当前位置: 仪器信息网 > 行业主题 > >

中红外光谱分析

仪器信息网中红外光谱分析专题为您提供2024年最新中红外光谱分析价格报价、厂家品牌的相关信息, 包括中红外光谱分析参数、型号等,不管是国产,还是进口品牌的中红外光谱分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中红外光谱分析相关的耗材配件、试剂标物,还有中红外光谱分析相关的最新资讯、资料,以及中红外光谱分析相关的解决方案。

中红外光谱分析相关的论坛

  • 【原创】近红外与中红外光谱分析的区别

    近红外与中红外光谱分析的区别 是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。 1800年,Herschel 首次发现了NIR光谱区 1900年前后,NIR光谱仪器使用玻璃棱镜和胶片记录器,其光谱范围局限于700 nm—1600 nm。50年代的商品NIR光谱仪使用硫化铅光敏电阻作检测器,其波长范围能延伸至3000 nm,能用于定量分析,但,由于NIR消光系数低和谱带宽而解析困难,该技术并没有获得广泛应用。60年代,Karl Norris 使用漫反射技术对麦子水分、蛋白和脂肪含量进行研究,发现NIR光谱用于常规分析的实用价值。随计算机发展和化学计量学(Chemometrics)诞生,NIR和化学计量学结合产生了现代NIR光谱学。NIR最先应用于农业领域。80年代,光谱仪器制作和计算机技术水平有了大的提高,NIR被广泛应用于在工业和其它领域。近几届匹司堡分析仪器会议上,NIR已成为红外光谱分析报道的热点。NIR在线分析应用给石化工业带来了巨大经济效益,更是引人注目。 根据红外辐射在地球大气层中的传输特性,通常分为近红外(0.75μm到3μm)、中红外(3μm到30μm)、远红外(30μm到1000μm)。 主要区别是波长不同,应用领域不同。 红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒物、药物等诸多方面,在未知化合物剖析方面具有独到之处。 (NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外区域按ASTM定义是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]“沉睡” 了近一个半世纪。直到20世纪50年代,随着商品化仪器的出现及Norris等人所做的大量工作,使得[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,从此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进入了一个沉默的时期。80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在测样技术上所独有的特点,使人们重新认识了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的价值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在各领域中的应用研究陆续展开。进入90年代,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在工业领域中的应用全面展开,有关[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进入一个快速发展的新时期。 我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,除一些专业分析工作人员以外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器市场。由此也可以看出[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界炙手可热的发展趋势。在不久的未来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受。 现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。 与常规分析技术不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。具体的分析过程主要包括以下几个步骤:一是选择有代表性的样品并测量其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];二是采用标准或认可的参考方法测定所关心的组分或性质数据;三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;四是未知样品组分或性质的测定。由[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的工作过程可见,现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术包括了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]、化学计量学软件和应用模型三部分。三者的有机结合才能满足快速分析的技术要求,是缺一不可的。 与传统分析技术相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。因为建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。主要的应用领域包括:石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;在医药领域可以测定药品中有效成分,组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。 相信随着科学技术的不断发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术这一先进的技术必将得到广泛的认同和应用。

  • 近红外光谱在复杂体系分析中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在复杂体系分析中的应用中国农业大学 严衍禄 李军会 赵龙莲本文所指“复杂体系分析”主要指谷物、食品、果品、中药等天然产品的无损分析。与常规复杂体系相比,天然产物的背景更加复杂;与中红外光谱的基频谱相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分子振动的各级倍频与合频,每种含氢基团在本谱区通常有五、六个以上的谱带,光谱更加重叠;与常规的液态样品分析相比,近红外无损分析受样品的状态、制样和进样条件等影响更加严重,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]具有显著的统计性的波动。因此,“复杂体系分析”是复杂、重叠、变动的光谱中提取弱信息。与常规多组分分析不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]复杂体系分析需要采集样品的复杂背景、解析光谱的重叠、消除光谱的干扰因素实现弱信号分析,主要依靠化学计量学方法通过对光谱的预处理,用多元校正来实现分析。用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]做复杂体系分析的优点是:信息量极为丰富,而且本谱区的透过率强,适合做无损分析、在线分析、多组分同时分析、原位分析与瞬间分析等。因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析在农业、食品、药物等领域有着广泛的应用,并取得了极大的成功。在2000年的匹茨堡(PITTCON)会议上,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析被认为是所有光谱分析最受重视的一类分析方法。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析在复杂体系分析中的几个理论与实践问题:

  • 【分享】如何进行红外光谱分析

    利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。红外光谱仪的种类有:①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:①多通道测量,使信噪比提高。②光通量高,提高了仪器的灵敏度。③波数值的精确度可达0.01厘米-1。④增加动镜移动距离,可使分辨本领提高。⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。由于分子中邻近基团的相互作用,使同一基团在不同分子中的特征波数有一定变化范围。此外,在高聚物的构型、构象、力学性质的研究,以及物理、天文、气象、遥感、生物、医学等领域,也广泛应用红外光谱。 红外光谱解析方法一,IR光谱解析方法二,IR光谱解析实例一,IR光谱解析方法1.已知分子式计算不饱和度不饱和度意义:续前例1:苯甲醛(C7H6O)不饱和度的计算续前2.红外光谱解析程序 先特征,后指纹 先强峰,后次强峰 先粗查,后细找 先否定,后肯定 寻找有关一组相关峰→佐证先识别特征区的第一强峰,找出其相关峰,并进行峰归属再识别特征区的第二强峰,找出其相关峰,并进行峰归属一,IR光谱解析方法二,IR光谱解析实例一,IR光谱解析方法1.已知分子式计算不饱和度不饱和度意义:续前例1:苯甲醛(C7H6O)不饱和度的计算续前2.红外光谱解析程序 先特征,后指纹 先强峰,后次强峰 先粗查,后细找 先否定,后肯定 寻找有关一组相关峰→佐证先识别特征区的第一强峰,找出其相关峰,并进行峰归属再识别特征区的第二强峰,找出其相关峰,并进行峰归属

  • 【原创】近红外光谱分析技术在药学领域中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在药学领域中的应用摘要:综述了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在药学领域中的应用,包括[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在原料药的分析、药物制剂的分析和制药过程中的质量控制等等。关键词 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],药学,应用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术自70年代以来取得了重要进展,特别在药学领域,已有大量文献介绍[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在这些方面的应用。1 原料药的分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法可用于原料药活性成分的分析。Mark等使用马氏距离分类技术,通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对制药原料进行定性鉴别。Shah等则分别用马氏距离法和SIMCA法这两种分类方法对制药原料的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行分类。另外,原料药的结晶状态、粒径和密度在制剂生产和控制主要活性成分的过程中非常重要,可用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对原料药的不同物理性质进行检测。Dreassi等利用近红外反射光谱,根据药物的不同物理性质,对扑热息痛、布洛芬等几种原料药进行了成功的鉴别。2 药物制剂的分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物制剂的分析方面的应用有了很大的发展。在早期,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法和传统分析方法一样,需要用溶剂提取制剂样品中的待测成分后进行测定。随着近红外分析仪的发展,计算机科学和化学计量学的进步,可以用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法对制剂样品进行无损分析。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术所具备的这种传统分析方法无可比拟的优越性,也为实现生产过程实时在线的质量控制提供了新的手段。2.1 制剂中活性的含量测定 最早使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对片剂药物进行含量测定的是FDA的Sherken。他用近红外法测定一系列的甲丙氨酯标准溶液,建立了计算甲丙氨酯片含量的校正方程。几年后,Zappala等继续考察了近红外对片剂和缓释胶囊中甲丙氨酯的含量分析,对Sherken的方法作了改进。Allen用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法定量测定了片剂中的卡立普多、非那西丁和咖啡因。为降低近红外分析的检测限,Corti等尝试在分析前用氯仿进行提取,测定了口服避孕药中的炔雌醇和炔诺酮。Chasseur使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析了西米替丁颗粒的含量,并用紫外光谱法作对照,结果基本一致。Corti等在用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析胶质和粉末基质中酮替芬含量时,考察了校正样品的浓度范围对结果的影响,并在此基础上分析了雷尼替丁片的含量。为建立用于药物制剂的可靠而稳定的数学模型,Jouan-Rimbaud等考察了多种校正方法后发现,可以通过特征选择改善多元校正。 Jensen等将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于胺碘酮薄膜包衣片的分析,为消除薄膜包衣可能产生的干扰,在采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]前除去了包衣。而Wang等在第9届[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]国际会议上的一篇报告指出,除去包衣并不必要。他们用近红外发射光谱透过厚的胶囊壁,成功地测定了雷尼替丁胶囊中活性成分的含量。2.2 药物制剂的鉴别和分类 Ciurczak等用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对含三种活性成分的药物制剂进行了分析,分别考察了光谱的减除、光谱的再现和判别分析等数据处理方法在制剂的组成成分鉴别和制剂样品分类中的应用。Corti等将马氏距离用于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分类,对10种抗生素制剂进行定性区分,所有待测样品都得到了很好的分类。Wu等采用主成分分析和偏最小二乘算法进行光谱的特征选择,从而实现对不同剂量的同种药物制剂的区分。Lodder等在1987年提出了基于近红外反射分析检测完整胶囊的方法。为达到快速、简便测定胶囊的目的,他们设计了一种特殊的反射器,无需打开胶囊剂,即可直接放入反射器进行测定。Lodder等还将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于对片剂的直接测定,使用改进的载样装置分析阿司匹林片剂,得到了较好的分类结果。Dempster等开发了一种非侵入式近红外反射分析法,采用光纤传感器透过包装材料直接测定样品,能够识别成分相同,但包衣材料不同的片剂。 在国内,任玉林等对近红外在药品无损分析中的应用进行了一系列研究。他们应用几种多变量统计分类技术,对磺胺噻唑、美迪康等粉末药品进行了非破坏性分析,成功地鉴别出合格药、劣药和假药。2.3 水分的测定 由于水分子在近红外区有一些特征性很强的合频吸收带,而其它各种分子的倍频与合频吸收相对较弱,这使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]能够较为方便地测定药物和其它化学物质中水分的含量。Jones等利用近红外分析对冻干剂中的含水量进行了测定。用这种方法每小时可测定40个样品,并且结果与Karl Fischer法一致。作者认为,近红外法避免了空气中水分的干扰,因此与Karl Fischer法相比有其优越性。Corti等也将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法应用于盐酸雷尼替丁片中含水量的分析控制。2.4 片剂的溶出度测定 Zaunikos等将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法用于卡马西平片的溶出度测定。Drennen等继续进行了这方面的研究,用近红外法对溶出度不同的卡马西平片进行了正确分类。3 制药过程中的质量控制 制药过程控制分析是药物分析的一个重要研究内容。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的最大特点是操作简便、快速,可不破坏样品进行原位测定,可不使用化学试剂,不必对样品进行预处理,可直接对颗粒状、固体状、糊状、不透明的样品进行分析。这些特点使得近红外分析技术特别适宜于在线的过程控制分析。3.1 粉末混合过程控制 Sekulic等使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对粉末混合均匀性进行在线监测。混合物样品中含10%苯甲酸钠、39%微晶纤维素、50%乳糖和1%滑石粉。首先用商品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]收集样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据,然后用软件包对数据进行处理。结果表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术作为一种对药物混合均匀性的“实时”的非侵入式分析方法是可行的、有效的。3.2 包衣过程监控 Kirsch等发现片剂样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化与包衣的厚度之间存在相关性。他们对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在片剂的包衣过程监控中的应用作了进一步的考察。在用乙基纤维素(EC)或羟丙基纤维素(HPMC)进行包衣的过程中,按一定的时间间隔取样,测定片剂样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]。采用二阶导数变换和多元散射校正两种方法对光谱进行处理,然后用主成分分析建立计算包衣厚度的校正模型。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法具有非破坏性,可以进一步测定样品的溶出度,考察包衣厚度与溶出度的相关性,从而更好地控制包衣制剂的质量。 为控制药物活性成分的释放,研究人员正在研究一种以包衣技术为核心的制剂新工艺,即在缓释药物片心外包上一层含有快速释放药物的包衣。这需要一种能够对外层包衣中药物活性成分进行快速、非破坏性的定量分析方法,对这种高精度要求的包衣过程进行监控。Buchanan等选择了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法,所得结果与HPLC测试结果一致。这表明能够用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法更加快速有效地对新的包衣工艺进行质量评价。3.3 片剂生产过程控制 Dreassi等对近红外反射分析在抗生素片剂生产控制中的应用进行了研究,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析法结合化学计量学方法对抗菌素头孢呋肟酯片剂的生产进行全过程监测。他们用对原始光谱数据的判别分析、对主成分分析得分的判别分析和聚类分析三种方法分别对头孢呋肟酯的原料药、颗粒、片心和片剂进行了鉴别,结果较好;并用多元线性回归和偏最小二乘法对该化合物的含量和含水量进行定量分析,也取得了满意的结果。 近年来,随着仪器、软件以及样品处理技术的发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在药学领域中的应用取得了很大进步。使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术对药物制剂进行快速的非破坏性分析已成为可能,制药工业企业也已开始发展近红外方法对药物生产过程的各个环节进行监控。并且,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已得到药品质量管理部门如美国FDA和加拿大卫生部(Health Protection Branch)的重视。由此可见,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术受到了越来越多的关注。随着[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]技术的不断提高和化学计量学的发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药学领域中的应用将越来越广泛。

  • 请教了:分析汽油中红外光谱仪

    培安公司这样介绍他们的产品,IROX 2000世界最小的付里叶红外光谱仪,全自动分析汽油中的9种含氧化合物、苯、13种芳烃、烯烃、二烯烃和锰含量等30多种组份及各种不明物质,还可预测汽油的辛烷值、蒸馏特性和饱和蒸汽压,获取汽油化学组份测量和物理特性分析的全谱信息。 很有诱惑力,省时、省力。 但不知道可靠性如何,与利用国标测定的结果有何中出入,是否有人做过比较试验。 有谁用过付里叶红外光谱仪测汽油的各项指标,有何感想,我们可以借鉴一下,向公司推荐购买。 谢谢!

  • 红外光谱分析

    红外光谱分析

    [color=#444444]本人有红外光谱图如附件(图中上面的曲线是PP接枝1%马来酸酐的红外光谱图,记为曲线1;下图表示另一种单体(未知)改性的PP红外光谱图,记为曲线二。两图的主要差别在1600~1800cm-1 和1240cm-1)。现有如下问题想向各位讨教:[/color][color=#444444](1)由图中曲线1和2的信息,能确定“2不是由马来酸酐改性”这个结论么?[/color][color=#444444](2)若2不是马来酸酐改性的PP,那能由曲线二分析出物质2是什么单体改性的PP么?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906111632472331_4996_1827556_3.jpg!w690x517.jpg[/img][/color]

  • 【分享】------红外光谱分析的优缺点

    红外光谱分析的优缺点优点1 应用范围广。红外光谱分析能测得所有有机化合物,而且还可以用于研究某些无机物。因此在定性、定量及结构分析方面都有广泛的应用。2 特征性强。每个官能团都有几种振动形式,产生的红外光谱比较复杂,特征性强。除了及个别情况外,有机化合物都有其独特的红外光谱,因此红外光谱具有极好的鉴别意义。3 提供的信息多。红外光谱能提供较多的结构信息,如化合物含有的官能团、化合物的类别、化合物的立体结构、取代基的位置及数目等。4 不受样品物态的限制。红外光谱分析可以测定气体、液体及固体,不受样品物态的限制,扩大了分析范围。5 不破坏样品。红外光谱分析时样品不被破坏。缺点1 不适合分析含水样品,因为水中的羟基峰对测定有干扰;2 定量分析时误差大,灵敏度低,故很少用于定量分析;3 在图谱解析方面主要靠经验。

  • 近红外光谱技术在农产品品质分析中应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在农产品品质分析中应用 近红外谱区早在1800年就被发现。但是,受当时光谱仪性能和信息提取技术条件的限制,在中红外光谱技术快速发展期间,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术应用并不多。不过,由于早期科学家使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]和多元线性回归分析进行水分、蛋白和脂肪含量测定取得的研究结果,激励人们对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术进行不断地研究。 随着计算机技术的高度发展和化学计量学学科的诞生,近红外与之结合产生了现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术。近年来,尤其是近10年,近红外在仪器、软件和应用技术上获得了高度发展,以高效和快速的特点异军突起,曾被誉为分析巨人。 如在事先建立好校正模型的基础上,一个人使用一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]仅需2分种即可完成一个样品的全性质(十几种)的测量。与传统分析方法相比,分析工作效率具有划时代的改变。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]除消耗少量电能外,不消耗任何试剂、标准物质和设备零件,被测样品量仅为几毫升,极为经济。一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于控制分析,可以替代多种多台分析仪器,节省了大量设备、人力和物力。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的应用将使许多化验室的繁忙状况得以改观。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于过程分析,可及时反馈分析数据,实现装置的平稳运行和质量卡边操作,可产生巨大的经济效益和社会效益。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为分子振动光谱的倍频和组合频谱带,主要是含氢基团(C-H,O-H,N-H,S-H)的吸收。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]包含了绝大多数类型有机物组成和分子结构的丰富信息,不同的基团和同一基团在不同化学环境中的吸收波长有明显差别,可以作为获取组成或性质信息的有效载体。近红外吸收系数小,样品不经稀释直接测量,可分别用0.5~10厘米和0.1~0.5厘米长的测量池。样品池可用玻璃窗片,操作很方便。但近红外各谱带宽和交叠多,使用传统方法(工作曲线)难以进行定性和定量分析。现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析依靠化学计量学和计算机技术有效地克服了这一局限。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅能够反映绝大多数的有机化合物的组成和结构信息,而且对某些无[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸收的物质(如某些无机离子化合物),也能够通过它对共存的本体物质影响引起的光谱变化,间接地反映它存在的信息。加上[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可测量形式如漫反射、透射和反射,能够测定各种各样的物态样品的光谱,因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析已被广泛地应用到石油化工、农业、食品、生化、医药临床、造纸和环保等领域。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以快速测定谷物和麦子的蛋白、脂肪和水分含量和硬度等性质。美国官方检测机构在谷物市场采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]Infratec Models 1225和1226作为检测麦蛋白、豆蛋白和油脂含量的标准仪器,替代了传统的费时费力的克氏定氮和油脂抽提分析方法,每年平均分析16500个豆样品, 500000个麦样品。我国曾在小麦优良品种的筛选工作中使用了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速分析技术,大大提高了工作效率。加拿大谷物研究实验室使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速测定硬质小麦的黄色颜料含量,分析结果与标准方法测定结果十分符合,对于硬质小麦的筛选可提高工作效率。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在农业中的应用最早,分析的项目种类很多,如谷物产品缺陷和污染(杂种、虫害等)分析、家畜饲料品质分析,作物年龄测定、水果品质(甜度、脆度和口感)和蔬菜等级检验、棉花和木材的等级测定、烟草品质及成分测定等,替代传统分析方法,大大节约时间和分析费用。from :http://www.aeol.cn/bbs/dispbbs.asp?boardID=37&ID=1560

