根据客户的应用需求提供最佳工具的一贯承诺。” Philip Binns强调,Agilent 5100 ICP-OES分析每个样品的分析速度比市场上与之竞争的ICP-OES系统快55%,所需气体仅有其50%。他补充道:“市场上暂时还没有其它系统可以超越5100 ICP-OES的性能、抑或是其低运行成本的优势。” 借助Agilent 5100 ICP-OES,客户可使用直观的ICP Expert软件和智能光谱组合技术来实现方法开发。客户一次即可测量所有波长,具有极高的精密度,且无任何延迟。Agilent 5100 ICP-OES系统的垂直炬管可以应对最具挑战性的样品(从高基质样品到挥发性有机溶剂),并且分析结果具有高度可靠性。 Agilent 5100有三种配置,均配备耐用的垂直炬管,由此可以帮助客户实现: 同步垂直双向观测(SVDV)能够以最少的气体用量提供最快的分析速度;垂直双向观测(VDV)可提供高通量,如需更高通量,可现场升级至SVDV配置;径向观测(RV)是需要快速、高性能径向 ICP-OES 的实验室的理想选择。关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有20,600名员工,遍及全球100多个国家,为客户提供卓越服务。在2013财年,安捷伦的净收入达到68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • 我国几何量精密测量领域自主创新成果——关节式坐标测量机关键技术研究
    我国几何量精密测量领域自主创新成果——关节式坐标测量机关键技术研究于连栋,赵会宁,贾华坤[序言] 2004年我的导师费业泰教授开始与合肥工业大学校友Richard He合作开发便携关节式坐标测量机,是国内较早开展关节式坐标测量机研究的团队之一,当时费老师带领胡鹏浩和胡毅等几位老师及若干研究生从零开始攻关,研制了首台关节式坐标测量机原型样机。2006年6月本人加入这项研究工作,主要负责测量机误差建模和测量机参数标定和辨识方面的工作。初期仪器的研发工作还曾与中国船舶工业第6354研究所合作过一段时间。经过多年的持续研发,我们在关节式坐标测量机的创新精度支撑理论和仪器研发工程技术方面均积累了丰富的成果,本人先后主持4项与关节式坐标测量机相关的国家自然科学基金面上项目,2013年成功获批“便携关节式坐标测量机开发与应用”国家重大科学仪器设备开发专项(简称仪器专项),项目分别于2018年和2020年通过技术验收和综合验收。天津大学叶声华院士曾经说过“关节臂仪器项目的顺利实施得益于费老师和合肥工业大学在仪器精度理论领域积累的丰硕成果”。该项目历时近20年经过两代人的持续投入和潜心研发,完全掌握了关节式坐标测量机的核心关键技术和应用开发技术,实现了具有自主知识产权的关节式坐标测量机零的突破,该技术成果获中国仪器仪表学会科学技术奖一等奖。仪器专项在实施过程中得到合肥合锻智能制造股份有限公司、清华大学、重庆理工大学、北京信息科技大学等单位的大力支持,项目在申报过程中得到合肥工业大学夏豪杰教授的大力支持,项目实施过程中赵会宁、贾华坤等博士研究生及若干硕士研究生均做出了重要贡献,在此一并表示感谢!一、研究背景关节式坐标测量机是一种广泛应用于汽车制造、飞机装配、模具制造等领域的高精密几何量测量仪器。与传统正交式坐标测量机相比,关节类坐标测量机通常由6或者7个旋转关节串联而成,具有灵活性高、便携性好、测量范围大和适于在位测量等优点。其测角系统由安装在各旋转关节上的高精度角度编码器实现 关节类坐标测量机采用光学扫描测头可实现被测件复杂曲面的非接触快速测量 为得到精确的测量模型,还需研究多种建模和参数辨识方法以及由不同国际组织制定的关节类坐标测量机的性能评价标准。针对上述关键技术,本文介绍了关节类坐标测量机的研究现状和技术进展,并对其未来发展趋势进行了展望。二、核心关键技术2.1基于广义误差模型的运动学建模技术传统D-H建模方法在某些情况下存在病态问题,极大地影响关节式坐标测量机的测量精度。为克服上述问题,提出了一种能够同时包含几何误差和非几何误差的运动学建模方法—广义误差模型建模理论,进一步提高了关节式坐标测量机的模型精度,如图1所示。图1 关节式坐标测量机广义误差模型2.2圆光栅传感器测角误差修正技术将阿贝原则拓展到角度测量领域,定义了测角阿贝误差的概念,提出了测角阿贝误差的修正方法,在修正测角阿贝误差的基础上进一步对测角误差进行修正,圆光栅传感器的测角精度得以显著提高,如图2所示。为探究圆光栅传感器各主要的误差作用方式和各项误差成分比重,开展了基于误差源分析的测角误差修正技术研究,推导并验证了包括旋转主轴径向误差运动和光栅盘安装偏心的测角误差模型,并为精密轴系的设计和装调提供了理论指导作用;为进一步修正温度产生的测角误差,提出了基于傅里叶级数展开-遗传算法优化BP神经网络的方法,显著提高了圆光栅传感器的测角误差。图2 测角阿贝误差测量装置 图3 测角误差修正效果2.3自制3D体约束标定体结合现行ASME B89.4.22-2004、VDI/VDE 2617-9和ISO 10360-12-2016标准,提出一种全新的全测量空间3D体约束的标定系统并首次建立了全空间综合误差标定模型,如图4所示。基于全测量空间3D体约束标定体,利用最佳采样策略,获取全空间标定数据集,建立了基于虚拟距离和单点双重约束的关节式坐标测量机全空间综合误差标定模型(结构参数误差和非结构参数误差),大幅消除了非参数系统误差、拟合误差,并根除了传统标准件位姿变化引起的变形误差,有效提升了标定精度和效率。该技术在机器人、极坐标测量仪器等误差修正方面具有普遍应用价值。图4 全测量空间3D体约束标定系统2.4结构设计与轴系精密装配自主设计了6-DOF关节式坐标测量机的结构,其核心关键机械结构是精密旋转轴系。根据仪器测量精度的设计指标,选择高精密级轴承并依据轴孔配合原则合理设置公差带。制定零件加工质量检测规程,对旋转主轴等零件的关键部位尺寸使用正交式坐标测量机进行检验。利用热胀冷缩效应装配精密轴系,通过改变轴承预紧力实现对旋转主轴转动状态的调整,制定旋转主轴转动状态检测规程,利用自准直仪等仪器设备对旋转主轴的误差运动进行检测,评估精密轴系是否达到最佳工作状态,如图5所示。图5 精密轴系装配图2.5力平衡系统研发由于关节式坐标测量机是一款手持式精密测量设备,需要在靠近基座的第二个关节处安装力平衡系统以平衡仪器自身的重力,提高工人在长期操作仪器时的舒适性,降低操作疲劳,保障测量结果的准确性和可靠性。经公式推导、仿真分析、定量实验和仪器整机平衡性能验证,研发了可靠的关节式坐标测量机力平衡系统,如图6所示。图6 力平衡系统研发过程图2.7仪器测量软件开发测量软件是仪器的重要组成部分,项目组以Qt软件为开发平台,结合OpenCasCade开发了适用于关节式坐标测量机的测量软件,完成直径、圆度、圆柱度、平面度等几何尺寸、形位公差的算法开发,并用标准测试数据与成熟商用软件进行比对,验证算法准确性。软件具备测量过程实时显示、数据存储、测试结果导出等功能,并方便进行功能扩展,如图7所示。图7 关节式坐标测量机测量软件经上述关键技术积累,成功研制了测量范围为1.2m-3.6m共5种关节式坐标测量机,如图8所示。其单点测量重复性介于±0.018-0.036mm,长度测量重复性±0.049-0.119mm。图8 不同型号关节式坐标测量机三、应用技术开发3.1汽车行业的应用针对汽车行业模具标定、焊接夹具定位和人机工程测试三个典型应用场景,在奇瑞汽车股份有限公司开展了相关测试验证,如图9所示。(1)模具标定测量提出利用关节式坐标测量机对汽车冲压模具进行现场测量。通过在测量现场测量被测模具的多个关键点,把测量机的测量坐标系统一到模具自身设计的坐标系内,然后通过关节式坐标测量机测量得到各被测点坐标值,与其理论设计值比较,给出测量结果评价,也可以通过关节式坐标测量机的测量软件拟合测量得到模具模型,与其设计理论模型比较,得到模具的形变,根据其形变情况标定模具。(2)焊接夹具定位测量 在使用关节式坐标测量机对焊接夹具进行定位检测时,通过对夹具体检测基准的测量,采用与理论数模相拟合的方式建立坐标系,分别测量夹具体的各个定位销及定位面与三维数模的偏差,以判定该夹具是否符合要求。(3)人机工程测试 为保证汽车乘坐人员的乘坐舒适性,需要保证汽车座椅空间3D位置的精密安装。在车身边架设关节式坐标测量机,将其测头伸进车厢内,完成对隐藏在车厢内座椅关键点的位置测量,并通过测量车身各关键点,来判断座椅的安装是否符合人机工程的要求。关节式坐标测量机在汽车制造中的应用,解决了汽车零部件几何尺寸测量和定位安装现场检测的难题,提高了生产效率,保障了生产质量。图9 关节式坐标测量机在汽车行业的应用3.2飞机制造中复杂零件、工装的现场检测在民用飞机制造企业利用关节式坐标测量机对飞机舱门及装配工装进行检测,并对点云数据进行处理。该类测量可以保障装配人员通过可视化的方法提高装配质量,根据提供的详细尺寸参数,实现对飞机关键部件生产质量的全面控制,提升飞机关键部件的产品质量,促进了我国飞机制造业的自主高质量发展。如图10所示。图10 关节式坐标测量机在飞机制造业的应用3.3 EAST核聚变大科学装置关键部件定位测量和形变检测全超导托卡马克核聚变 实验装置(EAST)内部含有种类繁多的关键零部件,每次放电后需要对其装配定位精度和形变进行精密测量。传统方法采用靠板、标尺等手段仅能进行定性测量。为解决核聚变装置内部关键部件装配定位测量难题,我们提出激光跟踪仪与关节式坐标测量机进行组合测量的模式,充分发挥激光跟踪仪超大尺寸全局测量和关节式坐标测量机灵活、便携、无测量障碍点的局部测量优势。通过升级EAST大厅外部基准、构建内部基准,统一内外基准网,在EAST核聚变装置维护改造期间通过搭建测量系统,顺利完成关键部件装配定位测量和形变检测,为核聚变实验的顺利进行提供了必要保障,如图11所示。图11 关节式坐标测量机在国家大科学装置的应用四、总结风雨18年仪器研发路,在两代仪器人的共同努力下,积累了基于“新原理、新装置、新工艺”的整套仪器研发经验,实现了自主知识产权的关节式坐标测量机从无到有,从原理样机到小批量生产的突破,打破了国外产品在国内市场的垄断,为相关仪器的国产化替代奠定了基础。【作者】于连栋,博士,教授,2003.9-2020.5年就职于合肥工业大学,2020年6月以来就职于中国石油大学(华东),长期从事3D宏观尺度坐标测试技术、微纳传感技术、超快光学精密测试技术研究,2017年入选国家百千万人才工程、国家级有突出贡献中青年专家、享受国务院政府津贴。点击图片直达报名页
  • 我国首次研制出超精密直径和形状综合测量标准装置
    精密回转体零件是构成现代精密机械的最基本、最主要零件之一,也是保证精密装备精度的关键部件。记者12月24日从中国计量科学研究院获悉,经过3年的科技攻关,该院成功研制出国内首台超精密直径和形状综合测量标准装置,已于12月21日通过国家质检总局组织的专家验收。该装置填补了我国在超精密直径和形状综合参数测量的空白,为我国精密仪器制造领域提供技术支撑。  据介绍,近年来,随着超精密制造业的高速发展,我国现行的测量水平和装置,已不能满足超精密制造业对精密回转体零件的尺寸精度、几何形状精度、表面质量等的测量需求,限制了超精密仪器生产链的形成。为打破这一困境,中国计量科学研究院承担了“超精密直径和形状综合测量标准装置”课题,选择对生产制造影响最广泛的、最急需统一的关键量——直径和形状进行研究。  据课题负责人薛梓研究员介绍,通过对仪器设计的多项共性关键技术的研究,目前课题组已成功研制出超精密直径和形状综合测量标准装置,完成了基于误差分离技术的超精密直径和相关形状评价方法的研究,可实现对回转体类零件的直径、截面圆度、母线直线度、圆柱度等的精密测量。该装置的成功研制及相关形状评价方法的研究,为降低直径和形状测量不确定度、提高我国直径和形状测量水平、有效监控与实现直径和形状量仪的进口及使用提供强有力的技术支撑。对于我国GPS标准的制订和实施、提高我国精密仪器制造业的核心竞争力具有重要意义。
  • 又一城市官宣!培育发展精密仪器产业集群(附行动计划)
    今年4月,北京市经济和信息化局等五部门印发《关于支持发展高端仪器装备和传感器产业的若干政策措施实施细则》,指出将加快推动高端仪器装备和传感器产业发展。  继北京之后,深圳市近日正式发布《深圳市培育发展精密仪器设备产业集群行动计划(2022-2025年)》,又一城市官宣培育发展精密仪器设备产业集群。原文如下:深圳市培育发展精密仪器设备产业集群行动计划(2022-2025年)  为贯彻落实市委、市政府关于推进制造强市建设的工作部署,加快发展壮大精密仪器设备产业集群,依据《广东省人民政府关于培育发展战略性支柱产业集群和战略性新兴产业集群的意见》《深圳市人民政府关于发展壮大战略性新兴产业集群和培育发展未来产业的意见》等文件精神,制定本行动计划。  一、总体情况  (一)发展现状。我市精密仪器设备产业具有一定的生产规模和产品竞争力,数字多用表、电子测量仪器、电能表等细分领域集聚了一批重点企业,高速高精点位操作技术、厘米级型谱化移动测量装备等关键技术研究成果获得国家科技奖,建成深圳市大型科学仪器共享平台等一批公共服务平台和创新载体。2021年我市精密仪器设备产业增加值为128亿元。  (二)发展机遇。一是制造业数字化转型对设备和生产过程的精密度和智能化水平提出了更高要求,精密仪器设备作为制造数据获取的基本感知和测量工具,市场发展潜力较大。二是我市产业门类齐全、产业配套完善、企业主体活跃,可为精密仪器设备产业发展提供丰富的应用场景支撑。  (三)存在问题。一是自主创新能力相对不足,关键零部件和中高端精密仪器设备依赖进口。二是产业规模偏小,缺乏领军企业。三是自主品牌效应不强,部分企业以代工为主。四是复合型人才、高层次人才和高技能人才不足,无法满足产业发展需要。  二、工作目标  (一)产业规模持续增长。到2025年,我市精密仪器设备产业增加值达到200亿元,其中工业自动化测控仪器增加值达到百亿级规模,信息计测与电测仪器、科学测试分析仪器及各类专用检测与测量仪器实现快速增长。  (二)创新能力大幅提升。培育形成一批具有自主知识产权和品牌影响力的高端精密仪器设备产品,核心技术和关键零部件对外依存度显著降低,建设制造业创新中心、企业技术中心等各类创新载体10家以上。  (三)产业结构不断优化。健全精密仪器设备检测、认证和计量服务体系,建成一批公共服务平台,形成体系完整、优势明显的产业生态。培育3-5家细分领域骨干企业,新增10家制造业“单项冠军”、专精特新“小巨人”、“独角兽”企业。  (四)质量品牌显著提升。电工仪器仪表、供应用仪器仪表、导航系统仪器等领域实现国际领先,示波器、频谱分析仪等中高端产品市场占有率显著提高,主导或参与制定一批国际、国家标准,企业品牌国际影响力大幅提升。  三、重点任务  (一)重点突破关键短板环节。聚焦科学测试分析仪器、各类专用检测与测量仪器等高端精密设备产品短板,着力攻关智能传感、高精度测量等关键技术,提升高端精密仪器设备安全可控水平。鼓励重点企业、科研院所、高等院校等创新主体联合开展高端仪器整机和核心零部件攻关,提高精密仪器设备产业技术创新能力。(市科技创新委、发展改革委、工业和信息化局按职责分工负责)  (二)全面优化产业结构体系。完善覆盖产业共性核心技术攻关、高端关键设备研制与产业化应用、专业人才培养引进、标准体系建设和知识产权运维的产业生态体系。建设一批精密仪器设备检验检测等公共服务平台,提升产业支撑服务能力。加大创新产品推广力度,实施“三首”工程,推动企业做优做强。(市工业和信息化局、发展改革委、教育局、科技创新委、财政局、人力资源保障局、国资委,市人才工作局按职责分工负责)  (三)打造高端品牌和质量样板。支持骨干企业开展精密仪器设备基础新工艺、可靠性工程试验、可靠性检验检测等研究和应用,提高产品可靠性和稳定性。鼓励企业、科研院所、高等院校等主导或参与国内、国际标准的制(修)订,不断提升企业、机构的行业影响力。(市市场监管局、发展改革委、科技创新委、工业和信息化局按职责分工负责)  (四)全面提升市场竞争力。鼓励企业积极参与国内外技术论坛、产业峰会、博览会等活动,积极开拓国际市场,提升产品市场竞争力。积极引进国际企业在我市设立区域总部和建设先进制造产线,培育一批具有国际竞争力的企业,推动高端精密仪器设备产业集聚发展。(市商务局、科技创新委、工业和信息化局按职责分工负责)  四、重点工程  (一)核心关键环节创新突破工程。聚焦高精度压力传感、超声传感、图像传感等智能传感技术,芯片化测量、超精密测量、量子精密测量等测量技术,可靠性设计及试验验证技术等核心技术领域,组织实施一批“揭榜挂帅”及重大技术攻关项目。鼓励用户企业与研制企业、科研院所、高等院校等创新主体深化合作,突破精密光学仪器、分析仪器等高端仪器设备产品所需的基础工艺、关键零部件、质控软硬件、标校技术等关键共性技术,缩短与国际先进产品的差距。(市科技创新委、发展改革委、工业和信息化局按职责分工负责)  (二)产业支撑服务能力强化工程。鼓励企业整合行业优势资源,共建制造业创新中心,开展行业共性技术研究和服务,为精密仪器设备研制单位提供可靠性及稳定性等技术改进支撑。依托光明科学城,高标准建设深圳中国计量科学研究院技术创新研究院(精密仪器集成工程中心)、高端科学仪器研制中心等平台项目。研究建立质量技术基础(计量、标准、合格评定)、基础技术和共性技术研究应用中心,建设精密仪器设备中试验证和产业孵化平台。(市工业和信息化局、发展改革委、科技创新委、市场监管局,光明区政府按职责分工负责)  (三)标准和知识产权体系建设工程。鼓励行业组织和企业积极参与制定国际、国家标准,支持产业联盟、行业协会和企业联合制定高端精密仪器整机和核心零部件行业标准、地方标准和团体标准。优化知识产权全链条服务体系,引导和支持企业围绕精密仪器设备关键技术和零部件开展高价值专利培育。(市市场监管局、发展改革委、科技创新委、工业和信息化局按职责分工负责)  (四)质量提升与品牌培育工程。支持企业推广可靠性设计与仿真、质量波动分析、可靠性工程试验、可靠性检验检测等技术的开发和应用,提升产品设计和工艺控制能力。加速精密加工、特殊工艺、智能装配等基础工艺技术和自校准、自检测、自诊断、自适应功能等智能化技术的应用推广。支持重点企业与人工智能、工业机器人企业合作,打造数字化、柔性化、模块化的智能生产线,提升产品的一致性和生产效率。(市工业和信息化局、发展改革委、科技创新委、市场监管局按职责分工负责)  (五)自主产品规模化应用工程。实施“三首”工程,加大对具备突破性、先进性的精密仪器设备产品应用支持力度,遴选一批产品可靠性强、自主化率高的精密仪器设备优先推广应用。实施重大研究成果产业化专项,主动承接国家、省重大科学仪器设备专项成果在我市落地产业化,提升自主精密仪器设备创新成果转化能力。(市工业和信息化局、科技创新委、财政局、国资委按职责分工负责)  (六)企业竞争力成长工程。支持优势企业与市属国有企业、产业基金开展合作,培育一批具有国际竞争力的行业骨干企业。支持掌握核心关键技术、具备良好市场应用前景的中小微企业做强做大,培育一批细分行业领军企业。支持企业与高等院校通过定向培养、双向培养等方式,联合培养精密仪器设备产业急需的高技能人才。(市工业和信息化局、发展改革委、科技创新委、教育局、财政局、人力资源保障局、国资委,市人才工作局按职责分工负责)  五、空间布局  在南山区布局研发设计环节,在光明区、宝安区、龙华区布局研发设计和生产制造环节。以光明科学城为核心,重点发展科学测试分析仪器,打造精密仪器设备产业基础和应用基础研究中心。发挥南山区大型科学仪器共享平台和创新型企业集聚优势,重点打造精密仪器设备研发创新集聚区。依托宝安区高端装备产业基础,重点发展工业自动化测控仪器与系统、信息计测与电测仪器等,打造覆盖精密仪器设备研发设计、生产制造、应用示范的全链条集聚区。发挥龙华区空间优势,培育未来精密仪器设备产业重要承载区。(市工业和信息化局、发展改革委、科技创新委,南山区政府、宝安区政府、龙华区政府、光明区政府按职责分工负责)  六、保障措施  (一)加强统筹协调。加强部门协同和市区联动,积极推动精密仪器设备产业集群发展中的重大事项和重点工作,加大对重点企业发展状况的监测和跟踪服务力度。支持设立精密仪器设备产业联盟,充分调动社会组织力量,推动产业服务资源共享。(市工业和信息化局、发展改革委、科技创新委,各区政府、新区管委会、深汕特别合作区管委会按职责分工负责)  (二)完善政策支撑。支持各区结合实际制定实施促进精密仪器设备产业发展的扶持政策,通过多元化扶持方式激励企业加大研发和技改投入,推动精密仪器设备高端化、自主化、品牌化发展。强化产学研用融合发展政策支撑,鼓励企业联合高校院所开展科研项目合作,提升产业技术创新能力。(市工业和信息化局、发展改革委、科技创新委,各区政府、新区管委会、深汕特别合作区管委会按职责分工负责)  (三)加强资金保障。加大财政资金在具有比较优势的高端精密仪器设备领域支持力度,优先保障重大项目、重点园区建设资金需求。设立高端装备产业基金,充分发挥政府投资基金引导带动作用,鼓励和引导社会资本参与精密仪器设备产业项目投资。创新金融产品和服务,积极发展精密仪器设备租赁和融资租赁业务。加强对精密仪器设备企业上市辅导服务,支持骨干企业上市融资。(市工业和信息化局、发展改革委、科技创新委、财政局、地方金融监管局、中小企业服务局按职责分工负责)  (四)完善人才梯队。加大人才引进政策对精密仪器设备产业的支持力度,引进一批“高精尖缺”创新人才和团队,提升引才精准度和产业适配度。支持高等院校开设精密仪器设备相关专业,培养产业发展亟需的专业化人才。支持职业院校(含技工院校)建设人才技能实训基地,培养精密仪器设备产业技能型人才。(市人力资源保障局、教育局、科技创新委、工业和信息化局,市人才工作局按职责分工负责)
  • 上海光机所在相干调控的双向吸波器研究中取得进展
    近期,中国科学院上海光学精密机械研究所红外光学材料研究中心研究员董红星和张龙团队,在相干调控的双向吸波器研究方面取得进展。该工作采用双层ITO超构表面构造吸波器。这一吸波器具有双向宽带的微波吸收以及相干控制的可调谐性能,同时在可见光波段的平均光学透过率为78.25%,可用作未来智能隐身光窗。相关研究成果以Transparent Bilayer ITO Metasurface with Bidirectional and Coherently Controlled Microwave Absorption为题,发表在《先进光学材料》(Advanced Optical Materials)上。超构表面是一种由周期性结构单元构成的人工复合材料,能够实现自然材料所不具备的奇异电磁特性,形成了材料、器件研究领域的新范式。其中,超构表面吸波器具有厚度薄、重量轻、吸收率高等优点,在电磁屏蔽、隐身和无线通信中具有广阔应用前景。然而,目前传统的吸波器普遍采用MIM结构设计框架,仅能对正向入射的电磁波实现吸收而反向电磁波被完全反射,这降低了整体电磁能的利用率。同时,它们存在不可调谐以及光学不透明的缺点,不能满足新一代电磁屏蔽光窗智能化和集成化的需求。针对上述问题,该团队利用光学透明的ITO材料设计超构表面,理论提出并实验验证了一种双向吸收、相干调控、光学透明的微波吸波器,在24.49–34.39 GHz的宽带频率范围内实现了90%以上的双向电磁波吸收,且在光学波段的平均透过率为78.25%;此外,通过添加反向入射电磁波并调节两束入射电磁波之间的相位差,可以对吸收性能进行动态相干调控。该工作解决了目前传统吸波材料单向性、带宽窄、不可调以及光学不透明的问题,为未来智能隐身光窗的设计提供了新的思路和解决方案。研究工作得到国家自然科学基金和上海市青年拔尖人才计划等的支持。图1. (a)所提出的超构表面微波吸波器示意图;(b)单元结构示意图;(c)实验制备的样品;(d)实验测得的光学透过率。图2. (a)实验和仿真得到的正向入射电磁波吸收谱;(b)实验和仿真得到的反向入射电磁波吸收谱;(c)双干调控示意图;(d)两束入射电磁波之间不同相位差所对应的相干吸收谱。
  • 汗诺双向电动搅拌器震撼上市
    根据用户需求开发出双向电动搅拌器,现已成功上市,欢迎各地经销商前来洽谈同时欢迎各地用户提出宝贵建议,您的满意,是我们永恒的追求致电联系:18621653239 薄利明电动搅拌器是在大功率电动搅拌的基础上改进而成,设有机械定时,搅拌棒选材不锈钢,有优越的抗腐蚀性能,操作简便,运转平衡,无级调速,小而强有力的马达能在较广的速度范围内对高粘度的液体溶液进行稳定精密的搅拌。转速有数字显示,准确、直观。特别适合搅拌大体积的样品,是石油、化工、冶金、纺织、食品、医药卫生、环保、生化实验室、分析室、教育科研的必备工具。 电动搅拌器JJ-40W功率:40W定时范围0~120分调速范围0~3000转/分580元JJ-60W功率:60W定时范围0~120分调速范围0~3000转/分620元JJ-90W功率:90W定时范围0~120分调速范围0~3000转/分680元JJ-100W功率:100W定时范围0~120分调速范围0~3000转/分800元JJ-160W功率:160W定时范围0~120分调速范围0~3000转/分1560元JJ-200W功率:200W定时范围0~120分调速范围0~3000转/分1900元JJ-300W功率:300W定时范围0~120分调速范围0~3000转/分2300元主要特点:【1】采用低压直流无刷电机驱动,无火花,力矩大,效力高,调速性好。【2】搅拌棒和叶片为优质不锈钢材料,耐腐蚀。【2】搅拌轴最大力矩: 0.7N· m。【4】适用介质粘度:0~100000mpas。
  • “测量方法标准制修订中精密度试 验设计与统计方法”培训班12.14开课啦
    目前,测量方法标准在制修订中通常涉及精密度的内容,国家标准、行业标准主要有“允许差”和“重复性限、再现性限”两类精密度的表述方法。为科学、合理地给出测量方法精密度,国际标准化组织发布了ISO 5725《测量方法与结果的准确度(正确度和精密度)》系列标准,我国等同采用ISO 标准,颁布了GB/T 6379系列标准。该系列标准的第2 部分GB/T 6379.2-2004《测量方法与结果的准确度(正确度与精密度) 第2 部分:确定标准测量方法重复性与再现性的基本方法》,系统介绍了测量方法正确度与精密度的基本概念,给出了一些通过协同实验室间试验获得测量方法精密度的数值估计的试验设计中应遵循的原则,提供了组织和进行测量方法精密度的试验的程序,测量方法精密度试验的数学模型和统计方法等。  为帮助测量方法标准制修订及使用人员更加深入理解GB/T 6379.2-2004《测量方法与结果的准确度(正确度和精密度)第2 部分:确定标准测量方法重复性与再现性基本方法》标准,在测量方法标准制修订过程中,运用GB/T 6379.2-2004,确定测量方法精密度的重复性限和再现性限参数或函数关系,提升制修订测量方法标准的水平,CSTM 科学试验领域标准委员会秘书处与全国分析检测人员能力培训委员会秘书处拟定于2021 年12 月14 日举办“测量方法标准制修订中精密度试验设计与统计方法”培训班。参加本次培训班学习并通过考核的学员,可取得CSTM“测量方法标准制修订中精密度试验设计与统计方法”培训证书。  本次培训班具体安排如下:  一、组织机构  CSTM 科学试验领域标准委员会秘书处  全国分析检测人员能力培训委员会秘书处  二、培训对象  各相关单位的测量方法标准制修订人员及标准使用人员。  三、培训及研讨内容  1、GB/T 6379.2-2004《测量方法与结果的准确度(正确度和精密度)第2部分:确定标准测量方法重复性与再现性基本方法》标准解读   2、测量方法标准制修订中精密度试验设计与统计案例解析及经验分享   3、互动答疑。  四、授课时间及形式  1、培训时间:2021 年12 月14 日9:00-17:00  2、培训方式:腾讯会议(在线)  五、培训专家  罗倩华,女,工学博士。1990 年毕业于吉林大学环境科学系环境化学专业,现为钢研纳克检测技术股份有限公司正高级工程师,一直从事冶金材料分析方法研究和标准制修订等工作。现为全国钢标准化技术委员会钢铁及合金化学成分测定分技术委员会秘书长,组织和承担国际标准、国家标准、冶金行业标准和团体标准的制修订100 余项,曾获得冶金科学技术奖一等奖和二等奖。  六、收费标准及付款方式  1、培训费:1500 元/人  2、付款方式:  汇款至下列帐号:  单位名称:中关村材料试验技术联盟  开户行:中国工商银行北京新街口支行  银行帐号:0200002909200227889  微信及支付宝支付二维码:  注: 请在提交培训回执表后及时付款, 付款后将转账凭证发送至邮箱(training@analysis.org.cn)。  七、报名方式  1、参加人员请将《培训报名回执》填写完毕发送至邮箱:  training@analysis.org.cn,收到邮件“您的邮件已收到,稍后答复”视为秘书处收到了  报名申请 工作日24 小时内未收到回复,请联系工作人员,联系电话:010-62182851。  2、《培训报名回执表》(附件一)请于12 月10 日之前发送至上述邮箱。  3、秘书处收到贵方所付本次培训的培训费,视为报名成功。  八、联系方式  联系电话:  王爽:010-62182851 13381073503  许康:010-62182851 18601075050  邮箱:training@analysis.org.cn  CSTM 科学试验领域标准委员会秘书处  全国分析检测人员能力培训委员会秘书处附件1:培训报名回执.docx
  • 海克斯康:精密测量瞄准“世界之最”
