当前位置: 仪器信息网 > 行业主题 > >

自动控制连接器

仪器信息网自动控制连接器专题为您提供2024年最新自动控制连接器价格报价、厂家品牌的相关信息, 包括自动控制连接器参数、型号等,不管是国产,还是进口品牌的自动控制连接器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动控制连接器相关的耗材配件、试剂标物,还有自动控制连接器相关的最新资讯、资料,以及自动控制连接器相关的解决方案。

自动控制连接器相关的资讯

  • 自动控制学家冯纯伯院士逝世 享年82岁
    冯纯伯院士   据东南大学消息,我国著名自动控制学家冯纯伯院士于2010年11月10日上午8时10分因病医治无效,在江苏省人民医院去世,享年82岁。  冯纯伯,男,1928年4月生。1950年浙江大学电机系毕业,1953年哈尔滨工业大学电机系研究生毕业,1958年在前苏联列宁格勒工业大学电机系获技术科学副博士学位。1994年11月起,被选为俄罗斯自然科学院外籍院士。1995年当选中国科学院院士。  长期以来,冯纯伯院士在系统建模方法及自适应控制理论等自动控制领域,取得了许多新的研究成果,形成了完整的新体系。他独立提出了鲁棒性很强的建模及自适应控制系统的设计方案,并对时间序列分析理论作出了重要发展,上述成果获1986年国家教委科技进步一等奖及1992年国家自然科学四等奖。他主持的复杂动态系统及非线性系统的分析与鲁棒控制获2006年江苏省科技进步一等奖。
  • 金工分享-汽车连接器金相样品的制备
    今日试样制备方法分享之汽车连接器金相样品的制备,详情如下:难点:1. 连接器内部多材质、多结构,切割前必须镶嵌以固定结构件2. 连接器外壳多为聚合物塑料,且都有突出的边沿,切割夹具固定困难3. L型连接器,短边的切割位置非常靠近边缘,需要尽可能地减少切割损耗一、样品尺寸及切割位置二、连接器的连接位置预镶嵌以固定结构件步骤: • 先倒入环氧树脂,再倒入固化剂 • 单方向地缓慢搅拌约2min • 倒入连接器一端 • 重新锁闭连接器,静置2h以上 耗材: • EpoQuick环氧树脂和固化剂 • 固化时间:2h透明度:透明邵氏硬度:80 • 放热峰值温度:110℃体积/重量混合比:5:1三、制备1. 切割机与切割片的选择 切割机:10in手动砂轮切割机METCUT-10 轴承转速: 2865rpm/min 切割能力:90mm 切割片:10in金刚石切割片CD-10-01,厚度1.5mm 冷却液:水基切割冷却润滑液CC-01样品夹具:左右手快速夹具 操作方式:Z轴手动直切负载显示:安培表2. 用快速夹具固定样品3. 以L型的2021493A02为例4. 用P1200#砂纸在METPOL-A型自动研磨抛光机上手动研磨2min,去除橡胶、塑料等聚合物的切割痕迹以上就是有关汽车连接器样品切割的详细介绍,希望对您能有所帮助。如果您还想了解其他材料的制备方法,欢迎联系可脉检测的工程师,我们将为您提供个性化的专业技术服务。
  • 德国WIGGENS推出新产品: WAC-100 冷却水自动控制器
    WIGGENS独创的WAC 100 冷却水控制器,特别适合对凯式定氮仪,索式提取仪及蒸馏装置等的冷却水自动控制。WAC 100可以控制前面提到的装置的加热时间以及延长冷却水冷却时间,从而保证加热操作的安全性,最重要的是,如果在实验过程中冷却水流量不足,AWC将会自动切断加热电源,以避免由于冷却水不足带来的危险以及大量有害蒸汽不能有效冷却而挥发出来,造成对实验室的污染。 ◆显示:4 位L.E.D显示 ◆加热控制时间:1~9999min,或不限制时间 ◆加热結束冷却水延长供应时间:1~9999min,或不限制时间 ◆延长加热时间:1~9999秒(出厂预设值为10秒) ◆安全设定:当冷却水供应不足(每分钟低于1L/min时),仪器会自动停止加热,并发出报警声音 ◆加热时间及冷却水延长时间会自动计时并显示于显示面板上 ◆完成实验后会以报警并自动关闭加热系統及冷却水 ◆电源:220V,50Hz
  • JENSPRIMA杰普在线流动电流分析仪应用于自来水厂 | 自动控制絮凝剂的投加
    流动电流分析仪在自来水厂的应用:自来水厂中流动电流分析仪的应用有重要意义,精准在线监测更有力确保供水系统正常运行和安全性。提高供水系统的效率和可靠性。避免供水过程中出现中断或隐患或原水及供水水质问题的发生。在线监测仪器旨在为水处理用户提供更有效的工具,杰普仪器Flumsys系列在线流动电流分析仪在优化和控制絮凝剂和聚合物的用量表现非凡!通过实时监测流经管道中液体的游动电流值来确定投加絮凝剂的量,从而达到更加精准的投加控制效果!杰普仪器Flumsys 10SC及Flumsys 10TC-SP两款在线流动电流分析仪,作为高精度、高可靠性的自动化投加控制设备,受到国内外用户选择,并广泛应用于自来水厂,污水处理厂,污泥脱水,反渗透制程,及其他需要投加絮凝剂工艺等需水质监测场景! 浅谈絮凝剂投加控制“难”絮凝剂投加量难以控制,絮凝剂的性质和特点会对投加量的控制造成一定的困难,同样水质的特性也是决定投加量的重要因素之一。不同类型絮凝剂在不同水质条件下可能表现出不同的效果,因此为达到理想的效果需要根据具体情况进行调整。水处理过程中的水质变化也会影响絮凝剂的投加量。操作人员经验和技术水平也会产生直接影响。如缺乏经验或技术不敦练可能会导致投加误差,水处理设备的性能和运行状态与翼凝剂投加量也紧密相关。如设备存在故障或不稳定运行状态可能导致絮凝剂投加量的波动。因此,絮凝剂投加量难以控制是由多种因袁共同作用所致。为了解决这个问题,需要综合考虑水质、操作人员技术水平和设备状态等因素,才能进行合理的调整控制投加。 水中悬浮物浓度、溶解物质的种类和浓度,以及pH值等都会影响絮凝剂的投加量。水处理工艺不同、处理过程中的温度、搅拌速度和沉淀时间等操作条件也会对投加量产生影响。及不同场景下水处理目标的要求也是影响投加量的重要因素。根据水质的不同,对于不同的水处理目标,投加量也会有所不同。单纯人工操作在需要综合考虑各种因素来确定最合适的投加量是远远不够的,重持着科技之心不断创新,杰普仪器致力于为用户提供更县实用性的解决方案,助力企业精准测量和高效生产! Flumsys 10TC-SP 在线流动电流分析仪 :● 同时显示实际SC值和相对SC值 ● 同时监控pH值(可选),实时了解絮凝效果 ● 自动清洗功能 ● PID控制功能 ● SC 4-20mA和PID 4-20mA输出 ● 2路高/低报警输出 ● RS485 Modbus RTU通讯 ● 4.3寸彩色触摸屏,操作简单方便 ● 密码保护,防止未经授权的操作 ● 数据记录功能,支持U盘到导出(Excel) ● 具有自动控制/手动控制两种模式 ● 传感器分体式设计,便于现场安装 ● 选配预处理系统,极大降低维护量 Flumsys 10SC 在线流动电流分析仪 ● 自动控制絮凝剂的投加 ● 节省絮凝剂费用 ● 使出水水质达标 ● 运营和维护成本低 ● 实时监控pH值 ● 耐用、可靠且易于控制的加药系统 水温pH值的“影响力”水温是影响絮凝剂投加效果的因素之一。不同水温会对絮凝剂的溶解速度、分散性以及化学反应产生影响。较高的水温可以加快絮凝剂的溶解速度,提高其活性而加快絮凝过程。过高的水温也可能导致絮凝剂降解或失活。较低的水温则会降低絮凝剂的活性延缓絮凝过程。因此使用絮凝剂时需要根据具体的水温情况进行调整投加达到最佳的絮凝效果。在水处理过程中pH值也是决定絮凝剂效果的关键因素之一。pH值是指溶液的酸碱性程度,会直接影响到絮凝剂的溶解性、稳定性和活性,关注水体的pH值进行相应的调整确才保絮凝剂能够发挥最佳效果。 innoCon 6800P 控制器&innoSens pH/ORP传感器 innoCon 6800P控制器 ● 宽电源输入,防干扰设计 ● 大屏幕背光液晶显示测量值、温度和继电器状态 ● 中/英文菜单,操作简便 ● 密码保护,防止未经授权的操作 ● 全新的校准步骤提示,可以帮助减少操作错误 ● 2 x 可编程Hi/Lo继电器输出 ● 可编程的自动清洗继电器输出 ● 2 x 隔离式4-20mA输出 ● RS485 Modbus RTU通讯 innoSens 125T传感器 ● Ag/AgCl参比系统可选Gel和Polymer电解液电极寿命长 ● 可选开放式隔膜和PTFE隔膜,抗污能力强 ● 工作温度-5-100℃,高温电极可达135℃,可选PT1000温度探头 测量范围:0-14pH 工作温度:-5-100℃ 最大工作压力:6bar 电极材质:Glass 电解液:Polymer 浊度悬浮物的“影响力”水质浊度及悬浮物对絮凝剂投加有着重要的影响。在水质浊度较高的情况下,絮凝剂投加的效果可能会受到一定程度的限制。因为水质浊度高意味着水中悬浮物和颗粒物的含量较多,这些颗粒物会与絮凝剂发生相互作用,降低絮凝剂的有效性。因此,在处理高浊度水源时,可能需要增加絮凝剂的投加量或者采用更强效的絮凝剂,以确保水质的净化效果。如水质浊度较低的情况,絮凝剂的投加效果通常会更好。因为水中悬浮物和颗粒物的含量较少,絮凝剂可以更充分地与这些颗粒物结合,形成较大的沉淀物,从而更容易被过滤或沉淀。此时,投加适量的絮凝剂可以有效地提高水质的澄清度。水质浊度对絮凝剂投加的影响是非常重要的。根据水质浊度的不同,合理调整絮凝剂的投加量和选择适合的絮凝剂类型,可以提高水处理过程中的效率和水质的净化效果。水中悬浮物颗粒对絮凝剂投加有一定影响。在水处理过程中,悬浮物颗粒的存在会影响絮凝剂的投加效果。颗粒会与絮凝剂发生相互作用,可能会降低絮凝剂的效能,影响水质的净化效果。 innoCon 6800T-1高量程在线浊度分析仪 innoCon 6800T-1控制器 innoCon6800系列单通道控制器设计用于水处理行业相关的单一水质参数测量。4.3寸彩色LCD显示屏,触摸操作,设置非常简单。该系列控制器具有数据存储功能,支持U盘数据导出。提供三个可编程的继电器和两路4-20mA输出,用于控制辅助设备,标配Modbus RTU (RS485)通讯。 innoSens810T传感器innoSens810T高量程浊度传感器采用90°光散射原理,符合ENISO 7027标准。当光通过溶液时,一部分被吸收和散射,另一部分透过溶液,这样可以通过测量水中颗粒的散射光的强度来测量水样的浊度/悬浮物,最大可测4000NTU。innoCon 6800T-5 低量程在线浊度分析仪innoCon 6800T-5控制器 innoCon6800系列单通道控制器设计用于水处理行业相关的单一水质参数测量。4.3寸彩色LCD显示屏,触摸操作,设置非常简单。该系列控制器具有数据存储功能,支持U盘数据导出。提供三个可编程的继电器和两路4-20mA输出,用于控制辅助设备,标配Modbus RTU (RS485)通讯。 innoSens 850T传感器 innoSens 850T低量程浊度传感器可测量超低量程浊度,内有消泡结构和防结露功能,保证稳定、高精度测量。使用LED光源,十年内无需更换,广泛用于自来水出水口、工程排水出水口等各类干净水质的浊度在线监测。 外部水利条件的“影响力”外部水利条件对自来水厂絮凝剂投加产生影响。这些条件包括水源的水质、水位的变化以及水流速度的波动,季节降雨等。在水质方面,如果水源中含有较高的悬浮物或有机物质,自来水厂可能需要增加絮凝剂的投加量以确保水质的净化效果。此外,水位的变化也会影响絮凝剂的投加,因为水位的上升或下降会改变水流的速度和压力,从而影响絮凝剂的混合和分散效果。另外,水流速度的波动也会对絮凝剂的投加产生影响,因为较高的水流速度可能会导致絮凝剂无法充分混合,而较低的水流速度则可能导致絮凝剂无法均匀分散在水中。因此,自来水厂需要根据外部水利条件的变化,灵活调整絮凝剂的投加量和投加,Streaming Current Detector(流动电流仪)简称SCD,通过流动电流原理检测水中离子和胶体的电荷(类似Zeta电位),常用于水处理过程中絮凝剂的精确投加,能更好的确保水质的稳定和净化效果的达到。
  • BILON科技BILON-ZDC1型全自动控制氮吹浓缩仪全新上市
    在很多常规分析中,样品前处理过程包括有机溶剂萃取、浓缩、分离净化及再浓缩等基本步骤。完成浓缩过程的常用装置包括真空旋转蒸发仪、K- D浓缩器和氮气吹扫(简称氮吹仪)等,其中以氮吹浓缩最为简单,也是上机分析前对样品进行定容的最后步骤。通常情况下,它不需要特别的装置设计,当样品数量不多或溶剂量较小时,采用该法十分方便。然而当样品数量多或溶剂量较大时,则需要有人看管,且浓缩体积不易控制,整个操作过程费时又费力,而且开放式浓缩操作环境亦对操作人员身体健康带来隐患。  为解决上述问题,比朗公司通过整合、优化现有技术优势,成功研发生产了BILON-ZDC1型全自动氮吹浓缩仪。一系列创新性、人性化的设计,使得该款仪器不仅浓缩速率高、操作简单、环境友好,而且还可以置于通风橱外使用,亦极大限度地避免了操作人员对有机毒害溶剂的接触,可作为是常规实验室必备装置。  BILON-ZDC1型全自动氮吹浓缩仪主要特征:  ●同时浓缩单个或多个样品,毋需人工值守:采用多个光学传感器监控每个样品的浓缩过程,当蒸发浓缩至预设体积时,系统自动停止相应通道的氮气吹扫,并报警提示。整个浓缩过程无需人工看管  ●特别的气流吹扫轨迹及缓冲设计:可加速溶剂蒸发浓缩、防止溶剂喷溅损失  ●工作参数任意设置、控制和实时显示:主要工作参数:氮吹压力、水浴温度和工作时间,均可按需设置  ●氮吹气流压力稳定、恒定:仪器自带自动调压装置,气流压力可自动控制并保持恒定,不受工作通道(样品)突然开启、关闭或数量的影响  ●样品无污染影响:所有气路及相关器件均采用经过验证的零污材料,避免样品受到来自仪器的污染  ●操作简便、安全:灵活的工作参数设定、方便的样品置入/取出过程,易学易用 全封闭设计以及仪器自带的强力排风系统配置,可避免水浴蒸汽和有机挥发组份对仪器及操作人员的影响  BILON-ZDC1型全自动氮吹浓缩仪技术参数:  ★样品数量:同时浓缩处理1-12个样品  ★样品瓶体积:50或150mL  ★终点检测:每一个工作通道均配有专门的光学传感器,自动、独立地检测终点  ★终点体积:可定容的体积分别为1.0 mL、0.5mL或近干(~0.1mL,适当延长吹扫时间亦可将溶剂吹干),不同规格的浓缩瓶可以同时交叉使用  ★水浴温度:室温-95℃(± 0.5℃)  ★氮吹时间:0-9999s  ★气体压力:氮吹工作气压,0~0.1MPa(压力间隔变化为0.01MPa) 外接氮气压力范围:0.2~0.8MPa 外接允许最大气压,1.0MPa  ★气体消耗量:最大吹扫气压(0.1MPa)下,每通道约500mL/min(约17cfm)  ★定容灵敏度:十级可调,保证不同颜色或透光度的溶剂的浓缩定容更为准确  ★控制方式:用户可根据实际情况,自行选用手动方式或智能方式控制吹扫终点  ★报警提示:仪器在开盖、浓缩完成、水浴水量或氮气压力不足时,均会自动报警提示  ★电源:220V/60Hz  ★仪器尺寸:650× 450× 308 mm  ★重量:20 Kg  上海比朗生物科技有限公司始终贯彻&ldquo 质量是企业的生命力&rdquo 这一方针,引进国外先进技术,打造一流品牌。公司客户遍布全国,欢迎新来客户莅临订购。  电话TEL:021-52965776  传真FAX:021-52965990  网址Web:http://www.bilonsh.com  地址Add:上海市闵行区北松公路588号7号楼5层  更多相关氮吹仪信息http://www.bilonjsy.com
  • 快速驱动连接器行业创新创造之高精密3D打印
    5G通讯和新能源汽车等高端市场领域的快速发展,对于作为信号传输和互联关键元器件的连接器,提出了比以往更大的技术挑战,要满足大容量数据传输和高速高密度连接,微型化、精密化和集成化的连接器创新势在必行,对微型精密加工的需求也越来越迫切。行业背景连接器是系统或整机电路单元之间电气连接或信号传输必不可少的关键元器件,也是许多设备中不可缺少的基础电子元件和电子电路中沟通的桥梁,通过对电信号快速、稳定、低损耗、高保真的传输以保证设备完整功能的正常发挥,目前已广泛应用于军工、通讯、汽车、消费电子、工业等领域。随着世界制造业向中国大陆的转移,全球连接器的生产重心也同步向中国大陆转移,中国已经成为世界上最大的连接器生产基地。中国连接器制造整体水平得到迅速提高,连接器市场规模逐年扩大,中国成为全球连接器市场最有发展潜力、增长最快的地区。由于我国连接器行业起步较晚,连接器市场集中度较低,行业技术水平与先进国家技术水平相比仍有一定差距。目前,连接器高端技术和高端产品基本由泰科,安费诺和莫仕等行业国际巨头垄断,少数国内企业虽然也生产高端连接器产品,但相对于国际巨头而言规模仍较小,国内大多数中小规模的连接器生产企业不具备自主开发设计能力。国内整体技术水平仍与国际水平有一定差距,在国际竞争中技术上处于相对劣势。随着以5G通讯技术、汽车和消费电子为代表的各个应用领域对连接器功能性要求不断提高,微型和精密以及集成化的连接器创新势在必行,对应的微型精密加工的需求也迫在眉睫。市场概况连接器作为电路系统电气连接必需的基础元件之一,是终端应用产品的一个组件,因此,终端应用的发展是推动连接器市场快速增长和技术发展的主要因素,连接器行业发展趋势与下游终端应用行业发展保持着非常明显的一致性。据统计,2018年全球连接器市场将达665亿美元,2018年中国地区连接器市场规模为209亿美元,较上年同比增长9.42%,占据了全球31.4%的市场份额,是全球最大的连接器市场。随着5G通信、新能源汽车、消费电子等领域的发展,未来全球连接器市场规模将不断增长。下游应用领域对连接器的要求不断提高,具有较强研发实力的企业更容易获得竞争优势,市场份额不断向龙头企业集中。从1980年到2016年间,全球前十大连接器厂商市场份额有38%上升至59%,2017年前十大厂商市场份额达到61%,其中泰科、安费诺、莫仕三家厂商市场份额超过30%,几乎垄断了高端连接器市场。国内巨头立讯精密,中航光电,航天电器和得润电子等都在布局高端连接器市场,为了抢占5G通讯和新能源汽车等高端市场先机,将视加大产品快速创新为一种常态和战略,从而来缩小和国外连接器巨头的技术差距。高精密3D打印在连接器行业的应用随着5G技术和新能源汽车以及消费电子行业的快速发展,对于具有大容量数据传输和高速高密度连接等功能性要求的连接器要求越来越多,相应的精密加工技术需求也越来越急迫。尤其对于一些复杂精密微型化的连接器开发,传统CNC和开模注塑等传统加工方式都存在着加工周期长和成本高等问题。从下面摩方高精密3D打印和CNC以及注塑成型对比图中可以用看出,高精密3D打印技术在加工精密连接器方面具有精度高、成本低、和周期短等明显优势。下图是深圳摩方公司3D打印设备加工的微型精密连接器,产品大小为5.65mm*2mm*2.8mm,其中最小pin间距是0.14mm,最小壁厚为0.1mm,公差要求±10~25μm。CNC和开模很难低成本快速加工成型,深圳摩方公司的nanoArch S140和nanoArch P140精密3D打印设备不到1小时就可以加工出高质量合格的产品,最快一天内实现交付。连接器巨头行业客户的一段访谈通讯技术从2G发展到现在的5G,对应的基站数量呈几何级数的上升。目前我国的4G基站数量是339.3万座,根据一些消息各大运营商在这次5G的升级中大约需要5倍的5G基站,大约是1500万座。相应的传输速率也是需要几何级数的提高,这就对基站的小型化提出了越来越高的要求。随着基站体积的不断减小,更多的塑胶和金属结构设计也越来越逼近机械加工的极限,这就给传统的快速模开发方式带来了挑战,不但需要考虑结构的可行性,同时还要考虑在加工中会遇到的不可知的困难。有了摩方精密3D打印技术,加工类问题可以放到最后一并解决,而且在确认投入是有效的前提下,公司会愿意投入更多的资金攻克加工上的难题,而不是在初始开发阶段患得患失。从客户访谈中可以看出,摩方的高精密3D打印技术,可以满足精密连接器加工的设计验证需求,且已经在早期结构设计验证阶段,起到关键作用。3D打印的精密塑料零件,60μm薄壁、230μm圆孔,达微注塑零件水准深圳摩方提供的高精密3D打印加工技术非常契合连接器行业微型化、精密化和集成化的研发需求,目前已和欧美日以及国内连接器行业巨头进行了深入广泛合作。官网:https://www.bmftec.cn/links/10