  • 【分享】近红外光谱技术在农产品品质分析中应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在农产品品质分析中应用近红外谱区早在1800年就被发现。但是,受当时光谱仪性能和信息提取技术条件的限制,在中红外光谱技术快速发展期间,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术应用并不多。不过,由于早期科学家使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]和多元线性回归分析进行水分、蛋白和脂肪含量测定取得的研究结果,激励人们对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术进行不断地研究。 随着计算机技术的高度发展和化学计量学学科的诞生,近红外与之结合产生了现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术。近年来,尤其是近10年,近红外在仪器、软件和应用技术上获得了高度发展,以高效和快速的特点异军突起,曾被誉为分析巨人。 如在事先建立好校正模型的基础上,一个人使用一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]仅需2分种即可完成一个样品的全性质(十几种)的测量。与传统分析方法相比,分析工作效率具有划时代的改变。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]除消耗少量电能外,不消耗任何试剂、标准物质和设备零件,被测样品量仅为几毫升,极为经济。一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于控制分析,可以替代多种多台分析仪器,节省了大量设备、人力和物力。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的应用将使许多化验室的繁忙状况得以改观。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于过程分析,可及时反馈分析数据,实现装置的平稳运行和质量卡边操作,可产生巨大的经济效益和社会效益。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为分子振动光谱的倍频和组合频谱带,主要是含氢基团(C-H,O-H,N-H,S-H)的吸收。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]包含了绝大多数类型有机物组成和分子结构的丰富信息,不同的基团和同一基团在不同化学环境中的吸收波长有明显差别,可以作为获取组成或性质信息的有效载体。近红外吸收系数小,样品不经稀释直接测量,可分别用0.5~10厘米和0.1~0.5厘米长的测量池。样品池可用玻璃窗片,操作很方便。但近红外各谱带宽和交叠多,使用传统方法(工作曲线)难以进行定性和定量分析。现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析依靠化学计量学和计算机技术有效地克服了这一局限。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅能够反映绝大多数的有机化合物的组成和结构信息,而且对某些无[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸收的物质(如某些无机离子化合物),也能够通过它对共存的本体物质影响引起的光谱变化,间接地反映它存在的信息。加上[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可测量形式如漫反射、透射和反射,能够测定各种各样的物态样品的光谱,因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析已被广泛地应用到石油化工、农业、食品、生化、医药临床、造纸和环保等领域。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以快速测定谷物和麦子的蛋白、脂肪和水分含量和硬度等性质。美国官方检测机构在谷物市场采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]Infratec Models 1225和1226作为检测麦蛋白、豆蛋白和油脂含量的标准仪器,替代了传统的费时费力的克氏定氮和油脂抽提分析方法,每年平均分析16500个豆样品, 500000个麦样品。我国曾在小麦优良品种的筛选工作中使用了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速分析技术,大大提高了工作效率。加拿大谷物研究实验室使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速测定硬质小麦的黄色颜料含量,分析结果与标准方法测定结果十分符合,对于硬质小麦的筛选可提高工作效率。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在农业中的应用最早,分析的项目种类很多,如谷物产品缺陷和污染(杂种、虫害等)分析、家畜饲料品质分析,作物年龄测定、水果品质(甜度、脆度和口感)和蔬菜等级检验、棉花和木材的等级测定、烟草品质及成分测定等,替代传统分析方法,大大节约时间和分析费用。

  • 【求助】红外光谱的分析?

    偶没学过红外光谱相关的课程,但毕设中涉及到红外光谱的分析,在此特向大家求助,往XDJMs帮偶一下,先谢谢啦~请帮忙分析一下图中曲线(1)(2)(3)(4)官能团的变化 红外光谱图及峰值如下:(1)的峰值分别是3431cm,2974cm,1296cm,1049cm,423cm。(2)的峰值分别是3436cm,2925cm,1296cm,867cm,627cm(凸)。(3)的峰值分别是3431cm,2973cm,1292cm,867cm,628cm(凸)。(4)的峰值分别是3437cm,2958cm,1297cm,868cm,623cm(凸)。

  • 【转帖】红外光谱技术在毒品分析中的研究进展

    来源:维普资讯红外光谱技术在毒品分析中的研究进展作  者:徐鹏 郑珲 高利生 机构地区:公安部物证鉴定中心毒品检验鉴定处,北京100038 出  处:《中国药物依赖性杂志》 CAS CSCD 2010年第2期 94-96页,共3页 Chinese Journal of Drug Dependence 摘  要:红外光谱广泛应用于分子结构的基础研究和化学组成的分析领域,对有机化合物的定性分析具有鲜明的特征性。由于红外光谱分析法被视为物质的“指纹”鉴别法,同时又是“无损”分析法,因此,它作为刑事技术鉴定手段之一,已被广泛用于刑事侦察技术中。

  • 【分享】用于红外光谱分析的溴化钾的提纯

    《光谱实验室》 2011年05期用于红外光谱分析的溴化钾的提纯宋诚 朱鹏飞 刘梅 【摘要】:分析纯溴化钾的红外光谱中通常含有杂质产生的强干扰吸收带,不能直接作为红外光谱分析用的试剂。以乙二胺四乙酸(EDTA)为螯合剂,与分析纯溴化钾中的杂质生成水溶性络合物,通过重结晶、高温焙烧,去除了溴化钾中的杂质,得到了高纯度的溴化钾。实验结果表明,该溴化钾的光谱纯度优于市面上价格昂贵的光谱纯溴化钾,获得了更高质量的红外光谱图,降低了红外光谱实验的成本。【作者单位】: 西南石油大学化学化工学院; 【关键词】: 乙二胺四乙酸 溴化钾 高温焙烧 来源:知网空间

  • 【分享】现代近红外光谱分析

    目录信息 第一章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的发展概况 1.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的发展过程 1.1.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的发展 1.1.2计算技术的发展 1.1.3应用领域的发展 1.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析基础 1.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的特点 参考文献 第二章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的产生及光谱特征 2.1近红外分子振动光谱 2.2有机化合物的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]特征 2.2.1C—H键的谱带归属 2.2.2C=O键的谱带归属 2.2.3O—H键的谱带归属 2.2.4N—H键的谱带归属 2.2.5水的吸收 2.3部分有机化合物、水及石油产品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图 2.3.1异辛烷 2.3.2正己烷 2.3.31-十四烯 2.3.4乙醚 2.3.5丙酮 2.3.6乙醇 2.3.7二乙胺 http://book.hzu.edu.cn/book.htm?245652.3.8苯 2.3.9甲苯 2.3.10乙酸 2.3.11乙酸乙酯 2.3.12水 2.3.13汽油 2.3.14柴油 2.3.15煤油 参考文献 第三章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.1引言 3.1.1概述 3.1.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的主要性能指标 3.1.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的基本结构 3.1.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的主要类型 3.1.5[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的选型 3.2滤光片型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.3光栅扫描型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.4傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.5声光可调滤光器[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.5.1测量原理 3.5.2基本结构 3.6多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器 3.7[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器中的检测器 3.8[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的数据处理与分析系统 3.8.1校正集样品的设定及光谱的预处理 3.8.2定性或定量校正模型的建立 3.8.3未知样品组成或性质的预测 3.9[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器发展展望 参考文献 第四章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析实验技术 4.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中的样品 4.1.1采样及其对分析结果的影响 4.1.2样品的处理 4.1.3样品的装载 4.1.4校正样品集的选择 4.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的常规分析技术 4.2.1液体样品分析 4.2.2固体、半固体样品的分析 4.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]漫反射分析技术 4.3.1漫反射分析定量原理 4.3.2影响漫反射分析的主要因素 4.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中的测样器件 4.4.1透射分析的测样器件 4.4.2漫反射分析的测样器件 4.5光纤技术在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中的应用 4.5.1光纤导光原理 4.5.2光纤材料 4.5.3光纤测样器件 4.5.4光纤测样器件与光谱仪器的连接 参考文献 第五章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在线过程分析技术 5.1过程分析发展的5个阶段 5.1.1离线分析 5.1.2现场分析 5.1.3侧线在线分析 5.1.4定位实时在线分析 5.1.5非接触性分析 5.2液体样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]过程分析技术 5.2.1影响液体样品过程分析的因素 5.2.2液体样品的光谱采集方式 5.3固体样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]过程分析技术 5.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在过程分析中的应用举例 5.4.1面粉[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在线分析系统 5.4.2抗生素生产过程的在线分析 参考文献 第六章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中常用的数学方法 6.1引言 6.2光谱分析与比尔定律 6.3线性代数基础知识 6.3.1矢量 6.3.2矩阵 6.4数理统计基础知识 6.4.1随机变量及其分布 6.4.2正态分布(高斯分布) 6.4.3均值与方差 6.4.4协方差与协方差矩阵 6.5回归分析及相关分析 6.5.1一元回归分析 6.5.2多元回归分析 6.6主成分分析 6.6.1二维空间中的主成分分析 6.6.2多维空间中的主成分分析 6.6.3主成分分析算法 6.7常用多变量校正方法 6.7.1多元线性回归法 6.7.2主成分回归法 6.7.3偏最小二乘法 6.7.4主成分数的确定 6.8模式识别 6.8.1数据预处理及常用参数计算公式 6.8.2作图方法 6.8.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中常用的模式识别算法 6.9人工神经网络 参考文献 第七章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定性及定量分析 7.1定量分析的步骤 7.1.1校正模型训练集样品的选择 7.1.2用标准方法测定样品物化性质 7.1.3测量光谱数据 7.1.4光谱的预处理 7.1.5建立校正模型 7.1.6校正模型的验证 7.1.7分析样品 7.1.8定量分析的流程 7.1.9[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测定柴油十六烷值应用举例 7.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的误差来源 7.3定性判别分析 7.3.1基于有限波长的方法 7.3.2基于全谱的方法 7.3.3具体分析步骤 7.3.4应用 参考文献 第八章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在石油化工领域中的应用 8.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于石油化工产品分析的光谱基础 8.2燃料油的组成及性质分析 8.2.1汽油的组成及性质测定 8.2.2喷气燃料的组成及性质测定 8.2.3柴油的组成及性质测定 8.3润滑油的组成及性质分析 8.4[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在石油加工过程中的应用 8.4.1在原油蒸馏装置中的应用 8.4.2在流化催化裂化装置中的应用 8.4.3在蒸汽裂解装置中的应用 8.5[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在高分子合成及加工中的应用 8.5.1聚合过程的监测 8.5.2聚合物化学组成的测定 8.5.3聚合物结构的测定 8.5.4聚合物物性指标的测定 8.5.5聚合物类型的判别分析 8.5.6在合成纤维工业中的应用 8.6[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在基本有机合成中的应用 参考文献 第九章 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在其它领域中的应用 9.1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在农业和食品工业中的应用 9.1.1粮食和饲料 9.1.2肉类和奶制品 9.1.3水果和蔬菜 9.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在纺织工业中的应用 9.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在制药工业及临床医学中的应用 9.3.1在制药工业中的应用 9.3.2在临床医学中的应用 参考文献 附录1化学计量学期刊名录 附录2化学计量学研究机构和团体名录 附录3技术术语缩写词汇表

  • 【分享】近红外光谱分析技术在饲料工业中的应用进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在饲料工业中的应用进展[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术(Near infrared reflectance spectroscopy,简称NIRS)是20 世纪70 年代兴起的一种新的成分分析技术。该技术首先由美国农业部(USDA)的Norris开发,最早用于谷物中水分、蛋白质的测定。20世纪80年代中后期,随着计算机技术的发展和化学计量学研究的深入,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器制造技术的日趋完善,促进了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的极大发展。由于现代NIRS分析技术所独具的特点,NIRS已成为近年来发展最快的快速分析测试技术,被广泛应用于各个领域,特别是欧美及日本等发达国家,已将许多[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法作为标准方法。尽管NIRS技术在饲料工业上的应用起步较晚,但越来越被人们所重视。 1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的基本原理及特点 1.1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法的基本原理 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的波长范围是780~2 500nm,通常分为近红外短波区(780~1100nm,又称Herschel光谱区)和近红外长波区(1 100~2500nm)。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]源于有机物中含氢基团,如OH、CH、NH、SH、PH等振动光谱的倍频及合频吸收,以漫反射方式获得在近红外区的吸收光谱,通过主成分分析、偏最小二乘法、人工神经网等化学计量学的手段,建立物质光谱与待测成分含量间的线性或非线性模型,从而实现用物质[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信息对待测成分含量的快速计算。 1.2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法的特点 1.2.1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的优点 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法的优点:①简单,无繁琐的前处理且不消耗样品;②快速;③光程的精确度要求不高;④所用光学材料便宜;⑤近红外短波区域的吸光系数小,穿透性高,可用透射模式直接分析固体样品;⑥适用于近红外的光导纤维易得,利用光纤可实现在线分析和遥测;⑦高效,可同时完成多个样品不同化学指标的检测;⑧环保,检测过程无污染;⑨仪器的构造比较简单,易于维护;⑩应用广泛,可不断拓展检测范围。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=69523][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在饲料工业中的应用进展[/url]

  • 红外光谱的定量分析和定性分析

    红外光谱定性分析:一般采用三种方法:用已知标准物对照、标准谱图查对法和直接谱图解析法。 1. 已知物对照应由标准品和被检物在完全相同的条件下,分别绘制红外光谱图进行对照,谱图相同则肯定为同一化合物。 2. 标准谱图查对法是一种最直接、可靠的方法。在用未知物谱图查对标准谱图时,必须注意:测定所用仪器与绘制标准谱图的在分辨率和精度上的差别,可能导致某些峰细微结构的差别;未知物与标准谱图的测定条件必须一致,否则谱图会出现很大差别;必须注意引入杂质吸收带的影响。如KBr压片可能吸水而引入水吸收带等。 3. 对于未知化合物,可按照如下步骤解析谱图:先从特征频率区入手,找出化合物含有的主要官能团;指纹区分析,进一步找出官能团存在的依据;仔细分析指纹区谱带位置、强度和形状,确定化合物的可能结构;对照标准谱图,配合其他鉴定手段,进一步验证。 红外光谱定量分析: 选取合适的定量吸收峰,测定吸收峰的吸光度,依据朗佰-比尔定律,计算待测组分含量。

  • 分享新书《傅里叶变换红外光谱分析(第二版)》

    分享新书《傅里叶变换红外光谱分析(第二版)》

    1)书籍名称:《傅里叶变换红外光谱分析(第二版)》 2)作者:翁诗甫 3)出版社:化学工业出版社 4)封面:(上传图片)http://ng1.17img.cn/bbsfiles/images/2013/05/201305021949_438039_1630080_3.jpg 5)内容简介:这本红外书籍介绍了红外光谱的基本概念和原理,以及红外光谱仪的结构、红外光谱仪附件原理和使用技术,还有红外光谱样品制备和测试技术、红外光谱数据处理技术、红外光谱定量分析和未知物的剖析、基因的振动频率分析以及红外光谱仪的保养和维护技术。 6)自己想与大家分享的关键内容,及阅读心得:1、这本书是做红外分析人员的经典参考书,该书侧重围绕中红外仪器结构、附件、原理、制样、谱图分析处理等问题进行阐述。2、在红外光谱仪结构和红外附件部分讲的很细致,每每翻阅相关内容总会有一些新的体会。3、红外光谱数据处理讲得很细,并有图例供分析,使人能快速理解。4、未知物剖析和基频峰分析还是以中红外为主,但非常经典,虽然示例比较少,但中红外本身的优势就是针对纯度高的物质。

  • [综述]近红外光谱分析技术及其应用

    注:资料来源于北京英贤仪器有限公司  石油化工科学研究院现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。近红外区域按ASTM定义是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]“沉睡” 了近一个半世纪。直到20世纪50年代,随着商品化仪器的出现及Norris等人所做的大量工作,使得[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,从此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进入了一个沉默的时期。80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在测样技术上所独有的特点,使人们重新认识了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的价值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在各领域中的应用研究陆续展开。进入90年代,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在工业领域中的应用全面展开,有关[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进入一个快速发展的新时期。我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,除一些专业分析工作人员以外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器市场。由此也可以看出[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界炙手可热的发展趋势。在不久的未来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受。

  • 近红外光谱分析及其应用简介(一)

    、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析及其在国际、国内分析领域的定位 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON会议上[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、 AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如 USP(United States Pharmacopoeia美国药典)均收入了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法;我国2005年版的药典也将该方法收入。在应用方面[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,上世纪70年代开始,进行了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型的研发)的公司正处于发展阶段。由于我国经济的快速发展,持续发展型经济与建立节约型社会方针的确定与贯彻我国生产、科研、教学领域和市场对产品的检测与控制要求迫切,按照国际经验,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术将是一种首选技术。随着国产[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的研制和生产,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受,会在越来越多的领域广泛应用。 2、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析与常规光谱分析方法的不同 通常可以把基本紫外、可见光谱分析和红外光谱分析等称为常规光谱分析,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析由于谱区信息的不同,方法和仪器的不同使其与常规光谱分析有很大的差别。2.1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析谱区的不同 近红外谱区的波长介于可见光与中红外光之间,该谱区的分析兼备了中红外谱区信息量丰富的优点与可见谱区使用方便的优点。 与中红外谱区一样,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析利用分子振动的信息,但本谱区主要是振动的倍频与合频信息,此谱区分析几乎可以实现所有与含氢基团有关的样品化学性质、物理性质,某些生物性质等多项目分析或同时分析,被认为是一种“具有解决全球农业分析潜力”的当代分析方法。 与紫外、可见、中红外谱区相比,物质对近红外谱区吸收的能力较弱,该谱区可以透入样品内部,取得样品内部的信息,因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析样品可以不需要或者只要少量的物理前处理,便可用于各种快速分析,尤其适用于复杂样品的无损分析。2.2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析方法的不同 常规光谱分析一般要求样品通过前处理,使组分和浓度调整后再进行分析。仪器测试结果只是给出样品对某一波长吸光度,吸光度和待测量(如浓度)间的关系是简单的线性关系;常规光谱分析只要仪器给出准确的吸光度,即可由用户自行建立的个性化工作曲线(属于各台仪器特定分析方法的)得到待测量。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是在复杂、重叠、变动的背景下提取弱信息,复杂样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]和待测量间的关系是复杂的间接关系;[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析必须借助化学计量学方法用全部波长点和待测量进行多元关联,建立光谱与待测量间关系的数学模型,依靠数学模型由光谱计算样品的待测量。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器不仅要给出吸光度,还须捆绑数学模型才能得到待测量。2.3[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器的不同 常规光谱分析一般由用户自备标样后测定标准曲线或工作曲线。每种工作曲线只相对于某台仪器使用,这种分析属于相对分析,相对分析可以通过个性化的工作曲线校正仪器与方法的某些系统偏差,因而对仪器的精确度要求较高;相对于仪器的波长、吸光度准确度的要求较低。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析依靠捆绑的数学模型,直接计算出样品的待测量,这种分析属于绝对分析,绝对分析对仪器的准确度与精确度要求较高。但用户可以对不经过前处理的样品直接分析待测量。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析建立数学模型的过程比较复杂、烦琐,为了避免用户自行建立个性化数学模型,厂家必须克服仪器的台间差异,为仪器捆绑统一的数学模型。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器要求整合精密、稳定的硬件和软件、数学模型;并需要资源、分析方法与分析经验等条件的集合才能实现,是一种难度较大的分析技术。

  • 有看头了!褚小立领衔近红外光谱分会17位专家编著《近红外光谱分析技术实战宝典》!

