当前位置: 仪器信息网 > 行业主题 > >

智能标准测力仪

仪器信息网智能标准测力仪专题为您提供2024年最新智能标准测力仪价格报价、厂家品牌的相关信息, 包括智能标准测力仪参数、型号等,不管是国产,还是进口品牌的智能标准测力仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能标准测力仪相关的耗材配件、试剂标物,还有智能标准测力仪相关的最新资讯、资料,以及智能标准测力仪相关的解决方案。

智能标准测力仪相关的资讯

  • 青岛市质量协会发布《轮胎滚动阻力试验机(测力法和扭矩法) 校准规范》团体标准
    各有关单位:按照《青岛市质量协会团体标准管理办法》(试行)的规定,青岛市质量协会团体标准《轮胎滚动阻力试验机(测力法和扭矩法)校准规范》(T/QAQ 007—2023)已经完成相关工作程序,现予以发布。青岛市质量协会2023年9月20日                                                              关于发布《轮胎滚动阻力试验机(测力法和扭矩法)》团体标准的公告.pdf
  • 吉林江北机械研发成功高精度测力仪
    日前,中国兵器工业集团吉林江北机械制造有限责任公司已成功研制出填补国内空白的高精度标准测力仪,其技术指标达到国内领先水平。  标准测力仪是一种创新型的实用技术计量产品,广泛用于国家和国防各计量技术机构以及机械、冶金、航空、航天、船舶、兵器等行业,过去,我国一直不能自主生产,沿用国外型号产品长达半个世纪之久。为实现计量标准与国际接轨,经原国防科工委批准立项,该公司承担了其研制任务,经过艰苦努力,于近期成功研制出了3个系列17种拥有自主知识产权的高精度标准测力仪。  该测力仪具有机电双模式测量、轻便、用途广泛等功能和特性,技术水平较高,从而填补了国内空白,其中“数字式一体化标准测力仪”等5种测力仪还获得了国家实用新型专利。目前,该公司已成为全国生产测力仪型号最多、规格最全、精度最高的企业。
  • AMETEK Chatillon推出全新一代数字测力计DF3系列
    AMETEK Chatillon (查狄伦) 专于力学测量设备多年,现推出全新一代数字测力计:Chatillon DF3 系列。全新 Chatillon DF3 系列数字测力计采用独特的人体工程学外壳设计,铸铝合金外壳,坚固耐用的同时可确保稳定的握持操作。全新彩色大尺寸显示屏配以清晰的读数和优化的图标,易于结果的读取和快速导航操作。坚固的橡胶键盘可确保与屏幕上显示的选项相对应的单点操作,并在操作过程中为用户提供指导。简单、直观的用户界面结合多项高级功能使 DF3 系列成为用户理想的测力计选择,以协助用户优化测试流程和节省时间。新一代测力计配以更为丰富的测试设置功能以提高测试效率。用户可以在设置中预定义测试设置、自动保存测试结果并自动导出数据以供进一步分析。长达 40 小时的电池续航将延长手持设备的使用时间并减少充电需求。此外,DF3 系列测力计支持各种标准测力计功能,包括正常读数和峰值读数、负载平均、断裂检测、上/下限设定、设定点、通过/失败结果、统计结果、传感器驱动和方向设置。新的 DF3 系列测力计提供两种型号,多种载荷选择和高达 30 kHz 的采样率:DFE3 系列 – 经济型测力计,专为简易应用而设计,但不影响功能。提供 2 lbf (10 N) 至 500 lbf (2500 N) 的载荷,精度优于满量程的 0.2%。DFS3 系列 – 为基本和复杂应用设计的高端测力计。该测力计非常适合手持应用和配合试验机台完成各种复杂应用。提供从 0.5 lbf (2.5 N) 到 500 lbf (2500 N) 的载荷。精度优于满量程的 0.1%。载荷单位可在 ozf、gf、lbf、kgf 和 N 间自由切换。测力计配有耐用的手提箱和适配器。在全新的 DF3 系列数字测力计发布的同时,Chatillon 还推出了升级版的力测量软件 ForceTest 3.0。该软件可直接连接到 DF3 系列测力计,使其用户能够使用个人计算机自动执行测试并记录测试图形和数据。 ForceTest 3.0 提供了更为优化的用户界面、过滤选项、强大的原始数据采集和演示以及综合的测试结果选项库,为用户提供更多的便利。
  • Erichsen 343 测力表被评为2016年航空/航天领域最佳测力计
    在航空航天和航空工业领域,往往会遇到最为棘手的需求。无论是负载均衡,航空称重或者重载分布中需要的测量,Erichsen 343 型号液压测力计是非常理想而且廉价的监控和验证工具。凭借简单的操作和独特的专用于航空/航天领域的工程设计特点,Erichsen 343型号液压测力计近期获得了2016年Weighing Review 读者选择的最佳航空/航天测力计。这是连续第二年阿美特克的STC产品赢得Weighing Review 读者的评选。“我们为这个奖项感到骄傲。Erichsen 343 产品已经问世好多年了,一直在航空航天和航空业中通过各种拉伸和压缩应用证明着自己的价值。” Chatillon 产品经理 Joel Schoubert先生说道。Erichsen 343 液压测力计由不锈钢材质制成,并且充满了液压油被密封为一个闭环的。该产品操作简单并且不需要任何电源。巨大的表盘使用户可以远距离读取负载。如果需要远程观测该表,可以选用添加表盘延长管路。Erichsen 343液压测力计具有中心通孔使其可用于任何需要对中接头锁定施加的负载的场合。这些中心孔的设计可以实现精准的拉伸和压缩加载应用。与其他电子显示和传感器结合产品不同,Erichsen 343 液压测力计对ESD(静电放电)和瞬态电压免疫。Erichsen 343 液压测力计的坚固设计使其适用于那些传统测力计无法胜任的恶劣工作环境中。Erichsen 343 液压测力计量程覆盖从1kN至2500kN,精度可达满量程的1.6%。数字式指示表可选。Erichsen 343 液压测力计也可用于其他应用,比如:液压夹紧力的验证、轴向力的连续测量、监控在车床、镗床、挤压机和其他类似设备上轴承产生的负载。除了Erichsen 343 被授予2016年最佳航空/航天业测力计,阿美特克STC的Chatillon 1300 产品被评为2016年最佳机械式测力计。阿美特克传感器测试和校准(STC)提供一系列的力学测量和材料测试装置,覆盖领域包括:航空航天、农业、汽车、电子、国防、能源、食品、医疗、船舶、钢铁等行业。阿美特克传感器、测试和校准是阿美特克公司的一个部门,阿美特克公司是一个全球领先的电子仪器和机电设备制造商。
