当前位置: 仪器信息网 > 行业主题 > >

周波跌落模拟器

仪器信息网周波跌落模拟器专题为您提供2024年最新周波跌落模拟器价格报价、厂家品牌的相关信息, 包括周波跌落模拟器参数、型号等,不管是国产,还是进口品牌的周波跌落模拟器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合周波跌落模拟器相关的耗材配件、试剂标物,还有周波跌落模拟器相关的最新资讯、资料,以及周波跌落模拟器相关的解决方案。

周波跌落模拟器相关的资讯

  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 国内首个自主研发的地球模拟器正式投入使用
    p  记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。/pp  207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。/pp  据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。/pp  后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。/p
  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • 全国首个城市双碳模拟器在济南发布
    6月8日,第一届城市碳达峰碳中和高端战略研讨会暨济南双碳模拟器发布会召开,全国首个城市双碳模拟器——济南双碳模拟器正式发布。据介绍,济南双碳模拟器主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟等功能板块。模拟器的研发以济南市为应用目标,充分考虑了通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,服务各级政府、各行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。目前,济南双碳模拟器的大气二氧化碳模拟和同化反演子模块已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市双碳模拟器将对城市绿色低碳高质量发展提供重要数值模拟技术平台,能为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为我国众多城市实现碳达峰目标和碳中和愿景保驾护航。济南市科技局党组书记、局长陈西武介绍到,近年来,济南市紧紧围绕“双碳”工作目标,加快推动绿色低碳发展,成功申报国家碳监测评估试点城市,成为全国8个综合试点之一,率先开展了城市大气温室气体监测评估工作,为城市碳监测评估体系建设贡献了“济南案例”。中科院大气所在济南成立齐鲁中科碳中和研究院,为济南市聚集和培养了一批技术创新团队,为济南市碳排放监测和评估提供了技术支撑,特别是此次发布的济南双碳模拟器,必将推动相关绿色科技成果在济南落地转化,为济南市实现“双碳”目标奠定坚实基础。
  • MTS 发布新模拟器——地下设施和管道的守护者
    p style="text-align: justify text-indent: 2em "全球知名高性能试验机和传感器供应商MTS系统公司于9月25日宣布,已开发出一种独特的土壤-结构相互作用模拟器,该模拟器可在地下基础设施的保护工作中发挥重要作用。/pp style="text-align: justify text-indent: 2em "这一全新的系统将首先亮相于于英国伯明翰大学的新国家地下基础设施(NBIF)中,用以研究土壤位移和地面移动对地下设施、管道以及地下结构的影响。沉降和变形常使土壤发生位移,形成地下空洞和不稳定断裂区域,由此而产生的压力对埋在地下的管道施加了巨大的作用力,造成地下管道失效、泄漏和破裂的潜在风险,如果破裂的管道是天然气管道或石油管道,那很有可能将对人类、野生动物和财产带来极其严重的危害。运用MTS的这一新模拟系统,伯明翰大学大学将能够更好地研究复杂的土体变形过程及其对地下结构的影响。/pp style="text-align: justify text-indent: 2em "这个巨大的模拟系统有一个5× 10米的可移动地板,可以埋在地下5米深的设计复杂的坑内。可移动地板的运动依靠50个MTS DuraGlide制动器提供动力,额外的地面制动器将可以控制土壤的运动,并在尺度模型和全尺度试验中模拟灰岩坑等地面位移。据悉,伯明翰大学计划在未来利用这一革命性的新系统来改进管道检测和评估的地球物理遥感技术。/pp style="text-align: justify text-indent: 2em "MTS总裁兼CEO Jeffrey Graves博士接受采访时表示:“基础设施老化是一个全球性的问题,用MTS这一新模拟系统来开发的土壤稳定解决方案将对保护看不见的地下基础设施大有裨益,让建筑物和整个人类赖以生存的环境更加安全。”他告诉记者,这一模拟系统是MTS在众多应用领域成功经验的高度结晶。融合了汽车设计和构造、地震研究、航空航天多通道控制等各个维度的先进技术手段。伯明翰大学土木工程系主任 Nigel Cassidy教授补充说:“MTS在液压试验机等领域积累了大量专业知识和经验,我们很高兴能与他们合作,共建这一创新性的新设施。”/p
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格)作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。关于海洋光学(Ocean Optics)和豪迈(HALMA):总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 三永发布高准直太阳光模拟器新品
    日本SAN-EI公司推出高准直太阳光模拟器(高平行太阳光模拟器),准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。AM1.5G /AM0 太阳光光谱;准直接半角0.3度(可定制其他角度);不稳定性2% 均匀性可定制;照射距离可定制;照射角度和方向可定制;创新点:高准直稳态太阳光模拟器,准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。高准直太阳光模拟器
  • 中国首发城市双碳模拟器,助力城市绿色低碳高质量发展
    记者8日从中国科学院大气物理研究所(中科院大气所)获悉,由该所主办、济南市科学技术局协办的“城市碳达峰碳中和高端战略研讨会”当天下午在山东济南举行,中国首个城市双碳模拟器在会上发布,将对城市绿色低碳高质量发展提供重要数值模拟技术平台,为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为中国众多城市实现碳达峰目标和碳中和愿景做出贡献。中科院大气所主办“城市碳达峰碳中和高端战略研讨会”并发布首个城市双碳模拟器。 当天首发的城市双碳模拟器,是由齐鲁中科碳中和研究院研究团队,基于中科院大气所牵头建立的地球系统数值模拟国家大科学装置——地球模拟器“寰”(EarthLab),以及配套的国际先进水平的地球模型系统研制而成,充分考虑到城市双碳功能定位和需求,对复杂系统进行顶层构建和精细化设计。“寰”是中国首个具有自主知识产权的专用地球系统数值模拟装置,它以地球系统各圈层数值模拟软件系统为核心,实现软、硬件最佳适配,具有建构数字“孪生”地球系统的能力,其综合技术水平位于世界前列。最新发布的城市双碳模拟器被称为1.0版系统,其主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟、碳达峰碳中和预测和路径优化、城市风光资源评估与模拟预测、双碳与气候效应以及跨界碳输送模拟和预测等功能板块。该模拟器的研发以济南市为应用目标,充分考虑通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,通过提供碳达峰与碳中和进程、碳源汇时空变化、碳污动态协同演进、未来双碳情景预测、双碳全景可视化等,可服务各级政府、各个行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。据了解,目前,济南版城市双碳模拟器的大气二氧化碳模拟和同化反演子模块,已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市碳达峰碳中和高端战略研讨会上,与会专家学者代表围绕城市尺度碳达峰碳中和科技支撑工作进行深入研讨,聚焦碳达峰碳中和最新科技进展,包括碳源汇宏观管理、城市和区域温室气体监测、碳模拟和同化反演技术方法等议题,针对城市碳达峰碳中和实施工作中的难点与挑战建言献策。
  • Bruel & Kjaer 5128型高频头和躯干模拟器问世
    5128型高频头和躯干模拟器问世全新“小绿人” Bruel & Kjaer的全新高频头和躯干模拟器已问世。 它解决了可听声范围内逼真、精确和可重复的声学测量需求。 为了满足越来越高的手机音频品质需求,以及耳机在通信及娱乐中的日益普及,我们的电信/音频团队开发了5128型高频头和躯干模拟器(HATS)。 高频HATS解决了可听声范围内逼真、精确和可重复的声学测量需求。人工头还提供大面积的硅胶围绕耳廓,以实现头戴式耳机的完美密封。高频HATS将音频性能测量的频率范围扩展到比目前市场上的头和躯干模拟器更高的频率范围。此外,人工头的结构更易接近内部组件。 高频HATS具有真实人耳结构的耳道,可在整个频率范围内实现正确的声阻抗并通过传感器电子数据表(TEDS)提供耳模拟器相关的校准信息。通过精确地复现人耳的音频响应,高频HATS可以前所未有的精确度提供高达20 kHz的音频测试。此外,口模拟器的性能也得到提高,可提供12 kHz及以上的均衡输出。这显著提高了智能设备及其配件的音频性能的主、客观评估之间的相关性,确保了新产品在市场上的先进地位,缩短了开发时间。 请访问Bruel & Kjaer官方网站,查询有关5128型高频头和躯干模拟器的详细信息。 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的官方网站。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团2016年销售额达13亿英镑,集团的4个业务板块在全球共有大约7,500名员工。
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 跌落试验,保仪器平安——百特仪器高可靠性之秘诀
    众所周知,物流运输是精密仪器质量保证的最后一公里,但这个环节厂家一般无法直接控制,运输时常常会出现野蛮装卸、叠层过高(重压)、露天淋雨、配件遗失等现象,使用户收到受损的仪器,给厂家和用户造成损失。 如何避免这种现象发生?提升仪器和包装防护强度是唯一途径。如何验证仪器和包装防护强度?跌落试验是一种有效的验证方法。跌落试验就是将包装好的仪器多次提升到一定的高度后再自由下落到地面上,看仪器的耐受程度的一种试验方法。 做跌落试验,需要设定升举高度、落地时的接触碰面、棱、角等,这样才能全面验证仪器和包装防护强度。目前,跌落试验的标准有以下几个,一是GB/T 11606-2007《分析仪器环境试验方法》、GB/T 2423.6-1995 《电工电子产品环境试验 第2部分:试验方法 试验Eb和导则:碰撞》、GB/T 2423.8-1995 《电工电子产品环境试验 第2部分:试验方法 试验Ed:自由跌落》、GB/T 4857.5-1992《包装 运输包装件 跌落试验方法》等等。根据这些标准,结合粒度仪自身特点,我们制定了《百特公司仪器抗跌落研究试验方法》,作为百特跌落试验研究的标准。为了进行跌落试验,百特购置了跌落试验机,建立了专门的跌落试验室,对每一种型号的仪器都进行跌落试验,以便验证包装箱强度、填充物有效性、仪器结构强度等。跌落试验后,数据分析很重要。我们把跌落试验中发现的一些包装箱、填充物、仪器结构等方面的问题一一记录,逐条分析,并针对出现的问题从仪器结构上加强,在包装箱上加固,在填充物上加量,同时进行防雨防潮、对小零件单件防护和塑料袋充气填充等,这些措施,避免了百特仪器在运输中可能造成的损坏,保证了仪器的开箱合格率达到100%的目标。 通过跌落试验,保证了仪器的整体质量和包装质量都尽可能的完美,以便去适应具有诸多不可控因素的物流运输。多年来,百特的仪器从研发到生产,每一个环节都是在加强可靠性能的基础上开展的。我们做的仪器跌落试验,就是要保证仪器在到客户手中的最后一个环节也是有可靠性保证的。 本文作者:百特研发中心机械设计工程师 刘伟
  • 资中县兴民水务投资有限责任公司180.00万元采购光电直读光谱,跌落试验机