    好消息!褚小立领衔近红外光谱分会19位专家编著《近红外光谱分析技术实战宝典》!仪器信息网自2020年起组织业内知名专家、资深版主及专业编辑,以解决用户实际问题为初衷,以平台海量精华内容为基础,经过专家的梳理、加工,将最常见的仪器问题、解决方法和资深用户的经验整理成册,特命名为《实战宝典》,旨在提升行业用户的仪器应用能力、加快个人职业成长,缓解行业实操型人才匮乏的现状,助力用户实现“宝典在手、仪器无忧”!2020年,已发布《水质分析实战宝典》、《气相色谱实战宝典》、《农残分析实战宝典》、《液相色谱实战宝典》、《乳品检测实战宝典》、《药物分析实战宝典》6册宝典,收录仪器类别包括了常用的气相、液相,应用领域涵盖了水质、农残、药物、乳品,深受4.4万用户喜爱。2021年,仪器信息网将陆续发布《原子吸收光谱实战宝典》、《液质联用实战宝典》、《气质联用实战宝典》、《实验室安全实战宝典》、《近红外光谱分析技术实战宝典》、《样品前处理实战宝典》、《土壤分析实战宝典》、《离子色谱实战宝典》、《PCR实战宝典》、《ICP-MS实战宝典》等分册,目前已有3.4万用户预订。未来,我们欢迎广大专家、用户积极报名加入《实战宝典》 “编委组”,发挥自己专业技能特长,与行业专家一起创作更多优质内容,帮助更多用户。《近红外光谱分析技术实战宝典》编委专家阵容如下:特邀顾问:袁洪福,北京化工大学,教授主 编:褚小立,中石化石油化工科学研究院,教授级高工副 主 编:李文龙,天津中医药大学副研究员,博士生导师副 主 编:王家俊,云南中烟技术中心,高级工程师编 委:卞希慧,天津工业大学,副教授编 委:何鸿举,河南科技学院,院长助理编 委:黄越,中国农业大学,副教授编 委:韩娅红,华中农业大学,博士后编 委:李跑,湖南农业大学,副教授编 委:缪同群,上海新产业光电技术有限公司,总计总经理编 委:孙通,浙江农林大学,副教授编 委:王艳斌,石油化工研究院,高级工程师编 委:邢振,北京农业智能装备技术研究中心,高级工程师 编 委:闫晓剑,四川长虹公司,资深专家编 委:杨越,温州大学,讲师编 委:张进,贵州医科大学,副教授编 委:周新奇,谱育科技,经理编 委:邹振民,山东金璋隆祥智能科技有限责任公司,董事长《近红外光谱分析技术实战宝典》大纲目录如下:第一章概述第一节 近红外光谱发展简史第二节 近红外光谱产生机理(概述)第三节 近红外光谱分析与化学计量学方法第四节 近红外光谱及其分析技术的特点(优缺点)第五节 现代过程分析技术与近红外光谱技术问题与回答:1、为什么近红外光谱主要包含的是含氢基团的信息?2、为什么说吸收强度弱反倒是近红外光谱的一种技术优势?3、近红外漫反射光谱与物质的浓度是线性关系吗?4、哪段近红外光的穿透性较强?如何利用这段光?6、近红外光谱区域中哪段谱图包含的化学信息更丰富?7、为什么氢键在近红外光谱中很重要?8、为什么近红外光谱的转移吸收谱带较宽?5、为什么近红外光谱定量或定性分析大多需要化学计量学方法?9、为什么说近红外光谱是现代过程分析技术的主要手段之一?10、哪些场合不太适合采用近红外光谱分析技术?11、在哪些应用场景近红外光谱最擅长?12、采用近红外光谱技术前应有哪些心理上的准备?13、用好近红外光谱需要使用者具备哪些条件?14、近红外光谱与中红外光谱相比,各有哪些技术优势?15、近红外光谱与拉曼光谱相比,各有哪些技术优势?16、近红外光谱与太赫兹光谱相比,各有哪些技术优势?17、近红外光谱与低场核磁相比,各有哪些技术优势?18、近红外光谱与Libs相比,各有哪些技术优势?19、一般情况下,近红外光谱分析技术的检测限能达到多少?…20、短波和长波近红外各有什么特点?…第二章近红外光谱仪器第一节 近红外光谱仪器的构成第二节近红外光谱仪器的分光类型第三节实验室型仪器第四节便携式和微型仪器第五节制造仪器的材料应用与仪器的性能指标第六节近红外光谱仪器的测量软件第七节仪器的维护及校准AQ、PQ与OQ的应用问题与回答:1、近红外光谱仪器的分别辨率重要吗?2、影响近红外光谱仪器噪音的主要因素有哪些?3、基于理论和实验依据,如何选择近红外光谱仪器?4、影响近红外光谱仪器之间一致性的主要因素有哪些?5、近红外光谱文件常见的格式有哪些?6、为什么有的仪器用纳米表示波长,有些用波数表示?7、为什么近红外光谱仪器的长期稳定性很重要?8、药典对近红外光谱仪器的性能指标有何要求?9、光源需要定时更换吗?10、实验室型近红外光谱仪器日常维护有哪些?11、需要间隔多长时间进行一次近红外光谱仪器的校准?12、氟化钙分束器与石英分束器的性能有何差异?13、氦氖激光激光器与半导体激光器的性能有何差异?14、近红外光谱分析技术常用的光源有哪些?15、微型CCD近红外光谱仪的狭缝如何选择?与分辨率的关系如何?…第三章 测量附件与实验方法第一节 近红外光谱的测量方式第二节 常见的测量附件第三节 多种类型样品的制备第四节 光谱采集参数及其优化问题与回答:1、液体样本的近红外光谱通常采用哪些测量方式?2、固体样本的近红外光谱通常采用哪些测量方式?3、水果测量时应注意哪些问题?4、漫反射测量时应注意哪些问题?5、样品温度对近红外光谱测量有影响吗?6、近红外光谱能测量气体吗?7、使用光纤测量附件应注意哪些问题?8、透射测量时应注意哪些问题?9、对于固体有哪些常见的样品制备方式?10、光谱采集参数如何优化?11、水分对近红外光谱测量有影响吗?12、采样杯、比色池光学材料对光谱重现性的影响?13、固体粉末粒径对光谱重现性有何影响?如何提高光谱的重现性?14、如何权衡近红外分析检测的效率与检测数据的“性价比”?15、漫反射和透射测量时,参比光谱如何选取?16、近红外光谱测量时,吸光度为什么会出现负数?…第四章在线近红外光谱分析技术第一节 在线近红外光谱分析系统的构成第二节 取样与样品预处理系统第三节 在线测量方式第四节 在线工程项目的实施(包含过程化学计量学方法与过程建模)第五节 在线分析系统的管理与维护问题与回答:1、在线分析必须使用样品预处理吗?2、选择光纤探头或流通池应注意哪些问题?3、采用液体插入式漫反射探头应注意哪些问题?4、探头的安装位置应如何选取?5、固体在线取样时应注意哪些问题?可以采取哪些手段获取有代表性的在线光谱?6、如何取到与光谱测量对应的在线样品?7、如何实现一台在线仪器测量多个检测点?8、在线分析校正模型是如何建立的?9、光纤的有效传输距离有多长?10、在线仪器的光谱背景是如何获取的?11、选择在线近红外光谱仪应考虑哪些问题?12、医药企业对在线分析仪器有哪些特殊要求?13、传递带的漫反射测量应注意哪些问题?14、国内外涉及在线近红外光谱分析技术的标准有哪些?15、…第五章化学计量学方法与建模第一节 常用的化学计量学方法第二节 定量分析建模的主要步骤第三节 定性分析建模的主要步骤第四节 化学计量学软件的主要功能第五节 商品化的化学计量学软件第六节 建模传递及其方法第七节 模型的评价第八节 模型的管理与维护第九节 近红外定量模型的转移与模型适应性拓展问题与回答:1、近红外光谱预测结果的准确性能够超过参考方法吗?2、建模过程中光谱波段(波长)变量如何选择?3、PLS的最佳(适宜)主因子数如何选择?4、影响近红外光谱分析模型的主要因素有哪些?5、何时选用非线性定量校正方法?6、建模过程中光谱预处理方法如选择?什么是异常样本?7、如何识别建模过程中的异常样本?8、如何识别预测过程中的异常样本?怎样判断近红外的预测结果是内插分析得到的?9、建立实用的模型需要多少个样本?10、模型如何维护?11、提高模型预测稳健性的方法有哪些?12、提高模型预测准确性的方法有哪些?13、何为有代表性的样本?如何选取?14、建模的样本越多越好吗?15、建模时先进行光谱预处理还是先选择(波段)波长选择?16、为什么要进行模型传递?17、进行模型传递需要哪些条件?在不同分光原理的近红外仪器上建立的模型可以相互传递吗?18、模型传递后还需要做那些工作?19、近红外光谱定量和定性分析可以不建模型吗?20、从PLS校正过程,如何解释校正模型的适应性?21、同一方法进行(波段)波长选择,每次(波段)波长选择结果不一致,如何处理?22、一般情况下,建模所用的波长变量数与样本数之间需要满足什么条件?23、近红外光谱的分析流程?24、定量模型的评价指标?25、定性模型的评价指标?…第六章近红外光谱技术的应用第一节 农业领域第二节 食品领域第三节 制药领域第四节 石油和化工领域第五节 纺织领域第六节 饲料领域第七节 烟草领域第八节 其他领域问题与回答:1、作为一名企业采购人员,如何选择合适的近红外光谱仪?2、采用近红外光谱仪分析啤酒时一般采用哪种测量附件?3、目前关于近红外光谱的国家标准有哪些?4、在实际应用中,采用近红外光谱仪分析饲料中的水分、蛋白、脂肪、灰分和实验室分析有多大误差?5、在饲料企业,近红外光谱在哪些环节可以被使用?6、在白酒企业,近红外光谱在哪些环节可以被

  • 中红外光谱解析

    [color=#444444]刚接触中红外,想请问在解析中红外光谱时,除了关注出峰的位置,峰形及峰高有什么分析意义?[/color]

  • 【分享】近红外光谱分析技术在饲料工业中的应用进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术(Near infrared reflectance spectroscopy,简称NIRS)是20 世纪70 年代兴起的一种新的成分分析技术。该技术首先由美国农业部(USDA)的Norris开发,最早用于谷物中水分、蛋白质的测定。20世纪80年代中后期,随着计算机技术的发展和化学计量学研究的深入,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器制造技术的日趋完善,促进了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的极大发展。由于现代NIRS分析技术所独具的特点,NIRS已成为近年来发展最快的快速分析测试技术,被广泛应用于各个领域,特别是欧美及日本等发达国家,已将许多[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法作为标准方法。尽管NIRS技术在饲料工业上的应用起步较晚,但越来越被人们所重视。 1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的基本原理及特点 1.1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法的基本原理 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的波长范围是780~2 500nm,通常分为近红外短波区(780~1 100nm,又称Herschel光谱区)和近红外长波区(1 100~2 500nm)。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]源于有机物中含氢基团,如OH、CH、NH、SH、PH等振动光谱的倍频及合频吸收,以漫反射方式获得在近红外区的吸收光谱,通过主成分分析、偏最小二乘法、人工神经网等化学计量学的手段,建立物质光谱与待测成分含量间的线性或非线性模型,从而实现用物质[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信息对待测成分含量的快速计算。 1.2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法的特点 1.2.1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的优点 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法的优点:①简单,无繁琐的前处理且不消耗样品;②快速;③光程的精确度要求不高;④所用光学材料便宜;⑤近红外短波区域的吸光系数小,穿透性高,可用透射模式直接分析固体样品;⑥适用于近红外的光导纤维易得,利用光纤可实现在线分析和遥测;⑦高效,可同时完成多个样品不同化学指标的检测;⑧环保,检测过程无污染;⑨仪器的构造比较简单,易于维护;⑩应用广泛,可不断拓展检测范围。 1.2.2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的缺点 近红外也有其固有的缺点:①由于测定的是倍频及合频吸收,灵敏度差,一般要求检测的含量?1%;②建模难度大,定标模型的适用范围、基础数据的准确性即选择计量学方法的合理性,都将直接影响最终的分析结果。

  • 【求助】利用红外光谱分析能否解决

    2、以前在研究碳纳米管的生长机制时存在两种争论:底部生长和顶部生长。后来清华大学物理系范守善教授利用Raman光谱分析解决了这个问题。请问,利用红外光谱分析能否解决这个问题?为什么?(Raman光谱和红外光谱分析的区别)。

  • 红外光谱的定量分析和定性分析

    红外光谱定性分析:一般采用三种方法:用已知标准物对照、标准谱图查对法和直接谱图解析法。 1. 已知物对照应由标准品和被检物在完全相同的条件下,分别绘制红外光谱图进行对照,谱图相同则肯定为同一化合物。 2. 标准谱图查对法是一种最直接、可靠的方法。在用未知物谱图查对标准谱图时,必须注意:测定所用仪器与绘制标准谱图的在分辨率和精度上的差别,可能导致某些峰细微结构的差别;未知物与标准谱图的测定条件必须一致,否则谱图会出现很大差别;必须注意引入杂质吸收带的影响。如KBr压片可能吸水而引入水吸收带等。 3. 对于未知化合物,可按照如下步骤解析谱图:先从特征频率区入手,找出化合物含有的主要官能团;指纹区分析,进一步找出官能团存在的依据;仔细分析指纹区谱带位置、强度和形状,确定化合物的可能结构;对照标准谱图,配合其他鉴定手段,进一步验证。 红外光谱定量分析: 选取合适的定量吸收峰,测定吸收峰的吸光度,依据朗佰-比尔定律,计算待测组分含量。

