当前位置: 仪器信息网 > 行业主题 > >

拉曼光谱光谱仪

仪器信息网拉曼光谱光谱仪专题为您提供2024年最新拉曼光谱光谱仪价格报价、厂家品牌的相关信息, 包括拉曼光谱光谱仪参数、型号等,不管是国产,还是进口品牌的拉曼光谱光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉曼光谱光谱仪相关的耗材配件、试剂标物,还有拉曼光谱光谱仪相关的最新资讯、资料,以及拉曼光谱光谱仪相关的解决方案。

拉曼光谱光谱仪相关的论坛

  • 【求助】请问,这张光谱是拉曼光谱吗?

    【求助】请问,这张光谱是拉曼光谱吗?

    我用532nm激光,测试样品是街上买的绵白糖,测得的拉曼图谱如下:[img]http://ng1.17img.cn/bbsfiles/images/2007/10/200710151700_67064_1314069_3.jpg[/img]想请各位看看,这光谱是白糖的拉曼谱吗?怎么拉曼频移这么大?如果不是拉曼图谱,那么我是哪里出了问题。急切等待回复。

  • 拉曼光谱信噪比

    拉曼光谱信噪比

    想请教一下各位大侠拉曼信噪比是如何定义,描述和计算的?比如说两台拉曼光谱仪扫描同一种物质得到两张光谱图,如何根据这两张光谱图来判断哪台仪器的信噪比比较高呢?以下图为例,使用两台不同的拉曼光谱仪测的乙腈的拉曼光谱图,如何求各自的信噪比呢,噪声强度怎样计算呢?http://ng1.17img.cn/bbsfiles/images/2012/03/201203121943_354200_2359589_3.jpg

  • 【资料】相关拉曼光谱技术  表面增强拉曼光谱技术

    [size=5]相关拉曼光谱技术  [b]表面增强拉曼光谱技术[/b] [/size][size=5]  自1974年Fleischmann等人发现吸附在粗糙化的Ag电极表现的吡啶分子具有巨大的拉曼散射现象,加之活性载体表面选择吸附分子对荧光发射的抑制,使激光拉曼光谱分析的信噪比大大提高,这种表面增强效应被称为表面增强拉曼散射(SERS)。SERS技术是一种新的表面测试技术,可以在分子水平上研究材料分子的结构信息。 [/size]

  • 拉曼光谱|一个关于拉曼的教程

    [url=http://www.ss-raman.com/h-nd-69-128_447.html]拉曼光谱[/url]学是振动光谱学的一种形式,很像红外(IR)光谱。 然而,IR谱带是由于光与分子的相互作用引起的分子的偶极矩的变化而产生的,拉曼谱是由于相同的相互作用而由分子极化率的变化产生的。 这意味着这些观察到的波段(对应于特定能量跃迁)是由特定的分子振动引起的。 当这些转变的能量被绘制为光谱时,它们可用于鉴定分子,因为它们提供了所观察分子的“分子指纹图谱”。 在IR中禁止某些在拉曼中允许的振动,而其他振动可以通过两种技术观察到,尽管在显着不同的强度下,因此这些技术可被认为是互补的。自从拉曼光谱和KS Krishnan在1928年发现拉曼效应以来,拉曼光谱已经成为一种建立和化学分析和表征的实用方法,适用于许多不同的化学物质。样本可以是形式 • 固体(颗粒,颗粒,动力,薄膜,纤维) • 液体(凝胶,糊剂) • 气体

  • 拉曼光谱介绍

    [url=http://www.ss-raman.com/h-nd-70-128_447.html][img=,960,78]http://bwtek.com/wp-content/themes/bwtek/images/know_top_raman.png[/img][/url][b]拉曼光谱介绍拉曼光谱学,作为非弹性散射光观察到的分子光谱,允许询问和识别分子的振动(声子)状态。 因此,拉曼光谱为分子指纹印刷提供了宝贵的分析工具(简智),同时监测分子键结构的变化(如状态变化和应力与应变)。与其他振动光谱学方法(如FT-IR和NIR)相比,拉曼具有几个主要优点。 这些优点源于拉曼效应表现在与样品吸收的光相反的样品散射的光中。 因此,拉曼光谱法几乎不需要样品制备,并且对水性吸收带不敏感。 拉曼的这种性质不仅可以直接测量固体,液体和气体,还可以通过透明容器如玻璃,石英和塑料进行测量。类似于FT-IR,拉曼光谱是高度选择性的,这允许它识别和区分非常相似的分子和化学物质。 图R-1显示了五种类似的分子 - 丙酮,乙醇,二甲基亚砜,乙酸乙酯和Tolune的实例。 尽管每种化学物质都具有相似的分子结构,但它们的拉曼光谱显然是可微分的,甚至是未经训练的眼睛。 使用简智拉曼光谱库,很容易看出拉曼光谱可以很容易地用于材料鉴定和验证。[/b]