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息招标公告四川省-内江市-资中县状态:公告更新时间:2022-06-30招标公告项目概况:资中县农村饮水安全工程项目(物联网水表)的潜在投标人应在内江融汇招标代理有限公司获取招标文件,并于2022年7月22日10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:NJRH-202206-220项目名称:资中县农村饮水安全工程项目(物联网水表)预算金额:180万元最高限价:180万元投标保证金:10000.00元(大写:壹万元整)。采购需求:一、项目建设内容及建设地点1.建设内容:铁佛、双河、狮子和双龙四个水厂所辖供水区域的乡镇(含场镇及村社)新建输水管道和给水管道、改建输水管道和给水管道、维修输水管道和给水管道、管道附属配套设施、水表、水表箱安装等。2.建设地点:铁佛、双河、狮子和双龙四个水厂所辖供水区域的乡镇(含场镇及村社),具体为铁佛镇、鱼溪镇、龙结镇、罗泉镇、发轮镇、双河镇、陈家镇、公民镇、新桥镇、水南镇的板栗垭社区、狮子镇、太平镇、重龙镇的苏家湾社区、双龙镇、马鞍镇、龙江镇、孟塘镇。3.本项目采用公开招标方式确定物联网水表的供货服务商一家。二、项目要求(一)物联网水表技术要求(实质性要求)1.标准要求1.1物联网水表所有指标应符合国家或行业现行最新标准:1.1.1GB/T778.1《饮用冷水水表和热水水表》;1.1.2JJG162《冷水水表》;1.1.3CJ/T535《物联网水表》;1.1.4CJ266《饮用水冷水水表安全规则》;1.1.5CMA/WM778《小口径饮用水冷水表表壳技术规范》;1.1.6其它国家或行业现行最新标准。2.结构、分类及型号2.1结构2.1.1整体式:构成物联网水表的所有部件组装在同一壳体内。2.1.2分体式:构成物联网水表的所有部件不组装在同一壳体内。2.2分类2.2.1指示装置分类:a)机械式:物联网水表指示装置采用机械式指示。b)电子式:物联网水表指示装置采用电子式指示。2.3型号物联网水表的型号编制应符合JB/T12390的相关规定。3.技术要求3.1外观和封印3.1.1外观要求3.1.1.1物联网水表外观应有良好的表面处理,不应有毛刺、划痕、凹陷、裂纹、锈蚀、霉斑和涂层剥落等现象;3.1.1.2液晶显示屏的数字应醒目、整齐、表示功能的文字符号和标志应完整、清晰、端正,且具有触发按键;3.1.1.3读数装置上的防护玻璃应有良好的透明度,不应有使读数畸变等妨碍读数的缺陷。3.1.1.4水表应预留铅封口,口径不小于2mm。3.1.2电子封印一般要求:物联网水表电子封印应符合GB/T778.1中的相关规定。3.1.2.1当机械封印不能防止访问对确定测量结果有影响的参数时,应采取以下防护措施:a)借助密码或特殊装置(例如钥匙)只允许授权人员访问;密码应能更换。b)按照国家法规规定时限保留干预证据。记录中应包括日期和识别实施干预的授权人员的特征要素[见a)]。如果必须删除以前的记录才能记录新的干预,应删除最早的记录。3.1.2.2装有用户可断开和可互换部件的水表应符合以下规定:a)若不符合3.1.2.1的规定,应不可能通过断开点访问参与确定测量结果的参数;b)应借助电子和数据处理安全机制或者机械装置防止插人任何可能影响准确度的器件。3.1.2.3装有用户可断开的不可互换部件的水表应符合3.1.2.2的规定。此外,这类水表应配备一种装置,当各种部件不按批准的型式连接时可阻止水表工作。这类水表应配备一种装置,当用户擅自断开再重新连接后可阻止水表工作。3.2检定标记和防护装置一般要求:物联网水表电子检定标记和防护装置应符合GB/T778.1中的相关规定。3.2.1检定标记3.2.1.1水表上应留出位置设置检定标记,检定标记应设在明处,当水表销售或使用时无需拆卸即能看到。3.2.1.2水表上应清晰、永久地标志以下信息。这些信息可以集中或分散标志在水表的外壳、指示装置的度盘、铭牌或不可分离的水表表盖上。这些标志应在水表销售后或使用时无需拆卸即能看到。a)计量单位;b)准确度等级(仅限非2级表);c)Q3的值及Q3/Q1的比值:如果水表测量逆流,且两个流向的Q3/Q1的比值不同,则两个流向的值都应标明;应清晰地注明每对数值对应的流向。Q3/Q1的比值应前缀R。d)型式批准标志(应符合国家规定) e)制造商厂名或商标 f)制造年份,制造年份的最后两位数字,或者制造年月;g)编号(尽可能靠近指示装置);h)流动方向,用箭头表示(标志在水表壳体的两侧,如果在任何情况下都能很容易看到流动方向指示箭头,也可只标志在一侧);i)最高允许压力(MPa),如果超过1MPa(10bar),或者,对于DN≧500,超过0.6MPa(6bar);j)字母V或H,如果水表只能在垂直位置或水平位置工作 k)温度等级,除T30外 l)压力损失等级,除△p63外 m)敏感度等级,除U0/D0外 带电子装置的水表还应标明以下内容:n)外部电源:电压和频率;o)可更换电池:更换电池的最后期限;q)环境等级 r)电磁环境等级。环境等级和电磁环境等级可以用数据单另行给出,以特殊符号表明其与水表的关系,不必标注在水表上。3.2.2防护装置物联网水表应配置可以封印的防护装置,以保证在正确安装水表前和安装后,不损坏防护装置就无法拆卸或者改动水表和(或)水表的调整装置或修正装置。若水表为单一客户服务,则总量显示器或导出总量的显示器不可复零。3.3指示装置一般要求:物联网水表指示装置应符合GB/T778.1中的相关规定。3.3.1功能物联网水表的指示装置应提供易读、可靠、直观的指示体积值;应包含测试和校准用的观察工具。3.3.2测量单位、符号及其位置指示的水体积应以立方米表示,符号m3应标示在度盘上或紧邻显示数字。3.3.3指示范围指示装置应能够记录表5给出的指示体积(单位为立方米)而无需回零。表5水表的指示范围Q3m3/h指示范围(最小值)m3Q36.39.9996.399.99963999.9996309999.9993.3.4指示装置的颜色标志3.3.4.1立方米及其倍数宜用黑色显示。3.3.4.2立方米的约数宜用红色显示。3.3.4.3指针、指示标记、数字、鼓轮、字盘、度盘或开孔框都应使用黑色和红色两种颜色。3.4基表要求3.4.1材料和结构一般要求:物联网水表的基表材料和结构应符合GB/T778.1中的相关规定。3.4.1.1水表的制造材料的强度和耐用度应满足水表的特定使用要求。表壳材料应符合《小口径饮用水冷水表表壳技术规范》(CMA/WM778),口径DN15、DN20、DN25的物联网水表采用旋翼式基表,铜壳材质(铜含量不低于国标);口径DN40的物联网水表采用旋翼式基表,水表及阀门为球磨铸铁材质;口径DN40以上的物联网水表采用螺翼式基表,水表及阀门为球磨铸铁材质,表壳材料须提供第三方监督检验机构的检测报告复印件。3.4.1.2水表的制造材料应不受工作温度范围内水温变化的不利影响。3.4.1.3水表内所有接触水的零部件应采用通常认为是无毒、无污染、无生物活性的材料制造。应符合国家法律法规的规定。3.4.1.4整体式水表的制造材料应能抗内、外部腐蚀,或进行适当的表面防护处理。3.4.1.5水表的指示装置应采用透明窗保护,还可配备一个合适的表盖作为辅助保护。3.4.1.6若水表指示装置透明窗内侧有可能形成冷凝,水表应安装预防或消除冷凝的装置。3.4.1.7水表的设计、组成及结构应不便于实施欺诈行为。3.4.1.8水表应配备受计量管制的显示器,用户应无需使用工具就能方便地接近显示器。3.4.1.9水表的设计、组成及结构应不便于利用最大允许误差或有利于任何一方。3.4.2调整和修正3.4.2.1水表可配备调整装置利(或)修正装置。任何调整都应将水表的(示值)误差调整到尽可能接近零的值,使水表不能利用最大允许误差或有利于任何一方。3.4.2.2如果这两种装置安装在水表外,应采取铅封措施。3.4.2计量要求一般要求:物联网水表的计量要求应符合GB/T778.1中的相关规定。3.4.2.1同口径比较,要求量程比R大,最小流量值Q1小,准确度等级高。对于不同标称口径的水表,计量性能指标应达到或者优于表1。计量性能要求表1口径(mm)常用流量Q3(m3/h)Q3/Q1(R值)Q2/Q1DN152.51001.6DN204.01001.6DN256.31001.6DN40251001.616100、160、2001.6DN5040160、2001.6251001.6DN6563160、2001.6DN8063160、2001.6DN100100160、2001.6DN150250160、2001.6DN200400160、2001.6DN250630801.6DN3001000801.63.4.2.2准确度等级和最大允许误差一般要求:物联网水表准确度等级应达到2级或以上,符合检定规程JJG162《冷水水表》水表的要求;额定工作条件下,水表的(示值)误差不应超过最大允许误差(MPE)。3.4.2.2.1准确度等级为1级的水表高区流量(Q2QQ4)的最大允许误差,水温范围为0.1℃~30℃时为士1%,水温高于30℃时为土2%。低区流量(Q1Q2)的最大允许误差为士3%,不分水温范围。3.4.2.2.2准确度等级为2级的水表高区流量(Q2QQ4)的最大允许误差,水温范围为0.1℃~30℃时为士2%,水温高于30℃时为土3%。低区流量(Q1Q2)的最大允许误差为士5%,不分水温范围。3.4.2.3水温与水压温度和压力在水表额定工作条件范围内变化时水表应符合最大允许误差要求。温度和压力在水表额定工作条件范围内变化时水表应符合最大允许误差要求。3.4.2.4无流量或无水无流量或无水时,水表的累积量应无变化。3.4.2.5静压物联网水表应能承受以下试验压力而不出现泄漏或损坏:a)最高允许压力的1.6倍,15min;b)最高允许压力的2倍,1min。3.4.2.6计数器计数器工作环境为湿式,数字外观高度4mm,宽度2mm,度盘应保持长期清晰。一次抄读成功率及准确率>99.9%,年故障率3.4.2.7机械字轮位数指示到m3的位数5位,即最小读数0.0001m3,最大读数9999.9999m3。3.4.3技术特性一般要求:物联网水表的口径和总尺寸、螺纹连接端、法兰连接端应符合GB/T778.1中的相关规定。3.4.3.1物联网水表的外观尺寸(含电子设备):应符合GB/T778.1中的相关规定,并确保能直接接入招标人地区现有管网,供货后如尺寸不符合安装要求导致无法安装水表,招标人有权要求退换货或直接终止合同。3.4.3.2连接件:口径DN15-DN40物联网水表的连接件采用国标铸造铅黄铜材质接管套件,口径DN40以上的物联网水表连接件采用国标碳钢法兰。3.4.3.3物联网水表电子设备不得破坏基表结构,不得影响人工抄读到L位和自动检定。3.5电子装置特性一般要求:本次招标的物联网水表应使用招标人所在地区(内江本地)的移动或电信运营商提供的移动网络通讯卡;通讯方式采用4Gcat.1或NB-IoT网络实现数据传输。3.5.1通信接口:物联网水表采用一对一的方式通过公共陆地移动网络进行通信。3.5.2通信功能和性能3.5.2.14G通信方式的物联网水表通信功能和性能,应符合下列标准的规定:a)TD-LTE通信方式的物联网水表,应符合YD/T2575中的相关规定 b)LTE-FDD通信方式的物联网水表,应符合YD/T2577中的相关规定。3.5.2.2NB-IoT通信方式的物联网水表通信功能和性能,应符合通信行业相应标准中的相关规定。3.5.3数据传输3.5.3.1基本数据a)物联网水表应可传输由14位十进制数构成的通信ID,用以在网络上标识水表及其数据。通信ID应包含厂商代码,厂商代码应符合GB/T26831.3-2012中5.5的规定。b)物联网水表应可传输当前累积水量。3.5.3.2扩展数据a)物联网水表可传输带时间标记的由月、日或其他指定时间间隔产生的冻结累积水量数据。通过应用平台实时抄读累计用水量等数据信息,或抄读最近1个月的各天冻结的累计用水量、最近24个月的各月用水量。b)物联网水表可传输水表运行需要的多种参数。包含有实时日历及时钟参数的水表,应能远程读取实时时间,并支持校时。3.5.4数据安全3.5.4.1制造商应充分考虑智能水表数据传输的安全要求,选择合适的保证水表数据安全的方案,宜采用国家标准、行业规范所要求或推荐的数据安全规范。3.5.4.2通信ID和当前累积水量出厂后应不能通过远程数据传输方式修改。3.5.4.3水表参数、运行数据应加密传输,有防止非授权修改的措施。3.5.5机电转换误差物联网水表机电准换误差不超过±1个机电转换信号当量。3.6功能要求3.6.1数据处理与信息储存功能物联网水表应具有水流量信息采集数据处理和信息储存的功能。其存储的信息至少包括:物联网水表标识如通信ID、水表类型、累计水量,必要时可增加工作信息状态;当存满存储介质时,新采集的数据自动覆盖最早数据。3.6.2远传功能3.6.2.1远传功能应通过无线数据通信网络,实现数据的上传。如发生上报不成功,水表数据应进行重发。3.6.2.2默认每日周期上报,上传前一天24小时的数据记录 上传应用平台的水量数据分辨力应为10L。3.6.2.3当特殊情况下,如发生本次数据上传不成功时,则在下一个上传周期时数据自动补传。3.6.3控制功能控制功能应通过抄表系统实现指令的接收和采集。3.6.3.1物联网水表须具有远程开启和关闭阀门的功能,能够通过软件远程关闭阀门。3.6.3.2物联网水表口径DN15-DN25的阀门为电控球阀,口径DN40-DN300的阀门为电控蝶阀。3.6.4报警功能3.6.4.1阀门故障、计量信号采集故障、磁干扰、欠费等应有报警功能。3.6.4.2当用户水费余额到预警值时,自动关阀报警,用户可采取强制唤醒后阀门自动打开;当水费透支金额达到预设值时,用户必须充值后才能开阀;电池电量不足、水表异常应报警远程上报。3.6.5保护功能3.6.5.1数据保持功能至少保存18个月每月月末数据,近1个月内每天的定点数据,近7d内每天每小时整点数据。应记录故障发生时间、当前运行状态、累计水量、最近10次修改表参数的时间和参数值。具有阀门的物联网水表还应记录阀门状态。3.6.5.2磁保护功能水表信号元件部位受磁干扰时应报警,并自动关闭电控阀,或不受影响仍正常工作。3.6.5.3电池欠压保护功能当检测电压低至Ubmin(欠压提示电压阈值)时,应自动保存水表数据、有欠压提示信息,供电恢复后应恢复保存数据,并正常工作。3.6.5.4数据的非正常中断保护功能应具备数据的非正常中断保护功能,电源中断或通信失败不应丢失内存数据,恢复后能正常工作。3.6.5.5强制唤醒功能物联网水表在未连通网络时应可在现场进行人为干预,强制唤醒水表。3.6.5.6设置功能3.6.5.6.1物联网水表可通过招标人应用平台或红外手持设备进行设置。3.6.5.6.2水表底数设置:通过近端手持终端设备进行水表底数设置,保证电子读数与水表机械读数同步,手持终端设备与电子装置之间通过红外端口进行通信。3.6.5.7校时功能数据周期上报时,通过NB-IoT或4Gcat.1芯片方式与表计对时,确保系统时间精确。3.6.5.8计价功能物联网水表具有分类计价、阶梯计价及两种及以上用水性质的混合水价计费功能,支持月阶梯、季阶梯和年阶梯的切换,支持2套以上水价方案,阶梯计价达6个以上等级。3.7压力损失一般要求:物联网水表的压力损失应符合GB/T778.1中的相关规定。水表[包括作为水表组成部件的过滤器、滤网和(或)整直器]的压力损失在Q1到Q3流量之间应不超过0.063MPa(0.63bar)。压力损失等级等级最大压力损失MPabar△p630.0630.63△p400.0400.40△p250.0250.25△p160.0160.16△p100.0100.1注:对于某些水表,在Q1≦Q≦Q3流量范围,最大压力损失并不出现在Q3流量下。3.8最高允许工作压力一般要求:物联网水表的最高允许工作压力应符合GB/T778.1中的相关规定,压损等级△p63。a)水表承受最低允许工作压力0.03Mpa;b)水表承受最高允许工作压力1.0Mpa。3.9气候环境一般要求:在高温(无冷凝)、低温、交变湿热(冷凝)的气候环境条件下,物联网水表应符合GB/T778.1中的相关规定。3.9.1环境等级:B级。3.9.2环境温度范围:5℃~55℃;温度等级T30。3.9.3环境相对湿度范围:0%~100%,远程指示装置应为0%~93%。3.9.4流动剖面敏感度等级:U10D5。3.10电磁环境一般要求:在静电放电、电磁敏感性、静磁场的电磁环境条件下,物联网水表应符合GB/T778.1中的相关规定。本次招标物联网水表电磁环境等级为E1,采样方式为无磁采样或磁阻采样或光电直读采样。3.11电源一般要求:物联网水表由可更换锂电池供电,应符合GB/T778.1中的相关规定。3.11.1类型3.11.1.1制造商应说明更换电池的具体规则。3.11.1.2水表上应有电池电量低或者电量耗尽指示符或者显示电池更换日期。