  • 多方回应加强核污染风险监测力度 核辐射检测仪搜索量陡增
    针对日本福岛排海事件,我国多方回应加强核污染风险监测力度:生态环境部(国家核安全局):相关负责人表示,我部高度重视日本福岛核污染水排海问题。2021年、2022年先后组织开展了我国管辖海域海洋辐射环境监测,摸清了目前相关海域海洋辐射环境的本底情况。当前,生态环境部按照监控重点区域、覆盖管辖海域、掌握关键通道的思路,正在组织开展2023年度我国管辖海域海洋辐射环境监测。后续将持续加强有关监测工作,及时跟踪研判福岛核污染水排海对我海洋辐射环境可能的影响,切实维护我国家利益和人民健康。海关总署:自2023年8月24日(含)起全面暂停进口原产地为日本的水产品(含食用水生动物)。中国海关高度关注日方此举对日本输华食品农产品带来的放射性污染风险。为防范受到放射性污染的日本食品输华,保护人民群众生命健康,海关总署持续开展对日本食品放射性污染风险的评估,在严格确保安全的基础上,对从日本进口食品采取了强化监管措施。农业农村部:高度重视水产品质量安全,将严格按照水产品中放射性物质限制浓度国家标准,加大对海洋水产品核污染风险监测力度,确保水产品质量安全,维护广大人民群众切身利益。同时,密切关注日本福岛核污染水排海对我国海洋渔业可能造成的危害,保护海洋渔业健康发展。香港:8月24日起香港将禁止日本10个都县水产品进口。除此之外,食环署辖下的食物安全中心将会在进口层面做好检测工作,加大对日本进口食品的检测力度,以做好双重保障。此外,渔护署会加强本地水产品辐射水平的监测工作,香港天文台也会加强香港水域海水样本的辐射监测工作。基于当前的局势,核辐射、核污染已经成为大家关注的热词。相关信息显示,“核辐射检测仪”词条已经登上某宝热搜榜单。而据仪器信息网统计, “核辐射”、“辐射”、“海水”等关键词的搜索量分别环比增加4550.00%、360.00%、162.50%,其中“核辐射检测仪”搜索量环比增长850.00%!预计,随着相关事态的发展,核辐射检测热度会持续提升,仪器信息网也会持续跟踪相关的信息。点击辐射测量仪器专场,了解更多详细信息。
  • 地质勘测力度加大 质谱仪市场前景可观
    p  中国领土广阔,地质较为复杂,一旦遇到暴雨等恶劣天气,有些省份会经常发生地质灾害,为了预防这些地质问题的出现,我国各省份时常采购质谱仪进行地质勘验。/pcenterimg style="HEIGHT: 249px WIDTH: 369px" alt="地质勘测力度加大 质谱仪市场前景可观" src="http://images.ofweek.com/Upload/News/2017-07/26/nick/1501037755441097314.jpg" width="300" height="199"//centerp  由于使用质谱仪勘测,能够进一步帮助地质采购人员查明矿产的质和量,开采利用的技术条件,迅速提供矿山建设设计所需要的矿产储量和地资料,因此,我国地质机构也经常使用质谱仪,来协助地质勘探,这进一步刺激到质谱仪的市场需求。/pp  根据Persistence' s Research Team的研究报告,2012年全球质谱技术市场容量为31.747亿美元,预计到2017年将达到48.4亿美元。从2013年到2017年,复合年增长率达到8.8%。/pp  有消透露,河北省地矿中心实验室拟预算1185.5万元采购高分辨磁质谱仪、中红外光谱仪、气相色谱质谱质谱联用仪、电感耦合等离子体质谱仪等设备7套仪器质谱系统。/pp  据悉,河北省地矿中心实验室采购这批分析设备是为了进行地质勘探工作,所谓的地质勘探工作即是通过各种手段、方法对地质进行勘查、探测,确定合适的持力层,根据持力层的地基承载力,确定基础类型,计算基础参数的调查研究活动。/pp  此外,前不久,中国地质科学院地质研究所耗资165万元,采购多接收器稀有气体质谱仪,提升该所地质勘察等方面的能力。/pp  综上所述,在我国加大地址勘测力度的大环境下,我国用于资质勘测的质谱仪需求会增加,可以预测质谱仪的发展前景是可观的。/p
  • 农业农村部:加大对海洋水产品核污染风险监测力度
    农业农村部相关负责人表示,日本政府无视国际社会的强烈质疑和反对,出于一己私利强行将福岛核污染水排海,是极其自私和不负责任的举措。农业农村部高度重视水产品质量安全,将严格按照水产品中放射性物质限制浓度国家标准,加大对海洋水产品核污染风险监测力度,确保水产品质量安全,维护广大人民群众切身利益。同时,密切关注日本福岛核污染水排海对我国海洋渔业可能造成的危害,保护海洋渔业健康发展。
  • 智能仪器仪表等相关26项拟立项标准公示