  • 【资料】拉曼光谱的含义

    [size=4][b](一)含义[/b] [/size][size=4]  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为[/size][url=http://baike.baidu.com/view/135263.htm][size=4]拉曼效应[/size][/url][size=4] [/size][size=4]  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征[/size]

  • 【资料】什么是拉曼光谱???

    [size=4]拉曼光谱 [/size][size=4]  Raman spectra [/size][size=4]  [/size][url=http://baike.baidu.com/view/146377.htm][size=4]拉曼散射[/size][/url][size=4]的光谱。1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关, 大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子,同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子,同时分子从高能态跃迁到低能态(反斯托克斯线 )。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子[/size][url=http://baike.baidu.com/view/139957.htm][size=4]红外光谱[/size][/url][size=4]不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。 [/size]

  • 拉曼光谱谱图

    [table=100%][tr][td]想问一下有没有比较全的,波数范围比较大的拉曼光谱谱图库?无机物方面的,有下载甚至卖都可以,想问一下有了解的么?国外哪个公司可以出售拉曼光谱图?[/td][/tr][/table]

  • 拉曼光谱和光致发光谱的区别?

    拉曼光谱和光致发光谱的区别?

    想问一下,拉曼光谱和光致发光谱除了谱线横坐标不同外,还有什么别的区别?类似激光器、接收器、滤波片什么的有差异吗?前两天做了一个块体试样的拉曼和PL谱,把拉曼光谱的横坐标拉曼位移计算转换为波长(拉曼位移=激发光波数-拉曼散射光波数)后,发现两个谱图近似,想问一下,拉曼光谱是不是和光致发光谱除了横坐标不一样外,还有什么别的差异?下图红线是拉曼图,黑线是光致发光图。另外我也咨询过测试老师,老师说两个没有区别,http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif说的太绝对了,我也没敢信。http://ng1.17img.cn/bbsfiles/images/2013/09/201309052037_462632_1698940_3.jpg

  • 拉曼光谱技术应用进展

    介绍了拉曼光谱的原理,拉曼光谱仪的结构组成以及近年来拉曼光谱分析技术在医学、文物、宝石鉴定和法庭科学等领域的最新进展。并对其未来的应用前景进行了展望。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29071]拉曼光谱技术应用进展[/url]

  • 拉曼光谱小常识

    拉曼是一种光散射过程 Raman Effect = Light Scattering激光能量 - 振动谱能量 = 拉曼散射光能量 (振动谱能量对应分子结构)激光能量 - 拉曼散射光能量 = 振动谱能量 (所得拉曼谱即为分子的指纹) 拉曼光谱系统常用激光波长拉曼光谱系统组成部分拉曼光谱的优点和特点• Fingerprint for Qualitative identification 指纹性振动谱• No sample preparation 不用样品制备• Fast and non destructive 快速,无损• Highly selective technique 高选择度北 为何使用微区拉曼 高空间分辨率; 所须样品量少拉曼散射光谱应用拉曼光谱是直接联系于分子结构的振动谱,可对物质进行指纹性认证。物质结构的任何微小变化会非常敏感反映在拉曼光谱中,因而可用来研究物质的物理化学等各方面性质随结构的变化。广泛的应用领域: * 高分子聚合物 * 纳米材料 * 电化学 * 半导体 * 薄膜 * 矿物学 * 生物 * 医学药品 * 碳化物 * 在线过程监测 * 质量控制* 刑侦:- 玻璃材料 - 氧化物 - 油漆和颜料 - 氢氧化物 - 高分子 - 硫化物 - 爆炸 - 碳酸盐 - 纤维 - 硫酸盐 - 化学残留物 - 磷酸盐 - 颗粒性包裹体 - 麻醉剂和可控制物质 等等……红外 和 拉曼红 外拉 曼• 分子振动谱• 吸收,直接过程,发展较早• 平衡位置附近偶极矩变化不为零• 与拉曼光谱互补• 实验仪器是以干涉仪为色散元件• 测试在中远红外进行,不受荧光干扰,• 低波数(远红外)困难,• 微区测试较难,光斑尺寸约10微米,空间分辨率差• 红外探测器须噪声高,液氮冷却,且灵敏度较低• 多数须制备样品• 水对红外光的吸收?• 分子振动谱• 散射,间接过程,自激光后才发展• 平衡位置附近极化率变化不为零• 与红外光谱互补• 实验仪器是以光栅为色散元件• 测试在可见波段进行,有时受样品荧光干扰,可采用近红外激发• 低波数没有问题,• 共焦显微微区测试,光斑尺寸可小到1微米,空间分辨率好• CCD探测器噪声低,热电冷却,灵敏度高,• 无须制备样品,且可远距离测试• 没有水对红外光吸收的干扰