如果寄存器的显示器显示电池电量低的信息,则自该信息显示之日起,至少还有180d的使用寿命。3.11.1.3更换电池时,电源中断应不影响水表的性能或参数。3.11.1.4更换电池应无需损坏法定计量封印。3.11.1.5电池舱应有保护措施以防擅动。3.11.1.6内置电池为可独立更换的通用锂电池,综合考虑按上报1次/日的抄取频率、2次/月阀门维护、防钝化处理时,保证可连续使用6年(需提供承诺函及电池独立更换的说明文件)。3.11.2电池中断物联网水表在电池电压短时中断条件下应符合GB/T778.1中的相关规定。3.11.2.1电池短时中断应不影响水表的其他性能或参数。3.11.2.2电路应设计超级电容,以防止无电或弱电不关阀、防止人为恶意断电或电池耗尽仍能用水的可能性。3.12抗运输冲击性能物联网水表在运输包装条件下,经GB/T25480规定的模拟运输连续冲击和GB/T2423.8规定的自由跌落试验后,均不应损坏和丢失信息,并能正常工作。3.13耐久性一般要求:物联网水表耐久性应符合GB/T778.1中的相关规定。3.13.1水表应经受GB/T778.2-2018的7.11规定的耐久性试验,模拟水表工作条件。3.13.2每次试验后,应在GB/T778.2-2018的7.2.3规定的流量下再次测量水表的误差,应符合7.2.6.2或7.2.6.3的要求。3.13.3试验时水表的方向应按照制造商指定的方向设置。3.14电子装置可靠性在规定的使用条件下,物联网水表电子装置平均无故障工作时间(MTBF)不应小于2.63104h。3.15外壳防护物联网水表的电子装置连同引出线和引出线密封装置应达到GB/T4208中规定的IP68防护等级,防尘,满足长期浸没在水中工作(须提供省级及以上监督检验机构出具的IP68检测报告)。3.16软件对接3.16.1采用公共协议通迅,与内江本地电信或移动运营商物联网平台对接,不能通过供应商软件平台中转接入营收软件。3.16.2与招标人现有营收软件(包括但不限于报装系统、抄表系统、收费系统等与水表相关联的所有软件系统)进行数据对接,满足招标人协议要求,并保证其所供物联网水表能正常对接招标人使用的软件系统。3.17质保要求3.17.1投标人应提供限期的质量保证和维护服务,质量保证期限为6年(以招标人验收合格入库之日起6年),维护服务期限为6年。3.17.2质保期内出现任何质量问题(人为破坏或自然灾害等不可抗力除外),由投标人负责全免费(免全部工时费、材料费、管理费、财务费等)更换或维修。投标人应在接到采购人通知后的8小时内派人保修,投标人不在约定期限内派人保修,采购人可自行或指派第三方保修,维修所产生的费用全部由投标人承担。质保期满后,无论采购人是否另行选择维保投标人,投标人应及时优惠提供所需的备品备件。3.17.3在质保期内,采购人正常使用的情况下如发现产品有任何质量问题或质量缺陷,采购人有权退货或向投标人索赔。对于隐蔽性的、通过合理的检查和试验都不能发觉的缺陷,即使质量保修期已过,由于其设备本身的设计缺陷、制造缺陷造成的故障,仍由投标人免费负责维修、更换。3.17.4供货商应保证所供产品是全新的、未使用过的,并完全符合本技术要求规定的质量、规格型号和技术性能的要求。供货商应保证其产品在正常使用和保养条件下,在其使用寿命期内具有满意的性能。在产品安装完成,并验收合格后的使用寿命期内,供货商应对由于产品工艺材质的缺陷而产生的事故负责。3.17.5投标人提供的产品必须是质量合格产品,应符合国家相关标准。投标人提供的产品必须随货提供产品质量检测报告、出厂合格证、质保书以及按国家有关规定要求必须提供的认证证书、使用说明书、产品许可证等相关证明资料原件或复印件。3.17.6投标人提供的中标产品与投标时提供的样品的性能、质量等必须一致,否则招标人有权要求免费更换或者直接终止采购合同。(二)采购清单(实质性要求)物联网水表材料招标清单序号产品名称口径(mm)基表材质运营商通信方式单位数量品牌到场未含税投标单价(元)总价(元)备注1物联网水表(表阀一体)DN15铜四川省内江市本地电信或移动网络NB-IoT只1旋翼式基表、铜壳材质、表阀一体式结构(电控球阀),卧式或立式安装,计数器工作环境:湿式。4Gcat.1只12物联网水表(表阀一体)DN20铜NB-IoT只14Gcat.1只13物联网水表(表阀一体)DN25铜NB-IoT只14Gcat.1只14物联网水表(带阀)DN40球墨铸铁NB-IoT只1旋翼式基表,分体式结构(物联网水表+物联网终端+电控蝶阀),卧式或立式安装;水表及阀门采用球磨铸铁材质,计数器工作环境:湿式。4Gcat.1只15物联网水表(带阀)DN50球墨铸铁NB-IoT只1螺翼式基表,分体式结构(物联网水表+物联网终端+电控蝶阀),卧式或立式安装;水表及阀门采用球磨铸铁材质,计数器工作环境:湿式。4Gcat.1只16物联网水表(带阀)DN65球墨铸铁四川省内江市本地电信或移动网络NB-IoT只14Gcat.1只17物联网水表(带阀)DN80球墨铸铁NB-IoT只14Gcat.1只18物联网水表(带阀)DN100球墨铸铁NB-IoT只14Gcat.1只19物联网水表(带阀)DN150球墨铸铁NB-IoT只14Gcat.1只110物联网水表(带阀)DN200球墨铸铁NB-IoT只14Gcat.1只111物联网水表(带阀)DN250球墨铸铁NB-IoT只14Gcat.1只112物联网水表(带阀)DN300球墨铸铁NB-IoT只14Gcat.1只1最终报价金额合计(元):小写:大写:三、商务要求(实质性要求)1、供货期限:1.1具体开始时间以合同签订日期为准,计划于2026年12月31日终止,合同一年一签。1.2若供货期限内实际累计供货金额已超出本项目预算金额,且补充合同金额份额也已用完,即供货期限内实际累计供货金额超过198万元,采购合同自动终止,采购人将重新招标。2、供货地点及供货方式:2.1采购人指定地点。2.2根据实际情况按照采购人要求分批供货((二)采购清单中的数量为暂估数量,最终以实际验收合格数量为准)。3、付款方式:3.1分批次结算。3.2每批次结算费用=以实际验收合格数量*结算单价(到场未含税价)+税金(按合同履行期间的现行增值税税率支付)3.3本项目各产品结算单价确定依据为下:3.3.1以中标人各产品的投标报价作为各产品的中标结算单价。3.3.2本项目各产品结算单价在合同履行期间可根据人工、物价、原材料的涨落而作调整,产品涨跌幅度在±10%范围内的不作调整;涨跌幅度超过±10%的,经双方协商一致后,允许调整各产品结算单价,价格调整幅度参照《四川工程造价信息》或双方认可的具有权威代表性的价格信息公告。产品单价下调时,必须保证同等质量、同种规格型号、同等供货要求;产品单价上调时,同等质量、同种规格型号、同等供货要求的产品价格不能高于市场价和采购人除外的其他需方的价格。3.3.3中标人向采购人开具增值税专用发票,税金按合同履行期间的现行增值税税率支付,同结算的该批次货款一起支付。采购人在收到增值税专用发票60天内或根据采购人的资金情况向中标人支付该批次货款。若供货方未及时提供增值税专用发票,采购人有权拒付,并不承担逾期付款责任。4、中标人在收到采购人所需产品订单后,在采购人规定的时间内送至采购人指定地点。5、验收:按国家现行标准和行业现行标准验收。6、投标人所报价格包含:材料及配件、包装、运输到指定地点、6年通讯费等所有到场费用。7、中标人的结算单价若被采购人发现高于市场价和采购人除外其他需方的价格,采购人将有权单方面终止合同,并且两年内中标人不能列入合格投标人目录,作为备选投标人。8、合同履行过程中,采购人将对中标人进行考核,考核评价的考核结果为满意的方可续签下一年合同,考核内容包含:1)采购人按照招标文件中的技术要求以及中标人的投标文件对其所供货产品进行验收;2)供货时间是否达到采购人要求;3)产品质量是否出现问题(非采购人人为原因导致),出现验收不合格或供货时间未满足采购人要求或因中标人原因导致产品质量问题的,采购人将对中标人责令改正,上述情况累计出现两次视为考核评价的考核结果为不满意,采购人将不再与中标人续签合同,采购人可另行招标确定投标人。9、投标人必须随货提供产品的省级及以上第三方产品质量监督检测机构出具的检测报告以及投标人必须随货提供产品的生产厂家涉及饮用水卫生安全产品卫生许可批件复印件。10、本次采购清单内的产品为采购人单位预估采购产品,在合同履约过程中可能存在不涉及配送的情况,实际所需配送产品以采购人提供的产品订单为准。注:标注(实质性要求)的投标人必须全部满足,不满足或不响应的作无效投标处理。四、样品清单及要求序号名称样品要求数量/单位1DN15物联网水表(带阀)通信方式为NB-IoT1、包装完整,配套设备齐全,接口文档存入U盘。2、外观光滑整洁无瑕疵、规格数字清晰可见、无明显的毛刺、裂纹、划痕、凸起和颜色不均匀,耐刮擦性能好。3、液晶显示屏的数字应醒目、整齐、表示功能的文字符号和标志应完整、清晰、端正,且具有触发按键。1只2DN15物联网水表(带阀)通信方式为4Gcat.11、包装完整,配套设备齐全,接口文档存入U盘。2、外观光滑整洁无瑕疵、规格数字清晰可见、无明显的毛刺、裂纹、划痕、凸起和颜色不均匀,耐刮擦性能好。3、液晶显示屏的数字应醒目、整齐、表示功能的文字符号和标志应完整、清晰、端正,且具有触发按键。1只注:1、样品递交时间:开标当日同投标文件一并送达,开标时间截止后送达的样品作拒收处理;2、样品递交地点:同开标地点,具体地点由现场安排;3、本项目样品评审采用盲样,投标人递交的样品上不得有可以识别供应商的任何标志、标识或具有暗示性的文字、图案、装饰等。4、样品评审结束后,将在监督老师的监督下密封样品(投标人自备样品封装的外包装),样品密封后全数将送达采购人指定地点封存。中标结果公示后,中标供应商的样品将作为履约验收的参考,未中标投标人的样品可自行至采购人处领取,若响应有效期后未中标投标人的样品仍未领取,采购人可自行处理。5、投标人的样品制作、搬运等费用由投标人自行承担。本项目不接受联合体投标。二、申请人的资格要求:1、本项目规定的条件:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)具有依法缴纳税收和社会保障资金的良好记录;(5)参加本次采购活动前三年内,在经营活动中没有重大违法记录;(6)符合法律、行政法规规定的其他条件。2、特定资格要求:无。3、其他类似效力要求:(1)按本项目规定获取了招标文件 (2)授权参加本次投标活动的投标人代表证明材料 (3)按本项目规定缴纳了投标保证金。三、获取招标文件1、招标文件自2022年7月1日9:00至2022年7月8日17:00(北京时间,法定节假日除外)由内江融汇招标代理有限公司发售。2、报名方式:请将以下报名资料电子版上传至njrh2003@126.com(1)投标人报名登记表(详见附件1);(2)投标人为法人或者其他组织的,须提供单位介绍信原件(加盖单位公章)、经办人身份证复印件(加盖单位公章);投标人为自然人的,须提供本人身份证复印件。上传后请致电0832-8801000,报名成功后,方可获取招标文件。3、本项目招标文件有偿获取,招标文件售价:人民币300元/份。(招标文件售后不退,投标资格不能转让)。四、提交投标文件截止时间、开标时间和地点2022年7月22日10点00分(北京时间)地点:内江市东兴区翡翠国际社区清溪路商业楼47幢三楼五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:无。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:资中县兴民水务投资有限责任公司地址:资中县水南镇竹花路57号联系人:杨老师联系方式:0832-55332222.采购代理机构信息名称:内江融汇招标代理有限公司地址:内江市东兴区翡翠国际社区清溪路商业楼47幢联系人:胡老师电话:0832-88020073.项目联系方式联系人:胡老师电话:0832-8802007×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:光电直读光谱,跌落试验机开标时间:2022-07-2200:00预算金额:180.00万元采购单位:资中县兴民水务投资有限责任公司采购联系人:点击查看采购联系方式:点击查看招标代理机构:内江融汇招标代理有限公司代理联系人:点击查看代理联系方式:点击查看详细信息招标公告四川省-内江市-资中县状态:公告更新时间:2022-06-30招标公告项目概况:资中县农村饮水安全工程项目(物联网水表)的潜在投标人应在内江融汇招标代理有限公司获取招标文件,并于2022年7月22日10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:NJRH-202206-220项目名称:资中县农村饮水安全工程项目(物联网水表)预算金额:180万元最高限价:180万元投标保证金:10000.00元(大写:壹万元整)。采购需求:一、项目建设内容及建设地点1.建设内容:铁佛、双河、狮子和双龙四个水厂所辖供水区域的乡镇(含场镇及村社)新建输水管道和给水管道、改建输水管道和给水管道、维修输水管道和给水管道、管道附属配套设施、水表、水表箱安装等。2.建设地点:铁佛、双河、狮子和双龙四个水厂所辖供水区域的乡镇(含场镇及村社),具体为铁佛镇、鱼溪镇、龙结镇、罗泉镇、发轮镇、双河镇、陈家镇、公民镇、新桥镇、水南镇的板栗垭社区、狮子镇、太平镇、重龙镇的苏家湾社区、双龙镇、马鞍镇、龙江镇、孟塘镇。3.本项目采用公开招标方式确定物联网水表的供货服务商一家。二、项目要求(一)物联网水表技术要求(实质性要求)1.标准要求1.1物联网水表所有指标应符合国家或行业现行最新标准:1.1.1GB/T778.1《饮用冷水水表和热水水表》;1.1.2JJG162《冷水水表》;1.1.3CJ/T535《物联网水表》;1.1.4CJ266《饮用水冷水水表安全规则》;1.1.5CMA/WM778《小口径饮用水冷水表表壳技术规范》;1.1.6其它国家或行业现行最新标准。2.结构、分类及型号2.1结构2.1.1整体式:构成物联网水表的所有部件组装在同一壳体内。2.1.2分体式:构成物联网水表的所有部件不组装在同一壳体内。2.2分类2.2.1指示装置分类:a)机械式:物联网水表指示装置采用机械式指示。b)电子式:物联网水表指示装置采用电子式指示。2.3型号物联网水表的型号编制应符合JB/T12390的相关规定。3.技术要求3.1外观和封印3.1.1外观要求3.1.1.1物联网水表外观应有良好的表面处理,不应有毛刺、划痕、凹陷、裂纹、锈蚀、霉斑和涂层剥落等现象;3.1.1.2液晶显示屏的数字应醒目、整齐、表示功能的文字符号和标志应完整、清晰、端正,且具有触发按键;3.1.1.3读数装置上的防护玻璃应有良好的透明度,不应有使读数畸变等妨碍读数的缺陷。3.1.1.4水表应预留铅封口,口径不小于2mm。3.1.2电子封印一般要求:物联网水表电子封印应符合GB/T778.1中的相关规定。