    软件工业领域世界500强、三坐标行业的“国家制造业单项冠军企业”、徕卡3D压雪车引导系统为北京2022年冬奥会提供雪务保障,入围青岛市“工业赋能”场景示范认定项目名单… … 这是海克斯康的“金字招牌”。日前,青岛对首批47家先进制造业产业链链主企业进行了授牌,海克斯康作为青岛市十大战略性新兴产业链——精密仪器仪表产业链主企业,参加了链主企业授牌仪式。精密仪器仪表产业对制造业发展有何作用?记者走进位于青岛高新区华贯路上的这家链主企业,探访其如何做优精密仪器仪表,推动以质量为核心的智能制造。“精密仪器仪表产业是‘工业强基’之基,是制造实现突破的基础支撑和核心关键,”海克斯康制造智能技术(青岛)有限公司智能制造研究院执行院长隋占疆介绍,“我们常说推动制造业高质量发展,那高质量产品如何完成?这需要对制造全过程进行严格精密测量,并依据测量数据不断改进和完善工艺,包括材料加工工艺、零件加工工艺和装配工艺。谁的测量数据更精准、更全面,谁在各个工艺环节上做得更扎实,做得更精益求精,谁的产品质量就更胜一筹。”测量精度可达头发丝直径的二百分之一走进海克斯康双智赋能中心,在航空智造展岛处,记者看到一个小机器人正在对着一片飞机蒙皮进行扫描,在扫描的同时,一旁的电脑屏幕上也在实时显示着数据信息。这是海克斯康针对蒙皮等航空大型结构件测量推出的大尺寸蒙皮扫描方案。海克斯康智慧系统扫描检测飞机蒙皮的同时,电脑屏幕上实时显示着检测信息。“如果蒙皮表面有肉眼看不到的突起或凹陷,电脑上就会显示出不同的颜色。”海克斯康制造智能技术(青岛)有限公司数字化商务运营中心高级顾问孙智宏说,该方案将激光跟踪仪传统的反射球测量功能与先进的计量级非接触式扫描测量技术完美融合,对飞机蒙皮表面进行扫描测量和云数据采集。在搭载智能运输车后,还可实现航空大型结构件的自动化、批量化测量,省时省力。正所谓失之毫厘,差之千里。对于航空叶片等一些航空小零部件而言,看似很小的偏差也会影响整架飞机的质量。海克斯康推出了矩阵式叶片测量方案,采用三坐标测量机,应用柔性矩阵式夹具及独立研发的矩阵式测量软件,可实现叶片类小型零部件的批量检测,测量过程还能在软件中直观显示,一键式测量,极大提升了检测效率,而且精度极高。“最高精度能达到0.3微米。”孙智宏说,一微米大概是一根头发丝直径的1/70,0.3微米,意味着测量精度约等于头发丝的直径1/233。“在直径3公里平地上检测到沙粒高的凸起”“海克斯康在精密计量领域拥有200多年的丰富经验,拥有全球测量精度最高、测量范围最大和产品线最广的计量产品和方案,是三坐标行业的‘国家制造业单项冠军企业’。目前,在‘工业传感器领域’和‘工业软件’领域拥有14项全球首创产品,8项世界之最测量技术。”隋占疆说。根植中国市场20多年,海克斯康立足本土化研发,见证并参与了中国制造业的高速发展。“我们以自主可控的高精度测量装备、智能制造工业软件和智能制造整体方案三大战略路径,深度参与到企业数字化转型,以智能计量装备确保产品质量,大数据分析并预测生产运行状况,为产品设计和制造提供改进依据。”隋占疆表示,凭借贯穿设计、工艺和制造的智能制造技术生态,海克斯康助力企业实现数据驱动品质与生产力的双重提升,为中国制造业发展贡献力量。隋占疆介绍,目前海克斯康已构成面向智能制造领域的全生命周期的数字化核心技术组合,在航空航天、电子、轨道交通、汽车、医疗器械等行业被广泛使用。不仅助力了C919国产大飞机的机身精密装配,为和谐号高速动车组车厢提供尺寸保证,还为一汽-大众、比亚迪新能源汽车的研发和量产,华为、小米等智能消费电子行业和锂电、风电、光伏等新能源行业提供了交钥匙方案。其中,在中国超级海上风机项目中,海克斯康的高精度三坐标测量机以亚微米的精度实现超大齿轮的超高精度检测任务,“打个比方,就是在直径3公里的平整地面上检测一个沙粒高度的凸起。”隋占疆说。“作为精密仪器仪表行业链主,海克斯康将继续发挥自身优势资源,精准把握产业发展趋势,一方面,聚焦突破面向新兴行业与垂直领域的产业创新,实施强链补链;另一方面,持续优化贯通产品全生命周期的行业解决方案,推动以质量为核心的智能制造,并建立和稳固产业链全局生态资源,营建创新服务平台,开展延链行动,促进产业链与创新链融合升级。”隋占疆说。
  • 摩方精密获全球精密制造行业重量级殊荣“日本精密工学会制造奖”
    2022年9月8日,摩方精密被日本精密工学会正式授予“日本精密工学会制造奖”,成为全球第三家获得该奖项的非日本本土企业,也是第一家来自中国的企业,而此前获得过此殊荣的国外企业,只有德国的两家公司。这也是摩方精密继获得国际光学工程学会棱镜奖、TCT2022最佳硬件及聚合物系统奖后,再次斩获国际重量级奖项。 日本精密工学会成立于1933 年,到目前为止,在全球范围内已拥有包括高等院校、研究机构以及知名企业在内的5500多个成员,在世界精密制造工业领域中,尤其是在精密设计、精密加工、精密机械、精密计量、环境工学、表面材料、医学器械等诸多领域,始终占据着领导者地位。日本精密工学会设奖目的在于,一方面奖励具有卓越的开发力和工业改善力的优秀新型产品或具有促进制造业发展作用的高新技术;另一方面奖励在精密工程领域开发出具有高社会价值产品和技术的优秀企业,以肯定他们的努力和贡献,支持他们进一步发展。因此,此次获奖,无疑对摩方精密在精密加工制造领域的技术实力和突出贡献给予了高度的肯定和莫大的鼓励。摩方精密作为全球微纳3D打印和精密加工领域先行者和领导者,今后将凭借领先于行业的卓越技术实力,为全球制造产业的发展、科学技术的进步做出更大的贡献。
  • 日本研制出超精密尺子 可应用于超精密仪器
    日本关西学院大学一个研究团队20日宣布,他们研发出一种超精密尺子,可用于测量纳米级别的尺寸。  这个团队来自关西学院大学理工学系。他们研制的这种尺子以硬度仅次于钻石的碳化硅为主要材料。碳化硅质地坚硬,很难加工,研究人员为此专门开发出一种新的加工技术。他们把碳化硅放入超真空环境中加热到约2000摄氏度,再对其表面进行切削。  采用这一加工技术,研究人员成功使碳化硅材料表面形成了阶梯状构造,阶梯的每级“台阶”为0.5纳米,相当于尺子的一格刻度。据介绍,研究人员还能把“台阶”的高度做成0.76纳米和1纳米。  研究人员表示,这种超精密尺子可广泛应用于超精密仪器、计算机中央处理器、大规模集成电路等诸多涉及纳米技术的领域。新型尺子的耐腐蚀性也比传统的硅制精密尺子更胜一筹。
  • 重庆机电收购英国精密技术集团项目获国家核准
    国家发改委已在近日核准重庆机电股份有限公司收购英国精密技术集团(PTG公司)下属的6家全资子公司的全部股权项目。  该6家公司为霍洛伊德精密有限公司、精密零部件加工有限公司、PTG重工有限公司、米罗威投资有限公司、PTG高级发展有限公司和PTG帝国公司,项目总投资2000万英镑(约合人民币2.044亿元)。  PTG公司是英国一家主要从事磨床、螺杆机床和螺杆加工的集团企业。重庆机电表示,将利用这一优势平台提升机床装备制造能力,进入国际高端机床制造领域。  目前,重庆机电正在加紧进行收购后续工作。  重庆机电3月初曾发布公告,宣布公司已与英国PTG集团订立收购协议,将收购PTG旗下6家公司的全部股本。  重庆机电成立于2007年7月,由重庆机电控股集团联合重庆渝富资产经营管理、重庆建工集团和中国华融资产管理公司等四家国有独资公司以发起方式共同设立的,主要从事商用车辆零部件、通用机械、数控机床及电力设备制造及销售。
  • 斯派克推出ICP-OES新品 实现真正直接双向观测
    仪器信息网讯 2015年5月20-22日,&ldquo 第六届亚太地区冬季等离子体光谱化学国际会议(The 6th Asia-Pacific Winter Conference on Plasma Spectrochemistry,2015 APWC)&rdquo 在福建厦门召开,300余位国内外专家学者参加了此次会议。作为为本次大会的赞助商,斯派克公司在会议上展示了2015年最新推出的电感耦合等离子发射光谱仪(ICP-OES) SPECTRO ARCOS的相关资料。  会议期间,仪器信息网编辑采访了斯派克公司ICP-OES产品经理Olaf Schulz先生,详细了解了SPECTRO ARCOS的创新技术和应用优势。斯派克公司ICP-OES产品经理Olaf Schulz先生与仪器信息网编辑合影  斯派克公司的电感耦合等离子体发射光谱仪(ICP-OES)新品推出的时间是?该新品的名字仍然是ARCOS,那么,只是原有产品的简单升级的呢,还是有比较大的技术革新呢?  Olaf Schulz先生:新产品是在2015年1月正式作为商品化产品推向市场的。&ldquo 老的&rdquo ARCOS是2007年推出的,经过7年的时间,我们现在推出了新的ARCOS。老ARCOS和新ARCOS相比,新产品的光学系统,以及其他的主要零部件方面都做了优化升级。  新ARCOS仍然走的是斯派克自己的技术路线,而不是目前流行的中阶梯光栅+面阵固体检测器的结构模式码?  Olaf Schulz先生:新ARCOS采用的是帕邢&mdash 龙格结构,它的最大的优点是在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。  帕邢&mdash 龙格结构另一个优点是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢&mdash 龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。从这一方面也可证明帕邢&mdash 龙格结构线性范围宽的优势。  帕邢&mdash 龙格结构系统中,光学器件也是最少的,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。我们曾做过实际样品的比对,对于ICP-OES检测比较困难的几个元素,我们的仪器灵敏度要高一个数量级。  ICP-OES面对的用户不只有金属行业,也有土壤等环境、石化用户,这些领域帕邢&mdash 龙格结构设计的优势体现的比较明显。  那这种光学设计的劣势是什么呢?  Olaf Schulz先生:当然,每种技术都有着优势与劣势两面,我们ICP-OES产品劣势最明显的一点是仪器体积大。而现在分析仪器的发展趋势之一是小型化,而新ARCOS的尺寸仍然非常大,这是帕邢&mdash 龙格结构系统带来的不可避免的问题。  新ARCOS的宣传册上提到&ldquo 真正的轴向直接观测,真正的径向直接观测&rdquo ,请问其表达的意义是什么?是通过何种技术实现的呢?  Olaf Schulz先生:目前,ICP-OES仪器有轴向观测和径向观测两种观测方式,二者各有优缺点,各厂家想了很多方法,在一台仪器上即实现轴向观测又实现径向观测。不过,轴向观测灵敏度高,但是径向观测光路长、光学器件多,能量有损失,二者不能同时发挥各自应用的真正优点,通常双向观测的仪器在一定程度上都有所妥协。  针对于此,新ARCOS专门开发了不需经过很多的光路反射、折射,而是采用了MultiView等离子体接口,让等离子体切换方向,真正实现直接观测。这种方式的优点可以通过其一典型的应用&mdash &mdash 贵金属分析来说明,对于贵金属成品分析来说,贵金属作为基体元素,其含量90%多,其他微量元素含量极低 而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多 那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。  而且,斯派克公司的ICP-OES产品还有另外一个型号&mdash &mdash BLUE,也可以给用户提供经典设计的双向观测方式,BLUE和ARCOS可以满足不同用户的需求。  通过等离子体切换方向的方式有哪些不利的地方吗?如何克服呢?  Olaf Schulz先生:目前这款仪器是采用手工方式来切换等离子体方向。对于同一份样品溶液里面的不同含量的元素,既要用到轴向观测也要用到径向观测,就需要切换等离子体方向,变成了两次分析了,这可能给用户差带来了不方便。  这种方式的另外一个不方便的地方是,如样品溶液中基体浓度比较大,用户需要做碱金属分析,而碱金属分析轴向观测方式比较适合,这时候用户需要切换等离子体方向。  手工切换等离子体方向是如何解决精密度、稳定性等问题?  Olaf Schulz先生:在研发过程中,我们就非常关注这个问题,为此做了很多试验进行验证,我们每隔半个小时切换一次,并且观察其长期稳定性。经过长期的试验发现,这种频繁切换,与矩管不动、采用单一观测方式相比较,二者的稳定性完全一样,由此可以证明,我们的设计是成功的。  另外,经典双向观测的ICP-OES,需要分别对仪器进行校准,而新ARCOS则只需校准一次,即切换之后不需重新校准。  目前,市场上ICP-OES的厂家有6、7家之多,可以说斯派克的竞争对手比较强大,那么,斯派克的竞争优势有哪些?计划扩展的新应用领域有哪些?  Olaf Schulz先生:斯派克传统的客户群是在工业领域,在工业领域我们的市场份额、用户口碑等非常不错。  但是我们也清楚的知道我们的劣势所在,例如在环境、食品安全等领域,与竞争对手相比,我们目前还比较弱。但是,我们希望借着推出优秀新产品的机会,例如此次推出的ARCOS,逐渐渗透到那些对斯派克来说是新的领域里去。  当然,扩展新的应用领域,不只凭借好的产品,还要有好的技术支持、好的应用支持、好的售后服务等,才能让用户接受我们,这些方面我们已经做好了准备。撰稿:刘丰秋
  • 激光精密测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    德国“工业4.0”与”中国制造2025“发展战略,对高端装备中的超精密测量精度要求越来越高。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器。激光束通过分光镜后,分成两束激光(参考光束和测量),分别经两个角锥反射镜反射后平行于出射光返回,通过分光镜后进行叠加(两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件),产生相长或相消。反射镜每移动半个激光波长,将产生一次完整的明暗干涉现象,通过接收到的明暗条纹变化及电子细分,即可求得距离变化(距离=干涉条纹数*激光半波长)。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作。激光干涉仪原理构造激光测距仪是利用激光对目标的距离进行准确测定的仪器,根据测量原理分为脉冲法和相位法。脉冲激光测距法由于激光发散角小,激光脉冲持续时间极短,瞬时功率极大可达兆瓦以上,可以达到极远的测程,广泛应用在地形地貌测量、地质勘探、工程施工测量、飞行器高度测量、人造地球卫星相关测距、天体之间距离测量等方面。第二届精密测量技术与先进制造网络会议期间,清华大学与哈尔滨工业大学两位专家将分享激光精密测量技术、仪器及应用。部分报告预告如下,点击报名  》》》清华大学精密仪器系系副主任/副教授 谈宜东《激光干涉精密测量技术、仪器及应用》(点击报名)谈宜东,清华大学精密仪器系长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等多个项目。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表SCI论文100余篇,授权发明专利37项,在国际会议Keynote/Plenary/Invited报告60余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。【报告摘要】 以传统激光干涉为引,介绍清华大学激光精密测量及应用团队在双频激光器、干涉仪及在光刻机中的精密测量应用,并拓展到空间引力波测量。针对传统干涉测量需要配合靶镜的局限性,提出激光回馈测量原理,实现了无靶镜纳米测量,攻克了航空航天、先进制造和国防安全领域的无靶镜测量难题,并开展了多种应用研究,包括:位移测量、激光侦听、高精度激光测距及雷达技术等。哈尔滨工业大学副研究员 杨睿韬《短脉冲光频梳激光测距技术》(点击报名)杨睿韬,哈尔滨工业大学副研究员,博士生导师。研究方向为超精密激光干涉测量,重点攻关短脉冲/光频梳生成与稳频、光梳激光测距等关键技术,承担国家重点研发计划课题/子课题、国自然面上等项目,参与国家科技重大专项、欧盟计量联合研究计划等项目。获中国计量测试学会科技进步一等奖(序4/6)、全国优秀博士学位论文提名等奖项。担任国际SCI期刊Photonics客座编辑。发表学术论文20余篇,申请发明专利10余项,出版专著1部。指导哈工大优秀本科/硕士毕业论文共5人,指导大学生光电设计竞赛国赛一等奖等2项。【报告摘要】 激光测距技术是大范围、高精度空间几何量测量的核心技术基础。短脉冲光频梳的诞生极大的推动了该技术领域的发展,其独特的时域短脉冲序列、频域等间隔梳状多光谱特征,不仅大幅提高了经典的飞行时间、调制波测相、多波长干涉等测距方法的性能,更引领了一系列新型激光测距方法的发展。本报告分析了短脉冲光频梳激光测距方法及趋势,介绍了项目组在短脉冲光频梳激光测距领域的最新进展。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 盘点那些先进制造中的精密测量技术及仪器设备
    centerimg style="width: 368px height: 400px " title="" alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441271.jpg" height="400" hspace="0" border="0" vspace="0" width="368"//centerp style="text-align: center "  精密坐标测量/pp  strong精密测量技术/strong/pp  现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。/pp  在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智慧化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复杂零件尺寸、形状和相互位置进行高准确度测量。发展高速坐标测量机是现代工业生产的要求。同时,作为下世纪的重点发展目标,各国在微/纳米测量技术领域开展了广泛的应用研究。/pp  strong三坐标测量机/strong/pp  三坐标测量机作为几何尺寸数字化检测设备在机械制造领域得到推广使用。/pp  1、误差自补偿技术/pp  德国CarlZeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术,使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。国内自行开发的数控测量机软件系统PMIS包括多项系统误差补偿、系统参数识别和优化技。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441250.jpg" height="286" width="278"//centerp style="text-align: center "  CNC小型坐标测量机/pp  2、丰富的软件技术/pp  CarlZeiss 公司开发的坐标测量机软件STRATA-UX,其测量数据可以从CMM直接传送到随机配备的统计软件中去,对测量系统给出的检验数据进行实时分析与管理,根据要求对其进行评估。依据此数据库,可自动生成各种统计报表,包括X-BAR& R及X_BAR& S图表、频率直方图、运行图、目标图等。/pp  美国公司的Cameleon测量系统所配支持软件可提供包括齿轮、板材、凸轮及凸轮轴共计50多个测量模块。/pp  日本Mistutor公司研制开发了一种图形显示及绘图程序,用于辅助操作者进行实际值与要求测量值之间的比较,具有多种输出方式。/pp  /pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441295.jpg" height="333" width="484"//centerp style="text-align: center "  STRATA-UX系统处理简图/pp  3、非接触测量/pp  基于三角测量原理的非接触激光光学探头应用于CMM上代替接触式探头。通过探头的扫描可以准确获得表面粗糙度信息,进行表面轮廓的三维立体测量及用于模具特征线的识别。/pp  该方法克服了接触测量的局限性。将激光双三角测量法应用于大范围内测量,对复杂曲面轮廓进行测量,其精度可高于1μm。英国IMS公司生产的IMP型坐标测量机可以配用其它厂商提供的接触式或非接触式探头。/pp  /pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441352.jpg" height="357" width="241"//centerp style="text-align: center "  IMP型坐标测量机/pp  strong微/纳米级精密测量技术/strong/pp  科学技术向微小领域发展,由毫米级、微米级继而涉足到纳米级,即微/纳米技术。/pp  纳米级加工技术可分为加工精度和加工尺度两方面。加工精度由本世纪初的最高精度微米级发展到现有的几个纳米数量级。金刚石车床加工的超精密衍射光栅精度已达1nm,已经可以制作10nm以下的线、柱、槽。/pp  微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如HP5528双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。/pp  因为扫描隧道显微镜、扫描探针显微镜和原子力显微镜用来直接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。/pp  1、扫描探针显微镜/pp  1981 年美国IBM公司研制成功的扫描隧道显微镜,把人们带到了微观世界。它具有极高的空间分辨率,广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似的原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或接口纳米尺度上表现出来的性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面为几种具有代表性的扫描探针显微镜。/pp  (1)原子力显微镜(AFM)/pp  为了弥补STM只限于观测导体和半导体表面结构的缺陷,Binning等人发明了AFM,AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面的起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。/pp  就应用而言,STM主要用于自然科学研究,而相当数量的AFM已经用于工业技术领域。1988年中国科学院化学所研制成功国内首台具有原子分辨率的AFM。安装有微型光纤传导激光干涉三维测量系统,可自校准和进行绝对测量的计量型原子力显微镜可使目前纳米测量技术定量化。/pp  利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏组件产生的影响,在探针与表面10~100nm距离范围,可以探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441475.jpg" height="229" width="600"//centerp style="text-align: center "  原子力显微镜及工作原理/pp  (2)光子扫描隧道显微镜(PSTM)/pp  PSTM的原理和工作方式与STM相似,后者利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激起的瞬衰场,其强度随距接口的距离成函数关系,获得表面结构信息。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442144.jpg" height="198" width="270"//centerp style="text-align: center "  光子扫描隧道显微镜/pp  (3)其它显微镜/pp  如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化 扫描离子电导显微镜(SICM)适用于进行生物学和电生理学研究 扫描热显微镜已经获得了血红细胞的表面结构 弹道电子发射显微镜(BEEM)则是目前唯一能够在纳米尺度上无损检测表面和接口结构的先进分析仪器,国内也已研制成功。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442219.jpg" height="194" width="362"//centerp style="text-align: center "  扫描隧道电位仪/pp  2、纳米测量的扫描X射线干涉技术/pp  以SPM为基础的观测技术只能给出纳米级分辨率,却不能给出表面结构准确的纳米尺寸,这是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量的定标手段。/pp  美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为192015.560± 0.012fm和192015.902± 0.019fm。日本 NRLM在恒温下对220晶间距进行稳定性测试,发现其18天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距具有较好的稳定性。/pp  扫描X射线干涉测量技术是微/纳米测量中的一项新技术,它正是利用单晶硅的晶面间距作为亚纳米精度的基本测量单位,加上X射线波长比可见光波波长小两个数量级,有可能实现0.01nm的分辨率。该方法较其它方法对环境要求低,测量稳定性好,结构简单,是一种很有潜力的方便的纳米测量技术。/pp  自从1983年D.G.Chetwynd将其应用于微位移测量以来,英、日、意大利相继将其应用于纳米级位移传感器的校正。国内清华大学测试技术与仪器国家重点实验室在1997年5月利用自己研制的X射线干涉器件在国内首次清楚地观察到X射线干涉条纹。软X射线显微镜、扫描光声显微镜等用以检测微结构表面形貌及内部结构的微缺陷。迈克尔逊型差拍干涉仪,适于超精细加工表面轮廓的测量,如抛光表面、精研表面等,测量表面轮廓高度变化最小可达0.5nm,横向(X,Y向)测量精度可达0.3~1.0μm。渥拉斯顿型差拍双频激光干涉仪在微观表面形貌测量中,其分辨率可达0.1nm数量级。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442402.jpg" height="354" width="351"//centerp style="text-align: center "  迈克尔逊型差拍干涉仪/pp  3、光学干涉显微镜测量技术/pp  光学干涉显微镜测量技术,包括外差干涉测量技术、超短波长干涉测量技术、基于F-P(Ferry-Perot)标准的测量技术等,随着新技术、新方法的利用亦具有纳米级测量精度。外差干涉测量技术具有高的位相分辨率和空间分辨率,如光外差干涉轮廓仪具有0.1nm的分辨率 基于频率跟踪的F-P标准具测量技术具有极高的灵敏度和准确度,其精度可达0.001nm,但其测量范围受激光器的调频范围的限制,仅有0.1μm。而扫描电子显微镜(SEM)可使几十个原子大小的物体成像。/pp  美国ZYGO公司开发的位移测量干涉仪系统,位移分辨率高于0.6nm,可在1.1m/s的高速下测量,适于纳米技术在半导体生产、数据存储硬盘和精密机械中的应用。/pp  目前,在微/纳米机械中,精密测量技术一个重要研究对象是微结构的机械性能与力学性能、谐振频率、弹性模量、残余应力及疲劳强度等。微细结构的缺陷研究,如金属聚集物、微沉淀物、微裂纹等测试技术的纳米分析技术目前尚不成熟。国外在此领域主要开展用于晶体缺陷的激光扫描层析技术,用于研究样品顶部几个微米之内缺陷情况的纳米激光雷达技术,其探测尺度分辨率均可达到1nm。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442693.jpg" height="269" width="400"//centerp style="text-align: center "  以激光波长为已知长度利用迈克耳逊干涉系统测量位移/pp strong 图像识别测量技术/strong/pp  随着近代科学技术的发展,几何尺寸与形位测量已从简单的一维、二维坐标或形体发展到复杂的三维物体测量,从宏观物体发展到微观领域。 正确地进行图像识别测量已经成为测量技术中的重要课题。/pp  图像识别测量过程包括:(1)图像信息的获取 (2)图像信息的加工处理,特征提取 (3)判断分类。计算机及相关计算技术完成信息的加工处理及判断分类,这些涉及到各种不同的识别模型及数理统计知识。/pp  图像/pp  测量系统一般由以下结构组成。以机械系统为基础,线阵、面阵电荷耦合器件CCD或全息照相系统构成摄像系统 信息的转换由视频处理器件完成电荷信号到数字信号的转换 计算机及计算技术实现信息的处理和显示 回馈系统包括温度误差补偿,摄像系统的自动调焦等功能 载物工作台具有三坐标或多坐标自由度,可以精确控制微位移。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442902.png" height="243" width="547"//centerp style="text-align: center "  图像测量系统结构/pp  1、CCD传感器技术/pp  物体三维轮廓测量方法中,有三坐标法、干涉法、穆尔等高线法及相位法等。而非接触电荷耦合器件CCD是近年来发展很快的一种图像信息传感器。它具有自扫描、光电灵敏度高、几何尺寸精确及敏感单元尺寸小等优点。随着集成度的不断提高、结构改善及材料质量的提高,它已日益广泛地应用于工业非接触图像识别测量系统中。/pp  在对物体三维轮廓尺寸进行检测时,采用软件或硬件的方法,如解调法、多项式插值函数法及概率统计法等,测量系统分辨率可达微米级。也有将CCD应用于测量半导体材料表面应力的研究。/pp  2、照相技术/pp  全息照相测量技术是60年代发展起来的一种新技术,用此技术可以观察到被测物体的空间像。激光具有极好的空间相干性和时间相干性,通过光波的干涉把经物体反射或透射后,光束中的振幅与相位信息。/pp  超精密测量技术所代表的测量技术在国防、航天、航空、航海、铁道、机械、轻工、化工、电子、电力、电信、钢铁、石油、矿山、煤炭、地质、勘侧等领域有极其广泛的应用,在国民经济建设中占有重要的地位。在发展高端装备制造业的背景下,提高我国在超精密测量方面的科研实力和技术水平,成为不得不解决的迫切问题。/p