  • 【资料】拉曼光谱的特征

    [size=4]特征  [b](二)拉曼散射光谱具有以下明显的特征:[/b] [/size][size=4]  a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; [/size][size=4]  b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 [/size][size=4]  c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。[/size]

  • 【资料】拉曼相关技术-拉曼光谱与其他仪器联用技术

    [size=5][b]拉曼光谱与其他仪器联用技术[/b] [/size][size=5]  近两年,实现拉曼与其它多种微区分析测试仪器的联用,其中有:拉曼与扫描电镜联用(Raman—SEM);拉曼与原子力显微镜/近场光学显微镜联用(Raman—AFM/NSOM);拉曼与红外联用(Raman—iR);拉曼与激光扫描共聚焦显微镜联用(Raman— CLSM),这些联用的着眼点是微区的原位检测。通过联用可以获得更多的信息,并提高可靠度。[/size]

  • 近红外拉曼光谱

    近红外拉曼光谱与紫外拉曼光谱、拉曼光谱有什么区别?只是激发光的波长不同而已?

  • 【资料】拉曼相关技术-共振拉曼光谱技术

    [size=5][b]共振拉曼光谱技术[/b] [/size][size=5]  激光共振拉曼光谱(RRS)产生激光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,并观察到正常拉曼效应中难以出现的、其强度可与基频相比拟的泛音及组合振动光谱。与正常拉曼光谱相比,共振拉曼光谱灵敏充高,结合表面增强技术,灵敏度已达到单分子检测 。 [/size]

  • 【讨论】好书:当代拉曼光谱技术

    Modern Raman Spectroscopy – A Practical Approach本书介绍了拉曼光谱的基本理论,拉曼光谱系统的仪器组成,样品的制备方法,信号采集方式,常用的拉曼光谱数据处理方法,一些主要的拉曼光谱技术及其最新进展,作者还介绍了拉曼光谱在化学、地质、美术,考古学,生命科学、制药、法医鉴定、材料科学等方面的应用。是初学拉曼人士的一本不可多得入门书,也可作为研究人员的很好的参考书。

  • 【资料】拉曼光谱的应用方向

    [size=5][b]六)拉曼光谱的应用方向[/b] [/size][size=5]  拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。拉曼光谱的分析方向有: [/size][size=5]  定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。 [/size][size=5]  结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。 [/size][size=5]  定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。 [/size]

