当前位置: 仪器信息网 > 行业主题 > >

紫外气体传感器

仪器信息网紫外气体传感器专题为您提供2024年最新紫外气体传感器价格报价、厂家品牌的相关信息, 包括紫外气体传感器参数、型号等,不管是国产,还是进口品牌的紫外气体传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外气体传感器相关的耗材配件、试剂标物,还有紫外气体传感器相关的最新资讯、资料,以及紫外气体传感器相关的解决方案。

紫外气体传感器相关的资讯

  • 红外沼气分析仪应用新趋势——模块化红外气体传感器
    本文介绍了检测沼气成分的五种主要方法:奥氏气体分析法、热催化燃烧检测法、热导元件检测法、气相色谱GC检测法、红外气体分析法,分析了这五种检测方法的特点及其在我国沼气服务体系中的适应性,并总结了目前最适宜我国大中型沼气工程沼气成分监测的分析方法是红外沼气成分分析技术。1、奥氏气体分析法 奥氏气体分析法是一种经典的化学式手动分析方法,该方法是利用溶液吸收法来测定CO、CO2和O2浓度,CH4和H2浓度则在爆炸燃烧法后用吸收法测定,剩余气体为N2。目前传统的奥氏气体分析方法在沼气成分检测中应用较少。针对农村沼气服务体系的特定应用,通常采用检测管法,该方法操作更简便,常用的检测管有H2S、O2、CO2、CO等,但没有直接测量CH4浓度的检测管,CH4浓度是通过计算所得,即100%-[ CO2 ]-[空气]-[H2S]-[ CO ]等,因此存在一定误差。 奥氏气体分析仪具有结构简单、价格便宜、维修容易等优点,常用于CO2、O2、CO、H2、烃类等气体浓度的测定,在实验室里应用广泛。但该仪器长期运行成本高,仅每年购买试剂和玻璃器皿至少要1万多元,且必须对气体进行人工取样,才可在实验室内进行分析,其中分析人员的操作技能和“态度”对分析的精确度也有着较大影响。同时奥氏气体分析仪只能对单一成分逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作繁琐,响应速度慢,效率低,难以实时在线地分析现场工况,现逐渐被全自动分析仪器替代。2、热催化燃烧检测方法 热催化燃烧检测方法是利用两只热催化(黑白)元件——补偿元件和桥臂电阻构成惠斯顿电桥加一恒定电压,将铂丝加热到500℃,当遇到空气中的可燃气体时,测量元件在催化剂的作用下,在元件表面发生催化反应,使得温度升高,阻值增大,电桥输出不平衡,以此来测定甲烷浓度。该方法是检测甲烷泄漏最简单、经济的方法,在我国煤矿安全检测领域具有广泛应用。但载体催化元件只能检测0~4%的甲烷浓度,当空气中甲烷浓度超过5%后,元件会发生“激活”现象,造成永久损坏。同时检测设备需要频繁标定,热催化元件的仪器使用寿命一般在1年内,精度较差(10%),而在高H2S条件下,易造成传感器中毒甚至报废,使用寿命大大缩短。3、热导元件检测方法 不同气体的导热系数存在差别,热导元件检测方法就是根据这一特性,来测定气体的体积浓度。沼气的主要成分是CH4和CO2 ,被测沼气的导热系数由CH4和CO2共同决定。对于彼此之间无相互作用的多组分气体,其导热系数可近似地认为是各组分导热系数浓度的加权平均值。因此,根据沼气的导热系数与各组分导热系数之间的关系,就可以实现沼气多组分气体浓度的测定。 目前该检测方法已广泛应用在煤矿瓦斯抽排领域,也可用于沼气中甲烷浓度的测量。但该类型传感器使用寿命一般在2年左右,且该传感器对于低浓度测量,具有较大局限性,如无法测量浓度低于5%的甲烷浓度,如果用于甲烷的泄露报警将会造成较大误差。4、气相色谱GC检测方法 气相色谱GC分析方法是利用气体物理吸附能力的差别,将采样的气体在色谱中分离然后,热导检测器通过热电阻与被测气体之间热交换和热平衡来实现其CH4、CO2、O2等气体浓度的检测,该检测方法分离效能高,对物理化学性能很接近的复杂混合物质都可以进行定性、定量检测,灵敏度较高。气相色谱分析原理示意图 由于柱温与载气对分离结果的具有较大影响,其中柱温对分离结果的影响比载气的大,所以在检测过程中,除了要经常更换色谱柱外,还需要对色谱柱温和载气流速进行适度的调节,以免影响分离结果造成误差。同时色谱价格相对较贵,需要采样,不能实现在线分析。5、红外气体分析方法 当对应某一气体特征吸收波长的光波通过被测气体时,其强度将明显减弱,强度衰减程度与该气体浓度有关,两者之间的关系遵守朗伯一比尔定律,也就是红外光谱检测方法的基本原理。红外气体分析技术作为一种快速、准确的气体分析技术在实际应用中十分普遍。由于该方法是采用物理原理,分析气体不与传感器发生反应,因此传感器使用寿命很长,该类型传感器不仅可以用于测量沼气泄露的低浓度报警,也可以用于高浓度的沼气成分测量。 由上表可知,红外气体分析技术相较于奥氏、热催化、热导元件、气相色谱气体分析技术,具有响应时间快、灵敏度高、使用寿命长、仪器操作方便等优势。但对国内用户而言,红外气体分析技术普遍存在NDIR传感器价格昂贵、维护困难、产品质量参差不齐等问题。针对这些问题,四方仪器对NDIR传感器进行了升级,将红外传感器进行模块化设计,一个传感器对应检测一个气体组分,拆卸维护方便,使得仪器在体积、性能、维护、价格上具有以往仪器无法比拟的优势。 如沼气分析仪(智能便携型)Gasboard-3200Plus,采用自主知识产权的模块化红外传感器,可实现CO、CO2、CH4等多组分气体浓度的快速测量。同时其H2S、O2浓度测量可拓展,流速、流量可采集,体积轻量化,APP终端智能化等创新设计,弥补了沼气成分、流量一台仪器不可同时测量,长距离、大规模沼气项目监测设备不易携带,监测数据获取流程复杂等的不足,可广泛用于生物沼气、污水处理废气和垃圾填埋气体等沼气成分的可靠准确且经济有效的监测。在满足行业标准应用的同时,仪器测量组分还可根据用户需求定制,轻巧便携,实用性大大提高。模块化红外气体传感器工作原理6、结论 在沼气技术服务体系建设中,气体分析仪发挥了十分重要的作用,在选择配置时需要考虑仪器的使用寿命、功能、质量保障体系、实用性、性价比等因素。在奥氏吸收、热导元件、热催化、气相色谱、红外光谱的气体分析仪中,从寿命、功能、实用性等方面考虑,可优先选择红外方法的仪器;如果仅测量甲烷浓度或检测泄露,可以考虑基于热导和热催化原理的仪器;如果用于实验室定性与定量的精准测量,也可以考虑色谱分析方法。 但随着沼气生产和过程控制要求的逐渐提高,不断实现技术创新升级的红外沼气分析仪将逐渐取代奥氏吸收、热导元件、热催化、气相色谱等气体成分检测技术,成为我国大中小型沼气工程沼气成分监测与工艺过程调控必不可少的气体成分监测设备。(来源:沼气圈)
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 锐意自控发布锐意自控微流红外气体传感器Gasboard-2105新品
    产品名称:微流红外气体传感器产品型号:Gasboard-2105采用自主知识产权及国际PCT专利(PCT/CN2018100767)微 流红外隔半气室传感器技术测量CO、NO、SO2、CO2 、CH4, 气室由被测气室和参考气室组成;传感器对被测气体具有较 好的选择性,可进行高精度、高稳定性气体浓度测量,适用 于非常恶劣的工业环境。    配备水分补偿调节装置,消除水汽干扰 自动温度、压力补偿 传感器模块化设计,结构紧凑 适用于长时间在线监测,寿命长 气室采用恒温加热技术,降低温度对测量精度的影响基本参数量程CO: 0~500~1000~2000~5000ppmCO2: 0~500~5000ppmSO2: 0~200~5000ppmNO: 0~200~5000ppmCH4: 0~500~5000ppm注: 量程可定制线性误差±2%FS重复性±2%FS零点/量程漂移<2.5%FS/7d低浓度烟气排放监测、船舶废气排放监测、机动车尾气排放检测、燃烧装置锅炉气体浓度测量、生物沼气发酵气体监测、工业过程气体监测、气体分析仪/系统集创新点:1、同时测量CO、CO2、NO、SO2、CH42、配备水分补偿调节装置,消除水汽干扰3、自动温度、压力补偿« 4、传感器模块化设计,结构紧凑5、适用于长时间在线监测,寿命长6、气室采用恒温加热技术,降低温度对测量精度的影响锐意自控微流红外气体传感器Gasboard-2105
  • 武汉市科技型中小企业技术创新基金项目“电调制非分光红外气体传感器”通过验收
    5月17日上午,武汉市科技局和武汉市财政局在我司会议室组织召开了武汉市科技型中小企业技术创新基金项目&ldquo 电调制非分光红外气体传感器&rdquo 验收会。 与会专家审阅了相关材料,听取了公司项目负责人所作的工作报告与技术报告,并进行了实地察看。经质询和讨论,与会专家一致认为该项目已按时完成项目合同的技术和经济指标,通过验收。 本项目产品是公司红外气体分析仪器的核心关键部件,在烟气、煤气、尾气、沼气分析领域得到广泛应用,相关产品获国家制造计量器具许可证9项、通过CE认证1项、防爆认证3项、煤安认证1项。项目实施期内累计实现销售收入7300余万元,并出口到45个国家。
  • 公司"红外气体传感器及其产业化" 项目获国家科技型中小企业创新基金重点项目立项
    9月1日,据2010年度国家科技型中小企业技术创新基金第二批项目立项的通知(http://www.innofund.gov.cn/innobull/2010lxgg2.htm),公司&ldquo 红外气体传感器及其产业化&rdquo 项目获国家科技型中小企业创新基金重点项目立项,获资助160万元。国家科技型中小企业技术创新基金是经国务院批准设立,用于支持科技型中小企业技术创新的政府专项基金。
  • 董事长专访 | 四方光电熊友辉:引领气体传感器核心技术,解决环保产业关键问题
    导 读在作为环保产业年度重要展示平台的“环博会”上,四方光电现场展示了烟气排放监测、发动机排放气体监测、室外扬尘监测、油烟监测、温室气体监测、工业过程在线气体监测等气体成分及流量测量的解决方案。其中,包括满足碳排放监测要求的烟气分析解决方案首次亮相,在业界引起了不小的轰动。站在“十四五”的开局之年,环保产业又迎来了新的发展突破口。四方光电将如何助力国家“双碳”目标的达成?面对新的发展形势,四方光电又将如何适应新形势,做好布局与规划?四方光电董事长熊友辉博士接受了环保在线记者专访。四方光电董事长 熊友辉博士深耕气体传感器创新领域,构筑核心技术“护城河”  熊友辉博士告诉环保在线记者,四方光电长期专注于气体传感器的科技创新,从创立的2003到2011年,四方光电主要发展基于核心气体传感器的工业过程和环境监测气体分析仪器,并逐步启动民用气体传感器产业配套 2012到2020年,四方光电积极发挥核心技术及质量体系的优势,发力智能家居、智慧医疗、汽车电子等领域,逐步形成了智能气体传感器与高端气体分析仪器双轮驱动的发展格局。  2003年,四方光电成功开发基于电调制非分光红外气体传感器,该产品于2004年通过湖北省科技厅组织的科技成果鉴定,达到国际先进技术,此后该产品获得“国家重点新产品”证书。针对双光束NDIR 气体传感器测量二氧化硫(SO2)、一氧化氮(NO)、一氧化碳(CO)、甲烷(CH4)存在水汽(H2O)、二氧化碳(CO2)等的较强干扰,同时测量低端分辨率不高的缺点,公司通过对微流量芯片-微流量红外探测器-微流红外气体传感器(micro-flow NDIR)的深度开发,已经成为在技术上可以与国际上气体分析仪器巨头并肩的厂家之一。微流红外气体传感器项目也于2020年获得工信部强基工程-传感器“一条龙”示范项目。通过十余年的持续创新,目前四方光电已形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。通过使用上述一种或多种技术组合,四方光电能够根据客户需求提供多种产品。  熊友辉博士表示,当前四方光电的环境监测气体分析仪器产品主要应用于烟气、尾气监测领域。其中烟气监测领域产品包括红外(紫外)烟气传感器模组、红外(紫外)烟气分析仪、烟气排放连续监测系统(CEMS)及船舶废气排放连续监测系统。主要检测对象是二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、二氧化碳(CO2)、氧气(O2)、颗粒物(PM)的浓度,应用于火力发电厂、炼钢厂、垃圾焚化厂等产生污染气体的工业企业等固定污染源及大型船舶等移动污染源。在尾气监测领域,公司采用高性能双光束NDIR检测一氧化碳(CO)、二氧化碳(CO2)、碳氢化合物(HC) 采用微流红外、非分光紫外(NDUV)、紫外差分(UV-DOAS)技术直接检测氮氧化物(NOx),而不需要采用复杂且昂贵的NOX转换器。依托NDIR核心技术积累,发力温室气体监测市场正当时    “2020年习近平总书记在联合国发展大会上代表中国提出了2030碳达峰、2060碳中和的宣言,也为环保行业的发展树立了新目标”,熊友辉博士向记者介绍,在碳中和产业中的温室气体在线监测领域,四方光电具有较好的技术和产业基础,目前在碳中和监测控制领域具有较多应用场景。四方光电在碳中和领域最典型的应用就是对多种温室气体的总量(温室气体成分分析仪器+气体流量)计量。  在二氧化碳(CO₂)的气体检测方面,四方光电有两种不同用途的CO2传感器:一种是四方光电采用NDIR热电堆红外技术开发的民用/车载用的扩散式CO2传感器,一种是四方光电全资子公司-湖北锐意自控采用微流红外、双光束红外(热电堆或者热释电)等技术开发的高端CO2传感器。前者主要用于绿色建筑和智能座舱中的暖通空调(HVAC)控制,确保在舒适安全条件下的节能减排,通过智能化降低建筑和车辆的碳足迹 后者主要用于工业、农业过程中CO2排放总量的高精度测量,用于碳排放的核查和交易。后者的精度要求显著高于前者,价格比前者也高两个数量级。  当然,碳中和领域对气体的监测不仅仅是CO2气体浓度,而是多种温室气体的总量(成分+流量)计量。京都议定书中规定控制的6种温室气体,除二氧化碳(CO₂)之外,还有甲烷(CH₄)、氧化亚氮(N₂O)、氢氟碳化合物(HFCs)、全氟碳化合物(PFCs)、六氟化硫(SF6)。