  • 近红外光谱分析技术在高分子研究中的应用

    近红外光谱分析技术在高分子研究中的应用

    近红外光谱分析技术在高分子研究中的应用*摘 要 近红外光谱分析技术是高分子领域重要的表征方法之一。通过近红外区段光谱信息的测定可以获得丰富的结构性质信息,如共聚物熔融指数、化学组成等。除对高分子物理化学信息的静态表征,由于近红外无损监测、快速识别的特点,在聚合物合成过程监测中亦可监测合成过程中相关参数。本综述重点介绍近红外光谱分析法历史、基本理论、相关的化学计量学、机器学习方法等并通过三个方面的运用进行举例分析:物理性质的测定分析、化学组成的结构分析、在线监测过程运用,综述对近红外未来发展方向进行系列展望,包括可解释性机器学习与快速机器学习的发展、化学计量学进展、基础理论进步等方面,系列跨学科进步与发展必将助力近红外分析技术在高分子领域的进一步引用。关键词 高分子表征,近红外光谱,化学计量学,在线分析, 近红外光谱分析技术结合化学计量学方法的运用,在聚合物表征、分析种有诸多方面的运用,如结合近红外光谱测定共聚物种的化学组成;利用近红外分析共聚物的熔融指数,测定其物理性质;结合机器学习方法,利用近红外在化工合成过程中进行在线监控。可用于聚合物分析表征的近红外光谱技术主要有四种,包括近红外透射光谱(NIR)、漫反射近红外光谱(NIDRS)、偏振近红外光谱、近红外光声光谱(NIR-PAS)。基于透射、漫反射的近红外光谱仪配合多种采样调节,可满足不同环境下化学信息的分析测定。在聚合物的表征方法中,近红外是速度较快、适应性强的表征方法,随着化学计量学软件、技巧的进一步普及以及机器学习、深度学习平台构建的便利性,必将对高分子领域研究与发展产生深远影响。本文从近红外发展史出发,在简要介绍近红外光谱分析技术基础后,着重介绍实验、数据处理技巧,并通过三个方面的运用举例进行简要综述。1近红外光谱分析技术发展简史近红外区段按照美国材料与试验协会(American Society for Testing and Materials, ASTM)定义为波长为780~2526nm的电磁波。近红外光谱最早于1800年由William Herschel发现,在20世纪早期,科学家利用摄谱方法获得了有机化合物的近红外光谱,并结合统计热力学以及基团的光谱特征进行解释,可行的光谱化学信息归属分析为近红外光谱(Near Infrared Spectroscopy, NIR)作为分析技术进行应用提供可能性.限于仪器研究发展,在20世纪中期以前,近红外光谱实际运用并未广泛展开,仅停留在实验室测试中,但自50年代后期,简易近红外光谱仪的出现以及Karl Norris等科学家在近红外光谱漫反射技术上的探究,近红外光谱在农副产品的品质测定方面有了一定的运用,但限于光谱分析手段于化学计量学手段的发展,基于传统光谱定量分析方法分析近红外谱代,在受到采样背景、颗粒大小等因素影响时,往往会产生较大误差。20世纪80年代,随着化学计量学方法的运用,结合中红外、近红外分析积累的光谱归属、仪器研发经验,近红外光谱分析技术获得了广泛的应用,成为一种独立的光谱分析技术,并在高分子领域、农副产品鉴别、石油化工领域逐渐运用广泛。由于近红外光谱分析测试过程中不损坏试样、不适用其他试剂等特点,极大方便研究者利用近红外进行表征测试、解读化学信息。2 近红外光谱分析法2.1 近红外光谱仪基本原理 近红外光谱仪主要分为两大部分:第一部分为光学系统,即测量样品近红外光谱的光谱测量系统;第二部分为从样品光谱中处理与提取样品信息的化学计量学模块,也称“黑匣子”内的功能模块。前者是近红外分析光谱仪的硬件部分,后者是近红外光谱仪的软件部分。 近红外光谱测量系统是一种能够针对对不同类型样品采用不同类型光谱的测量系统。其构成分三部分:光源模块、进样与光谱测量模块和分工检测器与电子系统模块,共同产生承载样品信息的近红外光谱。 分光模块:分光模块实现分光的功能。分光是指将包含多种波长成分的复色光在空间或时间分离开。分光方式可分为机械分光与数字分光。机械分光,以色散型光谱仪为例,其核心是单色器,即将复色光经处理形成一系列只有“单一”波长成分的单色光。以傅立叶变换型光谱仪为例,傅立叶变换型光谱仪是通过其中的迈克尔逊干涉仪,让分析光强度对(干涉仪)动镜移动的距离进行扫描,产生干涉图。将分析光所得干涉图经过傅立叶变换,产生频率域光谱。傅立叶变换属于运用算法进行数字分光。傅立叶变换型光谱仪产生的光谱波长标度是由激光的频率作为参比通过数学运算所得,同时基于激光频率准确度高,变换所产生的光谱波长标度也很高,而此对近红外分析模型的传递十分有利。 近红外光谱分析的基本光谱测量方法:光谱测量过程就是以光谱为载体对样本信息进行采集的过程,而之后的化学计量学方法也需要从样品光谱中提取信息,进行分析。因此需要选择合适的光谱测量方法。光与物体的相互作用其宏观过程形成了直接投射光谱、镜面反射光谱、漫反射光谱与漫透射光谱。如何选择并完成后续应用,则取决于它们是否可以承载足够多的信息。2.2 近红外光谱原理 红外光束可分为单色光和复合光,当红外光束射过样品时,当被照射样品的分子能特定吸收辐射中某些频率波段的光,则可产生吸收光谱。分子吸收能量后会使构成分子中部分化学键的振动,并使自身的振动能态发生改变。通常,分子基频振动产生的吸收光谱带位于中红外区域(400~4000cm-1)。与中红外区相邻区域即4000~14285cm-1(2500~700nm),称为近红外区域,习惯上又划分为短波近红外区(700~1100nm)和长波近红外区(1100~2500nm)。发生在该区域的吸收谱带对应于分子基频振动的倍频和组合频。 近红外光谱是电磁波,它具有光的属性,既具有波粒二象性,因此,我们对光的能量也可以用光子表示。量子力学理论认为,光子能量为:Ep=hv。上述公式同样适用于近红外的光子能量。近红外光束穿过由一种或多种分子组成的物质上,如果分子对其不产生吸收,则近红外光会完全透过样品,该物质分子为非红外活跃分子;反之,则为红外活跃分子。而只有红外活跃分子中的化学键才能对近红外光束中的光子进行吸收,进而产生近红外光谱吸收。物质分子在近红外光谱区的吸收是由于分子振动转动与静止之间的状态转变,以及分子振动或转动状态在不同能级间的跃迁。近红外光谱的化学信息是分析过程样品分子振动状态跃迁信息在光谱的具像化。能量跃迁包括基频跃迁,对应分子振动状态在相邻振动能级之间的跃迁;倍频跃迁,对应于分子振动状态在相隔一个或几个振动能级之间的跃迁;合频跃迁,对应于分子基频跃迁于倍频跃迁同时发生的跃迁。近红外谱图主要承载的信息是C—H、N—H、O—H合频与倍频的信息。2.3光谱预处理方法 近红外光谱仪所测得的吸光度光谱信号受多种不确定因素影响,例如不同组分相互干扰引起的光谱重叠与峰掩盖现象、信号噪声等问题,都降低了直接定量分析结果的准确度与精度。因此在用化学计量学方法建立模型的过程中,对光谱信号进行预处理,从而消除噪声影响及无关信息,具有关键性意义。常用的预处理方法包括数据增强算法、平滑算法、导数算法、标准正态变量变换、多元散射校正、傅里叶变换、小波变换等。1.数据增强算法 (data enhancement)数据增强算法包括均值中心化、标准化、归一化等方法。通过中心化与标准化,可使所有数据分布于零点两侧,在简化运算的同时,不影响数据的相对位置,从而充分反映数据变化,有效消除多余信息,提升模型的稳健性与预测能力。2.平滑算法(smoothing)信号平滑能够有效消除信号噪声的影响,其基本假设是光谱含有的噪声为零均随机白噪声,通过多次测量取平均值从而降低噪声提高信噪比。常用方法有移动平均平滑法和Savitzky-Golay卷积平滑法。其中,移动平均平滑法中选取合适的平滑窗口宽度难度较大,仅求均值易使去噪效果不佳,因此Savitzky-Golay提出卷积平滑法,以多项式对移动窗口内数据进行多项式最小二乘拟合,强调中心点的中心作用,从而有效去噪,得到广泛应用。3.导数算法(derivative)光谱的一阶导数与二阶导数是NIR光谱分析中常用的预处理与基线校正方法。光谱分辨率高且波长采样点多时,可采用直接差分法处理;光谱波长采样点较为稀疏时,可采用Savitzky-Golay卷积求导法计算。光谱的一阶导数可去除与波长无关的漂移,二阶导数可去除同波长线性相关的漂移。求导时通过选取合适的差分宽度,从而能够有效消除基线与其它背景的干扰,提高其分辨率与灵敏度。4.标准正态变量变换 (standard normal variate transformation, SNV)标准正态变量变换是基于光谱阵的行进行处理的预处理方法,能够消除固体颗粒大小、表面散射及光程变化对NIR漫反射光谱的影响。对光谱进行SNV变换计算方法如下:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611276915_2972_3957149_3.png (2-1) 其中,为第i样品光谱的平均值(标量),,为波长点数;,为校正集样品数。5. 多元散射校正(multiplicative scatter correction,MSC)多元散射校正基于光谱阵进行运算,由Martens等人提出,在NIR固体漫反射中得到广泛应用,作用同标准正态变量变换类似,能够消除颗粒分布不均匀及颗粒大小产生的散射影响。MSC算法如下:Step1:计算校正集光谱的平均光谱:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611280774_834_3957149_3.png (2-2) Step2:对平均光谱作线性回归计算,求得回归系数: https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611290010_9504_3957149_3.png (2-3) Step3:对每一条光谱作多元散射校正处理:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611290793_95_3957149_3.png (2-4) 其中https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611295784_4342_3957149_3.png,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611299670_5789_3957149_3.png为样品数;https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611301877_3185_3957149_3.png表示第https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611312998_9572_3957149_3.png个波数;https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611315908_2149_3957149_3.png为光谱矩阵。近来,小波变换(wavelet transform,WT)在图像处理中的应用逐渐成熟,外部参数正交化算法(EPO)与广义最小二乘加权算法(GLSW)因其可消除水分与温度对光谱的影响,得到广泛应用。随着技术的进步,利用化学计量学方法建模进行预处理的方法将持续发展,使模型的稳定性与准确性得到进一步的提升。2.4光谱降维方法 在近红外漫反射光谱与吸收光谱中均存在组分谱带较宽,彼此重叠严重的问题,因此采用化学计量学方法对光谱进行降维,对于准确提取光谱信息具有重要意义。目前,在近红外光谱分析中常用的化学计量方法有多元线性回归(MLR)、主成分分析(PCA)、偏最小二乘(PLS)、奇异值分解(SVD)、遗传算法(GA)等方法。1.多元线性回归(MLR)多元线性回归以整个光谱矩阵建立模型,在多组分体系校正过程中测定结果良好。但由于维数有所限制、矩阵中信息与被测性质不具相关性,模型的预测能力将受到一定影响。2.主成分分析(PCA)主成分分析法将原来众多具有一定相关性的自变量,通过线性组合的方式重新组合成一组较少的线性无关的综合指标来代替原来的指标,新变量能反映原变量的绝大部分信息。其计算方法如下:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611441980_1283_3957149_3.png图2.4-1主成分分析法降维示意图Fig 2.4-1 the process of PCA algorithm Step1:构建样本大小为mhttps://ng1.17img.cn/bbsfiles/images/2022/02/202202111611318713_6179_3957149_3.pngn个数据,记为https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611327910_1104_3957149_3.png。写出训练样本矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611334892_4308_3957149_3.png (2-1)Step2:构建样本大小为的协方差矩阵,记为。其中表示两个维度和之间的协方差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611340675_3632_3957149_3.png (2-2) https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611343868_4673_3957149_3.png,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611351015_9878_3957149_3.png分别代表样本矩阵D中维度为,数据的均值。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611352784_1583_3957149_3.png (2-3) https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611359081_8704_3957149_3.png (2-4) Step3:求出协方差矩阵的特征值https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611364862_7580_3957149_3.png及对应的特征向量https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611368983_6727_3957149_3.png。将特征值按照大小依次排列,特征值越大,重要级别越高。对于特征值小的,在误差允许范围内可以忽略不计。Step4:取前k行组成矩阵P,记为模式矩阵E。降维后可得矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611372987_2106_3957149_3.png。其中https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611375145_6044_3957149_3.png是模式矩阵E的转置,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611373828_5702_3957149_3.png为中心化矩阵A的转置。降维后的F矩阵在一定程度上降低了复杂度,保留的大部分细节信息,为判别吸收峰提供了有效的依据。3. 偏最小二乘法(PLS)偏最小二乘作法为常见的化学计量标定方法,将X、Y矩阵的分解及回归并做一步,并将Y矩阵信息应用于X矩阵的分解,使得到的X的主成分直接被Y矩阵关联,利用全谱数据,利于对复杂体系进行分析。具体方法为:Step1:建立模型:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611381073_2885_3957149_3.png,其中,T与U为对应得分矩阵;P与Q对应载荷矩阵;E与F为对应PLS残差矩阵。Step2:将T与U做线性回归https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611383953_8734_3957149_3.png,从而解得B。Step3:根据P求得光谱矩阵得分T’与浓度矩阵预测值Y’,其中,https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611383818_3460_3957149_3.png,从而完成预测。4. 奇异值分解(SVD)奇异值分解是通过集合总体信息,以代数或集合准则最优化技术对矩阵结构进行简化的方法,能够对光谱图像进行有效降维。具体方法为:Step1:建立一个的矩阵,定义矩阵的SVD为:https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611388963_2243_3957149_3.pngStep2:对矩阵A与A的转置做矩阵乘法,由关系https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611394031_6226_3957149_3.png,得到矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611397908_656_3957149_3.png的n个特征值与n个特征向量v,n个特征向量v构成SVD中的V矩阵;由关系https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611402967_7620_3957149_3.png,得到矩阵的m个特征值与m个特征向量u,m个特征向量u构成SVD中的U矩阵;Step3:由https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611402919_6856_3957149_3.png,求出每个奇异值https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611410984_7926_3957149_3.png,也能够进而求出奇异矩阵https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611412890_5353_3957149_3.png。5. 遗传算法(GA)遗传算法是对全局进行有效搜索,建立PLS校正模型的方法。该方法能够减少建模波长数据,从而提高预测精度。其具体方法如下:Step1:建立纯物质矩阵A,对其进行初始化,对每列的n个元素进行参数优化,并用的范围对每个元素进行二进制编码,不断重复后使适应度趋于稳定。Step2:对样本进行适应度计算,以误差平方和(SSE)作为此个体的适应度。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611419814_8081_3957149_3.png (2-5)Step3:以初始化的矩阵A,随机初始化2N个种群,每个种群含有n条染色体,每条染色体由12位的二进制编码,分别对应第一列的n个元素,将每个个体对应的二进制编码解码,其中https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611422753_9630_3957149_3.png,表示第i位对应的数据;再计算每个个体对应的适应度;Step4:进行自然选择,从范围内产生 2 个随机数,选择两个个体中适应度比较小的,重复选择操作,直至选择了2N个个体; Step5:交叉与变异,将种群分为N对,对每一对染色体产生一个随机数,当随机数小于交叉概率时,两条染色体随机单点交换;对每个个体产生一个随机数,当随机数小于变异概率时,选择个体中随机一条染色体,将其变为0; Step 6: 选择交叉变异之后得到新的种群,回到 Step2,直至迭代次数大于规定值; Step 7: 继续优化第二列,依此类推,优化完之后再重复优化第一列,直至迭代次数超过阈值2.5 模型识别方法 决策树(Decision tree):决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。决策树学习算法包括 3 部分:特征选择、树的生成和树的剪枝。特征选择的目的在于选取对训练数据能够分类的特征。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。 判别分析(Discriminant Analysis):判别分析又称为线性判别分析(Linear Discriminant Analysis)产生于20世纪30年代,是利用已知类别的样本建立判别模型,为未知类别的样本判别的一种统计方法。通过判别分析,可以建立能够最大限度的区分因变量类别的函数,考查各种光谱差异是否显著,判断哪些自变量对组间差异贡献最大,评估分类的程度,根据自变量的值将样本归类。 支持向量机:该方法是Vapink等根据统计学理论提出的一种建立在结构风险最小化原则的基础上,专门研究小样本情况下和预测的问题,它体现了兼顾经验风险和置信范围的一种折中的思想,能较好地解决小样本、非线性、高维数等实际问题。支持向量机可用于分类和定量预测,分别称之为支持向量分类机、支持向量回归机。 K-最邻近法:K-最邻近法是基本且简单的分类与回归方法。K-最邻近法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的K个最邻近训练实例点,然后利用这K个训练实例点的类的多数来预测输入实例点的类。K-最邻近法三要素:距离度量、K值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的距离。K值小时,K邻近模型更复杂;K值大时,K邻近模型更简单。K值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的K。 可优化分类器: 提升树(Boosting tree),以决策树为基函数的提升方法为提升树,对分类问题决策树是二叉分类树,回归问题就是二叉回归树。提升树模型为加法模型,采用向前分步算法训练。提升树算法采用前向部分算法。迭代的目的是构建,使得本轮损失最小,求得相应的参数。对于不同的问题采用的损失函数不同,在分类问题中使用的就是0/1损失函数。对与回归问题来说,一般采用平方误差函数。 装袋树,装袋法(Bagging)又称自助法聚集(Bootstrap Aggregation),联想到之前提到的自助法的思想方法,对于n个同方差的观测,其平均值的方差为,这说明求平均可以降低方差。那么自然地可以进一步联想,通过自助法抽取n个样本,建立n个决策树模型,然后对n个预测结果求平均,也可以降低方差,提高准确性。装袋法通过自助法抽样B个样本,建立B棵高方差的决策树,不必剪枝。对于分类问题,B个分类结果投票选最多的就好;对于回归问题,B个回归值求平均。B取大一点也不会造成过拟合。装袋法并不仅适用于决策树,但对决策树尤其有用。 子空间K值临域分类器,子空间KNN算法依据类别求得各个子空间,增加不同类别的区分度,相比于单纯的互k最近邻选择,进一步增强了邻居之间的关系。子空间KNN算法首先将训练集依据类别分组,然后分别计算出每个类别子空间的维度权重,再将待分类样本以及训练样本投影到各个子空间中,以便加强各个样本与类别之间的关联性。再在每个对应的于空间中,使用子空间KNN算法求得各个类别的距离权重比。最后累计各个子空间中的距离权重,选择其中距离权重最大的类别作为待分类样本的类标签, 人工神经网络(Artificial Neural Network,ANN):人工神经网络(artificial neural network,ANN)系统是20世纪40年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息储存、良好的自组织自学能力等特点。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611446940_3578_3957149_3.png图2.5-1 人工智能神经网络架构图Fig 2.5-1 the structure of artificial neural network 如图2.5-1所示,人工神经网络通常划分为3个层次,分别为输入层、隐层、输出层。光谱预处理所得到的实验数据首先进入输入层和隐层,之后被传输到输出层,通过对实验数据进行运算处理,逐渐更新完善输入层到输出层的计算路径。在人工神经网络中,实验样品会被按照7:3的比例划分为训练集和预测集。实验数据通过对训练集的训练后确定3个层次之间的神经关系和神经粗细,训练集数据数量越大,神经网络就越精确。建立神经网络后,通过输入不同的变量值,就可以预测未知样品的结果。 卷积神经网络:是一种非线性模型,可以有效提取光谱中的局部信息。典型的卷积神经网络模型包含输入层、卷积层、池化层、全连接层、输出层。对于光谱数据,输入层输入一维光谱数据比二维光谱矩阵更加高效。输入数据和标签后,卷积层使用多个设定好大小和步长的一维卷积核经卷积运算后得到特征图。池化层通常在卷积层之后用来提取数据的局部特征。经过一个或者多个全连接层,可将特征映射到样本空间进行分类。激活函数使用ReLU函数可以避免梯度消失问题;而在分类问题中,神经网络的最后一层通常使用Softmax函数,将输入映射为0到1之间,作为对应类别的概率。模型训练时,首先初始化权值,输入塑料样本训练集近红外光谱数据及类别标签,经过神经网络各层得到最终输出结果。计算模型损失函数值,通过反向传播将损失函数值从最末层传至网络各层,按照最小化损失函数值的方向更新权值,继续训练。 光谱数据是一维信号,相邻波长有强的相关性,样本量少的问题,有文献报道可以采用了包含5层的一维浅层卷积神经网络,包括1个输入层、2个卷积层、1个池化层、1个全连接层和1个softmax输出层,采用误差反向传播算法结合随机梯度下降法进行层与层之间的连接权重调节。在卷积层中利用多个卷积核提取不同属性的光谱特征,采用非饱和线性修正单元(rectified linearunits ,ReLU)为激活函数,池化层采用 Max-pooling方法进行下采样,其有利于减少因样本光谱平移、旋转产生的干扰,保留主要特征并增大输出特征的感受野。为进行不同光谱特征的融合,使用卷积层代替LeNet等网络中输出层前普遍采用的全连接层,实现了全卷积,尽管在一维网络中两者具有相同的参数数量,前者有更明确的物理意义。输出层使用了Softmax分类器,将预测结果转换为非负值,输出类别的归一化概率。2.6 近红外光谱分析流程的建构 近红外分析流程主要包括定量与定性分析,在进行定量与定性分析时首先需要建立校正模型。如果在建立校正模型时遵循一定规范可以一定程度上保证分析结果的可靠性。以下过程将于ASTM E1655《Standard Practices for Infrared Multivariate Quantitative Analysis》、ASTM E1790《Standard Practices for Infrared Multivariate Quantitative Analysis》《JJG178-2007紫外、可见、近红外分光光度计检定规程》《JJG001-1996傅立叶变换红外光谱计验证规定》等标准的基础上介绍近红外光谱测定流程。 定量分析过程。进行近红外定量分析首先必须建立校正模型,需选择足够多的且有代表性的样品组成校正集。建立校正模型所需的样品组成或性质通常采用现行标准或传统方法进行测定。校正集是建立模型的基础,建模过程就是根据校正集的光谱和数据建立数学关系。即收集一定数量的建模样品,分别测定样品的近红外光谱和参考数据,通过化学计量学方法建立二者之间的数学关系。下一步测定样品的红外光谱时,校正集、验证集和未知样品的近红外光谱测定必须采用同一方式,否则会给校正带来误差。建立红外定量分析模型是一个繁琐的过程,包括大量样品的收集和基础数据的测定,以及校正模型的建立与验证。校正模型的建立一般需要进行数据预处理、光谱区间的选择、建立数学模型、对模型进行统计评价以及优化以及对模型异常点统计检验。最后需要模型验证。近红外光谱分析要求在建模之后进行模型验证以确保模型的可用。其基本过程是采用模型对一组已知参考值的样品进行预测,并将结果进行比对。模型通过验证后就可用于对未知样品进行测定,在使用模型时,需要经常对模型性能进行监控,必要时进行模型维护。总之,近红外定量分析是围绕着模型进行,建立模型、验证模型、使用模型和模型维护。 定性分析过程。近红外定性分析使用已知类别的样品建立近红外定性模型,然后用该模型考察未知样品是否是该类物质。即首先,我们需要采集已知样品的光谱,然后用一定数学方法识别不同类型的物质。并用不在训练集的样品考察模型能否正确识别样品类型。随后采集未知样品的光谱,将它与已知样品的光谱进行比较,判断其属于哪类物质。另外,如果未知样品和模型中的所有物质都不相似,模型也能给出这方面的信息。3 典型应用3.1 在化学组成解析方面的应用随着计算机及化学计量学的发展,无损而高效的近红外分析手段广泛应用于测定物质的化学组成。特别是对于聚合物、共混物及共聚物的组分分析、聚合物内部细微结构的分析,都是近红外光谱技术在高分子领域中所具有的重要用途。通过进行组分分析,可确定不同成分的含量与分布情况;通过改变环境条件对细微结构进行监测,确定结构组成并对其调控,使聚合物的性能得到进一步的提升。Viviane等人采用近红外光谱对聚酯纤维材料中二甘醇(DEG)与末端羧基(TCG)的含量与分布情况进行测定。将聚酯纤维暴露于伽马射线中,利用Spectrum 400与Diamond 20两种具有不同窗口尺寸的近红外光谱仪,在1000-2500 nm and 1000-2052 nm范围内,各自平均对样品进行50次扫描,并采用SG求导对光谱进行预处理、利用偏最小二乘判别分析模型对光谱进行分析,结果表明二甘醇(DEG)含量为0.10% w/w ,末端羧基(TCG)含量为2.1 meq/kg,所选模型的交互验证均方根偏差(RMSEP)与传统方法结果接近,通过对近红外高光谱相机所采集图像进行分析确定DEG与TCG的分布情况。实验充分利用近红外能够快速有效测定含量的特点,将光谱矩阵与聚合物属性相联系,从而降低染色与反应敏感性问题,实现对聚酯纤维性能的优化的效果。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611451052_3176_3957149_3.png图3-1-1 聚酯纤维样品中DEG含量分布图Fig 3-1-1 Distribution maps of the DEG content in PET fiber samples(Reprinted from Ref. )https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611450701_9462_3957149_3.png日本关西学院大学的Ozaki等人利用近红外光谱分析手段对聚3-羟基丁酸酯(PHB)在125℃下等温结晶过程进行观察,并对该物质的氢键组成与等温结晶动力学进行研究。制备厚度为500μm的聚3-羟基丁酸酯薄膜,将样品加热至195℃,以5°C/min的速度使温度降至125℃,并在此环境下进行等温熔融结晶,对该过程进行实时监测,后期采用Unscrambler程序进行数据处理,采用主成分分析法对6200-4000 cm-1区域光谱进行降维,结合Avrami方程,得到其结晶动力学参数,同时从化学键非谐性的角度说明C-H与C=O均参与其氢键形成,证明该结晶过程不是非晶态与有序晶态二元混合物的简单过渡。聚3-羟基丁酸酯作为应用最为广泛的可降解热塑性聚合物之一,具有结晶度高且热不稳定的特点,本研究充分利用近红外实时监测功能与主成分分析法,为提高聚3-羟基丁酸酯力学与热学性能方法提供新的思路。图3-1-2 在125°C熔融结晶过程中,PHB在6050-4000 cm-1区域的近红外光谱,所示光谱在0 - 180分钟每10分钟采集一次Fig 3-1-2 NIR spectra in the region of 6050-4000 cm-1of PHB in a film during the melt-crystallization process at 125°C. The spectra shown were collected at every 10 min from 0 to 180 min. (Reprinted from Ref. )Nattaporn等人同样对从氢键角度对聚3-羟基丁酸酯展开研究,采用红外与近红外相结合的方法,实时监测聚3-羟基丁酸酯(PHB)与醋酸纤维丁酸酯(CAB)共混体系球晶在等温结晶过程中空间构象的变化。