  • 【分享】红外、拉曼光谱

    【分享】红外、拉曼光谱

    [center]红外、拉曼光谱[/center][B]摘要:[/B] 红外及拉曼光谱都是分子振动光谱。通过谱图解析可以获取分子结构的信息。任何气态、液态、固态样品均可进行红外光谱测定。拉曼光谱能提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。红外、拉曼光谱都是有机化合物结构解析的重要手段。[B]关键词:[/B]红外光谱,拉曼光谱 波谱分析是现代仪器分析的主要组成部分,它作为确定有机化合物结构的重要手段,与常规的化学分析相比具有微量、快速、准确等特点。随着科学技术的发展,波谱分析成为化学工作者必须掌握的重要工具和现代分析技术。 光的本质是电磁辐射,光的基本特性是波粒二象性。物质具有能量,是诱电体。物质与光的作用可看成是光子对能量的授受,即 h =E1-E0,该原理广泛应用于光谱解析。电磁辐射与物质的作用本质是物质吸收光能后发生跃迁。跃迁是指物质吸收光能后自身能量的改变。因这种改变是量子化的,故称为跃迁。不同波长的光,能量不同,跃迁形式也不同,因此有不同的光谱分析法。应用于有机化合物结构测定的主要有紫外光谱(UV)和红外光谱(IR)以及拉曼光谱。[B]1. 红外光谱1.1 发展简史[/B]1800年英国科学家赫谢尔发现红外线,二十世纪初人们进一步系统地了解了不同官能团具有不同红外吸收频率这一事实。1950年以后出现了自动记录式红外分光光度计。随着计算机科学的进步,1970年以后出现了傅立叶变换型红外光谱仪。红外测定技术如全反射红外、显微红外、光声光谱以及色谱-红外联用等也不断发展和完善,使红外光谱法得到广泛应用。[B]1.2 基本原理[/B]能量在4000 ~ 400 cm-1的红外光不足以使样品产生分子电子能级的跃迁,而只是振动能级与转动能级的跃迁。由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱也是带状光谱。分子在振动和转动过程中只有伴随净的偶极矩变化的键才有红外活性。由此可见产生红外吸收光谱应具备:(1)辐射光子具有的能量与发生振动跃迁能量匹配,(2)辐射与物质分子之间有偶合作用,即分子振动必须伴随偶极矩的变化。[B]1.2.1双原子分子的振动[/B] 分子振动可以近似地看成是分子中的原子以平衡点为中心,以非常小的振幅做周期性的简谐振动。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908181728_166569_1622715_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908181728_166570_1622715_3.jpg[/img]化学键的力常数 越大,折合相对原子质量 越小,则化学键的振动频率 或波数值越高,吸收峰将出现在高波数区。但值得指出的是,由于振动中随着原子间距离的变化,化学键的力常数也会改变,分子振动并不是严格的简谐振动,由此引起的偏差称为分子振动的非谐性。所以用上述公式计算出的值与实际测量的值只是近似相等。

  • 水的拉曼光谱

    在用测量不同温度下(linkam的冷热台加热)水的拉曼光谱时,石英口总是有小水滴,影响测量效果。不知道大家有什么好的办法测量不同温度下水的拉曼光谱。

  • 拉曼光谱求助

    各位老师好,我是刚学习做拉曼的学生(组里第一个),对拉曼不是很了解,最近做出来一个谱图,发现同一个样品在同样的测试条件下,拉曼图差的很远,而且图非常不好看(图片不知道怎么回事传不上来)。而同一样品在100%激光和50%激光条件下的谱图也不一样。请各位老师指导。

  • 细菌叶绿素拉曼光谱

    我想做光合细菌的拉曼光谱。看了文献,发现关于光合细菌中细菌叶绿素的拉曼光谱研究很少,都是年限很久以前的。。想问一下,细菌叶绿素不容易做拉曼光谱呢?有什么特征的拉曼光谱吗

  • 【资料】拉曼相关技术-共焦显微拉曼光谱技术

    [size=5][b]共焦显微拉曼光谱技术[/b] [/size][size=5]  显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种应用技术。与其他传统技术相比,更易于直接获得大量有价值信息,共聚焦显微拉曼光谱不仅具有常规拉曼光谱的特点,还有自己的独特优势。辅以高倍光学显微镜,具有微观、原位、多相态、稳定性好、空间分辨率高等特点,可实现逐点扫描,获得高分辨率的三维图像,近几年共聚焦显微拉曼光谱在肿瘤检测、文物考古、公安法学等领域有着广泛的应用。 [/size]