  • 直播干货:全球5G连接器龙头安费诺为什么会选择摩方3D打印
    2020年5月26日下午2点,摩方材料联合安费诺集团在南极熊平台上开展了一场直播,主题为“高精密3D打印技术在5G通讯领域的创新应用”,本场直播由摩方材料周建林先生和安费诺王翔先生主讲。目前直播已经可以回看视频,微信扫描下方二维码即可观看视频回放下面南极熊就带大家以图文的形式来回顾一下本场直播的部分内容,首先我们来了解一下本次直播的两家公司背景以及两位主讲人。摩方材料是高精密3D打印领域全球领导厂商,安费诺(Amphenol)是连接器领域的全球领导厂商。摩方材料周建林的分享主要围以下四个方面:首先,周总展示了当前3D打印技术在5G领域的一些应用案例,主要包括5G天线、5G散热器、滤波器等。而摩方材料与安费诺的合作,主要是聚焦在5G通讯连接器方面,5G连接器主要承载光信号和电信号的转化任务,其不但要实现大量数据的高速传输,而且还在朝着小型化、精密化的方向发展。此外,在壁厚、公差、介电常数、耐高温等方面也有着比较苛刻的要求。根据Bishop&Associates统计的数据,2020年5G通信连接器的市场空间高阿达575亿元。以前,5G连接器的加工方式以开模注塑和机加工为主,而现在摩方材料的高精密3D打印成为新的加工方式。目前,主要用于满足结构验证、功能验证、工程阶段等1000件以下的制造需求,如果进入量产阶段,还是需要用到注塑工艺。直播中,周总将摩方高精密3D打印与常见的光固化3D打印技术以及模具生产、CNC机加工等工艺进行了对比,对比内容主要包括交期、质量、费用三个方面。我们可以看出,摩方的高精密3D打印技术有着自己独特的优势。此时,你可能会很感兴趣,究竟摩方材料的高精密3D打印是一种什么样的技术,周总引出了摩方材料工业级PμSL(面投影微立体光刻)技术的原理。该系统主要包括光源、成型、运动三大部分组成。摩方材料做了很多的技术改进,使其可以达到1μm~10μm的高分辨率,打印幅面可以达到100mm*100mm,此外还能支持50℃加热打印工艺以适应更多的打印材料。目前,摩方材料nanoArch工业级系列3D打印系统主要有5款设备,分别是nanoArch P130、S130、P140、S140Pro、P150。直播中周总主要介绍的是S140 PRO这款设备,同时也是用在5G领域中最多的一款。摩方材料还开发了一系列专用的3D打印材料,可以覆盖工程应用、生物应用和功能材料。周总重点解析了其中的HTL(耐高温树脂)、HKE(高强度韧性树脂)两款材料。目前,除了本次联合直播的安费诺外,还有20多家知名的连接器企业与摩方材料建立了合作。最后,周总列举了摩方材料合作的4个高精密3D打印的应用案例,包括:精密连接器、内窥镜、青光眼导流钉、微流控芯片。3D打印在这些高精密部件的制造中发挥了其优势。随后,安费诺集团的王翔先生介绍了安费诺的业务情况,并分享了公司在研发连接器的过程中是如何从采用快速开模转向摩方高精密3D打印的。安费诺是一家综合性的国际企业,其产品覆盖航空、汽车、移动终端、IT数据、移动网络、连接器等领域,2019年营收高达82亿美元(约585亿人民币)。这样的一家国际巨头,为何会选用摩方材料的3D打印服务,王翔在直播中表示,目前安费诺旗下的4个大通讯生产厂、6个研发与生产点都在与摩方材料进行合作,而且一致满意。探究其主要原因在于,摩方材料解决了他们在研发、制样过程中的难题,不但打印的样品精度等参数完全满足要求,而且制造周期与快速开模相比大幅缩短,大大提高了其研发部门的效率,并降低了试错成本。此外,王翔还列举了多个安费诺与摩方材料的案例,并对双方未来的合作提出了期许和展望。更多精彩直播细节,请观看视频回放。直播中,有3位幸运观众各获得摩方材料3D打印的高精度模型一个:(转载自:南极熊3D打印)
  • 12位微波消解仪自动控制系统参数介绍
    【12位微波消解仪←点击此处可直接转到产品界面,咨询更方便】微波消解技术利用了微波的穿透力和激活反应能力,它在密闭的容器内,以热量为媒介,迅速提升试剂和样品的反应温度。这不仅使得容器内的压力激增,更在极短的时间内,将样品制备的效率提升到了前所未有的高度。这种技术,让各种成分在适当的温度下,完美地融合在一起。12位微波消解仪为样品提供了快速,安全,自动化的解决方案,在高压条件下加快样品消解反应的速度,广泛应用于食品、环境保护、疾病控制、质量监督、商品检验、科研院所等领域。 12位微波消解仪采用微波非脉冲连续自动变频控制,延长了仪器的使用寿命和电磁波的均匀性,腔体采用52L大容积316L不锈钢腔体材料而成,自锁式缓冲防爆炉门,当反应异常时,缓冲结构确保操作人员人身安全和炉门结构完整无损,炉门和腔体结合紧密,微波泄漏符合国家标准。仪器采用温、压双控系统对消解实验的压力和温度进行控制,实时显示。360°同向连续旋转,微波均匀,保证各个样品微波环境相同,提高实验结果的一致性。当罐内的压力超过设定的保护值时,微波会自动停止加热。安全防爆膜具有双保险功能,当罐内的压力超过防爆膜所能承受的压力时,防爆膜先行破裂,气体泻出,防止罐体受损和对人体的伤害。控制系统参数 :(1)温度控制系统:采用接触式控温方式,控温准确无误差,使用高精度铂电阻温度传感器;实时检测控制并显示微波消解反应罐内的温度和曲线;(2)温度控制范围:0~300℃;控温精度:±0.5℃;(3)控温能力:速率升温功能。(4)压力控制系统:采用非接触式控压方式,控压准确无误差,是沿袭100年技术成熟的控压方式。实时检测控制并显示微波消解反应罐内的压力和曲线;(5)压力控制范围:范围: 0~6MPa,0-10MPa.0-15MPa,任选。 控压精度:0.01MPa;(6)压力保护:超压自动调整/停止微波发射并自动报警
  • 得利特发动机油表观粘度测定仪自动控制,全新升级
    石油化工在工业领域的应用越来越深入,其相关仪器设备的市场也越来越大,今天说一下油品分析仪器,它可广泛应用于电力、石油、化工、商检、学校及科研等领域。得利特油品分析仪器具有分析速度高、精密度高。可以减少人们对检测结果有意或无意的干扰,减轻人员的工作压力,从而保证了被检测对象的可靠性。下面得利特为大家介绍一款升级新品表观粘度测定仪。得利特A1270自动发动机油表观粘度测定仪适用标准GB/T6538-2010、ASTM D5293;适用于测试发动机油的低温动力粘度指标。A1270可以测定油品在-35℃至-5℃,间隔为5℃温度下的表观粘度。具有测量准确,重复性好,性能稳定,操作简单等优点。适用于测量发动机油在剪切应力约为1000~27000 mPa.s;,剪切速率为105~104 S-1的条件下,-5~-35℃的表观粘度,仪器特点操作界面语言:可选择设定(中文)。欧姆龙温度控制器,轻触按键操作,方便快捷。可储存打印实验结果。通过标准油校正后自动计算结果。采用嵌入式操作系统,工作稳定可靠。改进型转子,低转矩测试状态,重复性高。试验结束自动停机、并升温,以利于快速清洗。仪器自动推荐制冷温度。旋转编码器检测转速。可编辑、存储全部标准油的参数值。储存1000组历史数据,方便查询;故障自检。技术参数温度范围:外循环酒精浴温控范围常温~-60℃冷浴控温精度: ±0.1℃定子控温精度: ±0.02℃粘度测定范围:1000~27000 mPa.s;使用环境: 10℃~40℃环境湿度: 85%功率: 2.5KW工作电源:AC220V±10%,50Hz升级点:1、**压缩机复叠式制冷,冷量大。2、采用**电机驱动,精度高。3、工业级触摸屏电脑,WINDOWS操作系统。4、采用智能控制系统,提升了仪器的稳定性和可靠性。5、自动检测转速、微调旋钮控制电流,减少人工操作误差。6、采用全自动温控设备,精美的人机交互界面,使用户可以方便快捷的使用仪器进行分析。
  • MTS线上发布新型SANSFLEX控制器 9大亮点彰显中欧合作成果
    p  strong仪器信息网讯/strong MTS(中国)公司近期线上发布为SANS产品线开发的SANSFLEX控制器新品,新型控制器能够获取更多数据点并收集更准确的测试数据。SANSFLEX 控制器是由美国、欧洲和中国的工程开发团队按照最新的质量标准设计的。制造和组装由欧洲和中国的行业领先团队完成。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 370px " src="https://img1.17img.cn/17img/images/201910/uepic/d9af5bfa-faaa-4f11-9be8-675a630072d7.jpg" title="产品展示.png" alt="产品展示.png" width="400" height="370" border="0" vspace="0"//pp  控制器使用的以太网连接支持更高的速度,并提供比DCS-300控制器和绝大部分有竞争力的控制器更安全的连接。与市场上的DCS-300及其他旧控制器相比,具有结果更准确、更易控制、能够捕获详细的测试过程、可灵活定制控制板配置等特点。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 264px " src="https://img1.17img.cn/17img/images/201910/uepic/5049abd2-57a8-4695-b7a8-1be0bbd541bd.jpg" title="对比.png" alt="对比.png" width="500" height="264" border="0" vspace="0"//pp  与DCS-300相比,具有如下特点:/pp  strong更高的闭环控制速率/strong/pp  闭环控制速率是控制器向伺服驱动器发送命令信号并从传感器读取的时间间隔。新型SANSFLEX控制器的闭环控制速率为2000 Hz,而DCS-300仅为30Hz。更高的闭环控制速率意味着更好的控制,特别是在应变和力控模式下,增加的闭环控制速率意味着更好的测试体验。/pp  strong数据采集速率/strongstrong提高/strong/pp  数据采集速率是指可以测量真实世界信息和物理条件并将其转换为计算机可以使用的数值的速度。该速率也称为采样率,实际上采样速率有多快,下载数据并将其用于进一步分析也可以达到同样快的速率,或以较慢的速率用于满足测试需求。提高数据采集速率可确保在测试期间不会错过重要事件。/pp  strong分辨率/strongstrong提高/strong/pp  分辨率是控制器可以从传感器的信号调节器读取的最小增量或步长。SANSFLEX 控制器具有出色的分辨率,可为载荷和应变数据提供更高的精度。/pp  strong附加的数字和模拟I/O./strong/pp  SANSFLEX 控制器拥有比DCS-300更多的附件连接端口,以及集成多个外部设备的能力,提供增强和改进的通信,减少了对外部数据采集(DAQ)系统的需求。/pp  strongTEDS 功能/strong/pp  内置的 TEDS 功能允许控制器在连接设备时自动识别力传感器或引伸计以及相应的校准信息,从而消除了出错的风险。传感器电子数据表(TEDS)是存储传感器识别和校准数据的标准化方法。这种能力是材料测试行业领导者的期望。/pp  strong分流校准/strong/pp  SANSFLEX 控制器中拥有通常用于世界上最先进的伺服液压系统上的分流校准功能。通过验证力传感器是否受损,有助于防止收集不良数据。通过分流校准,可以快速验证力传感器的状况,而无需进行全面校准,从而可以完全放心地对结果的完整性进行测试。/pp  strong安全电缆连接器/strong/pp  在测试操作过程中信号通道丢失时,会strong/strong损坏负载的机架、夹具或试样。与其他控制器上常见的USB连接器不同,控制器使用 RJ50 和以太网连接器RJ45 提供安全的电缆连接,安全连接可防止此类事件的发生。RJ50 和以太网RJ45连接器具有锁定机制,有助于确保安全的电气连接。/pp  strong以太网通信/strong/pp  以太网支持更快的数据速率,更可靠的通讯协议,并且允许比USB更长的电缆长度。/pp  strong灵活性/strong/pp  SANSFLEX 控制器可以通过选择其他控制板来定制基础模型之外的内容。可以选择现在和将来需要的功能,提供最高的灵活性和最大的整体价值。凭借极快的数据采集速率和更高的分辨率,可以比以往更准确地运行测试。/ppbr//p
  • 投22亿 自动化控制仪器仪表生产研发基地开建
    昨日(12日),合川区与重庆中控仪表科技集团有限公司(以下简称“重庆中控集团”)签订投资协议,联手打造自动化控制仪器仪表生产研发基地项目。  据了解,重庆中控集团业务涉及国内外国家重点工程、自动控制成套工程和产品配套,涉及核电、地铁、造船、冶金、化工、石油、天然气、机械、轻工等若干领域,引进了德国、美国、日本、澳大利亚等国家的先进制造技术,产品远销全国各地及东南亚。此次签约落户合川工业园区的自动化控制仪器仪表生产研发基地项目技术含量高、能耗低、无污染、高附加值,属于先进制造业。  该项目占地450亩,总投资约22亿元,主要从事自控仪器仪表生产、研发。其中,第一期投资8亿元,预计明年中下旬建成投产 第二期投资14亿元。据介绍,整个项目建成达产后,预计年产值60亿元,年税收总额2.4亿元,可提供就业岗位20000个。  签约仪式上,王作安代表区四大班子和全区人民对项目落户表示热烈欢迎。他说,合川人杰地灵、资源丰富、发展潜力巨大,自古以来都是兴业之地。希望双方以此次签约为起点,进一步加强沟通与合作。合川必将竭诚为企业打造优良的投资环境,提供最优质的服务,帮助企业实现发展、壮大的愿望 同时,也诚挚地邀请企业为合川发展提出宝贵意见、建议,实现双方互惠共赢。  重庆中控集团董事长汪永兴在签约仪式上说,合川文化积淀厚重、资源丰富、区位优势明显,区委、区政府对项目给予了高度重视,为企业提供了良好的投资环境,让我们对未来在合川的发展充满了信心。我们将加快发展步伐,力争把集团打造成全国行业的龙头企业,打造成全国仪器仪表行业的一张名片,为合川经济社会发展做出贡献。
  • 快速平衡闭杯法闪点测定仪:实现温度控制的自动化
    A1194低温闭口闪点测定仪是按照中华人民共和国标准GB/T 5208-2008《闪点的测定 快速平衡闭杯法》规定的要求设计制造的。本仪器也符合ISO 1523 和ISO 3679标准的要求。本仪器以电子温控仪表为核心,配有适当的接口电路,实现温度控制的自动化,具有加热功率自动切换、温度自动控制等功能。本仪器操作简单,结构合理,检测准确,性能稳定,显示直观,能够满足石油、化工、涂料、油漆、铁路、航空、电力、商检及科研单位对石油产品闪点的测试。本仪器适合于闭口杯闪点在-30℃~50℃或0℃~100℃范围内的各类色漆、油漆、胶黏剂、溶剂、石油及有关产品闭口杯闪点的测试。仪器特点5.6寸彩色触摸液晶显示屏微电脑处理器,智能化设计温度补偿,优化结构,自动打印测试报告进样量少,每次仅需要2-4ml样品技术参数工作电源:AC 220V±10%, 50Hz闪点检测范围: -20℃至50℃或室温至200℃(可定做-10℃至100℃)控温精度: ±0.5℃;点火装置: 电子点火枪点火;制冷方式: 半导体制冷;电源电压: ~220V±10%、 50Hz;整机功耗: 不大于300W;环境温度: 5℃~30℃;相对湿度: 30~80RH。测量精密度: 两个实验结果之间的差值小于2℃(同一操作者)两个实验结果之间的差值小于3℃(不同操作者)仪器外型尺寸: 400mm×250mm×450mm仪器重量: 控制箱 12.5kg
  • 重磅宣布| MTS-SANS推出新型控制器SANSFLEX™
    作为深耕仪器行业多年的老牌仪器生产商,MTS一路走来凭借其先进的技术和专业的知识,为仪器行业源源不断地输送了众多优质产品。近期,经过科研团队不断深入研究开发,MTS公司面向全社会再次重磅推出一款全新力作—— SANSFLEX™ 控制器。SANSFLEX™ 控制器适用于电子万能试验机和静态液压万能试验机SANSFLEX 控制器为SANS产品线开发的新型SANSFLEX控制器能够获取更多数据点并收集更准确的测试数据。 控制器使用的以太网连接支持更高的速度,并提供比DCS-300控制器和绝大部分有竞争力的控制器更可靠的连接。与市场上的DCS-300及其他旧控制器不同, SANSFLEX 控制器是由美国、欧洲和中国的工程开发团队按照最新的质量标准设计的。制造和组装由欧洲和中国的行业领先团队完成。 小贴士:SANSFLEX名字由来我的名字由MTS试验机品牌名字SANS以及英文单词灵活(Flexible/Flexibility)的前半部分组成哦,性能更强,更灵活、更可靠,我是三思弗莱克斯,想了解我的更多细节请往下看~更高的闭环控制速率1提高数据采集速率可确保您在测试期间不会错过重要事件。 数据采集速率是指可以测量真实世界信息和物理条件并将其转换为计算机可以使用的数值的速度。 该速率也称为采样率,实际上采样速率有多快,下载数据并将其用于进一步分析也可以达到同样快的速率,或以较慢的速率用于满足测试需求。更高的分辨率3SANSFLEX 控制器提供增强和改进的通信,减少了对外部数据采集(DAQ)系统的需求。可选的模拟I /O和数字I / O板允许您升级系统以满足特定的测试要求,因此拥有比DCS-300更多的附件连接端口,以及集成多个外部设备的能力。TEDS功能5控制器使用 RJ50 和以太网连接器RJ45 提供闹牢固可靠的电缆连接,这与其他控制器上常见的USB连接器不同。在测试操作过程中信号通道丢失时,会发生损坏负载的机架、夹具或试样,而牢固的连接可防止此类事件的发生。RJ50 和以太网RJ45连接器具有锁定机制,有助于确保牢固的连接。以太网通信7SANSFLEX 控制器允许您通过选择其他控制板来定制基础模型之外的内容。您可以选择现在和将来需要的功能,提供最高的灵活性和最大的整体价值。凭借极快的数据采集速率和更高的分辨率,您可以比以往更准确地运行测试。 当您能以更高的信心进行测试时,您可以更快地将产品推向市场。新增控制器通道功能 **运行GWT(Creep)和CMT带大变形需要使用编码器套件说了那么多,总结一下SANSFLEX都有哪些大亮点呢?? 2000Hz的闭环控制速率--在整个测试期间更好地控制? 高速的数据采集速率,比 DCS-300 控制器提升 66 倍--速度更快? 提高分辨率,为数据提供更高精确度;? 拥有集成外部设备的能力。如果需要,可以集成外部数据采集,以及灵活定制控制板配置--更灵活? TEDS功能及分流校准功能可以助您更准确地运行试验,对测试数据更有信心? 更准确地测定屈服应力,极限应力和试样的精确断裂点? 可靠电缆连接--更牢固? 以太网通信--支持更高速率,更稳定可靠? 能够捕获详细的测试过程如果您想进一步了解咨询新控制器的情况或是对我司 的其它产品和服务有任何需求和疑问,欢迎致电联系我们。