    p  近日,国家标准委公示26项拟立项推荐性国家标准,包括《生产过程质量控制 全生命周期管理》等。br//pp  该批次公示的标准均为拟新制定标准,涉及智能制造、智能工厂、重要产品追溯等,其中仪器仪表相关标准共三项,分别为《智能仪器仪表的数据描述 定位器》、《智能仪器仪表的数据描述 属性数据库通用要求》、《智能仪器仪表的数据描述 执行机构》。/pp  依据公示内容,此次意见征集截至到12月5日。具体项目如下。/pp style="text-align: center "strong26项拟立项推荐性国家标准项目/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="7%"p style="text-align:center "strong序号/strongstrong /strong/p/tdtd width="65%"p style="text-align:center "strong标准名称/strongstrong /strong/p/tdtd width="17%"p style="text-align:center "strong公示截止日期/strongstrong /strong/p/tdtd width="10%"p style="text-align:center "strong操作/strongstrong /strong/p/td/trtrtd width="7%"p style="text-align:center "1/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"工业自动化和控制系统安全 第2-4部分:IACS服务提供商的安全程序要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "2/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"生产过程质量控制 全生命周期管理/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "3/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"生产过程质量控制 设备状态监测/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "4/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂 过程工业能源管控系统技术要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "5/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"批控制 批生产记录/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "6/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"批控制 通用和现场处方模型及表述/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "7/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂 工业控制异常监测工具技术要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "8/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂 工业自动化系统工程描述类库/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "9/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂 安全监测有效性评估方法/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "10/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂 安全控制要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "11/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能仪器仪表的数据描述 属性数据库通用要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "12/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能仪器仪表的数据描述 定位器/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "13/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能仪器仪表的数据描述 执行机构/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "14/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂 工业自动化系统时钟同步、管理与测量通用规范/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "15/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能制造能力等级要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "16/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能工厂建设导则 第1部分: 物理工厂智能化系统/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "17/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能制造能力等级评价方法/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "18/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能制造 