  • “精密超精密制造技术联合实验室”揭牌
    南京航空航天大学机电学院与上海航天控制技术研究所共建“精密超精密制造技术联合实验室”签约暨揭牌仪式近日举行。   南航机械制造及其自动化学科是国家重点学科。上海航天控制技术研究所的业务涉及弹、箭、星、船、器各领域,军民融合已形成良性发展。  双方相关负责人表示,成立联合实验室可充分发挥双方技术与人才优势,实现在先进制造领域的全面战略合作 希望双方加强产学研合作,使联合实验室成为人才培养的平台、先进制造技术交流的平台。希望联合实验室不断提高自主创新能力,为我国航天事业的发展提供强有力的技术支持。
  • 谭久彬院士:超精密测量与仪器技术是高端制造发展的前提与基础
    “现代热力学之父”开尔文有一条著名结论:“只有测量出来,才能制造出来。” 精密测量技术的发展不断促进着工业制造的换代升级。在当代科技和工业领域,高水平的精密测量技术和精密仪器制造能力,反映了一个国家科学研究和整体工业领先程度,更是发展高端制造业的必备条件。随着精密测量技术不断进步,其在科学研究、工程科技、现代工业、现代农业、医疗卫生和环境保护等领域发挥着越来越重要的作用。精密测量技术促进了现代工业的发展精密测量是一个泛指的、大的范畴。凡是准确度很高的各类测量,都可称之为精密测量。在精密和超精密工程领域,精密测量有具体的数量级概念:精密测量是指测量准确度在1 μm~0. 1 μm 量级的测量,超精密测量是指测量准确度优于100 nm,如10 nm、1 nm,甚至pm(千分之一纳米)量级的测量。精密测量兴起于工业大生产。规模化大生产是现代工业的重要特征,产业分工与专业化配套越来越细化、越来越精密,地域分布越来越广、产业链遍布全世界。也就是说,一个产品由成百上千甚至成千上万个零部件组成,这些零部件不可能由一个厂家生产,需要遍布各地的很多个优势生产厂家合作完成。比如一部智能手机,有1600 多个零件和元器件,由分布在世界上11 个国家和地区的150 多家工厂提供。这带来一系列好处:大批量标准化生产,生产效率高、质量高、成本低。但技术层面存在一个大问题——把如此多的零件、元器件集成到一起时,其中任何之一的尺寸精度或其他技术指标不合格,就无法高精度、高效率地把它们集成到一起,即便勉强集成到一起,产品质量也可能不合格。为了解决这类问题,国际标准化组织(ISO)和国际计量局(BIPM)制定了一系列标准与规范。依据这些标准与规范,对产品的每一个零件和元器件的所有技术参数进行精密测量,以保证成千上万的同一种零件或元器件都具有互换性。通俗地说,就是用到哪一个零部件都是合格的。这需要一个前提为保障:发生在世界各地的千千万万次测量都是准确无误的。怎么才能保证准确无误?BIPM 用一个公认的标准量值传递给每一台测量仪器,以保证这个标准量值在全世界范围内准确一致,进而保证所有的测量仪器都是精准的,所有的测量数据都是精准的。从那时起,精密测量已成为促进科技发展的重要新兴学科。超精密测量技术是引领现代工业向高端发展的火车头对一个国家而言,精密测量与装备制造业紧密相关。装备制造业向中高端跨越的关键是提升制造质量,提升制造质量的关键,需先解决精密测量能力问题。只有通过精密测量,才能知道产品哪里不合格;只有通过大量精密测量数据的积累,才能找到产品不合格的根源与规律;只有基于精密测量数据建立起成体系的误差补偿模型,才能有效实现制造精度和产品性能的精确调控,产品质量才能在不断地精确调控中逐渐提升。超精密光刻机的研制,很好地证明了这条结论。超精密光刻机被称为“超精密尖端装备的珠穆朗玛峰”,挑战着人类超精密制造的精度和性能极限。超精密光刻机是在超精密量级上把最先进的光机电控等几十个分系统、几万个零部件集成在一起,使其高性能协同工作,是人类装备制造史上复杂程度最高,技术难度最大,综合精度性能最高的尖端装备之一。它在高速和高加速度下,实现纳米级的同步精度、单机套刻精度和匹配套刻精度等,这与传统的精度提升环境完全不同。同时,超精密光刻机的制造精度已接近现有制造能力的极限,其精度提升一点点,通常都要付出几倍、十几倍的努力。比如,用于28 nm 节点制程的深紫外(DUV)光刻机拥有7 万多个光机零件,涉及到上游5000 多家供应商。这些零部件对精度和稳定性的要求极高,其中85% 的零部件集成了供应链上所有制造商的优势,才共同研发成功。任何一个重要零件不合格都会导致超精密光刻机研制失败。以其中一个构件——激光反射镜的制造精度为例。它由微晶玻璃制成,有108 项尺寸公差和62 项形状、位置、方向公差,还有内部应力等技术要求。要完成这样一个复杂构件的超精密测量,需要20 多种专用超精密测量仪器。而光刻机有7 万多个光机零件,其中80% 以上的零件处于精密和超精密级,需要700 多种专用精密和超精密测量仪器。如果没有成体系的专用超精密测量技术与仪器来管控制造精度,就不可能制造出合格的零件,也不可能装配调试出合格的部件与分系统,更不可能装配调试出合格的光刻机整机。从一类装备到整个装备制造业,一个普遍的规律是,只要建立起遍布装备全制造链、全产业链和全生命周期的精密和超精密测量整体能力,就能对整个装备制造业高质量运行形成有效的调控能力和稳定可靠的支撑能力。超精密测量只有形成体系,才能对高端制造形成整体支撑能力精密和超精密测量整体能力的提升还可推动国家测量体系的建立。其中国家计量体系能够有效管控工业测量体系,保障全制造链、全产业链和全生命周期内的产品质量,赋能高科技产业高质量发展。目前国际上工业发达的国家,其产品都经历了从低质量向高质量的曲折的发展历程。正是因为建立起了完整的精密测量体系,培育起了一批顶尖的超精密仪器企业,才能为高端装备制造提供强有力支撑,打造出诸多世界品牌。凡是制造强国和质量强国,都是仪器强国和测量强国。世界前20 强仪器企业被美、日、德、瑞、英占据,世界前5 名仪器企业的高端仪器市场占有率超过50%,世界前10 名仪器企业高端仪器市场占有率超过75%,这些仪器强国同时都是测量强国,都早已经构建起了先进的国家测量体系。为什么我国制造业从中低端向中高端跨越时,遇到的困难非常多,难度非常大?目前,我国工业,特别是制造业仍处于中低端,产品制造质量基础十分薄弱。从体制机制层面看,一是现行计量体系不完整等问题导致量值传递能力薄弱、大量传递链断裂,质量调控能力在底层失控;二是现行计量管理体制僵化,市场化程度低,不利于培育服务型测量业态,不利于发展工业测量服务市场。从技术层面看,一是尚未形成完备的整体工业测量能力;二是精密级测量还没有形成整体能力,超精密级测量能力还处于初级阶段;三是关键测量技术亟待突破,高端测量仪器仪表和核心零部件长期依赖国外。无论是管理模式,还是技术支撑,都已经无法满足经济社会各领域对精准测量测试的需求,深层次改革势在必行。新一代国家测量体系可以分步推进:在国家计量体系层面,要系统布局面向工程参量的国家计量基标准建立;在工业测量体系层面,可以先从一些重要产业的精密测量和超精密测量做起,如航空发动机产业、汽车产业、平板显示器产业和半导体照明产业等,可建设面向各类产业的产业工业测量体系;对工业集群集中的区域,如哈大齐工业走廊、辽中南制造业集中区、长三角制造业集中区、长三角制造业集中区等,可建立各具区域产业背景的区域工业测量体系。在面向各行各业的工业测量体系和覆盖国内各个制造业集中区的区域工业测量体系的基础上,构建具有计量量子化和量值传递扁平化特征的新一代国家测量体系。只有这样,才能对我国整个高端制造形成整体支撑能力。2023 年2 月6 日党中央国务院印发了《质量强国建设纲要》,提出了2025 年和2035 年发展目标,为工业转型升级指明方向。国家新型工业测量体系是质量强国建设的坚实基础,是我国工业,特别是制造业从中低端向中高端跨越的核心支撑,是提升产业核心竞争力的关键。进入中高端制造阶段,精密和超精密测量就成为不可或缺的核心能力,要想造得出,必先测得出,要想造得精,必先测得准。构建国家新型工业测量体系是实现产业高质量发展的必然选择,也是补齐我国工业,特别是高端装备制造质量短板的必由之路。谭久彬,1955年3月出生于哈尔滨,精密仪器工程专家,中国工程院院士。现任哈尔滨工业大学精密仪器工程研究院院长、国家计量战略专家咨询委员会副主任,中国仪器仪表学会副理事长,中国计量测试学会副理事长,国际测量与仪器委员会(ICMI)常务委员等。长期从事超精密测量与仪器工程的科研与人才培养工作。面向高端装备制造质量提升的特殊需求,提出超精密仪器与装备精度调控方法及理论,如多模复合运动基准方法、多轴运动基准误差分离方法和主动负刚度隔微振方法等系列创新方法;突破超精密运动基准等系列核心技术,研制成功4种国家级计量标准装置和21种大型超精密测量仪器与超大型超精密测试装备,创建了超精密仪器与装备精度调控技术体系与平台体系;解决了我国战略武器装备、航空发动机、高性能卫星相机等36个重大型号高端装备研制生产中的超精密测量与精度调控难题,显著提升了重大型号装备的精度水平。建成国内第一个超精密仪器研发基地和产业化基地。作为第一完成人,获国家技术发明奖一等奖1项(2006年),二等奖2项(2013、2016年)。
  • 泰林生物拟5亿元投建生物新材料和精密智造项目
    2022年6月17日,泰林生物发布公告,公司与富阳经济技术开发区管理委员会签署《入区协议》,在富阳经济技术开发区东洲新区投资建设“浙江泰林生物技术股份有限公司生物新材料和精密智造项目”。该项目用地面积约50亩,总建筑面积约为66667平方米。系统开发高端膜分离技术产品、高端医用生物材料及组件、IVD试剂材料等高技术高附加值新材料。项目建成后年产3000台/套生物新材料和精密智造装备。项目总投资为50000万元,固定资产投资不低于500万元/亩。泰林生物在东洲新区新设子公司浙江泰林医疗器械有限公司(筹), 注册资本5000万元人民币。项目将在正式开工之日(以《建设工程施工许可证》日期为准)起24个月内建设完工并投产。泰林生物表示,该项目达产后,年产值不低于亩均850万元/亩,预计50000万元人民币,年税收不低于50万元/亩。
  • 高精密半导体激光系统的研制
    成果名称高精密半导体激光系统的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:在新一代高精度卫星全球定位系统中,星载原子钟、新一代原子干涉仪、新一代重力测量仪等精密测量设备都迫切需要频率稳定度高、对参考谱线具有自动识别功能的高精密外腔半导体激光器。此外,发展具有我国自主知识产权的高精密半导体激光技术,使我国摆脱此类高端激光依赖进口的被动局面,将为我国新一代的高精度卫星全球定位系统、环境检测技术和生物检测技术等高新技术的发展打下坚实的基础。北京大学信息科学与技术学院陈徐宗教授申请的&ldquo 高精密半导体激光系统的研制&rdquo 项目,以研制具有国际先进水平的高精度可调谐半导体激光器和高精度倍频激光器为目标,瞄准该课题中的关键技术,着力解决高精度可调谐外腔半导体激光器的光栅反馈的稳定性、宽连续可调谐范围、中心波长范围等核心问题。 2009年,该项目获得了北京大学&ldquo 仪器创制与关键技术研发&rdquo 基金资助。在基金的资助下,通过关键器件的购置和实验材料的加工,课题组开展了一系列富有成效的工作,包括:外腔半导体激光头的研制、精密电源与高精密频率控制器的研制、精密光谱监测系统的研制、激光倍频光学系统的研制、倍频腔稳频电路的设计和精密控温器的研制等,实现了激光自动锁频、连续稳频、迁谱线智能识别等创新功能。在未来的工作中,课题组将进一步提升该系统的稳定性和可靠性,优化相关工艺设计,推动高精密半导体激光技术的发展与产业化。应用前景:在新一代高精度卫星全球定位系统中,星载原子钟、新一代原子干涉仪、新一代重力测量仪等精密测量设备都迫切需要频率稳定度高、对参考谱线具有自动识别功能的高精密外腔半导体激光器。
  • 《Materials & Design》: 基于Pμ SL制造的双相微点阵超材料及其无人机应用
    近年来基于3D打印的微格点阵超材料吸引了大量的关注,点阵超材料具有优异的比强度、比刚度,良好的减震降噪、吸能缓冲效果、突出的吸声和屏蔽等许多独特的功能特性,被誉为结构-功能一体化材料,在生物医学、电池电极以及运动器材、无人机减重等领域都有独特应用。其中,在无人机上应用超材料可以有效减轻其重量,减少其飞行所需的推力和功耗,从而提高电池续航时间与飞行持续时间,进而更好地拓展无人机在民用、军事、侦察,救援和娱乐等领域的应用。此外,微格点阵超材料出色的能量吸收能力可以帮助无人机抵抗飞行过程中的撞击和碰撞,点阵镂空结构还可以促进无人机的散热。为优化点阵超材料的机械性能,人们提出了多种多样的设计策略,其中,受晶体学启发的超材料设计策略颇具代表性。例如,已被广泛采用的经典多孔晶格点阵结构如体心立方点阵结构(BCC)、面心立方点阵结构(FCC)、八度桁架点阵结构(OCT)等均是受晶体学中原子/离子排列的启发而形成的超材料设计。近日,香港城市大学机械系及纳米制造实验室(NML)陆洋、生物医学工程系Pakpong Chirarattananon和西安电子科技大学高立波等报道了一种受金属硬化机制中的第二相粒子强化机制启发的多级微点阵超材料设计新策略。该策略思路如下:通过将OCT单元作为第二相粒子引入BCC点阵结构的45°对角平面,从而得到一种先进的OCT-BCC双相微点阵超材料。与原始BCC点阵超材料相比,该OCT-BCC双相微点阵超材料的压缩比强度沿水平方向和纵向显著增加了〜300%和〜600%,同时也伴随着刚度和能量吸收能力的显著提高。图1 基于双相增强概念设计,通过面投影微立体光刻(PμSL)3D打印的OCT-BCC双相微点阵超材料图2 OCT-BCC双相微点阵超材料与原始BCC微点阵材料的3D打印和力学测试为了证明这种先进的OCT-BCC双相微点阵超材料的制造可扩展性和实际应用潜力,该工作还通过摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China)成型了尺寸为5.0 cmx 2.0 cm x 1.0 cm的大尺寸OCT-BCC双相微点阵超材料,并将其成功集成到微型无人机(MAV)的机身中。和原本的实心机身对比,集成了OCT-BCC双相微点阵超材料的轻量化机身重量减少了~ 65%,从而使得微型无人机的飞行时间实现了~ 40%的显著提升。图3 OCT-BCC双相微点阵超材料应用于微型无人机构件以实现减重及服役时间提升该工作不仅提出了一种有效的超材料增强设计方法,而且还展示了高精度PμSL (nanoArch P130, S140, BMF Precision, Shenzhen, China)3D打印超材料在微型无人机等领域的巨大应用潜力。相关成果以题为“3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles”的论文发表在国际知名期刊Materials& Design上。
  • 精密科研仪器不可替代之“重”
    伟大的科研突破几乎从未离开过先进精密的实验仪器的“陪伴”,“大科学”时代的开启也伴随着精密仪器的“横空出世”。    重大科研突破需科研仪器先行    从400年前伽利略开启了近代实验物理之门,实验物理就成为人类社会发展最强有力的引擎之一,也吸引了无数有才华的年轻人加入到这一领域中。丁洪梳理1954年到2013年近60年来的诺贝尔奖发现,共有41个奖项涉及到实验物理,其中38个奖项在很大程度上是通过先进精密的实验仪器和手段取得,“只有3个例外”。而在这38个奖项中还发明了13项新的仪器,包括三极管、气泡室、激光、全硒技术、电子显微镜、中子散射谱仪等。    “重大突破离不开科研仪器的先行”,然而,中国很长时间在仪器方面做得仍不足,“设备使用起来尚存很多问题,关键是要提高设备使用率,从而了解哪些地方需要维修,把它做好。”    丁洪透露,目前,中科院正在计划建设北京综合研究中心,已有意向选定北京雁栖湖经济开发区南面的地块,用于建设北京先进光源、综合极端条件实验装置、地球数值模拟系统等若干大科学装置和相应的交叉研究平台。    南京大学一重大科研仪器专项启动    南京大学化学化工学院陈洪渊院士主持的国家重大科研仪器设备研制专项项目“单细胞时空分辨分子动态分析系统”启动会召开。教育部科技司雷朝滋副司长,南京大学校长陈骏院士,柴之芳院士、万立骏院士、黄维院士、谭建荣院士,国家自然科学基金委相关领导以及项目专家组、监理组成员等出席启动会。    项目主持人陈洪渊院士代表项目组介绍了项目的整体规划、拟解决的关键科学与技术问题、研究内容与具体计划、任务分配等情况。与会专家在认真听取报告后,就项目的各个方面进行了有针对性的发言,对项目的计划安排、实施要点、技术推进方式、人力资源调配和财务监管等方面提出了具体意见和建议。    据悉,该项目周期自2014年1月至2018年12月,历时5年,总经费6400万元。项目将针对单细胞分析所面临的新问题与新挑战,通过自主创新,利用纳米级电化学探针固有的多重物理特性,对小体积-复杂体系中微弱信号的获取、微流控通道内单细胞的可控捕获、胞内分子离子化效率的提高、细胞中特定分子的追踪定位等方面突破有关的科学问题和关键技术,研制成能够实现单细胞高时空分辨的分子动态分析系统,用于胞内多种生物分子的同时检测、分子时空分布与细胞功能之间的关系、细胞类型分析、干细胞诱导分化研究以及细胞损伤和修复的分子机制等研究,为生命科学与疾病诊断的基础与应用研究提供有力的方法与技术支撑。    原创性科研仪器是科学之利器    今天,我国科学技术已发展到由跟踪到引领的拐点,原创性科研仪器设备的研发是实现跨越式发展的关键。现在,我国也具备了这种研发能力,但是什么制约了研发的脚步呢?    原创思想之“少”。科学仪器毕竟只是一种工具,其根源还在于原创性科学思想的缺乏。中科院院士郭光灿曾说:“国外只要有人提出新的想法,我们很快就可以跟上并超越他们,但要做出领先的原创,我们还有一定距离。”原创性的科学思想较少,这固然与我国科学技术所处的发展阶段有关,也与缺乏学术自信、缺乏承担失败的勇气、缺乏积累有关。    合作创新之“难”。现在原创性的科学思想往往出现在交叉领域,科学仪器的研发,特别是大科学装置的研发,更需要不同领域科学家的合作创新。但目前科研体制中,不同学科之间、各学术机构之间还存在条块分割的情况,缺乏合作的顶层设计和指导。当然还有一个更现实的问题:一个项目,谁来做主导?出了成果,谁排在第一位?在采访中,不止一位科学家道出合作之难。    技术人才之“缺”。科学家的想法要通过技术人员来实现,原创性科研仪器往往是特别“定制”的单型号“孤品”。很少有企业会承担这种“定制”任务,一是觉得科学家们的要求很“怪异”;二是单做的话成本太高。因此,原创性科研仪器的研发需要一支特殊的技术人才队伍。以中科院为例,原来几乎每个研究所都有专门的技术人员,甚至是加工厂。如今,这支队伍实力大不如前,技术人才的严重匮乏,已经制约了科研仪器的研发。
  • 从酒检仪检定工作之洞见:国产精密分析仪器亟需突破
    我与国产仪器的那些事儿 ——呼出气体酒精检测仪南京市计量监督检测院 焦欣宇 210000随着我国科技水平的不断进步,国产仪器已经被广大用户认可。我来自南京市计量监督检测院交通安全部,主要从事酒检仪的检定工作。酒检仪是用于检测人体呼出气体中酒精含量的计量器具。近年来,民生安全越来越被重视,酒检仪不仅作为交通管理部门检查酒驾行为的工具,还在越来越多的工作单位用作上岗前的例行检查。所以这一块的业务量越来越大,我所使用的气液两用酒检仪检定装置是中科环仪计量技术有限公司自主研发的国产检定装置,操作简单,快捷。其原理是利用饱和与质量流量动态配气法,其提供的乙醇气体浓度均直接溯源到国家一级标准物质,更加科学严谨的应用于酒检仪的检定工作。相比以往的酒检仪检定过程因为需要消耗大量的乙醇气体要不断更换气瓶要方便的多,使用过程中呼气稳定。不得不佩服的是国产仪器本着从我们实际需要的出发,操作也非常人性化。国产仪器在操作规程上通俗易懂,便于理解。除此之外,在每次需要设备计量检定时,装置体积小,送检也很方便。由于本单位这块业务量大,每次都能在两天左右及时完成检定工作,基本是不会耽误到正常工作的。在日常的检定工作中,我们的计量器具基本已经全部国产化。还有一些目前在逐渐扩展的检验检测项目,在前处理环节,我认为除了特殊要求的国内无法满足的仪器设备外,其他可以全面购买国产设备,例如我们将要购买的离心机;恒温振荡器摇床;样品粉碎机;微波消解器以及一些便携式采样装置。但是在精密分析的大型仪器上,仍然还是使用的国外设备,值得一提的是在精密分析,精密技术的掌控上国内确实需要加强。 支持国产科学仪器已经逐渐成为政府及广大市场的普遍共识,仪器性价比高,操作人性化,使用体验感好,溯源有依据。同时希望国产科学仪器能更飞跃一步,在精密仪器领域能够有所突破,创新研发出属于自己的一套。
  • 中国船舶704所自主研制的超精密导程误差测量仪取得成功
    近日,中国船舶集团七〇四所自主研制的超精密行星滚柱丝杠导程误差动态测量仪取得成功。经计量技术机构验证,其技术指标达到国际先进水平,七〇四所在科技自立自强的道路上,又迈出了坚实一步!超精密行星滚柱丝杠导程误差动态测量仪面临技术难题 行星滚柱丝杠是船舶、大型电站、冶金行业等领域高端装备的核心功能部件,随着所内行星滚柱丝杠产品不断推广应用,对其产品性能提出了更高的要求。 导程误差动态测量仪用于检测行星滚柱丝杠的导程误差,而行星滚柱丝杠的导程精度又直接影响丝杠螺母的直线移动位置的重复精度。 然而,国内鲜有导程误差动态测量仪,大多使用静态轮廓仪测量数据替代,难以准确描述螺纹全螺线的导程误差,且高精度轮廓仪长期依赖进口。自主研制成功 因此,为了满足行星滚柱丝杠的生产需要,针对国内导程误差动态测量仪定位精度低、自动化程度不足等难题,七〇四所自主设计并成功研制了超精密导程误差动态测量仪。 该导程误差动态仪采用空气静压导轨,是一台超精密多参数的复合动态测试仪器。技术团队在研发过程中攻克了精密气浮移动平台设计技术、精密主轴驱动技术、高同步性数据采集、浮动自适应测头设计等多项关键技术,并不断的优化设计与精密制造装配,最终获得了仪器的研发成功。 该导程误差动态测量仪导程为3000mm,测量精度优于±2μm,达到了国际先进水平。 超精密导程误差测量仪的成功研制不仅为七〇四所行星滚柱丝杠产品提供了可靠、有效的检测手段,提升了行星滚柱丝杠产品的市场竞争力,进一步推动了该产品的产业化发展,还可以作为新一代电驱化、智能化装备的核心传动部件的高精度测量设备,为其他相关企事业单位提供测量服务,进一步助力海洋强国建设。
  • 广东省计量科学研究院预算784.35万购买精密露点仪标准温度计等多台仪器
    近日,广东省计量科学研究院公开招标,购买精密露点仪标准温度计、空气离子测量仪等多台仪器,预算784.35万元。  项目编号:CLF0121GZ02ZC99  项目名称:2021年度国产计量检测仪器设备采购项目(第一批)  采购方式:公开招标  预算金额:7,843,500.00元  采购需求:  合同包1(比对类检测设备):  合同包预算金额:678,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1试验仪器及装置精密露点仪标准温度计1(套)详见采购文件--1-2试验仪器及装置高精度直流标准表1(套)详见采购文件--1-3试验仪器及装置一般压力表15(个)详见采购文件--1-4试验仪器及装置高精密数字测温仪4(台)详见采购文件--1-5试验仪器及装置温湿度巡检仪1(套)详见采购文件--  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后 。  合同包2(财政专项类检测设备):  合同包预算金额:4,421,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1试验仪器及装置气体活塞式压力真空计1(套)详见采购文件--2-2试验仪器及装置三相电能表检定装置1(套)详见采购文件--2-3试验仪器及装置直流电能表综合检测装置1(套)详见采购文件--2-4试验仪器及装置三相电能表耐久性试验装置1(台)详见采购文件--2-5试验仪器及装置磁场标准装置1(套)详见采购文件--2-6试验仪器及装置高精度直流测试系统(标准表)1(套)详见采购文件--2-7试验仪器及装置全自动活塞式压力计1(套)详见采购文件--2-8试验仪器及装置温湿度标准箱1(套)详见采购文件--2-9试验仪器及装置直流电压传感器校准装置1(台)详见采购文件--2-10试验仪器及装置高低温湿热试验箱3(套)详见采购文件--2-11试验仪器及装置双通道高精度直流多用表1(套)详见采购文件--2-12试验仪器及装置交流电压传感器校准装置1(台)详见采购文件--2-13试验仪器及装置单相电能表耐久性试验装置1(台)详见采购文件--2-14试验仪器及装置三相电能表检定装置1(套)详见采购文件--  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后  合同包3(监督抽查类检测设备):  合同包预算金额:1,585,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1试验仪器及装置膜式燃气表温度适应性装置1(套)详见采购文件--3-2试验仪器及装置直流高压浪涌耦合/去耦合网络1(台)详见采购文件--3-3试验仪器及装置紫外线耐气候试验箱1(套)详见采购文件--3-4试验仪器及装置电子式交流电能表射频电磁场感应的传导骚扰抗扰度试验装置1(套)详见采购文件--3-5试验仪器及装置电能表继电器负载测试台1(套)详见采购文件--3-6试验仪器及装置三相耐久性程控源5(台)详见采购文件--3-7试验仪器及装置三相电能表检定装置1(套)详见采购文件  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后  合同包4(化学省站建设项目检测设备):  合同包预算金额:1,159,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1试验仪器及装置30m3环境测试舱(玻璃舱体)2(套)详见采购文件--4-2试验仪器及装置高纯气体脱氧、脱水系统1(套)详见采购文件--4-3试验仪器及装置气体标准物质自动配气装置1(套)详见采购文件--4-4试验仪器及装置3m3环境测试舱(玻璃舱体)1(套)详见采购文件--4-5试验仪器及装置1m3环境测试舱(玻璃舱体)2(套)详见采购文件--4-6试验仪器及装置空气消毒机消毒效率检测系统1(套)详见采购文件--4-7试验仪器及装置空气离子测量仪1(台)详见采购文件--  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后  开标时间:2021年05月20日 09时30分00秒(北京时间)委托协议.pdf2021年度国产计量检测仪器设备采购项目(第一批)招标文件(2021042903).pdf
  • 摩友说|精密增材制造的现在与未来