3.1.2.1当机械封印不能防止访问对确定测量结果有影响的参数时,应采取以下防护措施:a)借助密码或特殊装置(例如钥匙)只允许授权人员访问;密码应能更换。b)按照国家法规规定时限保留干预证据。记录中应包括日期和识别实施干预的授权人员的特征要素[见a)]。如果必须删除以前的记录才能记录新的干预,应删除最早的记录。3.1.2.2装有用户可断开和可互换部件的水表应符合以下规定:a)若不符合3.1.2.1的规定,应不可能通过断开点访问参与确定测量结果的参数;b)应借助电子和数据处理安全机制或者机械装置防止插人任何可能影响准确度的器件。3.1.2.3装有用户可断开的不可互换部件的水表应符合3.1.2.2的规定。此外,这类水表应配备一种装置,当各种部件不按批准的型式连接时可阻止水表工作。这类水表应配备一种装置,当用户擅自断开再重新连接后可阻止水表工作。3.2检定标记和防护装置一般要求:物联网水表电子检定标记和防护装置应符合GB/T778.1中的相关规定。3.2.1检定标记3.2.1.1水表上应留出位置设置检定标记,检定标记应设在明处,当水表销售或使用时无需拆卸即能看到。3.2.1.2水表上应清晰、永久地标志以下信息。这些信息可以集中或分散标志在水表的外壳、指示装置的度盘、铭牌或不可分离的水表表盖上。这些标志应在水表销售后或使用时无需拆卸即能看到。a)计量单位;b)准确度等级(仅限非2级表);c)Q3的值及Q3/Q1的比值:如果水表测量逆流,且两个流向的Q3/Q1的比值不同,则两个流向的值都应标明;应清晰地注明每对数值对应的流向。Q3/Q1的比值应前缀R。d)型式批准标志(应符合国家规定) e)制造商厂名或商标 f)制造年份,制造年份的最后两位数字,或者制造年月;g)编号(尽可能靠近指示装置);h)流动方向,用箭头表示(标志在水表壳体的两侧,如果在任何情况下都能很容易看到流动方向指示箭头,也可只标志在一侧);i)最高允许压力(MPa),如果超过1MPa(10bar),或者,对于DN≧500,超过0.6MPa(6bar);j)字母V或H,如果水表只能在垂直位置或水平位置工作 k)温度等级,除T30外 l)压力损失等级,除△p63外 m)敏感度等级,除U0/D0外 带电子装置的水表还应标明以下内容:n)外部电源:电压和频率;o)可更换电池:更换电池的最后期限;q)环境等级 r)电磁环境等级。环境等级和电磁环境等级可以用数据单另行给出,以特殊符号表明其与水表的关系,不必标注在水表上。3.2.2防护装置物联网水表应配置可以封印的防护装置,以保证在正确安装水表前和安装后,不损坏防护装置就无法拆卸或者改动水表和(或)水表的调整装置或修正装置。若水表为单一客户服务,则总量显示器或导出总量的显示器不可复零。3.3指示装置一般要求:物联网水表指示装置应符合GB/T778.1中的相关规定。3.3.1功能物联网水表的指示装置应提供易读、可靠、直观的指示体积值;应包含测试和校准用的观察工具。3.3.2测量单位、符号及其位置指示的水体积应以立方米表示,符号m3应标示在度盘上或紧邻显示数字。3.3.3指示范围指示装置应能够记录表5给出的指示体积(单位为立方米)而无需回零。表5水表的指示范围Q3m3/h指示范围(最小值)m3Q36.39.9996.399.99963999.9996309999.9993.3.4指示装置的颜色标志3.3.4.1立方米及其倍数宜用黑色显示。3.3.4.2立方米的约数宜用红色显示。3.3.4.3指针、指示标记、数字、鼓轮、字盘、度盘或开孔框都应使用黑色和红色两种颜色。3.4基表要求3.4.1材料和结构一般要求:物联网水表的基表材料和结构应符合GB/T778.1中的相关规定。3.4.1.1水表的制造材料的强度和耐用度应满足水表的特定使用要求。表壳材料应符合《小口径饮用水冷水表表壳技术规范》(CMA/WM778),口径DN15、DN20、DN25的物联网水表采用旋翼式基表,铜壳材质(铜含量不低于国标);口径DN40的物联网水表采用旋翼式基表,水表及阀门为球磨铸铁材质;口径DN40以上的物联网水表采用螺翼式基表,水表及阀门为球磨铸铁材质,表壳材料须提供第三方监督检验机构的检测报告复印件。3.4.1.2水表的制造材料应不受工作温度范围内水温变化的不利影响。3.4.1.3水表内所有接触水的零部件应采用通常认为是无毒、无污染、无生物活性的材料制造。应符合国家法律法规的规定。3.4.1.4整体式水表的制造材料应能抗内、外部腐蚀,或进行适当的表面防护处理。3.4.1.5水表的指示装置应采用透明窗保护,还可配备一个合适的表盖作为辅助保护。3.4.1.6若水表指示装置透明窗内侧有可能形成冷凝,水表应安装预防或消除冷凝的装置。3.4.1.7水表的设计、组成及结构应不便于实施欺诈行为。3.4.1.8水表应配备受计量管制的显示器,用户应无需使用工具就能方便地接近显示器。3.4.1.9水表的设计、组成及结构应不便于利用最大允许误差或有利于任何一方。3.4.2调整和修正3.4.2.1水表可配备调整装置利(或)修正装置。任何调整都应将水表的(示值)误差调整到尽可能接近零的值,使水表不能利用最大允许误差或有利于任何一方。3.4.2.2如果这两种装置安装在水表外,应采取铅封措施。3.4.2计量要求一般要求:物联网水表的计量要求应符合GB/T778.1中的相关规定。3.4.2.1同口径比较,要求量程比R大,最小流量值Q1小,准确度等级高。对于不同标称口径的水表,计量性能指标应达到或者优于表1。计量性能要求表1口径(mm)常用流量Q3(m3/h)Q3/Q1(R值)Q2/Q1DN152.51001.6DN204.01001.6DN256.31001.6DN40251001.616100、160、2001.6DN5040160、2001.6251001.6DN6563160、2001.6DN8063160、2001.6DN100100160、2001.6DN150250160、2001.6DN200400160、2001.6DN250630801.6DN3001000801.63.4.2.2准确度等级和最大允许误差一般要求:物联网水表准确度等级应达到2级或以上,符合检定规程JJG162《冷水水表》水表的要求;额定工作条件下,水表的(示值)误差不应超过最大允许误差(MPE)。3.4.2.2.1准确度等级为1级的水表高区流量(Q2QQ4)的最大允许误差,水温范围为0.1℃~30℃时为士1%,水温高于30℃时为土2%。低区流量(Q1Q2)的最大允许误差为士3%,不分水温范围。3.4.2.2.2准确度等级为2级的水表高区流量(Q2QQ4)的最大允许误差,水温范围为0.1℃~30℃时为士2%,水温高于30℃时为土3%。低区流量(Q1Q2)的最大允许误差为士5%,不分水温范围。3.4.2.3水温与水压温度和压力在水表额定工作条件范围内变化时水表应符合最大允许误差要求。温度和压力在水表额定工作条件范围内变化时水表应符合最大允许误差要求。3.4.2.4无流量或无水无流量或无水时,水表的累积量应无变化。3.4.2.5静压物联网水表应能承受以下试验压力而不出现泄漏或损坏:a)最高允许压力的1.6倍,15min;b)最高允许压力的2倍,1min。3.4.2.6计数器计数器工作环境为湿式,数字外观高度4mm,宽度2mm,度盘应保持长期清晰。一次抄读成功率及准确率>99.9%,年故障率3.4.2.7机械字轮位数指示到m3的位数5位,即最小读数0.0001m3,最大读数9999.9999m3。3.4.3技术特性一般要求:物联网水表的口径和总尺寸、螺纹连接端、法兰连接端应符合GB/T778.1中的相关规定。3.4.3.1物联网水表的外观尺寸(含电子设备):应符合GB/T778.1中的相关规定,并确保能直接接入招标人地区现有管网,供货后如尺寸不符合安装要求导致无法安装水表,招标人有权要求退换货或直接终止合同。3.4.3.2连接件:口径DN15-DN40物联网水表的连接件采用国标铸造铅黄铜材质接管套件,口径DN40以上的物联网水表连接件采用国标碳钢法兰。3.4.3.3物联网水表电子设备不得破坏基表结构,不得影响人工抄读到L位和自动检定。3.5电子装置特性一般要求:本次招标的物联网水表应使用招标人所在地区(内江本地)的移动或电信运营商提供的移动网络通讯卡;通讯方式采用4Gcat.1或NB-IoT网络实现数据传输。3.5.1通信接口:物联网水表采用一对一的方式通过公共陆地移动网络进行通信。3.5.2通信功能和性能3.5.2.14G通信方式的物联网水表通信功能和性能,应符合下列标准的规定:a)TD-LTE通信方式的物联网水表,应符合YD/T2575中的相关规定 b)LTE-FDD通信方式的物联网水表,应符合YD/T2577中的相关规定。3.5.2.2NB-IoT通信方式的物联网水表通信功能和性能,应符合通信行业相应标准中的相关规定。3.5.3数据传输3.5.3.1基本数据a)物联网水表应可传输由14位十进制数构成的通信ID,用以在网络上标识水表及其数据。通信ID应包含厂商代码,厂商代码应符合GB/T26831.3-2012中5.5的规定。b)物联网水表应可传输当前累积水量。3.5.3.2扩展数据a)物联网水表可传输带时间标记的由月、日或其他指定时间间隔产生的冻结累积水量数据。通过应用平台实时抄读累计用水量等数据信息,或抄读最近1个月的各天冻结的累计用水量、最近24个月的各月用水量。b)物联网水表可传输水表运行需要的多种参数。包含有实时日历及时钟参数的水表,应能远程读取实时时间,并支持校时。3.5.4数据安全3.5.4.1制造商应充分考虑智能水表数据传输的安全要求,选择合适的保证水表数据安全的方案,宜采用国家标准、行业规范所要求或推荐的数据安全规范。3.5.4.2通信ID和当前累积水量出厂后应不能通过远程数据传输方式修改。3.5.4.3水表参数、运行数据应加密传输,有防止非授权修改的措施。3.5.5机电转换误差物联网水表机电准换误差不超过±1个机电转换信号当量。3.6功能要求3.6.1数据处理与信息储存功能物联网水表应具有水流量信息采集数据处理和信息储存的功能。其存储的信息至少包括:物联网水表标识如通信ID、水表类型、累计水量,必要时可增加工作信息状态;当存满存储介质时,新采集的数据自动覆盖最早数据。3.6.2远传功能3.6.2.1远传功能应通过无线数据通信网络,实现数据的上传。如发生上报不成功,水表数据应进行重发。3.6.2.2默认每日周期上报,上传前一天24小时的数据记录 上传应用平台的水量数据分辨力应为10L。3.6.2.3当特殊情况下,如发生本次数据上传不成功时,则在下一个上传周期时数据自动补传。3.6.3控制功能控制功能应通过抄表系统实现指令的接收和采集。3.6.3.1物联网水表须具有远程开启和关闭阀门的功能,能够通过软件远程关闭阀门。3.6.3.2物联网水表口径DN15-DN25的阀门为电控球阀,口径DN40-DN300的阀门为电控蝶阀。3.6.4报警功能3.6.4.1阀门故障、计量信号采集故障、磁干扰、欠费等应有报警功能。3.6.4.2当用户水费余额到预警值时,自动关阀报警,用户可采取强制唤醒后阀门自动打开;当水费透支金额达到预设值时,用户必须充值后才能开阀;电池电量不足、水表异常应报警远程上报。3.6.5保护功能3.6.5.1数据保持功能至少保存18个月每月月末数据,近1个月内每天的定点数据,近7d内每天每小时整点数据。应记录故障发生时间、当前运行状态、累计水量、最近10次修改表参数的时间和参数值。具有阀门的物联网水表还应记录阀门状态。3.6.5.2磁保护功能水表信号元件部位受磁干扰时应报警,并自动关闭电控阀,或不受影响仍正常工作。3.6.5.3电池欠压保护功能当检测电压低至Ubmin(欠压提示电压阈值)时,应自动保存水表数据、有欠压提示信息,供电恢复后应恢复保存数据,并正常工作。3.6.5.4数据的非正常中断保护功能应具备数据的非正常中断保护功能,电源中断或通信失败不应丢失内存数据,恢复后能正常工作。3.6.5.5强制唤醒功能物联网水表在未连通网络时应可在现场进行人为干预,强制唤醒水表。3.6.5.6设置功能3.6.5.6.1物联网水表可通过招标人应用平台或红外手持设备进行设置。3.6.5.6.2水表底数设置:通过近端手持终端设备进行水表底数设置,保证电子读数与水表机械读数同步,手持终端设备与电子装置之间通过红外端口进行通信。3.6.5.7校时功能数据周期上报时,通过NB-IoT或4Gcat.1芯片方式与表计对时,确保系统时间精确。3.6.5.8计价功能物联网水表具有分类计价、阶梯计价及两种及以上用水性质的混合水价计费功能,支持月阶梯、季阶梯和年阶梯的切换,支持2套以上水价方案,阶梯计价达6个以上等级。3.7压力损失一般要求:物联网水表的压力损失应符合GB/T778.1中的相关规定。水表[包括作为水表组成部件的过滤器、滤网和(或)整直器]的压力损失在Q1到Q3流量之间应不超过0.063MPa(0.63bar)。压力损失等级等级最大压力损失MPabar△p630.0630.63△p400.0400.40△p250.0250.25△p160.0160.16△p100.0100.1注:对于某些水表,在Q1≦Q≦Q3流量范围,最大压力损失并不出现在Q3流量下。3.8最高允许工作压力一般要求:物联网水表的最高允许工作压力应符合GB/T778.1中的相关规定,压损等级△p63。a)水表承受最低允许工作压力0.03Mpa;b)水表承受最高允许工作压力1.0Mpa。3.9气候环境一般要求:在高温(无冷凝)、低温、交变湿热(冷凝)的气候环境条件下,物联网水表应符合GB/T778.1中的相关规定。3.9.1环境等级:B级。3.9.2环境温度范围:5℃~55℃;温度等级T30。3.9.3环境相对湿度范围:0%~100%,远程指示装置应为0%~93%。3.9.4流动剖面敏感度等级:U10D5。3.10电磁环境一般要求:在静电放电、电磁敏感性、静磁场的电磁环境条件下,物联网水表应符合GB/T778.1中的相关规定。本次招标物联网水表电磁环境等级为E1,采样方式为无磁采样或磁阻采样或光电直读采样。3.11电源一般要求:物联网水表由可更换锂电池供电,应符合GB/T778.1中的相关规定。3.11.1类型3.11.1.1制造商应说明更换电池的具体规则。3.11.1.2水表上应有电池电量低或者电量耗尽指示符或者显示电池更换日期。如果寄存器的显示器显示电池电量低的信息,则自该信息显示之日起,至少还有180d的使用寿命。3.11.1.3更换电池时,电源中断应不影响水表的性能或参数。3.11.1.4更换电池应无需损坏法定计量封印。3.11.1.5电池舱应有保护措施以防擅动。3.11.1.6内置电池为可独立更换的通用锂电池,综合考虑按上报1次/日的抄取频率、2次/月阀门维护、防钝化处理时,保证可连续使用6年(需提供承诺函及电池独立更换的说明文件)。3.11.2电池中断物联网水表在电池电压短时中断条件下应符合GB/T778.1中的相关规定。3.11.2.1电池短时中断应不影响水表的其他性能或参数。3.11.2.2电路应设计超级电容,以防止无电或弱电不关阀、防止人为恶意断电或电池耗尽仍能用水的可能性。