制造对象标识解析体系应用指南/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "19/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"智能制造 系统架构/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "20/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 追溯术语/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "21/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 追溯体系设计通则/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "22/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 追溯码编码规范/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "23/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 核心元数据/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "24/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 产品追溯系统基本要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "25/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 产品追溯信息管理平台建设规范/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/trtrtd width="7%"p style="text-align:center "26/p/tdtd width="65%"p style="text-align:left "a href="javascript:void(0)"重要产品追溯 交易记录格式总体要求/a/p/tdtd width="17%"p style="text-align:center "2017-12-05/p/tdtd width="10%"br//td/tr/tbody/tablepbr//p
  • 薄膜摩擦系数仪执行标准GB 10006与ASTM D1894有什么区别
    薄膜摩擦系数仪是一种用于测量塑料薄膜和薄片摩擦系数的设备,它在食品、日化、生活用纸、包装材料等领域具有广泛的应用。在进行摩擦系数测试时,通常会参照不同的标准,其中GB 10006和ASTM D1894是两个常用的标准。这两个标准在测试方法、试样制备、试验要求等方面存在一些差异。GB 10006标准的特点:试样尺寸:GB 10006要求适用于厚度在0.2mm以下的塑料薄膜和薄片,试样尺寸为长20cm宽8cm,滑块试验要取63mm×63mm。试验装置:要求滑块底面边长63mm,面积40cm² ,包括试样在内的滑块总质量为200±2g。试验平台要求选用非磁性材料,且表面平滑。测力系统:要求整个测力系统的总误差(精度)应小于±2%,且在测力系统一侧要安装弹簧,以便准确找出最大静摩擦力。试验速度:要求试验速度为100mm/min。测量判断:国标一般采取力的第一个峰值为静摩擦力Fs,两试样相对移动6cm内的力的平均值为动摩擦力。ASTM D1894标准的特点:试样尺寸:ASTM D1894规定每对试样中,粘附在水平试验台上的试样长250mm,宽13mm。试验装置:除了要求非磁性材料和表面平滑外,还提出高于23℃试验条件下的摩擦系数测定水平试验台装置需要具有加热控温功能。测力系统:ASTM D1894中没有关于弹簧的规定,但建议用柔性材料作牵引。试验速度:要求速度为150mm/min。测量判断:美国ASTM D1894规定为13cm,与GB 10006存在差异。主要区别:GB 10006和ASTM D1894在试样尺寸、试验装置要求、测力系统配置、试验速度以及测量判断等方面有所不同。ASTM D1894只允许薄膜对薄膜的测量,而GB 10006/ISO 8295还允许薄膜对其他材料(如金属或玻璃)的测量。GB 10006-2021标准在2021年10月1日实施,除了常规速度要求外还提出了500mm/min的速度要求,这一点需格外注意。在选择薄膜摩擦系数仪时,需要根据具体的测试需求和应用场景,选择合适的标准进行测试,并确保测试设备能够满足这些标准的要求。同时,随着技术的发展,现代摩擦系数测试仪通常能够实现更高的精度,甚至超出标准提出的精度要求,为用户提供更准确的测试结果。
  • 赛成发布XLW-H 智能电子拉力试验机新品