四方光电全资子公司湖北锐意自控的微流红外、双光束红外、TDLAS等气体传感器技术可以应用在对工业污染源的上述多种温室气体排放浓度的监测 同时公司具备的超声波、差压等原理的气体流量传感器可以用于温室气体流速和体积的监测。公司以工业用气体传感器技术平台、分析仪器及工信部沼气工程物联网专项为基础,为大中型沼气工程、生物质燃气工程、煤层气瓦斯气综合利用工程等诸多领域提供了包括测量CH4和CO₂等气体质和量的计量装置,这些装置是开展清洁发展机制(CDM)碳交易的基础数据。随着碳减排逐渐成为一些国家的自愿行为,以及碳核查基于的MRV(可测量、可报告、可检验)原则,对温室气体排放总量在线监测系统的需求将呈现增长趋势。  我国已经安装了大量的CEMS系统用于环保监测, 主要是对二氧化硫(SO2)、一氧化氮(NO)、粉尘颗粒物(PM)的监测。碳中和政策出来后,需要增加CO2、CO等“碳”的测量指标,由于CO含量较低,因此微流红外传感器成为测量CO2+CO参数的最佳选择。同时用于碳交易还需要更加准确的烟气流量传感器配合,目前大量的CEMS系统采用皮托管差压原理测量流速并测算流量,由于是“点式”测量,准确度与气体分析仪器的精度相差巨大,因此有必要开发新型的高精度烟气流量传感器,例如超声波、红外相关法、静电法等原理的新型烟气流量计。协同气体传感器技术平台,新产品层出不穷    熊友辉博士表示,碳中和关系到产业链的方方面面,从原材料和能源的开采到产品进入市场,每一个环节都需要控制碳排放,这也让气体环境监测仪器有了广阔的市场。比如,烟气分析仪是大气环境监测系统的重要组成部分,但烟气成分较为复杂,主要成分有二氧化硫(SO2)、氮氧化物(NOx)、一氧化碳(CO)、二氧化碳(CO2)、氧气(O2)等,随着排放标准越来越低,对烟气分析仪的性能要求也越来越高。这次四方光电全新推出的烟气分析仪Gasboard-3000UV,集公司多种核心气体传感技术于一体:基于UV-DOAS紫外差分吸收光谱气体分析技术测量二氧化硫(SO2)、氮氧化物(NOX),微流NDIR技术测量一氧化碳(CO)、甲烷(CH4),双光束红外NDIR测量二氧化碳(CO2)等。结合公司超声波气体流量测量十余年的技术积累,公司正在积极开发超声波烟气流量计,因此可以一站式满足国内碳排放的监测要求。  在室外空气品质监测领域,记者看到四方光电也在持续发挥技术优势,推陈出新。问及此次室外扬尘监测传感器展区产品时,熊友辉博士向记者介绍了产品开发的初衷以及创新应用对产业链的推动作用:我国室外扬尘网格化监测经历了早期的β射线吸收法到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。民用激光传感器由于激光功率小,采样流量小,PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。在这种背景下,四方光电通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样装置、高湿度环境的水雾去除装置等,研制出了扬尘传感器PM3006系列产品,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。凭借长期的技术积淀、良好的产品性能,目前四方光电室外扬尘监测传感器PM3006系列已取得多项发明专利及实用新型专利。在国内市场,多款搭载PM3006系列的扬尘监测类产品,获得了计量器具型式批准证书(CPA) 在海外市场,同样也取得了当地权威机构的测试认证。在韩国多款搭载PM3006的户外监测类产品,获得了韩国环境部授权的三大认证机构(KTR/ KECO/ KCL)的最高等级1级认证。目前,产品已经销往全国并出口到海外多个国家和地区,被国内外知名企业认可。  最后,四方光电熊友辉博士告诉记者,四方光电也将不忘初心,依托在气体传感器及分析仪器方面的技术积累,开发出更多的优质产品 也将持续关注行业发展趋势,发挥自身技术优势,为早日实现“碳达峰”和“碳中和”目标贡献力量。  关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台,拥有100余项国内外专利,产品广泛应用于空气品质、环境监测、工业过程、安全监测、健康医疗、智慧计量等领域。  四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。  四方光电作为中国气体传感器的龙头企业,凭借长期的技术沉淀、严格的质量体系及国际化视野,已经成为诸多世界500强及国内外细分领域头部企业的配套供应商。目前公司产品已经出口至八十多个国家和地区,正在朝着传感器领域的国际品牌迈进。
  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • 选择紫外或紫外可见传感器时需要了解的 5 个问题
    分光光度法可适用于在线仪器,是监控水和污水处理设备的重要方法。分光光度法是一种测定分子对光的吸光度的方法,此方法在在线传感器上的应用已越来越准确和可靠。WTW IQ SensorNet系列紫外(UV) 和紫外可见(UV Vis)传感器具有适用于特定污水处理应用的内置出厂校准,不仅提高准确性,还可减少校准的频次。内置UltraCleanTM超声波清洗,减少校准频次的同时完全去除更换损耗品的必要(如试剂或刮刷),最大限度减轻了维护工作。本系列传感器甚至还支持通过单个传感器测量多个不同参数,如硝酸盐、亚硝酸盐、总悬浮物 (TSS)、紫外线透射率(UVT-254)、化学需氧量(COD)、生化需氧量(BOD)、总有机碳量 (TOC)和其他碳参数。 本系列传感器是水和污水处理设备的一项重要投资,为操作人员提供极大便利。但是如何选择合适的传感器?为确保选择最符合应用的传感器,来看一下选择紫外可见传感器时需要考虑的5个问题。紫外和紫外可见传感器的优势1、无需试剂,即可在线进行硝酸盐、亚硝酸盐、COD、BOD、TOC、UVT-254、NOx和TSS测量2、单个传感器最多可测量并显示五个参数3、UltraClean™ 超声波清洁技术可防止结垢,维护较为简单4、持久耐用的材质:钛和PEEK(聚醚醚酮)即使在最恶劣的条件下仍可保持稳定5、紫外和紫外可见传感器每次测量可扫描256个波长,从而实现更好的准确度和浊度补偿6、工厂已针对过程中的位置进行了校准(进水、二级处理、出水)7、用户可自行校准,从而在应用情况不理想时提高准确度参数硝酸盐:来自硝化过程中NH4转化的人类排泄物的生物污染物。亚硝酸盐:来自人类排泄物的生物污染物,是硝化过程中NH4和NO3的中间型。生化需氧量:微生物在分解流水中的有机废物时消耗的氧气量。被看做是对存在的有机物的量化,并且排放量受到国家污染排放消除系统(NPDES)的排放限制。总有机碳:样品中有机结合的碳量。被认为是对存在的有机物的量化和水质指标。与BOD或COD相比,该测试通常是表示有机物的一种更方便直接的方式。紫外线透射率:在254mm 波长处透射的紫外线百分比。该参数用于指示水中的有机物含量,通常与BOD、COD和TOC相关。该测量值通常用于在消毒过程中自动控制紫外线剂量。总悬浮物固体:水样中被过滤器捕集的悬浮颗粒的净重。该参数通常用作水质的指标,并用于定量分析活性污泥系统(混合液悬浮物,MLSS)中存在的微生物。需要测量什么及测量原因选择紫外或紫外可见传感器时,需要搞清楚的首要问题是测量什么及原因。需要测量什么参数?应用场景是什么?如何使用传感器?取决于应用场景,通过单个传感器监控多个参数可能更为有益。以下是紫外可见传感器在污水处理中最常见的一些应用。 氮硝酸盐氮和亚硝酸盐氮是生物脱氮除磷(BNR)应用中常见的测量参数。硝酸盐在工艺优化中扮演着多种角色,如确保高效地完成硝化、监控硝酸盐去除、控制脱氧区的碳投加量以及确保出水中的氮含量达到排放标准。亚硝酸盐的使用情况较少,因为它是硝化工艺的中间阶段。如果污水处理设备出现亚硝酸盐积累问题或使用快捷反硝化工艺,监控亚硝酸盐将会很有用处。碳碳参数在污水处理中同样具有广泛应用。COD、BOD和TOC是量化样品内碳含量的常见测量参数,其中BOD和TOC专属于有机碳。例如,通常会测量二级处理中的COD来监控有机物负荷。在二级处理中,COD可指示一级或二级处理的效率,或量化需要碳源(反硝化和除磷)的生物处理工艺中的有机碳含量。此外,监控污水处理厂收集系统或进水设施中的COD有助于确定重度负荷来源或提供预警探测。长期以来,这些碳参数的测定都需要昂贵或耗时的实验室程序,因此难以实际使用。如今,借助在线紫外可见传感器,我们便可以利用这些参数实现原本难以实现的工艺控制和预警检测。紫外和紫外可见传感器具有广泛的应用,在某些情况下,通过单个传感器获得多个参数将对操作人员有所助益。例如,TSS是曝气池的常见测量参数,指示微生物浓度(MLSS –混合液悬浮物)。利用包括 TSS与COD组合的传感器,操作人员即可获得用于监控食料与微生物比(F/M 比)的必要信息。使用单个传感器监控多个参数可从单个传感器获得更多有用数据,从而带来附加值。选择紫外可见传感器时,确保查看各传感器的可测参数列表(表1)。单波长传感器和光谱传感器有什么不同?一些制造商仅生产单波长传感器,而其他像WTW一样的制造商除单波长传感器外还生产光谱传感器,后者可提供更多参数和更高的准确性。前面我们一直在谈论光谱传感器,在光谱传感器中,每次测量时都将扫描256个波长的紫外光和可见光以获得所需参数的浓度。此类传感器通过测量每种波长处的吸光率来生成“光谱足迹”。然后,根据传感器中编制的算法将每个“光谱足迹”计算为以 mg/L 为单位的浓度(Smith, 2019)。相比于单波长传感器,光谱测量的精度和准确度更高,因为物质分子会吸收一段波长范围内的光,而并非仅吸收单个波长。附加波长具有许多优势,包括为每个参数提供更多吸收数据、使用一系列波长进行浊度修正,甚至有助于检测不同形式的有机分子。紫外可见光谱传感器扫描的256个波长跨越紫外和可见光范围,从200至720nm(图1)。紫外光谱传感器扫描的256个波长范围为200-390nm。在这个波长范围内,紫外传感器将能够同时测定并区分硝酸盐和亚硝酸盐。硝酸盐和亚硝酸盐通常吸收短波长紫外光(250nm),有机分子的吸收峰主要出现在250-350nm的紫外波长范围内。380 - 720nm范围内的光吸收来自每次测量时都会测量和进行修正的浊度 (Smith, 2019)。不过,我们仍然有两种使用对单个波长的吸收率来确定特定参数浓度的单波长传感器。UVT-254传感器(或 SAC-254)测量 254nm 波长处的透光率或吸光度(%)。254nm的紫外光能够被有机分子吸收,因此该传感器对测定饮用水和污水内的有机物浓度趋势非常有用。使用 UVT-254传感器,可以输出经过准确校准的COD、BOD和TOC相关值,还会再测一个波长 (550nm) 用于浊度修正。NOx传感器使用单个波长测量硝酸盐(NO3-N)和亚硝酸盐 (NO2-N) 的总和,这足以满足一些生物脱氮除磷应用中的氮监控需求。尽管单波长传感器可以提供有用的数据和趋势,但与光谱传感器相比,其准确度和可重复性不佳。使用单波长进行测量和浊度修正时,此类传感器可能无法检测到某些形式的有机分子,无法区分硝酸盐和亚硝酸盐,也无法准确补偿浊度。单波长和光谱传感器各有优势,所以哪种更适合您的应用呢?使用单波长传感器能够以适中的价格获得有机物或氮氧化物的趋势数据,并且甚至有些应用专门需要用到单波长传感器,例如紫外线消毒需要UVT-254。然而,光谱传感器已针对特定应用(进水、二级处理、出水)进行校准,并且由于此类传感器扫描256个波长,从而准确性、可靠性都比单波长传感器更高,浊度修正也更准确。测量光程是什么?为什么很重要?测量光程是指光源和探测器之间的距离,在分光光度法测量中非常重要。测量光程(又称狭缝宽度)是根据比尔-朗伯定律计算光吸收率时的一个计算因子,并且受样品水浊度的影响极大。因此,紫外可见传感器通常具有固定的测量光程,并针对特定应用提供不同的狭缝。IQ SensorNet紫外可见传感器有2种测量光程可供选择:1mm和5mm(图 2)。1mm狭缝用于监控未经处理的污水和二级处理,因为这些应用通常浊度较高。5mm狭缝用于监控处理后的出水、低浊度污水,有时还可用于监控一些地表水或饮用水应用。取决于应用类型,其他制造商可能还会提供10-50mm的测量光程。选择YSI紫外可见传感器时,注意701型号传感器为 1mm测量光程(适用于未经处理的污水或活性污泥),705型号传感器为5mm 测量光程(适用于低浊度的处理后出水)。如何安装紫外可见传感器?紫外可见传感器一般比其他在线传感器更大、更沉,因此在确定安装选项时应特别考虑。与所有在线传感器相同,应基于安全性和可达性来选择安装位置和方式。要确保可以轻松接触到传感器,以便偶尔进行维护,因此有足够的操作空间非常重要。传感器的安装位置应符合要求的扶手和过道安全标准。同样,紫外可见传感器的安装也应易于使用,并使传感器易于操作。最后一点,由于传感器可能比较沉,安装的稳固性也非常重要,必须能够承受相应重量,尤其是对于存在堵塞问题的污水设备。紫外可见传感器在污水中最常见的安装方式为浸入式安装。浸入式安装通过将传感器直接浸入集水池或水流中,直接测量过程用水。WTW紫外可见传感器提供两种沉浸式安装选项:刚性安装或摆动/链条安装。刚性安装包括将紫外可见传感器固定至一个金属杆上,然后将金属杆安装至护栏或墙壁上。当需要较稳固的解决方案,如水比较湍急或水中有堵塞时,这种安装类型是最佳选择。对于一般的沉浸式安装应用,摆动和链条安装更具优势。使用这种安装,传感器将更容易操作,因为传感器悬挂在链条末端,通过链条便可轻松地在集水池中进行升降。摆动臂将传感器伸出集水池外面,但是也可容易接近,只需将传感器摆动至靠近护栏的位置就能够拆下传感器进行维护。 对于像处理后的污水出水、污水回用或饮用水等清水应用,流通池可能是最佳选择。在这些应用中,由于缺乏合适的位置或因NSF要求,不能使用沉浸式安装。使用流通池时,紫外可见传感器将采用壁挂式安装,流通池会形成一个腔体让水流经光学窗口。