3.12抗运输冲击性能物联网水表在运输包装条件下,经GB/T25480规定的模拟运输连续冲击和GB/T2423.8规定的自由跌落试验后,均不应损坏和丢失信息,并能正常工作。3.13耐久性一般要求:物联网水表耐久性应符合GB/T778.1中的相关规定。3.13.1水表应经受GB/T778.2-2018的7.11规定的耐久性试验,模拟水表工作条件。3.13.2每次试验后,应在GB/T778.2-2018的7.2.3规定的流量下再次测量水表的误差,应符合7.2.6.2或7.2.6.3的要求。3.13.3试验时水表的方向应按照制造商指定的方向设置。3.14电子装置可靠性在规定的使用条件下,物联网水表电子装置平均无故障工作时间(MTBF)不应小于2.63104h。3.15外壳防护物联网水表的电子装置连同引出线和引出线密封装置应达到GB/T4208中规定的IP68防护等级,防尘,满足长期浸没在水中工作(须提供省级及以上监督检验机构出具的IP68检测报告)。3.16软件对接3.16.1采用公共协议通迅,与内江本地电信或移动运营商物联网平台对接,不能通过供应商软件平台中转接入营收软件。3.16.2与招标人现有营收软件(包括但不限于报装系统、抄表系统、收费系统等与水表相关联的所有软件系统)进行数据对接,满足招标人协议要求,并保证其所供物联网水表能正常对接招标人使用的软件系统。3.17质保要求3.17.1投标人应提供限期的质量保证和维护服务,质量保证期限为6年(以招标人验收合格入库之日起6年),维护服务期限为6年。3.17.2质保期内出现任何质量问题(人为破坏或自然灾害等不可抗力除外),由投标人负责全免费(免全部工时费、材料费、管理费、财务费等)更换或维修。投标人应在接到采购人通知后的8小时内派人保修,投标人不在约定期限内派人保修,采购人可自行或指派第三方保修,维修所产生的费用全部由投标人承担。质保期满后,无论采购人是否另行选择维保投标人,投标人应及时优惠提供所需的备品备件。3.17.3在质保期内,采购人正常使用的情况下如发现产品有任何质量问题或质量缺陷,采购人有权退货或向投标人索赔。对于隐蔽性的、通过合理的检查和试验都不能发觉的缺陷,即使质量保修期已过,由于其设备本身的设计缺陷、制造缺陷造成的故障,仍由投标人免费负责维修、更换。3.17.4供货商应保证所供产品是全新的、未使用过的,并完全符合本技术要求规定的质量、规格型号和技术性能的要求。供货商应保证其产品在正常使用和保养条件下,在其使用寿命期内具有满意的性能。在产品安装完成,并验收合格后的使用寿命期内,供货商应对由于产品工艺材质的缺陷而产生的事故负责。3.17.5投标人提供的产品必须是质量合格产品,应符合国家相关标准。投标人提供的产品必须随货提供产品质量检测报告、出厂合格证、质保书以及按国家有关规定要求必须提供的认证证书、使用说明书、产品许可证等相关证明资料原件或复印件。3.17.6投标人提供的中标产品与投标时提供的样品的性能、质量等必须一致,否则招标人有权要求免费更换或者直接终止采购合同。(二)采购清单(实质性要求)物联网水表材料招标清单序号产品名称口径(mm)基表材质运营商通信方式单位数量品牌到场未含税投标单价(元)总价(元)备注1物联网水表(表阀一体)DN15铜四川省内江市本地电信或移动网络NB-IoT只1旋翼式基表、铜壳材质、表阀一体式结构(电控球阀),卧式或立式安装,计数器工作环境:湿式。4Gcat.1只12物联网水表(表阀一体)DN20铜NB-IoT只14Gcat.1只13物联网水表(表阀一体)DN25铜NB-IoT只14Gcat.1只14物联网水表(带阀)DN40球墨铸铁NB-IoT只1旋翼式基表,分体式结构(物联网水表+物联网终端+电控蝶阀),卧式或立式安装;水表及阀门采用球磨铸铁材质,计数器工作环境:湿式。4Gcat.1只15物联网水表(带阀)DN50球墨铸铁NB-IoT只1螺翼式基表,分体式结构(物联网水表+物联网终端+电控蝶阀),卧式或立式安装;水表及阀门采用球磨铸铁材质,计数器工作环境:湿式。4Gcat.1只16物联网水表(带阀)DN65球墨铸铁四川省内江市本地电信或移动网络NB-IoT只14Gcat.1只17物联网水表(带阀)DN80球墨铸铁NB-IoT只14Gcat.1只18物联网水表(带阀)DN100球墨铸铁NB-IoT只14Gcat.1只19物联网水表(带阀)DN150球墨铸铁NB-IoT只14Gcat.1只110物联网水表(带阀)DN200球墨铸铁NB-IoT只14Gcat.1只111物联网水表(带阀)DN250球墨铸铁NB-IoT只14Gcat.1只112物联网水表(带阀)DN300球墨铸铁NB-IoT只14Gcat.1只1最终报价金额合计(元):小写:大写:三、商务要求(实质性要求)1、供货期限:1.1具体开始时间以合同签订日期为准,计划于2026年12月31日终止,合同一年一签。1.2若供货期限内实际累计供货金额已超出本项目预算金额,且补充合同金额份额也已用完,即供货期限内实际累计供货金额超过198万元,采购合同自动终止,采购人将重新招标。2、供货地点及供货方式:2.1采购人指定地点。2.2根据实际情况按照采购人要求分批供货((二)采购清单中的数量为暂估数量,最终以实际验收合格数量为准)。3、付款方式:3.1分批次结算。3.2每批次结算费用=以实际验收合格数量*结算单价(到场未含税价)+税金(按合同履行期间的现行增值税税率支付)3.3本项目各产品结算单价确定依据为下:3.3.1以中标人各产品的投标报价作为各产品的中标结算单价。3.3.2本项目各产品结算单价在合同履行期间可根据人工、物价、原材料的涨落而作调整,产品涨跌幅度在±10%范围内的不作调整;涨跌幅度超过±10%的,经双方协商一致后,允许调整各产品结算单价,价格调整幅度参照《四川工程造价信息》或双方认可的具有权威代表性的价格信息公告。产品单价下调时,必须保证同等质量、同种规格型号、同等供货要求;产品单价上调时,同等质量、同种规格型号、同等供货要求的产品价格不能高于市场价和采购人除外的其他需方的价格。3.3.3中标人向采购人开具增值税专用发票,税金按合同履行期间的现行增值税税率支付,同结算的该批次货款一起支付。采购人在收到增值税专用发票60天内或根据采购人的资金情况向中标人支付该批次货款。若供货方未及时提供增值税专用发票,采购人有权拒付,并不承担逾期付款责任。4、中标人在收到采购人所需产品订单后,在采购人规定的时间内送至采购人指定地点。5、验收:按国家现行标准和行业现行标准验收。6、投标人所报价格包含:材料及配件、包装、运输到指定地点、6年通讯费等所有到场费用。7、中标人的结算单价若被采购人发现高于市场价和采购人除外其他需方的价格,采购人将有权单方面终止合同,并且两年内中标人不能列入合格投标人目录,作为备选投标人。8、合同履行过程中,采购人将对中标人进行考核,考核评价的考核结果为满意的方可续签下一年合同,考核内容包含:1)采购人按照招标文件中的技术要求以及中标人的投标文件对其所供货产品进行验收;2)供货时间是否达到采购人要求;3)产品质量是否出现问题(非采购人人为原因导致),出现验收不合格或供货时间未满足采购人要求或因中标人原因导致产品质量问题的,采购人将对中标人责令改正,上述情况累计出现两次视为考核评价的考核结果为不满意,采购人将不再与中标人续签合同,采购人可另行招标确定投标人。9、投标人必须随货提供产品的省级及以上第三方产品质量监督检测机构出具的检测报告以及投标人必须随货提供产品的生产厂家涉及饮用水卫生安全产品卫生许可批件复印件。10、本次采购清单内的产品为采购人单位预估采购产品,在合同履约过程中可能存在不涉及配送的情况,实际所需配送产品以采购人提供的产品订单为准。注:标注(实质性要求)的投标人必须全部满足,不满足或不响应的作无效投标处理。四、样品清单及要求序号名称样品要求数量/单位1DN15物联网水表(带阀)通信方式为NB-IoT1、包装完整,配套设备齐全,接口文档存入U盘。2、外观光滑整洁无瑕疵、规格数字清晰可见、无明显的毛刺、裂纹、划痕、凸起和颜色不均匀,耐刮擦性能好。3、液晶显示屏的数字应醒目、整齐、表示功能的文字符号和标志应完整、清晰、端正,且具有触发按键。1只2DN15物联网水表(带阀)通信方式为4Gcat.11、包装完整,配套设备齐全,接口文档存入U盘。2、外观光滑整洁无瑕疵、规格数字清晰可见、无明显的毛刺、裂纹、划痕、凸起和颜色不均匀,耐刮擦性能好。3、液晶显示屏的数字应醒目、整齐、表示功能的文字符号和标志应完整、清晰、端正,且具有触发按键。1只注:1、样品递交时间:开标当日同投标文件一并送达,开标时间截止后送达的样品作拒收处理;2、样品递交地点:同开标地点,具体地点由现场安排;3、本项目样品评审采用盲样,投标人递交的样品上不得有可以识别供应商的任何标志、标识或具有暗示性的文字、图案、装饰等。4、样品评审结束后,将在监督老师的监督下密封样品(投标人自备样品封装的外包装),样品密封后全数将送达采购人指定地点封存。中标结果公示后,中标供应商的样品将作为履约验收的参考,未中标投标人的样品可自行至采购人处领取,若响应有效期后未中标投标人的样品仍未领取,采购人可自行处理。5、投标人的样品制作、搬运等费用由投标人自行承担。本项目不接受联合体投标。二、申请人的资格要求:1、本项目规定的条件:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)具有依法缴纳税收和社会保障资金的良好记录;(5)参加本次采购活动前三年内,在经营活动中没有重大违法记录;(6)符合法律、行政法规规定的其他条件。2、特定资格要求:无。3、其他类似效力要求:(1)按本项目规定获取了招标文件 (2)授权参加本次投标活动的投标人代表证明材料 (3)按本项目规定缴纳了投标保证金。三、获取招标文件1、招标文件自2022年7月1日9:00至2022年7月8日17:00(北京时间,法定节假日除外)由内江融汇招标代理有限公司发售。2、报名方式:请将以下报名资料电子版上传至njrh2003@126.com(1)投标人报名登记表(详见附件1);(2)投标人为法人或者其他组织的,须提供单位介绍信原件(加盖单位公章)、经办人身份证复印件(加盖单位公章);投标人为自然人的,须提供本人身份证复印件。上传后请致电0832-8801000,报名成功后,方可获取招标文件。3、本项目招标文件有偿获取,招标文件售价:人民币300元/份。(招标文件售后不退,投标资格不能转让)。四、提交投标文件截止时间、开标时间和地点2022年7月22日10点00分(北京时间)地点:内江市东兴区翡翠国际社区清溪路商业楼47幢三楼五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:无。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:资中县兴民水务投资有限责任公司地址:资中县水南镇竹花路57号联系人:杨老师联系方式:0832-55332222.采购代理机构信息名称:内江融汇招标代理有限公司地址:内江市东兴区翡翠国际社区清溪路商业楼47幢联系人:胡老师电话:0832-88020073.项目联系方式联系人:胡老师电话:0832-8802007
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • 做核磁共振时患者跌落骨折 法院判医院赔偿近8千元
    一名患者到医院住院后,在上医疗仪器上检查时跌落到地上摔伤,致腰椎骨折,最终法院以医院对患者可能出现的安全隐患缺乏防范,判处医院赔偿近八千元。12月8日,泗洪县人民法院召开人参损害类案件新闻发布,通报了包括这一案例在内的十大典型案例。  2016年3月15日,朱某因患糖尿病到泗洪县某医院住院就诊。住院后第三天,医生安排朱某进行核磁共振检查,同时安排一名护士陪同。核磁共振检查不是每个人都能正常适应,机器打开会出现噪音,病人戴头罩可能会致病人压抑感,检查时应系好安全带。朱某在检查上腹部MRI中出现胸闷,不能呼吸,护士遂解开朱某身上的安全扣,朱某因烦躁不慎从MRI机床上面跌落下来导致摔伤。经诊断为腰3椎体前缘骨折,住院22天,支付医疗费用3452元。  泗洪法院审理认为,在医疗行为过程中,医务人员应保持足够的审慎注意义务,以预见医疗行为结果和避免损害结果的发生。该医院明知核磁共振检查不是每个人都能正常适应,在朱某出现身体不适、胸闷时,解开了安全带,对患者可能出现安全隐患缺乏防范,导致损害后果的发生,其应当承担赔偿责任。最终法院判决某医院赔偿朱某损失7978元。  法院认为,医务人员在在诊疗活动中应当向患者说明病情和医疗措施,需要实施手术、特殊检查、特殊治疗的,医务人员应当及时向患者说明医疗风险、替代医疗方案等情况,并取得其书面同意 不宜向患者说明的,应当向患者的近亲属说明,并取得其书面同意。医务人员对患者的生命与健康利益应具有高度责任心,在医疗行为过程中,应保持足够的审慎注意义务,以预见医疗行为结果和避免损害结果的发生。  据介绍,泗洪法院此次通报的十起典型案例,是从近年来审结的涉及人身伤害的2000余件案例中挑选出来的,案件涵盖了道路交通、工程作业、公共服务、公共场所安全保障、未成年人保护等多种类型侵权责任的承担,目的在于通过案例这一生动的载体,向社会公众宣传法院的审判理念与裁判思路,指明风险与防范、侵权的构成与责任的承担,引导全社会树立法制意识和观念,提升风险防范意识。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。  新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。  美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。  加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。  据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。  本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。  模拟执行太空任务  据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。  当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。  据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。  训练海中溅落  哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。  在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。  据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 中国科大量子模拟取得新进展