在80℃热氯仿中制备厚度为50μm的混合膜,采用Perkin-Elmer成像系统进行观察,并使样品在185℃下熔化,以30°C/min降温至125℃进行等温结晶,每6min记录一次光谱图像,观察非均相球晶在x、y、z三个方向的结构变化与动态生长,淬火5min后冻结成晶体再用显微镜进一步观察球晶的形成。通过研究该结晶熔融行为,分析C=O伸缩振动在第一与第二倍频峰区域的红外与近红外光谱变化,采用主成分分析法,最终发现球晶生长过程中z方向逐步受到限制,并进一步确定聚3-羟基丁酸酯(PHB)与醋酸纤维丁酸酯(CAB)的分布情况,表明在分子氢键中产生的不同贡献,说明PHB通过共混可进一步提升其性能,使其具有更好的生物降解性与生物相容性。同时本研究将红外中结晶峰强度,近红外中分离的吸收带的不同信息相结合进行数据分析,从而充分提高了细节结构研究过程的准确度与精度。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611453026_5851_3957149_3.png图3-1-3 在125℃和时间为24min条件下的视觉图像与PHB近红外图像Fig 3-1-3 A visual image and (b) an NIR image of PHB measured at 125°C a tt= 24 min.(Reprinted from Ref. )近年来,使用近红外技术测定聚合物组分及结构的应用非常广泛。Shichao Zhu团队利用近红外光谱与拉曼光谱对熔融聚合物共混物组分进行在线测量,并提出两种数据融合策略,采用偏最小二乘法(PLS)回归、人工神经网络(ANN)和极限学习机(ELM)对4种光谱数据进行分析;S.S. Thosar团队利用近红外测定了聚乳酸-共乙醇化物样品的共聚比,并对二阶导光谱数据在2130-2288nm处建立线性回归模型,在1100-2500nm处建立偏最小二乘模型,在2288nm处进行线性回归校正,从而实现在可接受精度范围内快速对聚合物体系进行表征;Tsuyoshi团队采用近红外与傅里叶拉曼光谱测定了12种具有不同乙烯含量的聚丙烯,采用主成分分析与主成分回归方法对光谱进行降维,在建立了预测聚丙烯共聚物中乙烯含量的不同校正模型,并完成了其性能的比较;Irena团队通过使用平均直径为1.0微米的水凝胶颗粒,对单个水凝胶颗粒进行观察测量,在波长为1764nm处测定其二维图像,从而确定金纳米笼能够增强尺寸大于1微米聚合物分子的吸收,且增强的吸收能对聚合物吸收区域记录的聚合物分子图像产生影响,由此对不同类型贵金属纳米粒子的制备提出https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611455858_937_3957149_3.png新思路,可通过调整其表面等离子体共振的方法从而使其适用于不同的设备与应用。图3-1-4 1746nm下对A、B两组设置测得二维图像(上)和相应的三维图像(1747nm下,SetA为纳米水凝胶粒子不受金纳米笼作用,SetB为纳米水凝胶粒子受金纳米笼作用Fig 3-1-4 2-D images (top) and corresponding 3-D images (bottom) of the drawn rectangular section in 2-D images of absorption at 1764 nm of hydrogel particles without gold nanocages (Set A) and with gold nanocages (Set B). (Reprinted from Ref. ) 近红外光谱在测定化学组成方面,除了对聚合物的组分与结构进行监测分析,在日常生活、工业生产等方面也发挥着重要的作用。在生活方面,近红外可用于对食品真伪进行快速鉴定,例如Roman团队用中红外与近红外监测三聚氰胺,提出了高效灵敏的乳制品分析方法;程旎等人采用近红外光谱对鱼肉新鲜度进行评价,并建立相关体系;近红外也被广泛应用于农业领域,近红外光谱技术能够对土壤的有机与矿质成分进行分析,对土壤的质地与ph进行预测,同时也能够对农作物品质进行分析,例如Ba Tuan Le提出的谷物快速分析方法,将近红外技术与仿射变换、极限学习机模型相结合,在玉米和水稻的数据集种得到有效验证。在工业方面,近红外对于炼油、军工、航天以及化工等领域都具有重要意义,Ulrici等人利用近红外在1000-1700nm内对聚对苯二甲酸乙二醇酯和聚乳酸进行识别,从而改善其进一步回收工艺;李定明等人用近红外测定了核燃料处理液液中的硝酸浓度;张彦君等人对聚丙烯物性参数进行快速分析,从而指导工艺修改并调整技术参数。因此,近红外在测定化学组成中的作用不容忽视,未来应针对此方面的应用潜能进行进一步的开发,从而使该项技术充分发挥其作用与价值。3.2 在物理性质表征方面的应用 随着各种物质表征技术的兴起,近红外光谱技术因其所含信息广泛和信息具有良好的可解释性,广泛应用于对聚合物物理性质的检测与表征。由于近红外无损监测、快速识别的特点,在聚合物合成过程监测中亦可监测合成过程中相关参数,同时也可与其他表征手段联用,对聚合物的光学、力学、表面结构等进行过程监测与分析,进而可通过其他技术手段对聚合物进行表面或化学改性以达到预期物理性质。 Nishida M等用近红外高光谱成像技术对新型的生物基可降解塑料聚乳酸(PLA)在控制温度下进行更系统的热力学研究。PLA纤维的典型制成方法是熔融纺丝,将聚合物加热到其熔点以上,将其拉至所需的形状,然后冷却以稳定聚合物。当聚合物呈机械取向时,就会发生应变诱导结晶。将近红外高光谱成像的应用扩展到往返温度扫描,以探测光谱的不可逆结构转变,为在控制温度下进行更系统的热力学研究提供了可能性。对不同拉伸程度的聚乳酸纤维样品进行了基于加热和冷却工艺的往返温度扫描。例如,通过在来回的温度扫描过程改变温度从80到120度,可以收集纤维的近红外光谱。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611457508_954_3957149_3.pnghttps://ng1.17img.cn/bbsfiles/images/2022/02/202202111611461803_6590_3957149_3.png 图3-2-1 (A)每个PLA样品的典型近红外光谱和(B)基于二阶导数的4772cm-1光谱强度的高光谱图像 Fig 3-2-1(A)Typical NIR spectra of each PLA sample and (B) hyper spectacular image based on spectral intensity of crystalline peak at 4772 cm-1 derived from second derivatives.(Reprinted from Ref.)聚乳酸纤维的结晶峰随温度的变化而逐渐移动,这种变化不会被样品的冷却所抵消。了解聚合物的热、结晶和熔体流变性行为对控制其部件质量十分有益。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611462770_8442_3957149_3.pnghttps://ng1.17img.cn/bbsfiles/images/2022/02/202202111611463708_8792_3957149_3.png 图3-2-2 从80到120度的加热过程中结晶峰能带位置的变化Fig3-2-2 Variation of band position of crystalline peak at (A)80 and (B)120 in heating progress(Reprinted from Ref.;) Ogura T等将一种基于近红外光谱的流变光学表征技术应用于聚合物共混物静态拉伸力学变形测试。然后对近红外光谱进行二维相关分析。从乙基峰或甲基峰中发现PCL优先变形。结果表明,当PCL掺量为50%时,拉伸试样的规范面积变白、多孔。试样断口附近的扫描电镜图像显示了聚合物共混物的拉伸区和未拉伸区。采用近红外光谱流变光学表征技术研究了含50% PCL聚合物(薄膜试样)共混物的静态拉伸变形行为。二维相关谱的结果表明了PCL相的主要变形,这一结果支持了扫描电镜图像的变形行为。也为了提高聚羟基烷烃酸酯(PHA)的力学性能,利用万能试验机考察PCL掺量对拉伸性能、杨氏模量、拉伸强度和断裂伸长率的影响提供了支持。 Lomakina EI等利用近红外光谱技术对生物柴油质量进行了廉价且快速的质量分析方法,而且质量控制可以实时进行。乙醇和生物柴油作为替代燃料或生物燃料的使用在过去几年有所增加。现代的官方标准列出了必须确定的25个参数来证明生物柴油的质量,这些分析既昂贵又耗时。与红外、拉曼或核磁共振方法相比,近红外光谱技术是一种廉价且快速的生物柴油质量分析方法,而且质量控制可以实时进行。研究人员比较了线性和非线性校准技术的性能-即多元线性回归(MLR),主成分回归(PCR),偏最小二乘回归(PLS),以及人工神经网络(ANN) ,从近红外光谱分析中预测生物柴油的性质。建立了生物柴油四种重要特性的模型:密度(15℃)、运动粘度(40℃)、含水量和甲醇含量。还研究了不同预处理方法(Savitzky-Golay导数、正交信号校正)对模型预测能力的影响,并建立了一种基于近红外光谱数据的生物柴油燃料性能预测模型。此结果可以帮助快速且准确地分析其他生物燃料(如生物醇/酒精燃料、乙醇-汽油燃料、纤维素乙醇、生物醚、藻类燃料)、石油精炼产品(液体石油气、90(2011)2007-2015汽油、石脑油、煤油/喷气飞机燃料、柴油、(船舶)燃料油、润滑油和工业用油、石蜡、沥青和焦油、石油焦)和石化产品(烯烃及其前体、芳香烃:如苯或混合二甲苯)。近红外光谱在分析化学的其他领域的应用,如制药(药物)质量控制、食品质量控制(如绿茶/红茶)、片剂的活性药物成分(API)/药物(pharmakon)分析,可以通过应用现代多元数据分析方法来加强。 刘亚娜团队运用可见光一近红外光谱技术结合触针式轮廓法可以实现快速预测天然高分子材料木材的表面粗糙度,同时利用可见光一近红外光谱(400~2500nm)技术结合PLS方法得到的模型校正和预测结果理想。利用可见光、短近红外区、长近红外区以及近红外等分段光谱都可以对样品的表面租糙度进行建模预测,其模型表面粗糙度参数的真实值与预测值相关系数可达0.80左右。并提出建议可在下一步的研究当中,建立具有代表性的、大量的样品模型,使得近红外光谱技术预测天然高分子材料的表面粗糙度更加精确和方便,为非接触式测量方法提供更为准确、快速的新方法。 https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611464840_2647_3957149_3.png 图3-2-3 样品在近红外400~2500nm区域处所建模型表面粗糙程度Ra的实测值与预期值相关系数图 Fig.3-2-3 Relationship between lab determined and NIR predicted Ra of sample between 400~2500nm(Reprinted from Ref.;) 近红外光谱技术在物理性质表征方面,除了对物质组分质量、表面粗糙度、耐力性等性能进行表征外,还可以用于对材料NIR反射率光屏蔽性能等进行表征。如Han A等对新型太阳能热反射材料NIR反射率进行实时监测,从而有效通过相关技术提高塑料的NIR反射率和抗老化性的潜力;G. Scott和D. Gilead等运用紫外可见近红外光谱对不同氧化锌含量的ZnO/PS- PMMA纳米复合薄膜在各波段光区内的光屏蔽性能分析表征;FC等运用近红外光谱技术用于对显示出NIR屏蔽性能的材料的屏蔽性能进行表征,近红外的光占太阳辐射能量的一半,对NIR屏蔽性能的检测可有效实现其光屏蔽。近红外光谱技术还可以与相关表征技术结合对物质的物理性能进行进一步的表征。如J. Polym等将近红外光谱技术结合核磁共振技术应用于植物衍生的异山梨酯和异构酰胺合成的共聚物其结晶性能对光学性能的影响;D. L. Kaplan等则建立了一种新的NIR光谱结合角光谱在线方法,可同时测量EVA颗粒的化学和物理性质;R. Auras 等利用Vis/NIR吸收光谱与电子顺磁共振谱结合,可为自导电聚合物如PEDOT测量谱和自旋信号提供了新的解释;N. Revagade等通过NIR和MIR谱相结合的相互转换分析,研究了聚乙烯晶体中构象无序的温度依赖性。Jayalekshmi S等运用Vis/NIR光谱技术有效模拟了电池中的氧化还原过程中中间体形成的伏安图,因电池中的氧化还原过程中往往伴随着颜色的变化,也可用此表征其光学性质。近红外光谱分析技术在测定物质物理性能方面具有十分优良的应用,在此方面也仍有的巨大的潜力待进一步开发。3.3在聚合物合成过程在线监测方面的应用 聚合物在合成与成型过程中,需要不断调整其工艺参数从而实现材料在不同方面的性能提升,然而,动态参数的确定往往需要大量实验数据作为理论基础,因此导致一定的资源浪费。近红外光谱通过光纤传感技术可对反应过程进行实时检测,具有快速高效、无损灵敏等优良特性, 因此能够有效解决聚合物动态参数难以测定的问题,实现对聚合物合成及成型过程的在线分析与控制。近年来,近红外光谱在线监测功能已广泛应用于聚合物反应方面的研究,并主要从聚合物的特性参数表征、动态合成成型过程测定两个方面展开应用。该项监测技术对多个领域的发展都发挥着积极作用,尤其是对工业生产过程中工艺参数的优化具有重要意义,提供有效方案的同时也产生了经济效益,具有一定的实际价值。 FabricioMachado等运用近红外光谱在线监测悬浮聚合过程中聚氯乙烯粒子形态特征。Fariajr建立了一个基于偏最小二乘的回归模型,并通过建立PLS方法用于形态预测最终树脂的性能,如pd,CPA等。且该模型用实验数据进行了校准,在不同的反应条件下,通过操控搅拌速度、悬浮剂浓度来控制粒子形态。结果表明,形态特征的动态轨迹与基于NIR的校准预测模型一致,沿时间平稳变化。这些轨迹可作为过程监测和控制的参考。对近红外光谱分析可得聚乙烯晶粒形态的实时数据,并且可以实现基于先进的NIR的控制程序来控制聚氯乙烯树脂的形态特征。而在聚合物聚合过程中,聚合反应器的自动化和先进的控制对于进行工业生产中制作工艺一环至关重要。 https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611466120_9690_3957149_3.png图3-3-1.NIR光谱预测VCM聚合过程中BD和CPA的动态演变 Fig 3-3-1.Dynamk evolution of BD and CPA during VCM polymerizations, as predicated by NIR spectroscopy.(Reprinted from Ref. ) 后藤健等对聚合物采用近红外光谱分析3C-NIR等方法表征了其反应过程中分子量分布。在H-NMR谱中,来自异硫萘单体单元的叔丁基二甲基硅基取代基的0.54ppm和0.91ppm的信号缺失以及9.8ppm的醛质子和150ppm的醛碳对应的信号缺失表明缩聚反应的完成。所有的FT-红外光谱都与纽格鲍尔等人测量的的光谱吻合良好。从UV-Vis-NIR光谱的带边确定的带隙值分析,这些带隙均在1.2-1.3eV的范围内。这远低于人们普遍接受的1.5ev的临界值。因此,所有获得的聚合物都可以被认为是低带隙聚合物。利用近红外光谱技术对反应过程进行实时检测能有效辅助在化学反应条件允许的下有更为充分的可能引入各种侧链。 Lalehvash等人在实验室反应挤出机上,用近红外光谱和流变仪对马来酸酐(MAH)与聚丙烯(PP)的接枝共聚反应进行原位监测,以反应温度与引发剂过氧化二异丙基(DCP)为实验变量,对该共聚过程展开探究。对马来酸酐与聚丙烯进行预混后使之构成封闭系统,在200、210、220℃下分别以熔融状态处理90min,在线监测通过近红外光谱仪Nicolet Nexus与Thermo Haake Minilab CTW5的小型挤出机连接而实现,每2min对该过程的粘度与10000-4000https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611464793_7107_3957149_3.jpeg范围内光谱数据进行采集,共进行190次扫描,反应结束后对样品进行后处理,从而得到接枝共聚最终产品,数据处理过程采用PCA对光谱进行降维,以此提高结果准确度与精度。最终发现DCP的存在不影响接枝共聚速率,DCP浓度介于0.25-0.5 wt%之间时,会引起断裂反应的增强,从而时表观粘度急剧下降,当DCP浓度较低时,该团队对该反应过程提出了一种“修复机制”,即两个PP与MAH中部分结构进行反应,且同时有断裂反应的发生,总的分子量能够保持不变,表现为粘度较稳定,当MAH浓度降低后,粘度才开始急剧下降。PP作为工业生产与日常生活中广泛应用的聚烯烃,具有优良化学性能与物理性能,常通过在熔融状态下以自由基进行接枝聚合的方法对其进行改性,本研究充分利用近红外与远程仪器进行光纤连接的技术手段,对产物的特性参数与反应过程进行实时监测,从而提出PP与MAH的反应机制,对于理解高温下接枝共聚的均聚复杂性及进一步提升聚丙烯性能以改善其工艺参数,具有启发性作用。 Andrew 团队采用近红外光谱在线监测注塑成型过程中聚乳酸(PLA)对聚对苯二甲酸乙二酯(PET)的污染情况,并对PLA进行定量分析,且提出多种PLA含量预测模型,通过对模型进行测试验证,从而提出最佳预估方法。对PET与PLA材料在107℃下进行8h预处理,采用Battenfeld HM40 4/130使样品注塑成型,制备出含聚乳酸含量在0.01% - 0.09% w/w范围之间的PET共混物,在线监测通过将两个光线探针与近红外光谱相连,从而获得4000-12000cm-1下的实时光谱信息,数据处理过程采用多元分析思想,对光谱采用PLS进行降维,并将所测区段划分为5个部分建立不同模型,验证后得到最优解。在建立模型之外,研究发现PET与PLA在9000-8000cm-1区段内峰值具有显著差异,表明了物理变化的发生;同时PLA浓度的增加使PET光谱中基线发生位移,因PLA浓度影响材料不透明度,所以该位移现象可作为监测PET材料颜色与添加剂浓度的重要方法。当前,PET已作为重要包装材料而得到大规模生产与应用,但因PET与PLA不相容的特性,其回收过程易受到PLA威胁而影响其流动性,导致其再次使用过程中性能大幅下降。而本实验借助近红外监测过程中优越的精度与灵敏度,对PET与PLA的特性参数进行定量测定,对注塑成型过程进行定性分析,以最优模型实现在0.01% ~ 0.09%的聚合物熔体中定量检测聚乳酸在PET中的污染,从而对PET回收工艺的提升提供了良好的思路与方法。 近红外光谱在线监测技术不仅对工业发展具有指导性意义,在医药、农林、食品等方面的发展也具有重要价值。在药物监测方面,Lien Saerens等人通过近红外光谱对热熔挤压过程中酒石酸美托洛尔的浓度进行测定,并对聚合类药物的固态行为与分子相互作用展开研究,从而提高了制药效率,为该行业由批量处理向连续处理的转型提供有效思路;杨辉华,郭拓,马晋芳等人将近红外光谱在线监测技术应用于中药柱层析的过程中,以光谱自适应移动窗口标准差趋势图等作为指标,从而对生产过程的异常现象、反应节点进行有效监测,以此提高药物质量均一性;杨华生、吴维刚等将近红外与炒麦芽过程中指标成分建立定量校正模型,提出“成分变化率”的炒制终点判断方法,从而对药物炒制工艺终点的判断提供科学方法。在农林方面,András Salgó等对小麦种子的成熟过程中的水分、碳水化合物、蛋白质等参数进行近红外无损检测以探究其生长机理,并对其生长过程中的水合与脱水过程展开深入了解。在食品加工方面,郭中原 、慎石磊等人采用近红外对豆粕品质进行在线控制,并建立合理预处理系统,从而解决物料颗粒度较大而加工产物混合不均的问题。由此可见,近红外光谱在聚合物在线监测过程中具有关键性作用,并已广泛应用于不同行业的研究过程当中,在未来,可进一步拓展其在线监测功能,使其作用不只局限于对特性及反应进行表征观察,从而充分实现其科技价值与经济效益。4 发展展望4.1 可解释性学习(Interpretability for machine learning)的探究有望助力近红外模式识别过程化学信息追溯 众多机器学习、深度学习手段被运用于近红外模式识别过程中,在诸多领域取得了系列进展。但由于机器学习方法参数传递的不透明性、网络架构的复杂性,机器学习方法在进行训练集训练、预测集预测的过程中,对化学信息参与的权重、化学信息损失的探究难以进行,除按照常规数据分析手段进行交叉验证集的设置,目前暂无较好解决方法。 在机器学习运用的其他领域,机器学习可解释性的研究正悄然兴起。机器学习的可解释性指如下三个方面的含义:一是指的是对整个模型的高层次的理解;二是指通过了解一个网络每个组分的作用来达到理解一个模型的作用;三是理解网络的训练和动态行为。以决策树(Decision Tree)模型为例,决策树每一个节点有明确的判别标准,从节点和分支上进行判别分析,其可视性强,也便于我们判断每个分支的进行是否有逃离化学信息的趋势,可以通过剪枝等操作进行剔除;而由众多决策树组成的随机森林,由于森林中使用的决策树未知性强,模型可解释性较差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611466785_3819_3957149_3.png 图4.1-1 可解释性机器学习研究趋势Fig 4.1-1 trends in the research of explainable machine learning or related subjects 目前可解释性的评价标准主要有以下几个方面:精准度,一致性,完整性,普遍性和实用性,精确度指解释方法的准确性,探究可否定量解释;一致性是指解释中不存在任何矛盾,对于相似样品产生相同结果;完整性是指解释方法应该显示出在最大数量的数据实例和数据类型方面的有效性,而不是只对某些数据有效;通用性则强调该解释机器学习的方法逻辑是否具有推广性,能否推广到其他机器学习策略中;实用性则是基于其黑盒性质,使用神经网络在很大程度上是一个反复试验的过程,有时会产生矛盾的直觉。可解释性的增强应当要帮助我们理清这些矛盾之处。 目前机器学习可解释性的论文可以进行如下分类:“事前可解释性建模”和“事后可解释性分析”。后者是模型已经训练好,然后解释,前者是从头设计可解释性的模型。进一步,“事后可解释性分析”可以分成七个小项:特征分析(Feature Analysis)、模型检查(Model Inspection)、显著表征(Saliency)、代理模型(Proxy)、先进数理(Advanced Math/Physics Method)、案例解释(Explaining-by-Case)、文本解释(Explaining-by-Text)。“事前可解释性建模”可以再分成可解释表示(Interpretable Representation)、模型修缮(Model Renovation)。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611468806_2035_3957149_3.png图4.1-2 可解释性研究方法Fig 4.1-2 The Research methods in the explainable machine learning 以模型检查为例,探究如何在图像识别中如何帮助模型判断数据集中其他样本是如何摸预测。P. W. Koh等研究人员利用影响函数以确定一个样本的预测,数据集中的其他样本对该预测有正面影响还是负面影响?如图3所示,对于类似LeNet-5的网络,通过影响函数可以识别给定图像的两个有害图像。除此之外,很多研究人员注意到神经网络中的故障或偏差的检测,A.Bansal等开发了一种通用算法,以识别那些神经网络可能无法为其提供任何预测的实例。在这种情况下,该模型将发出“不要信任我的预测”之类的警告而不是给予一个预测。具体来说,他们使用一系列属性特征来注释所有失败的图像,并将这些图像聚类,以判断错误图像https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611473541_6342_3957149_3.png图4.1-3 错误图像的判别方法Fig 4.1-3 distinguish harmful images from database(with explainable methods in ML) 神经网络作为一种广泛使用的机器学习、深度学习架构,拥有较强的泛化能力。神经网络的构建是受生物神经网络的启发,然而,神经网络的后续发展却基本不是由神经科学的观点来推动的。目前判断神经网络的方式主要是损失函数,有效的损失函数是过去几年中深度网络发展的重要动力;例如,GAN中使用的对抗性损失,损失函数将使模型能够学习可解释的表示形式,例如增强特征可分离性。我们的大脑是一个最好的优化机器,该机器具有强大而准去的权重分配机制。通过研究大脑,可以帮助我们建立生物学上合理的损失函数。可解释性机器学习的进一步发展和普及,有望为我们打开模式识别方法中“黑匣子”的奥秘,为探究化学信息权重提供逻辑可行性。4.2 快速机器学习(Fast ML)的构建有望降低近红外应用门槛在近红外模型构建的过程中,大多数建模过程对仪器公司具有一定软件依赖性(Vendor Lock-in),且仪器公司提供软件更新程度慢,无法及时集成最新的机器学习研究成果以供研究者选择,而基于MATLAB构建的机器学习策略虽有一定的集成度,但MATLAB作为付费软件,又对使用者的经济条件提出一定程度的要求;基于Python结合numpy、TensorFlow等数据科学处理库,能非常方便的处理数据,但对于初学者必须掌握一定的编程基础才可进一步使用。对于工业现场分析的高光谱数据,往往还会对计算条件提出要求,而一个集成度高、运算速度快的快速机器学习架构会对基于近红外模式识别的运用有较大影响。过去几年,ML 的大部分进步都源于异构计算硬件的使用别是,图形处理单元 (GPU) 的使用促进了大型深度学习(DL)算法的开发。在大型数据集上训练大型人工智能(AI)算法的能力使算法能够执行复杂的任务。在这些发展的同时,出现了新型 DL 算法,旨在减少操作数量,从而实现快速高效的 AI 算法。2021年,40多个机构的近百位研究者联名发布了一篇报告以讨论快速机器学习在科学中的应用和技术,将强大的 ML 方法集成到实时实验数据处理循环中以加速科学发现的概念。综述报告主要讨论了机器学习在科学研究中的技术与应用——将强大的机器学习方法集成到实验数据处理过程有助于加速科学发现。内容涵盖三个方面:机器学习在多个科学领域的应用;高效训练、高资源利用率算法;用于部署这些算法的计算架构和平台。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611471726_4322_3957149_3.png图4.2-1 快速机器学习设计的相关领域Fig4.2-1 The subjects contain in the Fast ML techniqueFast ML可以作为一种颠覆性技术来改变现状,并导致我们处理数据的方式发生重大变化,从近红外领域中不断利用的新机器学习算法、卷积神经网络等也可发现机器学习其泛化能力强的特点。作者在文中综述了包括大型强子对撞机、高强度加速器实验、材料发现、费米实验室加速器控制、中微子和直接暗物质实验、电子离子对撞机、引力波、生物医学工程、健康监测、宇宙学、等离子体物理、用于无线网络和边缘计算的机器学习等机器学习任务,并讨论了诸如数据表示、网络特征等共同问题,结合合适硬件的进步与部署,研究人员阐释构建快速机器学习的方法与技巧。构建快速 ML 算法的技术和技巧,这需要协同设计:在考虑硬件的情况下构建算法,并为硬件编程提供高效的平台。关注神经网络设计和训练,以便在硬件中有效实现。ML 硬件计算平台可分为两类:传统 CMOS 硬件和新兴的 CMOS 硬件。前者将解决近期的硬件解决方案,而后者将专注于范围的投机端。在近红外光谱的在线识别中,我们希望的理想ML算法需要低延迟,但通常资源有限。然而,目前大多数最先进的神经网络模型都具有高得令人望而却步的延迟,以及大量的内存占用和能源消耗。出于这个原因,从业者被迫使用具有非理想精度的次优模型(例如浅层神经网络)来避免这种延迟问题,通过量化(降维或低维度处理)、模型的减枝或稀疏推理,缩短在线监测所需时间。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611473172_8592_3957149_3.png图4.2-2 快速机器学习可行的架构及敏感性判断法Fig 4.2-2 the structural design of Fast Machine Learning based on conventional layers 4.3 新化学计量学与模式识别方法运用层出不穷 随着化学计量学的进一步发展,新方法、新技巧被不断提出与运用,在光谱降维上,以江南大学陶焕明,高美凤对近红外光谱变量选择方法的研究为例,研究人员提出改进免疫遗传算法(iIGA)进行近红外光谱变量的选择。目前运用的遗传算法(GA)具有陷入局部最优解的可能且解释精度较低,借鉴生物学原理,江南大学高美凤副教授团提出利用免疫遗传算法(IGA)结合适应度和抗体浓度两种具体概念,使免疫遗传算法得以考虑免疫平衡的存在,即抗体浓度越高,越受抑制,在蛋白质含量预测上该研究提出的iIGA算法相较于原IGA算法预测精度得到提升,结果说明iIGA算法具有一定优越性。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611474822_8610_3957149_3.png图4.3-1 改进免疫遗传算法示意图Fig 4.3-1 the process of iIGA algorithm在光谱预处理中,基线漂移是拉曼、中红外、近红外以及激光诱导击穿光谱等光谱仪器测量过程中经常出现的问题,石油化工研究院的褚小立等人,对系列算法的革新和迭代进行综述,例如经优化的惩罚最小二乘法(AsLS), 具有计算效率高和无需谱峰检测等优点, 其基本原理是在惩罚最小二乘的基础上,引入权重向量,对高于拟合基线的信号施以小权重或将权重设置为零。反之,则施以大权重,通过求解惩罚最小二乘函数获得基线的有效估计.以利用AsLS处理的国际RRUFF矿物数据库中不同产地同一矿物的拉曼光谱图为例(如下图所示),由于荧光等背景干扰,样本光谱之间出现了很大的差异,但当利用AsLS算法校正基线后,相同矿物之间的拉曼光谱展现出很好的相似性,说明在高光谱处理中,利用惩罚最小二乘法可以有效排除外界干扰,更加准确的测定光谱图像https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611479205_6511_3957149_3.jpeg图4.3-2 经过不同基线校正方法所得近红外光谱图Fig.4.3-2 (A)Ten spectra of a certain mineral from different regions in RRUFF database and (B) corresponding baseline corrected ones by asymmetric least squares (AsLS)4.4 近红外光谱学的基础研究的探索为理论计算模拟创造机遇近红外区段包含丰富的分子合频、倍频信息,因斯布鲁克大学Krzysztof B. Bec与关西学院大学Yukihiro Ozaki在近红外区段所包含的化学信息解释中做了相关的工作。非谐振子的化学振动使近红外区段所包含的化学振动信息丰富,而部分吸收峰较弱且有重叠的显现,很难对其化学信息的归属很强度进行进一步的分析。随着分子模拟(Molecular Dynamics)的进一步发展,理论计算被用于近红外光谱的分析研究上,因斯布鲁克大学的Krzysztof B. Bec教授,利用量子模拟计算对胡椒碱(piperine)的理论光谱进行相关模拟,并于实际光谱进行了对比,并明确理论计算光谱各谱代的归属,在整体上符合实验实测光谱图样,但仍然存在偏差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611480397_1290_3957149_3.png图 4.4-1 胡椒碱理论计算与实际光谱对比图Fig 4.4-1 the calculated and experimental spectrums of piperine 日本关西学院大学的OZAKI教授与奥地利的Huck教授,对甲醇分子在近红外区段的化学信息进行光谱模拟计算和谱带解析,得到20余个倍频与合频吸收峰,与实验有较强的吻合性,但仍具有一定偏差。