水流持续运送至传感器进行测量,然后排出。无论将WTW紫外可见传感器用于清水还是污水应用,选择最适合的安装选项都非常重要,这样既能够确保传感器正常运行,还可将维修工作量保持在最低限度。 如何维护?尽管紫外可见传感器的维护要求不高,且不需要试剂,但仍然需要偶尔进行保养以优化运行。相比于其他在线传感器,WTW紫外可见传感器具有所需维护工作量最少的巨大优势。本系列传感器具有内置的独特自动超声波清洗系统UltraCleanTM技术。该系统不仅有助于保持测试窗口长久清洁,而且整个系统都置于传感器内部,所以没有需要更换的密封件或挂刷。保持紫外可见传感器清洁对传感器性能至关重要。因此,紫外可见传感器通常带有自动清洁系统,这可有效降低传感器总的维护时间。WTW提供两种类型的自动清洁系统:一种是所有传感器中都已内置的UltraClean;另一种是空气清洁系统。UltraClean超声波清洁系统轻微振动传感器的光学窗口,清除堆积的固体。这种技术已被证明在具有较多固体的污水应用中非常成功,WTW的ViSolid(TSS)和VisoTurb(浊度)传感器中同样也应用了此技术。WTW紫外可见传感器的另一个自动清洁选项是空气清洁系统。该系统使用空气压缩机定期向光学窗口上喷放压缩空气,清除任何可能干扰测量的固体。WTW空气清洁系统直接与传感器相连,并且可以通过控制器进行编程控制,根据所需时间间隔进行清洁。两种自动清洁系统都能使传感器在废水应用中保持数周的准确读数。自动清洁系统非常有助于减少整体维护时间,但是为了达到最佳性能,仍然需要偶尔进行手动清洁。每两周从测量环境中取出紫外可见传感器进行一次手动清洁,可大大减少潜在的测量问题。手动清洁非常简捷,整个过程只需1分钟,包括用清水冲洗测量狭缝、使用清洗液清洗、用软布擦亮镜片然后彻底冲洗干净。此外,还应保持日常维护以确保传感器清洁。维护的另一方面是校准和验证。WTW紫外可见传感器使用实验室参照样品进行校准,用于调整传感器的原始信号与实验室浓度值相关联的斜率。如前文所述,光谱传感器已针对特定应用进行出厂校准,但也可以自行校准,使传感器的测量适应过程用水。单波长传感器也可对主要参数进行校准,但相关值(BOD、TSS、TOC 等)必须根据实验室测量值进行准确校准。应根据需要进行校准,例如当传感器首次安装、移动到新位置或传感器对参考样品的测量不准确时。WTW紫外可见传感器具有双通道测量系统,其中一个相同的参比通道用于监控并校正光源灯或探测器的老化,防止任何潜在校准漂移。这样可免去常规校准的麻烦,但是仍建议使用实验室参考样品对传感器测量值进行常规验证,以确保传感器的准确性。
  • 锐意自控基于微流红外、紫外NOX传感器的汽车排放尾气分析仪已通过多省计量认证
    p  汽车尾气排放分析仪是在汽车发动机正常运转时,对汽车排放的尾气进行检测、分析, 从而判断汽车发动机是否工作正常、排出的有害气体是否超出标准的一种仪器。作为机动车尾气检验以及维修机构的核心设备,这种仪器的质量和性能直接影响到对汽车尾气排放超标进行检查的效率和效果。因此,获得具有法定效力的计量认证证书是产品应用于市场的重要前提条件。/pp  随着新的汽车尾气排放检测法规《汽油车污染物排放限值及测量方法(双怠速及简易工况法)》GB18285-2018和《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》GB3847-2018的发布,汽车尾气分析检测逐渐标准化。凭借在环保领域多年的气体分析仪器仪表研发制造经验,湖北锐意自控全新推出测量精准度更高、稳定性更好的汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230。/ppspan style="font-size: 18px color: rgb(0, 176, 80) "strong新法规变化分析/strong/spanstrong style="font-size: 18px "/strong/pp  新法规规定,汽车尾气排放分析仪应至少能自动测量HC、CO、CO2、NO、O2五种气体浓度。在检测方法上也发生了较大的变化:一是规定原来的电化学法测量NOx的原理不再适用,必须用光学法原理测量 二是柴油车增加了NOx的检测。/pp  span style="color: rgb(255, 0, 0) "如何准确测量NOx?/span/pp  新标准的出台直接影响着NOx的测量,光学检测原理有非分光红外(NDIR)、微流NDIR、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS),原理不同测量的精度和结果也不同。除了检测原理不同外,还有两种测量方式的区别:一种是直接测量,把NOx分为NO 和NO2两个组分分别测量,测量浓度相加得到NOx 另一种是间接测量,采用转化炉将NO2转化为NO,通过测量NO间接得出NO2和NOx的浓度。/pp  此外,《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》GB 3847-2018中规定采用转化炉将NO2转化为NO时,转化效率应≥90%,对转化效率要定期检验,转化效率不合格的转化炉要及时更换。/pp  因此,采用转化炉间接测量法的汽车尾气分析仪会遇到以下问题:/pp  1、转化效率会影响测量精度,造成测量结果不准确 /pp  2、转化炉定期进行检测会增加作业成本 /pp  3、转化炉的使用寿命一般不超过一年,需定期更换。/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse margin-left:10px margin-right: 10px" width="648"tbodytr class="firstRow"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"strongspan style="font-size:13px line-height:150% font-family:等线"特性/span/strong/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:center line-height:150%"strongspan style="font-size:13px line-height:150% font-family:等线"直接测量spanNO/span、/span/strongstrongspan style="font-size:13px line-height:150% font-family:等线"NOsub2/sub/span/strongstrong/strong/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:center line-height:150%"strongspan style="font-size:13px line-height:150% font-family:等线"间接测量spanNO/span、/span/strongstrongspan style="font-size:13px line-height:150% font-family:等线"NOsub2/sub/span/strongstrongspan style="font-size:13px line-height:150% font-family:等线"(转换炉)/span/strong/p/td/trtrtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"span style="font-size:13px line-height:150% font-family:等线"准确性/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"测量精度较高,spanNOx/span测量误差低至span style="background:white"± span4%/span/span/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"测量精度受转化效率影响较大/span/p/td/trtrtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"span style="font-size:13px line-height:150% font-family:等线"便利性/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:left line-height:150%"span style="font-size:13px line-height: 150% font-family:等线"1/spanspan style="font-size: 13px line-height:150% font-family:等线"台仪器集成span2/span个测量平台,操作方便/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:left line-height:150%"span style="font-size:13px line-height: 150% font-family:等线"1/spanspan style="font-size: 13px line-height:150% font-family:等线"台仪器外加span1/span台转换炉,操作繁琐/span/p/td/trtrtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"span style="font-size:13px line-height:150% font-family:等线"成本效益/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"无需更换后期耗材,后期免维护/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"需定期更换转换炉,成本增加/span/p/td/tr/tbody/tablep style="text-align: center "strong表一、直测法VS转化炉法特性对比分析/strong/pp style="text-align: center "span style="font-size: 18px "strong/strong/span/ppspan style="font-size: 18px color: rgb(0, 176, 80) "strong锐意自控解决方案/strong/span/pp  湖北锐意自控系统有限公司自汽车尾气排放检测新国标发布以来,在核心气体传感器的测量原理及结构上取得突破。针对标准中规定的汽车尾气排放分析仪的检测组分、量程、精度的要求,以及市场普遍面临的NOx测量受水分干扰及转化炉转化效率影响的技术难点,成功研发出满足汽油车和柴油车尾气检测用的气体传感器平台。/pp  span style="color: rgb(255, 0, 0) "1、 采用微流NDIR技术直测NO/span/pp  目前国际上的微流红外气体传感器在使用过程中,测量结果随着温度变化,以及光源、探测器的老化等原因造成漂移。对此,湖北锐意自控在采用了隔半气室设计,分别设计了参考气室和测量气室,但是使用同一个光源和探测器,因此,可以通过光源通过参考气室和测量气室的信号比值来修正由于温度、光源老化、探测器老化等造成的信号漂移,从而提高微流红外气体传感器的测量精度和长期稳定性。/pp  此外,基于非分光红外(NDIR)测量NO、NO2易受水分干扰的问题,配备水分补偿调节装置,增加传感器对被测气体的响应灵敏度 通过调节叶片及线性修正,对H2O(气)干扰信号进行调整,使传感器受H2O(气)的影响相互抵消,从而消除H2O(气)的干扰,进一步保证测量的准确性。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 234px " src="https://img1.17img.cn/17img/images/202006/uepic/24ce5fd9-be58-465e-83c5-5411ae0dbd4f.jpg" title="图片.jpg" alt="图片.jpg" width="450" height="234" border="0" vspace="0"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "①红外光源 ②切光器 ③切光电机 ④测量气室 ⑤参比气室 ⑥检测器 ⑦微流传感器⑧第2组分检测器 ⑨信号处理及输出系统/span/pp style="text-align: center "strong图一 微流NDIR双气室技术原理/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 293px " src="https://img1.17img.cn/17img/images/202006/uepic/aed0659f-3c0a-4edc-93bd-8bdffb75a6b6.jpg" title="22.jpg" alt="22.jpg" width="450" height="293" border="0" vspace="0"//pp style="text-align: center "strong图二 微流NDIR NO气体传感器/strong/pp  span style="color: rgb(255, 0, 0) "2、 非分光紫外(NDUV)直测NO2/span/pp  不同于红外(IR),紫外(UV)光谱吸收波段是纳米级别的,波长更短,波峰比较独立。