    中国科学技术大学潘建伟、苑震生等与清华大学翟荟、兰州大学么志远等合作,使用自主开发的超冷原子量子模拟器,研究了格点规范场理论中的非平衡态热化过程与量子临界性之间的关系,揭示了具备规范对称性的多体系统处于量子相变临界区域时易于热化到平衡态的规律。这项研究成果近日以“编辑推荐”的形式发表于《物理评论快报》。规范理论和统计力学是物理学的两大重要基础理论。从经典电动力学的麦克斯韦方程组到描述基本粒子相互作用的量子电动力学、标准模型等,都是满足特定群对称性的规范理论。统计力学,则是基于玻尔兹曼等提出的最大熵原理,将大量微观粒子(原子、分子等)组成的系综的微观状态与其宏观统计规律连接起来的学科,如微观粒子的能量分布是如何影响其压力、体积或者温度等宏观量的。那么,由规范理论描述的、远离平衡态的量子多体系统会热化到热力学平衡态吗?回答这一问题将推动人们对规范理论、统计力学及两者关系的理解。虽然理论物理学家们提出了各种模型来分析这一问题,但是在实验上难于构建一个既由规范理论描述、又可人工操控并观测其热化过程的物理体系。近年来,超冷原子量子模拟器的出现为同时研究规范理论和统计物理提供了理想的实验平台。2020年,中国科大的研究团队开发了71个格点的超冷原子光晶格量子模拟器,首次对U(1)格点规范理论--施温格模型的量子相变过程进行了实验模拟;2022年,他们对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”。近期,此次工作的合作者翟荟和么志远等通过理论研究指出,在此类格点规范模型中,量子热化和量子相变之间存在关联,并从反铁磁Neel态出发,预言系统只有在量子相变点附近才能达到完全的热化 。进一步观测格点规范理论的量子热化和量子相变之间的关系,对之前的实验能力提出了新的挑战:如何在单格点精度原位地、可区分原子数地操控和探测多体量子态。潘建伟、苑震生团队在他们已有的超冷原子量子模拟器基础上,将量子气体显微镜、自旋依赖超晶格和可编程光学势阱等技术相结合,开发了单格点精度、粒子数可分辨的原子操作和检测技术。基于此,他们得以制备和探测任意原子构型的多原子量子态,并在满足规范对称性约束下,追踪多体量子态的动力学演化过程。在该工作中,他们在实验中制备了特殊原子构型的初态,利用绝热演化的方法研究了满足规范对称性约束的量子相变过程,通过有限尺寸标度理论首次在实验中精确地确定了相变点。同时,他们研究了同一构型初态在远离平衡条件时的退火动力学过程,揭示了具备规范对称性的多体系统处于量子相变临界点附近时易于热化到平衡态的规律。
  • 生态环境部发布国家生态环境标准《放射性物品运输容器跌落试验指南(征求意见稿)》和《放射性物品运输容器耐热试验指南(征求意见稿)》
    为贯彻《中华人民共和国核安全法》《放射性物品运输安全管理条例》,完善我国放射性物品运输及相关领域的标准规范体系,我部组织编制了《放射性物品运输容器跌落试验指南(征求意见稿)》《放射性物品运输容器耐热试验指南(征求意见稿)》,现公开征求意见。征求意见稿及编制说明可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见请书面反馈我部,电子版材料请同时发至联系人邮箱。征求意见截止时间为2024年2月23日。  联系人:生态环境部辐射源安全监管司张京晶  电话:(010)65646134  传真:(010)65646138  邮箱:hssrlc@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.放射性物品运输容器跌落试验指南(征求意见稿)     3.《放射性物品运输容器跌落试验指南(征求意见稿)》编制说明     4.放射性物品运输容器耐热试验指南(征求意见稿)     5.《放射性物品运输容器耐热试验指南(征求意见稿)》编制说明     6.征求意见反馈单  生态环境部办公厅  2024年1月7日  (此件社会公开)
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试 测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 7亿元两套振动台,MTS中标5亿:世界最大地震模拟设施!
    p style="text-indent: 2em "提及天价设备,我们容易想到光刻机行业霸主ASML生产的世界上最顶尖的EUV光刻机,单台售价超1亿美元,2018年,中芯国际首次向ASML订购EUV光刻机,采购价格高达1.2亿美元,大概相当于七亿人民币。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 241px " src="https://img1.17img.cn/17img/images/202003/uepic/4add9eea-8f18-4022-9ae6-102ca95d41d3.jpg" title="1.jpg" alt="1.jpg" width="450" height="241" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "其实,在科学仪器领域,也不乏这样的过亿天价设备,比如大阪大学两台价值约约合人民币2.72亿元的高端电镜(日立高新H3000与日本电子物质及生命科学超高压电子显微镜)、去年8月MTS系统公司2.14亿元中标的世界单套最大规模重载车辆道路模拟系统、以及span style="text-indent: 2em color: rgb(0, 32, 96) "strong近日采购预算超7亿元的天津大学大型地震工程模拟研究设施地震模拟振动台采购项目。/strong/span/span/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "7亿元采购两套振动台系统,MTS独中5亿元/span/strong/pp style="text-indent: 2em "2019年11月28日,天津大学委托北京泛华国金工程咨询有限公司发布“天津大学大型地震工程模拟研究设施地震模拟振动台采购项目”,预算金额为7.156亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 175px " src="https://img1.17img.cn/17img/images/202003/uepic/4e270f62-2db7-4f85-9a34-eb4b5495787f.jpg" title="2.png" alt="2.png" width="500" height="175" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "2020年1月21日,MTS系统公司与天津市天锻压力机有限公司共同中标,其中MTS系统中标金额超5亿元,天津市天锻压力机有限公司中标2.15亿元。/span/pp style="text-indent: 2em "strong此次中标项目的“天价”主要体现在以下几方面:/strong/pp style="text-indent: 2em "strong1)/strong此次采购项目背后是天津大学牵头建设的世界上最大的地震工程模拟研究设施,总投资预计超过15亿元人民币。被称作继贵州“中国天眼”、广东散裂中子源、上海光源等之后的又一国家大科学装置,也是地震工程领域的唯一一个。/pp style="text-indent: 2em "strong2)/strong此次中标,创下MTS系统公司有史以来单一合同订单最高金额纪录,合同总计金额超过7148万美元(根据当前汇率折算人民币超5亿元)/pp style="text-indent: 2em "strong3)/strong由于此次采购项目金额巨大、技术要求比较高,单靠一个投标人的力量不能顺利完成的,所以采取了联合体投标形式,即MTS系统公司与天津市天锻压力机有限公司集中各自优势,以一个投标人的身份获得中标。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "采购项目背景/span/strong/pp style="text-indent: 2em "2018年8月2日,国家发改委批复立项:依托天津大学高水平创新主体,建设开放共享、揭示复杂岩土介质与水动力环境中重大工程动力损伤机理的国家重大科技基础设施—“大型地震工程模拟研究设施”。总投资预计超过15亿元人民币。/pp style="text-indent: 2em "设施总体目标为:面向地震工程领域需求,结合国内外优势力量,集中建设国际一流、规模最大、装备最先进、综合程度高、高度智能化、开放共享的大科学装置。设施可为解决地震工程研究中关键科学问题提供大尺寸大载重地震模拟、多点多维地震差动激励及地震-波流耦合激励等高水平试验手段,大幅提升我国防灾减灾原始创新能力和全社会减轻自然灾害风险的能力,加快地震工程领域人才培养,为提高我国地震灾害的防范水平提供重要支撑。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 236px " src="https://img1.17img.cn/17img/images/202003/uepic/8cef066b-b568-4966-a779-f1d45dfde727.jpg" title="3.png" alt="3.png" width="450" height="236" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大跨桥梁水下振动台台阵波流耦合试验现场效果图/span/pp style="text-indent: 2em "项目首席科学家、天津大学校长钟登华院士说,该设施建设周期为5年,主要包括地震工程模拟试验系统、高性能计算与智能仿真系统、试验配套与共享系统等3大系统。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 269px " src="https://img1.17img.cn/17img/images/202003/uepic/5ad5b226-e052-4356-9baa-0388cd49c915.jpg" title="4.png" alt="4.png" width="450" height="269" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大型水坝-库水-岩体大型振动台试验效果图/span/pp style="text-indent: 2em "在崭新的天津大学北洋园校区内将建设大型的“地震模拟振动台”,总建筑面积7.7万平方米。地震模拟振动台是开展抗震模拟研究的有效试验平台。目前国内外已有的地震模拟振动台或规模较小,或实验功能单一——不能同时模拟地震与其它多种灾害荷载的作用,已经不能满足一旦地震时确保工程安全和正常服役的需要。天津大学将建设尺寸荷载重量更大的地震模拟振动台,以及能同时模拟地震与水下波流耦合作用的振动台台阵试验装置。该设施建成后,可大幅提升我国工程技术领域的创新能力和水平。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "关于中标的两套振动台系统/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 323px " src="https://img1.17img.cn/17img/images/202003/uepic/e2e24e48-cebc-4281-af7a-cf9a9a0816a1.jpg" title="5.png" alt="5.png" width="600" height="323" border="0" vspace="0"//pp style="text-indent: 2em "据悉,该地震工程模拟试验系统包含两套独立的试验设施,建成之后,均为最大规格的地震工程模拟试验设备。其中一套系统为六自由度(6DoF)振动台,有效工作尺寸为16mx20m,有效负载为1350吨,可以开展足尺建筑或者低缩比模型的抗震性能评估。/pp style="text-indent: 2em "另外一套系统是由两个6mx6m的六自由度(6DoF)振动台组成,每个振动台的有效负载均为150吨。两个振动台既可以独立工作,也能够联合起来组成台阵系统,并且该台振系统可以在3m深的水下工作,其中的一个振动台还能够在长度为57m的槽道中移动位置以满足不同跨度样件的抗震试验,例如各种类型的水利枢纽、桥梁、隧道、管路结构等等。水下台振系统周围将布置造浪模拟设备来模拟不同的海洋工况,可以将地震与波流组合起来实现多灾害现象的模拟。/pp style="text-indent: 2em "MTS系统公司首席执行官Dr. Jeff Grave表示,“ MTS系统公司在中国以及全世界的抗震工程以及多灾害试验模拟领域具有技术领先地位,拥有无与伦比的技术能力与专家团队。作为该行业的领军者,MTS系统公司是少数能够提供如此超大规模地震工程模拟设备的工程公司。这个项目包含了诸多挑战,复杂的系统集成、超大载荷与位移的控制、先进的地震仿真和模拟软件,并且将地震与波流结合起来开展试验应用。MTS能够赢得天津大学的项目,对此我们深表自豪,MTS将与天津大学共同努力创造更好的地震模拟试验技术,为中国以及全世界基础建设,包括大型水利枢纽、建筑、桥梁、可再生能源设施等,做出贡献,一同创造一个更加安全、美好、可持续发展的世界!”/pp style="text-indent: 2em "天津大学副校长,项目执行总指挥张凤宝教授表示,“我们非常期待与MTS系统公司一同建设这套世界最大规模、最先进的地震模拟系统,这套系统是我们大型地震工程模拟研究设施的基础系统之一,也是迄今为止在天津建设的首个国家重大科技基础设施的一部分。当整个项目完成之后,所有的科研成果将与全世界的同行共享,我们的目标是重大工程和基础设施建设更加安全、可持续。天津大学欢迎全球的科学家和工程专家来参观、指导未来的地震工程模拟试验研究。“/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "那些“高”价的仪器设备/span/strong/pp style="text-indent: 2em "strong1)一套仪器设备订单成交,2.14亿元,3年分批交付/strong【a href="https://www.instrument.com.cn/news/20190812/490962.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2019年7月29日,MTS系统公司宣布获得世界单套最大规模重载车辆道路模拟系统订单,订单总额3040万美元(约2.14亿元人民币),将为美国陆军设计、生产、制造与集成世界上最大的主轴耦合道路模拟器。