https://ng1.17img.cn/bbsfiles/images/2022/02/202202111611481246_6681_3957149_3.jpeg图4.4-2 甲醇理论计算光谱与实际光谱归属Fig 4.4-2 the calculated and experimental spectrums of CH3OH低浓度甲醇(0.005 mol/L)的实验近红外光谱图与模拟计算谱图的谱带归属 综上,化学计量学的进一步发展以及可解释性的机器学习结合量子计算模拟手段,有望将目前处于“黑箱模型”状态的分析过程转化为“灰色模型”,甚至达到“白色模型”完全可解释的状态5 结束语近红外光谱分析法作为一项表征测试手段,在高分子材料领域获得了一定程度的运用,结合不同化学计量学方法、机器学习、光谱分析手段,可以对各种物性参数进行有效分析预测,限于该技术存在一定的使用门槛,以及供应商依赖(Vendor lock-in)等现实情况,近红外在高分子材料领域目前仍处于起步阶段,随着化学计量学方法的进一步进步、光谱解析手段的进一步深入,近红外分析手段可更好在高分子材料研究中发挥自身作用,在物理化学性质分析、过程监控中有更为深入、广泛的应用。 REFERENCES1 Blanco M, Villarroya I. NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry, 2002, 21(4):240-2502 Furukawa, T. , Watari, M. , Siesler, H. W. , Ozaki, Y. Discrimination of various polypropylene) copolymers and prediction of their ethylene content by near-infrared and Raman spectroscopy in combination with chemometric methods . Journal of Applied Polymer Science. 2003, 87: 616-6253 Yoshida H., Sakyo K. In-line monitoring of polyethylene density using near infrared (NIR) spectroscopy . Polymer Engineering and Science. 2000, 40 (S): 1107-1113.4 Marion G. H., Atul Khettry. In-line monitoring of molten polymers Near infrared spectroscopy robust probes and rapid data analysis . Polymer Engineering and Sciece. 1994, 34 (23): 1758-1756.5 Oihana Elizaled, Jose Ramon Leiza. On-line Monitoring of All-Acrylic Emulsion Polymerization Reactors by Raman Spectroscopy . Maceomol. Symp. 2006, 206: 135-1486 Sheibat-Othman N , D Peycelon, G Févotte. Monitoring and Control of Free-Radical Polymerizations Using Near-Infrared Spectroscopy. Industrial & Engineering Chemistry Research, 2004, 43(23):7383-7391.7 吴艳萍. 近红外光谱表征聚丙烯树脂性质的研究 . 北京: 石油化工研究院, 2003.8 C. Schade, W. Heckmann, S. Borchert. Determination of Orientational States in Impact-Polystyrene Specimens by Near-Infrared Polarization scopy .Polymer Engineering and Science. 2006, 46 (3): 381-383.9 夏柏杨, 任芋.近红外光谱分析技术的一些数据处理方法的讨论 . 光谱实验室. 2005, 22 (3): 629-634.10 Magali Laasonen. Near Infrared spectroscopy, a quality control tool for the different steps in the manufacture of herbal medicinal products . Finland: University of Helsinki, 2003.11 Marlon M. Reis, Pedro H. H. Araujo, Claudia Sayer, et al. Comparing near infrared and Raman spectroscopy for on-line monitoring of emulsion copolymerization reactions . Macromol. Symp. 2004, 206: 165-178.12 董守龙, 任芋, 黄友之.近红外光谱分析技术的发展和应用 .分析与检测. 2004, 11(6):44-46.13 张玲, 邱芳萍, 于健.现代近红外光谱技术 .长春工业大学学报.2003, 24 (4): 23-25.14 陆婉珍. 21世纪的分析化学 . 北京:科学出版社, 1999: 75-91.15 陆婉珍. 现代近红外光谱分析技术 . 北京:中国石化出版社, 2006:1-3.16 Nuria Prieto, Olga Pawluczyk, Michael Edward Russell Dugan, and Jennifer Lynn Aalhus, A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products,Appl. Spectrosc. 2017,71:1403-1426.17 褚小立, 袁洪福, 陆婉珍. 近年来我国近红外光谱分析技术的研究与应用进展 . 分析仪器. 2006, 2: 1-10.18 彭云, 沈怡, 武培怡, 杨玉良. 广义二维相关光谱学进展 . 分析化学评述与进展. 2005, 10: 1499-1504.19 J. M. R. Fontoura, A. F. Santos, F M. Silva, et al. Monitoring and Control of Styrene Solution Polymerization Using NIR Spectroscopy . Journal of Applied Polymer Science. 2003, 90: 1273-1289.20 陆婉珍, 袁洪福, 徐广通等.现代近红外光谱分析技术. 北京:中国石化出版社, 200021 Mobley P R , Kowalski B R , Workman J J , et al. Review of Chemometrics Applied to Spectroscopy: 1985-95, Part 2. Applied Spectroscopy Reviews, 1996, 31(4):347-368.22 梁逸曾,俞汝勤.分析化学手册(10)——化学计量学.北 京:化工出版社,200123 刘树深,易忠胜.基础化学计量学.北京:科学出版社, 199924 近红外光谱分析技术实用手册. 北京:机械工业出版社, 2016:25 刘树深,易忠胜.基础化学计量学.北京:科学出版社, 199926 徐广通, 袁洪福, 陆婉珍. 现代近红外光谱技术及应用进展. 光谱学与光谱分析, 2000, 20(2): 134-142.27 董守龙, 任芋, 黄友之.近红外光谱分析技术的发展和应用 .分析与检测. 2004, 11(6):44-46.28 陆婉珍. 现代近红外光谱分析技术.第2版. 中国石化出版社, 2007.29 王燕岭. 浅谈近红外光谱分析技术. 现代科学仪器, 2005, 24(4):87-87.30 褚小立,袁洪福,陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展,2004,16(4):528-542.31 梁逸曾, 俞汝勤. 分析化学手册.第十分册,化学计量学-第2版. 化学工业出版社, 2000.32 刘树深, 易忠胜. 基础化学计量学. 科学出版社, 1999.33 徐广通, 袁洪福, 陆婉珍. CCD近红外光谱谱图预处理方法研究. 光谱学与光谱分析, 2000,20(5):619-622.34 Dhanoa M S, Sanderson R. Comment on "The structural relationship: regression in biology". Canadian Journal of Zoology, 2010, 88(8):821-823.35 Isaksson T, Naes T. The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Applied Spectroscopy, 1988, 42(7):1273-1284.36 Chen, J. , Iyo, C. , Terada, F. , Kawano, S. Effect of Multiplicative Scatter Correction on Wavelength Selection for near Infrared Calibration to Determine Fat Content in Raw Milk. Journal of Near Infrared Spectroscopy, 2002,10(1):301-307.37 高志明, 李井会, 高礼让,小波分析在化学中的应用进展. 化学进展, 2000, 12(2):13-14.38 邵学广, 庞春艳, 孙莉. 小波变换与分析化学信号处理. 化学进展, 2000, 12(3):233-244.39 郭怀忠, 张尊建. 小波变换及其在分析化学中的应用. 药学进展, 2000, 24(1):5.40 Cai C , Harrington P D . Different Discrete Wavelet Transforms Applied to Denoising Analytical Data. Journal of Chemical Information & Modeling, 1998, 38(6):1161-1170.41 Bakshi B R . Multiscale analysis and modeling using wavelets. Journal of Chemometrics, 1999. 13: 415-434.42 姜黎, 张军, 陈哲,等. 基于不同波段对成品汽油的模式识别分析. 光谱实验室, 2010(03):426-430.43 欧阳思怡, 谢小强, 刘燕德. 水果内部品质近红外动态在线检测研究进展. 湖北农业科学, 2013(10):4-10.44 Spiegelman, C. H. , Greensill, C. V. , Walsh, K. B. , Wolfs, P. J. Calibration Transfer between PDA-Based NIR Spectrometers in the NIR Assessment of Melon Soluble Solids Content. 2001, 55(5):647-653.45 Palermo, R. N. , Short, S. M. , Anderson, C. A. , Tian, H. , Iii, J.. Determination of Figures of Merit for Near-Infrared, Raman and Powder X-ray Diffraction by Net Analyte Signal Analysis for a Compacted Amorphous Dispersion with Spiked Crystallinity. Journal of Pharmaceutical Innovation, 2012, 7(2):56-68.46 Chau, F. T. , Shih, T. M. , Gao, J. B. , Chan, C. K.. Application of the Fast Wavelet Transform Method to Compress Ultraviolet-Visible Spectra. Applied Spectroscopy, 1996,50(3), 339-348.47 Eriksson, L. , Johansson, E. , Kettanehwold, N. , Trygg, J. , C Wikstr?m, & Wold, S. Multi- and Megavariate Data Analysis : Part II: Advanced Applications and Method Extensions. Umetrics Inc, 2008(4):362.48 Lin H D, Bruce L M. Projection pursuits for dimensionality reduction of hyperspectral signals in target recognition applications.Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International. IEEE, 2004.49 张钧萍, 张晔, 周廷显. 成像光谱技术超谱图像分类研究现状与分析. 中国空间科学技术, 2001, 21(1):8.50 A. Rehman, A. Khan, M. A. Ali, M. U. Khan, S. U. Khan and L. Ali, Performance Analysis of PCA, Sparse PCA, Kernel PCA and Incremental PCA Algorithms for Heart Failure Prediction,2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 2020, 1-5.51 C. Yumeng and F. Yinglan, Research on PCA Data Dimension Reduction Algorithm Based on Entropy Weight Method,2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2020, 392-396.52 Koren Y . Factorization meets the neighborhood: A multifaceted collaborative filtering model.Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , 2008. ACM, 2008.53 Liancheng Wang, W Liu, Y Zhang. Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy, 2015,12:419-436.54 Li, Z. , Chen, W. , Lian, F. , Ge, H. , Guan, A.. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy. Applied Spectroscopy, 2017, 71(12):2653-2660.55 陈建安, 郭大伟, 徐乃平, 遗传算法理论研究综述. 西安电子科技大学学报, 1998, 25(3):6.56 张国民. 遗传算法的综述. 科技视界, 2013(9):2.57 温国基,戴连奎,刘薇. 基于遗传算法与线性叠加模型的混合物组成拉曼光谱定量分析. 分析化学,2021,49(1):85-94. 58 淡图南, 戴连奎. 基于PLS投影分析的光谱波段选择方法. 光谱学与光谱分析, 2009,2(2):4. 59 尼珍,胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展.药物分析杂志,2008,28(5):824-829.60 Bumghi C,Lee J H,Kim D H. Solving local minima problem with large number of hiddennodes on two-layered feed-forward artificial neural networks. Neurocomputing,2008,71(16):3640-3643.61 徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,2(2):134-142.62 褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,4(4):528-542.63 李圆.淀粉接枝共聚丙烯酰胺聚合物凝胶体系的研究与应用.中国地质大学(北京),2018.64 黄亚曦,贾鑫.自然条件下可降解农膜光降解性能的研究.石河子大学学报(自然科学版),2012,30(2):239-243.65 梁晓凡,黄定海.利用红外光谱研究聚合物玻璃化转变时的构象变化.高分子通报,2011(11):90-97.66 Huang Guangbin, Zhu Qinyu, Siew C H. Extreme Learning Machine: Theory and Applications. Neurocomputing, 2006,70(1-3): 489-501.67 张文杰,焦安然,田静,王晓娟,王斌,徐晓轩.卷积神经网络和支持向量机算法在塑料近红外光谱分类中的模型应用.分析测试学报,2021,40(7):1062-1067.68 刘辉军,魏超宇,韩文,姚燕.基于全卷积神经网络的黄花梨采收期可见-近红外光谱检测方法.光谱学与光谱分析,2020,40(9):2932-2936.69 陆婉珍. 现代近红外光谱分析技术.第2版. 中国石化出版社, 2007.70 郭隆海. 近红外光谱分析技术在线检测乳液聚合反应的应用. 北京化工大学, 2008.71 赵彦如, 陈东辉, 佟金. 近红外分析技术及其应用. 华中农业大学学报, 2005(S1):4.72 Garcia D, Kim J S, Eisenberg A. Near infrared studies of styrene-sodium methacrylate ionomers.. Journal of Polymer ence Part B Polymer Physics, 1998, 36(16):2877-2886.73 Vieira R A M, Sayer C, Lima E L. In-line and in situ monitoring of semi-batch emulsion copolymerizations using near-infrared spectroscopy.. Journal of Applied Polymer Science, 2010, 84(14):2670-2682.74 Furukawa T, Watari M, Siesler H W. Discrimination of various poly(propylene) copolymers and prediction of their ethylene content by near‐infrared and Raman spectroscopy in combination with chemometric methods. Journal of Applied Polymer Science, 2003, 87(4):616-625.75 Thomas, Rohe, and, et al. Near infrared (NIR) spectroscopy for in-line monitoring of polymer extrusion processes. Talanta, 1999, 50(2):283-290.76 Determination of diethyleneglycol content and number of carboxylic end groups in poly(ethylene terephthalate) fibers using imaging and conventional near infrared spectroscopy. Polymer Testing, 2016, 49:15-21.77 W.A. Macdonald, New advances in poly(ethylene terephthalate) polymeriza-tion and degradation, Polym. Int. 2002,51 (10) 923.78 Romao W, Spinace M, Paoli M. Poli(Tereftalato de Etileno), PET: Uma Reviso Sobre os Processos de Síntese, Mecanismos de Degradao e sua Reciclagem. Polímeros, 2009, 19(2):121-132.79 Shin J, Lee Y. Optimization of the pre-polymerization step of polyethylene terephthalate (PET) production in a semi-batch reactor. Chemical Engineering Journal, 1999, 75(1):47-55.80 Yun, Hu, Jianming. C?H···OC Hydrogen Bonding and Isothermal Crystallization Kinetics of Poly. Macromolecules, 2006, 39(11):3841-3847.81 Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 1989, 22(2):694-697.82 Doi Y, Kitamura S, Abe H. Microbial Synthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxypropionate). Macromolecules, 1994, 28(14):4822-4828.83 Ishida K, Asakawa N, Inoue Y. Structure, Properties and Biodegradation of Some Bacterial Copoly(hydroxyalkanoate)s. Macromolecular Symposia, 2005, 224(1):47-58.84 Chan C H, Kummerlwe C, Kammer H W. Crystallization and Melting Behavior of Poly(3‐hydroxybutyrate)‐Based Blends. Macromolecular Chemistry & Physics, 2004, 205(5):664–675.85 Jung H C, Lee H S, Yong S C. Blends of a thermotropic liquid crystalline polymer and some flexible chain polymers and the determination of the polymer-polymer interaction parameter of the two polymers. Polymer Bulletin, 1998,41, 387–39486 Nattaporn, Suttiwijitpukdee, Harumi. Effects of Hydrogen Bond Intermolecular Interactions on the Crystal Spherulite of Poly(3-hydroxybutyrate) and Cellulose Acetate Butyrate Blends: Studied by FT-IR and FT-NIR Imaging Spectroscopy. Macromolecules, 2012, 45(6):2738–2748.87 Hocking, P. J.; Marchessault, R. H. Polyhydroxyalkanoates. In Biopolymers from Renewable Resources; Kaplan, D. L., Ed.; Springer-Verlag: Berlin, 1998; 220.88 Ken'ichiro, Matsumoto, Hiromi, et al. Isolation and Characterization of Polyhydroxyalkanoates Inclusions and Their Associated Proteins in Pseudomonas sp. 61-3. Macromolecules, 2002.89 Zhu S, Song Z, Shi S. Fusion of Near-Infrared and Raman Spectroscopy for In-Line Measurement of Component Content of Molten Polymer Blends.. Sensors, 2019, 19(16):3463-3469.90 Thosar SS, Forbess R A, Kemper M. Determination of copolymer ratios of poly(lactide-co-glycolide) using near-infrared spectroscopy.. Journal of Pharmaceutical & Biomedical Analysis, 1999, 20(1-2):107.91 Furukawa T, Watari M, Siesler H W. Discrimination of various poly(propylene) copolymers and prediction of their ethylene content by near‐infrared and Raman spectroscopy in combination with chemometric methods.. Journal of Applied Polymer Science, 2003, 87(4):616-625.92 Tran M C D. Visualizing the effect of gold nanocages on absorption, imaging, and lower critical solution temperature phase transition of individual poly(NiPAM)-based hydrogel particles by near infrared multispectral imaging microscopy.. Analytical Chemistry, 2011, 83(9):3520-3527.93 Song K H, Kim C, Cobley C M, et al. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model.. Nano Letters, 2009, 9(1):183-188.94 Au L, Chen Y, Fei Z, et al. Synthesis and optical properties of cubic gold nanoframes.. Nano Research, 2008, 1(6):441.95 Portney N G, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing.. Analytical & Bioanalytical Chemistry, 2006, 384(3):620-630.96 N. A. Peppas,, Y. Huang,, M. Torres-Lugo,, J. H. Ward, and, and J. Zhang . Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology.. Annual Review of Biomedical Engineering, 2000 2(1), 9-2997 Balabin R M, Smirnov S V. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.. Talanta, 2011, 85(1):562-568.98 程旎,李小昱,赵思明,李建博,高海龙.鱼体新鲜度近红外光谱检测方法的比较研究.食品安全质量检测学报,2013,4(02):427-432.99 李民赞,郑立华,安晓飞,孙红.土壤成分与特性参数光谱快速检测方法及传感技术.农业机械学报,2013,44(03):73-87.100 Ba T L. Application of deep learning and near infrared spectroscopy in cereal analysis.. Vibrational Spectroscopy,2020, 101 Ulrici A, Serranti S, Ferrari C. Efficient chemometric strategies for PET–PLA discrimination in recycling plants using hyperspectral imaging.. Chemometrics & Intelligent Laboratory Systems, 2013, 122(1):31-39.102 王玲, 李定明, 张丽华,等. 近红外光谱法快速测定水溶液中硝酸肼与硝酸羟胺的含量. 中国原子能科学研究院年报, 2010(1):269-270.103 张彦君,蔡莲婷,丁玫,邵波,杨载松.近红外技术在聚丙烯物性测试中的应用研究.当代化工,2010,39(1):93-97.104 Xie J , Yuan H , Song C . Online determination of chemical and physical properties of poly(ethylene vinyl acetate) pellets using a novel method of near-infrared spectroscopy combined with angle transformation. Analytical Methods, 2019, 11(18):2435-2442.105 J. Wei, X. Luo and X. Lin, Preparation and Characterization of Polyethylene/Ethylene Vinyl Acetate Composite Non Dropping Greenhouse Film, Mater. Sci. Forum, 2012, 724,237–240.106 Zhang L , Watanabe S , Noda I , et al. Spectral inter-conversion analysis of thermally induced structural changes in polyethylene crystals. Vibrational Spectroscopy, 2012, 60:92-97.107 Agrisuelas J , D Giménez-Romero, JJ García-Jare O,Vis/NIR Spectro electrochemical analysis of poly-(Azure A) on ITO electrode. Electrochemistry Communications, 2006, 8(4):549-553.108 Shinzawa H , Nishida M , Tanaka T. Thermal behavior of drawn poly(lactic acid)-nanocomposite fiber probed by near-infrared hyperspectral imaging based on roundtrip temperature scan. Analytical Methods, 2012, 4(8):2259-2265.109 Nishida M , Ogura T , Shinzawa H. Tensile properties of polyhydroxyalkanoate/polycaprolactone blends studied by rheo-optical near-infrared (NIR) spectroscopy. Journal of Molecular Structure, 2016:92-97.110 Oliveira, L.S.; Franca, A.S.; Camargos, R.R.S.; Ferraz, V.P. Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 2008, 99:3244–3250.111 Nunes, A.A.; Franca, A.S.; Oliveira, L.S. Activated carbons from waste biomass: An alternative use for biodiesel production solid residues.. Bioresour. Technol. 2009, 100, 1786–1792.112 Chisti, Yusuf. Biodiesel from microalgae..Biotechnology advances 2007,25(3): 294-306.113 Rashid U , Anwar F . Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel, 2008, 87(3):265-273114 Balabin R M , Lomakina E I , Safieva R Z . Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel, 2011, 90(5):2007-2015.115 杨忠, 刘亚娜, 吕斌,等. 非接触式可见光-近红外光谱法快速预测天然高分子材料表面粗糙度的研究. 光谱学与光谱分析, 2013(3):4.116 Ding C , Han A , Ye M , Synthesis and characterization of a series of new green solar heat-reflective pigments: Cr-doped BiPO4 and its effect on the aging resistance of PMMA (Poly(methyl methacrylate)). Solar Energy Materials and Solar Cells, 2019, 191:427-436.117 G. Scott and D. Gilead, Biodegradable Polymers: Principles and Applications, Chapman & Hall, London, 1995.132:324-331.118 Zhang, FC, Wang, Implementing plant-derived isosorbide and isomannide as comonomers for polyester synthesis: Effects of crystallization properties on optical properties. J APPL POLYM SCI, 2017, 2017,134(43):1-7.119 Garlotta, D. A Literature Review of Poly(Lactic Acid) . Journal of Polymers and the Environment,2001.9z; 63–84. 120 D. L. Kaplan, Biopolymers from Renewable Resources., Springer Verlag, Berlin, 1998,1:1-2.121 A, L. T. Lim , R. A. B , and M. R. B . Processing technologies for poly(lactic acid) .Progress in Polymer Science,2008,33(8):820-852.122 Gupta B , Revagade N , Hilborn J . In vitro degradation of dry-jet-wet spun poly(lactic acid) monofilament and knitted scaffold. Journal of Applied Polymer Science, 2010, 103(3):2006-2012.123 Jeeju P P , Jayalekshmi S , Chandrasekharan K , et al. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films. Thin Solid Films, 2013, 531(15):378-384.124 Wesley I J, Larsen N, Osborne B G, et al. Non-invasive Monitoring of Dough Mixing by Near Infrared Spectroscopy. Journal of Cereal Science, 1998, 27(1):61-69.125 Lee K, Chylla R W, Janota T E. Determination of Hydroxyl Number in Polymers by Infrared Spectroscopy: Comparison of Near-IR and Mid-IR. Applied Spectroscopy, 1993, 47(1):94-97.126 Miller C E, Edelman P G, Ratner B D, et al. Near-Infrared Spectroscopic Analyses of Poly (ether urethane urea) Block Copolymers. Part I: Bulk Composition. Applied Spectroscopy, 1990, 44(4):581-586.127 Marinus, P, B, et al. Process analysis: properties of poly (ethylene terephthalate) measured by near infrared spectroscopy, 1. At-line analysis of poly (ethylene terephthalate) chips. Macromolecular Chemistry & Physics, 1995.128 Honigs D E, Hirschfeld T B, Hieftje G M. Near-infrared determination of several physical properties of hydrocarbons. Anal. Chem.; (United States), 1985, 57:2(2):443-445.129 Howland H, Hoag S W. Analysis of curing of a sustained release coating formulation by application of NIR spectroscopy to monitor changes physical–mechanical properties. International Journal of Pharmaceutics, 2013, 452(1-2):82-91.130 Gendre C, Genty M, Boiret M, et al. Development of a Process Analytical Technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation. European Journal of Pharmaceutical Sciences, 2011, 43(4):244-250.131 Leitner R, Mairer H, Kercek A. Real-time classification of polymers with NIR spectral imaging and blob analysis. Academic Press Ltd. 2003.132 M. Laurent, Devaux J, Carlier V. Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer, 2005, 46(19):8062-8067.133 A M L, A O G, B A G. Quantification of PLA contamination in PET during injection moulding by in-line NIR spectroscopy. Polymer Testing, 2014, 38(18):46-52.134 F LA MANTIA, F.P., BOTTA, L., MORREALE, M., et al. Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polymer Degradation and Stability,2012,97(1):21-24.135 Wesley I J, Larsen N, Osborne B G. Non-invasive Monitoring of Dough Mixing by Near Infrared Spectroscopy. Journal of Cereal Science, 1998, 27(1):61-69.136 Moghaddam L , Rintoul L , Halley P J. In-situ monitoring by fibre-optic NIR spectroscopy and rheometry of maleic anhydride grafting to polypropylene in a laboratory scale reactive extruder. POLYMER TESTING -LONDON-, 2012, 31(1):155-163137 Bettini S H P, Agnelli J A M. Grafting of maleic anhydride onto polypropylene by reactive processing. I. Effect of maleic anhydride and peroxide concentrations on the reaction. Journal of Applied Polymer Science, 1999, 74(2):256-263.138 Bettini S H P , Agnelli J A M . Evaluation of methods used for analysing maleic anhydride grafted onto polypropylene by reactive processing. 2000, 19(1):3-15.139 S, H, P, et al. Grafting of maleic anhydride onto polypropylene by reactive extrusion. Journal of Applied Polymer Science, 2002, 85(13):2706-2717.140 Sclavons M , Laurent M , Devaux J. Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer, 2005, 46(19):8062-8067.141 A, Mc Lauchlin , O. G. A , and A. G. B . "Quantification of PLA contamination in PET during injection moulding by in-line NIR spectroscopy. Polymer Testing 38.18(2014):46-52.142 A MANTIA, F.P., BOTTA, L., MORREALE, M. Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polymer Degradation and Stability,2012,97(1):21-24.143 Saerens, Dierickx, Quinten. In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81(1):230-237.144 杨辉华, 郭拓, 马晋芳, 等. 一种近红外光谱在线监测新方法及其在中药柱层析过程中的应用. 光谱学与光谱分析, 2012, 32(5):4-10.145 杨华生, 吴维刚, 谭丽霞,等. 麦芽炒制过程中近红外在线监测模型的建立及"炒香"终点判断研究. 中国中药杂志, 2017, 42(3):8-14.146 A Salgó, Gergely S. Analysis of wheat grain development using NIR spectroscopy. Journal of Cereal Science, 2012, 56(1):31-38.20郭中原, 慎石磊, 周新奇,等. 豆粕品质在线监测近红外分析系统的研制与应用. 粮食与饲料工业, 2020(4):6.147 Q. Zhang and S. C. Zhu, Visual interpretability for deep learning: a survey, Frontiers of Information Technology & Electronic Engineering, 2018, 19(1) : 27-39.148 S. Chakraborty, Interpretability of deep learning models: a survey of results, IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, 2017.149 M. Du, N. Liu and X. Hu, Techniques for interpretable machine learning, arXiv preprint, arXiv:1808.00033, 2018.150 L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining explanations: An overview of interpretability of machine learning,In DSAA, 80-89, 2018.151 R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti & D. Pedreschi, A survey of methods for explaining black box models, ACM computing surveys (CSUR), 2019,5(51),93-97.152 A. Adadi and M. Berrada, Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI), IEEE Access,2018, 6: 52138-52160.153 Z. C. Lipton, The mythos of model interpretability, Queue, 2018,3(16), 31–57.154 贾小丹. 基于森林算法对不平衡数据分类问题的研究.兰州大学,2021.155 F. L. Fan, J. Xiong, M. Li and G. Wang, On Interpretability of Artificial Neural Networks: A Survey, in IEEE Transactions on Radiation and Plasma Medical Sciences, 2021,5(6): 741-760156 Y. Wang, H. Su, B. Zhang and X. Hu, Interpret neural networks by identifying critical data routing paths, In CVPR, 2018.157 J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, Sanity checks for saliency maps, In NeurIPS, 2018.158 J. L. Kolodner, An introduction to case-based reasoning, Artificial intelligence review, 1992,1(6): 3-4.159 C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, T. Wang, An interpretable model with globally consistent explanations for credit risk, arXiv preprint, arXiv:1811.12615, 2018.160 A. Dosovitskiy, T. Brox, “nverting visual representations with convolutional networks,In CVPR, 2016:4829-4837.161 A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, In CVPR, 2015:5188-5196.162 J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, Striving for simplicity: The all convolutional net, arXiv preprint, arXiv:1412.6806, 2014.163 M. D. Zeiler and R. Fergus, “isualizing and understanding convolutional networks, In ECCV, 2014:818-833.164 D. Erhan, Y. Bengio, A. Courville, P. Vincent, Visualizing higher-layer features of a deep network,University of Montreal,20109,3:1314-1319 165 A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox & J. Clune, Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,In NeurIPS , 2016:3387-3395.166 A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, J. Yosinski, Plug & play generative networks: Conditional iterative generation of images in latent space, In CVPR, ,2017:4467-4477.167 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, arXiv preprint, arXiv:1312.6199, 2013.168 D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: Quantifying interpretability of deep visual representations, In CVPR, 2017. 169 A. Karpathy, J. Johnson and L. Fei-Fei, Visualizing and understanding recurrent networks, arXiv preprint, arXiv:1506.02078, 2015.170 Y. Li, J. Yosinski, J. Clune, H. Lipson, J. E. Hopcroft, Convergent Learning: Do different neural networks learn the same representations? , In ICLR, 2016.171 J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding neural networks through deep visualization, arXiv preprint, arXiv:1506.06579,2015.172 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, Object detectors emerge in deep scene cnns, arXiv preprint, arXiv:1412.6856. 2014.173 T. Lindeberg, A computational theory of visual receptive fields, Biological cybernetics,2013, 6(107): 589-635. 174 P. W. Koh and P. Liang, Understanding black-box predictions via influence functions,In ICML, 2017.175 A. Bansal, A. Farhadi and D. Parikh, Towards transparent systems: Semantic characterization of failure modes,In ECCV, 2014.176 H. Lakkaraju, E. Kamar, R. Caruana and E. Horvitz, Identifying unknown unknowns in the open world: Representations and policies for guided exploration,In AAAI, 2017. 177 Q. Zhang, W. Wang and S. C. Zhu, “Examining CNN representations with respect to dataset bias,In AAAI, 2018.178 W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, 1943,5(4):115-133.179 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets,In NeurIPS, 2014, 2672-2680.180 A. H. Marblestone, G. Wayne and K. P. Kording, “oward an integration of deep learning and neuroscience, Frontiers in computational neuroscience, 2016,94(10),14-20.181 Allison M D and Nhan T and Joshua A and Michaela B and Giuseppe D G and Javier D and Philip H and Scott H and Mia L and Mark S. Neubauer and Jennifer N and Seda O and Maurizio P and Thea A and Steffen B and Jurgen B and Anne-Sophie B and Richard J. Bonventre and Tomas E. Muller Bravo and Markus D and Zhen D and Nick F and Amir G and Ekaterina G and Kyle J H and Christian H and Babar K and Sehoon K and Thomas K and Yaling L and Kin H Land Tri N and Gianantonio P and Seyedramin R and Ryan A. R and Kate S and Justin S and Sougata S and Dmitri St and William T and Savannah T and Kai L U and Ricardo V and Belinavon K and Thomas K. W and Maria Acosta F and Anthony A and Thomas C and Leonardo C and Daniel D and Caterina D and Maria DG and Elham E K and Farah F and Davide G and Benjamin H and Duc H and Burt H and Shih-Chieh H and Sergo J and Iris J and Raghav K and Ryan K and Erik K and Jeffrey K and Pan L and Sandeep M and Ethan M and Patrick M and Andres M and Jovan M and Mohammed A M and Farouk M and Eric M and Srishti N and Rohin N and Noah P and Zhiqiang Q and Sang E P and Subramanian R and Dylan R and Simon R and Ashish S and Sioni S and Pietro V and Jean-Roch V and Olivia W, Applications and Techniques for Fast Machine Learning in Science,arXiv,2021: 2110.13041182 Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev.2017, 117:10212–10290.183 Serrano-Gotarredona T. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience,2013,7(2)134–149.184 Yang T, Sze V. Design considerations for efficient deep neural networks on processing-in-memory accelerators. IEEE International Electron Device Meeting (IEDM’19) ,2019:22.1.1–22.1.4185 George S, Kim S, Shah S, Hasler J, Collins M, Adil F. A programmable and configurable mixed-mode FPAA SoC. IEEE Transactions on Very Large Scale Integration Systems 2016,24: 2253–2261.186 Lukosevicius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Computer Science Review,2009,3(3),127–149.187 褚小立,陈瀑,李敬岩,刘丹,许育鹏.近红外光谱分析技术的最新进展与展望.分析测试学报,2020,39(10):1181-1188.188 陶焕明,高美凤.基于改进免疫遗传算法的近红外光谱变量选择方法.分析测试学报,2021,40(10):1482-1488189 胡爱琴,袁洪福,宋春风,李效玉.近红外离散波长光谱基线漂移校正方法研究.光谱学与光谱分析,2014,34(10):2606-2611.190 Degang, Song, Liu.Baseline correction method based on doubly reweighted penalized least squares.. Applied optics, 2019, 58(14):3913-3920.191 褚小立,史云颖,陈瀑,李敬岩,许育鹏.近五年我国近红外光谱分析技术研究与应用进展.分析测试学报,2019,38(05):603-611.192 王海朋,褚小立,陈瀑,刘丹,李敬岩,许育鹏.光谱基线校正算法研究与应用进展.分析化学,2021,49(08):1270-1281.193 Zhang Feng, Tang Xiaojun, Tong Angxin. An Automatic Baseline Correction Method Based on the Penalized Least Squares Method. Sensors (Switzerland). 2020,20,(7):2015194 TANG Xiao-jun, WANG Jin, ZHANG LeiSpectral baseline correction by piecewise dividing in fourier transform infrared gas analysis. Spectroscopy and Spectral Analysis, 2013, 33(2): 334-339195 Liu Jinchao et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution.. The Analyst, 2017, 142(21) : 4067-4074.196 L.G. Weyer, S.C. Lo.Spectra-Structure Correlations in the Near-Infrared . Handbook of Vibrational Spectroscopy. Chichester, UK: John Wiley and Sons, Ltd, 2006.197 Singh, S., Szostak, R., Czarnecki, M.A. Vibrational Intensities and Anharmonicity in MIR, NIR and Raman Spectra of Liquid CHCl3, CDCl3, CHBr3, and CDBr3: Spectroscopic and Theoretical Study. J. Mol. Liq. 2021,336: 116-127.198 Kuenzer, U., Hofer, T.S. A Four-Dimensional Numerov Approach and Its Application to the Vibrational Eigenstates of Linear Triatomic Molecules: The Interplay Between Anharmonicity and Inter-Mode Coupling. Chem. Phys. 2019,520: 88–99.199 Grabska J, Be? KB, Mayr S, Huck CW. Theoretical Simulation of Near-Infrared Spectrum of Piperine: Insight into Band Origins and the Features of Regression Models. Applied Spectroscopy. 2021;75(8):1022-1032.200 Yukihiro Ozaki. Introduction of Quantum Chemical Calculation for near Infrared Spectroscopy. NIR News, 2016, 27(7) : 8-11.