    由重庆摩方精密科技股份有限公司(简称“摩方精密”)主办的“先进制造技术创新研讨会”,于近期在上海成功举办。聚焦精密增材制造,洞察创新应用趋势。各位专家学者、企业家代表与会分享了各自最新实践成果,为更多从业者提供了行业发展新思路。本次会议设置了圆桌论坛环节,由中科院上海硅酸盐研究所、国科大杭州高等研究院副研究员马明担任圆桌论坛主持人,摩方精密副总裁周建林、上海交通大学生物医学制造技术中心副主任李元超、上海交通大学研究员张旺、中国科学院上海微系统与信息技术研究所副研究员吴蕾以及苏州华兴源创科技股份有限公司副总经理江斌。来自不同领域的专家,以精密增材制造的现在与未来为主题,共话行业趋势动态,探讨未来机遇与挑战,为精密增材制造的发展新局面建言献计。“本次大会,我们力邀各界重量级高校和企业嘉宾,共同交流精密增材制造的行业现状、技术难题,以及未来发展趋势方向发展。我们也欢迎其他关注者、实践者、创新者们参与这场探讨,共探行业思潮和发展道路。“ ——马明,中科院上海硅酸盐研究所副研究员,国科大杭州高等研究院副研究员01、回顾过去,定位现在:现阶段,精密增材制造技术在研究领域的具体应用及成果?”7年间,我看到行业的生态链在不断的完善,从应用的角度来说,发展较快的行业是消费电子或者说通讯领域,还有生物医疗领域。“周建林分享了摩方精密7年来探索和突破的方向,从装备技术模式延伸终端应用模式的必要性。由于技术和市场的不成熟,摩方精密从最早的研究材料,应用到下游场景的方向,到后来自研设备、材料、工艺等,企业始终积极布局行业生态。近年来,消费电子和通讯领域逐渐受到加工的挑战,而微纳3D打印技术可以提高加工精度和效率,帮助企业快速达成目标。此外,生物医疗领域也成为摩方精密另一重要应用方向,微纳3D打印技术可加速开发周期并满足个性化需求。通过逐步了解各行业需求,不断优化终端产品的性能和用户体验,以满足市场和客户的需求。“天下武功唯快不破,当我比竞争对手能够早推出产品,能够获得我的客户的认可,订单基本上就十拿九稳!”江斌浅谈"快速"对于企业的重要性,华兴源创从液晶平板检检测半导体、新能源车、智能穿戴,到生物医疗领域都有涉足。但由于如今的智能消费品周期很短,快速迭代就变得尤为重要,核心的检测设备技术也遇到了一定的挑战。在半导体连接器领域,华兴源创面临体积越来越小的产品挑战,因此开发了特殊的检测设备,使用摩方精密nanoArchS140缩短研发周期,解决前期研发问题。只有达到“快速”迭代,才能真正地快人一步抢占市场。“在生物微流控领域,微纳3D打印主要可以应用在芯片和连接件接口,有助于快速迭代产品。”吴蕾分享了微纳3D打印技术对生物微流控带来的新机遇,利用超高精密的打印特点,可支持研发微流控芯片和连接件接口等,且凭借快速迭代和低成本的优势,帮助应对研发长周期的挑战。她认为摩方精密的技术在缩短研发周期和降低成本方面发挥了重要作用。生物医疗领域的开发周期长、个性化要求高,这也正是3D打印技术在这一领域得以推广的重要原因。“增材加工技术,一个很好的特点是赋能。”张旺表示与摩方精密结缘于2020年,经团队调研了当时国内市面上精度高且高公差控制能力的3D打印设备,最后选择了摩方。张旺用薄、轻、宽、强和准五个字总结了摩方精密打印设备的优点,且可通过拓展或增幅的方式,实现大幅面的打印面积。另外,他强调指出微纳3D打印在材料增强和性能提升方面有着优势,如网络化设计、界面连接和内部联通的构型等。此外,通过高能外场方案赋能,如激光增材方法,可以使增强项打入机体,实现与传统结构材料不同的增强机制,从而提升性能。02、反思难点,展望未来:各个应用场景中还需要解决哪些问题,以及精密增材制造技术未来的发展趋势?“未来能不能实现在一个部件上有两种双材料的应用?”李元超表示目前仍有许多材料领域的问题亟待解决,特别是材料的生物相容性和种类受限性。虽然树脂和陶瓷材料的引入进一步拓展了微纳 3D 打印的应用场景,但为实现更多功能和更广泛的应用,仍需开发新材料、高分子材料、可植入材料来实现双材料折叠结构。“除了材料的多样化,生物相容性和透明度也是非常重要的!”吴蕾站在生物领域中的应用挑战和发展方向的角度,指出除了材料的多样性,材料的生物相容性和透明度也非常重要。当前对显微成像依赖性较强,而打印件的清晰成像存在一定困难,因此常常需要使用透明材料进行组装。同时,光敏树脂材料在荧光成像方面存在荧光背景干扰问题。长期来看,在细胞学和器官芯片的研究中,微纳3D打印技术还需继续不断优化打印工艺和材料。”有了摩方精密这把好枪没弹药不行,弹药是什么?就是材料!“江斌围绕微纳3D打印技术在半导体和平板显示领域中的应用挑战及发展前景分享观点。尽管微纳3D打印技术具有巨大潜力,但当前材料方面的问题限制了其大规模应用。例如所需的材料特性如刚性、强度、防静电特性、防吸水性等,对于行业应用场景具有关键意义。其中微纳3D打印线路板依旧存在技术挑战。目前,尽管常规制造方法已能实现多层电路板,但周期较长且精细度不足。发言者认为,若能借鉴微纳3D打印的精细能力,实现多材料混合和高层次电路板制造,有望实现更高层次的电路板制造,推动我国电子产业的进步。“3D打印这个行业最需要的是融合和合作,如果说很多事情都是一家企业去做,或者说你自己去做,那一定做不好。”周建林阐述了多年来在行业的经历和观察,增材制造行业最需要的是融合和合作,单一企业难以应对所有的挑战。此外,材料研发要面向市场需求,特别是体外医疗器械材料等领域。他提到虽然多材料解决方案也是行业发展的趋势之一,但需明确市场具体需求和技术实现难度。另外,在摩方精密的产业化发展进程中,不仅在设备和技术端加紧研发创新,在布局终端应用方面,也加大投入及科研力度,例如牙齿贴面、生物芯片等。最后,他表示微纳3D打印行业的生态链正在壮大,也期待越来越多的优秀团队加入,未来挑战还将面临终端应用的爆发。而摩方精密在设备、材料和应用方面都积极投身布局,期待与行业伙伴共同推动精密增材制造行业的发展。圆桌论坛环节在意犹未尽中画上圆满的句号。此次论坛将作为一个开始,期待与更多精密增材制造行业专家学者、企业家们交流技术难题,携手攻克精密增材制造领域的瓶颈。让我们一起探索,共同开创产业发展的新篇章,迈向更加美好的未来。
  • 智能制造装备十二五发展路线图发布 精密仪器在列
    智能制造装备产业“十二五”发展路线图  智能制造装备是具有感知、决策、执行功能的各类制造装备的统称。作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能制造装备产业对于加快制造业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现制造过程的智能化和绿色化发展具有重要意义。  “十二五”期间,智能制造装备将面向国民经济重点产业的转型升级和战略性新兴产业培育发展的需求,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。经过5~10年的努力,形成完整的智能制造装备产业体系,总体技术水平迈入国际先进行列,部分产品取得原始创新突破,基本满足国民经济重点领域和国防建设的需求。具体是:  一、九大关键智能基础共性技术  1.新型传感技术——高传感灵敏度、精度、可靠性和环境适应性的传感技术,采用新原理、新材料、新工艺的传感技术(如量子测量、纳米聚合物传感、光纤传感等),微弱传感信号提取与处理技术。  2.模块化、嵌入式控制系统设计技术——不同结构的模块化硬件设计技术,微内核操作系统和开放式系统软件技术、组态语言和人机界面技术,以及实现统一数据格式、统一编程环境的工程软件平台技术。  3.先进控制与优化技术——工业过程多层次性能评估技术、基于海量数据的建模技术、大规模高性能多目标优化技术,大型复杂装备系统仿真技术,高阶导数连续运动规划、电子传动等精密运动控制技术。  4.系统协同技术——大型制造工程项目复杂自动化系统整体方案设计技术以及安装调试技术,统一操作界面和工程工具的设计技术,统一事件序列和报警处理技术,一体化资产管理技术。  5.故障诊断与健康维护技术——在线或远程状态监测与故障诊断、自愈合调控与损伤智能识别以及健康维护技术,重大装备的寿命测试和剩余寿命预测技术,可靠性与寿命评估技术。  6.高可靠实时通信网络技术——嵌入式互联网技术,高可靠无线通信网络构建技术,工业通信网络信息安全技术和异构通信网络间信息无缝交换技术。  7.功能安全技术——智能装备硬件、软件的功能安全分析、设计、验证技术及方法,建立功能安全验证的测试平台,研究自动化控制系统整体功能安全评估技术。  8.特种工艺与精密制造技术——多维精密加工工艺,精密成型工艺,焊接、粘接、烧结等特殊连接工艺,微机电系统(MEMS)技术,精确可控热处理技术,精密锻造技术等。  9.识别技术——低成本、低功耗RFID芯片设计制造技术,超高频和微波天线设计技术,低温热压封装技术,超高频RFID核心模块设计制造技术,基于深度三位图像识别技术,物体缺陷识别技术。  二、八项核心智能测控装置与部件  1.新型传感器及其系统——新原理、新效应传感器,新材料传感器,微型化、智能化、低功耗传感器,集成化传感器(如单传感器阵列集成和多传感器集成)和无线传感器网络。  2.智能控制系统——现场总线分散型控制系统(FCS)、大规模联合网络控制系统、高端可编程控制系统(PLC)、面向装备的嵌入式控制系统、功能安全监控系统。  3.智能仪表——智能化温度、压力、流量、物位、热量、工业在线分析仪表、智能变频电动执行机构、智能阀门定位器和高可靠执行器。  4.精密仪器——在线质谱/激光气体/紫外光谱/紫外荧光/近红外光谱分析系统、板材加工智能板形仪、高速自动化超声无损探伤检测仪、特种环境下蠕变疲劳性能检测设备等产品。  5.工业机器人与专用机器人——焊接、涂装、搬运、装配等工业机器人及安防、危险作业、救援等专用机器人。  6.精密传动装置——高速精密重载轴承,高速精密齿轮传动装置,高速精密链传动装置,高精度高可靠性制动装置,谐波减速器,大型电液动力换档变速器,高速、高刚度、大功率电主轴,直线电机、丝杠、导轨。  7.伺服控制机构——高性能变频调速装置、数位伺服控制系统、网络分布式伺服系统等产品,提升重点领域电气传动和执行的自动化水平,提高运行稳定性。  8.液气密元件及系统——高压大流量液压元件和液压系统、高转速大功率液力偶合器调速装置、智能润滑系统、智能化阀岛、智能定位气动执行系统、高性能密封装置。  三、八类重大智能制造成套装备  1.石油石化智能成套设备——集成开发具有在线检测、优化控制、功能安全等功能的百万吨级大型乙烯和千万吨级大型炼油装置、多联产煤化工装备、合成橡胶及塑料生产装置。  2.冶金智能成套设备——集成开发具有特种参数在线检测、自适应控制、高精度运动控制等功能的金属冶炼、短流程连铸连轧、精整等成套装备。  3.智能化成形和加工成套设备——集成开发基于机器人的自动化成形、加工、装配生产线及具有加工工艺参数自动检测、控制、优化功能的大型复合材料构件成形加工生产线。  4.自动化物流成套设备——集成开发基于计算智能与生产物流分层递阶设计、具有网络智能监控、动态优化、高效敏捷的智能制造物流设备。  5.建材制造成套设备——集成开发具有物料自动配送、设备状态远程跟踪和能耗优化控制功能的水泥成套设备、高端特种玻璃成套设备。  6.智能化食品制造生产线——集成开发具有在线成分检测、质量溯源、机电光液一体化控制等功能的食品加工成套装备。  7.智能化纺织成套装备——集成开发具有卷绕张力控制、半制品的单位重量、染化料的浓度、色差等物理、化学参数的检测仪器与控制设备,可实现物料自动配送和过程控制的化纤、纺纱、织造、染整、制成品等加工成套装备。  8.智能化印刷装备——集成开发具有墨色预置遥控、自动套准、在线检测、闭环自动跟踪调节等功能的数字化高速多色单张和卷筒料平版、凹版、柔版印刷装备、数字喷墨印刷设备、计算机直接制版设备(CTP)及高速多功能智能化印后加工装备。  四、六大重点应用示范推广领域  1.电力领域——重点推进在百万千瓦级火电机组中实现燃烧优化、设备预测维护功能,在百万千瓦级核电站实现安全控制和特种测量功能,在重型燃气轮机中实现快速启停和复合控制功能,3MW以上风电机组的主控功能,变桨控制功能,太阳能热电站实现追日控制功能,在智能电网中实现用电管理、用户互动、电能质量改进、设备智能维护功能。  2.节能环保领域——重点推进在固体废弃物智能化分选装备、智能化除尘装备、污水处理装备上推广应用,实现各种再生原料的高效智能化分选、除尘设备和污水处理装备的自动调节与高效、稳定,在地热发电装备中实现地热高效发电建模与控制功能。  3.农业装备领域——重点推进在大型拖拉机及联合整地、精密播种、精密施肥、精准植保等配套机具成套机组,谷物、棉花、油菜、甘蔗等联合收获机械,水稻高速插秧机等种植机械装备上的应用,实现故障及作业性能的实时诊断、检测和控制,实现作业过程的智能控制和管理。  4.资源开采领域——重点推进在煤炭综采设备、矿山机械上应用,实现综采工作面设备信息与环境信息的集成监控、安全环境预警、精确人员定位等功能,在天然气长距离集输设备中实现全线数据采集和监控、运行参数优化、管道泄漏检测定位、站场无人操作或无人值守以及中心远程遥控功能,在油田设备中实现井口关键参数检测、数据处理及集中监测功能。  5.国防军工领域——重点推进专用机器人、精密仪器仪表、新型传感器、智能工控机在航天、航空、舰船、兵器等国防军工领域的应用。  6.基础设施建设领域——重点推进在挖掘机、盾构机、起重机、装载机、叉车、混凝土机械等施工装备上应用,实现远程定位、监测、诊断、管理等智能功能,在机场和码头建设领域推广应用,实现机场行李和货物的自动装卸、输送、分拣、存取全过程的智能控制和管理,集装箱装卸的无人操作与数字化管理。
  • 香港城大: 基于Pμ SL制造的双相微点阵超材料及其无人机应用
    近年来基于3D打印的微格点阵超材料吸引了大量的关注,点阵超材料具有优异的比强度、比刚度,良好的减震降噪、吸能缓冲效果、突出的吸声和屏蔽等许多独特的功能特性,被誉为结构-功能一体化材料,在生物医学、电池电极以及运动器材、无人机减重等领域都有独特应用。其中,在无人机上应用超材料可以有效减轻其重量,减少其飞行所需的推力和功耗,从而提高电池续航时间与飞行持续时间,进而更好地拓展无人机在民用、军事、侦察,救援和娱乐等领域的应用。此外,微格点阵超材料出色的能量吸收能力可以帮助无人机抵抗飞行过程中的撞击和碰撞,点阵镂空结构还可以促进无人机的散热。为优化点阵超材料的机械性能,人们提出了多种多样的设计策略,其中,受晶体学启发的超材料设计策略颇具代表性。例如,已被广泛采用的经典多孔晶格点阵结构如体心立方点阵结构(BCC)、面心立方点阵结构(FCC)、八度桁架点阵结构(OCT)等均是受晶体学中原子/离子排列的启发而形成的超材料设计。近日,香港城市大学机械系及纳米制造实验室(NML)陆洋、生物医学工程系Pakpong Chirarattananon和西安电子科技大学高立波等报道了一种受金属硬化机制中的第二相粒子强化机制启发的多级微点阵超材料设计新策略。该策略思路如下:通过将OCT单元作为第二相粒子引入BCC点阵结构的45°对角平面,从而得到一种先进的OCT-BCC双相微点阵超材料。与原始BCC点阵超材料相比,该OCT-BCC双相微点阵超材料的压缩比强度沿水平方向和纵向显著增加了〜300%和〜600%,同时也伴随着刚度和能量吸收能力的显著提高。图1 基于双相增强概念设计,通过面投影微立体光刻(PμSL)3D打印的OCT-BCC双相微点阵超材料图2 OCT-BCC双相微点阵超材料与原始BCC微点阵材料的3D打印和力学测试为了证明这种先进的OCT-BCC双相微点阵超材料的制造可扩展性和实际应用潜力,该工作还通过摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China)成型了尺寸为5.0 cmx 2.0 cm x 1.0 cm的大尺寸OCT-BCC双相微点阵超材料,并将其成功集成到微型无人机(MAV)的机身中。和原本的实心机身对比,集成了OCT-BCC双相微点阵超材料的轻量化机身重量减少了~ 65%,从而使得微型无人机的飞行时间实现了~ 40%的显著提升。图3 OCT-BCC双相微点阵超材料应用于微型无人机构件以实现减重及服役时间提升采用OCT-BCC微点阵超材料的微型无人机相较普通实心构件的无人机飞行时间提升达40%(视频10倍提速)该工作不仅提出了一种有效的超材料增强设计方法,而且还展示了高精度PμSL (nanoArch P130, S140, BMF Precision, Shenzhen, China)3D打印超材料在微型无人机等领域的巨大应用潜力。相关成果以题为“3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles”的论文发表在国际知名期刊Materials& Design上。官网:https://www.bmftec.cn/links/10
  • 香港城大《Materials & Design》: 基于Pμ SL制造的双相微点阵超材料及其无人机应用
    近年来基于3D打印的微格点阵超材料吸引了大量的关注,点阵超材料具有优异的比强度、比刚度,良好的减震降噪、吸能缓冲效果、突出的吸声和屏蔽等许多独特的功能特性,被誉为结构-功能一体化材料,在生物医学、电池电极以及运动器材、无人机减重等领域都有独特应用。其中,在无人机上应用超材料可以有效减轻其重量,减少其飞行所需的推力和功耗,从而提高电池续航时间与飞行持续时间,进而更好地拓展无人机在民用、军事、侦察,救援和娱乐等领域的应用。此外,微格点阵超材料出色的能量吸收能力可以帮助无人机抵抗飞行过程中的撞击和碰撞,点阵镂空结构还可以促进无人机的散热。为优化点阵超材料的机械性能,人们提出了多种多样的设计策略,其中,受晶体学启发的超材料设计策略颇具代表性。例如,已被广泛采用的经典多孔晶格点阵结构如体心立方点阵结构(BCC)、面心立方点阵结构(FCC)、八度桁架点阵结构(OCT)等均是受晶体学中原子/离子排列的启发而形成的超材料设计。近日,香港城市大学机械系及纳米制造实验室(NML)陆洋、生物医学工程系Pakpong Chirarattananon和西安电子科技大学高立波等报道了一种受金属硬化机制中的第二相粒子强化机制启发的多级微点阵超材料设计新策略。该策略思路如下:通过将OCT单元作为第二相粒子引入BCC点阵结构的45°对角平面,从而得到一种先进的OCT-BCC双相微点阵超材料。与原始BCC点阵超材料相比,该OCT-BCC双相微点阵超材料的压缩比强度沿水平方向和纵向显著增加了〜300%和〜600%,同时也伴随着刚度和能量吸收能力的显著提高。图1 基于双相增强概念设计,通过面投影微立体光刻(PμSL)3D打印的OCT-BCC双相微点阵超材料图2 OCT-BCC双相微点阵超材料与原始BCC微点阵材料的3D打印和力学测试为了证明这种先进的OCT-BCC双相微点阵超材料的制造可扩展性和实际应用潜力,该工作还通过摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China)成型了尺寸为5.0 cmx 2.0 cm x 1.0 cm的大尺寸OCT-BCC双相微点阵超材料,并将其成功集成到微型无人机(MAV)的机身中。和原本的实心机身对比,集成了OCT-BCC双相微点阵超材料的轻量化机身重量减少了~ 65%,从而使得微型无人机的飞行时间实现了~ 40%的显著提升。图3 OCT-BCC双相微点阵超材料应用于微型无人机构件以实现减重及服役时间提升采用OCT-BCC微点阵超材料的微型无人机相较普通实心构件的无人机飞行时间提升达40%(视频10倍提速)该工作不仅提出了一种有效的超材料增强设计方法,而且还展示了高精度PμSL (nanoArch P130, S140, BMF Precision, Shenzhen, China)3D打印超材料在微型无人机等领域的巨大应用潜力。相关成果以题为“3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles”的论文发表在国际知名期刊Materials& Design上。官网:https://www.bmftec.cn/links/10
  • 广东省“十四五”战略:在18城建设精密仪器产业集群
    当今世界正经历百年未有之大变局,国内外环境的深刻变化既带来一系列新机遇,也带来一系列新挑战。习近平总书记指出,制造业是国家经济命脉所系,是立国之本、强国之基。“十四五”时期,是推动制造业高质量发展的关键期,也是产业进入全面工业化的攻坚期、深度工业化的攻关期。广东省从2019年12月开始,组织省有关单位开展制造业高质量发展系列调查、研究、论证,出台《广东省制造业高质量发展“十四五”规划》(以下简称“《规划》”),作为“十四五”时期推动全省制造业高质量发展的重要指引性文件。本《规划》纳入广东省“十四五”重点专项规划,是制造业领域唯一的一个“十四五”省重点专项规划。《规划》提出,“十四五”时期将立足广东省制造业发展基础及未来发展趋势,继续做强做优战略性支柱产业,高起点培育壮大战略性新兴产业,谋划发展未来产业:一是巩固提升战略性支柱产业。战略性支柱产业是广东制造稳定器,具体包括新一代电子信息、绿色石化、智能家电、汽车、先进材料、现代轻工纺织、软件与信息服务、超高清视频显示、生物医药与健康、现代农业与食品。二是前瞻布局战略性新兴产业。战略性新兴产业是广东制造推进器,具体包括半导体及集成电路、高端装备制造、智能机器人、区块链与量子信息、前沿新材料、新能源、激光与增材制造、数字创意、安全应急与环保、精密仪器设备。三是谋划发展未来产业。未来产业是会对未来经济社会发展产生重要支撑和巨大带动作用的先导性产业。聚焦发展前沿领域,立足全省技术和产业发展基础优势,积极谋划培育卫星互联网、光通信与太赫兹、干细胞、超材料、天然气水合物、可控核聚变-人造太阳等若干未来产业领域。精密仪器产业集群纳入广东省“十四五”十大战略性支柱产业布局之一。《规划》指出,未来将在广州、深圳、珠海、佛山、东莞、惠州、中山、江门、肇庆、汕头、潮州、湛江、茂名、韶关、梅州、河源、清远、云浮18个城市布局建设精密仪器设备产业集群。广东省各城市仪器产业发展布局城市仪器发展布局广州健康监测仪器和检测设备智能水电气表和智能传感器钟表与计时仪器产品医疗仪器设备及器械制造数控设备精密仪器工业自动化测控仪器与系统大型精密科学测试分析仪器高端信息计测与电测仪器(高精度电测仪器、户外高加速老化试验仪、高精度多声道超声波流量计、5G数据采集综合测试仪、高精密触发测量、高精密扫描测量等)深圳健康监测仪器和检测设备智能水电气表和智能传感器钟表与计时仪器产品医疗仪器设备及器械制造数控设备精密仪器工业自动化测控仪器与系统大型精密科学测试分析仪器高端信息计测与电测仪器(高精度电测仪器、户外高加速老化试验仪、高精度多声道超声波流量计、5G数据采集综合测试仪、高精密触发测量、高精密扫描测量等)珠海医疗仪器设备及器械制造大型精密科学测试分析仪器佛山医疗仪器设备及器械制造数控设备精密仪器大型精密科学测试分析仪器红外光谱仪等测量仪器东莞智能水电气表和智能传感器数控设备精密仪器大型精密科学测试分析仪器中山数控设备精密仪器共焦显微仪器、超精密多轴基台和平板在线检测装备等大型精密科学测试分析仪器江门医疗仪器设备及器械制造数控设备精密仪器大型精密科学测试分析仪器肇庆数控设备精密仪器大型精密科学测试分析仪器汕头医疗仪器设备及器械制造大型精密科学测试分析仪器阳江数控设备精密仪器韶关数控设备精密仪器河源钟表与计时仪器产品广州、深圳、珠海、佛山四大城市被纳入精密仪器设备产业集群布局核心城市,东莞、惠州、中山、江门、肇庆、汕头、韶关、河源八大城市被纳入精密仪器设备产业集群布局重点城市,潮州、湛江、茂名、梅州、清远、云浮六城被纳入精密仪器设备产业集群布局一般城市。“十四五”时期全省制造业总体空间布局图(说明:产业集群区域布局的重要程度用★的数量表示,其中★★★标注核心城市,★★标注重点城市,★标注一般城市;未标星的地市可以结合自身实际谋划发展。)“十大”战略性支柱产业布局产业集群珠三角地区沿海经济带东翼沿海经济带西翼北部生态发展区具有布局该集群的地市数量广州深圳珠海佛山东莞惠州中山江门肇庆汕头汕尾揭阳潮州湛江茂名阳江韶关梅州河源清远云浮(个)11.半导体与集成电路★★★★★★★★★★★★★★★★★★★★1112.高端装备制造★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★1513.智能机器人★★★★★★★★★★★★★★★★★★★★★★★★1314.区块链与量子信息★★★★★★★★★★★★★★★815.前沿新材料★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★1616.新能源★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★1417.激光与增材制造★★★★★★★★★★★★★★★★★★★★★★★1318.数字创意★★★★★★★★★★★★★★★★819.安全应急与环保★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★1820.精密仪器设备★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★18各地市布局的新兴产业集群数量(个)101010101089107844562443532此外,在广东省多个重点领域发展布局中也提到了大力发展科学仪器:(一)新一代电子信息重点细分领域发展健康监测仪器和检测设备、智能水电气表和智能传感器。(二)现代轻工纺织重点细分领域发展钟表与计时仪器产品。(三)生物医药与健康重点细分领域发展医疗仪器设备及器械制造,包括体外诊断产品、先进医疗设备、医学影像诊断类、放射治疗类、医用电子仪器类、基因测序等。(四)高端装备制造重点细分领域发展智能化数控设备精密仪器、激光装备、高端医疗设备装备与精密制造、智能化仪器仪表、新型传感器、专用智能检测设备、专用核心元器件、高端装备零部件等。(五)区块链与量子信息领域,开展量子计算、量子精密测量与计量、量子网络等新兴技术研发与应用,建立先进科学仪器与“卡脖子”设备研发平台。(六)前沿新材料领域开发高端测试仪器设备,突破材料基因工程的高通量计算/实验/专用数据库等关键技术,促进平台融合和协同。(七)精密仪器设备领域,巩固提升示波器、监护仪、血细胞分析仪、功率分析仪、基因测序仪、质谱仪等国内国际领先优势。重点突破工业自动化测控仪器与系统、大型精密科学测试分析仪器、高端信息计测与电测仪器等领域技术研发与产业化应用。支持新型传感技术、智能化技术、计量测量技术、功能安全控制技术等共性核心技术研究与产业化应用,打造贯穿创新链、产业链的创新生态系统。到2025年,精密仪器设备产业规模达到约3000亿元,基本建成产业结构布局合理、自主创新能力突出、具有核心国际竞争力的世界级现代化产业集群。精密仪器设备重点细分领域发展空间布局1.工业自动化测控仪器与系统。以珠三角地区为核心,重点支持广州、深圳开展精密仪器设备研发创新、制造,广州加快推进面向消费电子产线的模块化嵌入式仪器平台、基于AI的产线视觉测试平台、面向自动化产线的模块化夹具与载板平台等研制工作。深圳加快OCA(光学胶)自动全贴合设备研发。中山加快“超精密仪器技术与工程产业化及研发中心”建设,研发共焦显微仪器、超精密多轴基台和平板在线检测装备等。2.大型精密科学测试分析仪器。以广州、深圳为核心,支持东莞、佛山、江门、肇庆、珠海、中山、汕头等市发挥生产制造优势,建设精密仪器设备生产基地,支持其他市做好产业配套发展。支持广州、深圳等市高校、科研院所加强精密仪器设备检测创新原理和方法的基础研究,解决精密仪器设备的关键技术问题,逐步实现精密仪器设备产业的短板技术与关键设备国产化突破和进口替代。支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克激光器、离子源、真空系统、数据采集等关键核心技术。在广州、深圳、佛山、东莞、珠海等市布局建设精密仪器设备科技产业园区,支持中山西湾国家重大仪器科学园、东莞松山湖科技产业园区、广州生命科学大型仪器区域中心等各类专业园区(中心)建设。3.高端信息计测与电测仪器。以广州、深圳为核心,加快高精度电测仪器、户外高加速老化试验仪、高精度多声道超声波流量计、5G数据采集综合测试仪、高精密触发测量、高精密扫描测量等仪器研发创新,支持开展环境应力筛选、可靠性强化、产品寿命等可靠性工程试验、产品可靠性检验检测等应用。支持佛山加快红外光谱仪等测量仪器研发创新。《规划》提出,到2025年,广东省制造强省建设迈上重要台阶,制造业整体实力达到世界先进水平,创新能力显著提升,产业结构更加优化,产业基础高级化和产业链现代化水平明显提高,部分领域取得战略性领先优势,培育形成若干世界级先进制造业集群,成为全球制造业高质量发展典范。展望2035年,制造强省地位更加巩固,关键核心技术实现重大突破,率先建成现代产业体系,制造业综合实力达到世界制造强国领先水平,成为全球制造业核心区和主阵地。全文如下:广东省制造业高质量发展“十四五”规划目录前言… … … … … … … … … … … … … … … … … … … … … … … … 5第一章发展现状和发展趋势… … … … … … … … … … … … … … 7第一节发展现状… … … … … … … … … … … … … … … … … … … 7第二节发展趋势… … … … … … … … … … … … … … … … … … 11第二章总体要求… … … … … … … … … … … … … … … … … … 13第一节指导思想… … … … … … … … … … … … … … … … … … 14第二节基本原则… … … … … … … … … … … … … … … … … … 14第三节发展定位… … … … … … … … … … … … … … … … … … 16第四节主要发展目标… … … … … … … … … … … … … … … … 17第三章发展重点方向… … … … … … … … … … … … … … … … 20第一节巩固提升战略性支柱产业… … … … … … … … … … … 20第二节前瞻布局战略性新兴产业… … … … … … … … … … … 39第三节谋划发展未来产业… … … … … … … … … … … … … … 54第四章重大工程… … … … … … … … … … … … … … … … … … 55第一节实施强核工程,完善制造业协同创新体系… … … … 55第二节实施立柱工程,打造具有国际竞争力的产业集群和企业群… … … … … … … … … … … … … … … … … … … … … … … … … 58第三节实施强链工程,推动制造业迈向全球价值链中高端… … … … … … … … … … … … … … … … … … … … … … … … … 61第四节实施优化布局工程,完善制造业高质量发展区域布局… … … … … … … … … … … … … … … … … … … … … … … … … 65第五节实施品质工程,提升广东制造竞争力和影响力… … 69第六节实施培土工程,塑造制造业发展环境新优势… … … 72第五章保障措施… … … … … … … … … … … … … … … … … … 74第一节强化组织领导… … … … … … … … … … … … … … … … 74第二节加强跨地区跨部门支持协作… … … … … … … … … … 74第三节创新产业集群治理机制… … … … … … … … … … … … 75第四节加强规划落实和宣贯引导… … … … … … … … … … … 75附件1“十四五”时期全省制造业总体空间布局图… … … 77“十大”战略性支柱产业布局… … … … … … … … … … … … … 77“十大”战略性新兴产业布局… … … … … … … … … … … … … 79附件2规划环境影响说明… … … … … … … … … … … … … … 81前言习近平总书记指出,制造业是国家经济命脉所系,是立国之本、强国之基,要加快建设制造强国,把制造业高质量发展作为主攻方向,促进我国产业迈向全球价值链中高端。