  • 基于拉曼光谱技术的自动反馈补料控制策略在高接种密度培养平台的应用
    01背景这篇文竟是关于拉曼自动化反馈控制多种补料成分以实现高接种密度增强型fed-batch平台过程的研究论文。该研究旨在开发控制策略,通过在线拉曼光谱法监测和调整代谢物浓度,以实现高接种密度下的细胞培养过程中的高产量和稳定性。具体使用了增强型high inoculation density (HID)高接种密度培养fed-batch平台过程来培养五个不同谷氨酰胺合成酶piggyBac中国仓鼠卵巢细胞CHO克隆。通过在线拉曼光谱法连续监测残余glucose葡萄糖、phenylalanine苯丙氨酸和methionine 甲硫氨酸的浓度变化,开发了partial least squares models偏最小二乘模型。通过持续监测残余代谢物浓度,自动调整三种补充成分的补料速率,从而保持葡萄糖、苯丙氨酸和甲硫氨酸在期望的设定点上,并确保其他营养物质浓度在所有培养的克隆中保持在可接受的水平。02材料与设备细胞系与培养使用了Lonza HID平台的 GS piggyBac CHO clones细胞系,共有5个克隆体。采用了100*105的初始接种密度,在1L或者5L的体积进行培养。模型建立使用了SIMCA v16分别对glucose, phenylalanine and methionine进行建模处理。首先是光谱区域的选择,主要是基于了在纯水中他们各自的特征光谱范围。其次,通过 first derivative, Savitzky-Golay smoothing and standard normalvariate normalization (SNV) 的方法对原始光谱进行了预处理。建立的模型结果如Table 1所示。参考已知的文献并结合所建模型的R2以及root mean squared error of estimation and cross-validation (RMSEE/RMSECV) ,初步判断模型可用。分对于glucose, phenylalanine, and methionine,如果RMSEPs 是 1 g/L, 100 mg/L and 100 mg/L,则判断结果模型结果是可用的。03光谱采集与样品分析在线拉曼光谱的收集使用了来自于Endress +Hauser的RXN2 system系列,有着 785 nm的光源并内置了Runtime 6.2的操作系统。探头使用了220 mm和420mm(分别在1L和5L的培养体积)的BioOptic探头。采用了5sx150 scan的曝光时间和曝光次数,总时长大约是12.5min。对于glucose, phenylalanine和methionine在线监测数据,首先通过OPC的方式传输到Delta-V(Emerson),再在Delta-V对三个参数分别建立基于PID算法和on–off的控制回路,在监测值低于目标值的时候,可以自动添加SF1, SF2和 SF3。SF1, SF2, and SF3对别对应了glucose, phenylalanine and methionine的补料。离线的样品是每日从HID的培养中取出送样检测。使用了来自于Nova Biomedical的Bioprofile FLEX2分化分析仪。对于氨基酸以及最后产物的分析分别使用了high-performanceliquid chromatography (HPLC)和Tridex Protein Analyzer (IdexHealth Sciences)04结果 上诉三个图分别为glucose, phenylalanine和methionine的自动控制情况以及SF1, SF2, and SF3在5个clones分别的添加总量。glucose的平均RMSEP是0.49 g/L (limit 1 g/L), phenylalanine的平均RMSEP是40.72 mg/L (limit 100 mg/L) ,methionine的平均RMSEP是42.01 mg/L (limit 100 mg/L),都是在可以接受的标准之内的。除此之外,文章还对其他的组分进行了监测,以探究在HID平台的自动回路控制培养模式对细胞生长代谢的影响。具体对比了培养体系中的histidine组氨酸、leucine亮氨酸、threonine苏氨酸和ryptophan色氨酸的变化,以评估拉曼自动回路控制对残留氨基酸浓度的影响。可以看出,利用拉曼自动回路控制的方式,通过动态提供培养物所需的氨基酸,有助于降低克隆间代谢的差异性。此外,为了进一步验证拉曼自动控制的HID培养的效果,研究人员通过Peak VCC、Harvest VCC、 Harvest viability、Harvest lactate、Harvest NH4、Harvest product concentration六个维度来评估对细胞生长和产量的实际影响。可以看出,在HID平台上培养的所有克隆均获得较高的Peak VCC(320.5±32.3×105) cells/ mL),且直到收获当天,大多数HID培养保持在以上200.0×105 cells/mL(4/5clones)。总的来说,除2 clone号外,在HID工艺上培养的所有克隆在收获时都有很高的活力(2clone的收获活力较低,是因为在培养结束时无意添加了碱基,导致VCC下降)。除2 clone,收获时培养存活率均大于85%。在HID培养过程中使用的自动培养策略的另一个好处是代谢副产物的低水平。乳酸和铵是代谢副产物,其积累与抑制细胞生长有关。总体而言,在HID工艺下培养的所有克隆的平均乳酸收获浓度(0.8±0.5 g/L)和铵收获浓度(0.07±0.02 g/L)均较低,这表明以该种控制策略培养,不仅对氨基酸副产物的积累影响很小,而且对其他常见抑制副产物的积累影响也很小。最后,本研究使用的5个clone在HID培养过程中获得了较高的收获产物浓度(6.5±1.2 g/L)。相比之下,本研究中获得的收获产物浓度平均略高于之前所报道的(6.5±1.2 g/L)。也可以得出结论,在本研究中观察到的较高的产品浓度,部分原因是由于提出的自动化策略可以维持高接种密度培养的营养需求,从而实现所需要补料操作的自动化,减少了危险副产品的积累。05结论该研究通过应用在线拉曼监控技术和自动化反馈控制策略,实现了高接种密度下的增强型细胞培养过程的稳定和高产量。这为生物制药行业开发更高效、成本更低的生产过程提供了新的思路和方法。Webster, T.A., Hadley, B.C., Dickson, M., Hodgkins, J., Olin, M., Wolnick, N., Armstrong, J., Mason, C. & Downey, B. 2023, "Automated Raman feed-back control of multiple supplemental feeds to enable an intensified high inoculation density fed-batch platform process", Bioprocess and biosystems engineering
  • 关于邀请参加“2020石油化工行业分析检测技术与安全仪表自动化控制系统论坛”的通知
    p  各有关单位:/pp  为全面贯彻和落实中国科协等各部委组织开展的“2020科技专家服务团”的各项相关工作,也为振兴东北老工业基地,进一步发扬大庆精神,铁人精神,促进东北地区、大庆地区石油化工行业测量控制与仪器、仪表自动化技术的发展,依照黑龙江省大庆市做大“油头”延伸“化尾”转型发展理念,经调研、协商,东北石油大学国家大学科技园联合中国仪器仪表学会拟定于2020年12月3日-4日在黑龙江· 大庆举办“2020石油化工行业分析检测技术与安全仪表自动化控制系统论坛”。活动将围绕新时代创新发展重大战略,凸显地方特色和行业特点,为广大企事业单位、科研科技工作者搭建一个政府、高校、学会、专家、一线技术人员、仪器仪表供应商近距离交流的平台,促使测量控制与仪器仪表自动化技术在“政、产、研、学、用”等各方面的有效交流。现将相关事宜通知如下:/pp  一、组织机构/pp  主办单位:东北石油大学国家大学科技园/pp  中国仪器仪表学会/pp  协办单位:黑龙江省仪器仪表学会/pp  东北石油大学电气工程学院/pp  承办单位:北京中仪普众技术咨询有限公司/pp  北京中合油联石油化工科技中心/pp  支持媒体:石油石化技术准备、仪器信息网、分析测试百科网、仪表圈等/pp  二、时间及地点:/pp  时 间:2020年12月 3日-4日(2日报到布置会场)/pp  地 点:黑龙江· 大庆(具体地点另行通知)/pp  三、参会人员/pp  石油、化工、煤化工、炼化等行业生产企业、科研院所、设计单位、高校、检测机构、监管部门、第三方平台等单位物资采购、自控室、电控室、信息化部、安全管理部、仪电工程部、维修部、科技处室、实验室、化验室、分析室、质检部、质量部、设备管理等技术人员及管理人员。/pp  四、拟主要内容/pp  本次技术交流会分两个单元交流:/pp  第一单元:分析检测技术与仪器在石油和化工行业中的应用。/pp  第二单元:安全仪表及自动控制系统在石油和化工行业中的应用。/pp  第一单元:分析检测技术与仪器在石油工行业中的应用/pp  1.2020年石油、化工市场分析、“十四五”发展重点及未来方向分析 /pp  2.智能制造环境下石油化工企业安全生产、实验室管理及标准化 /pp  3.石油、化工产品分析检测技术标准 /pp  4.石油、化工产品分析检测前沿技术及其进展,包括色谱、质谱、光谱、环保检测、电化学、油品常规分析检测等 /pp  5.石油、化工行业分析检测技术专题培训:/pp  (1)色谱及色质联用分析检测及仪器的维护、维修及保养技术 /pp  (2)光谱分析检测及仪器维护、维修及保养技术 /pp  (3)电化学分析检测及仪器的维护、维修及保养技术 /pp  (4)油品常规分析检测及相关仪器的维护、维修及保养技术 /pp  6.石油化工行业中疑难检测问题解决方案 /pp  7.其他相关技术交流。/pp  第二单元:安全仪表及自动控制系统在石油和化工行业中的应用/pp  1.创新技术促新旧动能转换成果技术,石油化工行业过程控制技术、数字车间、智能炼厂的研究与探讨 /pp  2.仪表自动化创新技术应用/pp  石油和化工生产过程中的各种变量(温度、压力、液位、流量、流速、密度、粘度、浓/pp  度、质量、转速、扭矩、深度、频率、方位、位移、形变、电流、电压、功率、声音、图像等)进行自动检测、显示、存储、控制、分析及数据发送、接收的仪器,包括有温度表、压力表、液位计、流量计、数显仪等,自动控制、报警、信号传递和数据处理等功能的仪器、装置,调节阀、压力开关、变送器、数据处理模块以及工序流程控制、自动安全装置、节能环保装置、自动(半自动)操作系统、大数据采集分析系统等。/pp  3.包括石油化工行业仪表自动化前沿技术及其进展,相关设计标准、技术标准、关注热点、两化融合与项目集成、特种工况下的阀门设计与维护、安全仪表系统(SIS)、大型石油化工企业自动控制系统、DCS控制系统在大型煤化工装置上的应用及国产化介绍。/pp  4.石油、化工行业中仪表自动化设备维护 /pp  5.石油、化工行业中仪表自动化疑难检测问题的解决方案 /pp  6.安全仪表系统在石油炼化系统中的应用/pp  五、会议征文/pp  与会议议题相关的综合检测技术、仪器仪表测量控制技术、创新测量控制技术、仪器仪表维护保养技术、仪器仪表综合研发、实验室管理、QC成果等技术性文章均在征文范围。质量比较好的论文会议安排时间段进行交流,并推荐核心期刊正式发表或正式出版期刊增刊。/pp  论文要求:/pp  1.论文为没有公开发表过的文章。/pp  2.摘要不超过500字,全文不超过5000字。/pp  3.提交论文邮箱:r-well@163.com 。/pp  4.征文截止日期为2020年11月23日。/pp  六、会议注册:/pp  本次技术交流会对于石油化工企事业单位、科研、设计院所、高校、检测监管部门、第三方平台等技术人员不收取会议注册费用,会务组安排工作午餐,其它费用自付。欢迎石油、化工行业相关企事业单位技术负责人、管理人员、技术人员、研发技术人员等积极报名参会。/pp  七、联系方式:/pp  联系人:刘继红 联系电话:13611289072(微信同) 邮箱:r-well@163.com/pp  东北石油大学国家大学科技园/pp  2020年10月13日/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202010/attachment/519a925e-0e62-4cd1-a212-35512cec8553.docx" title="附件2:2020石油化工行业分析检测技术与安全仪表自动化控制系统论坛.docx"附件2:2020石油化工行业分析检测技术与安全仪表自动化控制系统论坛.docx/a/ppbr//p
  • 德国ETAS氢燃料电池控制器HIL测试方案
    德国ETAS氢燃料电池HIL方案- FCU HIL测试方案(面向2020年最新版)ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。 EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系 统的客户,我们提供工程服务以保证系统调试可以正确进行。 线束的设计需要考虑各个信号类型与 LABCAR 的匹配,要根据信号的功率大小选择合适 的线径,不同信号的抗干扰等等因素也要被考虑在内。在线束设计完成后还需要进行 复查以尽量减少可能出现的错误。在这个环节 ETAS 需要得到系统所有要连接进入的 ECU 的引脚布置和外部电路图,对于特殊的信号还需要知道信号的详细描述,比如通 过传感器说明书的形式得到。线束的制作需要两端的连接器,客户需要提供所有 ECU 端的配套连接器,以及相应的 说明书。ETAS 将根据线束定义为买方加工制作线束,并在制作完成后进行测试。在线 束制作过程中会加入相应的内容从而使未来线束的修改和少量信号增加可以较容易的 完成,而不必完全制作新的线束。在后面的系统调试阶段,ETAS 将介绍所设计的线束,应用的原则等,这样用户可以将 线束设计的方法消化吸收,再通过对 LABCAR 系统的使用加深理解,从而可以在未来自 行为新版本的 ECU 设计线束。本方案将为客户共提供 1 套 ODU ECU 线束。 在车辆控制单元开发与测试领域,LABCAR 硬件在环系统(HIL)是 ETAS 工具系列的一 个核心部分,贯穿于 V-模型的所有阶段。测试既可以在给定模型在环(Model-in-the- Loop,MIL)上操作,在当前软件在环(Software-in-the-Loop, SIL),连接实体 ECU 硬件 在环(Hardware-in-the-Loop,HIL)上执行,也可以涉及附加测量标定步骤,对车载 ECU 数据标定产生影响。它具备灵活性能和全面合理的逻辑概念。 控制单元初期开发,硬件在环(HIL)测试系统为其提供了重要的质量保证。为了便于 在实验室对控制单元进行功能测试或诊断, 通过 DVE 模型的模拟仿真,任何虚拟行驶环 境测试可以在广泛范围内反复进行。另外自动化操作扩展了测试范围,而对驾驶者和 车辆毫无损害。LABCAR 的开放式结构支持与测量标定工具的集成,广泛的模型选择与信号质量优良是LABCAR 的两大经典优势。LABCAR 的另一重要特色,即基于 PC 的结构,赋予了其本身一项固有优势:可用计算 能力的升级更加简便、经济。多目标与多核应用实质上无限量地提高了仿真速度与同 步获取大量数据信息时的计算能力,智能信号管理,投资高度安全和系统整个服务周 期内的性价比更加优越。 同时 ETAS 是一个真正能为 V 模式开发提供完整工具链的供应商。产品系列可靠地涵盖 了 ECU 软件开发的每个步骤 (直到售后诊断), 他们分布到不同的应用领域,
  • 茶叶安全生产质量控制技术研究取得突破
    由安徽农业大学承担的“十一五”国家科技支撑计划“食品安全关键技术”重大项目“茶叶安全生产的质量控制技术研究”课题,近日通过验收。该课题基本建立了茶叶清洁化加工质量控制技术体系,为全面提高我国茶叶清洁化加工技术和装备水平提供了借鉴。  据介绍,“茶叶安全生产的质量控制技术研究”课题组,完成了“茶叶质量与安全检测综合实验室”等保障食品安全的组织机构的建设;引用“十五”食品安全技术成果9项,建立了茶叶和土壤中农残和重金属检测方法标准,产生了甲醛快速检测技术、茶叶溯源技术等一批关键技术 建立了茶园良好操作规范、农用化学品实用技术规范、茶叶清洁化加工和生产技术规范;形成了茶叶清洁生产和保真溯源的质量安全控制体系和监管模式。课题组目前已在安徽和浙江建设10个示范生产基地,并辐射到周边地区。  日前,科技部组织的验收专家组考察了皖南休宁县荣山茶厂和黄山市谢裕大茶业股份公司炒青绿茶和黄山毛峰清洁化生产线、生态茶园等示范基地,听取课题组织实施情况汇报,审阅验收资料,进行质询。  专家组认为,该课题目前已经解决了茶叶加工过程中设备连接、污染控制、自动控制等关键技术难题,研究建立并示范了大宗炒青绿茶和4种典型外形名优绿茶清洁化生产线,实现了鲜叶低温恒湿处理、杀青、成型干燥、定形等封闭式、连续化全自动的工艺,形成了清洁化的茶叶生产、加工模式,促进茶叶加工企业向“高效、优质、节能、清洁”的技术转型。