非分光紫外(NDUV)可准确测量NO2气体浓度,不受水分干扰,精度更高,且非分光紫外(NDUV)相对于紫外差分吸收光谱(UV-DOAS)成本较低。采用非分光紫外(NDUV)直测NO2,成功打破汽车尾气检测中需配套NOx转化炉将NO2转化为NO,采用红外光学平台测量NO浓度,再通过NO浓度计算得出NO2浓度的局限性,更加节省系统集成空间及维护成本 且NO2测量更准确,不受转化效率的影响。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/202006/uepic/f6bf8cf2-ddb5-4eed-a6d8-13e96be55e38.jpg" title="33.jpg" alt="33.jpg" width="450" height="299" border="0" vspace="0"//pp style="text-align: center "  strong图三 紫外吸收光谱/strong/pp  锐意自控的汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230采用微流NDIR直测NO、非分光紫外(NDUV )直测NO2,成功打破汽车尾气检测中需配套NOx转化炉将NO2转化为NO的局限性,更加节省系统集成空间及维护成本 且NO2测量更准确,不受转化效率的影响。微流NDIR、非分光紫外(NDUV)、非分光红外(NDIR)及电化学技术均为湖北锐意自控自主掌握。/ppspan style="font-size: 18px color: rgb(0, 176, 80) "strong新产品介绍/strong/span/pp  基于核心汽车尾气传感器平台,湖北锐意自控针对汽油车和柴油车的检测需求,成功开发出汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230。/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse margin-left:10px margin-right: 10px"tbodytr class="firstRow"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center line-height:115%"span style="font-size:13px line-height:115% font-family:等线"湖北锐意自控汽油车尾气分析仪/span/pp style="text-align:center line-height:115%"span style="font-size:13px line-height: 115% font-family:等线"Gasboard-5260/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center line-height:115%"span style="font-size:13px line-height:115% font-family:等线"湖北锐意自控柴油车尾气分析仪/span/pp style="text-align:center line-height:115%"span style="font-size:13px line-height: 115% font-family:等线"Gasboard-5230/span/p/td/trtr style=" height:102px"td width="300" style="background: rgb(242, 242, 242) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="102"p style="text-align: center"img style="max-width: 100% max-height: 100% width: 280px height: 210px " src="https://img1.17img.cn/17img/images/202006/uepic/5afda047-238b-4bfb-8334-58263b308cad.jpg" title="尾气分析仪.jpg" alt="尾气分析仪.jpg" width="280" height="210" border="0" vspace="0"//pp style="text-align:center line-height:115%"br//p/tdtd width="283" style="background: rgb(242, 242, 242) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="102"p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bf78c478-51d3-480f-a564-e862ee53eb95.jpg" title="44.jpg" alt="44.jpg"//pp style="text-align:center line-height:115%"br//p/td/trtr style=" height:36px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量气体:spanHC/span、spanCO/span、spanCO2/span、spanNO/span、/spanspan style="font-size:13px line-height:115% font-family:等线"NOsub2/sub/spanspan style="font-size:13px line-height:115% font-family:等线"、spanO2/span/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量气体:spanCO2/span、spanNO/span、/spanspan style="font-size:13px line-height:115% font-family:等线"NOsub2/sub/span/p/td/trtr style=" height:39px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量原理:/span/pp style="text-align:left"span style="font-size:13px font-family:等线"HC/spanspan style="font-size:13px font-family:等线"、spanCO/span、spanCO2/span:非分光红外spanNDIR/span/span/pp style="text-align:left"span style="font-size:13px font-family:等线"NO: /spanspan style="font-size:13px font-family:等线"微流spanNDIR /span/span/pp style="text-align:left"span style="font-size:13px font-family:等线"NOsub2/sub/spanspan style="font-size:13px font-family:等线":非分光紫外spanNDUV/span/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height: 115% font-family:等线"O2/spanspan style="font-size: 13px line-height:115% font-family:等线":电化学/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量原理:/span/pp style="text-align:left"span style="font-size:13px font-family:等线"CO2/spanspan style="font-size:13px font-family:等线":非分光红外spanNDIR/span/span/pp style="text-align:left"span style="font-size:13px font-family:等线"NO/spanspan style="font-size:13px font-family:等线":微流spanNDIR/span/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"NOsub2/sub/spanspan style="font-size:13px line-height:115% font-family:等线": /spanspan style="font-size:13px line-height:115% font-family:等线"非分光紫外spanNDUV/span/span/p/td/trtr style=" height:39px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用标准:/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"《汽油车污染物排放限值及测量方法(双怠速及简易工况法)》spanGB18285-2018/span/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用标准:/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》spanGB3847-2018/span/span/p/td/trtr style=" height:34px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"检测方法:/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线 background:white"汽车排放总量分析(/spanspan style="font-size:13px line-height: 115% font-family:等线"VMAS/spanspan style="font-size:13px line-height:115% font-family:等线")/span/ph3 style="margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 background:white"span style="font-size:13px font-family:等线 font-weight: normal"简易稳态工况法(/spanspan style="font-size:13px font-family: 等线 font-weight:normal"ASM/spanspan style="font-size:13px font-family:等线 font-weight: normal")/span/h3h3 style="margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 background:white"span style="font-size:13px font-family:等线 font-weight: normal"双怠速/span/h3/tdtd width="283" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"pspan style="font-size:13px font-family:等线"检测方法:/span/ph3 style="margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 text-align:justify text-justify:inter-ideograph background:white"span style="font-size:13px font-family:等线 font-weight: normal"加载减速工况法(/spanspan style="font-size:13px font-family: 等线 font-weight:normal"Lugdowm/spanspan style="font-size:13px font-family:等线 font-weight: normal")/span/h3/td/trtr style=" height:34px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用车型:汽油车/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用车型:柴油车/span/pp style="line-height:115%"span style="font-size:13px line-height:115% font-family:等线" /span/p/td/tr/tbody/tablep  根据汽车尾气排放分析仪的计量要求,湖北锐意自控对产品进行了充分严格的测试,已一次性批量通过河南省、湖北省、广西省计量院的检定。除上述三省外,湖北锐意自控正在加快推进全国其他省市的计量校准工作,以满足更多地区检测站(I站)和维修站(M站)的使用需求。/p
  • VOC快检利器——光离子化气体传感器(PID)!!