广东是我国制造业发展的排头兵,中国制造要实现高质量发展,广东责任重大,推动广东制造业高质量发展,对提升制造业核心竞争力、占领产业发展制高点,保持经济持续健康发展,满足人民美好生活需要具有重要意义。省委、省政府高度重视制造业高质量发展,坚持制造业立省不动摇,加快建设制造强省。“十四五”时期,是推动制造业高质量发展的关键期,也是产业进入全面工业化的攻坚期、深度工业化的攻关期。为适应新时期迈向更高质量发展阶段、发展更高层次开放型经济的要求,迫切需要巩固提升制造业在全省经济中的支柱地位和辐射带动作用,顺应高端化、智能化、绿色化发展趋势,加快全省制造业从数量追赶转向质量追赶、从要素驱动转向创新驱动、从集聚化发展转向集群化发展,积极参与构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,全面提升产业基础高级化和产业链现代化水平,加快建设现代产业体系。根据省“十四五”规划编制工作部署,《广东省制造业高质量发展“十四五”规划》(以下简称《规划》)纳入省“十四五”重点专项规划,作为“十四五”时期推动全省制造业高质量发展的重要指引性文件。本《规划》的编制,主要依据《中共中央关于制定国民经济和社会发展第十四个五年规划和2035年远景目标的建议》《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《粤港澳大湾区发展规划纲要》《中共广东省委关于制定广东省国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》《广东省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》《关于推动制造业高质量发展的意见》《关于培育发展战略性支柱产业集群和战略性新兴产业集群的意见》,以及国家发展改革、科技、工业和信息化等部门有关制造业发展及要素配置等政策文件。《规划》提出高起点谋划发展战略性支柱产业、战略性新兴产业以及未来产业,战略性支柱产业是广东制造稳定器,包括新一代电子信息、绿色石化、智能家电、汽车、先进材料、现代轻工纺织、软件与信息服务、超高清视频显示、生物医药与健康、现代农业与食品 战略性新兴产业是广东制造推进器,包括半导体及集成电路、高端装备制造、智能机器人、区块链与量子信息、前沿新材料、新能源、激光与增材制造、数字创意、安全应急与环保、精密仪器设备 未来产业包括卫星互联网、光通信与太赫兹、干细胞等。《规划》着力推动产业由集聚化发展向集群化发展转变,深入实施制造业高质量发展“六大工程”,打造先进制造业基地、制造业创新集聚地、开放合作先行地、发展环境高地,加快实现从制造大省到制造强省的历史性转变,推动广东打造新发展格局的战略支点,努力在全面建设社会主义现代化国家新征程中走在全国前列、创造新的辉煌。第一章发展现状和发展趋势“十三五”时期,在以习近平同志为核心的党中央坚强领导下,我省加快制造强省建设,制造业高质量发展迈出坚实步伐。“十四五”时期,全球制造业发展格局加快调整,国内转向高质量发展阶段,全省制造业高质量发展面临的不稳定性不确定性将进一步增强,需要以辩证思维看待新发展阶段的新机遇新挑战,做好应对一系列新的风险挑战的准备。第一节发展现状“十三五”时期,面对国内经济下行压力增大以及国际经贸形势多变的复杂局面,全省供给侧结构性改革不断深化,新旧动能接续转换持续发力,质量变革、效率变革、动力变革加速推进,初步形成“一核一带一区”制造业协同发展格局,为“十四五”时期全省制造业高质量发展奠定较好基础。规模实力全国领先。2020年,全省规模以上制造业增加值从2015年的2.66万亿元提升至3.01万亿元,规模以上制造业企业数量超过5万家,均居全国第一。在列入全国统计的41个大类工业行业中,我省有40个,销售产值居全国前三的行业有25个。全省已形成新一代电子信息、绿色石化、智能家电、先进材料、现代轻工纺织、软件与信息服务、现代农业与食品等7个产值超万亿元产业集群,5G产业和数字经济规模全国第一。家电、电子信息等部分产品产量全球第一,汽车、智能手机、4K电视、水泥、塑料制品等主要产品产量位居全国首位。创新水平稳居全国前列。2020年,我省区域创新能力继续保持全国领先,连续4年排名第一①,基本达到创新型地区水平。规模以上制造业研发经费支出2285.42亿元②、占规模以上制造业营业收入比重从2015年的1.35%提高到1.67%。国家级高新技术企业总量达5.3万家,位居全国第一 营业收入5亿元以上工业企业全部设立研发机构,拥有2家国家级制造业创新中心和28家省级制造业创新中心。知识产权综合发展指数连续8年位居全国第一,有效发明专利量和PCT国际专利申请量分别连续11年和9年位居全国第一③。5G产业发展全球领先,省内通信龙头企业的5G标准必要专利数量占全球比重超过25%。质量效益稳步提升。2020年,全省规模以上制造业企业利润总额达8334.85亿元,占全国14.9% 规模以上制造业全员劳动生产率从2015年的18.9万元/人提高到23.9万元/人,年均增长5.7% 先进制造业和高技术制造业增加值占规模以上工业增加值比重分别达56.1%和31.1%,比2015年提高7.7、5.5个百分点 年营业收入超百亿元、千亿元制造业企业数量分别达106家、9家,比2015年增加27家、6家,其中,进入世界500强制造业企业达6家,数量较2015年翻一番。2家制造业企业获得中国质量奖,10家企业获得中国质量奖提名奖。数字化网络化智能化发展水平位居全国第一梯队。2020年,累计建成5G基站124266座,约占全国17.5%,居全国第一 建设工业互联网产业生态供给资源池,4家企业入选国家级工业互联网跨行业、跨领域平台,累计推动1.5万家工业企业运用工业互联网数字化转型。累计培育25个国家级、378个省级智能制造试点示范项目 工业机器人产量达7.04万台(套),比2015年提升838.67%,约占全国29%,成为国内重要工业机器人产业基地,人工智能核心产业及相关产业规模均居全国第一梯队。绿色制造发展取得明显成效。2020年,累计建设国家级绿色工厂195家、绿色产品544个、绿色园区9个、绿色供应链27个,绿色制造示范数量居全国首位,规模以上工业单位增加值能耗逐年下降。全省累计推动132家园区开展循环化改造,我省列入国家开发区目录的省级以上工业园区开展循环化改造比例达82.5%,超额完成国家“十三五”规划的目标任务。我省成为新能源汽车动力蓄电池回收利用试点省份,截至2020年底,已实现21个地级以上市回收服务网点全覆盖。开放合作走在全国前列。2020年,广东外贸进出口总额占全国总额的22.0%,连续34年稳居全国第一 全省出口连续4年保持增长,广东出口总额占全国出口总额的24.3% 全省制造业实际使用外资额308亿元,占全省实际使用外资额的1/4。湛江巴斯夫、惠州埃克森美孚等一批投资百亿美元的外资高端制造业项目落户广东。广交会、高交会、海丝博览会、中博会等品牌展会全球影响力显著提升,广泛开展广货网上行、广货全球行,推动重点行业企业“走出去”扩充产能和市场。营商环境发展形成国内领先优势。通过加强用地保障、人才供给、金融支持、“放管服”改革等方式持续优化制造业发展环境。在全国首创“划定工业用地保护红线和产业保护区块” 专业技术人才、技能人才总量均居全国前列④ 制造业境内上市企业数量、募集资金金额和债券发行规模居全国第一 制定出台“实体经济十条”“民营经济十条”等惠企政策,持续降低企业生产经营成本 数字政府改革建设扎实推进,省级政府网上政务服务能力排名跃居全国第一。“十三五”时期我省制造业发展取得巨大成就,产业发展水平位居全国前列,总体处于全球制造业第三阵列向第二阵列⑤跃升阶段,但与世界先进水平相比仍有不少差距。制造业创新能力与产业规模体量不匹配,创新链、产业链、供应链存在明显薄弱环节,重点行业“缺芯少核”等技术短板突出。产业结构仍需优化,电子信息“一业独大”,制造业中高端供给不足。资源要素配置效率有待提升,平台载体整体水平不高,珠三角地区部分工业区与居民区混杂,工业用地被逐步侵蚀,东西两翼沿海经济带和北部生态发展区的工业园区基础配套设施落后。我省制造业发展对国家重大需求、重大战略部署的技术攻关、产业发展等项目支撑作用有待进一步增强。第二节发展趋势“十四五”时期,我省制造业高质量发展面临的国内外环境和自身条件都发生了复杂而深刻的重大变化,立足新发展阶段,贯彻新发展理念,服务构建新发展格局,我省制造业高质量发展需要保持战略定力,善于在危机中育新机、于变局中开新局。一、主要机遇新一轮科技和产业变革加速创新融合,为制造业转型升级带来新市场和新机遇。新一轮科技革命和产业变革深入发展,工业化和信息化融合向更大范围、更深层次、更高水平拓展,催生出更多新技术、新产业、新业态、新模式。在新能源、新材料等新兴领域,中国等后发国家与日德美等发达国家大致处于相同起跑线,可以获得“换道超车”新契机。数字经济平台在疫情防控中发挥巨大作用,日益成为经济发展的重要驱动力,将推动制造业产业模式和企业形态根本性变革,促进全省制造业加速向数字化、网络化、智能化、绿色化、服务化转型。全球制造业发展格局加快调整,将进一步拓展制造业开放合作的广度和深度。当今世界正经历百年未有之大变局,新冠肺炎疫情加快重塑国际经贸格局和规则体系,推动全球产业链和价值链加速重构。面向国内国际两个市场分别布局技术创新和生产力资源,将成为企业应对国际经贸形势变化的新选择,这更有利于我省发挥制造业门类齐全、市场空间广阔、应用场景丰富、生产能力强大的优势,在加速补齐短板、重构产业链供应链等方面获得新机遇,推动制造业开放合作迈上新台阶。我国经济开启新的战略性转型,支撑制造业取得竞争新优势的条件正在形成。我国发展仍然处于重要战略机遇期,我国经济已由高速发展阶段转向高质量发展阶段。面对全球政治经济环境出现的重大变化,适应我国发展阶段性新特征,党中央准确研判大势,立足当前,着眼长远,提出构建新发展格局的战略,将推动我国加速由世界制造基地向全球超大规模市场和制造基地转变。人民群众对美好生活的需求日益增长带动国内市场持续扩张,推动制造业供给结构不断升级,为全省制造业重点产业领域扩大内需和加速转型升级提供强大动力。二、面临挑战国际环境日趋复杂,不稳定性不确定性明显增加。当前,经济全球化遭遇逆流,保护主义上升、世界经济低迷、全球市场萎缩,新冠肺炎疫情对全球经济产生巨大冲击,世界进入动荡变革期,国内制造业出口增长受到抑制,发达国家在关键核心领域对国内制造业发展的限制升级,企业加速调整全球产业布局和全球资源配置,国内产业链供应链安全和稳定面临前所未有的压力。广东作为我国制造业发展的排头兵,更需要全力做好产业基础再造和产业链提升工作,进一步夯实制造业发展根基和现代化经济体系的底盘,提升产业链供应链的稳定性、安全性和竞争力。中国制造、广东制造面临发展中国家和发达国家“两端挤压”。一方面,发展中国家利用低要素成本优势,积极吸引我国劳动密集型和低附加值制造环节转移,广东制造业中低端环节外迁趋势显现。另一方面,发达国家纷纷出台“再工业化”政策措施,意图通过促进产业回流和产业链整体回迁,强化产业生态和集群网络建设,巩固高精尖产业的全球综合领先地位。中国制造、广东制造向全球价值链中高端升级所面临的国际竞争形势更加严峻,亟需加快重塑竞争优势,保障国内战略性产业供应链安全稳定发展,提升制造业发展的质量和效益。第二章总体要求围绕在全面建设社会主义现代化国家新征程中走在全国前列、创造新的辉煌总定位总目标,坚持制造业立省不动摇,深入实施制造业高质量发展“六大工程”,培育发展战略性产业集群,加快实现从制造大省到制造强省的历史性转变,推动广东打造新发展格局的战略支点。第一节指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届二中、三中、四中、五中全会精神,深入贯彻习近平总书记对广东系列重要讲话和重要指示批示精神,牢牢把握“在全面建设社会主义现代化国家新征程中走在全国前列、创造新的辉煌”总定位总目标和稳中求进工作总基调,坚定不移贯彻新发展理念,围绕参与构建新发展格局,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,以满足人民日益增长的美好生活需要为根本目的,以新一轮科技革命和产业革命为契机,深入贯彻落实省委、省政府“1+1+9”工作部署,紧紧抓住建设粤港澳大湾区和支持深圳建设中国特色社会主义先行示范区重大机遇,坚持制造业立省不动摇,深入实施制造业高质量发展“六大工程”,巩固提升战略性支柱产业,前瞻布局战略性新兴产业,谋划发展未来产业,推动制造业由集聚化发展向集群化发展跃升,推进产业基础高级化和产业链现代化,形成广东制造国际合作和竞争新优势,促进广东制造向广东智造转型,加快实现从制造大省到制造强省的历史性转变,推动广东打造新发展格局的战略支点。第二节基本原则“十四五”时期,推动全省制造业高质量发展,必须遵循以下原则。———创新驱动,重点突破。坚持创新在现代化建设全局中的核心地位,把科技自立自强作为发展的战略支撑,围绕产业链部署创新链,围绕创新链布局产业链,以科技创新催生新发展动能,依靠创新提升实体经济发展水平。加快锻长板、补短板,推进产业基础再造,着力提升产业链供应链现代化水平,加快攻克制约产业链发展的关键核心环节技术短板,重点突破产业发展技术、管理、制度、模式等方面深层次问题。———质效优先,绿色发展。坚持质量第一、效益优先,切实转变发展方式,以智能制造为主攻方向推进新一代信息技术和制造业融合发展,促进先进制造业与现代服务业深度融合,以质量品牌提档升级带动制造业整体高质量发展,加快推动质量变革、效率变革、动力变革。坚持绿色低碳发展理念,将绿色设计、绿色技术工艺、绿色生产、绿色供应链等贯穿产品全生命周期,推进重点行业和重点领域绿色化改造,构建绿色制造体系。———开放合作,畅通循环。坚持“引进来”与“走出去”并重,充分发挥粤港澳大湾区建设独特优势,更好利用国际国内两个市场、两种资源,提升制造业对外开放水平。紧紧扭住供给侧结构性改革主线,注重需求侧管理,在扩内需上下更大功夫,形成需求牵引供给、供给创造需求的更高水平动态平衡,提升供给体系对国内需求的适配性,更好满足人民日益增长的美好生活需要。———市场主导,政府引导。坚持有效市场和有为政府相结合,充分发挥市场在资源配置中的决定性作用,强化企业主体地位,持续激发市场主体活力。更好发挥政府作用,加强前瞻性思考、全局性谋划、战略性布局、整体性推进,加快体制机制改革,破除制约制造业高质量发展体制机制障碍,提高资源要素配置效率,持续优化营商环境。第三节发展定位坚持制造业立省不动摇,巩固提升制造业在全省经济中的支柱地位,努力打造先进制造业基地和制造业创新集聚地、开放合作先行地、发展环境高地。世界先进水平的先进制造业基地。瞄准国际先进标准提高产业发展水平,培育形成一批产业链条完善、辐射带动力强、具有全球竞争力的战略性产业集群,制造业整体实力保持国内第一,在全球制造业发展格局占据优势地位,加快进入全球产业链价值链中高端,成为世界先进水平的先进制造业基地。全球重要的制造业创新聚集地。瞄准世界科技和产业发展前沿,广纳全球创新资源,形成对全球资源要素的引力场。技术成果产业化高效转化的优势更加突出,新技术、新产品、新产业、新业态、新模式蓬勃发展,重点产业技术创新群体突破,广东制造在若干重点领域成为产品定义、标准诞生的策源地,制造业创新能力达到国际领先水平,构建全球重要的制造业创新聚集地。制造业高水平开放合作先行地。在推进实施粤港澳大湾区建设、“一带一路”倡议中先行先试,推动形成更大范围、更深层次、更宽领域的对外开放,互利共赢的产业链供应链体系更加完善,国际产能合作不断深化,双向贸易和投资持续扩大,形成参与国际竞争和合作新优势,构建制造业高水平开放合作先行地。国际一流的制造业发展环境高地。加快数字政府建设,深化简政放权、放管结合、优化服务改革,持续推进政务服务标准化、规范化、便利化,土地、劳动力、资本、技术、数据等要素市场化改革更加深化,运行机制、交易规则和服务体系更加健全,市场化、法治化、国际化营商环境持续优化,全社会创造力和市场活力进一步激发,构建国际一流的制造业发展环境高地。第四节主要发展目标到2025年,全省制造强省建设迈上重要台阶,制造业整体实力达到世界先进水平,创新能力显著提升,产业结构更加优化,产业基础高级化和产业链现代化水平明显提高,部分领域取得战略性领先优势,培育形成若干世界级先进制造业集群,成为全球制造业高质量发展典范。展望2035年,制造强省地位更加巩固,关键核心技术实现重大突破,率先建成现代产业体系,制造业综合实力达到世界制造强国领先水平,成为全球制造业核心区和主阵地。规模实力迈上新台阶。制造业规模增长潜力充分发挥,实力保持国内第一。十大战略性支柱产业发展更加巩固,成为全省经济社会发展的基本盘和稳定器 十大战略性新兴产业不断开创新的经济增长点,成为全省经济发展的新焦点和新引擎。世界一流企业、具有生态主导力的产业链“链主”企业培育成效突出,形成根植性和竞争力强的制造企业群,培育若干具有全球竞争力的战略性产业集群。到2025年,制造业增加值占GDP比重保持在30%以上,高技术制造业增加值占规模以上工业增加值的比重达到33%。创新驱动获得新突破。集聚全球创新要素,粤港澳大湾区国际科技创新中心建设取得重大进展,培育若干国家级和省级制造业创新中心、企业技术中心等创新载体。制造业研发投入规模和强度不断提升,产业基础能力不断增强,攻克重点行业领域“卡脖子”问题取得明显进展。制造业创新发展环境进一步优化,技术创新中介服务发展、知识产权保护、征信体系建设、人才队伍培育取得新成效。到2025年,规模以上制造业企业研发经费支出占营业收入比重达到2.3%,规模以上制造业有效发明专利数23万件。质量效率发展取得新提升。制造业产品质量水平和品牌影响力进一步提升,加快实现“广东产品”向“广东品牌”转变,制造业全员劳动生产率保持国内领先优势、与发达国家之间差距进一步缩小,广东制造总体质量达到国际先进水平。到2025年,制造业产品质量合格率超过94%,累计获得中国质量奖或提名奖企业数量达到20家次,规模以上制造业全员劳动生产率达到30万元/人。“两化”融合发展形成新优势。全省数字产业化和产业数字化发展取得新突破,重点行业数字化、网络化、智能化发展水平和工业互联网应用水平国内领先,规模以上工业企业应用工业互联网实施数字化转型基本覆盖,建成全国智能制造发展示范引领区和工业互联网示范区,打造具有国际竞争力的智能制造产业集聚区。到2025年,应用工业互联网实施数字化转型的规模以上工业企业数量达到5万家。绿色可持续发展迈入新阶段。落实国家碳达峰、碳中和部署要求,推动全省制造业能源资源配置更加合理、利用效率稳步提高,碳排放强度和主要污染物排放总量进一步下降。围绕重点产业继续打造一批绿色工厂、绿色设计产品、绿色园区、绿色供应链,生产方式绿色转型成效显著,逐步构建全产业链和产品全生命周期的绿色制造体系。“十四五”时期,全省规模以上工业企业单位增加值能耗逐年下降,继续保持全国前列。开放合作取得新成效。全省制造业“引进来”的吸引力和“走出去”的竞争力不断提高,吸引一批重点优质的制造业企业和项目布局广东,保持制造业出口国内国际领先优势,高技术、高质量、高附加值产品的国际市场进一步扩大,制造业对外投资结构不断优化,重点境外经贸合作区、优势产业生产基地提质发展,促进国内国际双循环发展。到2025年,高新技术产品出口额占全省外贸出口额的比重在35%以上,制造业实际使用外商直接投资额占全省实际使用外商直接投资额的比重在20%以上,制造业对外投资额占全省对外投资额的比重在10%以上。第三章发展重点方向“十四五”时期,立足我省制造业发展基础及未来发展趋势,坚持稳中求进总基调,继续做强做优战略性支柱产业,高起点培育壮大战略性新兴产业,谋划发展未来产业,引导社会资源集聚,促进一二三产业协调发展,促进产业由集聚化发展向集群化发展跃升,推动产业供给体系更好适应社会需求结构变化,推动我省产业链价值链迈向全球中高端,加快建设具有国际竞争力的现代产业体系。第一节巩固提升战略性支柱产业战略性支柱产业主要是指产业关联度高、链条长、影响面广,具有相当规模且继续保持增长的产业,是我省经济的重要基础和支撑,对广东制造业发展具有稳定器作用。“十四五”时期,十大战略性支柱产业加快转型升级,合计营业收入年均增速与全省经济社会发展增速基本同步,重点领域中高端产品供给能力增强,稳固并提升广东制造在全球产业链价值链地位,进一步强化对全省制造业发展的基础支撑作用。1.新一代电子信息着力突破核心电子元器件、高端通用芯片,提升高端电子元器件的制造工艺技术水平和可靠性,布局关键核心电子材料和电子信息制造装备研制项目,支持发展晶圆制造装备、芯片/器件封装装备3C自动化、智能化产线装备等。加快建设新一代信息通信基础设施,推进5G商用普及,推动5G产业集聚发展。加快触控、体感、传感等关键技术联合攻关,提升终端智能化水平。加速推动信息技术应用创新,推进计算机整机、外部设备及耗材产品的研发和产业化,强化协同攻关和适配合作。推进人工智能芯片、算法框架等基础软硬件产品研发及行业应用,构建数字经济自主可控技术底座。到2025年,新一代电子信息产业营业收入达到6.6万亿元,形成世界级新一代电子信息产业集群。专栏1新一代电子信息重点细分领域发展空间布局1.半导体元器件。以广州、深圳、珠海为核心,打造涵盖设计、制造、封测等环节的半导体及集成电路全产业链。支持广州开展“芯火”双创基地建设,建设制造业创新中心。支持深圳、汕头、梅州、肇庆、潮州建设新型电子元器件产业集聚区,推进粤港澳大湾区集成电路公共技术研究中心建设。推动粤东粤西粤北地区主动承接珠三角地区产业转移,发展半导体元器件配套产业。2.新一代通信与网络。以广州、深圳、珠海、佛山、东莞、惠州、江门等市为依托,重点发展5G器件、5G网络与基站设备、5G天线以及终端配件等优势产业,补齐补强第三代半导体、滤波器、功率放大器等基础材料与核心零部件产业,打造万亿级5G产业集群。支持沿海经济带发展5G基础材料、通信设备等产业,北部生态发展区发展5G融合应用。3.智能终端。以广州、深圳、惠州、东莞、河源为依托建设高端化智能终端产业集聚区。深圳、东莞、河源发展5G智能手机。深圳、东莞、佛山、珠海、中山发展智能空调、智能冰箱、智能洗衣机、智能照明、智能音响、智能可穿戴设备等智能家居设备。广州、深圳发展健康监测仪器和检测设备。深圳、广州、惠州、东莞发展前装和后装车载设备。深圳、广州、东莞发展智能水电气表和智能传感器。支持广州、深圳等市发挥通信和卫星技术优势,发展新型应急指挥通信装备。4.信息技术应用创新硬件。以深圳、广州、珠海、云浮为依托,加快推进信息技术应用创新产业发展。深圳重点建设中国鲲鹏产业源头创新中心,建设全国鲲鹏产业示范区,打造鲲鹏生态体系总部基地。广州重点建设“鲲鹏+昇腾”生态创新中心和通用软硬件适配测试中心,布局建设若干信息技术应用创新产业园。珠海建设新一代信息技术应用联合创新中心,发展鲲鹏产业生态 以南方软件园为抓手,促进信息技术应用创新产业集聚。云浮以省市共建方式打造信创产业园区,引进重大项目,培育信息技术骨干企业。广州、深圳打造网络安全产业集聚区。2.绿色石化提升炼油化工规模和水平,支持高质量成品油、润滑油、溶剂油等石油制品和有机原料发展。以工程塑料、电子化学品、功能性膜材料、日用化工材料、高性能纤维等为重点,加快石化产业链中下游高端精细化工产品和化工新材料研制。围绕安全生产、绿色制造、污染防治等重点,加快推进石化原料优化、能源梯级利用、可循环、流程再造等工艺技术及装备研发应用,加快推进单位产品碳排放达到国际先进水平。逐步形成粤东、粤西两翼产业链上游原材料向珠三角产业链下游精深加工供给,珠三角精细化工产品和化工新材料向粤东、粤西两翼先进制造业供给的循环体系。到2025年,石化产业规模超过2万亿元,打造国内领先、世界一流的绿色石化产业集群。专栏2绿色石化重点细分领域发展空间布局1.炼油石化。依托广州、惠州、湛江、茂名、揭阳等市,加强油气炼化,发展上游原材料。广州加快推动中石化广州分公司绿色安全发展项目投资建设,促进油品质量升级,建设园区化、集约化、技术先进、节能环保、安全高效的石化基地。惠州以中海油惠州石化炼油、中海壳牌乙烯和埃克森美孚惠州乙烯项目为龙头,大亚湾石化园区为依托,建立上中下游紧密联系、科学合理的石化产业链。茂名以中石化茂名炼油和乙烯项目为核心,茂名高新技术开发区和茂南石化区为依托,形成高质量成品油、润滑油、溶剂油、有机原料、合成树脂、合成橡胶、液蜡等系列特色产品。湛江以中科广东炼化一体化项目、巴斯夫新型一体化项目为龙头,加快石化产业园区建设,发展清洁油品、基础化工材料,形成较完整的炼油、乙烯、芳烃等石化产业链。揭阳加快中石油广东石化项目及相关石化项目建设,加强与大亚湾石化区联系合作,重点发展清洁油品、化工原料等产业。2.高端精细化学品和化工新材料。依托广州、深圳、珠海、佛山、东莞、江门、惠州、中山、肇庆、茂名、湛江、揭阳、汕头、汕尾、清远等市,发展下游精深加工产业。广州巩固精细化学品及日用化学品发展优势,发展合成树脂深加工、高性能合成材料、工程塑料、化工新材料、日用化工等高端绿色化工产品。深圳重点发展高附加值精细化工产品、新型合成材料、工程塑料、特种化学品。珠海建设丙烷脱氢、顺丁橡胶、润滑油调和、丁辛醇、丙烯酸、精细深冷胶粉等天然气副产品深加工产业链,重点发展新能源锂电池材料、功能高分子材料、新一代电子信息材料等新材料产业。佛山重点发展高档涂料、高纯试剂、粘合剂、气雾剂、专用化学品、稀释剂等。东莞着力发展日用化工材料、高附加值中间原料、氟硅材料、高性能纤维等产品。江门以珠江西岸新材料集聚区为重点,发展涂料及树脂、油墨、造纸化学品、塑料助剂、食品添加剂等产品。惠州着力推动炼化深加工、高端化学品、化工新材料的发展,加快惠州新材料产业园区的规划建设。中山、肇庆重点发展日用化学品、林产化工、合成树脂、粘合剂、涂料等产品。茂名、湛江等市依托上游炼化基础,向上中下游延伸,推动化工新材料和专用化学品发展。揭阳加快发展高性能高分子材料、功能复合材料及高端精细化学品。汕头加强精细化工、高分子材料研发和产业化。汕尾、清远加快发展玻璃钢材料、航空材料、稀散金属、光电子材料、助剂、涂料等产品。3.智能家电巩固扩大空调、冰箱、电饭锅、微波炉等家电产品世界领先地位,做优做强电视机、照明灯饰等优势产业。健全和优化压缩机、电机、五金、模具等核心零部件和配件产业链,提升原材料和零配件质量与供应水平。推动大数据、云计算、人工智能、5G等新技术与家电产品深度融合应用,以个性化、数字化、智能化、绿色化、健康化、高端化等为重点方向,支持开发高端新型智能家电和特殊用途家电,建立和完善与国际接轨的智能家电标准体系。到2025年,家电产业营业收入突破1.9万亿元,形成全球领先的智能家电产业集群。专栏3智能家电重点细分领域发展空间布局1.空调。以广州、珠海、佛山、中山、江门等市为依托,加快推动实施空调换热器绿色制造工艺,发展分体壁挂机、分体式柜机、移动机、窗机、除湿机、清新机等空调产品以及智能化产品,推动工厂智能化生产。2.冰箱。以广州、佛山、中山等市为依托,发展智能、高效、绿色的冰箱产品,加强高性能压缩机、高可靠性蒸发器与冷凝器、智能传感器、开关电源等关键零部件配套。3.电视机。以广州、深圳、惠州、中山、江门等市为依托,加快研制面向AIoT(人工智能物联网)应用的智能电视机,进一步推广4K/8K超高清显示技术,加强图像处理主芯片、FRC(帧比率控制)芯片、MCU(单片机)等零部件配套。4.洗衣机。以佛山、珠海、中山、江门等市为依托,着力发展滚筒洗衣机、洗烘一体机、波轮洗衣机、双桶洗衣机、迷你洗衣机、干衣机、脱水机等产品,加强高性能电机、智能传感器研制。5.小家电。以深圳、佛山、湛江、中山、珠海等市为依托,发展电风扇、豆浆机、电热水壶、空气净化器、水净化器等小家电产品及关键零配件。以深圳、佛山、中山、揭阳等市为依托,发展家用清洁卫生电器具、家用美容、保健电器等产品,以及具备智能化功能的护理类产品。6.厨房电器。以佛山、中山、汕头、阳江等市为依托,重点发展高端化、成套化、嵌入式、智能化的灶具—烟机—烤箱—微波炉—洗碗机等组合系列产品,加强高性能陶瓷不粘涂料、防腐内胆材料、高可靠性磁控管、高性能阀体、高可靠性传感器等材料和零部件配套。4.汽车以轻量化和节能化为重点,加强传统燃油汽车技术研发应用,大力发展乘用车、商用车、专用车等整车制造,扩大高端车型比例,继续提升发动机、传动系统、制动系统、汽车电子等零部件配套能力。加速新能源汽车整车发展,提升混合动力系统、纯电动汽车、氢燃料电池汽车研发水平,重点加大电机、电池和电控系统的研发力度,加快新能源汽车相关配套基础设施建设。支持发展智能网联汽车感知、控制、执行、车载信息娱乐系统,推进汽车检测和测试场地等领域建设,积极推进自动驾驶示范应用,打造智能网联汽车示范应用区。推动汽车绿色回收、零部件再制造、退役电池回收和梯次利用、汽车维修改装、汽车租赁、汽车商贸物流、汽车金融等汽车服务业发展。