该合同为长期持续投入合同,系统部件将在后续2020、2021、2022财年三个财年之中分批交付使用。/pp style="text-indent: 2em "该道路模拟器将安装在美国陆军位于马里兰州的军阿伯丁测试中心。用于加速军用车辆耐久性测试,一旦投入使用,所需的测试时间将缩短75%至80%。通过在实验室中模拟真实路面环境条件,帮助陆军快速评估和改进车辆的可靠性和耐久性,以避免潜在的、耗时的现场故障。/pp style="text-indent: 2em "除了道路模拟器,解决方案还包括MTS SWIFT EVO 50车轮力传感器,用于收集这些车辆在各种试验场地形上的实时数据。同时系统也采用了MTS最大液压动力系统,将可以提供每分钟达数千加仑的连续液压动力。该道路模拟器将能够用于测量最多五轴的载重车辆,对应车辆重量达100,000磅(约45.3吨)。/pp style="text-indent: 2em "“此套道路模拟器离不开MTS系统公司过去五十余年在重载车辆测试技术方面的开发能力与经验积累”,MTS系统公司总裁兼首席执行官Jeffrey Grave博士表示,“MTS公司很高兴能够应用商用车辆建模和仿真的知识,为陆军创建整车测试解决方案。这个新系统将有助于提高军用车辆的可靠性,并为陆军更佳性能量身定制车辆设计提供理论支持。”/pp style="text-indent: 2em "strong2)大阪地震,日立高新与日本电子这两台近3亿元高端电镜受损/strong【a href="https://www.instrument.com.cn/news/20180624/466369.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2018年6月18日,日本大阪府发生里氏6.1级地震,位于大阪府茨木市的大阪大学超高压电子显微镜中心也遭遇强烈晃动,每台价值约23亿日元(约合人民币1.36亿元)的电子显微镜有两台受损,修复需要花费1年以上。受地震影响,一些世界顶级科研项目或出现停滞。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 418px " src="https://img1.17img.cn/17img/images/202003/uepic/2ae993eb-c06b-4ca5-bfe2-047f5fd579d9.jpg" title="6.jpg" alt="6.jpg" width="500" height="418" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "H3000 UHVEM(日立高新)/span/pp style="text-indent: 2em "该中心这两台高端显微镜,一台正是日立高新生产的H3000 UHVEM(3 MV ultra-high voltage electron microscope,300万伏超高压电子显微镜),其高度为17米,使用世界最高电压对于较厚样品也能进行观察;另一台则是日本电子生产的Materials- and Bio-Science UHVEM(物质及生命科学超高压电子显微镜),其高度为12米,能在一秒钟内对每一个原子的运动进行1600次拍摄。这两台电子显微镜可以观察到从物质及生物的微细结构到物质受到放射线损伤的情况,能观察到纳米级的微小结构。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 283px " src="https://img1.17img.cn/17img/images/202003/uepic/4b2cb873-b969-4437-a040-682fd076074b.jpg" title="7.jpg" alt="7.jpg" width="500" height="283" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Materials- and Bio-Science UHVEM(日本电子)/span/pp style="text-indent: 2em "此次地震致使产生高压的零部件脱落,对精密度有严格要求的电子加速器严重变形等,两台显微镜都遭受致命性打击。该中心主任保田英洋无奈地表示,已经完全不能使用,将与厂家等商谈进行修理,完全修复需要花费1年以上。/pp style="text-indent: 2em "strong3)南方科技大学2.8亿冷冻电镜二期采购:赛默飞中标其中2.6亿/strong【a href="https://www.instrument.com.cn/news/20181225/477695.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong详情/strongstrong/strong/span/a】/pp style="text-indent: 2em "2018年12月24日,南方科技大学 “冷冻电镜项目二期采购”项目中标结果揭晓,中标金额2.82亿元。中标的生产供应商中,赛默飞成最大赢家,其中4套高端冷冻电镜Krios G3i中标金额为2.18亿元。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/d3dcbe57-ba9c-4c12-ad5f-93a6bc7dc12a.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Krios™ G3i 冷冻透射电子显微镜/span/pp style="text-indent: 2em "strong4)西湖大学冷冻电镜采购项目揭晓:赛默飞1.53亿元中标/strong【a href="https://www.instrument.com.cn/news/20181231/478034.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2018年12月27日,西湖大学“科研仪器设备(第四十一批)”采购项目结果公布,赛默飞Krios G3i等冷冻电镜系统以2225.7255万美元(根据当前汇率,约合1.53亿元人民币)中标。/pp style="text-indent: 2em "strong5)上海交大冷冻电镜采购揭晓:赛默飞1.05亿元中标/strong【a href="https://www.instrument.com.cn/news/20181231/478035.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong详情/strongstrong/strong/span/a】/pp style="text-indent: 2em "2018年12月26日,“上海交通大学冷冻电镜系统”采购项目结果公布,赛默飞Krios G3i和Talos F200i分别以1094.8万美元(根据当前汇率,约合7527.3万元人民币)、438.5万美元(根据当前汇率,约合3014.9万元人民币)中标,总中标金额为1.05亿元。/pp style="text-indent: 2em "strong....../strongbr//p
  • 宁波材料所在AI 材料计算模拟领域取得系列进展
    基于量子力学的原子层级模拟计算是材料学中一种直观有效且常用的研究方法,它可以研究材料的空间原子结构、电子结构,以及由此带来的各种宏观物理、化学性质。长期以来,材料计算模拟的发展受到计算尺度的严重制约,例如描述理想周期结构、完美晶格的密度泛函理论仅可求解百原子量级的体系。   然而真实的材料体系是不完美并且非常复杂的,材料中存在缺陷、晶畴界、表界面、非晶无序等结构特征,处于非平衡态的材料体系同时具有动力学演化行为,这些复杂体系的特征行为体现在更大的时间和空间尺度,因此需要大尺度的模拟计算才能描述。基于传统物理“规则驱动”的计算技术已难以从理论框架突破尺度限制。   针对这一问题,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队利用并发展了AI+材料计算模拟方法。基于“数据驱动”的AI是从数据和观测值出发,寻找数据之间的特征和关系,从而发现一些定理和规律。AI与科学的结合带来了新的科研范式,给材料计算模拟带来全新的思路和视角。Deep-Potential(DP)是一种具有代表性的AI技术,它运用深度神经网络技术,采用大量小原胞(数十个原子)的密度泛函理论计算数据作为训练集,训练完成的网络可以高效准确地预测出大原胞(最高可计算百万个原子)的总能以及原子受力,从而实现大时间空间尺度(微米/纳秒)的动力学模拟。   钟志诚研究员带领研究小组近期开展了一系列DP相关的研究:1)通过研究SrTiO3的结构相变,发现了DP模型具有超高精度,与密度泛函理论计算得到的能量误差可达到meV/atom以内[Phys. Rev. B 105,064104(2022)];结合DP势函数和位错解析理论,在大尺度下准确描述Cu的位错芯结构以及位错间的长程弹性相互作用[Comput. Mater. Sci. 218,111941 (2023)]。上述两个工作证实了DP在大尺度下的高精度以及描述位错等复杂结构的有效性。2)利用DP,解释了ZrW2O8的负热膨胀现象以及压力诱导的非晶现象[Phys. Rev. B 106, 174101 (2022)],该工作表明DP势函数能够有效描述复杂动力学行为以及非晶无序结构。3)晶格量子效应对热力学等性质的求解至关重要,而却往往因为其较高的计算成本在模拟计算中往往被忽略。团队以SrTiO3的量子顺电现象为例,提出了结合DP+QTB高效地研究材料中的晶格量子效应方案[Phys. Rev. B 106, 224102 (2022)]。   以上工作为未来材料计算模拟研究提供了全新范式,为复杂材料体系的高精度大尺度模拟提供了具体思路。此外,结合AI+材料计算模拟进行大尺度及复杂效应的计算,有望解决一系列复杂材料体系中的微观机制、宏观性能等问题。例如多元体系中的高熵合金、固液界面;机制复杂的摩擦、张力、非晶、表面重构;化学反应的表面吸附、催化、燃烧等问题。   以上工作参与者包括中科院宁波材料所博士后何日、邓凤麟,博士研究生吴宏宇,合作者包括南京大学物理学院卢毅教授,西湖大学理学院刘仕教授,深势科技首席科学家张林峰博士。以上工作得到了国家重点研发计划(2021YFA0718900和2022YFA1403000)、国家自然科学基金(11974365和12204496)、中国科学院前沿科学重点研究计划(ZDBS-LY-SLH008)以及王宽诚教育基金(GJTD-2020-11)的支持。图1 (a) 通过密度泛函理论所计算的大量空间构型(约百原子级别)的能量和力;(b)DP训练所得的深度神经网络;(c)和(d)训练好的深度神经网络能应用于预测超胞(约百万原子级别)的能量和受力,其精度和密度泛函理论一致图2 课题组近期各工作。左上:DP势函数的精度展示;右上:DP方法描述位错间对数形式的长程弹性相互作用;左下:ZrW2O8的压力诱导非晶现象;右下:DP+QTB预测的SrTiO3结构相变
  • 美国已从我国试验机市场“神坛”跌落?
    长期以来,我国高端试验机市场被进口设备垄断,国内试验机厂家则处于中低端市场打价格战。近几年,由于中美贸易战,国外高端设备陆续对我国禁售,给了国内试验机企业一些机会。此外,在“十四五”规划文件及地方政策的支持下,国产仪器发展整体提速,国内试验机企业(如三思纵横、力试、中机试验等)慢慢聚焦到高端试验机的研制开发,并取得了一定的进展。在此背景下,仪器信息网特对电子万能试验机(HS90241010)近三年海关数据进行了汇总分析,并整理成文,以方便业内人士更深一步了解我国试验机市场的发展状况。从进口数据看:我国电子万能试验机进口量持续减少,对美国产品的依赖度下降自中美贸易战开打,电子万能试验机经历了几轮加征关税,其进口市场受到冲击,再加上新冠疫情致使全球经济发展面临需求收缩、供给冲击、预期转弱等压力,近年来我国电子万能试验机的进口数量连续下跌。2019年至2021年,我国电子万能试验机的年进口数量分别为362台、347台和160台,2021年进口量较2019年下降了近56%。从近三年的逐月进口量可以看出,2019年和2020年,我国电子万能试验机的月进口量在30台上下波动;2021年,我国电子万能试验机的月进口量明显下降,徘徊在10台~20台之间。从近三年的进口总量来说,美国仍是我国电子万能试验机最大的贸易伙伴,其次是德国、日本、英国和意大利。从各年的进口量来看,2019和2020年,美国稳坐中国电子万能机试验进口市场首位,中美贸易战似乎并没有影响到我国从美国进口电子万能试验机的热情;2021年,我国自德国和日本进口电子万能试验机的数量均赶超美国,德国一跃成为2021年度中国电子万能试验机第一大进口国,而美国则从首位跌至第三位,这一定程度上可以说明我国对美国电子万能试验机产品的依赖度已有所下降。从出口数据看:出口量远高于进口量,马来西亚是最大出口国2019年至2021年,我国电子万能试验机的年出口量分别为72990台、92374台、84132台,远高于同期进口量。从年出口量来看,2021年我国电子万能试验机的出口量较2020年下降约9%;而从年出口额来看,2021年我国电子万能试验机的出口额为8300万元,较2020年增长近13%。我国电子万能试验机的月出口量跨度较大,低有2020年2月仅出口8台,高有2019年5月出口达20930台。从上图(我国电子万能试验机逐月出口量)可以看出,每年2月、7月和10月的出口量相对较低。近三年,马来西亚、意大利、日本、英国、美国是我国电子万能试验机的五大出口贸易国。尤其马来西亚,2020年和2021年的贸易量分别为39043台和47931台,远高于其他国家,是我国电子万能机试验出口市场的绝对主体。此外,日本、英国和美国不仅是我国电子万能试验机的主要出口贸易国,也是主要进口贸易国。对比:进口均价连续上升,出口数量多而价格低从数量的角度来看,我国电子万能试验机的年出口量远高于同期进口量;然而从金额的角度来看,我国电子万能试验机的年出口额均低于同期进口额。根据每年的总进出口金额和总进出口数量,计算得出每年的进出口均价。2019年至2021年,我国电子万能试验机进口均价分别为47.64万元/台、50.59万元/台和77.64万元/台,而出口均价分别为0.11万元/台、0.08万元/台和0.10万元/台。总的来说,虽然在进出口方面,我国电子万能试验机的市场情况均不容乐观,但是随着进口税率一涨再涨,进口均价一升再升,国产采购政策一帮再帮,我国市场对美高端电子万能试验机产品的依赖程度已有所下降,无论是进口量还是出口量,美国的贸易占比都出现了下降趋势。此外,受益于我国和日、韩、澳、新西兰及东盟十国于2020年11月签订的《区域全面经济伙伴关系协定》(RCEP),区域内电子万能试验机的关税减少,2021年我国电子万能试验机的出口额较2020年略有增长,且出口地区发生明显偏移,由意大利、美国、法国、德国等转至马来西亚、越南、泰国、新加坡等国家。