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    摘要本期推文,编译了François Bertaux等发表在 Nature Communications期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。结果测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    编者按跟踪智慧实验室的理论研究发展状况、产业发展动态、主要设备供应商产品研发动态、国内外智慧实验室建设成果现状等信息内容。本文由中科院上海生命科学信息中心与曼森生物合作供稿。 本期推文, 编 译 了 Franç ois Bertaux 等 发 表 在 Nature Communications 期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。因文章篇幅较长,将分为三期来讲述。感谢关注!目录/CONTENT01/引言02/结果 2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制 2.2 反应性光遗传控制和酵母连续培养的单细胞解析特性 2.3 使用光实时控制基因表达 2.4 探索营养缺乏对健康和细胞压力的影响 2.5 ReacSight 是一种通用策略:通过吸液功能增强平板阅读器03/讨论01引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。 ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。02结果2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。03曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续Mediacenter Editor | 曼森编辑文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(下)
    本篇承接上文。《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)》(点击查看)。2.4 探索营养缺乏对健康和细胞压力的影响荧光蛋白可以作为报告物来评估细胞的表型特征,也可以作为条形码来标记具有特定基因型的菌株。再加上生物反应器阵列的自动细胞仪,这种能力扩展了可能的实验范围:在动态控制环境中的多重菌株特性和竞争(图 4a)。事实上,一些荧光蛋白可用于基因分型,其他可用于表型分型。然后,自动细胞仪(包括原始数据分析)将提供关于不同菌株之间竞争动态和每个菌株的细胞状态分布动态的定量信息。根据实验的目标,这些丰富的信息可以反馈给实验控制,以适应每个反应器的环境参数。作为可以进行此类实验的概念的第一个证明,作者开始探索营养缺乏对健康和细胞压力的影响(图 4b,左上角)。微生物群落中的不同物种根据其代谢多样性或专业性有不同的营养需求,因此它们的适合性不仅取决于外部环境因素,还取决于群落本身通过营养物质消耗、代谢物释放和其他细胞间耦合。与分批竞争分析相反,连续培养允许控制这些因素。例如,在恒浊器培养基中,营养素的可用性取决于营养素供应(即输入介质中的营养素水平)和细胞的营养素消耗(主要取决于 OD 设定值)。作者使用组氨酸营养不良作为营养缺乏的模型:对于 his3 突变细胞,组氨酸是一种必需的营养素。通过将 his3 突变细胞与野生型细胞在不同 OD 设定值和喂养介质中不同组氨酸浓度下进行竞争,可以测量营养缺乏如何影响适应性(图 4b,右上角)。在这两个菌株中使用应激报告子也可以了解营养缺乏情况下适应性和细胞压力之间的关系。作者将重点放在未折叠蛋白反应 (UPR)应激上,以研究营养应激是否会导致其他事先无关的应激类型,这将表明细胞生理学中的全局耦合。组氨酸浓度为 4µM 时,在考虑的 OD 设定值(0.1-0.8)范围内,his3 突变细胞被野生型细胞强烈竞争(图 4b,左下角)。当浓度为 20µM 时,情况不再如此。在这种浓度下,野生型细胞的生长速度优势在 OD 设定值 0.6 以下接近零(剩余组氨酸足以使 his3 突变细胞正常生长),在最大 OD 设定点 0.8 时超过 0.2 h −1(剩余组胺过低,限制了 his3 突变体细胞的生长)。因此,对于这种营养供应水平,细胞的营养消耗水平对 his3 突变细胞的适应性有很大影响。4µM 到 20µM 之间 的这种定性变化与组氨酸的单个高亲和力转运体 HIP1 的 Km 常数报告值 17µM 高度一致。此外,因为组氨酸浓度为 4µM 的野生型和突变型细胞之间的生长速度差异接近甚至超过野生型细胞通常观察到的生长速度(在 0.3 到 0.45 h −1之间, 取决于 OD 设定值),作者得出结论,突变细胞在这些条件下完全生长。UPR 数据显示,在组氨酸浓度为 20µM 的所有 OD 设定点上,突变细胞和野生型细胞之间几乎没有差异,但在组氨酸含量为 4µM 时,突变细胞中的 UPR 反应明显激活 (图 4b,右下角)。因此,看似相似的生长表型(例如 4 和 20µM OD 为 0.8 的突 变细胞)可能对应于不同的生理状态(如不饱和蛋白反应应激水平的差异所揭示的)。此外,为了展示基于菌株丰度数据的环境反应控制,作者着手动态控制两个菌株的比率。控制微生物培养物的组成和异质性有望实现更有效的生物加工策略。作者推断,当两种菌株中的一种对组氨酸具有营养缺陷时,培养物的 OD 可以用作方向盘。事实上,组氨酸生物合成突变生长速率在 20µM 的中等组氨酸浓度下对 OD 的强烈依赖性(图 4b,左下角)意味着可以通过切换恒浊器培养物的 OD 设定值来动态控制其生长速率。此外,如果这种菌株与组氨酸原营养菌菌株共同培养,但以 OD 独立的方式生长较慢,则可以实现两种菌株比率的双向控制(图 4c,左)。作者利用繁重的异源蛋白分泌构建了这种菌株。然后,作者构建了一个简单的模型来预测组氨酸营养不良菌株的(稳态)生长速率差异。将此模型用于模型预测控制和 ReacSight 事件系统,作者可以以完全自动化的方式在平行生物反应器(图 4c,右)中保持两种菌株的不同比率。然而,作者注意到稳态误差的系统存在。这种行为可能是由于慢菌株的生长速度意外恢复所致。由于在特征化实验中未观察到这种行为,作者假设这种差异是由于特征化或对照实验中使用的氨基酸供应混合物的组成不同(除了组氨酸外,Sigma 的组氨酸缺失补充物比 Formedium 的完整补充物更丰富)。图 4 探索和利用适应性、营养缺乏和细胞应激之间的关系。a 由于共培养、自动细胞仪和反应性实验控制,结合单细胞基因分型和表型分型的实验得以实现,以实时适应环境条件。b 左上角:必需营养素的可用性(例如 his3 突变株的组氨酸)取决于环境供应,也取决于通过营养素消耗的细胞密度。营养素供应不足会阻碍生长速度,并可能引发细胞应激。右上角:实验设计。野生型细胞(标记为 mCerulean 组成表达)与 his3 突变细胞共同培养。这两个菌株都含有一个 UPR 应激报告基因 mScarlet-I 的驱动表达。自动细胞仪能够将单个细胞分配 给其基因型,并监测菌株特异性 UPR 激活。这两种菌株相对数量的动态可以 推断突变细胞和野生型细胞在每种情况下的生长速度差异。左下图:两种不同介质组氨酸浓 度下突变细胞适应度缺陷的细胞密度依赖性。虚线表示野生型增长率对 OD 设定值的近似依赖性。右下角:每种情况下的菌株特异性 UPR 激活。c 左:双应变联合体的原理,其组成可以通过 OD 控制来控制。右:实施和演示。异源难折叠蛋白的分泌被用作营养独立的慢生长表型。使用模型预测控制和 ReacSight 事件系统对 OD 设定值进行动态控制,类似于图 3b (参见方法)。在时间 0 时开始蓝光,并在整个实验期间保持亮起,以诱导慢 his+菌株的慢 生长表型。作者注意到系统存在稳态误差,测得的比率低于目标值。在补充注释 3 中,作者 研究了限制控制性能的机制(慢生长表型的不稳定性、菌株识别错误和模型中未考虑的延 迟),还提供了其他控制实验的结果。源数据作为源数据文件提供。2.5 ReacSight是一种通用策略:通过吸液功能增强平板阅读器为了说明 ReacSight 的通用性,将其作为通过连接实验室设备来生长细胞和 /或测量细胞读数以及吸管机器人来创建实验平台的策略,作者将 Tecan 平板阅读器与 Opentrons 吸管机器人连接起来(图 5a)。移液机器人和驱动读板器的计算机通过 Flask 连接。因为无法访问平板阅读器的 API,所以再次使用了基于 pyautogui 的“点击”控制策略。在第一个应用中,作者使用移液机器人在生长条件下长时间保持细菌细胞数量。更具体地说,大肠杆菌临床分离物在两种不同的培养基(M9 葡萄糖加或不加 casamino 酸)中生长,并存在不同浓度的头孢噻肟(CTX),一种β-内酰胺抗生素。由于β-内酰胺酶的表达,所选菌株对头孢噻肟处理具有耐药性。它对 CTX 的最低抑制浓度为 2 mg/L。当细胞群 OD 的中位数达到目标水平时,介质将按照补偿蒸发的策略更新(图 5b,左)。通过所选策略,作者能够在至少 15 代细胞中 保持 OD 中值接近所选目标(0.05 或 0.1)(图 5b 右图)。有趣的是,作者观察到,当用 1 mg/L 头孢噻肟处理时,细胞在葡萄糖+酪氨酸钠中的抵抗力比单独在葡萄糖中更好。这有些令人惊讶,因为β-内酰胺类抗生素通常对快速生长的细胞有更强的影响。在第二个应用中,作者使用该平台测试了在不同细胞密度下应用第二剂量头孢噻肟的效果。这些实验在概念上非常简单,但其结果很难预测。低浓度头孢噻肟抑制参与细胞分裂的 PBP3 蛋白,从而导致细丝形成,而高浓度头孢噻肟则抑制参与细胞壁维持的 PBP1 蛋白,并导致细菌溶解。由于成丝作用,即使没有细胞分裂,种群生物量在延长的时间内也可能继续呈指数增长。此外,死亡细胞释 放的β-内酰胺酶在环境中降解抗生素。这导致了细胞死亡和抗生素降解之间的时间赛跑,丝状物有助于延迟这一赛跑,同时增加生物量(图 5c 左)。因此,在不同细胞密度下应用第二剂量抗生素的实验有可能启发人们理解不同的作用(图 5c 中间)。当以 5 10−4 的光学密度开始时,单次处理的结果与分离物的 MIC 一 致,因为高于 MIC 的处理会导致生长明显停滞,而低于 MIC 的处理不会(图 5c, “培养基处理”)。还可以观察到,在前一种情况下,生长在数小时后恢复,这是酶介导的抗生素耐受的典型行为。这两个观察结果在使用 16 mg/L CTX 进行第二次处理的情况下仍然有效。有趣的是,当处理后生长停止时,OD 大约是处理时 OD 的 25 倍:12 10−3 ,6 10−2 和 12 10−2,处理时分别为 5 10−4 , 2.5 10−3 和 5 10−3。这表明,生长停止前活细胞对抗生素的降解是有限的,因此,生长停止之前只有有限数量的细胞死亡。因此,对抗生素处理的耐受性使细胞在死亡前的生物量增加了近 25 倍,然后由于酶介导的抗生素降解,使细胞在处理中存活下来,远远 超过其 MIC。还可以观察到,当初始处理为 4 mg/L 时,生长停止和再生之间的延迟相对恒定(~5 小时),与添加的抗生素总量无关(4 或 20 mg/L CTX)。这表明,生长停止后抗生素降解非常有效,延迟主要对应于无法检测到的再生所需的时间,此时活细胞的动态被死亡生物的光密度所掩盖。在作者的条件下,当第一次处理有效(4 或 16 mg/L)时,第二次处理似乎几乎没有效果。需要进行深入研究,以更量化的方式调查这些影响。图 5 基于 ReacSight 的自动化平台组装,实现反应控制和低容量细菌培养物的表征。a 平台 概述。Opentrons OT-2 移液机器人用于提高读板器(Spark、Tecan)的容量。机器人用于在预先定义的 OD 处处理平板读取器中的培养物。b 左:大肠杆菌临床分离物可以通过以 OD 控制的方式更新培养基来维持在生长条件下。必须注意补偿延长时间范围内的蒸发。右图:富培养基中的细胞(葡萄糖+casaminoacids vs 单独葡萄糖)生长更快,但抵抗更好的亚 MIC 抗生素处理。左:由于两种效应的结合,细菌种群可能表现出对处理的恢复力。在单细胞水 平上,细胞可能通过丝状化耐受超过其 MIC 的抗生素浓度。基于纤维的耐受性允许在细胞 死亡之前增加生物量。在种群水平上,抗生素被环境中细胞死亡时释放的酶降解。最终结果 取决于细胞死亡和抗生素降解之间的竞争。中间:这两种效应的各自作用可以通过反复抗生 素处理来研究。右图:大肠杆菌临床分离物在初始 OD 为 5 10−4 时用不同浓度的 CTX(图 例)处理,第二次使用 16 mg/L CTX(红色)或单独使用介质(蓝色),使用用户定义的 OD (2.5 10−3 或 5 10−3 ). 由于仪器限制,OD 读数低于 10−3 个可靠性较差。源数据作为源数据文 件提供。03 讨论作者报道了 ReacSight 的开发,这是一种通过自动测量和反应实验控制来增 强多生物反应器设置的策略。ReacSight 通过允许研究人员将低成本开放硬件仪器(如 eVOLVER、Chi.Bio)和多功能、模块化、可编程移液机器人(如 Opentrons OT-2)与敏感但通常昂贵的独立仪器相结合,构建全自动化平台,大大拓宽了可行实验的范围。作者还证明,ReacSight 可用于增强具有吸液能力的平板阅读器。ReacSight 是通用的,易于部署,应该广泛用于微生物系统生物学和合成生物学社区。正如 Wong 及其同事所指出的,将多生物反应器装置连接到细胞仪进行自动测量,可以实现微生物培养物的单细胞分辨特性。事实上,在微生物系统和合成生物学的背景下,自动化细胞术几年前已经被少数实验室证明,但低吞吐量或依赖昂贵的自动化设备可能会阻碍这项技术的广泛采用。来自连续培养物的自动细胞仪与最近开发的光遗传学系统相结合,变得特别强大,能够对细胞过程进行有针对性、快速和成本效益的控制。作者使用 ReacSight 将两种不同的生物反应器设置(预先存在的自定义设置和最近的 Chi.Bio-optogenetic-ready 生物反应器) 与细胞仪连接起来。这证明了 ReacSight 战略的模块化,而使用 Chi Bio 生物反应器的平台版本说明了其他缺乏现有生物反应器设置的实验室如何能够以较小的时间和财务成本(不包括细胞仪的成本,尽管其价格昂贵,但即使在缺乏自动化的情况下也已经在实验室中广泛使用)构建这样的平台。作者通过以全自动方式并在不同的反应器中并行执行(1)光驱动的基因表达实时控制,展示了该平台的关键能力;(2)在严格控制的环境条件下,基于细胞状态的竞争分析;动态 控制两个菌株之间的比值。然而,作者只触及了这些平台提供的巨大潜在应用空间的表面。最近通过核 糖体移码技术证明,菌株条形码可以扩展到 20 株带有两个荧光团的菌株,甚至可以扩展到 100 株带有三个荧光团。这种多路复用能力对于并行描述各种候选路径的输入-输出响应(或菌株背景库中路径行为的依赖性)特别有用(在反应器中 使用不同的光感应)。免疫珠可用于更多样化的基于细胞术的测量(机器人可实 现自动孵化和清洗,例如使用 Opentrons OT-2 磁性模块)。表面显示或 GPCR 信号等技术也可用于设计生物传感器菌株,用单细胞仪测量更多培养物尺寸,无需试剂成本。除了高性能的定量菌株表征外,此类平台还可用于生物技术应用。基于自动细胞仪的人工微生物联合体的组成,以及培养条件的动态控制(如本文所示,使用组氨酸营养不良和 OD),可以大大减少设计稳健共存机制的需要,因此可以使用更大多样性的联合体。未来,希望许多基于 ReacSight 的平台将被组装起来,它们的设计将被广泛的社区共享,以大幅扩展实验能力,从而解决微生物学的基本问题,并释放合成生物学在生物技术应用中的潜力。参考文献:Bertaux, F., Sosa-Carrillo, S., Gross, V. et al. Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight. Nat Commun 13, 3363 (2022). https://doi.org/10.1038/s41467-022-31033-9 文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 雷尼绍推出具有开创意义的接触式扫描系统,为高端数控机床带来全新过程控制方法
    跨国工程技术公司雷尼绍近日宣布,将于2013年秋季正式推出用于数控机床的SPRINT&trade 高速模拟接触式扫描系统。SPRINT系统采用新一代的机内模拟扫描技术,不仅使过程控制实现跨越式提升,还能够准确、快速地从棱柱形或复杂3D工件上采集形状和轮廓数据。借助雷尼绍与关键工业领域的重要企业的良好合作关系,SPRINT机床扫描系统将为高价值数控制造过程带来重大变革。在叶片制造领域,SPRINT系统为叶冠整修和叶根无缝连接提供了前所未有的强大能力。高速测量叶片断面加上数据高度完整性(即使在叶片的前后边缘也不例外),确保能够呈现真实的工件状况,从而有利于进行适应性加工。设定、叶片准直、叶片扫描和数据采集等自动化程序在精度和循环时间方面明显优于触发式系统。在多功能机床加工应用领域,SPRINT机床扫描系统为用户提供了全新的过程控制功能,包括出色的可重复直径测量循环。通过采用标准件比对方法,SPRINT系统成为了一种&ldquo 主动&rdquo 控制器,能够确保在大型工件上进行自动化的测量-切削过程,并确保直径尺寸精确。该方法能够自动控制直径尺寸,并且公差仅为几微米。工件径向跳动、机床中心线和圆度等测量功能还可以显著提高多功能机床的制造能力。SPRINT系统还具有其他功能,可在数秒内完成对数控机床的线性轴和旋转轴的快速性能检测,因此无需操作人员过多干预便可实施日常的机床监控方案。每种SPRINT应用都由针对特定行业的相应软件工具包驱动和支持,例如SPRINT叶片工具套件。这些工具套件包括机内数据分析工具,可自动在内部循环运行,向数控加工过程提供测量反馈。SPRINT系统的核心是创新型OSP60扫描测头。OSP60测头的模拟传感器的分辨率在三个维度上均达到0.1 &mu m,精度极高,可全面深入探测工件外形轮廓。测头采用的模拟传感器技术可提供持续的偏移量输出,该输出与机床位置相结合,可得到工件表面的真实位置数据。该系统每秒能测量1000个真实3D数据点,其出色的分析能力为工件测量、检测、适应性加工和机内过程控制提供了无可比拟的优势,同时还可优化机床利用率和循环时间。此项新扫描技术开创了全新的过程控制方法,这是其他测量方法以前所无法实现的。除了极为快速而精准的3D测量外,SPRINT模拟扫描系统还可提高过程控制的自动化程度,无需操作人员干预。SPRINT系统采用多项专利技术,通过强大的静态和动态空间误差补偿(这些误差通常与高速机床运动相关)功能来实现无与伦比的高速、高精度3D表面数据采集。SPRINT系统是一种具有突破意义的高速、高精度工具,拥有无限广阔的应用前景,支持多种测量和过程控制方法;在降低废品率和返工率的同时,还可缩短测量循环时间,进而提升生产效率。
  • 在线COD氨氮总磷总氮自动监测仪需要安装连接质控仪吗? 质控仪的作用是什么?