到2025年,汽车制造业营业收入超过1.1万亿元,打造具有国际影响力的汽车产业集群。专栏4汽车重点细分领域发展空间布局1.传统燃油汽车。以广州、佛山、中山、江门、肇庆等市为依托,优化传统燃油汽车产业区域布局。广州以花都区、番禺区、南沙区为核心,佛山以南海区为核心,加快建设汽车产业基地,大力发展汽车整车、轻量化零部件及相关配套产品制造。中山、江门、肇庆等市着力发展客车、公交车等商用车,以及救护车、消防车、应急救援车、警车、冷链车等专用车产品。2.新能源汽车。以广州、深圳、珠海、佛山、肇庆、东莞、惠州、湛江、茂名、汕尾、云浮等市为依托,加速新能源汽车发展步伐。广州加快新能源汽车生产基地建设,推动新能源汽车车型快速产业化。深圳以坪山区为核心建设国家级新能源汽车产业基地。珠海以金湾区为核心,重点发展新能源整车制造、锂电池材料、动力总成、充电设备以及新能源汽车关键零部件。佛山依托南海区“广东新能源汽车产业基地”、高明区“现代氢能有轨电车修造基地”和“佛山(云浮)产业转移工业园”氢能产业研发生产基地,加快新能源汽车制造、燃料电池系统、燃料电池关键零部件制造和氢能汽车推广应用。肇庆依托大旺产业园和粤港澳大湾区生态科技产业园等载体,加快发展新能源汽车制造。东莞依托松山湖等载体平台,加快建设燃料电池汽车材料和关键零部件研发创新中心。惠州依托大亚湾新兴产业园,进一步增强新能源汽车的配套能力,加快形成完整的新能源汽车产业链。湛江加快建设粤西地区大型汽车产业园区,培育发展新能源汽车及关联产业。茂名依托氢能源产业基地,着力打造涵盖氢能、燃料电池、燃料电池汽车等领域的综合性产业基地。汕尾依托陆河工业区等加快发展新能源客车及零部件制造项目。3.智能网联汽车。以广州、深圳、惠州、东莞、韶关、肇庆等市为依托,加快布局发展智能网联汽车。支持广州建设基于宽带移动互联网的智能网联汽车与智能交通应用示范区,加快推进国家5G车联网先导区建设。支持广州、深圳在公共交通领域率先探索自动驾驶示范应用,打造具有世界级影响力的示范应用案例。支持广州、肇庆等市规划建设智能网联汽车封闭测试区以及若干半开放、全开放测试区测试场,加快推进智能网联汽车道路测试。支持惠州以东江高新科技产业园为依托,发展智能驾驶舱解决方案及车载信息娱乐系统、空调控制、胎压监测、高级驾驶辅助系统、车联网。支持东莞以松山湖国家高新区为依托,重点打造人工智能与各类交通工具相结合的智能交通解决方案。4.汽车零部件。以广州、深圳、珠海、佛山、东莞、惠州、中山、江门、肇庆、河源、汕尾、湛江、梅州、清远为依托,建立安全可控的关键零部件配套体系。广州重点发展内燃动力汽车、混合动力汽车、新能源汽车和智能网联汽车等相关汽车配套产品。深圳加快发展可充电动力电池包、电池管理系统、汽车线束、高压配电箱、电机控制器等汽车核心零部件和系统。珠海着力发展电机控制器、车载充电机、DC-DC转换器、电子油门踏板等关键零部件。佛山着力发展汽车外饰件、汽车线束、氢燃料电池关键零部件等汽车零部件制造业。东莞着力发展汽车模具、机电配套等产品。惠州着力发展新能源汽车电池和氢能电池、汽车线束、汽车发动机、传感器、传动系统、制动系统、内外饰件、汽车电子、汽车灯具等。中山加快发展新能源汽车电机、氢燃料电池系统、整车控制系统。江门重点发展新能源汽车锂电池材料、汽车线束、连接器、透镜等汽车零部件及配件。肇庆加快发展电池、电控、电机、轮胎、底盘、传感器、照明系统等汽车配套产业。河源加快发展锂离子动力电池、汽车模具及保险杠、门板、后备箱、汽车门把手等汽车零配件产品,配套建设新能源汽车动力电池研发测试中心。汕尾重点发展新能源汽车总成部件及电子元器件、智能电子配件等零部件制造。湛江重点发展汽车钢板、车身涂料、汽车内外饰、锂离子电池材料,加快引进动力及储能电池、驱动电机、车载操作系统等关键汽车零部件制造,配套建设新能源汽车、动力电池研发机构。梅州重点发展汽车玻璃、轮胎、车轴、汽车音响等产品。清远重点发展新能源动力电池、驱动电机和电控、车用电动助力转向、能量回馈式电动助力制动等零部件。5.汽车测试及试验。支持广州、深圳、韶关、汕尾等市统筹各企业对汽车及零部件的检验及测试需求,共同参与大型综合性测试基地建设,重点推进中国汽车技术研究中心华南基地、南方智能网联新能源汽车试验检测中心、比亚迪陆河试车场等项目建设,打造国家级整车及零部件试验检测基地。5.先进材料巩固提升高端建筑陶瓷与卫生陶瓷、低碳水泥等现代建筑材料发展优势,支持发展预制构件、预拌混凝土、新型绿色建材。重点发展高端钢材和特种钢材,继续加强钢铁行业碳排放管理。支持发展中高端铜、铝、铅、锌、钨等有色金属加工以及再生有色金属回收重熔,推进发展高性能合金材料。支持发展高性能橡塑材料、高端碳纤维、高性能改性环氧树脂、高端电子化学品等化工材料,持续推进高性能复合材料及特种功能材料研发及产业化。支持稀土矿产开采、冶炼分离、材料应用。到2025年,先进材料产业营业收入达到2.8万亿元,力争迈入世界级先进材料产业集群行列。专栏5先进材料重点细分领域发展空间布局1.建筑材料。以广州、佛山、中山、江门、肇庆、韶关、阳江、湛江、清远、河源、梅州、茂名、潮州、云浮、揭阳等市为依托,发展建筑材料。广州发展无机非金属材料。佛山着力发展以高端建筑陶瓷、卫生陶瓷为主的建筑材料。中山着力发展陶瓷卫生洁具等建筑材料。江门着力发展绿色水泥、混凝土、平板玻璃等建筑材料。肇庆着力发展高端建筑陶瓷、绿色水泥等建材产业。韶关重点发展装配式建筑材料和绿色建材。阳江着力发展以绿色水泥、节能玻璃、新型陶瓷为主的建筑原材料。湛江着力建设装配式建材基地。清远重点发展绿色水泥、高端建筑陶瓷等建材产业。河源重点发展硅基建筑材料、绿色建材。梅州着力发展全产业链绿色建材行业。茂名重点开发高岭土、钛铁矿、南方玉、建筑用(粉料)大理岩等矿产资源。潮州着力发展建筑卫生陶瓷产品。云浮、揭阳着力发展高端石材。2.绿色钢铁。以佛山、阳江、湛江、韶关、河源、云浮等市为依托,发展钢铁材料。佛山着力发展以高端不锈钢材料为主的绿色钢铁材料。阳江着力发展以高端不锈钢、建筑用钢、铝合金板材为主的合金原材料。湛江依托宝钢湛江钢铁项目,形成千万吨钢材生产能力和百万吨级超高强钢生产能力。韶关以韶钢为龙头发展特殊钢、优质钢,引入下游产业链,打造新型特色产业园和钢铁基地转型升级的示范区。河源发展优钢、特钢、高强度热轧带肋钢筋等产品。云浮重点发展优特钢、精品钢产业。3.有色金属材料。以广州、佛山、中山、肇庆、梅州、惠州、清远、韶关、河源、潮州、汕尾、云浮、揭阳等市为依托,发展有色金属材料。广州着力发展铜、铝、锌等有色金属冶炼及压延加工业。佛山着力发展以铝加工材、铜加工材、再生有色金属、有色金属铸件为主的有色金属材料。中山着力发展光伏、新型显示用有色金属,新能源、节能电机用特种金属材料。肇庆充分利用再生铝回收重熔以及有色金属铸件与铝加工产业集聚的优势,重点发展铝型材、有色金属铸件等有色金属产业。梅州重点发展高精度电子铜箔、高性能铜箔等产品。惠州重点发展低氧光亮铜杆、精密铜线、合金导线等。江门重点发展铝合金深加工和不锈钢制品。清远重点发展铜、铝等再生有色金属回收重熔,以及有色金属铸件、铜加工材、铝加工材等有色金属产业。韶关充分利用地域铅锌铜、稀土和钨等有色金属矿山资源集聚以及铝加工材优势,重点发展有色金属产业精深加工。河源充分利用钨、铷、铁矿等丰富的矿产资源优势,重点发展矿产资源深加工。云浮重点发展高性能铝板带箔复合材料、电池箔用铝基材等产品。潮州建设钨粉末研发和生产基地,发展硬质合金。汕尾重点发展贵金属预成型焊片研发及生产。揭阳发展建筑五金、日用五金、工具五金、不锈钢制品。4.化工材料。以广州、珠海、佛山、深圳、东莞、惠州、中山、江门、湛江、汕头、揭阳、茂名、韶关、云浮等市为依托,发展化工材料。广州重点发展化学纤维及制品、高性能膜材料、高性能塑料及树脂、高性能橡胶及弹性体、新型功能涂层材料、专用化学品及材料等先进高分子材料,加快建设纳米科技核心研发区、中试孵化区等核心功能区。珠海充分发挥珠海高栏港绿色新材料产业园及港口交通优势,大力发展功能高分子材料。佛山着力发展以塑料、涂料为主的化工材料。深圳、东莞重点发展以高性能塑胶制品为主的化工材料,以高端电子化学品、电子陶瓷和电子玻璃为主的电子材料。惠州重点发展聚烯烃、工程塑料、聚酯产品、功能性材料和化学品。中山重点发展家电用塑胶、化学涂料、先进膜材料等化工材料。江门着力发展油漆、涂料等化工产品。湛江着力发展以化工新材料、合成材料、有机原料、专用与精细化学品为主体的高端化工材料。汕头加快建设化学与精细化工省实验室,做强做大化学试剂及化工新材料产业。揭阳着力发展循环再利用差别化涤纶短纤维和原液着色“绿色纤维冶。茂名重点发展碳纤维、3D打印(增材制造)材料产业,以及造纸涂料、建筑涂料、石油催化剂载体等材料。韶关重点发展油漆涂料、油墨、胶粘剂、树脂及各类助剂等产品。云浮重点发展硫化工、钛白粉等产业。5.稀土材料。发挥广州、中山、阳江、江门、肇庆、河源、梅州、茂名、韶关等市资源和大厂优势,重点围绕稀土矿山、冶炼分离、资源综合利用、新材料、终端应用产品开展全产业链运营发展,推动稀土在生物、医疗、新能源等新兴领域的应用,大力发展稀土深加工应用产业。6.现代轻工纺织推动纺织服装、皮革、家具、造纸、日化、塑料、五金、工艺美术等重点行业创新发展模式,加快与新技术、新材料、文化、创意、时尚等融合,发展智能、健康、绿色、个性化等中高端产品,培育全国乃至国际知名品牌。支持探索C2M(用户直连制造)、协同生产等个性定制和柔性制造模式,提升现代轻工纺织产业供给水平和供给质量。到2025年,现代轻工纺织产业营业收入超3万亿元,形成国内领先、具有全球竞争力的现代轻工纺织产业集群。专栏6现代轻工纺织重点细分领域发展空间布局1.纺织服装。优化广州、深圳时尚创意与品牌建设,增强品牌优势,提升纺织服装原材料产业物流与供应链的国际影响力。依托汕头、佛山、惠州、汕尾、东莞、中山、江门、湛江、阳江、潮州和揭阳等市纺织服装专业镇,强化纺织服装原材料及辅料、制品研制、设备制造等产业链优势环节,优化建设若干集研发、设计、生产等功能为一体的区域产业集群。2.皮革。以广州、深圳、佛山、东莞、惠州、江门、潮州等市为依托,推动皮革制造和交易。广州着力打造全球最大的皮料集散中心。深圳重点发展鞋类、包类、裘皮、皮衣、皮材家居饰品、汽车皮材座椅等产品。佛山着力打造全国最大的原料皮和库存皮料集散中心。东莞着力打造全球最大的外贸鞋皮料集散中心。惠州重点发展女鞋制造。江门打造中国男鞋生产基地。潮州加快发展工艺鞋特色产业。3.家具。依托广州、佛山、东莞、中山、江门、惠州等市,做大做强家具产业。广州发挥龙头企业优势加快打造“全球定制之都”。佛山依托乐从、龙江,打造中国家居商贸与创新之都、中国家具设计与制造重镇、中国家具材料之都。东莞依托大岭山、厚街,打造中国家具出口第一镇、中国家具展览贸易之都。中山依托大涌、沙溪、三乡、东升、板芙等家具产业名镇,打造中国红木家具生产专业镇、中国古典家具名镇、中国办公家具重镇。江门依托江海、新会、台山,打造中国传统家具专业镇、中国古典家具之都。惠州依托惠阳、博罗、惠城、仲恺等市,建设示范性智能定制家居融合创新园区,加快家具产业转型升级。4.造纸。依托东莞、江门、湛江、阳江、佛山等市,发展造纸及配套设备行业。东莞以中堂镇为核心,发展瓦楞纸、箱板纸、涂布白板纸、特种纸等产品。江门以广东银洲湖纸业基地为核心,着力发展生活用纸、办公、文化、新闻用纸、卷烟用纸、包装用纸、特种纸等产品。湛江加快建设麻章森工产业园和东海岛纸业基地,着力发展文化用纸、静电复印(原)纸、簿本纸和高档防粘原纸、单面涂布白卡纸、无碳纸、三防特种热敏纸等系列产品。阳江以高新区为主要载体,着力发展生活用纸、护理用品、高档厨房清洁用纸等系列产品。佛山着力发展高端瓦楞纸箱印刷生产线,以及印前印后配套设备。5.日化。以广州、汕头、中山、珠海等市为主要依托,发展日化产品。广州加快形成包括原料、生产、加工等多个核心环节的日化产业链条。汕头发挥中国三大化妆品产业基地优势,着力发展洗发护发、健康护理及相关产品。中山加快发展牙膏、润唇膏、防晒剂、面膜等化妆品。珠海着力发展化妆品OEM/ODM/OBM产业,加强产品研发、生产及销售。6.塑料。依托广州、佛山、深圳、东莞、中山、汕头、湛江、揭阳、茂名等塑料工业比较发达、基础较好的市,大力发展各类高性能、高附加值塑料产品。7.金属制品。以佛山、东莞、中山、江门、肇庆、阳江、潮州、云浮等市为主要依托,发展金属制品行业。佛山依托顺德勒流镇打造中国家居五金之都,依托南海丹灶镇打造中国日用五金之都。东莞依托长安镇打造国内重要的五金模具生产销售集散基地。中山大力发展锁类、燃气具类、脚轮类、铰链类、金属压铸类等五金产业链,打造中国五金制品产业基地。江门依托五金不锈钢制品产业基地,加快发展建筑和安全用金属制品、日用不锈钢制品、集装箱及金属包装容器等产品。肇庆加快建设高要金利五金智造小镇,推动五金产品研发、生产、展销。阳江着力发展五金刀剪产业,打造中国刀剪之都。支持潮州、揭阳等市发展五金不锈钢制品。云浮加快推进广东金属智造科技产业园建设,全方位承接优质金属制品和机械装备等产业项目。8.文教、工艺美术、体育和娱乐用品。依托广州、深圳、东莞、惠州、佛山、珠海、中山、江门、肇庆、潮州、汕头、梅州、汕尾、河源、揭阳等市,发展文教、工美、体育和娱乐产品。广州、深圳、东莞、佛山、珠海着力发展文教产品。广州、深圳、东莞、潮州、佛山、揭阳、肇庆、梅州、汕尾着力发展工艺雕塑、抽纱刺绣、艺术陶瓷、工艺玻璃、编织工艺、漆器、工艺家具、金属工艺与首饰、现代工艺礼品、玉器等工艺美术产品。广州、深圳、东莞、佛山、中山、江门着力发展篮球、乒乓球、羽毛球、网球、台球、泳池设备、运动鞋服等体育用品。广州、珠海、河源着力发展钢琴、吉他、鼓乐、提琴等乐器产品。广州、深圳、东莞、惠州、珠海、中山、汕头、揭阳着力发展玩具、童车、自行车、残疾人座车等产品。广州、深圳、河源着力发展钟表与计时仪器产品。7.软件与信息服务加快研发具有自主知识产权的操作系统、数据库、中间件、办公软件等通用基础软件,大力开展集成适配及测试,加快构建自主产业生态。重点突破CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAE(计算机辅助工程)、EDA(电子设计自动化)等工业软件,推动工艺软件化和制造技术数字化,面向电子信息、装备制造、石化、汽车、家电等重点行业,提升系统解决方案供应能力,打造自主可控的工业软件产品及解决方案。开展工业APP开发与应用创新,加强新兴平台软件研发,提升面向大数据、云计算、人工智能、VR/AR、区块链等领域关键技术服务能力。发展智慧医疗、智慧教育、智慧交通、智慧金融、智慧能源、智慧环保、智慧旅游、智慧生活、公共安全等领域的智能化解决方案和服务。支持信息安全产品研发和产业化应用。扩大信息技术应用创新产品在重要领域重点行业的应用推广,布局建设产业集聚区,构建自主可控的信息产业生态体系。到2025年,软件业务收入达到2万亿元,打造国内领先、具有国际竞争力的软件和信息服务产业发展高地。专栏7软件与信息服务重点细分领域发展空间布局1.基础软件。依托广州、深圳、珠海等市加快发展基础软件。广州、深圳加快培育自主软件产业生态,提升粤港澳大湾区核心城市协同创新水平,引领全省软件产业高质量发展。支持广州加快建设通用软硬件适配测试中心,形成基础操作系统—行业应用软件—系统集成运维—互联网在线服务—信息安全—嵌入式应用—软件检测认证的完整产业链条。支持珠海做大做强集成电路设计软件、办公软件等优势软件产品,加快迈向千亿产业规模。2.工业软件。依托广州、深圳、东莞等市加快发展工业软件。支持广州依托装备制造基础和龙头企业优势,加快建设设计仿真工业软件适配验证中心,重点突破研发设计类工业软件。支持深圳依托信息通信领域和制造业累积优势,重点发展研发设计、生产控制、运营维护类工业软件。支持东莞依托电子信息制造、工业互联网等产业基地,发展嵌入式软件、新型工业软件。3.新兴平台软件。依托广州、深圳等市,加快发展新兴平台软件,推进人工智能与数字经济广东省实验室等创新平台建设。支持广州创建国家人工智能创新应用先导区,建设国家新型工业化产业示范基地(大数据)、人工智能与数字经济试验区,创建国家区块链发展先行示范区。支持深圳推进建设国家人工智能创新应用先导区、鹏城实验室、国家新型工业化产业示范基地(工业互联网)等创新平台建设,加快区块链应用发展。支持惠州、佛山、中山围绕电子信息、装备制造、智能家电等特色产业领域,加强大型平台企业合作,发展平台化、SaaS(软件即服务)化软件和新型信息服务。支持江门、肇庆、汕头等市以新型信息基础设施为支撑,培育发展大数据、云计算、工业互联网等信息服务和相关配套产业。4.行业应用软件。支持广州、深圳、东莞、珠海、惠州、佛山等市面向医疗、教育、文化、交通、金融等重点领域,加快发展行业应用软件。支持其他城市结合政务和民生需求,提升信息技术服务水平。8.超高清视频显示推动超高清电视、平板、手机、VR/AR、健康监测设备、可穿戴设备等超高清终端向规模化、产业化、高端化发展,支持4K/8K摄录机、音视频编解码设备、专业监视器、智能机顶盒等整机产品研制。加快突破超高清视频SoC(系统级)芯片、数据传输芯片、高端CMOS(互补金属氧化物半导体)图像传感器芯片等核心零部件。重点支持发展OLED(有机发光半导体)、AMOLED(有源矩阵有机发光二极体)、MicroLED(微型发光二极管)、QLED(量子点发光二极管)、印刷显示、量子点、柔性显示、石墨烯显示等新型显示技术。支持开展超高清节目内容制作,推进5G应用于超高清视频传输,实现超高清视频业务与5G的协同发展。加快建设超高清视频产业发展试验区。到2025年,超高清视频显示上下游产业营业收入超过1万亿元,打造具有全球竞争力的超高清视频显示产业集群。专栏8超高清视频显示重点细分领域发展空间布局1.通信终端及智能终端设备制造。以广州、深圳、佛山、东莞、惠州、中山为依托,加强超高清设备研发制造。广州加快国家印刷及柔性显示创新中心建设,重点发展4K/8K摄像机、编解码设备、超高清显示设备、超高清视频移动智能终端等,打造世界显示之都。深圳重点发展超高清传输设备、4K/8K电视产品、智能机顶盒等,打造具有全球影响力的超高清视频技术创新策源地。东莞重点发展智能手机等终端产品。惠州重点发展4K/8K电视机和显示器、平板、超高清机顶盒、WIFI6路由器、VR/AR、可穿戴设备等终端产品。佛山、中山、江门重点发展显示面板等产品。2.核心元器件。以广州、深圳、珠海等市为主要依托,跟踪服务广州“粤芯”等集成电路重大项目建设,打造核心电子元器件及关键材料公共技术平台,带动湛江、汕头、韶关、梅州等市配套发展超高清视频上下游产业。3.超高清视频内容、传输服务。支持广州建设花果山超高清视频产业小镇、全球超高清视频演示展示中心,打造国内一流、全球知名的超高清视频产业制作应用示范基地。支持深圳、珠海、东莞、惠州、中山等市开展超高清电视栏目制作、开通4K点播/试播频道,培育本地化的超高清视频内容聚合和分发平台,探索超高清视频内容销售与运营模式。9.生物医药与健康加速创新药物战略布局,大力发展抗体、蛋白及多肽、核酸等新型生物技术药物,着力突破精准医学与干细胞、新药创制、生物安全、生物制造等关键核心技术。推动化学药物品质全面提升,加速小分子化学创新药物的产业化,发展新型制剂技术产品。重点发展岭南中药,加快推动中医药标准化、国际化,打造一批从原料药、中药材到药品的示范产业链。推动高端医疗器械研发产业化,发展高质量植介入产品、康复产品和高性能体外诊断产品。推进医养结合、智慧治疗、互联网诊疗、远程医疗等新型医疗服务模式,创新开发智慧健康产品。大力发展健康养生产业,支持发展集健康疗养、文化娱乐、休闲养生等于一体的养生旅游产业。到2025年,生物医药与健康产业力争实现营业收入1万亿元,建成具有国际影响力的产业高地。专栏9生物医药与健康重点细分领域发展空间布局1.医药制造业。支持广州打造粤港澳大湾区生命科学合作区和研发中心,布局生命科学、生物安全、研发外包等领域,加快发展生物制药、化学药、现代中药。支持深圳建设全球生物医药创新发展策源地,做精做深生物信息、细胞与基因治疗等领域,重点推进新靶点化学药、抗体药物创制及中药现代化发展,开展高端仿制药、首仿药等研发。支持珠海打造生物医药资源新型配置中心,加快发展精准医疗和中医药医疗服务,重点发展现代中药标准化、高端制剂等领域。支持东莞依托松山湖生物基地,发展生物药、化学药、中药。支持佛山、中山打造生物医药科技成果转化基地、生物医药科技国际合作创新区。支持惠州、东莞打造国内重要的核医学研发中心、生物医药研发制造基地。支持江门、肇庆、湛江建设再生医学大动物实验基地、南药健康产业基地。在粤东粤西粤北地区布局建设化学原料药生产基地、道地药材和岭南特色中药材原料产业基地。2.医疗仪器设备及器械制造。依托广州、深圳、珠海、佛山、江门、汕头等市,大力发展医疗器械行业。广州加快体外诊断产品、高端医用耗材和先进医疗设备等产品研发。深圳依托南山医疗器械产业园、深圳市生物医药创新产业园区、光明现代生物产业园、国家高性能医疗器械创新中心等载体平台,着力发展医学影像诊断类、放射治疗类、医用电子仪器类、介入治疗类、骨科植入体类、口腔义齿类和体外诊断试剂类产品。珠海加快打造唐家湾医疗器械研发生产基地,集聚以医疗器械为主的生物医药创新研发企业。佛山加快发展口腔器材、康复医疗器械、医用导管等医疗器械。江门重点发展医疗装备器械、家庭医疗康复设备、家庭护理设备等诊断器械、治疗器械和辅助器械。汕头加快建设广东省智能化超声成像技术装备创新中心,着力发展医学影像诊断装备产业。3.医疗服务。依托珠三角地区,着力提升医疗服务水平。支持广州、深圳加快发展数字化诊疗设备、家用医疗物联网设备、移动医疗互联网终端的研发生产,以及健康监护产品、康复设备研发与生产。支持全省各市积极发展远程诊断、移动医疗等新业态,提升医疗服务水平。4.健康养生。广州重点布局生命科学、高端医疗、健康养老等领域。深圳重点发展基因测序、细胞治疗等领域。珠海发挥宜居城市健康生态资源优势,发展“医药养”大健康产业。粤东粤西粤北地区发展康复保健、养生养老等产业。10.现代农业与食品推动现代农业与食品产业向精细化管理、高质量发展转型,强化科技支撑,创响“粤字号”品牌,提升岭南特色食品的全球知名度,推广践行绿色可持续发展理念,提高产业开放合作水平,开创集群优势互补、紧密协作、联动发展的新格局。加大龙头企业培育力度,培育一批创新能力突出、规模效益显著、辐射带动能力较强的行业领军企业。到2025年,集群规模(总产值)接近2万亿元,现代农业与食品产业产值分别接近1万亿元 力争全省形成粮食、蔬菜、岭南水果、畜禽、水产、精制食用植物油、岭南特色食品及功能性食品、调味品、饮料、饲料10个千亿级子集群以及茶叶、南药、苗木花卉、现代种业、烟草5个数百亿级子集群。专栏10现代农业与食品重点细分领域发展空间布局1.粮食。依托粤西、粤北粮产区大力发展优质稻米生产,培育壮大广东优质丝苗米品牌,兼顾玉米、薯类作物发展,加快推进水稻生产全程机械化 推动粤西、粤北粮产区及珠三角地区提升粮食产地初加工和精深加工水平,切实加强副产物综合利用,延长产业链,提高附加值。2.蔬菜。加强城郊型商品蔬菜基地、粤西北运蔬菜基地、粤北夏秋蔬菜基地、粤东精细及加工型蔬菜基地建设。培育推广南粤特色蔬菜品种,优化蔬菜品种结构,推广机械化、设施化高效栽培。推广蔬菜采后处理等产地初加工技术与装备。发展果蔬冷链物流系统,开发蔬菜生物转化、高效腌制、节能干制等加工新技术,发展休闲蔬菜食品、腌制蔬菜和方便菜等加工。发展具有广东特色优势的食用菌种植和加工产业。3.岭南水果。茂名、广州、惠州、阳江、东莞等市重点发展荔枝、龙眼。茂名、湛江、阳江等市重点发展香蕉。湛江重点发展菠萝。梅州、韶关重点发展柚子。肇庆、清远、韶关重点发展柑橘。揭阳、汕尾重点发展青梅。4.畜禽。韶关、梅州、湛江、茂名、肇庆、清远、阳江等市重点发展生猪生产及屠宰加工。梅州、惠州、江门、茂名、肇庆、清远、云浮等市重点发展家禽生产屠宰及深加工。5.水产。珠三角地区重点打造水产品流通中心、淡水水产集聚区。粤东、粤西地区重点建设海水水产集聚区。粤东、粤西及珠三角地区鼓励发展深海网箱养殖和大型智能化渔场。粤北地区大力推广综合种养、生态养殖。6.精制食用植物油。依托深圳、东莞、中山、茂名、潮州、韶关、梅州、河源、阳江等市,以豆油、花生油、芝麻油、山茶油、坚果油、橄榄油、葵花籽油、调和油等为重点,引导企业以安全为基本要求,向“优质、营养、健康、方便”方向发展。鼓励重点企业在粤东粤西粤北地区布局建设大型加工基地。7.岭南特色食品及功能性食品。中山、茂名、湛江、潮州等市重点发展特色月饼。汕头、潮州等市重点发展肉制品。广州、梅州、东莞等市重点发展凉茶。广州、中山等市重点发展广式腊味。广州、珠海、汕头、江门、惠州、中山、东莞等市重点发展保健食品、特殊医学用途配方食品等功能性食品。8.调味品。佛山、中山、江门、阳江等市重点发展酱油。广州、湛江、阳江等市重点发展盐业。湛江重点发展糖业。9.饮料。依托广州、深圳、惠州、河源、肇庆、中山等市,以碳酸型饮料、包装饮用水、果汁和蔬菜汁类饮料、蛋白饮料等为重点,推动企业以健康安全为重点,生产科技含量高、文化内涵丰富、岭南元素突出的新型特色功能饮料,做优做强碳酸型饮料和包装饮用水。10.饲料。江门、佛山、湛江、广州、茂名、惠州等市加快发展新兴生物饲料等绿色高效饲料产品。11.茶叶。依托清远、潮州、梅州、江门、韶关等市,重点发展英德红茶、潮州单枞茶、客家绿茶、江门柑茶、韶关白毛茶等优势茶品种发展,大力开发茶食品、茶饮料、茶洗护用品等深加工产品及多元化特色风味茶产品。12.南药。云浮、肇庆、茂名、江门、阳江、潮州等市发展南药种植及初加工。广州重点发展南药制药精深加工。13.苗木花卉。珠三角地区苗木以城市绿化、家庭美化品种为主,花卉以高档盆花、园艺小盆栽为主。粤北地区苗木以珍贵珍稀、绿色生态树种为主,花卉以兰花、珍贵珍稀开花及彩叶品种为主。粤东粤西苗木以沿海防护、红树林树种为主,花卉以盆花、盆景等为主。14.现代种业。依托广州、深圳、珠海、韶关、河源、湛江、茂名、肇庆、阳江、云浮等市,建设广东深圳生物育种创新中心等种业创新平台,加快推进农作物种质资源库和畜禽遗传资源基因库建设,加强生物种质资源创新利用和现代生物育种研究。建立良种繁育基地和新品种展示基地,推进林木种质资源保存体系建设。15.烟草。依托广州、韶关、梅州、清远、湛江等市,推动烟叶和多元产业协调发展,支持复烤企业推进重点品牌原料区域加工中心建设。第二节前瞻布局战略性新兴产业战略性新兴产业主要是以重大技术突破和重大发展需求为基础,对经济社会全局和长远发展具有重大引领带动作用,成长潜力巨大的产业,是科技创新和产业发展的深度融合,具有前瞻性、战略意义突出、附加值高、技术先进、增长潜力大、产业带动强等特征。“十四五”时期,保持十大战略性新兴产业营业收入年均增速10%以上,加快部分重点领域在全球范围内实现换道超车、并跑领跑发展,进一步提升我省制造业整体竞争力。1.半导体及集成电路推进集成电路EDA底层工具软件国产化,支持开展EDA云上架构、应用AI技术、TCAD、封装EDA工具等研发。扩大集成电路设计优势,突破边缘计算芯片、储存芯片、处理器等高端通用芯片设计,支持射频、传感器、基带、交换、光通信、显示驱动、RISC-V(基于精简指令集原则的开源指令集架构)等专用芯片开发设计,前瞻布局化合物半导体、毫米波芯片、太赫兹芯片等专用芯片设计。布局建设较大规模特色工艺制程和先进工艺制程生产线,重点推进模拟及数模混合芯片生产制造,加快FDSOI(全耗尽型绝缘层上硅)核心技术攻关,支持氮化镓、碳化硅等化合物半导体器件和模块的研发制造。支持先进封装测试技术研发及产业化,重点突破氟聚酰亚胺、光刻胶等关键原材料以及高性能电子电路基材、高端电子元器件,发展光刻机、缺陷检测设备、激光加工设备等整机设备以及精密陶瓷零部件、射频电源等设备关键零部件研制。到2025年,半导体及集成电路产业营业收入突破4000亿元,打造我国集成电路产业发展第三极,建成具有国际影响力的半导体及集成电路产业聚集区。专栏11半导体及集成电路重点细分领域发展空间布局1.芯片设计及底层工具软件。以广州、深圳、珠海、江门等市为核心,建设具有全球竞争力的芯片设计和软件开发聚集区。广州重点发展智能传感器、射频滤波器、第三代半导体,建设综合性集成电路产业聚集区。深圳集中突破CPU(中央处理器)/GPU(图形处理器)/FPGA(现场可编程逻辑门阵列)等高端通用芯片设计、人工智能专用芯片设计、高端电源管理芯片设计。珠海聚焦办公打印、电网、工业等行业安全领域提升芯片设计技术水平。江门重点推进工业数字光场芯片、硅基液晶芯片、光电耦合器芯片等研发制造。2.芯片制造。依托广州、深圳、珠海做大做强特色工艺制造,广州以硅基特色工艺晶圆代工线为核心,布局建设12英寸集成电路制造生产线 深圳定位28纳米及以下先进制造工艺和射频、功率、传感器、显示驱动等高端特色工艺,推动现有生产线产能和技术水平提升。珠海重点建设第三代半导体生产线,推动8英寸硅基氮化镓晶圆线及电子元器件等扩产建设。佛山依托季华实验室推动建设12英寸全国产半导体装备芯片试验验证生产线。3.芯片封装测试。以广州、深圳、东莞为依托,做大做强半导体与集成电路封装测试。广州发展器件级、晶圆级MEMS封装和系统级测试技术,鼓励封装测试企业向产业链的设计环节延伸。深圳集中优势力量,增强封测、设备和材料环节配套能力。东莞重点发展先进封测平台及工艺。4.化合物半导体。依托广州、深圳、珠海、东莞、江门等市大力发展氮化镓、碳化硅、氧化锌、氧化镓、氮化铝、金刚石等第三代半导体材料制造,支持氮化镓、碳化硅、砷化镓、磷化铟等化合物半导体器件和模块的研发制造,培育壮大化合物半导体IDM(集成器件制造)企业,支持建设射频、传感器、电力电子等器件生产线,推动化合物半导体产品的推广应用。5.材料与关键元器件。依托广州、深圳、珠海、东莞等市加快氟聚酰亚胺、光刻胶、高纯度化学试剂、电子气体、碳基、高密度封装基板等材料研发生产,大力支持纳米级陶瓷粉体、微波陶瓷粉体、功能性金属粉体、贱金属浆料等元器件关键材料的研发及产业化。