    产品特点◎ 10寸超大触摸屏,人机接口时尚、便捷。 ◎ 多种试验项目选择,满足绝大多数行业应用。 ◎ 测力系统精度高,线性度好,响应快。 ◎ 传感器超量程保护。 ◎ 运动驱动系统平稳且运行精度高。 ◎ 运动机构限位保护、过载保护、自动回位、以及掉电记忆等智能配置,保证用户与仪器本身的安全。 ◎ 开机自动零点校准,支持手动传感器清零。 ◎ 试验曲线实时展示试验过程中力值的变化趋势。 ◎ 产品符合GMP用户三级权限。 ◎ 测试数据历史记录可查询,数据不可更改,可审计追踪。 ◎ 可进行试验结果的单次、成组的统计分析。 ◎ 微型打印机,随时打印试验统计结果。 ◎ 设有标准的USB通信接口。 ◎ 专门的计算机通信软件,可进行试验的实时显示及数据的分析处理 、数据保存。 ◎ 可选气动夹持,减少操作时间,操作体验更流畅。 ◎ 可扩展网络传输接口,测试数据直接上传云服务器,可全球远程查询。测试原理将试样装夹在夹具的两个夹头之间,两夹头做相对运动,通过位于动夹头上的力值传感器和机器内置的位移传感器,采集到试验过程中的力值变换和位移变换,从而计算出试样的拉伸、撕裂、变形率等性能指标。测试标准该仪器符合多项国家和国标标准:GB 13022、GB 8808、GB 1040、GB 4850、GB 7753、GB 7754、GB 453、GB/T 17200、GB/T 16578、GB/T 7122、GB/T 2790、GB/T 2791、GB/T 2792、ASTM E4、 ASTM D828、ASTM D882、ASTM D1938、ASTM D3330、ASTM F88、ASTM F904、ISO 37、JIS P8113、QB/T 2358、QB/T1130 、YBB00152002-2015、YBB00212005-2015 、YBB00232005-2015、YBB00222005-2015、YBB00182004-2015、YBB00202005-2015、YBB00242002-2015、YBB00212004-2015、YBB00132005-2015、YBB00142005-2015、YBB00152005-2015。应用领域基础应用扩展应用(需特殊附件或改制)抗拉强度与变形率模拟皮肤抗穿刺力带瓶瓶盖和胶塞穿刺/拉波力绳类拉断力裤型撕裂力拉断力薄膜穿刺力胶钉书页撕开力果冻杯和酸奶杯开启力胶带解卷力抗撕裂性能带袋输液袋盖穿刺力90度水性膏药剥离力奶杯杯膜剥离力塑料瓶抗压力90度/180度剥离软橡胶瓶塞穿刺/拨拉力胶粘物撕开力胶塞拨出力20度斜面剥离力热封强度性能组合盖开启力剪切性能瓶膜45度剥离力135度插销剥离力抗压性能ZD型瓶盖撕开力黏附强度测试(软)自封袋袋口拉力浮辊剥离夹具穿刺性能口服液盖撕开力黏附强度测试(硬)磁卡磁心剥离力偏心夹具恒压保持力口服液盖穿刺/拨拉力软管盖剥开力磁卡90度剥离力宽试样夹具弹性模量倾斜90度输液袋盖拉拔力导管和导管接头脱离力热封膜撕开力日式夹具带袋输液袋盖拉拔力化妆刷刷毛拉拔力保护膜分离力英式夹具倾斜23度瓶盖拉拔力牙刷刷毛拉拔力离型纸分离力技术指标项目指标量程范围30N、100N,500N,1000N测力精度0.5级力值分辨率0.001N位移精度0.5级位移分辨率0.1mm试验速度1-800 mm / min(无级调速)行程800mm(可选1000mm)电源220 V/50Hz/60W外形尺寸520mm×380mm×1400mm主机净重72kg测试环境温度 10 ℃ ~ 40 ℃、湿度20%~80%仪器配置标准配置主机、微型打印机、气动夹具、专业软件、通信电缆选购件折断力夹具、组合盖开启力夹具、拉伸夹具、针尖穿刺力测试夹具、滑动性测试夹具、器身密合性 测试夹具、热合强度测试夹具、连接力夹具、拨开力夹具、全开力夹具等。创新点:?10寸超大触摸屏,人机接口时尚、便捷?多种试验项目选择,满足绝大多数行业应用?测力系统精度高,线性度好,响应快?传感器超量程保护?运动驱动系统平稳且运行精度高?运动机构限位保护、过载保护、自动回位、以及掉电记忆等智能配置,保证用户与仪器本身的安全?开机自动零点校准,支持手动传感器清零?试验曲线实时展示试验过程中力值的变化趋势?产品符合GMP用户三级权限?测试数据历史记录可查询,数据不可更改,可审计追踪?可进行试验结果的单次、成组的统计分析?微型打印机,便条随时打印试验统计结果?设有标准的USB通信接口?专门的计算机通信软件,可进行试验的实时显示及数据的分析处理 、数据保存?可选气动夹持,减少操作时间,操作体验更流畅可扩展网络传输接口,测试数据直接上传云服务器,可全球远程查询
  • 国家智能制造标准体系建设指南(2018年版)印发 提及仪器仪表
    p  近日,工信部、国家标准委共同组织制定并印发《国家智能制造标准体系建设指南(2018年版)》,以加快推进智能制造发展,指导智能制造标准化工作的开展。以下为指南全文。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/28470e18-f993-4f54-a1ef-41d090899ded.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "span style="color: rgb(0, 0, 0) "工业和信息化部/span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "国家标准化管理委员会/span/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong关于印发国家智能制造标准体系建设指南(2018年版)的通知/strong/span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "工信部联科〔2018〕154号/span/pp  各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、质量技术监督局(市场监督管理部门),有关标准化技术组织、标准化专业机构,有关中央企业、行业协会,有关单位:/pp  为加快推进智能制造发展,指导智能制造标准化工作的开展,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》,现予印发。/pp style="text-align: right "  工业和信息化部/pp style="text-align: right "  国家标准化管理委员会/pp style="text-align: right "  2018年8月14日/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "国家智能制造标准体系建设指南/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "(2018年版)/span/strong/pp  制造业是国民经济的主体,是立国之本、兴国之器、强国之基。