    在线连接质控仪吗? 质控仪的作用是什么?‍ 水是生命之源,我们通常使用饮用水都是自来水厂是直接给我们提供的水源,那么如果出现自来水被污染,造成对人体的伤害那后果不堪设想,所以自来水厂一定会进行水质在线监测。在自来水厂安装水质监测仪的目的也就是实时监测水质的情况,确定合格才可以输入给各家各户。安装水质监测仪必不可少,那么作为监控水质监测仪的仪器--水质质控仪也是必不可少的。 根据《GB 5749-2006生活饮用水卫生标准》进行判断,每天24小时不断的对要监测点水中的余氯、浊度、pH等多个项目指标进行实时监测,确保饮用水卫生安全!倘若部分仪器的数据造假,则后果不堪设想。质控仪是一款对水质监测仪进行质控的仪器。工作原理是可对在线监测仪提供不能溶度的标准水样,以获取其在线监测数据,通过有线或无线的方式将数据传输至平台软件,可以远程检查水质监测仪是否正常工作,数据是否有偏差和有效。有了质控仪,水质监测不再有问题。质控仪不仅仅用在自来水厂进行水质监测仪器质控,还广泛被应用在水污染源在线监测系统中。质控仪的主要功能盘点:如下 在水质检测分析技术领域,为保证水质监测数据的长期有效性,需要定期对水质检测分析仪器进行校准。但是,校准后的水质检测分析仪器的测量数据是否准确,还需要通过质控仪的标准样品质量控制来获得。它主要对水质检测分析仪进行标准样品质量控制时需要的问题。将水质检测分析仪的进水连接管与样水管线分开,检测后重新投入使用。1、质控功能:可为标液核查质控仪提供三种浓度标准试剂,检查在线分析仪的准确度。  2、多种工作模式:质控仪有手动和自动两种工作模式。自动质量控制分为定期质量控制和定期质量控制,方便用户选择。  3、远程控制:登录远程控制系统,控制本地质量控制系统,执行质量控制计划。  4、分析统计功能:质控仪可对质控结果进行分析统计,形成图表,方便用户观察质控结果,并可根据需要将质控结果导出为PDF、Excel等格式。  5、模块化:一个显示控制器控制多个QC终端,每个QC终端对应一台在线分析仪。QC终端可根据需要任意添加,灵活方便。  6、分布式布局:体积小,显示控制器可放置在便于人员操作的地方,质控终端可放置在在线分析仪器旁边,减少使用场地的要求,缩短标准溶液的传输距离。  7、空闲时间质量控制:标液核查质控仪可以通过与原地表水站和污染源监测站的控制系统通信来控制在线分析仪器,并可以智能判断分析仪器的空闲时间,不会既影响原有的控制系统,又实现了在线分析仪器的质量控制。  8、自检报警:质控仪可通过自检发现标准液缺失、标准液不合格等故障并报警,可实现缺乏标准液的预警。  9、恒温储存:质控终端配备恒温室,实现标准溶液的冷藏。冷藏温度:4±2℃。  10、门禁功能:品控终端采用电子门禁和密码权限登录,保证品控结果的可靠性。  11、时钟校准:远程控制平台为质控仪提供时间校准,可立即校准或每天自动校准。校准时间可根据需求设置。  12、停电数据保留:在故障停电情况下,可保留质控仪数据,并可将停电时间上传至远程控制平台。  13、多种通讯方式:本地质控系统与远程控制系统之间采用无线或有线通讯方式,本地质控系统与其他控制平台之间采用RS-485/RS-232通讯方式。
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)
    本篇承接上文,《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。2.2反应性光遗传控制和酵母连续培养的单细胞解析特性作者首次应用ReacSight策略的动机是酵母合成生物学应用。在这种情况下,精确控制合成路径并在定义明确的环境条件下测量其输出,并具有足够的时间分辨率和范围是至关重要的。光遗传学为控制合成路径提供了一种极好的方法,生物反应器支持的连续培养是对环境条件进行长时间严格控制的理想方法。为了测量单个细胞的路径输出,细胞术提供了高灵敏度和高通量。因此,借助ReacSight策略,利用台式细胞仪作为测量设备,组装了一个完全自动化的实验平台,实现了对酵母连续培养物的反应性光遗传学控制和单细胞解析表征(图2a)。补充说明2提供了平台硬件和软件的详细信息,此处仅讨论关键要素。八个反应器与移液机器人相连,这意味着每个时间点都会填满一列取样板。虽然机器人可以接触到三列细胞仪输入板,但作者仅使用一列,由机器人进行广泛清洗,以实现小于0.2%的残留,使用免疫磁珠进行验证。通常在机器人平台上安装两个倾翻箱和两个取样板(2×96=192个样本),因此,在没有任何人为干预的情况下,八个反应器中的每一个都有24个时间点。为了实现基于细胞数据的反应性实验控制,作者开发并实施了算法,以在重叠荧光团之间执行自动选通和光谱反褶积(图2b)。作者首先通过对组成性表达来自染色体整合转录单位的各种荧光蛋白的酵母菌株进行长期恒浊培养来验证平台的性能(图2c)。荧光团水平的分布是单峰的,随着时间的推移是稳定的,正如在具有组成型启动子的稳定生长条件下所预期的那样。mNeonGreen和mScarlet-I在单色和三色菌株之间的分布完全重叠。这与从强pTDH3启动子表达一个或三个荧光蛋白对细胞生理学的影响可以忽略不计的假设是一致的,并且三色菌株中转录单位的相对位置(mCerulean第一,mNeonGreen第二,mCarlet-I)对基因表达的影响很小。与单色品系相比,三色品系中测得的mCerulean水平略高(~15%)。这可能是由于反褶积中的残余误差造成的,与自荧光和mNeonGreen相比,mCerulean的亮度较低加剧了这种误差。为了验证平台的光遗传学能力,作者构建了一个基于EL222系统17的光诱导基因表达路径并对其进行了表征(图2d)。正如预期的那样,应用不同的蓝光开-关时间模式导致荧光团水平的动态分布覆盖范围很广,从接近零水平(即几乎无法与自体荧光区分)到超过强组成启动子pTDH3获得的水平。高诱导表达水平的细胞间变异性也很低,变异系数(CV)值与pTDH3启动子相当(0.22vs0.20)。作者组装的第一个平台使用了一个预先存在的定制光生生物反应器阵列。这种设置有几个优点(可靠性、工作容量范围广),但其他实验室无法轻易复制。由于ReacSight架构的模块化,可以通过将这个定制的生物反应器阵列与最近描述的开放硬件、光遗传学就绪的商用Chi.生物反应器(图2a(右图))交换,快速构建具有类似功能的平台的第二个版本。为了验证该平台的另一版本的性能,作者使用图2d中相同的菌株进行了光诱导实验,并获得了各种光诱导曲线的极好的反应器到反应器再现性。图2基于ReacSight的自动化平台组装,实现对酵母连续培养物的反应性光遗传学控制和单细胞解析表征。a平台概述。OpentronsOT-2移液机器人用于将支持光基因的多生物反应器连接到台式细胞仪(GuavaEasyCyte14HT,Luminex)。机器人用于稀释细胞仪输入板中的新鲜培养样本,并在时间点之间清洗。“点击”Python库pyautogui用于创建细胞仪仪器控制API。定制算法是在Python中开发和实现的,用于实时自动选通和去卷积细胞数据。使用定制的生物反应器装置(左图)或Chi生物反应器(右图)组装了两个版本的平台。b选通和反褶积算法说明。例如,显示了重叠荧光团mCerulean和mNeonGreen之间的反褶积。c多代单细胞基因表达分布的稳定性。从pTDH3启动子驱动的转录单位中组成性表达mCerulean、mNeonGreen或mCarlet-I的菌株(“三色”菌株),整合到染色体中,在浊度调节器模式下生长(OD设定值=0.5,上限图),每小时采集一次细胞仪(垂直绿线)。所有时间点的荧光强度分布(通过高斯核密度估计进行平滑)(选通、反褶积和前向散射归一化后,FSC)用不同的颜色阴影绘制在一起(下图)。RPU:相对启动子单位(见方法)。为了简单起见,未显示“三色”的OD数据,与其他类似。d基于EL222系统的光驱动基因表达电路的特性。应用三种不同的开-关蓝光时间剖面图(底部),每45分钟采集一次细胞仪。门控、去卷积、FSC标准化数据的中位数如图所示(顶部)。此图中显示的所有生物反应器实验均在同一天与定制生物反应器平台版本并行进行。源数据作为源数据文件提供。2.3使用光实时控制基因表达为了展示平台的反应性光遗传控制能力,作者开始动态适应光刺激,以便将荧光团水平保持在不同的目标设定点。这种用于体内基因表达调控的电子反馈有助于在存在复杂细胞调控的情况下剖析内源性路径的功能,并有助于将合成系统用于生物技术应用。作者首先构建并验证了光诱导基因表达的简单数学模型(图3a)。将三个模型参数与图2d的表征数据进行联合拟合,得到了良好的定量一致性。考虑到模型假设的简单性,这一点值得注意:光激活下的mRNA生成速率恒定,每mRNA的翻译速率恒定,mRNA(大部分降解,半衰期为20分钟)和蛋白质(大部分稀释,半衰率为1.46小时)的一级衰变。因此,当实验条件得到很好的控制并且数据得到适当的处理时,人们可以希望用一小套简单的过程来定量地解释生物系统的行为。然后,作者将拟合模型合并到模型预测控制算法中(图3b)。该算法与ReacSight事件系统一起,实现了对不同反应器中不同目标的荧光水平的精确实时控制(图3c)。为了进一步证明平台的稳健性和再现性,作者在几个月后进行了另一个单8反应器实验,涉及两个荧光团目标水平的四个重复反应器运行。所有的重复都能很好地跟踪目标,并且控制算法决定的光分布在相同目标的重复之间非常相似,但并不完全相同。作者还研究了之前使用的诱导系统在更长时间尺度上的遗传稳定性。遗传稳定性是工业生物生产的一个重要因素。作者观察到,EL222驱动的mNeonGreen蛋白的诱导可以持续5天以上,并且具有很好的稳定性(图3d顶部)。更进一步,作者测试了同一蛋白的分泌版本是否表现出类似的表达稳定性。作者观察到,诱导约2天后细胞水平显著降低。细胞异质性也增加了(图3d右侧)。为了弥补细胞水平的下降,作者将表达盒整合成多个拷贝(三次,串联染色体插入)。诱导后,获得了非常高的荧光水平(图3d底部)。令人惊讶的是,这些水平比非分泌蛋白高一个数量级,并伴随着强烈的应激,正如未折叠蛋白应激报告所反映的那样(pUPRmScarletI)。诱导后,细胞内蛋白质水平逐渐下降。细胞内蛋白质水平显示出明显的双峰分布,强烈的遗传不稳定性迹象(图3d右侧)。最后,当以最大诱导水平的三分之一诱导时,相同的三重拷贝结构表现出非单调行为:高水平初始反应,随后细胞内水平缓慢下降,如完全诱导的三重结构,随后长期内部高蛋白水平的非预期缓慢恢复(图3d底部)。这种恢复可以通过细胞适应高生产需求来解释,或者更可能的是,通过选择高产亚群来解释,该亚群能够更好地保存HIS3选择标记,即使在完全培养基中也具有轻微的生长优势。这个实验证明了作者的平台能够执行长时间的实验,并以相对较高的时间分辨率提供单小区信息。此外,它促使探索和利用营养素可用性对健康和压力的影响。图3闭环:使用光实时控制基因表达。a光驱动基因表达电路的简单ODE模型拟合到图2d的表征数据。拟合参数为γm=2.09h−1,σ=0.64RPU小时−1,γFP=0.475小时−1km被任意设置为等于γm,以仅允许从蛋白质中值水平识别参数。b实时控制基因表达的策略。每小时进行一次细胞仪采集,在选通、反褶积和FSC归一化后,数据被送入模型预测控制(MPC)算法。该算法使用该模型搜索10个周期为30分钟的工作循环(即5小时的后退地平线)的最佳占空比序列,以跟踪目标水平。c四种不同目标水平的实时控制结果,在不同的生物反应器中并行执行(自定义设置)。左:单个单元格的中位数(控制值)。右:单细胞随时间的分布。请注意,所有绘图都使用线性比例。d表达系统的长期稳定性和蛋白质分泌的影响。表达EL222驱动的mNeonGreen荧光报告子的细胞,无论是否分泌,在浊度调节器中生长5天,每2小时进行一次细胞仪测量。表示整个实验期间的平均表达水平。荧光分布也显示在选定的时间点(诱导后0、6、48和120小时)。细胞也有分泌应激的荧光报告子(pUPRmScarlet-I)。还提供了三个拷贝中整合的mNeonGreen报告蛋白的分泌形式的结果。相关蛋白(mNeonGreen水平)和应激水平(mCarlet-I水平)分布的时间演变如补充图11和12所示。源数据作为源数据文件提供。曼森生物高通量菌株筛选平台技术上海曼森生物科技公司专注于高通量、自动化、智能化实验室技术产品开发,逐步形成了全自动化的高通量菌株筛选平台技术,可根据用户需求定制化高通量全自动菌株筛选平台。每天筛选通量可从几千到10万,是人工通量的几十倍上百;在传统生物技术上,加速工业化菌株的遗传进化,帮助提高底物转化率和产量提升;在合成生物技术上,可为选择的平台化合物表达菌株的遗传稳定性、表观遗传进化提升效率。此外高通量筛选必须有高通量的自动化分析检测技术支撑方能发挥最大价值。曼森高通量自动样品检测机器人文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 镀层检测技术在质量控制过程中的灵活运用
    汽车的历史新闻:  近几年,汽车的质量问题屡见不鲜。时下的汽车安全问题,一直是汽车行业消费最关注的话题之一。那么,如今的汽车质量是否能跟上其日新月异的发展节奏呢?本次我们讨论的话题是,汽车电器中电器接插件方面的质量问题与其对应方法。在金属镀厚的过程中,主要有以下几种因素会影响其镀层质量: 镀前处理:生产实践证明造成镀层质量事故多数是由于金属制品的镀前处理不当或欠缺所致。镀前处理的每道工序都会直接问影响到镀层质量。电镀溶液:镀液的性质、各组成成分的含量以及附加盐、添加剂的含量等都会影响镀层质量。基体金属:镀层金属与基体金属的结合是否良好,与基体金属的化学性质有密切关系。如基体金属的电位负于镀层金属的电位,或对易于钝化的基体或中间层,若不采取适当的措施,难以获得结合牢固的镀层。电镀过程:电流密度、镀液温度、送电方式、移动和搅拌的速度等,也会直接影响镀层质量。析氢反应:在宁波电镀过程中大多数镀液的阴极反应都伴随着氢气的析出。当析出的氢气黏附在阴极表面上时会产生针孔或麻点;当一部分被还原的氢原子渗入基体金属或镀层中,会使基体金属及镀层的韧性下降而变脆,叫氢脆。氢脆对高强度钢及弹性零件产生的危害尤其严重。镀后处理:镀后对镀件的清洗、钝化、除氢、抛光、保管方法等都会继续影响镀层质量。电源问题:近年来除采用一般的直流电外,根据实际需要广泛采用换向电镀的方法,使用周期换向电流,还有脉冲电源提供的脉冲电流等都会对镀层质量产生影响。   那么,成品镀件的质量究竟该如何管控呢?  镀层厚度测量已成为加工工业、表面工程质量检测的重要环节,是产品达到优等质量标准的必要手段。为使产品国际化,我国出口商品和涉外项目中,对镀层厚度有了明确要求。目前镀层厚度的测量方法主要有:楔切法,光截法,电解法,厚度差测量法,称重法,X射线荧光法,β 射线反向散射法,电容法、磁性测量法及涡流测量法等等。这些方法中前五种是有损检测,测量手段繁琐,速度慢,多适用于抽样检验。  X射线和β 射线法是无接触无损测量,测量范围较小,X射线法可测极薄镀层、双镀层、合金镀层。β 射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。  随着技术的日益进步,特别是近年来引入微机技术后,采用X射线镀层测厚仪 向微型、智能、多功能、高精度、实用化的方向进了一步。测量的分辨率已达0.1微米,精度可达到1%,有了大幅度的提高。它适用范围广,量程宽、操作简便且价廉,是工业和科研使用最广泛的测厚仪器。  金属表面处理技术广泛应用于电子行业,而电镀处理更是其主要的表现形式,电镀效果也将直接影响电子设备的性能发挥,汽车电子行业也不例外,其中汽车电子连接器端子的电镀将会影响汽车电子设备的导电和信号传输等方面的性能发挥。 目前在汽车电子连接器端子中较为常见的是Sn/Ni/CuZn、Au/Ni/CuZn、Sn/Ni/CuSn、Au/Ni/CuSn等镀层结构,日立FT110系列产品能够有效地对应Sn/Ni/CuZn、Au/Ni/CuZn、Sn/Ni/CuSn、Au/Ni/CuSn结构的膜厚测量,使用日立FT110对Sn/Ni/CuZn、Au/Ni/CuZn结构的测量来讨论电镀工艺在质量管理上的重要性。解决方案请见: http://www.instrument.com.cn/netshow/SH100718/s544330.htm
  • 199万!福鼎市疾病预防控制中心计划采购大容量离心机、自动拧盖机等仪器设备
    一、项目基本情况项目编号:[350982]FJZCZB[GK]2023001-1项目名称:福鼎市疾病预防控制中心2022年疾病预防控制机构能力建设仪器设备货物类采购项目(二次)采购方式:公开招标预算金额:1,997,000.00元采购包1(医疗设备采购):采购包预算金额:1,304,000.00元采购包最高限价: 1,304,000.00元投标保证金: 26,080.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02329900-其他医疗设备大容量离心机1(台)否一、仪器特点: 1、微机控制,交流变频电机,高精度,低噪音。 2、触控大彩屏显示,转速,离心力,运行时间,故障显示。 3、适配器多层独特设 计,可同时满足 100mm 和 75mm 采血管分离,自动脱帽提高实验工作效 率。 4、静音技术,噪音低于行业标准 15 分贝。 5、门盖机身采用双层密封圈。 6、设有电子门锁,超速,不平衡检测保护,故障报警等功能、确保人生安全。 7、内置高效生物无气溶胶过滤系统,及时过滤离心后产生的生物气溶胶,确保生物安全。 8、触摸面板,可编程操作,转速离心力自动转换。 二、技术参数: 1、最高转速≥ 5500rpm 2、最大离心力≥5470×g 3、定时范围 ≥0~59h99min 4、转速控制精度±20rpm 5、整机噪音 <58dB 6、电 源 AC220V 50hz 10A 7、重 量 ≥50kg 8、外型尺寸 ≥600×470×370mm(L×W×H) 9、配置: 2 号水平转子 80×5 ml /2ml 转速 4000r/min 离心力 3520×g20,000.001-2A02329900-其他医疗设备自动拧盖机1(台)否1、快速开盖、闭盖,可连续批量操作,运行稳定 2、结构紧凑,占用空间小,可置于安全柜内使用,有效 3、避免实验:室污染和样本间污染 4、计数显示,辅助记录实验样品数量 5、具备清零、设置按钮,可进行计数清零和仪器功能设置 6、应用领域,户外或室内采样点,各类医疗及公共卫生单位的采样科室、检验室、实验室。 7、运行高效 8、快速旋盖,耗时不高于 4s 9、通用性强 10、可适配市面上各种螺口 11、不同型号的病毒采样管(-拖 1~-拖 20 皆可)15,000.001-3A02329900-其他医疗设备瓶口分液器2(台)否一、产品优势 1、具有极强的化学耐受性 2、可高温消毒灭菌 3、≥4 种型号满足和覆盖了 0.5-50ml 容量范围 4、方便的设 计,保证了对分液器进行简单和经济的清洁和保养 5、采用 PTFE、FEP、BSG、 PP 等材料制成 6、最大耐压≥500mbar,最大耐粘性≥500mm2/s,最大耐液体温度为 40℃, 7、最大耐液体密度 2.2g/cm3 瓶口分液器6,000.001-4A02329900-其他医疗设备光能电子滴定器1(台)否一、特点优势 1、全数字化操作; 2、工作范围:0.01ml-99.99ml 3、单次最大移液量为 10ml,最小为 10μl 4、电子控制系统,使滴定过程稳定准确 5、人性化的大尺寸液晶显示参数设置交互面板 6、支持数据存储和传输 7、外置磁力搅拌器,应使整个滴定过程稳定精确 8、可通过 USB 接口连接电脑实现远程操控并保存数据。 