    提起VOC检测,可能环境的小伙伴比较熟悉,今天主要跟大家分享一下光离子化气体传感器(PID)方法检测VOC。1、什么是VOC?VOC是挥发性有机化合物(volatile organic compounds)的英文缩写,是在室温以气态分子的形态排放到空气中的所有有机化合物的总称。VOC 所涵盖的有机物种类繁多而且其组成成分多样,主要有:氯化物、苯类化合物、氟利昂化合物、有机醇、有机酮、有机醚、有机醛、有机酯、有机胺、有机酸以及石油烃化合物等。VOC及所形成的二次污染物不仅本身具有较强毒性对人们的健康带来负面影响,而且VOC作为臭氧和PM2.5的前体也影响着大气质量,是复合型空气污染的主要“贡献者“之一。2、VOC的检测方法检测VOC常见的方法有PID检测、GC-FID及GC-MS检测,其中GC-FID和GC-MS都是用来检测VOC气体总值的,在混合气体环境中不能检测出单独某一种VOC气体。GC-FID与GC-MS也可以测出具体某一种VOC气体成分,但价格昂贵,且体积大。其中PID传感器体积小、价格低廉、工作条件简单、能耗低,更适合作为便携式检测器。表1 VOC检测方法参数GC-MSGC-FIDPID使用方式氦气瓶氮气瓶、氢气瓶、空气瓶便携式重量非常重较重很轻尺寸体积非常大体积较大很小检测范围(ppm)更宽0~500000~10000数据线性全范围线性较好全范围线性较好低浓度线性良好选择性无选择性无选择性低能量灯增加选择性检测气体VOC气体VOC气体VOC气体、某些无机气体样品破坏检测破坏检测无损检测可回收操作使用极为复杂较为复杂简便简洁检测费用极其高高极低检测速度极其慢慢极快3、什么是PID?对于仪器分析的小伙伴,可能对GC-FID(氢火焰离子化检测器)与GC-MS(气质联用仪)使用更清楚,我们今天重点讲一下PID(光离子化检测器)。光离子化气体传感器(简称PID)由紫外光源和气室构成。PID 中激发待测气体离子化的源头就是电离室中的紫外灯,被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。紫外发光原理与日光灯管相同,只是频率高,能量大。图1 PID传感器结构PID工作原理:1、在真空玻璃腔内充入高纯稀有气体例如惰性气体。2、用可透紫外光的窗口将玻璃腔体密封。3、外加电磁场进行激发。4、在外加电磁场的作用下,被电离气体产生电流,进而被检测到。图2 PID传感器工作原理4、PID传感器类型与品牌调研PID传感器可以按照紫外灯能量、寿命及检测气体分类,主要可以分为以下类型。表2 PID传感器类型紫外灯能量(eV)9.6eV10.6eV11.6eV紫外灯寿命6个月12~24个月6个月检测气体种类114250300在VOC快检领域, PID传感器品牌几乎都是进口仪器公司,国产采用PID技术的检测设备仅镁汇科技一家企业。表3 PID传感器品牌品牌典型产品英国阿尔法AlphasensePID-A1英国离子科学Ion Science Ltd.FirstCheck F Ex6000,世界上首台PPB级PID检测器的多组分气体检测仪美国贝斯兰Baseline–MOCONPID-TECH FirstCheck F Ex6000MeiHui镁汇科技PID-GH,专注PID研发可替代进口品牌PID配件5、PID的国产替代通过分析比对,可以看出采用PID技术的检测设备与动辄花费大几十万的GC-FID、GC-MS相比,具有明显的优势,不但便携快捷而且设备成本低。表4 国产配件与进口配件对比类型价格货期特点进口配件国产3~5倍15~90天更新换代快国产配件进口1/3~1/52~5天精准定制进口仪器进口备件具有价格贵、费用高、购买周期长。一旦PID的氘灯损坏或者其他配件缺失,将存在一定时间的空白等待期,将会严重影响到VOC检测工作的检测进度。解决办法无外乎有两个:1、增加进口配件的储备与存储,但会增加资源浪费与资金压力;2、寻找进口配件的国产可替代化。 6、PID进口替代优选之品镁汇科技PID-GHSensor的外型设计可以与主要品牌的PID传感器进行互换,其可以安装在任何便携式和固定气体检测仪。可进口替代相同规格的PID传感器光源与其他易损配件。图3 0~200ppmPID的线性范围其不同配件的测量范围最小为0-2ppm,检出限0.5ppb。最大测量范围0-10000ppm,最小检出限为1000ppb。传感器使用寿命一般为3年,质保2年。氘灯能量为10.6eV,紫外灯管寿命6000h。其他配件一年,并且提供其他配件的购买。图4 PID主要配件图综上所述,目前国内PID气体传感器有了较大发展,对已知气体可以实现快速实时检测,有着广泛的应用前景。转载自公众号:实验室仪器分析
  • 重要通知!天美收回英国爱丁堡公司 气体激光器、气体传感器 两个产品线代理权
    2019年起,天美(中国)科学仪器有限公司将全面收回英国Edinburgh Instruments (爱丁堡仪器有限公司,以下简写为EI)气体激光器和气体传感器的代理权。至此,爱丁堡仪器所有生产线产品都将由天美自己的销售团队负责销售和服务。  自2013年天美集团收购爱丁堡之后,EI已成为天美集团的全资子公司。不过天美的销售团队之前只负责最大业务部门—光谱产品的销售。这次销售渠道整合,将爱丁堡仪器的气体激光器、气体传感器两大产品线收回,相信能够带给用户更好的技术支持和服务。  EI气体激光器主要生产并供应各类红外及远红外气体激光器,其中包括CO激光器、CO2激光器、脉冲TEA-CO2激光器及远红外太赫兹(THz)激光器。其产品具有波长可调,光束质量优良,稳定性高等特点,在科研领域具有广泛应用。  EI在气体传感探测领域,积累具有30余年丰富的生产制造经验,具有高技术的工作团专长于NDIR气体传感器设计生产一系列的NDIR气体分析仪和OEM气体传感器,产品出口到50多个国家。可广泛应用于农业,畜牧业,泄露检测,垃圾填满,水质检测/TOC等众多工业生产领域。 气体传感器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38314-0-1.htm 气体激光器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38315-0-1.htm (如需了解更多产品型号及信息,可通过仪器信息网和天美公司官网咨询)关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 光学气体传感器供应商敢为科技再获数千万融资
    近日,国内高精度光学气体传感器及系统解决方案提供商武汉敢为科技宣布完成新一轮数千万融资,本轮融资由上海锦冠投资、山西永昌盛、武汉达益能和泉州申远川共同投资完成。  据了解,敢为科技成立于2013年,是一家以高精度光学气体传感器为核心的面向碳监测、能源安全监测等领域提供数字化系统解决方案的国家级高新技术企业。  作为一家高精度光学气体传感器及系统解决方案提供商,敢为科技主要产品包括针对碳监测领域的污染源/环境空气温室气体监测系统、能源安全监测领域的变压器油中溶解气体监测系统、绝缘开关柜分解产物监测系统等,以及智能化、数字化系统软件平台。主要应用于环保、煤炭开采、油气勘探以及能源安全等领域。公司研发团队主要由国内顶尖的光学工程、计算机等专业的博士、硕士组成。  在过去的三年,敢为科技凭借在高精度光学气体传感器及系统方面的领先优势,实现连续三年营收成倍增长 并进一步加大了高精度光学气体传感器的核心关键器件的研发,使高精度光学气体传感器的国产化程度达到90%以上 同时面向终端客户提供整体解决方案,尤其是在碳排放监测、能源安全监测等领域逐步实现“硬件+软件平台+数据服务”的新发展模式。  在产能方面,公司的全资子公司---敢为科技(江苏)有限公司以及武汉东湖高新科创中心生产基地,总生产面积4000余平米先后投入生产运营。新的生产线更加标准化、规范化、智能化及数字化,从工艺升级、成品率提升等方面保障产品的规模化生产,年产值将突破1亿元。  据敢为科技创始人,华中科技大学光电信息工程张俊龙博士介绍,新一轮融资完成之后,敢为科技会将本轮融资主要用于公司自动化产线的扩建、关键光学器件的持续研发,以及公司在数字化能源安全监测、碳排放监测等领域市场的拓展,为各个领域提供高精度气体检测解决方案。
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • 气体传感器企业汉威电子与第三方检测机构华测检测创业板上市
    气体传感器企业汉威电子创业板首批上市  在首批公布招股说明书的10家创业板公司中,河南汉威电子股份有限公司因其产品具有较高技术壁垒,且主要应用于政府监管和重视的工业安全生产领域,公司表现出的稳定持续的高速成长性,受到了机构投资者的广泛关注。公司昨日在上海举办的现场路演推介会吸引了众多机构投资者的积极参与。  机构投资者纷纷给予公司较高的评价,并就公司产品的核心技术、市场竞争情况、应用领域、政策扶持力度、募投项目的发展前景等问题与公司的高管层进行了充分的交流。  气体传感器是气体检测仪器仪表的核心部件。汉威电子掌握了大量的关于气体传感器选型、气敏材料配方、生产工艺、工业设计等方面的专利或者是非专利技术,成为国内唯一能够同时生产半导体类、催化燃烧类、电化学类及红外光学类四大主要类别气体传感器产品的企业,从源头上摆脱了对国外厂商的技术依赖,成为行业内填补国内空白、替代进口的领跑者。由于公司掌握了传感器的核心技术及生产能力,拥有生产检测仪器仪表的技术优势和成本优势,同时所处行业技术壁垒较高,需要严格的行业认证才能进入,因此公司毛利率达到50%以上,高于可比上市公司的平均水平。  传感器产业是国内外公认的具有广阔发展前途的高技术产业。作为该产业的一个重要分支,气体传感器在燃气、冶金、航天、石油石化、煤炭、化工、环保、煤气化等十个行业均有广泛的应用。随着国家和人民对健康和安全的日益重视,以及各大产业振兴规划都将推动国内气体检测仪器仪表市场的高速增长,预计未来三年将保持30%以上的增长率,2012年需求量超过1500万台,市场规模为30亿元以上。  面对未来几年巨大的市场需求,汉威电子将是传感器行业发展最大的受益者之一。公司的成长性和盈利能力在电子板块处于领先水平,自成立以来始终保持快速的发展势头,在2006年至2009年的三年发展中,营业收入由2910万元增长到9733万元,复合增长率达到82%,净利润由734万元增长到2969万元,复合增长率达到101%,公司的核心传感器产品的市场份额由29%增长到53%。  汉威电子此次募投项目主要投入红外气体传感器和检测器产品以及电化学气体检测仪器仪表。前者主要用于工矿企业中危险气体的检测,后者中的电化学酒精传感器可以用于各类呼出气体酒精浓度监测仪表,便于交通警察对机动车驾驶员进行饮酒检测。随着政府监管部门和民众对安全生产的日益重视,未来工矿企业必将加大对危险气体的检测投入,使得红外气体传感器具有良好稳定的成长性 而政府加大对酒后驾车的监管力度后,未来电化学酒精传感器的需求也有较大的增长空间。  据悉,目前汉威电子是国内唯一有能力产业化生产电化学传感器和红外传感器的企业,而国内其他竞争对手均需进口相关核心器件,公司具备明显的技术和成本优势。随着募投项目的逐步投产,预计2012年产量将占仪器仪表总产量的30%以上,销售收入达到仪器仪表总销售收入的50%以上,公司营业收入和净利润年均复合增长率均在30%以上,高于行业平均增速。