智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。/pp  为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。/pp  按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。/pp span style="background-color: rgb(255, 255, 255) " /spanspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "strong一、总体要求/strong/span/pp  span style="color: rgb(0, 112, 192) "strong(一)指导思想/strong/span/pp  进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。加强标准的统筹规划与宏观指导,加快创新技术成果向标准转化,强化标准的实施与监督,深化智能制造标准国际交流与合作,提升标准对制造业的整体支撑作用,为产业高质量发展保驾护航。/pp span style="color: rgb(0, 112, 192) "strong (二)基本原则/strong/span/pp  按照《国家智能制造标准体系建设指南(2015年版)》中提出的“统筹规划,分类施策,跨界融合,急用先行,立足国情,开放合作”原则,进一步完善智能制造标准体系,全面开展基础共性标准、关键技术标准、行业应用标准研究,加快标准制(修)订,在制造业各个领域全面推广。同时,加强标准的创新发展与国际化,积极参与国际标准化组织活动,加强与相关国家和地区间的技术标准交流与合作,开展标准互认,共同推进国际标准制定。/pp  span style="color: rgb(0, 112, 192) "strong(三)建设目标/strong/span/pp  按照“共性先立、急用先行”的原则,制定安全、可靠性、检测、评价等基础共性标准,识别与传感、控制系统、工业机器人等智能装备标准,智能工厂设计、智能工厂交付、智能生产等智能工厂标准,大规模个性化定制、运维服务、网络协同制造等智能服务标准,人工智能应用、边缘计算等智能赋能技术标准,工业无线通信、工业有线通信等工业网络标准,机床制造、航天复杂装备云端协同制造、大型船舶设计工艺仿真与信息集成、轨道交通网络控制系统、新能源汽车智能工厂运行系统等行业应用标准,带动行业应用标准的研制工作。推动智能制造国家和行业标准上升成为国际标准。/pp  到2018年,累计制修订150项以上智能制造标准,基本覆盖基础共性标准和关键技术标准。/pp  到2019年,累计制修订300项以上智能制造标准,全面覆盖基础共性标准和关键技术标准,逐步建立起较为完善的智能制造标准体系。建设智能制造标准试验验证平台,提升公共服务能力,提高标准应用水平和国际化水平。/pp  span style="color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) "strong二、建设思路/strong/span/pp  国家智能制造标准体系按照“三步法”原则建设完成。第一步,通过研究各类智能制造应用系统,提取其共性抽象特征,构建由生命周期、系统层级和智能特征组成的三维智能制造系统架构,从而明确智能制造对象和边界,识别智能制造现有和缺失的标准,认知现有标准间的交叉重叠关系 第二步,在深入分析标准化需求的基础上,综合智能制造系统架构各维度逻辑关系,将智能制造系统架构的生命周期维度和系统层级维度组成的平面自上而下依次映射到智能特征维度的五个层级,形成智能装备、智能工厂、智能服务、智能赋能技术、工业网络等五类关键技术标准,与基础共性标准和行业应用标准共同构成智能制造标准体系结构 第三步,对智能制造标准体系结构分解细化,进而建立智能制造标准体系框架,指导智能制造标准体系建设及相关标准立项工作。/pp span style="color: rgb(0, 112, 192) "strong (一)智能制造系统架构/strong/span/pp  《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)指出,智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。/pp  智能制造系统架构从生命周期、系统层级和智能特征三个维度对智能制造所涉及的活动、装备、特征等内容进行描述,主要用于明确智能制造的标准化需求、对象和范围,指导国家智能制造标准体系建设。智能制造系统架构如图1所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/69e999c9-14b7-45ea-b883-8b32d12690b4.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "图 1 智能制造系统架构/pp span style="color: rgb(0, 112, 192) "strong 1. 生命周期/strong/span/pp  生命周期是指从产品原型研发开始到产品回收再制造的各个阶段,包括设计、生产、物流、销售、服务等一系列相互联系的价值创造活动。生命周期的各项活动可进行迭代优化,具有可持续性发展等特点,不同行业的生命周期构成不尽相同。