二、技术参数 1、工作范围 0.01mL~99.99mL,单次最大移液量为 10mL,最小为 10μL 2、工作精准度 R=0.2% CV=0.07% 3、速率调节范围 升降速各 8 档 4、工作温度范围 ≥10℃~30℃ 5、质量标准 DIN EN ISO 8655 6、部件组成 外置控制器,外置磁力搅拌器15,000.001-5A02329900-其他医疗设备全自动移液工作站1(台)否1、环境温度:5℃-40℃; - 3 - 2、相对湿度:≤85%; 3、适用电源:100-240VAC,50/60HZ; ▲4、至少具有 96 通道设备提供多种可选核心:0.5~20 μL、5~200 μL、50~1250 μL 具有 准确性和重复性。 ▲5、采用高精度移液头,可一次性完成 1/8/16/24/48/96 孔板移液操作。其适用的移液量广 泛,低至 0.5 μL,高达 1250 μL。且能使≥ 96 通道的移液头来对微孔板中的任何一行进行 移液工作而不须另外购置专用的移液头。 ▲6、多通道,每个量程核心都可以自由更换,一台设备完成 0.5-1250uL 体积的移液,一分钟 即可完成核心更换。 7、全自动移液系统,预编程序导入设备,一键启动可以自动的进行梯度稀释、连续分液、变 量分液等功能,同时可实现自动的试管/离心管/孔板之间互相转移液体。 8、高精密的制造工艺,使≥ 96 个的活塞同步移动,每个通道都是单独的,以排除任何跨通 道影响,通道间一致性提供高质量的分析数据,采用 20 μL 移液核心进行小体积移液时,其 精度可达准确度±1.5%、精密度≤1.0%,最小工作体积为 0.5 μL,最小增量为 0.01 μL。 9、触控大屏≥10.1 英寸操作,图形化的操作界面,具有程序存储、孔板记忆等功能,最多可 以储存 999 个程序,每个程序最多可以有 99 步操作,确保具有可重复性、可再现性。。 10、软件具有灵活的调度功能,可以控制移液操作的每个细节,如:加卸载吸头、加样、分样、 混匀、吹样、排空等的细节参数修改功能;有针对性控制体积校准因子、移液速度等功能,对 普通液体和粘稠性液体进行精确的移液和分液;软件需有密度调节功能,可根据液体特性进行 设置提高移液精度。 11、有针对性的功能可以对普通液体和粘稠性液体进行精确的移液和分液;软件有密度调节功 能,可根据液体特性进行设置提高移液精度,根据不同需求能对移液和混合速度可调。 12、电动装/卸吸头设 计,确保每个吸头正确安装,并在同一水平线上;采用了弹性加载系统, 装枪头时,枪头会牢牢锁定在移液头上,这保证它们永远不会意外脱落。 13、设备需采用了多腔一体式双重密封腔体结构,具有很安全的密封结构,保证每个吸头安装 牢固,不会漏气漏液;密封的同时亦不会相互干扰,且可适配通用枪头。 14、兼容大部分符合 S240,000.001-6A02329900-其他医疗设备智能机器人分析系统(耗氧量、总硬度、碘盐)1(台)否(一)设备要求: 适用于饮用水、地表水、水源水等样品高锰酸盐指数项目的自动测定分析。 (二)技术要求: 2.1 整机要求: 2.1.1 设备要求符合 GB/T11892 水质高锰酸盐指数的测定方法,要求恒温滴定与沸水浴消解在 并排一侧的结构模式,不接受组合或拼凑的设备,人机对话,可以升级自动定量取样分析,配 套 12 通道沸水浴消解,3 通道样品滴定、独立通道试剂混匀、独立排废通道、移动的广角滴 定传感器,实现各类样品无人值守自动测定分析。 2.1.2 要求多种滴定模式,满足耗氧量、总硬度、盐碘等不同项目的自动滴定分析,需提供软 件实物图作为佐证。 2.2 样品盘单元要求: 2.2.1 不少于 36 位样品通道,可独立取放的样品通道盘,要求样品盘托架非固定模式,不接 受分体占空间结构模式。 2.2.2 要求自适应电驱动力机器人手臂,实现样品分析转移等国标分析步骤。不接受占空间噪 音大的空压机气驱动抓取方式,避免管路漏气,样品转移过程中样品杯掉落影响,稳定的自适 应抓力运行模式。 2.2.3 要求具备独立的试剂混运通道,实现硫酸、高锰酸钾等试剂在此通道内添加后再放入水 浴消解,保证试剂与样品充分混合。 2.3 消解系统要求: 2.3.1 样品消解不少于 12 个有效运行的沸水浴通道,满足 12 个样品同时消解,样品循环消解 处理,需提供软件实物图或者相关证明材料作为佐证。 3.3.2 要求国标沸水浴消解方式,开机可选择单独开启预热,样品循环计时消解,水浴消解能 够自动计时,水源低位预警保护,并自动补水,消解结束自动停止水浴加热。 - 6 - 2.3.3 要求沸水浴液位采用光纤传感器可调高度控制,非接触沸水浴检测液位损耗,减少机械 浮子传感器长期高温水浴影响寿命,需提供软件实物图作为佐证。 2.4 滴定系统要求: 2.4.1 不少于 3 个独立的滴定通道,至少满足 3 个以上样品滴定分析,样品消解结束后恒温滴 定,减少分析过程温度变化影响实验结果,确保实验数据准确稳定。 ▲2.4.2 要求颜色移动判断滴定终点,非单一固定侦测模式,全色域多角度移动识别样品滴定 终点,多角度观察颜色变化,不接触样品方式,免维护自动校准,需提供软件实物图或者相关 证明材料作为佐证。 2.4.3 要求至少具有两组独立运行的试剂手臂,实现试剂添加和样品滴定独立运行。 2.5 数据工作站系统要求:300,000.001-7A02329900-其他医疗设备气相分析仪(带 FID 带自动进样器)1(套)否一、快速加热和冷却的柱温箱 1 最大柱箱温度:≥450℃; 2 程序升温:≥20阶21平台; ★3 最大升温速率:可设定最高升温速度≥250℃/min; 4 温度设定精度:≤0.1℃; 5 控温精度:≤0.01℃; 6 温度稳 定性:周围温度每变化1℃,柱温箱温度变化小于0.01℃; 7 具有柱温箱温度的自动保护功能; 8 最大运行时间:≥9999.99分钟; ▲9 需具有“双喷射冷却系统”,需在空气入口处增加了冷却风扇,降温时通过优化空气循环 以实现快速冷却,提高分析效率,从450降到50℃≤3.5min; 二、进样单元 最多可同时安装≥三个独立控温的进样单元,由电子流量控制系统控制; 1. 分流/不分流进样口 1.1 最高温度:≥450℃; ▲1.2 需配备全自动电子流量控制系统,具备室温补偿和自动环境补偿功能,支持恒流,恒压, 程序增加流速,程序升压及压力脉冲等操作模式以及恒线速度控制功能; 1.3 标准配备载气节省模式,有效节约载气消耗量 1.4 最大压力设定:≥1015 kPa 1.5 压力程序比率设定范围:-400 ~ 400 kPa/min 1.6 压力程序:≥7阶 1.7 最大分流比设定范围:≥9000:1 1.8 最大流量设定:≥1250mL/min 1.9 压力设定精度:≤0.001Psi 三、检测器单元 可同时安装≥四个独立控温的检测器,检测器的气体由先进的压力控制系统控制,检测器的数 据采集速率是≥250Hz。 2. 氢火焰离子化检测器(FID) 2.1 最高使用温度:≥450℃ 2.2 自动点火功能 2.3 检测限:≤1.5×10 -12g/s ( 十二烷 ) 2.4 动态范围:≥10 7 2.5 需具备在氢火焰意外熄灭时,供气气压降至0水平的安全反馈功能; 四、其他 1. 色谱柱和流路系统 1.1 可安装并使用包括内径≥0.53mm在内的各规格毛细柱; 1.2 支持双柱双流路系统,且两根色谱柱长度不受限制; 1.3 两个柱流量控制系统均采用流量控制单元 1.4 支持三柱三FID同时分析组成气相色谱方法优化系统 1.5 可通过切割少许长度来延长色谱柱使用寿命,污染后无需即刻整体更换 1.6 具有恒定的载气线速度控制功能 2. 面板键盘 2.1 操作面板需可以完全控制及显示所有温度区域和载气流量 2.2 操作面板需可以完全控制所有检测器功能和218,000.001-8A02329900-其他医疗设备石墨炉原子吸收1(台)否一、适用领域: 食品、土壤、水等样品中的如金、银、铜、铅、锌、锰、钾、钠、钙、镁、铁、镉等 元素的测定。 二、技术指标: 3.1、波长范围:190—900nm 3.2、波长准确度:±0.2nm 3.3、静态基线稳 定性:≤±0.003A/30min 3.4、检出限(Cd):≤0.5pg 3.5、精密度(Cd):RSD≤2% 3.6、温控范围:室温~3000℃ 3.7、升温速度:≥2000℃/秒 3.8、全波段扣除背景 三、技术参数: 3.1、石墨炉电源、原子吸收主机位于同一台仪器内,节省仪器空间,缩短了电缆长度,减少了石 墨炉电源对外界的电磁干扰、提高了石墨管加热效率。(提供仪器实物照片并标注相关位置进 行佐证) 3.2、石墨炉供电采用内置石墨炉电源设 计,电源和仪器主机无裸露外接电源线仪器使用更加 安全。 3.3、仪器长度小于 1m,能够节约实验室空间 3.4、八灯自动转塔,可同时预热八只元素灯,提高仪器分析速度和使用效率(提供仪器软件 截屏及灯位照片作为佐证) 3.5、元素灯塔可以 360 度无限制旋转,不会出现绞线的故障,自动精确定位。 3.6、采用高强度浮动光学平台,减少震动影响、仪器环境适应性强。 3.7、波长自动扫描,实现波长精确定位。 3.8、光谱带宽自动切换,至少具有 0.2,0.4,1.0,2.0nm 四档可选。 3.9、自动增益,自动灯电流,能量自动平衡。 3.10、Czerny-turner 型光路设 计,焦距≤270mm,光程短,减少光的衰减,能量强。 3.11、采用至少 1800 条刻线/mm 全息平面光栅,分辨率高。 3.12、石墨炉采用纵向加热直流塞曼扣背景。 3.13、最大 10 阶升温程序,阶梯、斜坡、保持三种升温方式,升温速度:≥2000℃/秒。 3.14、带有气压检测、水压检测、炉温保护、管断报警等多种防护措施。 3.15、采用塞曼背景校正技术、实现全波段背景扣除,横向塞曼、恒定磁场,背景校正稳定。 3.16、采用恒定磁场,无需采用额外的电路系统来产生磁场,更加节能及稳定。(提供磁钢照 片作为佐证) 3.17、磁钢具有高温自动报警装置。 3.18、进样器位数≥60 位,样品泵和清洗泵均采用高精度注射泵;采用垂直进样方式,便于 调节进样针的滴液位置。(提供进样器实物照片作为佐证) 3.19、适用于 Windows10/9/8/7/250,000.001-9A02329900-其他医疗设备大容量刀式研磨仪1(台)否一、技术指标: 1、仪器系统:刀式研磨仪是一款专门进行粉碎和均质化处理的仪器,能在数十秒钟内将样品粉碎至分析细 度,并且粉碎结果均质化程度高,可满足实验室操作和分析过程所提出的各种专业要求; 2.、应用范围:刀式研磨仪适用于对软性、中硬性、脆性及纤维性等样品的粉碎研磨,尤其适合对含水、 含油、含脂肪及纤维性物料的研磨及均质化处理;且能够处理大量样品,如:鸡骨、鲜鱼、海鲜、榛子等 样品。 3、进样尺寸:小于 130mm,最终出样尺寸:小于 300μm; 4、样品处理量:<4L; 5、电机转速:500-4000rpm,数字显示,连续可调; 6、研磨时间设置:00:00-99:59(分/秒),数字显示,连续可调; 7、转刀:采用双层 4 片直刀设 计,研磨效率更高; 8、研磨套件类型及材质:转刀有不锈钢制、全不锈钢制、镀钛制两种材质以及不锈钢制锯齿形转刀;研磨 容器—耐压热塑料制(5L 通明、防划)、不锈钢制(5L),顶盖—标准顶盖、重力顶盖、带溢流渠的重力顶 盖; 9、≥5 英寸 LED 触摸显示屏,操作方便简单; 10、存储模式:程序可存储至少 10 组常用参数,方便快速调取使用; 11、仪器具有电磁锁,在研磨过程中机盖无法打开或者机盖正常锁紧前仪器无法开启,最大限度的保证了 操作的安全性; 12、具有间歇、正转及反转模式, 均可在控制面板上直接操作; 13、仪器配件均可进行高温高压灭菌或者防重金属污染; - 13 - 14、电机功率≥1500W,大功率无刷电机,动力强劲; 二、标准配置 1、刀式研磨仪主机:1 台; 2、5 升耐压热塑料容器:1 个 3、5 升不锈钢研磨容器: 1 个 4、标准顶盖:2 个; 5、转刀:不锈钢制,1 个; 6、转刀:镀钛、用于防重金属污染,1 个; 7、重力顶盖,pp 材质:1 个;120,000.001-10A02329900-其他医疗设备实验室空气消毒设备1(台)否一、用途:设备主要用于封闭空间内,空气及物表的终末消毒或灭菌。 1. 工作条件:环境温度:≥5°C,相对湿度:≤95%,气压:70-106 kPa 2. 工作电压: 220V 50Hz 3. 输入功率:≤900W 4. 适用范围:≤150 m 3 5. 工作方式: 消毒剂能够从机身向周围 360°无死角喷出后,快速均匀扩散并完成消毒(非 单一方向的喷射消毒方式) 6. 消毒效果: 实验空间白色葡萄球菌杀灭率≥99.9%,H1N1 病毒杀灭率≥99.9%,150 m 3自 然菌消亡率>90% ▲7.物表模拟消毒试验:金黄色葡萄球菌杀灭对数值均>3,大肠杆菌杀灭对数值均>3 物表 模拟消毒试验(实验舱 150 m 3):枯草杆菌黑色变种芽孢杀灭对数值均>3,嗜热脂肪肝菌芽 孢杀灭对数值均>3 设备适用 H2O2溶液浓度: 6-8%浓度下,设备对空气消毒和物表消毒的消 毒效果报告。 7. 溶液存储量:≥3L 8. 单次工作消毒剂用量 3 ~13mL/m 3 9. 设备可自动计算消毒液用量,只需输入消毒体积和单位体积用量,设备即可启动消毒 10. 设备雾化颗粒≤1 um,且有三种大小不同的消毒剂颗粒,可满足空间内不同远近高低的所 有位置的全方位彻底消毒 - 14 - 11. 具备过氧化氢解析功能,残留物少,过氧化氢最终分解产物为水蒸气与氧气,没有毒副产 品 12. 声光报警提示:消毒剂余量提醒,工作状态异常提醒 13. 工作记录查询、灭菌报告查询,可存储大于 10000 条相关数据 14. 操控显示方式:操作界面采用 7 寸全触摸式液晶显示屏,可查看历史消毒数据和相关技术 参数;配遥控器,在室外进行无线遥控。 15. 产品外观:手持式设 计,设备轻便易转移,外壳采用耐腐蚀材质,方便清洁灭菌120,000.00本采购包不接受联合体投标合同履行期限:具体详见招标文件采购包2(实验室检验检测信息管理系统服务):采购包预算金额:350,000.00元采购包最高限价: 350,000.00元投标保证金: 7,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业2-1A02329900-其他医疗设备实验室检验检 测信息管理系 统服务(含三年 维保)1(套)否建设目标 本项目建设系统平台是一个综合性的业务应用系统,覆盖福鼎市疾控中心各实验室的业务工作,同时 包含对外提供的各类卫生技术服务工作。包括实验室信息化管理系统、实验室检测资源信息化管理、质量 管理、查询统计等模块,平台的建成有利于提高福鼎市疾病预防控制中心实验室管理水平,将传统的纸质 业务流转流程提升至信息化、流程化的实验室管理,提高样品、检验信息及评价报告在不同科室之间流转 的效率,全面把握整个实验过程,实现实验查询、数据统计、同类实验的数据对比、数据查询、实验室质 量控制、实验过程状态监控等功能: 1、实验室管理系统( LIMS 系统)符合实验室计量认证( CMA)、ISO/IEC 17025 和 CNAS 有关应用说明 要求,符合 CMA 认证的要求,提供产品与 ISO IEC 17025《检测和校准实验室能力的通用要求》条款、CMA 认证条款对应匹配结构图。 2、业务流程全程跟踪管理:满足实验室任务承接,将指令项目和委托项目形成明确、清晰的任务单, 实现主业务流程工作记录无纸化操作。样品交接过程应准确、快速,系统主要工作流程与本实验室现行工 作流程基本一致。 3、分析数据和报告在各自的生命周期内进行全程记录,每步操作形成完整的后台记录,最大限度地保 证其可溯源性。 4、系统应实现对机构运作所涉及到的所有文件管理、内审评审管理进行全面管理及调度,保障日常工 作的顺利、可靠运行。 5、提供完整、可追溯的记录方式并长期保存原始记录,满足国家实验室计量认证( CMA)及国家实验 室认可( CNAS)的要求。 6、实现全方位预警及提醒,待办任务提醒、标准物质有效期提醒、试剂耗材过期提醒、仪器设备的检 定校准到期提醒、审核退回提醒等,同时可通过短信、邮件、等多种方式进行预警或提醒。 7、通过系统建设,减少人为传递过程中产生的差错率,提高数据的准确度。实现检验分析数据的统计 分析及再利用,进行各种周期的分析,有效地指导业务管理。 8、支持手机原生 APP 移动端申请、审批及查询,提高运作效率。 9、统计报表管理,为客户提供大数据增值服务。 建设原则 本次管理平台建设,遵循已有的国际标准、国内标准、行业标准和地方标准体系,制定统一的接口标- 15 - 准、数据交换标准、协议标准、平台标准以及统一的编码体系。通过平台实现350,000.00工业本采购包不接受联合体投标合同履行期限:具体详见招标文件采购包3(理化实验室和寄生虫实验室改造工程):采购包预算金额:343,000.00元采购包最高限价: 343,000.00元投标保证金: 6,860.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业3-1A02329900-其他医疗设备理化实验室和寄生虫实验室 改造工程1(项)否一、项目概况 工程范围:本工程室位于该综合楼第二、三层。改造范围包括二层理化实验室、三层寄生虫实验室等 区域装修改造及相关设备采购安装。 工程面积:面积共计 76 ㎡。其中理化实验室面积:38 ㎡;寄生虫实验室面积:38 ㎡ 。 二、技术服务要求 (一)主要设备参数及要求 序号 名 称 主要技术参数- 23 - 1 中空玻镁彩钢板 1、采用≥50mm 厚中空玻镁彩钢板,钢板厚度≥0.426mm,含专用配套铝 型材。 2、防火性能高、不易燃、材质坚硬,不容易变形,有一定保温性能的材 料。参照 GB/T9978.1—2008《建筑构件耐火极限检测方法第 1 部分:通 用要求》和 GB/T9978.8—2008《建筑构件耐火极限检测方法第 8 部分: 非承重垂直分隔构件的特殊要求》检验,在墙厚 50mm 耐火性能不低于 60min。标准要求:【丧失完整性:背火面出现火焰并持续时间超过 10s。 丧失隔热性:试件背火面的平均温度温升超过初始平均温度 140℃,任一 点位置的温度温升超过初始平均温度 180℃。】。检测结果:【完整性: 60min,试件背火面未出现火焰。隔热性:60min,试件背火面平均温升 ≤67℃,最高温升≤72℃】。须提供国家认可的具有检测资质的检测机 构出具的检测报告复印件作为佐证。 3、室内装饰密封型材为净化项目上专用的铝合金型材,企口联接,缝隙 的宽度≤1mm。室内各角连接及装饰均采用净化工程专用铝合金 R50 型材 进行圆角过渡处理。 4、铝合金内圆角(用三维接点)、外阳圆角、槽铝、双圆弧压线材质采 用厚度为≥1mm 铝合金型材。 5、吊顶要求气密封性强,设可上人检修口和检修通道。吊顶分隔形式、 安装工艺搭配专业设 计。 2 PVC 卷材地板 1、要求采用 PVC 塑胶地板,实验室专用 PVC 卷材,厚度≥2.0mm。 2、地面与墙体要求采用 R≥50mm 的铝合金喷涂圆弧连接。 3、具有安全无毒,耐污染、耐化学药品、耐酸碱的效果,易于清洁,同 质透心,花纹透底,耐磨。 4、地面连接缝要求采用专用焊条无缝连接。 5、颜色应在成交单位进场施工前,根据业主要求确定颜色。 