依托广州、深圳、汕头、佛山、梅州、肇庆、潮州、东莞、河源、清远等市大力建设新型电子元器件产业集聚区,推动电子元器件企业与整机厂联合开展核心技术攻关,建设高端片式电容器、电感器、电阻器等元器件以及高端印制电路板生产线,提升国产化水平。6.特种装备及零部件配套。依托珠三角地区,加快半导体集成电路装备生产制造。支持深圳加大集成电路用的刻蚀设备、离子注入设备、沉积设备、检测设备以及可靠性和鲁棒性校验平台等高端设备研发和产业化。支持广州发展涂布机、电浆蚀刻、热加工、晶片沉积、清洗系统、划片机、芯片互连缝合机、芯片先进封装线、上芯机等装备制造业。支持佛山、惠州、东莞、中山、江门、汕尾、肇庆、河源等市依据各自产业基础,积极培育特种装备及零部件领域龙头企业及“隐形冠军”企业,形成与广深珠联动发展格局。2.高端装备制造以服务国家战略需求为导向,加快建设珠江西岸先进装备制造产业带,重点发展高端数控机床、海洋工程装备、航空装备、卫星及应用、轨道交通装备、集成电路装备等产业。推动激光制造装备、精密数控磨床、超精密数控金属切割机床等高端数控机床整机及关键零部件研发制造。突破海上浮式风电、海洋可燃冰开采、海上风电机组、波浪能发电装置、深海油气生产平台等海洋工程装备研制应用。推动航空发动机及高温合金材料、航空低成本复合材料、高温涂层材料、防腐蚀、润滑材料研发及产业化,支持水陆两用飞机、高端公务机、无人机等研发制造。支持卫星通信、卫星导航、卫星遥感三大领域融合发展,以及相关整机设备和关键配套软硬件研发,推动卫星在重大经济和民生领域的普及和推广。支持新一代地铁、新型城际轨道车辆、新能源有轨电车和高速磁悬浮列车等轨道交通装备产品线及相关关键零部件研制。重点围绕光学和电子束光刻机关键部件和系统集成开展持续技术攻关,推进缺陷检测、激光加工、芯片巨量组装等集成电路整机设备生产,支持高精密陶瓷零部件、射频电源等设备关键零部件研发。到2025年,高端装备制造产业营业收入达3000亿元以上,打造全国高端装备制造重要基地。专栏12高端装备制造重点细分领域发展空间布局1.数控设备。以广州、深圳、佛山、东莞、中山、江门、阳江、肇庆、韶关为依托,加快推动数控设备精密仪器智能化发展。支持广州、佛山、江门、阳江打造高端数控精密加工装备产业基地,支持深圳、佛山、东莞、中山打造国际领先的激光装备产业基地。广州加快推动数控机床及关键功能部件、关键零部件等领域技术协同攻关。深圳加快发展高端医疗设备装备与精密制造,重点开展先进材料创新和高端医疗装备先进集成和产业孵化。肇庆重点发展智能化仪器仪表、新型传感器、专用智能检测设备、专用核心元器件。支持韶关等市立足现有产业优势建设高端装备零部件配套区。2.海洋工程装备。以广州、深圳、珠海、汕头、中山、阳江等市为依托,建设海洋高端装备产业集聚区。重点推进深圳建设全球海洋中心城市,广州建设海洋工程技术配套设备基地,汕头、阳江建设海上风电产业基地,中山建设海上风电机组研发中心。广州、深圳、珠海、湛江培育一批具有国际水平的海洋工程装备研发中心和重点工程实验室。深圳、中山等市依托大型骨干海工装备企业,发展海洋可燃冰开采、海上风电机组、波浪能发电装置、海洋渔业装备、深海油气生产平台等新型海洋工程装备研制和应用,突破一批关键技术和核心配套装备。汕头发展海上风电开发和设计、设备加工和制造、建设施工和安装、风场运营和维护。阳江重点发展风电高端装备、经济型、紧凑型海洋工程装备。汕尾重点发展海上大兆瓦风机叶片装备。3.航空航天装备。依托广州、深圳、珠海等市,推动航空航天产业链各环节协同发展。支持广州、深圳、珠海建立省航空产业创新平台,打造航空产业发展先行示范区。支持珠海航空产业园建设,推动水陆两用飞机批量生产,加快航空发动机维修项目、航空试飞设施建设。支持汕头、佛山、阳江、揭阳、惠州、云浮等市延伸发展航空装备产业链。4.卫星产品及装备。依托广州、深圳、珠海等市,打造集卫星芯片、终端、关键元器件制造为一体的卫星装备产业集聚区。支持广州、深圳、珠海、惠州依托龙头企业建立卫星产业园区和产业基地,加快推进卫星应用基础设施和地面综合服务平台建设。5.轨道交通装备。依托珠三角地区,建设城际轨道交通网络。支持江门依托轨道交通装备产业基地,重点发展城际和城市轨道车辆的制造、保养以及大中修业务。支持广州、深圳加快建设轨道交通核心装备制造和系统集成、高端咨询设计及增值服务产业基地建设。支持珠海、佛山重点发展低地板车和城市轨道交通车辆的大中修业务。3.智能机器人重点发展机器人减速器、控制器、伺服系统等关键部件研制,支持发展切割、焊接、切削、磨抛、装配、喷涂、建筑施工等机器人集成应用。支持高性能无人机专用芯片、飞控系统、动力系统、传感器、数据链、图传系统等技术研发,以及无人机下游应用发展。支持面向海洋环境监测、海洋探测、海上风电场勘察运维、安防搜救、无人航运等领域,开展无人船设备、配套部件研制。支持发展手术、测温、清扫消毒、医疗物资配送、养老陪护、残障康复等场景应用的专业化服务机器人产品。支持高空作业、危险环境、农业、管道等特种机器人研发。推动机器人智能提升,重点突破机器视觉、人机协作、自主决策等共性智能技术,加强语音识别、移动定位、群体智能等人工智能技术应用。到2025年,智能机器人产业营业收入达到800亿元,建设国内领先、世界知名的机器人产业创新、研发和生产基地。专栏13智能机器人重点细分领域发展空间布局1.工业机器人。以广州、深圳、珠海、佛山、东莞、中山为依托,推动工业机器人在高端制造及传统支柱产业的示范应用。广州依托省机器人创新中心,加快推动以面向汽车、船舶、航空等高端制造业为主的集成应用,完善标准化、检验检测、技术培训、信息咨询等公共服务能力。深圳推动以面向3C产业为主的工业机器人及集成应用,发展工业机器人本体及核心零部件制造。佛山重点打造智能制造产业基地和机器人谷,推进工业机器人在家电、陶瓷、纺织、家具等重点行业的集成应用。东莞重点培育核心零部件企业和机器人系统集成商,推动工业机器人在电子信息制造业、电气机械及设备制造业的集成应用。中山加快推进高端无人装备的产业化。支持揭阳、江门、肇庆、汕头、潮州等市发展机器人整机、配套零部件及集成应用项目。2.无人机。以广州、深圳、珠海为依托,突破无人机专用芯片、飞控系统、动力系统、传感器等关键技术,做大做强无人机产业,推动在物流、农业、测绘、电力巡检、安全巡逻、应急救援等主要行业领域的创新应用。3.无人船。以广州、深圳、珠海为依托,培育壮大无人船产业。广州加快无人艇自主控制技术、协同作业控制技术等研发投入,推动在海洋环境监测、海洋探测等领域应用 深圳加快建设无人船产业化基地,培育一批集研发、生产、销售于一体的无人船骨干企业 珠海开展无人船用高性能复合材料、远程和复杂多样化任务与信息融合等关键技术研究,加快建设珠海万山无人船海上测试场。4.服务机器人。依托广州、深圳、佛山等市服务机器人产业基础,围绕助老助残、家庭服务、医疗康复、救援救灾、能源安全、公共安全、重大科学研究等领域,重点发展消防救援机器人、手术机器人、智能型公共服务机器人、智能护理机器人等标志性服务机器人。5.机器人智能技术。支持珠三角地区开展智能机器人相关软件开发。依托广州、深圳、佛山、东莞、中山、惠州等市,以智能感知、人机协作、自主决策为突破方向,重点突破复杂动态场景感知、实时精准定位、自适应智能导航等人工智能共性技术,提升工业机器人控制、传感和协作性能。支持广州、深圳等市加强语音识别、移动定位等技术应用,提升服务机器人人机交互及自主作业水平。支持深圳重点突破群体智能技术,提升多无人机(船)协同作业与交互能力。支持广州、深圳、佛山、东莞等市推动机器人与物联网的融合应用,开展机器人故障诊断及预测性技术研究,提高机器人运维水平。4.区块链与量子信息突破共识机制、智能合约、加密算法、跨链等关键核心技术,开发自主可控的区块链底层架构,推进可信服务网络基础设施建设 聚焦自主可控和互联互通等关键要素,加快推动区块链标准与技术规范发展,完善标准体系。丰富国产区块链的应用生态,强化区块链技术在数字政府、智慧城市、智能制造等领域应用。开展量子计算、量子精密测量与计量、量子网络等新兴技术研发与应用,建立先进科学仪器与“卡脖子”设备研发平台。到2025年,区块链产业进入爆发期,可信数据服务网络基础设施基本完善,形成区块链技术和应用创新产业集群国际化示范高地 建成广东“量子谷”,打造世界一流的国际量子信息技术创新中心和我国量子信息产业南方基地。专栏14区块链与量子信息重点细分领域发展空间布局1.区块链。重点支持广州、深圳、佛山、珠海、东莞等市协同联动,推进技术攻关、成果转化和应用推广。支持广州建设以区块链为特色的中国软件名城示范区,打造国家级区块链发展先行示范区。支持深圳依托数字货币研究院,布局数字货币为主的金融科技产业,打造以区块链为特色的数字经济示范窗口。推进佛山、珠海、东莞、中山建设区块链+智能制造创新产业园和金融科技应用集聚区,推动产业细分领域差异化、互补化、特色化示范应用。2.量子信息。依托广州、深圳、东莞、肇庆等市,积极布局量子信息前沿技术和基础研究,推动相关领域科技研发和成果转化,发展量子信息研发、核心器件产品制造、应用服务等,推动建立量子信息产业园区,加快量子信息上中下全产业链条布局。5.前沿新材料重点突破超导材料、智能、仿生与超材料、高温合金、极端环境材料等研发制备。着力推动石墨烯材料规模化制备技术研发和产业化应用。突破宽禁带和超宽禁带半导体材料、高性能低成本增材制造材料、高性能铝/镁合金新材料、高端溅射靶材、粉末冶金新材料、高性能复合材料等研制应用。着力突破关键零部件表面功能化及防护关键制备技术。支持纳米材料研发及在光电子、新能源、生物医用、节能环保等领域应用。开展前沿新材料及其相关产品研发、测试、评价新技术研究,开发高端测试仪器设备,突破材料基因工程的高通量计算/实验/专用数据库等关键技术,促进平台融合和协同。到2025年,前沿新材料产业营业收入超过1000亿元,培育建设5个具有全球竞争力的产业基地和7个特色产业集聚区,打造国内领先、世界知名的前沿新材料产业制造高地。专栏15前沿新材料重点细分领域发展空间布局1.新型半导体材料。以广州、深圳、佛山、东莞、中山、珠海、江门为依托,利用东莞天域、深圳基本半导体、珠海英诺赛科、佛山国星、江门华兴光电等半导体企业以及高校和科研院所的基础优势,重点开展碳化硅、氮化镓、磷化铟等为代表的第三代半导体材料的研发与生产。2.电子新材料和电子化学品。以广州、深圳、佛山、东莞、珠海、江门、肇庆、惠州、汕头、潮州、韶关、梅州为依托,巩固电子新材料及电子化学品发展优势,重点发展特种电子玻璃、电子陶瓷、稀土功能材料、电子薄膜材料、高性能电子用铜/铝合金、金属电子浆料及电子化学品产业。3.先进金属材料。构建以珠江西岸和粤北地区为主的先进金属材料产业集聚区。依托韶关、肇庆、湛江、阳江、云浮等市,重点发展高性能钢材。依托广州、佛山、中山发展高性能铝/镁合金。依托东莞发展基于中子散射技术的新一代高质量高温合金的高通量设计、开发及应用。依托清远、韶关发展高性能靶材。依托惠州、梅州发展高性能铜箔。依托深汕特别合作区发展航空高温合金材料。依托潮州重点建设钨粉末研发和生产基地,发展硬质合金。依托河源重点建设超硬新材料生产基地。4.新能源材料。以深圳、广州、珠海、佛山、东莞、江门、惠州和云浮为依托,建设新能源材料集聚区,重点发展高性能动力电池材料、燃料电池材料、储氢材料和核能材料产业。5.生物医用材料。以广州、深圳、东莞、珠海为依托,建设生物医用材料集聚区,辐射带动粤东和粤西两地的高端生物医药和医疗器械产业。重点发展纳米医药材料、医用高分子材料、植/介入医用材料、医用耗材、中成药原料提取物等技术和产业。6.纳米材料。以广州、佛山为依托,建设纳米科技核心技术研发、中试孵化、微纳加工、工程化示范应用和产业化等功能性基地与平台。依托广州,建设“中国纳米谷”,打造全球领先的“纳米创新集群”,形成纳米技术产业集聚区和辐射效应圈。7.材料创新服务。以广州、深圳和东莞为依托,构建材料基因工程研发平台和材料测试验证评价平台。6.新能源大力发展核能、海上风电、太阳能等优势产业,加快培育氢能、储能、智慧能源等新兴产业。支持发展三代核电装备及技术,加快研发四代核电产品,强化核能综合利用。推进海上风电规模化开发,因地制宜布局分散式陆上风电项目,发展大容量、抗台风、智能化风机整机及配件制造。推进太阳能光伏发电,发展高效薄膜电池、光伏逆变器、薄膜电池等成套生产设备。加快培育氢能产业,建设燃料电池汽车示范城市群,建设制氢加氢基础设施,推动氢燃料电池高性能电堆国产化,发展成套装备及关键材料配件,打造多渠道、多元化氢能供给体系。加快天然气水合物商业化开采和产业化应用,优化省内天然气基础设施布局,提升天然气接收和储备能力。支持发展智能电网及微电网基础装备、电力专用芯片、智能传感、电力机器人、输变配工程集成、储能及智慧能源系统等产业。到2025年,新能源产业营业收入达到7300亿元,非石化能源消费约占全省能源消费总量的30%,形成国内领先、世界一流的新能源产业集群。专栏16新能源重点细分领域发展空间布局1.核能。依托广州、深圳、阳江、东莞、江门、惠州、湛江,加快核能开发及综合利用。广州重点发展三代核电装备制造,四代核电、核聚变装置设计研发与先进制造。深圳、阳江、东莞、江门重点发展核电运行维护、先进燃料研制、核材料研发与检测、非动力核技术应用等产业。惠州、江门、湛江重点发展核电工程施工调试、核能综合利用等产业。2.海上风电。推进珠海、惠州、阳江、江门、湛江、中山、汕头、汕尾、揭阳等市海上风电项目规模化开发,打造千万千瓦级海上风电基地,推进海上风电集约化集群化发展,建设阳江海上风电全产业链基地,重点发展海上风电装备制造业,加快推进汕头海上风电组装基地、揭阳运维及配套组装基地、汕尾海上工程及配套装备制造基地建设。3.天然气及其水合物。依托广州、深圳、珠海、惠州,构建覆盖设计、研发、总装、建造和应用等上中下游环节的天然气及其水合物产业链。推进深圳、惠州、江门、潮州、揭阳、茂名、汕尾等市LNG接收站建设,优化省内天然气基础设施布局。4.太阳能。依托广州、深圳、佛山、东莞、中山,重点建设光伏生产设备、辅料、逆变器和高效PERC(钝化发射极背面接触电池)电池生产基地。5.氢能。以广州、佛山、深圳等市为依托,推进佛山南海区和高明区、佛山(云浮)产业转移园、广州开发区等氢燃料电池产业园建设,建设广深高温燃料电池及系统研发制造基地、深圳南山氢燃料电池反应堆研发示范区,建设广州、佛山、东莞、云浮氢能高端装备产业集聚区和惠州、茂名、东莞、湛江氢能制储运产业集聚区。6.生物质能。依托广州、深圳、佛山等市,结合循环经济产业园、先进制造业产业建设,扩大生物质能应用,带动相关设备研发制造。7.智能电网和先进储能。依托广州、深圳、珠海、佛山、东莞、惠州等市,发展智能电网和先进储能。依托广州、深圳、珠海、东莞,重点发展电力专用芯片、智能传感、通信与物联、智能终端、电力大数据、智能输变配工程集成等产业。依托惠州重点发展多能互补能源系统监测、控制和保护装备的研发、制造。依托深圳、佛山、惠州、东莞等市重点发展化学储能技术,以及锂离子动力电池梯次利用、飞轮储能及混合储能技术等,推动新型充换电技术和装备的研发。7.激光与增材制造围绕光纤激光器和半导体激光器生产、增材制造装备制造等产业重点环节,重点研制大模场光纤、高品质晶体等专用材料,高功率合束器、光纤光栅等核心零部件,半导体激光器、万瓦级工业用光纤激光器等关键器件,数据处理、工艺规划与控制等专用软件,以及精密激光智能装备、增材制造高端装备等重大装备,组织实施省重点领域研发计划重大专项。加快推动激光与增材制造在汽车、模具、核电、船舶等传统产业以及新一代信息技术、超高清视频显示、智能机器人、量子信息等新兴产业领域的融合应用。到2025年,激光与增材制造产业规模保持全国领先,营业收入超过1800亿元,逐步形成具有国际竞争力的激光与增材制造产业集群。专栏17激光与增材制造重点细分领域发展空间布局1.激光制造。以广州、深圳为核心,以珠海、佛山、惠州、东莞、中山、阳江等市产业集聚区为配套,打造激光制造产业链。广州发挥广东激光等离子体技术研究院等高校院所科研优势,重点布局专用材料、精密激光制造等。深圳发挥创新企业聚集发展和国际合作方面的优势,依托深圳激光谷产业园、大族全球激光智能制造产业基地等,重点布局激光材料、核心器件、激光装备等。东莞依托南方光源研究测试平台、超强超短激光装置等科学装置,布局精密激光智能装备及核心零组件研发、设计及生产线。支持珠海、佛山、中山、惠州、阳江等市发展激光制造项目。2.增材制造。以广州、深圳、珠海、东莞、中山、佛山等市为核心,其他市为配套,构建增材制造完整产业链,推进增材制造技术在汽车、船舶等领域的创新应用。广州依托3D打印产业园,重点布局生物增材制造、增材制造装备等。深圳加快高精度增材制造原型技术的产业化转化,开展高性能高精度增材制造打印材料研发。珠海建设粤港澳3D打印产业创新中心,布局打印耗材制造。佛山建设3D打印产业基地,布局增材制造设备制造项目。支持东莞、中山、揭阳、汕头、潮州、江门、河源等市发展特色3D打印项目。8.数字创意推动数字创意与生产制造、文化教育、旅游会展、生活健康等各领域的融合渗透,鼓励跨行业跨领域合作。巩固提升移动游戏、客户端游戏、游戏游艺设备制造等游戏产业优势,大力发展超休闲游戏、功能性游戏,加快布局云游戏市场。重点培育国产动漫,发展全年龄向动漫产品,促进视频平台与动漫产业链深度融合。支持电竞、直播、短视频产业创新发展,推动网络文学、影音、资讯等数字内容精品化发展。提升创新设计能力,围绕电子信息、家电、服装、玩具等行业加快发展工业设计,深化建筑、景观、市政等工程设计领域交流合作。到2025年,数字创意产业营业收入突破6000亿元,打造全球数字创意产业发展高地。专栏18数字创意重点细分领域发展空间布局1.数字技术应用及数字创意融合服务。依托广州、深圳、汕头等市发展数字技术应用及融合服务发展。广州、深圳发挥“双核”引擎作用,带动珠三角地区发展数字技术应用及数字创意融合服务,重点建设数字电视(深圳)国家工程实验室、数字家庭互动应用国家地方联合工程实验室、广东省数字创意技术工程实验室等创新平台。汕头重点发展玩具、服装等数字创意衍生品制造等。2.游戏动漫、电竞、直播、短视频。依托广州、深圳、佛山、东莞、珠海、汕头等市,加快推动相关细分领域发展。广州、深圳、珠海、汕头、东莞巩固提升游戏动漫发展优势,中山加快游戏游艺设备业数字化转型。广州、深圳、佛山大力培育或引进国际顶级电竞赛事,重点培育以本土原创游戏为竞技项目的职业赛事。广州、深圳、佛山、汕头重点发展影视制作,支持广州建设广东南方文化产权交易所,支持深圳建设文化产权交易所、文化艺术品版权区块链应用研发基地,支持汕头华侨经济文化合作试验区创建国家版权和数字贸易基地。3.创新设计。依托广州、深圳、佛山、东莞、珠海、中山等市,加快推动全省创新设计发展。加快建设珠三角工业设计走廊,支持广州、深圳、佛山等市分别设立区域设计对接服务中心,打造设计师超千人的工业设计基地。支持粤东粤西粤北地区加快发展工业设计,培育国家级、省级工业设计中心。9.安全应急与环保重点推进监测预警技术装备、应急处置救援技术装备等安全应急关键技术装备提升,提高安全应急服务水平,创新安全应急技术和服务模式。聚焦自然灾害、事故灾难、公共卫生、社会安全等四类突发事件预防和应急处置需求,提升安全应急产品的供给能力,完善安全应急物资实物储备、社会储备、产能储备、技术储备,构建立足广东、面向全国的安全应急物资生产保供体系。重点发展高效节能、环境保护监测及环保治理、资源综合利用等技术装备。聚焦重点行业领域,支持开发节能环保产品、设备及相关技术服务,推动绿色石化、先进材料等重点行业绿色低碳升级。畅通重点产业资源循环利用,持续推动汽车、家电、消费电子产品更新换代,支持符合条件的相关行业领域生产企业,通过自建、联合和委托等方式开展回收拆解业务。到2025年,安全应急与环保产业总产值超3800亿元,产业发展质量明显提升,安全应急与绿色发展支撑保障能力显著增强,形成龙头带动、产业集聚、协同创新的安全应急与环保产业体系。专栏19安全应急与环保重点细分领域发展空间布局1.安全应急。支持有条件的园区、集聚地建设国家安全(应急)产业示范基地和生产能力储备基地。依托珠三角地区,建设安全应急装备制造的技术研发和总部基地,依托粤东粤西粤北地区,建设安全应急装备制造产业集聚区。广州依托广州开发区、黄埔区建设广东省应急科技产业园,重点发展智能安全防护和无人救援产业,研发新型特色智能安全防护产品等。深圳依托中海信创新产业城建设应急产业示范基地,重点发展安防、应急通信等方面应急产品、技术和服务。佛山依托粤港澳大湾区(南海)智能安全产业园,重点围绕信息、生产、消防、交通、建筑、治安六大安全领域,重点引入安全产业平台及项目,加快创建国家安全(应急)产业示范园区。清远依托广清产业园、广佛(佛冈)产业园建设广东省公共卫生应急防护物资产业园。东莞依托松山湖—寮步应急产业带,重点发展消防救援、应急电源等应急产品、技术和服务。支持粤东地区依托国家东南应急救援中心建设以抗洪抢险、防御台风及次生灾害为主的应急救援装备产业示范地。2.节能环保。依托珠三角地区,打造节能环保技术装备研发基地。依托粤东粤西粤北地区,打造资源综合利用示范基地。广州、深圳、佛山、东莞等市发展高效节能电气装备、污水处理和水生态修复技术装备、重污染土壤成套化技术装备、环境监测技术装备、固体废物处置利用技术装备、节能环保综合服务等。汕头、韶关、江门、湛江、茂名、肇庆、河源、清远、云浮等市发展固体废物综合利用项目。10.精密仪器设备巩固提升示波器、监护仪、血细胞分析仪、功率分析仪、基因测序仪、质谱仪等国内国际领先优势。重点突破工业自动化测控仪器与系统、大型精密科学测试分析仪器、高端信息计测与电测仪器等领域技术研发与产业化应用。支持新型传感技术、智能化技术、计量测量技术、功能安全控制技术等共性核心技术研究与产业化应用,打造贯穿创新链、产业链的创新生态系统。到2025年,精密仪器设备产业规模达到约3000亿元,基本建成产业结构布局合理、自主创新能力突出、具有核心国际竞争力的世界级现代化产业集群。专栏20精密仪器设备重点细分领域发展空间布局1.工业自动化测控仪器与系统。以珠三角地区为核心,重点支持广州、深圳开展精密仪器设备研发创新、制造,广州加快推进面向消费电子产线的模块化嵌入式仪器平台、基于AI的产线视觉测试平台、面向自动化产线的模块化夹具与载板平台等研制工作。深圳加快OCA(光学胶)自动全贴合设备研发。中山加快“超精密仪器技术与工程产业化及研发中心”建设,研发共焦显微仪器、超精密多轴基台和平板在线检测装备等。2.大型精密科学测试分析仪器。以广州、深圳为核心,支持东莞、佛山、江门、肇庆、珠海、中山、汕头等市发挥生产制造优势,建设精密仪器设备生产基地,支持其他市做好产业配套发展。支持广州、深圳等市高校、科研院所加强精密仪器设备检测创新原理和方法的基础研究,解决精密仪器设备的关键技术问题,逐步实现精密仪器设备产业的短板技术与关键设备国产化突破和进口替代。支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克激光器、离子源、真空系统、数据采集等关键核心技术。在广州、深圳、佛山、东莞、珠海等市布局建设精密仪器设备科技产业园区,支持中山西湾国家重大仪器科学园、东莞松山湖科技产业园区、广州生命科学大型仪器区域中心等各类专业园区(中心)建设。3.高端信息计测与电测仪器。以广州、深圳为核心,加快高精度电测仪器、户外高加速老化试验仪、高精度多声道超声波流量计、5G数据采集综合测试仪、高精密触发测量、高精密扫描测量等仪器研发创新,支持开展环境应力筛选、可靠性强化、产品寿命等可靠性工程试验、产品可靠性检验检测等应用。支持佛山加快红外光谱仪等测量仪器研发创新。第三节谋划发展未来产业未来产业是基于前沿、重大科技创新而形成,尚处于孕育阶段或成长初期,代表科技和产业长期发展方向,并将会对未来经济社会发展产生重要支撑和巨大带动作用的先导性产业,具有原创前沿引领性、突破性、颠覆性、未来高成长性、战略支撑性、生态网络属性强等主要特征。“十四五”时期,支持引领产业变革的颠覆性技术突破,着力推动我省未来产业不断开创新的经济增长点,抢占制造业未来发展战略制高点。聚焦世界新产业、新技术发展前沿领域,立足全省技术和产业发展基础优势,积极谋划培育卫星互联网、光通信与太赫兹、干细胞、超材料、天然气水合物、可控核聚变—人造太阳等若干未来产业领域。面向国内外技术更新突破和产业升级重大需求,促进产业、技术交叉融合发展,布局一批未来产业技术研究院,丰富未来产业应用场景,运用前沿技术推动全省产业跨界融合创新发展。第四章重大工程大力实施制造业高质量发展“强核”“立柱”“强链”“优化布局”“品质”“培土”六大工程,提升产业基础高级化、产业链现代化水平,加快先进制造业和现代服务业深度融合发展,深度融入全球产业链,不断开创制造强省建设新局面。第一节实施强核工程,完善制造业协同创新体系坚持创新在现代化建设全局中的核心地位,加快推动产业基础高级化发展和关键核心技术攻关,推动“卡脖子”问题成体系解决,构建完善全省制造业协同创新体系,积极融入全球制造业创新网络,打造全球重要的制造业创新聚集地。推动产业基础高级化。充分发挥集中力量办大事的制度优势,立足产业发展实际和发展优势,主动对接、积极参与国家产业基础再造工程,主动承接国家产业基础提升相关重点项目,着力推荐一批基础条件好、产业需求大、带动作用强的项目争取国家政策支持。落实国家重大短板装备实施方案。加大制造业基础零部件及元器件、基础软件、基础材料、基础工艺和产业技术基础等领域科研攻关力度,安排一批重大科技攻关项目,集中资源突破一批需求迫切、基础条件好、带动作用强的基础产品和技术,着力解决全省制造业发展“卡脖子”问题。加快关键核心技术攻关。积极探索社会主义市场经济条件下关键核心技术攻关新型举国体制的“广东路径”,坚决打好关键核心技术攻坚战。加强基础研究、注重原始创新,强化应用基础研究主攻方向,推动基础研究向产业创新转化。对接国家重点项目平台资源,大力实施广东“强芯行动”和“铸魂工程”,加快发展集成电路、新材料、工业软件、高端装备等产业关键核心技术,组织实施重点领域重大研发计划和重点专项,通过支持关键技术产品供需对接和应用推广,以揭榜制等方式持续支持关键核心技术产业化协作攻关,着力解决“卡脖子”问题。支持企业在人工智能、区块链、量子信息、生命健康等前沿领域加强研发布局,增强5G、超高清显示等领域产业技术优势。加快建设珠三角国家科技成果转移转化示范区,加强华南技术转移中心建设,探索建立深圳技术交易服务中心,发挥全省在制造、技术、产业链配套、市场渠道等方面综合优势,加快形成有利于新技术快速大规模应用和迭代升级的良好条件,以市场为主导加速推动科技成果向现实生产力转化。专栏21关键核心技术攻关专项行动1.编制重点产业发展技术路线图。明确产业技术和市场需求,把脉前沿科技动向,梳理全省重点产业相关细分领域技术攻关目标和发展重点,实施短板突破计划。2.建立关键核心技术攻关数据库。对接国家重点领域技术研发专项、平台、资金等资源,结合产业发展技术路线图,建立并滚动更新关键核心技术攻关数据库,梳理全省重点产业关键核心技术短板、重点项目进展及攻关成果清单,持续跟踪技术攻关动态,开展技术攻关成效评价评估工作。3.组织开展分阶段分领域技术攻关。充分发挥集中力量办大事的制度优势,鼓励高校院所、重点企业积极参与关键核心技术攻关。加大“从0到1(基础研究)”阶段和“从1到100(工程化)”阶段的技术攻关力度,改进科技项目组织管理方式,围绕不同行业领域的产业材料、设备、制造等技术攻关项目,综合运用“揭榜挂帅”、众包众筹等方式,组织开展协同攻关。构建制造业协同创新体系。加大全省共性技术研发投入,聚焦产业亟需解决的共性技术问题,加快形成更加具有创造活力和区域协同性、分工协作机制明确的制造业协同创新体系。加强粤港澳产学研协同发展,加快建设粤港澳大湾区国家技术创新中心,布局一批具有全球影响力的重大科技基础设施,创建一批国家级、省级制造业创新中心、企业技术中心等产业创新平台。强化企业技术创新主体地位,支持企业牵头组建创新联合体,促进各类创新要素向企业集聚,鼓励企业加大技术研发投入,对企业投入基础研究实施税收优惠。实施规模以上工业企业研发机构全覆盖行动。鼓励产业链上下游企业、高校、科研院所及金融机构组建创新联合体,完善以企业为主体、市场为导向、产学研深度融合的技术创新体系。围绕新技术、新业态、新模式、新场景,完善“众创空间—孵化器—加速器—科技园”全链条孵化育成体系。营造开放包容的创新环境,完善知识产权创造、运用、交易、保护等制度安排,加大创新成果保护力度,激发创新积极性。集聚全球产业创新资源。加强国际科技创新合作,积极融入全球创新网络。扩大制造业高水平开放合作,支持制造业龙头骨干企业通过项目合作、高水平技术和人才团队引进、联合研发、联合共建等形式,吸引全球优势创新资源、先进生产要素和高精尖产业项目汇聚广东。加快广深港澳科技创新走廊建设,全面推进粤港澳三地制造业创新合作,完善粤港澳创新要素自由流通机制,支持港澳企业在粤设立研发机构,吸引港澳地区高水平创新人才落户,推动创新要素双向流通。第二节实施立柱工程,打造具有国际竞争力的产业集群和企业群瞄准国际先进标准打造先进制造业基地,构建大中小企业融通发展的企业群,培育打造十大战略性支柱产业集群和十大战略性新兴产业集群,加快推动先进制造业和现代服务业深度融合发展。做大做强制造业企业群。支持大型骨干企业通过兼并、重组、合作等方式做大做强做优,加快培育一批具有全球竞争力的世界一流企业、具有生态主导力的产业链“链主”企业。加大对中小微企业、初创企业的政策支持,完善中小企业公共服务体系,实施专精特新中小企业专项培育工程,在产业链重点节点培育形成一批专精特新“小巨人”企业和单项冠军企业。鼓励产业链上下游企业强强联合,大力提升产业链整合能力,构建大中小企业融通发展的企业群。专栏22制造业企业群培育专项行动1.构建制造业企业梯度培育体系。