  • 【资料】拉曼相关技术-拉曼光谱与光导纤维技术的联用

    [size=5][b]拉曼光谱与光导纤维技术的联用[/b] [/size][size=5]  光导纤维的引入,使拉曼光谱仪用于工业在线分析以及现场遥测分析成为可能。Huy 等使用两个10m长、100μm 直径的光纤,激光波长为514. 5nm ,对苯/ 庚烷混合物进行分析,获得非常好的结果。Benoit 等将光导纤维传感器用于拉曼光谱仪, 使得液体样品的拉曼信号增强了50 倍。Cooney 等人比较单个光纤与多个光纤应用于拉曼光谱仪的结果,发现多个光纤的应用将改善收集拉曼光的有效性。Cooper 等利用光纤遥控拉曼技术分析了石油染料中的二甲苯异构体。近年来,国外将1550nm 光纤激光器、EDFA 光纤放大器技术应用于拉曼散射型分布光纤温度传感器系统,取得了较好的结果。分布式光纤拉曼光子温度传感器已成为光纤传感技术和检测技术的发展趋势。由于它具有独特的性能,因此已成为工业过程控制中的一种新的检测装置,发展成一个工业自动化测量网络。 [/size]

  • 激光拉曼光谱原理简单介绍

    激光拉曼光谱,化学通用分析仪器,由激光光源、样品室、单色仪和光电检测器四部分组成,在地学领域主要用于鉴定矿物和测定流体包裹体的化学成分。其空间分辨率达1微米,并可作原位测定。学科:岩矿分析与鉴定  词目:激光拉曼光谱  英文:laserRamanspectroscopy  介绍:拉曼光谱是激发光子与物质分子发生非弹性碰撞后,频率发生改变的散射光谱,光子频率的改变称为拉曼位移,它是对物质进行定性分析的依据。拉曼光谱是拉曼(C.V.Raman)于1928年发现的。早期的拉曼光谱采用汞弧灯作光源激发样品分子,自20世纪60年代起,采用亮度高、单色性好、定向性高的激光作激发光源,称为激光拉曼光谱。拉曼光谱仪由激光光源、样品室、单色仪和光电检测器四部分组成,在地学领域主要用于鉴定矿物和测定流体包裹体的化学成分,如H2、O2、N2、CO2、CO、H2S、SO2、CH4、C2H6等,其空间分辨率达1微米,并可作原位测定。雷尼绍公司在1992年推出的RM系列激光拉曼光谱仪,在拉曼光谱领域开拓了一个新纪元。因此,于1993年获得查尔斯王子科学发明奖,1995年获得英国女皇技术奖和最佳科学仪器制造商奖。雷尼绍公司是通过了ISO9001质量认证的单位。雷尼绍激光拉曼光谱仪以其配置灵活性,高灵敏度及可靠性,成为用户的首选设备。  2003年,雷尼绍公司推出了配置更加灵活,使用更加简单,自动化程度更高的InVia系列拉曼光谱仪。用户可根据自己的需求选择不同的功能模块,及相应的自动化程度。inVia系列显微激光拉曼光谱仪的最高配置-inViaReflex提供上述包括全自动化的所有功能;其它的inVia系统随时可以逐步升级至inViaReflex。所有的inVia拉曼系统把具有极高的灵敏度作为标准,将配置灵活和高灵敏度集中于同一套拉曼谱仪上。  有多种附件:高精度三维自动平台,逐点扫描成像。大样品附件、高灵敏度光纤探头、变温及高压等附件。  有多种探测器:可选紫外或红外增强CCD,电子冷却,具有最佳分辨本领和最佳图像质量。可选第二探测器,PL测量扩展到1.7微米。  与其它仪器连用:可扩展为最新的拉曼和红外一体化的原位检测Raman/IR系统,与扫描电镜连用的SEM/Raman,与原子力/近场连用的AFM/NSOM/Raman。

  • 拉曼光谱在哪些领域可以替代红外光谱

    大家好,红外光谱仪在很多行业得到了应用,而且红外光谱有不少国家标准,红外光谱库也很强大。拉曼光谱和红外光谱是互补的,具有对样品制备要求低,不怕水干扰,可以隔着透明包装直接测量等优点。拉曼代替不了红外,不过我觉得在某些常规检测中,用拉曼代替红外或者用拉曼作为红外的补充,可以提高工作效率,提高检测速度。比如在做化学品检测的时候,拉曼就能够显示很大优势。不过拉曼标准谱图库少,没有相关国家标准。希望大家发表一下自己意见,谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制