  • 宁波市江东昌远仪器仪表有限公司成功代理爱佩品牌恒温恒湿箱
    2015年12月09日,爱佩公司正式授权宁波市江东昌远仪器仪表有限公司为我司特约销售代理商,代理销售我司生产的:恒温恒湿箱、冷热冲击试验箱、高低温试验箱、紫外老化试验箱、氙灯老化试验箱、淋雨试验箱、砂尘试验箱、跌落试验机、拉力试验机、步入式恒温恒湿试验室、盐水喷雾试验箱、电磁振动试验台、模拟运输振动台、快速温变试验箱、纸带耐磨擦试验机、插拔力试验机、按键寿命试验机、工业烘烤箱、恒温干燥试验箱等试验设备。宁波市江东昌远仪器仪表有限公司代理销售的设备均为我司官方品质设备,所有设备的售后、技术支持均为爱佩科技负责与承担。宁波市江东昌远仪器仪表有限公司地址位于:宁波江东区中兴路20号,是一家专门从事代理销售各类实验室仪器及设备的专业公司.江东昌远仪器仪表始终坚持不懈地为生产﹑科研﹑教学服务.主要经营有:生化分析﹑环境监测﹑质量检测﹑材料试验﹑实验设备﹑纺织皮革﹑工程测量仪器﹑化玻试剂耗材等.公司代理经营的品牌主要有:德国赛多利斯电子天平﹑水份仪 德国德图检测仪 美国雷泰红外测温仪 美国华瑞气体分析仪 上海天平仪器厂电子天平﹑分析天平 上海雷磁仪器厂 上海分析仪器总厂收色谱仪﹑光度计﹑原子吸 理达仪器厂酸度计﹑电导仪﹑电位滴定仪 上海精宏﹑天衡镜屏仪器厂烘箱﹑培养箱﹑箱式炉﹑超净工作台﹑水浴锅 广东超声仪器研究所探伤仪 山东莱州华银硬度计 上海飞鸽离心机 上海物光厂旋光仪﹑熔点仪 宁波永新光学显微镜 杭州川井除温机;东莞爱佩生产的:恒温恒湿试验箱、冷热冲击试验箱、高低温试验箱、紫外老化试验箱、氙灯老化试验箱、淋雨试验箱、砂尘试验箱、跌落试验机、拉力试验机、步入式恒温恒湿试验室、盐水喷雾试验箱、电磁振动试验台、模拟运输振动台、快速温变试验箱、纸带耐磨擦试验机、插拔力试验机、按键寿命试验机、工业烘烤箱、恒温干燥试验箱等试验设备。更多想跟宁波市江东昌远仪器仪表有限公司一样希望代理东莞市爱佩试验设备有限公司生产的各种模拟环境试验设备请联系业务员李小姐.电话/手机:0769-81015056/18988712117
  • 日本汽车零部件巨头曝大规模造假,盘点汽车零部件质检项目
    近日,央视财经频道报道,2020年2月16日,日本汽车零部件供应商曙光制动器工业株式会社日前表示,其在日本工厂制造的刹车极其零部件中,该公司发现存在篡改检查数据等不正当行为!调查发现,该公司至少从2001年开始就有此类不当行为。这一消息引发网络热议,网友戏称”躬匠精神”.据了解,曙光制动器工业株式会社是丰田、本田、马自达、三菱等厂车企的供应商,约有11.4万件产品存在伪造刹车装置及其零部件的检查数据,这些零部件中有5000件零部件未能通过曙光制动器与汽车制造商户制定的质量标准。此外,曙光制动器在日本本土的四家工厂确认了造假行为。无独有偶,近几年,日本企业频繁曝出造假行为。由于近年来日本企业造假事件频发,“日本制造”已经引发了强烈的信任危机。众所周知,汽车零部件在生产过程中涉及多种项目的检测。仪器信息网跟随时事热点,简要整理了汽车质检常见检测项目,供广大感兴趣的用户参考。产品类别测试项目外饰件测试盐雾腐蚀/气体腐蚀/臭氧腐蚀氙弧灯老化/金属卤素灯阳光模拟老化/碳弧灯老化/荧光紫外灯老化高低温/高低温湿热循环/温度冲击/快速温变防尘/防水/淋雨测试振动/三综合振动/机械冲击机械耐久/疲劳/寿命涂层/镀层特性测试禁限用物质测试内饰件测试化学环保分析耐化学试剂燃烧特性金属卤素灯阳光模拟老化/碳弧灯老化高温红外光照测试高低温/高低温湿热循环/温度冲击/快速温变/低温落球振动/三综合振动操作性能测试机械耐久/疲劳/寿命耐摩擦/耐刮擦/硬币刮擦指甲硬度固化光泽度表皮黏附力/漆膜附着力/胶带附着力剥离强度汽车电子电器产品测试ELV及禁用物质测试耐化学试剂/耐电池液盐雾腐蚀/气体腐蚀/臭氧腐蚀防尘/防水/淋雨测试振动/三综合振动/机械冲击特定环境性能测试高低温/高低温湿热循环/温度冲击/快速温变功能性耐久/疲劳/寿命电学测试电磁兼容测试(CE /RE/ RI/BCI/ESD/ME/瞬态传导抗干扰/耦合传导抗扰度/电源间断跌落实验)产品认证座椅测试机械性能测试:H点/座椅总成纵向调节功能/滑道行程/静态刚度试验/颠簸和蠕动试验/模拟人体进出座椅试验/前坐垫向下强度试验/纵向调节疲劳试验/靠背骨架总成强度试验/靠背调节疲劳/头枕功能试验/座椅扶手强度和刚度试验气候老化测试:温度循环/耐低温耐潮湿、热老化、盐雾试验安规测试:阻燃测试化学环保测试线束测试机械性能试验:振动试验、机械冲击试验、跌落试验、插入/拔出力测试电性能试验:接触电阻、电压降测试、温升试验、耐电压测试、绝缘电阻测试环境试验:高低温、湿热试验、盐雾试验、防尘防水、耐试剂、气体腐蚀试验、耐臭氧试验化学环保测试:ELV、VOC、气味其它试验:尺寸测量、气密性试验、燃烧测试
  • 富士电波在宝钢金属热模拟项目上中标
    由我司全权代理的日本富士电波公司的2台金属热模拟装置,新型双电源式拉压热模拟Thermemcmastor-Z,新型高频加热式扭转热模拟装置THermecmastor-TS在宝钢特钢研究所金属热模拟项竞标中高价胜出。  这2套装置是继1987年,1991年武钢和宝钢分别导入旧型号热模拟装置Thermecmastor-Z之后,日本公司再次进入中国钢铁业。打破了美国DSI公司Gleeble热模拟近20年独占市场的格局。日本钢铁界拥有富士电波公司仪器达70多台,新日铁等公司已经连续7-8次购买Thermecmastor-Z。相信日本热模拟的导入必定为中国钢铁业的自主创新/自主品牌的建立大有帮助。
  • 网络直播:默克为您解读《无菌工艺模拟试验指南》要点
    默克为您解读《无菌工艺模拟试验指南》时间:2017年7月21日 13:30-14:30 本次课堂针对《无菌工艺模拟试验指南》中相关内容,您可以了解到: 无菌制剂生产工艺及模拟范围 培养基的灭菌与除菌风险 最差条件的选择与干预设计 过往缺陷案例展开分析与讨论我们邀请您共同探讨,加深对无菌工艺模拟试验及指南的理解。相关法规无菌工艺模拟试验,培养基模拟灌装的相关要求GMP附录1 无菌药品 第十章第四十七条 无菌生产工艺验证要求培养基模拟灌装试验首次验证应连续进行3次合格试验。之后每班次半年进行1次,每次至少一批。《无菌工艺模拟试验指南》(无菌制剂)和(无菌原料药)国家食品药品监管总局食品药品审核查验中心组织起草了该指南,结合近年来在无菌药品生产企业GMP认证检查和跟踪检查中发现的无菌工艺模拟试验缺陷情况,以指导和规范无菌药品生产企业开展无菌工艺模拟试验。 日期: 2017年7月21日 下午: 13:30 - 14:30 主讲人: 韩璐璐 默克微生物监控市场部参与该《无菌工艺模拟试验指南》的编写工作,专注于微生物检测的应用与研究,先后就职于制药及医疗器械质量控制行业,从事微生物实验室及厂房设计及验证,质量管理,微生物检测等工作。熟悉食品药品微生物检测,生产过程环境监控,GMP管理。扫描以下二维码,报名赢取精美礼品!根据用户参与课堂的活跃度抽取:一等奖 象印保温杯 3名二等奖 充电宝 6名三等奖 魔方插座 10名根据用户参与课堂的时长抽取:时间达人奖 不倒杯 、笔记本 共30名
  • 中国科大在微波精密测量、海洋地震勘探和大气数值模拟方面取得新进展!
    近日,中国科学技术大学研究团队在微波精密测量、海洋地震勘探和大气数值模拟方面取得多项科技研发成果。基于里德堡原子的微波测量实现精密探测!中国科大郭光灿院士团队史保森、丁冬生课题组利用人工智能的方法,聚焦量子模拟和量子精密测量科学研究,实现了基于里德堡原子多频率微波的精密探测,相关成果日前发表于《自然-通讯》。具有较大电偶极矩的里德堡原子作为微波测量体系具有广泛应用前景,但多频率微波在原子中会引起复杂干涉模式,从而严重干扰信号接收与识别,这是基于里德堡原子的微波测量领域的诸多难题之一。因此,该成果对原子分子光物理学领域的研究具有重大意义,且该成果提出的是在不求解主方程的情况下有效探测多频率微波电场的方案,且在硬件上没有太高要求即可实现较高精度,为精密测量领域与神经网络交叉结合提供了重要参考,在通信、雷达探测等领域具有重要应用前景。高精度深水油气地震勘探数据采集装备成功应用于我国海洋地震勘探数据采集,打破了国际技术封锁和价格垄断!中国科学技术大学核探测与核电子学国家重点实验室曹平副教授团队,把在先进加速器、对撞机等大科学装置研究和建设上积累的先进的电子学测量技术和方法,应用于海洋石油勘探的重大国民经济领域,并与中海油田服务股份有限公司联合研发了高精度深水油气地震勘探数据采集装备。油气勘探是整个石油工业的基础和先导,关系着国民经济的发展和国家的战略安全。然而我国油气勘探,尤其是海洋油气勘探,所用的几乎全是进口装备,进口装备贵且在重要技术上对我国进行了限制,严重阻碍了我国勘探技术的发展。研究团队攻克了超长距离一体化精密采集传输、大覆盖范围多缆全局精确同步、可扩展的海量数据实时读出、水下电缆高可靠作业支撑等一系列关键核心技术难题,这套装备具备高密度采集、宽覆盖超长缆作业和可靠的海上作业等特点,可分辨相差1600万倍的信号,总探测覆盖面积达十几平方公里,精密采集通道规模达数万道,与国际水平相比,该装备的同步技术指标要高20倍,传输能力高1倍,下潜深度也突破了国外的沉放深度限制。新研发填补了国内外大气数值模拟的空白!中国科学技术大学科研团队基于新一代国产神威超算平台,研发了包含大气成分演变过程的全球高分辨率非静力平衡大气数值模式iAMAS,在大规模数据读写速度、并行计算效率、规模可扩展性、运行时效性等多个方面填补了国内外大气数值模拟的空白。
  • 阿泰可发布阿泰可整车综合性能环境试验舱(转毂+红外线阳光模拟)新品
    该套环境舱主要用于整车高低温存放试验、整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。该产品主要由气候模拟试验室主体、升降温装置、新风/尾排系统、阳光模拟系统、仓内温度采集系统、电气控制系统构成。采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠 一. 主要技术指标1 温度指标温度范围:-40℃~+60℃;温度均匀度:≤±2℃(空载);温度偏差:≤±2℃(空载);温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)升温速度:≥1℃/min(带载,发动机不启动,全程平均);降温速度:≥0.7℃/min (带载,发动机不启动,全程平均);负载:汽车,重量≤6吨;依据标准序号试验项目依据标准1汽车起动性能试验方法GB/T12535-20072除霜除雾试验GB11556-20093电机性能试验GB/T 18297-2001(参考)4太阳辐射试验GB /T 2423.24-19955恒定湿热试验方法GB/T2423.3-20066汽车采暖性能要求和试验方法GB/T 12782-20077汽车空调整车性能试验方法QC/T658-2000 创新点:采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠
  • 清华大学团队模拟日本核污水排海:240天到达我国沿海
    2023年8月22日,日本首相岸田文雄宣布,将从24日开始向海洋排放福岛第一核电站核污染水。东京电力公司已公布了向海洋排放的详细步骤。按计划,排放前在处理过的水中加入大量海水,如果确认浓度降低到预想的水平,将在17天内排放第一批共7800吨核污染水。2023年度预计排放约3.12万吨,氚总量为5兆贝克勒尔,约为东电年计划排放量上限(22兆贝克勒尔)的两成。今天上午,一则“有研究模拟日本核污水排海扩散过程:240天到达中国沿海,1200天后覆盖北太平洋”的消息,引发网友热议。据了解,该研究来自清华大学的团队。2021年,清华大学就污水排放做了核废水在太平洋扩散机理的实验。清华大学深圳国际研究生院海洋工程研究院张建民院士、胡振中副教授团队从宏观和微观两种不同的角度分别建立了海洋尺度下放射性物质的扩散模型,并实现了福岛核废水排放计划的长期模拟。氚的宏观扩散模拟结果宏观模拟结果表明,核废水在排放后240天就会到达我国沿岸海域,1200天后将到达北美沿岸并覆盖几乎整个北太平洋。随后,污染物一边在赤道洋流的作用下沿着美洲海岸向南太平洋快速扩散,另一边通过澳大利亚北部海域向印度洋转移。值得注意的是,尽管污染物的排放位置是在福岛附近,但随着时间的推移,污染物高浓度区域将沿着35°N线附近向东延伸,从开始的东亚附近海域扩散到北美附近海域。在第2400天时,中国东南沿岸海域主要呈现浓度较低的浅粉色,而北美西侧海域已经基本被浓度较高的红色覆盖。三个沿海城市及它们附近的污染物浓度变化研究人员进一步选取了日本宫崎、中国上海和美国圣迭戈这三个沿海城市进行对比,从污染物浓度变化曲线图中可以发现,在第4000天时圣迭戈附近的污染物浓度大约为0.01个单位,这一数值已经是宫崎的三倍左右、上海的40倍左右。出现这一现象的原因主要是日本附近强烈的洋流作用,福岛处于日本暖流(向北)和千岛寒流(向南)交汇的地方,所以大部分污染物不会沿着陆地边缘向南北方向迁移,而是随着北太平洋暖流向东扩散。这一结果也意味着,在核废水排放的早期,应主要考虑它对亚洲沿岸的影响。但在后期,由于北美沿岸海域的污染物浓度将持续高于大部分东亚沿岸海域,需要重点关注北美沿岸海域的受影响情况。氚的微观扩散模拟结果除宏观扩散外,研究人员还从微观角度进行了氚的扩散模拟。与宏观扩散分析注重污染物的整体分布不同,微观扩散分析更加关注污染物个体的行为,也因此它能够支持污染物的扩散路径分析。例如,对模拟结果中到达沿岸海域的某三个污染物微粒,以400天为取样间隔,得到它们的运动轨迹。基于这些运动轨迹,可以知道美洲沿岸海域的污染物主要通过横跨太平洋到达。部分污染微粒的运动轨迹值得注意的是,根据日本的排放计划,一单位氚污染物的浓度大约对应每立方米0.29贝可,相比于氚在海洋中的背景浓度来说不算大。然而,这项研究对于污染物长期扩散的预测、核废水排放计划的合理应对以及后续放射性物质浓度的监测仍具有重要意义。在该研究的基础上,还需要通过进一步试验来探究生态环境对于放射性物质的敏感性,确定放射性物质浓度增加对于海洋生态环境和人类生活环境的影响程度,从而最终判断排放核废水这一行为对于整个海洋和人类的影响。相关成果以《福岛核事故处理水的排放——宏观与微观模拟》(Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations)为题发表在《国家科学评论》(National Science Review)期刊上。
  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制