聚焦战略性产业集群培育发展,建立完善我省具有生态主导力的产业链“链主”企业、大型骨干企业、制造业单项冠军企业、专精特新中小企业等优质企业梯次培育发展的体系。弘扬企业家精神,建立优质企业“白名单”,鼓励支持优质企业形成更多创新、技术、质量、规模、效益、品牌、形象世界一流的企业,探索开展企业分类综合评价,引导土地、劳动力、资本、技术、数据等资源向集群优质企业流动。加大对专精特新中小企业在融资服务、技术服务、创新驱动、转型升级、专题培训等方面支持,通过“一企一策”等方式帮助企业解决发展难题。2.促进大中小企业融通发展。支持优质企业在产业集群建设中发挥领军作用,牵头承担重点研发计划、重点项目和重大平台建设等任务,通过技术输出、资源共享、供应商管理等方式整合产业链上中下游要素资源,形成功能互补、协作紧密、关键环节自主可控的产业配套能力。依托工业互联网平台推动产业链上下游企业实现系统和数据对接,构建跨界融合的新型产业供应链体系,推动大中小企业融通发展。紧抓粤港澳大湾区建设契机,推动在粤的港澳台资企业联合本土企业强化生产组织创新、技术创新、市场创新,充分发挥各类企业在建设世界级产业集群中的重要作用。3.积极构建亲清的政商关系。优化企业省长直通车制度等对企业服务联系制度,推动省、市、县建立完善服务企业的专门工作机制,加强各级经济和企业管理部门与企业的人员双向交流,探索通过“数字广东”建立统一的企业诉求响应平台。支持企业参与制订行业发展规划、行业发展和改革政策、行业标准和规范,以及制定市场准入、环境保护、安全生产、招标投标、政府采购等对企业切身利益或者权利义务有重大影响的政策文件。培育战略性产业集群。加快新一代电子信息、绿色石化、智能家电、汽车、软件与信息服务、超高清视频显示、生物医药与健康等战略性支柱产业发展,高水平打造世界级先进制造业集群 加快先进材料、现代轻工纺织、现代农业与食品等特色优势产业转型升级,在细分领域培育一批百亿级、千亿级特色子集群。加快培育半导体与集成电路、高端装备制造、智能机器人、区块链与量子信息、前沿新材料、新能源、激光与增材制造、数字创意、安全应急与环保、精密仪器设备等十大战略性新兴产业集群,推动部分重点领域在全球范围内实现并跑领跑发展。落实省战略性产业集群联动协调推进机制,创新集群治理模式,完善集群发展公共服务体系,培育发展产业集群发展促进组织和战略咨询支撑机构。推动制造业与服务业深度融合。大力发展服务型制造,培育一批服务型制造示范企业和平台,支持创建服务型制造示范城市。支持研发设计、文化创意、电子商务等服务企业以委托制造、品牌授权等形式向制造环节延伸,推动国家级、省级工业设计中心和省级工业设计研究院设立产业服务中心,加快珠三角工业设计走廊建设,支持打造制造业电子商务平台。着力完善生产性服务业配套,推动科创服务、金融服务、商务咨询与会展、人力资源服务、系统集成、物流与供应链管理等服务业态规模化、专业化发展,向价值链高端延伸。保护和利用工业遗产资源,大力发展工业文化旅游,鼓励有条件的企业、园区等开发工业旅游产品、打造工业旅游精品线路,支持深圳争创国家级工业博览馆。第三节实施强链工程,推动制造业迈向全球价值链中高端着力抓好产业链稳链、补链、强链、控链工作,保障重点产业链稳定安全,扩大制造业设备更新和技术改造投资,推动重点产业高端化、数字化、智能化、网络化、绿色化升级发展,深度参与构建国内国际双循环新发展格局,打造制造业高水平开放合作先行地,构筑互利共赢的产业链供应链合作体系。着力提升产业链供应链现代化水平。全力保障产业链供应链安全稳定,统筹协调产业链供应链关键节点布局,支持建立重点产业链的核心企业库,加强国际产业安全合作,推动产业链供应链多元化,探索建立产业链供应链安全评估机制并开展常态化评估,增强产业链供应链自主可控能力。立足我省产业规模优势、配套优势和部分领域先发优势,在培育发展新兴产业链中育长板、在改造提升传统产业链中锻长板。加快补齐产业链供应链短板,着力突破新一代电子信息、高端装备制造等产业的技术缺失和薄弱环节,支持绿色石化、新能源等产业通过精细化工和制造业服务化等手段延伸产业链和价值链。推动省内重点产业加快形成更强创新力、更高附加值、更安全可靠的产业链供应链,支持省内重点企业与产业供应链上下游企业联合开展技术攻关和生产制造,加强应用牵引、整机带动,着力打通“设备—原材料—零部件—整机”产业链条。深化新一代信息技术与制造业融合发展。加快推进数字产业化和产业数字化,推动数字经济和实体经济深度融合,运用互联网、大数据、人工智能等新一代信息技术推动制造业企业实施数字化转型。大力推进智能制造、工业互联网试点示范和工业机器人应用普及,培育“工业互联网+安全生产”协同创新模式,支持工业企业“上云上平台”,推动工业企业运用工业互联网实施数字化网络化智能化改造。以智能制造为主攻方向、以提升质量效益为目标,坚持数字化、网络化、智能化并行推进,扩大制造业设备更新和技术改造投资,建设智能制造基地,打造全国智能制造发展示范引领区。大力发展智能制造装备与智能工业软件,提升国产智能技术、产品与装备市场占有率,培育智能制造系统解决方案供应商,积极参与国家智能制造、工业互联网等标准体系建设。推动制造业绿色低碳发展。落实国家碳达峰部署要求,持续优化用能结构,提高能源利用效率,持续开展节能监察、能效对标和能效“领跑者”引领行动,推广先进节能技术装备。推动工业企业开展清洁生产,支持园区循环化改造。强化绿色制造体系建设,按照产品全生命周期绿色管理理念,推进重点行业企业开发绿色设计产品,打造绿色工厂,构建绿色供应链。继续培育创建工业固废综合利用示范项目,推广资源综合利用技术与装备,培育资源综合利用龙头企业,促进资源综合利用产业集聚发展。专栏23智能化绿色化改造专项行动1.推动智能制造技术创新和试点示范。支持建设区域性智能制造产业科技创新平台,开展供需精准对接智能制造技术研究,推进智能制造关键技术突破,持续完善智能制造技术标准体系。围绕重点行业领域组织智能制造相关专业机构开展企业现场咨询诊断,明确企业数字化智能化改造需求。培育一批国家级、省级智能制造示范项目和标杆企业。2.提升重点产业链、产业集群智能制造水平。推广产业链协同创新试点经验,鼓励有条件的市围绕特色优势产业集群继续开展试点,推动产业链、创新链、资金链深度融合,为中小企业智能化升级赋能。打造智能工厂和灯塔工厂⑥,到2025年,全省灯塔工厂数量超过5家。实施智能制造产业生态合作伙伴计划,建设智能制造公共服务支撑平台。推动服务商、企业、行业协会、科研机构等组成产业集群数字化转型联合体,加速集群数字化智能化转型升级步伐。3.推进工业互联网创新应用。高标准建设国家工业互联网示范区。继续推动建设工业互联网标识解析体系。加快推动规模以上工业企业全面应用工业互联网技术加快数字化转型。分类施策推动制造业数字化转型,支持制造业龙头企业打造一批工业互联网应用标杆示范,打造3—5家具备强大竞争力的跨行业、跨领域工业互联网平台,构建适应制造业数字化转型的工业互联网体系。加快推动中小工业企业“上云上平台”,开展产业集群数字化转型试点,提升产业链协同水平。实施5G赋能产业集群高质量专项行动,建设5G应用标杆示范。4.强化绿色制造体系建设。以促进全产业链和产品全生命周期绿色发展为目的,以绿色工厂、绿色设计产品、绿色园区、绿色供应链为主要内容,支持优势企业及园区积极创建国家级绿色制造试点示范,推动全省打造绿色制造体系。支持重点行业开展绿色工厂创建,推动工厂用地集约化、生产洁净化、废物资源化、能源低碳化。推动绿色设计,支持绿色设计共性技术研发应用和绿色产品开发。打造绿色园区,加快实现园区能源梯级利用、水资源循环利用、废物交换利用、土地节约集约利用。支持重点行业企业确立可持续绿色供应链管理战略,实施绿色伙伴式供应商管理,搭建企业供应链绿色信息管理平台,带动上下游企业绿色发展。促进国内国际双循环。紧紧扭住供给侧结构性改革主线,加强需求侧管理,充分挖掘国内市场潜力,以消费促生产,推动国内国际消费和投资良性互动、产业升级和消费升级协同共进,畅通国内国际产业循环、要素循环、市场循环。深度融入强大国内市场,强化广东与国内各地区在产能扩张、产业链延伸、市场渠道开拓等方面合作,通过产业共建、对口合作等形式将部分先进生产力以及新产品新技术转移拓展至东北、中西部地区,支持华东、华北地区的先进技术成果在广东转移转化。围绕战略性产业集群发展需要,加快完善综合运输大通道、综合交通枢纽和物流网络。鼓励企业深度参与全球产业链供应链重塑,提高全球资源配置能力和防范国际市场风险能力。依托港澳海外商业网络和海外运营经验优势,支持粤港澳企业共同参与“一带一路”建设,支持重点企业“走出去”开展国际产能和装备制造合作,支持更高水平“引进来”,进一步放宽市场准入,广纳国际优势制造业技术、产品和要素资源,深度参与构建涵盖生产体系、研发基地、营销网络和跨国供应链的国内国际双循环体系,推动产业链供应链全球化整合、产品和服务市场国际化延伸,构筑互利共赢的产业链供应链合作体系。加大制造业重大项目招商引资和建设力度。综合运用靶向招商、产业链招商、以商招商等方式,加强与大型央企、世界500强、民营500强企业等国内外制造业龙头企业精准对接,掌握投资意向,吸引优质项目入驻广东。完善省级制造业重大项目库并实施动态管理机制,加强跟踪服务,加快形成制造业重大项目早开工、早建设、早投产、早见效的良性循环、滚动发展格局。促进制造业投资稳存量、促增量,支持省级、市级层面建立健全大型企业、跨国公司联系直通车机制,持续探索与相关国家(地区)建立招商引资常态化工作机制,构建粤港澳大湾区联合推介和招商机制。第四节实施优化布局工程,完善制造业高质量发展区域布局坚持统筹谋划、分类指导、协调推进,打造珠三角高端制造业核心区、东西两翼沿海制造业拓展带、北部绿色制造发展区,以产业园高质量发展为抓手,构建全省“一核一带一区”制造业高质量发展格局。统筹谋划产业布局和产业协作机制。立足各区域功能定位和比较优势,科学统筹珠三角地区与粤东粤西粤北地区生产力布局,推动全省优化生产、生态空间,将珠三角高端制造业核心区打造成为世界领先的先进制造业发展基地,把东西两翼沿海制造业拓展带建设成为全省制造业高质量发展新增长极,以生态优先为导向推动北部生态发展区绿色转型升级,加快完善全省制造业高质量发展格局。充分考虑区域环境容量和资源环境承载力,强化全省制造业产业布局与生态保护红线、环境质量底线、资源利用上线、生态环境准入清单对接,全面落实生态环境管控要求。统筹谋划十大战略支柱产业和十大战略新兴产业空间布局,落实珠三角地区与粤东粤西粤北地区对口帮扶协作机制,支持各地区主导产业差异化发展,强化产业发展整体性和协调性,持续深化产业共建,推动战略性产业集群化、规模化、高质量发展。打造珠三角高端制造业核心区。大力推动珠三角地区制造业高端化发展,强化“双区驱动”和“双城联动”效应,推动形成全省全域参与“双区”建设、“双区”引领带动全省全域发展的区域协同发展格局。继续做强做优珠江东岸电子信息产业带和珠江西岸先进装备制造业产业带,建设粤港澳大湾区(珠西)高端产业集聚发展区。强化珠三角地区与香港、澳门在新一代电子信息、生物医药与健康、人工智能、前沿新材料等领域合作,推动一批世界领先水平产业项目落地,将珠三角高端制造业核心区打造成为世界领先的先进制造业发展基地。推进珠三角产业园提质增效,加快推进村级工业园改造,打好村镇工业集聚区升级改造攻坚战。持续深化产业共建,以广州、深圳为重点研究制定珠三角地区产业疏解清单,促进珠三角核心区制造业产业链向周边区域延伸拓展。支持佛山建设制造业高质量发展试验区,支持东莞建设制造业供给侧结构性改革创新实验区。引导珠三角地区外溢产业相关企业或环节优先向东西两翼沿海制造业拓展带和北部绿色制造发展区转移,建设“飞地园区”。打造东西两翼沿海制造业拓展带。充分发挥“湾+区+带”联动优势,省市合力、跨市联动,依托省级以上工业园区等重大发展平台发展沿海大工业,统筹谋划建设东西两翼沿海制造业拓展带,打造全省制造业高质量发展新增长极。加快沿海经济带东西两翼地区软硬基础设施建设,围绕重点产业链关键补链项目加快实施绿色低碳循环化改造,支持产业园集中连片开展清洁生产审核。围绕湛江、汕头省域副中心城市建设,加快推进粤东各市在绿色石化、新能源、新能源汽车、新一代电子信息等产业同城化发展,支持粤西各市在产业经济、物流商贸、科技研发等领域联动合作。创新发展“飞地经济”,探索构建跨地区转移利益共享机制,积极承接珠三角核心区产业链条长、产业带动性强的先进生产力转移。加快深汕特别合作区建设,按照“深圳研发+合作区落地”模式,集中优势资源将合作区打造成为深圳创新产业承接地。打造北部绿色制造发展区。践行绿水青山就是金山银山的理念,按照生态产业化、产业生态化的发展部署,开展空间规划调整和产业空间清理整治,统筹谋划建设北部绿色制造发展区。限制、淘汰污染型产业,重点发展环境友好型的生态产业,大力发展现代农业与食品、新材料、新能源、生物医药与健康等特色产业。积极推进北部生态发展区与珠三角地区产业对接,探索培育大农场、大花园对接大工厂、大城市产业发展新模式,形成紧密衔接、互为支撑的产业分工业态。推行北部生态区全域绿色制造,加快推动钢铁、有色、建材等高载能行业改造升级,减少碳排放。推动工业集中进园,推进韶关全国产业转型升级示范区以及河源深河产业共建示范区、梅州梅兴华丰产业集聚区、广清经济特别合作区、云浮氢能产业基地等建设。专栏24产业园高质量发展专项行动1.构建产业园高质量发展新格局。围绕战略性产业集群建设,省市合力建设一批产业特色突出、产业配套完备的高水平园区。布局一批符合国土空间总体规划、具备一定开发基础条件、有明确产业发展定位的省产业园,培育建设一批产业特色鲜明、产业集中度较高、具备产业核心竞争力的特色产业园。按照“一核一带一区”区域布局,支持设立若干大型产业园区,承载大项目、大产业、大集群。2.加强统筹协调和动态管理。建立统筹协调机制,科学规划产业园布局,强化对园区的培育、支持和指导。定期对省产业园和特色产业园开展监测、评估,实行“有进有出”的动态管理。3.强化合作共建。支持以“省市联手、合作共建”方式,以培育建设特色产业园区为重点,省市共同在规划引导、园区建设、重点项目建设、招商引资引技、重大创新平台建设、技术改造和技术创新、产业链配套、制造业人才支撑、投融资服务等方面,加强合作,集中资源,凝聚合力,及时协调解决园区建设发展中遇到的困难和问题,加大对园区建设发展的支持力度。4.提高园区产业承载能力。打好村镇工业集聚区升级改造攻坚战,支持村镇工业集聚区升级改造后按规定申请认定省产业园或就近纳入省产业园管理。加大省产业园基础设施投入力度,提升园区基础配套设施建设水平。推进产城融合发展,鼓励各地在园区或周边区域规划建设“七个一”工程。强化园区环保能力建设,引导电镀、印染、鞣革、铸造等产业链配套企业进入专业园区集中治理。优化园区营商环境,降低园区内企业生产经营成本,支持园区依托一体化政务服务平台提供“一门式一网式”服务。5.建立园区发展长效机制。支持各地结合地区实际和园区发展需要将园区产生的收益通过一定方式“反哺”园区发展。支持园区引进社会资本参与开发建设、与社会资本合作办园,开展市场化方式运作。第五节实施品质工程,提升广东制造竞争力和影响力加快推动全省制造业品质整体升级,提升广东制造业的标准化能力和水平,提高制造业供给质量,夯实全省质量技术基础,增强“广东制造”“广东品牌”的国际竞争力和影响力。升级广东制造标准体系。以产业链为纽带,依托行业协会、产业联盟和骨干企业,提升重点领域上下游产业标准的协同性和配套性,建立覆盖全产业链和产品全生命周期的标准体系。以先进标准助推研发成果转化落地,积极支持项目研发成果和必要专利转化为技术标准,推动技术研发、标准研制与专利布局有效衔接。对于市场急需的新技术新产品,探索增加标准制定快速通道,简化标准制修订流程,建立快速评价认定的机制,发挥粤港澳大湾区标准化研究中心作用,加快研制推广高质量湾区标准。支持企事业单位承办、参与制造业相关领域国际标准化活动,争取更多国际和国家标准化专业技术委员会、分技术委员会和工作组落户广东,鼓励省内企事业单位在制造业先进领域主导制修订团体标准,提升广东制造参与国际标准制修订的能力和水平,推动全省优势特色行业技术标准成为国际标准。打造高品质广东制造产品。强化产品实名实证管理,压实经营者质量安全主体责任,消除第一责任人缺失的产品质量安全风险。实施产品质量信用分类监管,对产品、经营者开展失信评级,并根据失信情况及时加强行政指导及告诫。建立产品质量严重违法失信名单,实施部门联合惩戒。开展制造业重点产品与国内外标杆产品的执行标准和质量指标“双对比、双提升”,制定产品赶超比拼方案,构建广东质量产品标准及认证体系,开展产品质量“问诊治病”。探索制定产品质量分级标准,鼓励权威认证机构围绕分级标准开展相应的自愿性认证项目。推动电子商务平台、大型商超等共同采信高质量标准及认证标志。推进全产业链质量管理,鼓励龙头企业将产业链供应链中小微企业纳入共同质量、标准管理体系,建立健全质量溯源机制。擦亮广东制造金字招牌。深入开展质量提升行动,加强全产业链质量管理和标准体系建设,增强“广东制造”“广东品牌”的国际竞争力和影响力。发挥省政府质量奖示范引领作用,支持地级以上市政府开展政府质量奖评审。推动产业集群区域品牌建设,建立“产品+产业+集群+产地”的区域品牌创建机制,引导集群内企业标准协调、创新协同、业务协作、资源共享。支持有条件的市在重点行业推行广东优质标准。在重点领域和产业集群设立商标品牌培育指导站,支持企业建立以质量为基础的品牌发展战略,开展商标国际注册,支持民族自主品牌国际化发展,加强对具有较长历史的品牌企业保护和扶持。举办高水平展会,办好广交会、高交会、中博会等国际性展会,大力宣传推介广东产品,讲好广东品牌故事。专栏25质量品牌建设专项行动1.实施重点产品质量提升行动。依托检测机构、行业协会和产业联盟,选取重点产品开展与国内外标杆产品的执行标准和质量指标比对研究,加强比对提升结果应用,加大高品质产品社会宣传力度,展现提升成果。支持企业建立完善产品全生命周期质量追溯体系,加强从原料采购到生产销售全流程质量管控,提高产品性能稳定性及质量协同一致性。2.加强行业企业质量管理提升帮扶。指导行业企业完善产业链标准体系、质量管理体系,推广卓越绩效模式和先进质量管理方法,开展质量问题“问诊治病”,指导企业建立覆盖产品生产、流通等产业链各环节的质量可靠性管理体系。建立“质量广东”综合服务信息化平台,及时收集、响应企业质量服务需求,促进企业与专业机构、技术专家交流互动。3.优化质量发展环境。开展产品质量问题“清无”“治伪”及产品质量问题“清零行动”,督促企业严格按照法律法规和强制性产品认证、行政许可等规范要求组织生产。将生产者、经营者的质量违法行为以及第三方机构出具虚假检验检测数据、结果或认证结论等违法行为,纳入相关市场主体及责任人员信用记录,实施联合惩戒。4.加强区域品牌和企业品牌培育工作。开展产业集群区域品牌建设和企业品牌培育管理体系标准宣贯活动,落实好消费品工业“三品”专项行动。建立对具有较长历史的品牌企业保护和扶持机制,大力培育“百年老店”。深入挖掘重点企业品牌建设的好做法、好经验,形成示范带动效应。推进质量基础能力建设。围绕战略性产业集群建设,布局一批国家级和省级质检中心、产业计量中心、技术创新中心和技术标准创新基地。鼓励计量、标准、检测、认证和知识产权等专业机构与产业集群建立长期合作关系,向企业开放共享仪器设备等基础设施。支持行业协会和商会等社会组织、专业机构、行业龙头企业建立标准研制、质量管理、品牌创建和知识产权运用等服务平台,培育市场化质量技术服务业态。第六节实施培土工程,塑造制造业发展环境新优势优化营商环境,加快发展信息、融合、创新基础设施,强化制造业发展关键要素供给,构建国内最优、国际一流制造业发展环境高地。优化制造业发展营商环境。对接国际高标准营商环境评价体系和市场规则体系,营造世界一流的制造业发展环境。推进“放管服”改革,深化商事制度和投资便利化改革,进一步落实实体经济企业降成本政策。实施涉企经营许可事项清单管理,加强事中事后监管,对新产业新业态实行包容审慎监管。建立制造业高质量发展大数据平台和重点产业链数字化图谱,实施制造业高质量发展综合评价并推进成果应用,推动构建企业征信体系,加强各领域各部门的产业数据共享和信息交流,为推动全省制造业高质量发展提供科学决策支撑。综合运用市场、法律、行政等手段,充分发挥社会舆论监督作用,营造制造业高质量发展环境。加快新型基础设施建设。重点加快推进建设第五代移动通信、工业互联网、大数据中心和智能计算中心等信息基础设施。加快推进5G网络建设,促进千兆光纤宽带网络升级。建立国内领先的人工智能、区块链等通用技术能力支撑体系,形成“创新能力+先进算力+通用技术能力”的创新基础设施集群体系。加强融合基础设施发展,推动新一代信息技术对经济社会各领域尤其是制造业重点领域的赋能作用全面提升。强化人才土地金融保障和供给。持续推进土地、劳动力、资本、技术、数据等要素市场化改革,健全要素市场运行机制,完善要素市场交易规则和服务体系。强化制造业人才支撑,加快基础研究型人才和创新型专业技术人才队伍建设,加快技艺精湛广东技工队伍建设,加快高水平经营管理人才队伍建设,打造聚天下之英才而用之的开放包容氛围。推动各市划设工业用地控制线,充分保障制造业发展空间,全面推动土地资源节约集约利用,鼓励工业用地连片收储开发,推进珠三角村镇工业集聚区升级改造。促进金融支持实体经济发展,拓展制造业投融资渠道,引导金融机构加大制造业贷款投放规模,通过政府性担保、贴息、风险补偿等方式降低制造业企业融资成本,支持发展供应链金融、绿色金融、普惠金融、融资租赁等金融产品和服务,支持制造业企业上市挂牌及发行债券融资。专栏26制造业人才培育专项行动1.加强制造业人才发展统筹规划。加快落实制造业高质量发展人才支撑意见,围绕“一核一带一区”区域发展格局和战略性产业集群建设新要求,坚持制造业人才队伍建设和产业发展同步规划和推进,联动省有关部门、组织各地工信部门理顺制造业人才工作体系机制,形成部门间、上下层级间优化人才储备与人才培养的合力。2.组建制造业重点产业人才联盟。充分发挥市场在人才资源配置中的决定性作用,在条件成熟的制造业龙头骨干企业、制造业创新中心、工业设计中心(研究院)、行业协会等,组建产业人才联合会(联盟),充分发挥人才、技术、项目、信息等资源共建共享优势,加快形成集技术研发、成果转化、推广应用于一体的制造业重点产业人才集群。3.创新制造业领域“高精尖缺”人才引进模式。扩大引才视野,创新引才方式,深入实施制造业高端人才“千企智造智汇行动”,加大对制造业领域领军人才、青年博士博士后以及创新创业团队引进的支持力度,遴选培育一批制造业杰出企业家、创新领军人才和高技能人才。第五章保障措施强化组织领导和战略谋划,引导促进重点产业跨地区、跨部门联动协作发展,推动构建新型产业集群治理机制,加强规划宣贯引导,确保规划有效落地实施。第一节强化组织领导广东省制造强省建设领导小组统筹协调制造强省建设全局性工作,加强战略谋划,建立战略性产业集群联动协调推进机制,针对每个战略性产业集群构建战略咨询支撑机构,形成具有可操作性的政策工具包和创新体系,编制重点项目、龙头企业和单项冠军清单。充分利用广东省制造强省建设专家咨询委员会开展制造业高质量发展研究工作。各地区建立和完善推动制造业高质量发展的领导机制,结合实际统筹谋划本地产业发展。第二节加强跨地区跨部门支持协作主动对接国家部委有关产业发展的重点工作和规划政策,积极服务国家国防和经济社会发展重大需求,争取国家重点产业、重大工程、科技重大专项和重大科技基础设施等布局落户广东。加大对制造业资源、资金、政策投放和支持力度,省内各级财政结合财力统筹安排资金支持制造业重大产业项目、重大园区载体、重大研发平台等建设。省市上下联动、部门统筹协调要素资源向重点行业领域倾斜支持,形成工作合力。加强产业横向跨界协同合作,督促各市根据自身基础和特色,加快出台引导本地产业差异化发展的政策,在落实和推进20个战略性产业集群的关键核心技术、基础研究、专业人才和政策短板的攻关上实现分工协作、各展所长。第三节创新产业集群治理机制推动构建“企业+政府+中介组织+配套服务”通力合作的新型产业集群治理机制,加快形成可复制可推广经验做法并向全省乃至全国推广实施。强化政策引导,推动资源要素向集群优秀企业和产品集聚。鼓励发展由市场主体牵头的新型集群促进组织,促进政产学研金介用联动合作,更好发挥商(协)会在政策规划研究、标准制定、宣传评估、服务平台搭建和对外交流合作方面的作用,提升产业链和产业集群整体运转效率。第四节加强规划落实和宣贯引导完善规划实施监测评估机制,加快构建战略性产业集群统计体系,各地各部门持续跟踪评价规划发展目标、重点项目、重大工程、重大政策措施等推进落实情况,将规划实施情况作为绩效考核重要依据。定期组织对制造业发展较好的产业集群、重点企业、重点项目予以通报表扬,总结推广各地推动制造业高质量发展的成功经验。广泛宣传全省扶持制造业高质量发展、培育发展战略性产业集群的相关政策措施和重点工作安排。促进工业精神传播传承,提高全民工业文化素养,激发和保护企业家精神,弘扬科学精神和工匠精神,加强科普工作,营造崇尚创新的社会氛围。附件:1.“十四五”时期全省制造业总体空间布局图2.规划环境影响说明附件1产业集群珠三角地区沿海经济带东翼沿海经济带西翼北部生态发展区具有布局该集群的地市广州深圳珠海佛山东莞惠州中山江门肇庆汕头汕尾揭阳潮州湛江茂名阳江韶关梅州河源清远云浮数量(个)1.新一代电子信息★★★★★★★★★★★★★★★★★★★★★★★★★★★★★152.绿色石化★★★★★★★★★★★★★★★★★★★★★★★★★★★★★153.智能家电★★★★★★★★★★★★★★★★★★★★94.汽车★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★175.先进材料★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★196.现代轻工纺织★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★197.软件与信息服务★★★★★★★★★★★★★★★★★★★★★★★108.超高清视频显示★★★★★★★★★★★★★★★★★79.生物医药与健康★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★2110.现代农业与食品★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★21各地市布局的支柱产业集群数量(个)101091091010107874486446656“十四五”时期全省制造业总体空间布局图说明:产业集群区域布局的重要程度用★的数量表示,其中★★★标注核心城市,★★标注重点城市,★标注一般城市;未标星的地市可以结合自身实际谋划发展。“十大”战略性支柱产业布局附件2规划环境影响说明本规划的环境影响说明如下:1、本规划鼓励发展的重点产业环境影响总体可控本规划提出的“十四五”时期重点发展产业坚持产业发展和环境保护相结合,主动适应新时代迈向更高质量发展阶段的要求,顺应制造业高端化、智能化、绿色化、服务化发展趋势,通过综合运用大力发展数字经济、深化新一代信息技术和制造业融合发展、促进先进制造业与现代服务业深度融合、推广应用工业机器人、构建绿色制造体系、促进生产方式绿色化转型等措施,着力推动资源配置更加合理、能源利用效率大幅提高,促进产业供给体系更好适应社会需求结构变化,加快建设资源节约型、环境友好型、具有全球竞争力的现代产业体系。总体而言,规划提出的重点产业均为立足于我省制造业发展基础和未来发展趋势、鼓励发展的产业,对环境影响可控。2、本规划确定了严格的环境保护制度和管控措施本规划全面践行绿色发展理念,大力发展绿色低碳产业,将绿色设计、绿色技术工艺、绿色生产、绿色供应链管理等相关理论实践贯穿产品全生命周期,推进重点行业和重点领域绿色化改造,推广实施园区循环化改造试点示范,构建市场导向的绿色制造体系。同时,会同有关部门全面提高资源利用效率,推进资源总量管理、科学配置、全面节约、循环利用,加快构建废旧物资循环利用体系,落实严格的水资源、能耗指标统筹管理制度,推动完善各部门联审联批制度、环境监测预警系统和动态跟踪监督制度,开展精准执法、精细管理,制定应对突发环境事件预案。在按照要求采取相应的环境保护对策和措施前提下,可以较好地避免规划实施过程中可能遇到的污染环境问题。综合结论:本规划提出的“十四五”时期全省制造业发展原则、目标明确,各重点产业的发展方向、空间布局、发展路径均符合国家、省相关规划及政策文件要求。规划实施不会导致区域性的环境质量下降,所需资源、能源均在资源能源承载能力之内。通过加强组织领导、部门协调联动、完善体制机制和各项保障措施,规划的环境保护目标均能实现。综上所述,广东省制造业高质量发展“十四五”规划在环境保护方面是可行的。说明:①2020年,中国科技发展战略研究小组、中国科学院大学中国创新创业管理研究中心联合发布《中国区域创新能力评价报告2020》,广东省区域创新综合能力保持全国第一。②“规模以上制造业研发经费支出”以及“规模以上制造业研发经费支出占规模以上制造业营业收入比重”均为2019年数据,2020年数据暂未发布。③2020年全省有效发明专利量35.05万件,连续11年位居全国第一 全省PCT国际专利申请量2.81万件,连续9年位居全国第一。④省人力资源社会保障厅统计,截至2020年12月底,全省专业技术人才、技能人才分别达730万人和1332万人,均居全国前列。⑤2020年12月25日,中国工程院发布《2020中国制造强国发展指数报告》显示,美国制造业处于全球第一阵列,德国、日本处于第二阵列,中国、韩国、法国、英国处于第三阵列。⑥灯塔工厂:由世界经济论坛(WEF)联合麦肯锡咨询公司评选的“数字化制造”和“全球化4.0”的示范者,指在第四次工业革命尖端技术应用整合和数字制造方面卓有成效,最有科技含量和创新性的工厂。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制