华测检测登陆创业版 拟募集资金2.75亿元  据央视新闻频道消息,21日上会的五家创业板企业四家过会一家被否。过会的四家企业为北京北陆药业股份有限公司、西安宝德自动化股份有限公司、深圳市华测检测技术股份有限公司、武汉中元华电科技股份有限公司。  深圳市华测检测技术股份有限公司是一家全国性、综合性的独立第三方检测服务机构,主要从事工业品、消费品、生命科学以及贸易保障领域的技术检测服务,目前在国内拥有近30家分支机构组成的业务网络,拥有化学、生物、物理、机械、电磁等领域的30个实验室,取得了CMA计量认证与CNAS国家合格评定委员会实验室认可资格和检查机构认可资格,并依据ISO17025、ISO17020进行管理。本次发行股数为2100万股,发行后的总股本为8177万股,主承销商为平安证券。  在发行前,万里鹏、万峰父子合计持有公司45.74%股权,是公司控股股东和实际控制人。万峰为公司董事长,万里鹏任公司董事。  本次发行A股预计募集资金2.75亿元,主要用于建设华东检测基地和华南检测基地,项目建成后将极大地充实实验室检测网络,扩大市场份额,提高市场占有率。另据消息:  10月30日,随着创业板开市宝钟的敲响,CTI华测检测正式在深交所挂牌上市,CTI华测检测不仅成为深圳市首家在创业板上市的公司,也是国内首家成功上市的第三方检测机构。  此次,CTI华测检测成功登陆创业板,其股票代码为300012,本次公开发行股票2100万股。  作为国内最大的民营第三方测试、检验和认证服务的开拓者和领先者,其业务范围涵盖了工业品检测、消费品检测、贸易保障和生命科学四个领域。一直以来,CTI华测检测坚持为众多行业和产品提供一站式的质量解决方案,提升企业竞争力,以满足其对品质的更高要求。  目前,CTI华测检测已经拥有30多家分支机构组成的服务网络,取得了中国合格评定国家认可委员会CNAS认可及计量认证CMA资质,并获得了英国UKAS,新加波SPRING,美国CPSC认可,检测报告具有国际公信力。  以上市为契机,CTI华测检测将持续提高其检测能力,更好的为各行各业提供全面的、高质量的服务,此次成功上市,不仅标志着华测检测在成长的道路上迈出了重要的一步,更重要的是为CTI华测检测以后全方位服务能力的提升打下了坚实的基础。  深圳市华测检测技术股份有限公司:http://www.cti-cert.com/
  • 科学家研发石墨烯材料传感器可检测分子级气体浓度变化
    英国南安普顿大学和日本先进科学技术研究所的科学家研发了一种以石墨烯为原材料的传感器,能检测出室内空气污染且精度极高。这一研究近日发表在《科学进展》期刊上。新研发的传感器可以感应到来自建筑、家具用品的二氧化碳分子以及挥发性有机化合物(VOC)气体分子。近年来,由个人居住环境中的空气污染引起的健康问题与日俱增。  这些有害化学气体的浓度水平一般在几十亿分之一(ppb),用现有的环境传感技术难以检测到,因为这些传感器只能检测到浓度为百万分之一(ppb)的此类气体。  该研究团队研发出的石墨烯传感器在通电后,可使单个的二氧化碳分子一个一个吸附到石墨烯材料上,并在分子水平上检测其浓度。其原理是:装置中的石墨烯材料采用单原子悬浮束式层状结构,石墨烯材料周边有弱电场分布。当单个二氧化碳分子或挥发性有机气体分子接触或离开石墨烯材料时,石墨烯的电阻率受影响发生改变,传感器能够检测到这种变化,由于能够检测到分子级的浓度变化,因此这种传感器拥有相当惊人的精度。在试验中,原型传感器可检测到一分钟内30ppb的二氧化碳浓度变化。而且传感器非常紧凑小巧,科学家相信其有望应用于制成便携廉价的空气污染监测装置。
  • 可优化农业生产力的智慧农业:紫外线传感器的应用
    四月即将结束,五月是夏季的初篇,强烈的紫外线即将席卷而来,对于春耕正茁壮成长的农作物们,是一个不小的挑战。那么紫外线对农作物有何影响?对某些农作物的研究表明,紫外线UV-B辐射增加会引起某些植物物种和化学组成发生变化,影响农作物在光合作用中捕获光能的能力,造成植物获取的营养成分减少,生长速度减慢。研究过的植物中,紫外线对其中的50%有不良影响,尤其是像豆类、瓜类、卷心菜一类的植物更是如此。西红柿、土豆、甜菜、大豆等农作物,由于紫外线UV-B辐射的增加,还会改变细胞内的遗传基因和再生能力,使它们的质量下降。为有效止损,建大仁科研发的一款紫外线温湿度传感器。基于光敏元件将紫外 线转换为可测量的电信号原理,实现紫外线的在线监测。电路采用美国进口工业级微处理器 芯片、进口高精度紫外线传感器,确保产品优异的可靠性、高精度。产品综合温湿度传感器 为一体,测量数据更为全面。产品输出 485 信号(标准 Modbus-RTU 协议),最远可通信 2000 米,支持二次开发。产品外壳为壁挂高防护等级外壳,防护等级 IP65,防雨雪。当紫外线照射在建大仁科紫外线变送器RS-UV-*-2上,其中超过98%的紫外线透过高品质透光材料制作的透视窗,照射在对波长在240~370nm的紫外线比较敏感的测量器件,通过内部配置进口高精度紫外线传感器的监测分析,由带有美国进口工业级微处理器芯片的电路处理后,将紫外线强度以RS485信号输出,并在后台上显示,达到监测紫外线强度的目的。不仅如此建大仁科紫外线变送器RS-UV-*-2还广泛应用在环境监测、气象监测、林业等环境中。同样涵盖测量大气中以及人 造光源等环境下的紫外线。
  • 催化燃烧技术终结者——红外气体分析技术
    催化燃烧技术传感器应用广泛并且价格便宜,但易被污染中毒、缺乏安全自检、要求定期维护、标定以及使用寿命短。红外气体传感器这些年发展迅速,克服了以上催化燃烧的缺点,符合IEC61508安全标准,在检测碳氢化合物气体时可提供快速可信的检测结果。本文将就两种传感器的不同优缺点作出比较,以供大家了解。催化燃烧 催化燃烧最早起源于十九世纪六十年代采矿业,早期简单的铂丝线圈传感器由于能耗大、零点漂移严重不适于连续操作。 当前催化燃烧检测器连接两个铂丝线圈,每个都包裹着氧化铝粘土。检测单元包裹着催化剂,可燃气通过时可促进氧化发热。 催化燃烧优点 1、 检测器价格低廉、供应广泛; 2、 可使用各种可燃气,如果方法正确,可用于特殊物质检测; 3、 装置简单,除了标准气,没有其他特殊的维护装备; 催化燃烧缺点 1、 易中毒,如果暴露在有机硅、铅、硫和氯化物组分中,将失去对可燃气的作用; 2、 易产生烧结物,阻止可燃气与传感器接触; 3、 没有自动安全防护装置; 4、 在某些环境下灵敏度会下降(特别是硫化氢和卤素); 5、 需要至少12%的氧气浓度,在氧气浓度不足情况下工作效率明显下降; 6、 如暴露在可燃气体浓度过高的环境下,会被烧坏; 7、 使用时间越长,灵敏度越低; 8、 寿命有限,最长3-5年; 9、 需定期进行气体测试和标定;红外技术 包含一个原子以上的气体能吸收红外光,这样碳氢化合物和一些气体比如二氧化碳、一氧化碳能通过红外技术进行检测。二氧化碳气体分析示意图 为了区分红外吸收,气体和其他物质比水,需要额外增加一个波长宽带为2.7-3um的传感器。碳氢化合物在此范围没有吸收峰。这可以阻止错误报警发生和减小干扰物质的信号。双光束设计就是被用来防止光学组分污染造成错误报警。 红外技术优点 1、 较快的反应速率:响应时间一般小于7秒; 2、 自动故障操作:电源错误、信号错误、软件错误都能反馈给控制系统; 3、 对污染性气体的信号抗干扰能力强; 4、 寿命长,一般大于10年; 5、 维护成本低; 6、 无需氧气; 7、 高浓度可燃气体条件下,不会烧坏; 8、 不会烧结,相应的问题也不会发生; 红外技术缺点 购买价格高于催化燃烧检测器 催化燃烧需要定期测试(通过标气)。有些海洋石油平台通常每六周需测试一次,每3-5年需要更换一次,这样需要耗费大量的成本。 不会烧结的红外气体检测仪器可自我检测,比检测如灯、传感器、窗口、软件等这些不可恢复的问题,从而大大降低出现问题的可能性。较少的零点、量程漂移及高灵敏度意味着红外气体检测仪器的校准和常规维护少,一般为6-12个月。 同时,红外传感器的价格近年已经显著下降,虽然价格还是高于催化燃烧检测器,但实践经验表明,红外传感器的成本可通过减少维护成本来降低。故红外气体传感技术取代催化燃烧技术大势所趋。 四方仪器自控系统有限公司,以自主知识产权的红外传感器核心技术为依托,成功研制红外烟气、沼气、煤气、尾气、天然气等节能减排仪器仪表,并已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。 红外传感器可检测特征吸收峰位置的吸收情况,以确定某种气体的浓度。这种传感器过去都是大型的分析仪器,但近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。 微型红外传感器 使用无需调制光源的红外传感器使得仪器完全没有机械运动部件,实现免维护,有效降低维护成本,从而降低工业过程气体的监测成本。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 新型纳米传感器可检测多种有害气体
    p 据麦姆斯咨询报道,纳米气体传感器创新厂商AerNos近日宣布,它们开发出了一款微型、高精度、经济型纳米气体传感器,能够同时探测多种ppb级(十亿分之一)的有害气体,这款气体传感器专为物联网互联设备集成而设计。/pp  利用AerNos专利的AerCNT技术,其智慧城市空气污染纳米气体传感器(AerSCAP)产品线得以探测一氧化碳、二氧化碳、氮氧化物、地表臭氧、二氧化硫以及瓦斯泄漏。目前,AerNos AerSCAP产品提供三种配置,分别能够支持同时探测3、4、7种有害气体。AerNos AerSCAP产品为固定式和移动应用进行了优化设计,能够方便的集成进入现有的城市基础设施,如街灯、泊车计时器、交通灯、监控系统、公共运输系统以及其他智慧城市实施。/pp/p
  • 山东省发布《便携式紫外吸收法多气体测量系统技术要求及检测方法》
    为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,防治大气污染,改善环境质量,规范便携式紫外吸收法多气体测量系统的技术性能,制定本标准。 随着国家环保部展开以锅炉或炉窑监测SO2、NOx为主的气态污染调查,各省市环保局对CEMS在线监测系统的大力普及,SO2、NOx的在线监测与瞬时监测之间的数据不统一的矛盾日益突出。目前国内监测SO2、NOx常用的仪器主要依赖于电化学传感器法,但由于在高湿低硫的工况中,易发生气体间交叉干扰以及前处理不彻底受水汽影响等因素而导致测量数据不准确的案例时有发生。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多代表提出目前电化学传感器测试烟气中SO2存在的问题,中环总站副站长在会议上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷,建议仪器生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 在这种大环境下,崂应公司很早就开始研制以紫外光学法测量SO2、Nox等烟气的监测仪。此方法的特点是利用紫外光谱分段测量不同气体,不受水汽及气体间交叉干扰的影响,测量精度高、数值准确。 另外,崂应相信在广大同仁及社会各界人士的共同努力下,我们一定会在大气污染防治这场攻坚战中取得最终胜利,还给地球一片绿色,为生活在“穹顶之下”的我们呼吸到干净的空气贡献出环保人的一份力量,给我们的子孙后代留下一片干净的天空!