  • 近红外光谱分析技术的“前世今生”

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。1、发展历程[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术自上世纪60年代起开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON会议上[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(InternationalAssociation for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、 AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法;我国2005年版的药典也将该方法收入。在应用方面[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,上世纪70年代起开始,进行了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型的研发)的公司正处于发展阶段。由于我国经济的快速发展,持续发展型经济与建立节约型社会方针的确定与贯彻我国生产、科研、教学领域和市场对产品的检测与控制要求迫切,按照国际经验,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术将是一种首选技术。随着国产[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的研制和生产,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受,会在越来越多的领域广泛应用。2[url=http://www.chemcn.org/][color=#006699]、[/color][/url][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析与常规光谱分析方法的不同我们通常可以把紫外[url=http://www.chemcn.org/][color=#006699]、[/color][/url]可见光谱分析和红外光谱分析等称为常规光谱分析,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析由于谱区信息的不同,方法和仪器的不同使其与常规光谱分析有很大的差别。分析谱区不同:近红外谱区的波长介于可见光与中红外光之间,该谱区的分析兼备了中红外谱区信息量丰富的优点与可见谱区使用方便的优点。与中红外谱区一样,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析利用分子振动的信息,但本谱区主要是振动的倍频与合频信息,此谱区分析几乎可以实现所有与含氢基团有关的样品化学性质、物理性质,某些生物性质等多项目分析或同时分析,被认为是一种“具有解决全球农业分析潜力”的当代分析方法。与紫外、可见、中红外谱区相比,物质对近红外谱区吸收的能力较弱,该谱区可以透入样品内部,取得样品内部的信息,因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析样品可以不需要或者只要少量的物理前处理,便可用于各种快速分析,尤其适用于复杂样品的无损分析。分析方法不同:常规光谱分析一般要求样品通过前处理,使组分和浓度调整后再进行分析。仪器测试结果只是给出样品对某一波长吸光度,吸光度和待测量(如浓度)间的关系是简单的线性关系;常规光谱分析只要仪器给出准确的吸光度,即可由用户自行建立的个性化工作曲线(属于各台仪器特定分析方法的)得到待测量。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是在复杂、重叠、变动的背景下提取弱信息,复杂样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]和待测量间的关系是复杂的间接关系;[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析必须借助化学计量学方法用全部波长点和待测量进行多元关联,建立光谱与待测量间关系的数学模型,依靠数学模型由光谱计算样品的待测量。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器不仅要给出吸光度,还须捆绑数学模型才能得到待测量。分析仪器不同:常规光谱分析一般由用户自备标样后测定标准曲线或工作曲线。每种工作曲线只相对于某台仪器使用,这种分析属于相对分析,相对分析可以通过个性化的工作曲线校正仪器与方法的某些系统偏差,因而对仪器的精确度要求较高;相对于仪器的波长、吸光度准确度的要求较低。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析依靠捆绑的数学模型,直接计算出样品的待测量,这种分析属于绝对分析,绝对分析对仪器的准确度与精确度要求较高。但用户可以对不经过前处理的样品直接分析待测量。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析建立数学模型的过程比较复杂、烦琐,为了避免用户自行建立个性化数学模型,厂家必须克服仪器的台间差异,为仪器捆绑统一的数学模型。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器要求整合精密、稳定的硬件和软件、数学模型;并需要资源、分析方法与分析经验等条件的集合才能实现,是一种难度较大的分析技术。

  • 【资料】QuantBasic软件用于红外光谱定量分析

    QuantBasic软件用于红外光谱定量分析   化学计量学原理引入到红外光谱学后 ,使得红外光谱定量分析有了突破性进展。利用 MB15 4S型FTIR光谱仪专配的 Quant Basic定量软件 ,对红外光谱定量分析中基线取法进行了研究 ,并得出最优方法。通过对己二酸进行定量分析 ,验证了此软件对混合物中单组分定量不仅操作简便 ,快速可行 ,而且简化了训练集的建立和样品前处理【关键词】:红外光谱 定量分析 FTIR光谱仪【正文快照】:  1 引言自 2 0世纪 40年代中期 ,第一台红外光谱仪问世后即开始了定量分析的应用和研究工作。红外光谱法具有适用性强 ,气、固、液的样品都可以测试而不破坏原样的特点。但在早期 ,相对于紫外 -可见光光谱 ,红外光谱的定量分析应用范围是有限的。 2 0世纪 70年代以后 ,计算机技

  • 红外光谱定性分析的应用范围

    将样品的红外光谱与标准谱图或与已知结构的化合物的光谱进行比较,鉴定化合物;或者根据各种实验数据,结合红外光谱进行结构测定,红外光谱定性分析的应用范围如下。(1)基团与特征吸收谱带的对应关系分子中所含各种官能团都可由观察其红外光谱鉴别。(2)相同化合物有完全相同的光谱相同化合物有完全相同的光谱,不同物质虽然有一小部分结构或构型的差异必显示出不同的光谱,但要注意物理状态不同造成的谱图变化。例如,同一物质其晶型不同,分子排布不同,对光折射有差别,吸收情况就不一样,利用其可以测高分子物质的结晶度。比较一物质在不同浓度溶液中的光谱,可辨别分子间或分子内的氢键。顺反异构体极易用红外光谱来区别。在鉴定物质是否为同一物质时,为消除物理状态造成的影响,宜设法将样品制成溶液或熔融形式测定红外光谱。(3)旋光性物质旋光性物质的左旋、右旋以及消旋体都有完全相同的红外光谱。(4)物质纯度检查物质结构测定一般要求物质的纯度在98%以上,因为杂质也有其吸收谱带,可在光谱上出现。不纯物质的红外光谱吸收带较纯品多,或若干吸收线相互重叠,不能分清,可用比较提纯前后的红外光谱来了解物质提纯过程中杂质的消除情况。(5)观察反应过程在反应过程中不断测定红外光谱,据反应物的基本特征频率消失或产物吸收带的出现,观察反应过程,测定反应速度,研究反应机理。(6)在分离提纯方面在将一复杂混合物用蒸馏法或色谱分离法分离提纯过程中,常用测定红外光谱来追踪提纯的程度,了解分离开的各物质存在何处及其浓度大致如何。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制