/pp  (1)设计是指根据企业的所有约束条件以及所选择的技术来对需求进行构造、仿真、验证、优化等研发活动过程 /pp  (2)生产是指通过劳动创造所需要的物质资料的过程 /pp  (3)物流是指物品从供应地向接收地的实体流动过程 /pp  (4)销售是指产品或商品等从企业转移到客户手中的经营活动 /pp  (5)服务是指提供者与客户接触过程中所产生的一系列活动的过程及其结果,包括回收等。/pp span style="color: rgb(0, 112, 192) "strong 2. 系统层级/strong/span/pp  系统层级是指与企业生产活动相关的组织结构的层级划分,包括设备层、单元层、车间层、企业层和协同层。/pp  strong(1)/strongstrong设备层是指企业利用传感器、仪器仪表、机器、装置等,实现实际物理流程并感知和操控物理流程的层级 /strong/pp  (2)单元层是指用于工厂内处理信息、实现监测和控制物理流程的层级 /pp  (3)车间层是实现面向工厂或车间的生产管理的层级 /pp  (4)企业层是实现面向企业经营管理的层级 /pp  (5)协同层是企业实现其内部和外部信息互联和共享过程的层级。/pp  span style="color: rgb(0, 112, 192) "strong3. 智能特征/strong/span/pp  智能特征是指基于新一代信息通信技术使制造活动具有自感知、自学习、自决策、自执行、自适应等一个或多个功能的层级划分,包括资源要素、互联互通、融合共享、系统集成和新兴业态等五层智能化要求。/pp  (1)资源要素是指企业对生产时所需要使用的资源或工具及其数字化模型所在的层级 /pp  (2)互联互通是指通过有线、无线等通信技术,实现装备之间、装备与控制系统之间,企业之间相互连接及信息交换功能的层级 /pp  (3)融合共享是指在互联互通的基础上,利用云计算、大数据等新一代信息通信技术,在保障信息安全的前提下,实现信息协同共享的层级 /pp  (4)系统集成是指企业实现智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统集成过程的层级 /pp  (5)新兴业态是企业为形成新型产业形态进行企业间价值链整合的层级。/pp  智能制造的关键是实现贯穿企业设备层、单元层、车间层、工厂层、协同层不同层面的纵向集成,跨资源要素、互联互通、融合共享、系统集成和新兴业态不同级别的横向集成,以及覆盖设计、生产、物流、销售、服务的端到端集成。/pp span style="color: rgb(0, 112, 192) "strong (二)智能制造标准体系结构/strong/span/pp  智能制造标准体系结构包括“A基础共性”、“B关键技术”、“C行业应用”等三个部分,主要反映标准体系各部分的组成关系。智能制造标准体系结构图如图2所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/119fcc1f-42e0-461b-92c0-cc146bea2988.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "图2 智能制造标准体系结构图/pp  具体而言,A基础共性标准包括通用、安全、可靠性、检测、评价等五大类,位于智能制造标准体系结构图的最底层,是B关键技术标准和C行业应用标准的支撑。B关键技术标准是智能制造系统架构智能特征维度在生命周期维度和系统层级维度所组成的制造平面的投影,其中BA智能装备对应智能特征维度的资源要素,BB智能工厂对应智能特征维度的资源要素和系统集成,BC智能服务对应智能特征维度的新兴业态,BD智能赋能技术对应智能特征维度的融合共享,BE工业网络对应智能特征维度的互联互通。C行业应用标准位于智能制造标准体系结构图的最顶层,面向行业具体需求,对A基础共性标准和B关键技术标准进行细化和落地,指导各行业推进智能制造。/pp  智能制造标准体系结构中明确了智能制造的标准化需求,与智能制造系统架构具有映射关系。以大规模个性化定制模块化设计规范为例,它属于智能制造标准体系结构中B关键技术-BC智能服务中的大规模个性化定制标准。在智能制造系统架构中,它位于生命周期维度设计环节,系统层级维度的企业层和协同层,以及智能特征维度的新兴业态。其中,智能制造系统架构三个维度与智能制造标准体系的映射关系及示例解析详见附件2。/pp  span style="color: rgb(0, 112, 192) "strong(三)智能制造标准体系框架/strong/span/pp  智能制造标准体系框架由智能制造标准体系结构向下映射而成,是形成智能制造标准体系的基本组成单元。智能制造标准体系框架包括“A基础共性”、“B关键技术”、“C行业应用”三个部分,如图3所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/f73eeadb-c50e-41c5-a66b-b231643b6a2f.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "图3 智能制造标准体系框架/pp  strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "三、建设内容/span/strong/pp  span style="color: rgb(0, 112, 192) "strong(一)基础共性标准/strong/span/pp  基础共性标准用于统一智能制造相关概念,解决智能制造基础共性关键问题,包括通用、安全、可靠性、检测、评价等五个部分,如图4所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/a8dfce4d-fac0-40e0-bedf-99ae0b46c421.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "图4 基础共性标准子体系/pp  span style="color: rgb(0, 112, 192) "strong1. 