6、PVC 塑胶地板技术要求符合以下性能,须提供国家认可的具有检测资 质的检测机构出具的检测报告复印件343,000.00工业本采购包不接受联合体投标合同履行期限:具体详见招标文件二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:采购包1:无采购包2:无采购包3:无3.本项目的特定资格要求:采购包1:(1)所投货物若属于医疗器械管理范畴,按照国家《医疗器械监督管理条例》,应符合以下标准:①投标人为生产企业的,从事第一类医疗器械生产的,应提供食品药品监督管理部门颁发的《第一类医疗器械生产备案凭证》;从事第二类、第三类医疗器械生产的,应提供食品药品监督管理部门颁发的《医疗器械生产许可证》或在有效期内的《医疗器械生产企业许可证》。投标人为经销商的,投标货物若属于三类医疗器械,须提供《医疗器械经营企业许可证》,投标货物若属于二类医疗器械,也可提供《二类医疗器械的经营备案凭证》,投标货物若属于一类医疗器械,则无须提供此项;?②投标货物属于《医疗器械监督管理条例》规定的第一类医疗器械产品应提供《第一类医疗器械备案凭证》,属于第二类、第三类医疗器械产品应提供《医疗器械注册证》(如有注册登记表应提供)。所有证件必须在有效期内。【注:在投标截止时间前,如因国家政策调整,国家有关行政部门有颁发新的医疗器械许可证书或统一证书的,应从其规定。】;(2)①投标人提供的财务报告复印件(成立年限按照投标截止时间推算)应符合下列规定:a.成立年限满1年及以上的投标人,提供经审计的2021年度或上一年度财务报告。?b.成立年限满半年但不足1年的投标人,提供该半年度中任一季度的季度财务报告或该半年度的半年度财务报告。?c.无法按照以上a、b项规定提供财务报告复印件的投标人(包括但不限于:成立年限满1年及以上的投标人、成立年限满半年但不足1年的投标人、成立年限不足半年的投标人),应选择提供资信证明复印件。(招标文件内容若与本条有冲突条款的,以本条规定为准。)。采购包2:(1)①投标人提供的财务报告复印件(成立年限按照投标截止时间推算)应符合下列规定:a.成立年限满1年及以上的投标人,提供经审计的2021年度或上一年度财务报告。?b.成立年限满半年但不足1年的投标人,提供该半年度中任一季度的季度财务报告或该半年度的半年度财务报告。?c.无法按照以上a、b项规定提供财务报告复印件的投标人(包括但不限于:成立年限满1年及以上的投标人、成立年限满半年但不足1年的投标人、成立年限不足半年的投标人),应选择提供资信证明复印件。(招标文件内容若与本条有冲突条款的,以本条规定为准。)。采购包3:(1)①投标人提供的财务报告复印件(成立年限按照投标截止时间推算)应符合下列规定:a.成立年限满1年及以上的投标人,提供经审计的2021年度或上一年度财务报告。?b.成立年限满半年但不足1年的投标人,提供该半年度中任一季度的季度财务报告或该半年度的半年度财务报告。?c.无法按照以上a、b项规定提供财务报告复印件的投标人(包括但不限于:成立年限满1年及以上的投标人、成立年限满半年但不足1年的投标人、成立年限不足半年的投标人),应选择提供资信证明复印件。(招标文件内容若与本条有冲突条款的,以本条规定为准。)。三、采购项目需要落实的政府采购政策进口产品:不适用于本项目节能产品:适用于本项目环境标志产品:适用于本项目信息安全产品:不适用于本项目信用记录:按照下列规定执行:(1)投标人应在投标截止时间前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件时间: 2023-02-15 至 2023-02-24 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费五、提交投标文件截止时间、开标时间和地点2023-03-09 08:30:00(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:福建省宁德市福鼎市玉龙北路199号第2开标室(福鼎市公共资源交易中心)六、公告期限自本公告发布之日起5个工作日。七、其他补充事宜/八、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福鼎市疾病预防控制中心地址:福鼎市中山北路一巷28号联系方式:0593-78535802.采购代理机构信息(如有)名称:福建省卓诚招投标代理有限责任公司地址:福建省福州市鼓楼区西洪路528号59号楼2层联系方式:177502765093.项目联系方式项目联系人:陈丽娜电话:17750276509网址: zfcg.czt.fujian.gov.cn开户名:福建省卓诚招投标代理有限责任公司福建省卓诚招投标代理有限责任公司2023年02月15日
  • 干法电极车间除湿机,干法电极车间湿度控制设备
    干法电极车间除湿机,干法电极车间湿度控制设备【新闻导读】对于任何一家工厂或企业来说,一个优质的生产环境可以优化加工工艺,对其生产与品质都起到了至关重要的作用。尤其是在锂电池干法电极车间,不管是机器设备的运行还是产品质量都跟环境的灰尘含量、温度、湿度息息相关。以湿度为例,一般来说,锂电池干法电极车间对空气湿度的要求是在40%RH以下,超过这个范围,那么空气湿度就超标了   锂电材料与空气的反应会在原材料保存、电极制备、极片存储等整个过程进行,因此,对于锂电材料,从原材料到整个电池生产过程都需要严格的环境控制,特别是水分控制。如果水分与材料已经发生了反应,通过常规的干燥过程根本无法再次去除水分的影响,电极浆料的制备、极片制造等环节都需要在干燥环境内进行,一般地,锂电正极电池的生产过程都需要露点-30℃环境。  如果锂电正极材料颗粒表面吸收空气中的水分,反应产生了LiOH,这就会对极片制造工艺过程产生严重的影响。在锂电正极浆料制备过程中,PVDF溶解于NMP中,材料表面的碱性基团会攻击相邻的C-F、C-H键,PVDF很容易发生双分子消去反应,会在分子链上形成一部分的碳碳双键。  锂电材料吸收水分反应产物Li2CO3在充电状态的高电位下容易分解产生CO2气体,造成电池鼓包漏液问题。当材料吸收的水分足够多时,产生的气体多,电池内部的压力就会变大,从而引起电池受力变形,出现电池鼓涨,漏液等危险。  因此,对于锂电正极材料,在原材料保存和电池制备过程中,环境湿度都需要严格控制,才能生产高性能的锂离子电池。为此,这就需要通过专业的湿度控制设备--正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机来对其生产、储存等环境的湿度进行科学合理的控制环境。  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机是严格采用专业的技术和精湛的工艺制造出高效、节能、环保的除湿机产品,具有智能湿度恒定控制系统,用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现高效的除湿效果,降低整机运行成本。欢迎您查询干法电极车间除湿机,干法电极车间湿度控制设备的详细信息!  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机技术参数与选型参考:  产品型号-------除湿量----适用面积-----功率-------电源----循环风量  正岛ZD-228LB--28(L/D)---30-80(㎡)----420(W)---220V/50Hz--190m3/h  正岛ZD-558LB--58(L/D)---50-100(㎡)---670(W)---220V/50Hz--850m3/h  正岛ZD-880LB--80(L/D)---100-160(㎡)--710(W)---220V/50Hz--980m3/h  【除湿机租赁业务要求】提供灵活的租赁方案,满足客户短期和长期的租赁要求。  【除湿机租赁收费标准】具体可根据租用机型、租用数量以及租用天数等来定价。  正岛ZD-890C---90(L/D)---90-150(㎡)---1700(W)--220V/50Hz--1125m3/h  正岛ZD-8138C--138(L/D)--150-250(㎡)--2000(W)--220V/50Hz--1725m3/h  正岛ZD-8168C--168(L/D)--180-280(㎡)--2800(W)--380V/50Hz--2100m3/h  正岛ZD-8240C--240(L/D)--280-380(㎡)--4900(W)--380V/50Hz--3000m3/h  正岛ZD-8360C--360(L/D)--380-580(㎡)--7000(W)--380V/50Hz--4500m3/h  正岛ZD-8480C--480(L/D)--500-880(㎡)--9900(W)--380V/50Hz--6000m3/h  ◎选型注意事项--除湿机的除湿量和型号的选择,主要根据使用环境空间的体积、新风量的大小、空间环境所需的湿度要求等具体数值来科学计算。另外需要注意的是环境的相对湿度与环境的温度有关,温度越高,湿度蒸发越快,反之效果越差,因此在配置除湿机时,需要在专业人员的指导下进行选型,这样才能选到最为适合你的除湿机!  核心提示:在锂电池的生产加工过程中,采用干法电极工艺提高电极的压实密度,提高极片厚度扩大活性材料可用空间,由于大幅减少了杂质的导入,使得电化学副反应降低,以此也可以提高电化学体系电压,相比湿法电极工艺能量密度大幅提升,成本也大幅下降,可靠性也大幅提升,再加上先天的优势,可谓意在深远!  而锂电正极面对很多问题,其中原材料的保存、电池生产环境要求高是巨大的挑战。本文简单总结下环境因素,特别是湿度对锂电正极材料特性的影响 不过,现在只要在其各个生产车间内配置相应的正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机,就可以对环境空气湿度进行科学合理的控制,从而满足其生产工艺的湿度控制要求!以上关于干法电极车间除湿机,干法电极车间湿度控制设备的全部内容是正 岛 电 器提供的,仅供大家参考!
  • PM2.5控制技术等备选项目征集 单项经费最高达4000万
    日前,科技部网站发布通知,针对环境领域、资源领域、海洋技术领域、人口与健康领域、公共安全及其他社会事业领域征集2013年度备选项目,其中在环境领域,大气污染控制涉及PM2.5控制技术,国拨经费高达4000万元。“十二五”国家科技计划环境领域2013年度备选项目征集指南  一、指南方向与内容  (一)大气污染控制  1.重点行业PM2.5控制技术(研究开发类,国拨经费控制额度4000万元,企业牵头)  针对燃煤电站、工业锅炉、冶金窑炉、化工四个重点行业排放源,开发PM2.5控制技术及装备,开展工程示范。(要求每个申报书只能申请一个行业的研发工作,每个申报书申请的国拨经费不超过1000万元)  2.含氰废气处理技术(研究开发类,国拨经费控制额度1000万元)  针对我国含氰工业废气的排放特征,研发节能高效净化技术与装备,开发含氰废气回收利用技术,并进行工业示范。  (二)重金属污染治理  3.生产过程重金属污染控制技术(研究开发类,国拨经费控制额度2400万元,企业牵头)  围绕铅蓄电池、皮革及其制品、化工原料及其制品五个生产行业重金属减排的需求,研发行业清洁生产技术、重金属排放控制技术、重金属回收技术等,按行业开展工艺集成与工程示范。(要求每个申报书只能申请一个行业的研发工作,每个申报书申请的国拨经费不超过800万元)。  4.重金属污染控制技术(研究开发类,国拨经费控制额度1000万元)  研究开发重金属污染的快速、简便、精确、低成本分析检测技术及装备。  (三)废物资源化  5.废旧物资收运与资源化技术及示范(集成示范类,国拨经费控制额度2700万元,企业牵头)  针对城市生活垃圾、餐厨垃圾、废旧电子电器等三类固体废物,研发废物分质收运与自动分拣技术,废物资源化技术,二次污染控制技术,智能化监测与调控技术等,开展区域集中示范。(要求每个申报书只能申请一类废物的研发工作,每个申报书申请的国拨经费不超过900万元)  (四)生态保护与建设  6.荒漠化综合防治技术模式与示范(集成示范类,国拨经费控制额度2000万元,企业牵头)  针对干旱地区沙化等荒漠化问题,研发沙化治理与修复工程技术,发展荒漠化防治衍生产业技术,形成荒漠化防治产业化技术模式,建立示范应用基地。  7.洞庭湖生态安全体系构建关键技术集成与示范(集成示范类,国拨经费控制在2000万元)  针对洞庭湖流域面临的生态问题,集成研发流域水源地保护及水土生态保育、外源性污染物减排、水质富营养化防治、湿地生态保护与修复、生态安全预警、评估与控制管理决策体系构建技术,并开展应用示范。  (五)二氧化碳监测、捕集与封存  8. CO2驱替深层煤层气与封存CO2技术(应用开发与集成示范类,国拨经费控制额2500万,企业牵头申报)  研发CO2注入深层煤层工艺技术,研发 CO2注入后在煤层中的运移监测技术、数值模拟与预测评价技术,研发CO2注入深层煤层的安全性评价与安全控制技术。  9. CO2矿化利用技术研发(应用开发与集成示范类,国拨经费控制额2500万)  重点研发钙、镁、钾基矿物(包括大宗工业固废和天然矿物)转化固定CO2技术,主要研发钙、镁、钾基矿物高效活化预处理技术,研制强化碳酸化转化多相反应与分离一体化大型装备,建立CO2矿物转化固定工程示范。  10. CO2排放监测技术研发与应用(应用开发与集成示范类,国拨经费控制额3000万,企业牵头申报)  研究钢铁、火力发电、化工、水泥、固体废弃物和HFC-23行业温室气体排放手工监测方法和自动在线监测技术,建立主要温室气体排放源监测方法和技术规范。  二、有关事项说明  (一)实施年限  本指南确定的11个研究内容,实施年限原则上均为3年。  (二)经费额度  本指南每项研究内容标注的国拨经费控制额度为本研究内容申请国家科技计划支持的最高经费额度。  (三)申报说明  每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。  (四)申报咨询  联 系 人:瞿辉 黄圣彪 康相武  电 话:010-58881435  电子邮件:nss_zyhjc@most.cn“十二五”国家科技计划资源领域2013年度备选项目征集指南  一、指南内容  (一)盾构施工煤矿长距离斜井关键技术研究及示范(集成示范类,国拨经费控制额3000万,企业牵头)  针对深层煤炭资源开采,进行盾构施工过程盾构选型、始发施工技术、盾构地下拆解技术、数字化远程监控技术、特殊不良地段专有施工技术等研发及示范。  (二)微生物采油关键技术(研究开发类,国拨经费控制额1000万元,企业牵头)  开展微生物驱油过程中代谢产物定量化表征与定向调控技术研究,开发微生物采油数值模拟软件,优化微生物驱油工艺,建立微生物驱油先导试验示范工程,并进行采油效果评价研究。  (三)喀斯特地区水资源安全利用与保障关键技术研究与示范(集成示范类,国拨经费控制额1500万元)  针对喀斯特地区地表水资源易渗漏的特点及水资源严重短缺的现状,开展喀斯特地表水与地下水转换规律研究,进行喀斯特地区水资源开发利用及保护的实用技术研发及示范。  二、有关事项说明  (一)实施年限  实施年限原则上均为3年。  (二)经费额度  本指南每项研究内容标注的国拨经费控制额度为本研究内容申请国家科技计划支持的最高经费额度。  (三)申报说明  每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。  (四)申报咨询  联 系 人: 唐松 徐俊  电 话:010-58881435  电子邮件:nss_zyhjc@most.cn“十二五”国家科技计划海洋技术领域2013年度备选项目征集指南  一、指南方向与内容  (一)深水油气勘探开发技术  1. 水下分离器关键技术(前沿技术研究类,国拨经费控制额2000万元,企业牵头申报)  研发适用于2000米深水环境下的紧凑型水下分离器,形成一套适应深水环境的分离器结构设计方法,制造出水下分离器实验样机,进行水池与高压舱测试,并进行在模拟深水海洋环境下的模拟运行。  2. 深水油气田智能完井关键技术(前沿技术研究类,国拨经费控制额2000万元,企业牵头申报)  研制出一套适合具有自主产权的适用井深大于5000米的深水油气智能完井技术及其关键装备,完成智能井系统集成测试,并编制智能井完井设计指南。  3. 海上天然气液化存储关键技术研究(前沿技术研究类,国拨经费控制额1000万元,企业牵头申报)  开展海上天然气液化存储关键技术研究,初步形成海上天然气液化与存储装置的设计与制造技术。  4. 通用型深水水下生产系统连接关键技术与装备(前沿技术研究类,国拨经费控制额2000万元,企业牵头申报)  研究适用于2000米深水环境下水下生产系统非潜水员用的通用型连接系统设计、制造、安装、测试技术,制造出一套2000米水深的水下连接器及及专用安装工具工程样机,进行高压舱测试及海上海试。  (二)海底观测网试验系统  5. 应用于海底长期观测网的新型海洋探测传感器(前沿技术研究类,国拨经费控制额500万元)  研发适用于海底长期观测网的海洋物理、化学、生物等深海环境原位观测新型传感器工程样机,完成接入海底观测示范网测试。  6. 深海移动平台与海底观测网接驳技术(前沿技术研究类,国拨经费控制额700万元)  研发适用于深海海底观测网与移动观测平台系统对接设备,实现海底观测网试验系统与移动观测平台的能源补给和信息传输,完成海上测试试验。  (三)深海探测与作业技术  7. 重载作业型遥控潜水器作业系统(前沿技术研究类,国拨经费控制额5000万元,企业牵头申报)  针对南海深水油气开发的需求,特别是针对海上油气田水下设施应急维修作业需求,研制具有强作业能力的最大作业水深3000米的重载作业型遥控潜水器及其配套的水下安装、井口作业、水下维修等作业工具,完成海上试验并形成油田开发水下设施安装、维修等作业能力。  8. 基于AUV的小型合成孔径声纳探测系统研制(前沿技术研究类,每个型号国拨经费控制额800万元,企业牵头申报)  针对不同规格的AUV平台,研制适用水深300—1000米、小型化、模块化的合成孔径探测系统工程样机并完成海试。  (四)海洋生物资源开发利用技术  9. 海洋生物功能天然产物发掘、优化与合成(前沿技术研究类,国拨经费控制额4000万元)  开发海洋生物功能天然产物高通量筛选、功能评价、结构优化以及化学合成等技术,获取一批结构全新的活性物质,优化并获得一批新结构/活性衍生物,建立若干类活性先导化合物高效的全合成技术路线,形成我国海洋生物天然产物和药物先导化合物研究网络平台。  10. 海洋传统药源生物(中药)资源开发利用(前沿技术研究类,国拨经费控制额2000万元)  针对我国海洋传统药源生物资源开发利用,从药物资源、质量标准、品种开发三个层面开展技术开发,完善和提升一批海洋中药质量标准并纳入2015版中国药典,获取一批针对重大疾病和疑难杂症的候选药物和制剂。  二、有关事项说明  (一)实施年限  实施年限原则上均为3-5年。  (二)经费额度  本指南每项研究内容标注的国拨经费控制额,为本研究内容申报国家科技计划支持的最高额度。  (三)申报说明  每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。  (四)申报咨询  联系人:孙清、张书军  联系电话:010-58884871,58884872  电子邮件:sunqing@acca21.org.cn, zhshujun@acca21.org.cn“十二五”国家科技计划人口与健康领域2013年度备选项目征集指南  一、指南内容  (一)头部疾患的防治研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)  头部肿瘤规范化手术治疗研究 基于分子病理学的个性化及综合治疗研究 多模态脑功能区定位技术研究等。  (二)多发免疫性疾病和变态反应性疾病的防治研究(应用开发与集成示范类,每个研究内容国拨经费控制额400-600万)  干燥综合征的诊断和规范化治疗 系统性红斑狼疮中西医结合治疗 变态反应性疾病早期诊断及治疗技术研究 强直性脊柱炎的临床诊治技术研究 免疫功能评价技术等。  (三)妇女常见多发疾病防治研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)  更年期综合症综合治疗 盆底功能障碍性疾病规范化诊疗 妇科微创治疗技术 多囊卵巢综合征诊治新技术研究 妊娠合并急危重症的早期干预和规范化治疗研究等。  (四)环境污染对人群健康影响的监测评估技术研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)  典型地区环境污染物相关人群生物监测技术 化学污染物对人群健康影响综合监测技术研究 环境污染导致健康危害甄别技术 不同类型环境健康风险的预警和疾病风险评估的关键技术等。  (五)基层常见多发病防治适宜技术评价与推广研究(应用开发与集成示范类,每个研究内容国拨经费控制额200-300万)  重点开展高血压规范化治疗、乳腺癌筛查、慢阻肺筛查、哮喘规范化治疗、功能性胃肠病检测与规范化治疗等基层多发疾病适宜技术的规范化评价与推广研究。  (六)基层重点医疗装备应用评价、技术提升与示范服务研究(应用开发与集成示范类,每个研究内容国拨经费控制额200-400万)  重点开展数字化X线机、彩超、手术内镜、生化分析仪、五分类血细胞分析仪、免疫分析系统、微生物分析仪、十二导联心电图机等基本医疗器械产品的应用评价、技术提升和新型服务模式示范研究,建立重点基本医疗器械产品的专业化技术评价体系、现场应用评价体系、可靠性评价体系,提高产品性能和可靠性,降低综合成本,促进普及普惠装备。  (七)呼吸麻醉关键技术和设备研发(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)  重点开发多功能、高性能、高精度、高可靠性的呼吸机、呼吸麻醉机、肺功能仪等产品,获得产品注册证。  (八)医疗器械前沿关键技术及创新产品开发(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)  重点开展太赫兹波检测、光学活体生化分析、微型超声成像、磁共振成像导航、医用色/质/光谱检测、微弱磁信号检测、新型模态成像、新型物理治疗、医用微光机电系统等前沿关键技术应用及产品开发研究,相应关键技术指标达到国际先进水平,相关技术产品获得原型样机或取得产品注册证。  (九)提高中医药疗效的“病证结合”研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-800万)  围绕临床疗效的提高,重点开展恶性肿瘤、代谢性疾病、中风、慢性阻塞性肺病、抑郁症等重大疾病和常见多发病临床评价研究。  二、有关事项说明  (一)申报要求  1、上述指南内容共9个方面,每个方面下列若干研究内容,申报单位原则上只可申报其中的一个内容。  2、产品开发类课题必须由企业牵头申报,鼓励产、学、研、医联合申报。前沿关键技术研究必须与临床应用和产品开发紧密结合。  3、“基层常见多发病防治适宜技术评价与推广研究”申报的适宜技术应有较好的前期研究工作基础,并有明确的疗效、技术和经济优势。  4、“基层重点医疗装备应用评价、技术提升与示范服务研究”要求由临床医院、企业等联合申报。  5、申请“提高中医药疗效的‘病证结合’研究”的单位应开展过该病种的前期研究,所提出的治疗方法、方案应具有明确的比较优势。  (二)实施年限  截止到2015年12月。  (三)经费额度  本指南每项研究内容标注的国拨经费控制额度为本研究内容申请国家科技计划支持的最高经费额度。  (四)申报咨询  联系人:张兆丰、郑忠  电话:010-58881468、010-58881479  电子邮件:zhangzf@most.cn、zhengzhong@most.cn“十二五”国家科技计划公共安全及其他社会事业领域2013年度备选项目征集指南  一、指南内容  (一)主动便携式及中低空全天候生命探测与搜索装备(应用开发与集成示范类,单一产品国拨经费控制额500万元,企业牵头申报)  研发适用于建筑破坏、地质塌方、火爆毒等灾害环境,可克服温度、湿度、噪音、地形等不利因素影响,穿透土壤、岩石、混凝土、木材、烟气、水雾等障碍介质,全天候探测与搜索生命迹象,可根据现场环境快速组装的主动便携式及适配于飞艇、无人机等平台搭载的中低空全天候生命探测与搜索装备。  (二)灾害现场大型破拆装备(应用开发与集成示范类,国拨经费控制额2000万元,企业牵头申报)  研发适用于复杂地面条件和灾害环境,具备破拆、挖掘、起重、搬运、举高等多种功能的超高程、远距离、重荷载的大型破拆装备。  (三)面向突发事件的其他应急装备(应用开发与集成示范类,单一产品国拨经费控制额500万元,企业牵头申报)  适用于各类突发事件现场监测、现场救助、快速安置保障等环节的应急装备。  (四)面向文化事业及其科技产业的科研课题(应用开发与集成示范类,每一课题国拨经费控制额500万元,优选10个课题试点)  推动文化科技创新,发展文化公益性事业,培育文化科技产业,为社会主义文化大发展、大繁荣提供科技支撑。  二、有关事项说明  (一)实施年限  实施年限原则上均为3-5年。  (二)经费额度  本指南每项研究内容标注的国拨经费控制额,为本研究内容申报国家科技计划支持的最高额度。  (三)申报说明  每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。  (四)申报咨询  联系人:陈其针、麻名更  电 话:010-58881480、010-58881434  电子邮件:chenqz@most.cn、mamg@most.cn
  • “高安全成套专用控制装置及系统”斩获国家科技奖
    “人类生活的各个领域,都离不开自动控制技术。可以说,控制系统就是工业装备的‘大脑’。这个‘大脑’聪明不聪明,不仅直接决定了企业的生产规模,也直接决定了产品的质量和生产安全。”谈到最熟悉的“控制系统”,浙江大学控制科学与工程学院王文海研究员打了个形象的比喻。高安全成套专用控制装置及系统-项目应用照片  1月9日,王文海第二次站在了国家科技奖励大会的领奖台上。凭借“高安全成套专用控制装置及系统”,包括浙江大学、上海电气、上海三菱电梯、杭州优稳自动化、上海大学等在内的项目团队,斩获了2016年度国家科学技术进步奖二等奖。  “如果说,2013年得奖的‘高端控制装备及系统的设计开发平台研究与应用’专注的是通用控制系统领域,那么这次的项目则聚焦于专用控制设备领域,比如汽轮机控制、电梯控制等,”王文海告诉记者,“专用控制装置跟工业设备紧密耦合,成套、专用、软硬件高度集成,具有二次开发工作量小,实施效率高,高安全、高性能,高精度等特点”。  以电梯而言,通用控制技术可以在普通电梯上得到应用,但摩天大楼所需要的高速/超高速电梯在能量回馈、多机调动和紧急刹车上都有更高的要求,这时候就需要在通用平台的基础上深度耦合,即“挖的更深”,实现成套专用,及高安全与高性能。  据王文海介绍,上海三菱电梯与上海电气、浙江大学等开发的高速/超高速电梯成套专用控制系统的制动器寿命可达1800万次,是国内其他产品的9倍,其可靠性、舒适性、能效等性能指标在国内都具有领先水平,应用该控制系统的高速/超高速电梯已占据国产电梯的80%。  除此之外,项目团队还成功研制出超临界/超超临界汽轮机成套专用控制系统、超临界/超超临界直流炉成套专用控制系统,并广泛应用于脱硫、脱硝、除尘、污水处理等领域,产品出口美国、日本、韩国、俄罗斯等20多个国家。  而“挖的更深”,在同一领域不断发现新的问题、迎接新的挑战,也是王文海团队二十年来一贯奉行的理念。  “研究生阶段,我们发现很多企业的控制系统经常出毛病,我们最常去的就是企业,给他们解决各种问题”。王文海从1985年起就在浙江大学学习和工作,当时,我国大型企业的高端控制装备全部依赖进口,成为中国工业大而不强、受制于人的关键之“痛”。“这不单是一个成本问题,更隐含安全问题,于是在导师孙优贤院士的支持下,我们决定做一套自己的控制系统。”王文海说。  如果说当初走上研发控制系统这条路,王文海凭借的是激情,那么之后,他和他的团队靠的则是“沉得下去、足够专注”的韧性。王文海(左一)及团队在进行高安全成套控制装置及系统的运行实验  从上世纪90年代初第一套控制系统面世,到“全集成新一代工业自动化系统”,到“高端控制装备及系统的设计开发平台”,再到 “高安全成套专用控制装置及系统”,如同通讯领域的2G、3G到4G、5G,控制系统也在一代一代升级,每一个问题解决的同时,新的问题又冒出头来。  “刚开始并没有想象到事情这么复杂”王文海说。二十余年来,他们不仅把自己领域的边边角角都摸了个遍,还悉心钻研跨领域的其他相关知识,终于得以在控制系统这条路上越走越远、越钻越精。  “接下来这几年,您还会专注于控制系统的研发吗?”  “当然。我们就是专做控制系统,只做控制系统。”  当记者抛出这个问题时,王文海拿出了最新的计划书,“随着智能制造的升级,工业控制系统信息安全面临很大的挑战,这是我们接下来要解决的问题。”  “专做控制系统,只做控制系统”,这也是采访过程中王文海经常脱口而出的一句话。除了深厚扎实的专业基础,这种“一生只做一件事”的专注与执着,想必也是他和他的团队收获成功的法宝。
  • 为您揭秘 | 烧结球团矿碱度稳定率控制新方法
    烧结是钢铁生产工艺中的一个重要环节。烧结生产的主要流程为将铁粉矿、各类助熔剂及细焦炭等原料,经由混拌、造粒后,通过布料系统加入烧结机,完成烧结反应。经破碎、冷却、筛选后送往高炉,作为冶炼铁水的主要原料。经烧结而成的,有足够强度和粒度的烧结矿是炼铁的熟料,利用优质的烧结熟料炼铁,对于提高高炉利用系数、降低焦比,提高高炉透气性,节能降耗、保证高炉高效运行均有重要意义。烧结的主要流程图烧结生产过程中,进厂原料的监控,混料配比以及入窑配料的监控十分重要。目前钢厂原料来源逐渐复杂化:由于市场因素,各原料价格存在波动,钢厂不时更换主料来源;其次随着地球资源的不断开采,富矿短缺,各不同品相资源的不断被扩大利用,造成原料品相波动;且即便同一批矿,其品位也存在着差异,这些因素都为烧结配料增加了困难。当前传统取样检测的方法,已经暴露出越来越多的问题,不能很好的满足混料和入窑配料的需求:取样存在抽样误差,不能代表整体原料;测试有频次限制;测试结果滞后实际原料,延误工艺参数的实时调整,造成大量废料以及低质量烧结矿的产生,甚至影响高炉的稳定生产。为了解决烧结生产中的上述问题,SpectraFlow在线矿石品位智能分析系统应运而生,克服了传统检测缺陷,进行实时在线检测,自动调节控制,是优化生产,节能降耗,实现智能制造的有效途径。SpectraFlow在线矿石品位智能分析系统调节混料成分的稳定下图为日本JFE钢厂,实际烧结生产中记录的对碱度控制的结果,以及测得的烧结矿落下强度质量的结果:可以看到,即便在日本成熟的钢厂中,设定碱度值为2的情况下,实际生产的碱度值也有着大幅度波动;而所得烧结矿质量(落下强度)也有着很大波动,且质量偏低,普遍低于90。下图是JFE厂家应用SpectraFlow在线矿石品位智能分析系统之后得到的碱度和落下强度结果:可以看到,经SpectraFlow系统的优化后,原料碱度值的波动幅度骤降,紧紧贴合2.00的目标值!且测试频次十分高,为原料和参数的实时调节提供了条件。而烧结矿落震强度,由原先的鲜有达到90者,变为大部分产品分落下强度都高于90!且有关数据表明,当高炉原料碱度波动值由0.1降至0.075时,高炉增产1.5%,焦比降低0.8%。因此使用SpectraFlow在线矿石品位智能分析系统,提高了碱度稳定率,降低了高炉的焦比,对钢铁企业来说,能直接给高炉带来增产效益和结焦效益。由此应用全新的SpectraFlow在线矿石品位智能分析系统,克服传统检测方法的不足。实现智能制造、降本增效的目标,势在必行! SpectraFlow在线矿石品位智能分析系统是怎样检测和调节混料成分的呢?将SpectraFlow在线矿石品位智能分析仪安装在如下图中B位置传送皮带上方,分析仪中光源发射光线照射到传送带上的物料上,不同矿物成分的物料会在特定波长和强度吸收部分光线能量;SpectraFlow中光谱仪连续扫描物料表面并分析其近红外波段的光谱及其强度,经分析处理即可得到传送带上物料中包括CaO, Fe, C, SiO2, MgO等的成分。同时SpectraFlow自带的自动控制系统,根据测试结果,以及设定的碱度值或其他参数值,自动调节给料机给料,达到最优的混料成分。下图是在钢厂变更原料来源时,应用SpectraFlow在线矿石品位智能分析系统前后的混料调节,对生产率、烧结料碳浓度以及运输板速度的影响对比图:使用SFA之后使用SFA之前图中灰色区域为”原料变更期”,以上对比明显得到,在变更材料批次后,使用SFA分析仪,可以迅速恢复生产,绿色节能,提高经济效益。SpectraFlow在线矿石品位智能分析系统调节窑炉稳定在烧结生产中,来料质量控制是保证混合效果的第一步;混料中配料的精细混合,是保证优质烧结效果的前提。SpectraFlow在线矿石品位智能分析系统除了可以在A/B位置(如上图)安装,检测和控制来料和混料,还可安装在C/D/E处,针对性的调节混料中水分和燃料等相应成分的配比,保证烧结窑炉的温度稳定。例如将SpectraFlow在线矿石品位智能分析系统安装在上图D位置,以FeO浓度为主要检测指标。一旦检测到FeO含量增加,SFA立即控制调整运输机移动速度,并且降低焦炭添加量,从而控制了烧结矿的温度在可接受范围内,FeO的浓度也在原料处的SFA帮助下快速调整(如下图),保证了烧结矿稳定高效的生产。若没有在D处的SpectraFlow在线矿石品位智能分析系统的即时调整,若FeO含量增加,则会导致出口温度超标,冷却器被强制停止,从而温度下降,调节焦炭含量增加,运输车行使速度减慢,甚至造成生产的停滞。如下图:SpectraFlow在线矿石品位智能分析系统在球团生产中的应用与烧结矿类似,在球团生产中,SpectraFlow在线矿石品位智能分析系统可实时在线检测球团原料,控制原料的稳定性以及球团生产的稳定性。球团的生产过程主要是将精矿粉、若干添加剂以及燃料等,经过混匀、研磨、干燥、筛分等处理,经过配料皮带配料处理后,在造球机上加水混合造球,生球造好后加到焙烧机内焙烧,冷却后筛分,得到成品矿、垫底料以及返料。如下图,在生产线的A-E不同位置安装SpectraFlow在线矿石品位智能分析仪,可以有针对性的对总铁、碳含量、碱度、水分等进行实时的自动控制,从而保证生产的稳定性和产品质量,减少返料,降低能耗,提高生产率和生产效益。SpectraFlow在线矿石品位智能分析系统特点总结SpectraFlow在线矿石品位智能分析系统实时检测分析物料成分,并自动控制调整相关参数,克服了传统检测方法的不足,是实现智能制造、降本增效的有效途径:1、实时在线检测,避免传统测试方法的滞后、无代表性缺点。2、测试准确:采用最先进NIR测试技术,为混料提供数据依据。3、智能化程度高,符合智能制造工厂要求:数据自动传输到中控室,减少实验室现场取样、制样、测试、数据上传过程。实现用机器替代人工目的。4、完全符合绿色工厂要求,保证节能减排的环保要求:减少操作人员参与,对原料中S/P/N等元素监控,同时可以预测烧结中SOx气体的排放。5、智能配料:整个系统完全符合全智能系统,SFA系统实现在线监测同时提供反馈系统,将信息反馈给智能配料系统,通过系统进行补偿,实现配料方案合理性。6、系统安全性:检测系统采用NIR检测源,无任何辐射,符合省、国家环保工程项目等标准要求。7、运营成本低,维护简单:无需任何其他维护,只需定期吹扫光源。SpectraFlow在线矿石品位智能分析系统,安全环保,提高烧结、球团产品率,降低返矿率和燃料比、使产品稳定,最大程度地保证高炉顺畅、高产稳产。
  • 千呼万唤始出来 ——Biotage全新一代快速制备色谱-质谱联用系统
    “正离子和负离子检测模式可同时进行”The Isolera™ Dalton 2000系统由三部分组成: Biotage Dalton 2000质谱检测器,Isolera™ Dalton Nanolink连接器以及Isolera™ Spektra 快速纯化制备系统,Isolera Dalton 2000 可以在样品进行纯化制备的同时,对收集馏分进行质谱在线检测,大大节省您的分析检测时间!对于制药而言,必须在药物研发领域更快更有效率,企业才更具竞争力;当前对于小分子药物的前期研发而言,主要步骤包括:合成,纯化以及活性测试。而很多新型分子的合成,都是参照的现有的类似文献的基础上进行尝试性的合成探索,很多情况下,最终的产物和之前设计生成的产物,都会有一些出入,化学家们需要在拿到产物后进行结构鉴定,或者给分析部门进行检测(质谱,核磁等),这个鉴定的过程往往会浪费大量的时间,同时还需要与另外的部门进行有效沟通,费时费力。 为提供研发效率,节约时间成本,Isolera Dalton 2000在这样的背景下应运而生! 系统功能Dalton 2000是一款紧凑型单重四极杆质谱检测器,带有正离子和负离子检测模式,通过APCI大气压化学电离(ESI电喷雾电离,可选)将样品离子化后进行质谱检测。Dalton 2000被设计与Isolera 系统链接,可以在Flash纯化的同时,对产物结构进行鉴定。? 可完全和Flash的正相系统实时、有效、无缝链接(Nanolink)? 可支持大量产品纯化? 可进行全质谱扫描,选择目标质谱峰后,再进行分析? 用户可以选择一个质谱范围用于馏分收集? 可进行选择性离子检测? 选定的目标质谱峰达到基线时,系统会可以自动停止运行? 支持直接进样质谱分析? 质谱分析范围:m/z90-2000简化工作流程Isolera Dalton 2000 在快速纯化样品时,用Mass实时检测和收集含有目标化合物的馏分,检测结果更准确,纯化效果更好,回收率更高,最重要的是,节省了大量的检测时间。整个过程,不需要复杂的分析检测程序,这样,大大提高工作效率,节省纯化和检测时间。全新升级的Mass 检测器,使快速制备色谱达到了前所未有的扩展,我们创造的系统,使快速制备色谱技术和质谱技术第一次完美的结合。整个过程进一步减少了使用者的人为因素,使得化学家把重点放在化学和合成,而不是纯化和分析,大大提高实验室效率。智能,集成快速制备色谱和Mass 检测器的智能集成,需要非常先进的技术,以保证样品实时而准确的检测,这一切都得益于我们的Isolera™ Dalton Nanolink, 一种智能取样装置,保证了在任何时刻,都能提供给 DaltonMass 检测器精确的样品量。当使用不同类型、规格的色谱柱时,Dalton Nanolink 会自动控制流速保证样品检测的准确性。 Isolera Dalton 2000 相关实例图谱:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制