  • 蜂鸟气体传感器技术推出新网站
    蜂鸟传感技术推出了新网站,以进一步扩大其气体传感器OEM市场领先制造商的影响力。 该传感器已应用在重症护理,麻醉,病人监护,排放监测,水果储存,食品包装,热量测定和车辆废气测试等方面。 新网站展示了医疗和工业应用提供的OEM传感器的选件,以及欧洲,美洲,日本和亚太地区代表处的联系信息,并提供了全球化的语言版本,包括中文,葡萄牙语,巴西语和日语。 英国Crowborough技术中心以ISO 9001认证的最高标准配备生产设备,蜂鸟传感器技术是世界领先的仕富梅气体分析仪系列的核心。 蜂鸟传感器包含无损耗部件和许多传感器,可持续使用数十年,并提供无与伦比的性能,可靠性且易于集成。这种经验证的可靠性在过程和生命科学中的应用,使OEM合作伙伴为他们的客户提供了终身受益的产品。 传感器探测的气体范围包括氧气,一氧化碳,二氧化碳和甲烷气体,适用于包括连续排放监测(CEMS),水果储存,食品包装,热量测定和车辆废气测试等一系列应用。 产品系列包括著名的Paracube氧传感器,结合世界顶级的带切割制造工艺的气体分析技术。 最新推出的Paracube系列,Paracube Micro,提供了'新一代'集系统集成,灵活性,兼容性和可靠性程度无与伦比的设计理念,可方便的集成到通风系统,解剖麻醉,病人的监测和其他生命紧急医疗的应用中。 蜂鸟传感技术部的马丁考克斯说道:&ldquo 很高兴推出我们蜂鸟技术的新网站,这将帮助我们提升气体传感器全球制造商的形象&rdquo 。 &ldquo 我相信在我们专业团队的支持下,我们的传感器一定会得到我们主要制造商的肯定。&rdquo 蜂鸟传感器的网址:www.hummingbirdsensing.com
  • 掺硼石墨烯可制成超高灵敏度气体传感器
    一个国际联合研究小组近日宣布,通过在石墨烯中加入硼原子的方式,他们开发出一种灵敏度极高的气体传感器。该装置能“嗅”出空气中浓度极低的有害气体,在人们还未察觉时发出警报。该研究还有助于改善锂离子电池和场效应晶体管的性能。  用石墨烯制成的气体传感器已具有很高灵敏度,但科学家们并不想止步于此,希望通过在石墨烯中掺入其他元素的方式让其性能得到进一步提升。  美国宾夕法尼亚州立大学物理学、化学和材料学教授莫里西欧特伦斯经过不断更换掺入元素,成功合成了1厘米见方的高品质掺硼石墨烯片。为防止硼化合物暴露在空气后快速分解,他们研制中用到了类似起泡器的化学气相沉积系统。  核心部件制成后,被送往本田研究院的美国公司进行组装。2010年诺贝尔物理学奖获得者、英国曼彻斯特大学科学家康斯坦丁诺沃肖洛夫的实验室负责研究传感器的传输机制。此外,比利时、日本和中国的科学家也促成了这项研究。  测试显示,新的气体传感器能够探测到浓度极低的有害气体分子,如空气中含量为十亿分之一的氮氧化合物和百万分之一的氨气,灵敏度比单纯用石墨烯制成的气体传感器要分别高出27倍和1000倍。  负责此项研究的本田研究所首席科学家阿维迪克哈瑞泰元认为,新方法开辟了一条制造超高灵敏度气体传感器的新途径。该技术未来极有可能突破1000的五次方分之一检出限,在灵敏度上,比目前最先进的气体传感器高6个数量级。  未来这种传感器有望在科学实验和工业中获得广泛的应用,无论是有毒有害气体、超标排放的汽车尾气,还是大气污染中的氮氧化合物都会在它面前一一显出原形。研究人员称,除检测有毒和易燃气体外,这种掺硼的石墨烯理论上还能帮助改建锂离子电池和场效应晶体管。  相关论文发表在11月2日出版的《美国国家科学院院刊》。 来源:科技日报
  • 4款传感器,满足工业气体安全还看MOCON
    众所周知,人类长期接触挥发性有机化合物(VOC)会导致呼吸系统问题、癌症和神经损伤;自然环境如空气、水和土壤等会造成破坏和污染。挥发性有机化合物(VOC) 是由工业和自然过程产生的潜在危险化合物。这些有害气体通常在正常大气条件下会蒸发,但室内环境中的VOC水平要高得多,因为许多制成品(如地毯、油漆和清洁用品等)都可能会排放这些物质。室外来源可能包括垃圾处理场、工业和碳氢化合物排放过量等。光电离检测器(PID) 是检测VOC水平的最简单、最有效的方法。在不靠气相色谱柱的情况下,膜康(MOCON)独立的PID可以使用便携式或固定式对许多挥发性有机化合物进行实时测量。1 易用型检测器VOC-TRAQ II 基于最新的Baseline piD-TECH eVx™ 光电离传感器,VOC-TRAQ II没有组合部件,采用简单的扩散方法,仍提供了快速的响应时间,既紧凑又实惠。一种灯能量之间有5个不同的检测级别,提供了广泛的检测功能。附带的VOC-TRAQ II pc软件可以轻松进行校准、设置参数和显示数据图形。 特点及优势:紧凑型设计广泛的检测功能附带pc软件可编程报警级别和采样频率简单的设置和校准存储多达36,000个样品读数2带流动腔的VOC光电离检测器 VOC-TRAQ II与流通式外壳结合在一起变成Baseline VOC-TRAQ II流动腔,进出口流道可用于远程样品输送,当与加压源或泵一起使用时,该装置可实现受控样品输送。VOC-TRAQ II流动腔借助带有windows操作系统软件的pc能够远程监测和记录总挥发性有机化合物的存在。装置的高灵敏度归功于piD-TECH eVx™ 光电离检测器。 膜康(MOCON)光电离检测器应用:环境监测:洁净室AMC、空气质量监测、无组织排放监测有毒气体监测:室内空气质量、检漏、OEM PID传感器工业过程分析和控制:饮料气体监测、工业气体混合控制、工艺气体分析、特种和工业气体监测、地面测井分析膜康(MOCON)的VOC-TRAQ总挥发性有机化合物(TVOC) 检测器是一种极具性价比的解决方案,使用基于windows的pc主动监测非爆炸性气体泄漏,通过存储多达36,000个样本读数随时间记录数据。VOC-TRAQ使用piD-TECH eVx™ 光电离传感器来监测用户所需范围内的汽化气体。3OEM的首选piD-TECH eVx™ 膜康(MOCON)屡获殊荣的专利piD-TECH eVx™ 插入式传感器具有全面的光电离检测功能,其设计与大多数品牌的电化学传感器机械结构相似。其出色的特性使piD-TECH系列传感器成为想要在手持、移动或固定式设备中集成voc检测功能的oem制造商的理想选择。piD-TECH eVx™ 的检测能力和最小检测量(MDQ)分为五个范围,对oem市场来说它具有更高的性价比和灵活性,同时兼具了市场上无法比拟的先进技术。 特点及优势:提供OEM集成支持可靠的长寿命灯泡:6000 小时易于清洁和现场维修,无需工具本质安全:UL、CAN/CSA、ATEX、IECEx认证内部输入电压调节,提高信号稳定性双重过滤,防止气溶胶和颗粒物的侵害4灵敏型传感器piD-POD piD-POD结构紧凑,由一个圆柱形外壳组成,可组装piD-TECH eVx™ 光电离传感器和进/出样口。它适用于高达300 cc/min的进气流量,并配备了一个带配套适配器的PC接头。piD-POD采用膜康(MOCON)piD-TECH eVx™ 传感器系列(单独出售),允许用户为应用选择所需的灵敏度和灯能量。光电离检测器(PID)不会破坏样品,因此piD-POD对于原始设备制造商来说是一种在其仪器设计中集成TVOC测量的直接手段。 特点及优势:用于piD-TECH传感器低死角密封设计集成到气体监测仪器中提供光电离检测的灵敏度几十年来,AMETEK MOCON一直是气体检测设备监测水平远低于OSHA行动限值的领先供应商。这得益于稳定、快速的检测结果可以让工作人员有足够的时间对日益增加的健康风险做出反应。
  • 智能气体传感器探测化学药品灵敏度更高
    据美国媒体报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体(气相)色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。 该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管(仪器信息网注:这里可能是指色谱微柱),第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。 研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。 在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当&ldquo 接线员&rdquo ,当一个试管正&ldquo 忙&rdquo 时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。 二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子&ldquo 热线&rdquo ,可以探测某些特殊分子。范旭东说:&ldquo 如果怀疑某地有化学武器泄露,我们就送一批这种专用分子&lsquo 热线&rsquo 过去,能极灵敏地识别出这些成分。&rdquo 目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。 无论是探查爆炸物、化学武器,还是监测矿井安全,对于化学气体检测仪器而言,最重要的一条就是灵敏度。如果不能迅速准确地检查出目标物,即使是再尖端的技术也可以说意义不大。本文介绍的这套仪器一方面能使不同分子尽可能分开并分别聚集,另一方面通过轮换试管和定做试管的方式使检测过程更加高效和具有针对性,这些都是强化灵敏度的关键因素。与此同时,这种仪器似乎并不复杂,也大大提高了它作为实用技术进行推广的可能性。
  • 智能气体传感器探测化学药品更灵敏
    据美国科学促进会网站5月2日(北京时间)报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。  该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管,第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。  研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。  在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当“接线员”,当一个试管正“忙”时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。  二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子“热线”,可以探测某些特殊分子。范旭东说:“如果怀疑某地有化学武器泄露,我们就送一批这种专用分子‘热线’过去,能极灵敏地识别出这些成分。”  目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。
  • 汉威电子:气体传感仪器有壁垒
    在首批上市的28家创业板企业中,汉威电子[40.61 0.27%](300007)是唯一一家主营气体传感器和仪器的企业,而这一领域是感知世界的基础,是信息网络的前沿之一,其技术先进性和行业壁垒受到了市场的广泛关注。为此,本报记者专程探访了位于郑州高新区的汉威电子。  参观汉威电子产品展示厅里众多的气体传感器门类和各种检测仪器之后,记者被告知,汉威电子目前掌握的最先进的技术是电化学类、红外光学类等气体传感器全系列核心技术,并可以批量生产。由于目前市场上大量使用的电化学、红外气体传感器主要由国外公司生产控制,具有一定垄断性,产品价格高昂,因而汉威电子在这一系列传感器的竞争主要来自国外,国内能够形成产业化技术的企业并不多。据了解,国内红外光学气体检测技术主要用在体积较大的红外线气体分析仪器生产,在电化学、红外气体传感器及其应用技术方面的实验研究也不少。  对于公司自有关键技术如何不被泄露,公司有关技术负责人介绍说,公司专有技术是多年技术创新、行业经验的凝练和总结,有些属于技术诀窍,核心是产品内在的设计思路及材料技术、生产工艺,被侵权时不易发觉和取证,为避免被模仿,公司以技术秘密的方式予以保护。对于易于使用专利方式保护的专有技术,公司均已申请或准备申请专利。  在公司众多的气体检测仪表产品中,哪些品种是汉威电子主要销售和利润来源?公司方面表示,气体检测仪表中,民用仪表产销量最大,但工业用仪表对营业的贡献最大,在国内的市场份额都位居前列。公司一直非常重视新产品的开发和新工艺的研究,产品不断升级换代,高附加值产品的产销比例不断增加,为公司带来了较高的毛利率回报。  气体传感器及仪器仪表行业前景好,也吸引了新的市场进入者,但为何新进入者较难获得快速发展?公司解释主要原因是该行业具备独特的行业壁垒,气体传感器及气体检测仪器仪表涉及化学、物理、材料、机械、电子、计算机等多种学科交叉的边缘应用,企业所需人才培养主要通过企业经营过程中传帮带、经验沉淀来进行,再加上气体检测仪器仪表产品涉及消防、防爆、安全等行业认证,这也使部分准备进入者知难而退。  临行,记者注意到汉威展厅展示的城市管网安全检测系统和基于化工园区的危化品安全监控系统,已将众多的传感器连成了网络,在大屏幕上集中监视。问及公司未来如何针对物联网发展业务时,汉威董秘刘瑞玲介绍说,公司原来的业务就已经向传感器网络和系统集成发展并取得了初步成效,未来致力于提供完整的气体探测解决方案。
  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 中国科大在多维探测和识别的气体传感器方面取得进展
    近日,中国科学技术大学火灾科学国家重点实验室易建新副教授课题组提出一种化学电阻-电位型多变量传感器,实现了单一传感器对多种气体和火灾特征的三维探测和准确识别。相关成果以“A chemiresistive-potentiometric multivariate sensor for discriminative gas detection”为题发表在国际学术期刊《自然通讯》上(Nature Communications 14,2023, 3495)。低浓度气体的高灵敏探测和准确识别对于公共安全、环境保护、健康诊断和工业生产等诸多应用具有重要意义。相比于气相色谱和质谱等传统气相分析技术,气体传感器具有成本低、尺寸小、易集成和实时监测等优点,有利于大规模应用。但是,常规传感器仅输出单一信号,不能识别气体,因此探测准确性低,在实用中易受其它气体或环境湿度等干扰而引起误报或漏报。这一问题严重限制了气体传感器的应用。图1. 基于双敏感电极的化学电阻-电位型多变量气体传感器的原理和三维响应研究人员首先利用半导体氧化物电极在表面和界面上不同的响应机制,在同一电极上成功提取出化学电阻和电位两种不同原理的传感信号;进一步,采用钙钛矿型氧离子-电子混合导体氧化物取代贵金属铂电极,和常规的电子导电的敏感材料进行配对,获得了输出三个独立响应信号的双敏感电极传感器。得益于钙钛矿非常规的反向电位响应,传感器的气敏性能得到了显著提高,实现了2-乙基己醇、一氧化碳等多种危险和火灾特征气体的(亚)ppm级三维探测和准确识别,并展现出在火灾危险早期预警方面的应用潜力。图2. 多变量气体传感器在火灾早期预警中的应用这种兼具探测和识别功能的多变量气体传感器简单、高效、成本低,可适用于不同半导体材料电极和固体电解质基底,工作温度范围宽,并可进一步拓展获得更高维度的响应,为复杂环境中气体的高灵敏和准确探测提供了新思路。论文的第一作者为宋卫国研究员和易建新副教授共同指导的博士生张红,通讯作者为易建新副教授。研究得到了国家重点研发计划项目、国家自然科学基金和中央高校基本科研业务费的资助。
  • 上海交通大学:研发纸基MXene全柔性高灵敏室温气体传感器
    随着物联网的快速发展,开发高灵敏柔性化学阻敏型气体传感器对有毒有害气体的实时监测和安全预警具有重要研究意义。对于传统的硅基气体传感器而言,其高功函数金属叉指电极与半导体敏感材料之间能垒不匹配的问题限制了电荷有效传递及传感性能提升。该工作设计了Ti3C2TxMXene非金属电极(ME)和Ti3C2Tx/WS2气敏材料集成的全柔性纸基传感器,通过同质导电电极和敏感材料的创新设计有效解决能垒不匹配的难题。Ti3C2Tx/WS2纳米片敏感材料具有高导电性、快速电荷转移和丰富的活性位点等优势,与MXene同质导电电极在单一传感通道中形成欧姆接触和肖特基异质结,其异质结调节效应、功函数匹配设计和金属诱导间隙态(MIGS)抑制效应等能有效提升气体传感性能。实验结果表明,柔性纸基ME+Ti3C2Tx/WS2对1 ppm NO2的气体传感响应值(15.2%)是传统金叉指电极Au+Ti3C2Tx/WS2传感响应值(4.8%)的3.2倍,最低理论检测极限为11.0 ppb,同时具备出色的抗湿度稳定性。该工作为基于MXene同质导电电极和气体传感材料集成的全柔性气体传感器设计提供了一种新的思路。研究亮点1.采用激光雕刻辅助压印技术制备柔性纸基Ti3C2TxMXene低功函数非金属材料电极,降低传统高功函数金属电极和半导体电子亲和力之间的能量差,抑制金属诱导间隙态的形成,有效提高金-半界面处的载流子迁移速率。2.构建基于柔性纸基同质Ti3C2TxMXene电极(ME)集成Ti3C2Tx/WS2气敏材料的全柔性气体传感器,实现了室温下对NO2气体的高灵敏度和高选择性传感,其气体传感性能优于传统金叉指电极(AuE)集成的传感器。3. Ti3C2Tx/WS2异质结调节效应促进界面处的电荷载流子传输效率,协同增强了对NO2的吸附性能和传感响应值。调节肖特基势垒高度(SBH)、抑制金属诱导间隙态形成能有效避免费米能级钉扎效应,实现了电荷载流子的自由转移。
  • 大连理工大学陈珂:高精度光纤光声气体传感器及装置
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。大连理工大学 陈珂副教授本次会议中大连理工大学陈珂副教授介绍了其课题组在光纤光声气体传感技术及应用方面开展的一系列工作(点击回看》》》),得到与会老师的关注和认可。会后,我们也再次邀请陈珂副教授分享大连理工大学光纤光声传感研究团队的系列成果。1、成果简介大连理工大学光纤光声传感研究团队开展了光纤声波/振动传感技术和光声光谱微量气体检测技术的应用基础研究工作。在光纤传感技术研究方面,首次提出并设计了超高灵敏度光纤悬臂梁声波传感器,信噪比相比于传统电学麦克风提高了1-2个数量级;研制出超高速振动/声波传感解调仪器,采用光谱解调法实现了200 kHz的解调速度,将解调算法集成到FPGA中,大幅度提升了解调的稳定性。在光声光谱技术研究方面,将光纤声波传感器用于光声信号探测,提出了干涉型光纤声波锁相探测方法,设计了新型的光纤悬臂梁增强型光声光谱仪器,实现了对多种微量气体的超高灵敏度检测。研究了基于光纤光声传感的变压器油中溶解气体原位检测技术,研究了气体绝缘设备中六氟化硫分解产物的光纤光声检测技术,并在多个变电站开展了示范应用。根据变压器油中溶解气分析和煤矿瓦斯突出应用需求设计了多套激光光声光谱多组分气体分析仪器,掌握了目前世界上唯一的高瓦斯背景中多组分微量气体光学检测技术。成果1:光纤振动/声波传感器及解调仪器设计的光纤振动/声波传感器采用MEMS悬臂梁结构,具有灵敏度高、稳定性好的特点。研制了基于光谱解调的超高速光纤法布里-珀罗(F-P)传感解调仪,在FPGA中集成光谱采集、光谱相位解调等功能,显著提升了解调速度和稳定性。成果2:光声光谱变压器油中溶解气体分析仪针对高电压油浸式变压器油中溶解气体分析需求,研制了多套激光光声光谱气体分析仪。其中对油中溶解乙炔气体的检测极限达到0.05μL/L。,同时课题组还开发了光声光谱油中溶解气体原位检测仪,可以直接将光声传感器安装于变压器取油口。 成果3:光纤光声传感解调仪器本团队创新性地将光纤F-P声波传感器用于微弱光声信号探测,研制了多套光纤光声传感解调仪器。在FPGA中集成了相位解调算法、数字锁相、激光调制等功能。对乙炔气体的检测极限可达到ppt量级。 成果4:光声光谱煤矿自然发火监测仪研制的光声光谱煤矿自然发火监测仪,可对多种特征气体进行同时测量。检测指标如下:乙炔:0.5ppm;乙烯:1ppm;一氧化碳:1ppm;乙烷:5ppm;甲烷:0.1%;二氧化碳:0.1%成果5:高精度光声光谱环境气体分析仪开发的二氧化氮和二氧化硫气体分析仪,可对环境中痕量气体进行实时监测。二氧化氮气和二氧化硫气体的检测限分别达到1ppb和10ppb。下图中实验数据是开发的二氧化氮气体分析仪与环境监控站的对比结果。成果6:多通道同步FPGA数字锁相放大器针对光谱探测中微弱光信号检测需求,开发了多通道同步FPGA数字锁相放大器。采用定制的线阵探测器对光谱进行同步快速读取,光功率检测极限达到10fW量级,动态范围达到120dB。 2、产业化探索本团队开发的光谱检测、光纤传感类检测仪器具有较高的技术成熟度。在电力、石化等行业具有较好的应用前景。3、课题组未来研究计划光声光谱与光纤传感技术结合后,具有本质安全、抗电磁干扰、灵敏度高、可远距离探测以及多点测量等优势。本课题组将重点研究光纤光声传感技术中的基础科学问题以及工程应用关键技术。欢迎电力、石化、煤矿和环境监测等相关科研院所和公司联系我们。联系人:陈珂(大连理工大学)Email:chenke@dlut.edu.cn课题组介绍陈珂,大连理工大学光电工程与仪器科学学院副教授,博士生导师,大连市青年科技之星,光纤光声传感团队负责人,主要从事光纤传感、激光光谱和微弱信号检测等方面的研究工作。担任中国光学工程学会光谱技术及应用专委会委员,中国电气工程学会测试技术及仪表专委会状态监测学组委员,国家自然科学基金通讯评审专家。工作近8年来,共主持科研项目32项,其中,国家自然科学基金面上项目等国家级项目2项,省部级项目2项,大连市高层次人才创新支持计划项目1项,企业合作项目20余项;在Analytical Chemistry、Optics Letters等期刊上发表SCI/EI论文93篇,其中第一/通讯作者论文63篇;已申请和授权发明专利43项,其中第一发明人专利21项。
  • 中国科大在气体传感器方面取得进展 实现一氧化碳等准确识别
    多变量气体传感器在火灾早期预警中的应用。 中国科大 供图中国科学技术大学火灾科学国家重点实验室易建新副教授课题组近日在多维探测和识别的气体传感器方面取得进展。相关成果发表在国际学术期刊《自然通讯》(Nature Communications)上。 据悉,研究人员提出了一种化学电阻-电位型多变量传感器,实现了单一传感器对多种气体和火灾特征的三维探测和准确识别。  低浓度气体的高灵敏探测和准确识别对于公共安全、环境保护、健康诊断和工业生产等诸多应用具有重要意义。相比于气相色谱和质谱等传统气相分析技术,气体传感器具有成本低、尺寸小、易集成和实时监测等优点,有利于大规模应用。  但是,常规传感器仅输出单一信号,不能识别气体,因此探测准确性低,在实用中易受其它气体或环境湿度等干扰而引起误报或漏报。这一问题严重限制了气体传感器的应用。  研究人员首先利用半导体氧化物电极在表面和界面上不同的响应机制,在同一电极上成功提取出化学电阻和电位两种不同原理的传感信号,并进一步配对获得了输出三个独立响应信号的双敏感电极传感器。得益于钙钛矿非常规的反向电位响应,传感器的气敏性能得到了显著提高,实现了2-乙基己醇、一氧化碳等多种危险和火灾特征气体的(亚)ppm级三维探测和准确识别,并展现出在火灾危险早期预警方面的应用潜力。  据介绍,这种兼具探测和识别功能的多变量气体传感器简单、高效、成本低,可适用于不同半导体材料电极和固体电解质基底,工作温度范围宽,并可进一步拓展获得更高维度的响应,为复杂环境中气体的高灵敏和准确探测提供了新思路。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制