通用标准/strong/span/pp  主要包括术语定义、参考模型、元数据与数据字典、标识等四个部分。术语定义标准用于统一智能制造相关概念,为其他各部分标准的制定提供支撑。参考模型标准用于帮助各方认识和理解智能制造标准化的对象、边界、各部分的层级关系和内在联系。元数据和数据字典标准用于规定智能制造产品设计、生产、流通等环节涉及的元数据命名规则、数据格式、数据模型、数据元素和注册要求、数据字典建立方法,为智能制造各环节产生的数据集成、交互共享奠定基础。标识标准用于对智能制造中各类对象进行唯一标识与解析,建设既与制造企业已有的标识编码系统兼容,又能满足设备互联网协议(IP)化、智能化等智能制造发展要求的智能制造标识体系。/pp  span style="color: rgb(0, 112, 192) "strong2. 安全标准/strong/span/pp  主要包括功能安全、信息安全和人因安全三个部分。功能安全标准用于保证控制系统在危险发生时正确地执行其安全功能,从而避免因设备故障或系统功能失效而导致生产事故,包括面向智能制造的功能安全要求、功能安全系统设计和实施、功能安全测试和评估、功能安全管理等标准。信息安全标准用于保证智能制造领域相关信息系统及其数据不被破坏、更改、泄露,从而确保系统能连续可靠地运行,包括软件安全、设备信息安全、网络信息安全、数据安全、信息安全防护及评估等标准。人因安全标准用于避免在智能制造各环节中因人的行为造成的隐患或威胁,通过合理分配任务,调节工作环境,提高人员能力,以保证人身安全,预防误操作等,包括工作任务、环境、设备、人员能力、管理支持等标准。/pp  span style="color: rgb(0, 112, 192) "strong3. 可靠性标准/strong/span/pp  主要包括工程管理、技术方法两个部分。工程管理标准主要对智能制造系统的可靠性活动进行规划、组织、协调与监督,包括智能制造系统及其各系统层级对象的可靠性要求、可靠性管理、综合保障管理、寿命周期成本管理等标准。技术方法标准主要用于指导智能制造系统及其各系统层级开展具体的可靠性保证与验证工作,包括可靠性设计、可靠性预计、可靠性试验、可靠性分析、可靠性增长、可靠性评价等标准。/pp  span style="color: rgb(0, 112, 192) "strong4. 检测标准/strong/span/pp  strong主要包括测试项目、测试方法等两个部分。测试项目标准用于指导智能制造装备和系统在测试过程中的科学排序和有效管理,包括不同类型的智能制造装备和系统一致性和互操作、集成和互联互通、系统能效、电磁兼容等测试项目标准。测试方法标准用于不同类型智能制造装备和系统的测试,包括试验内容、方式、步骤、过程、计算分析等内容的标准,以及性能、环境适应性和参数校准等。/strong/pp  span style="color: rgb(0, 112, 192) "strong5. 评价标准/strong/span/pp  主要包括指标体系、能力成熟度、评价方法、实施指南等四个部分。指标体系标准用于智能制造实施的绩效与结果的评估,促进企业不断提升智能制造水平。能力成熟度标准用于企业识别智能制造现状、规划智能制造框架与提升智能制造能力水平提供过程方法论,为企业识别差距、确立目标、实施改进提供参考。评价方法标准用于为相关方提供一致的方法和依据,规范评价过程,指导相关方开展智能制造评价。实施指南标准用于指导企业提升制造能力,为企业开展智能化建设、提高生产力提供参考。/pp span style="color: rgb(0, 112, 192) "strong (二)关键技术标准/strong/span/pp  主要包括智能装备、智能工厂、智能服务、智能赋能技术和工业网络等五个部分。/pp span style="color: rgb(0, 112, 192) "strong 1. 智能装备标准/strong/span/pp  主要包括识别与传感、人机交互系统、控制系统、增材制造、工业机器人、数控机床及设备、智能工艺装备等七个部分,如图5所示,其中重点是识别与传感、控制系统和工业机器人标准。主要规定智能传感器、自动识别系统、工业机器人等智能装备的信息模型、数据字典、通信协议、接口、集成和互联互通、优化等技术要求,解决智能生产过程中智能装备之间,以及智能装备与智能化产品、物流系统、检测系统、工业软件、工业云平台之间数据共享和互联互通的问题。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/7aa8a32a-4026-41f2-bb3f-10cec1a98bf8.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "图5 智能装备标准子体系/pp  span style="color: rgb(0, 112, 192) "strong(1)识别与传感标准/strong/span/pp  主要包括标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。主要用于在测量、分析、控制等工业生产过程,以及非接触式感知设备自动识别目标对象、采集并分析相关数据的过程中,解决数据采集与交换过程中数据格式、程序接口不统一的问题,确保编码的一致性。/pp  span style="color: rgb(0, 112, 192) "(2)人机交互系统标准/span/pp  主要包括工控键盘布局等文字标准 智能制造专业图形符号分类和定义等图形标准 语音交互系统、语义库等语音语义标准 单点、多点等触摸体感标准 情感数据等情感交互标准 虚拟显示软件、数据等VR/AR设备标准。主要用于规范人与信息系统多通道、多模式和多维度的交互途径、模式、方法和技术要求,解决包括工控键盘、操作屏等高可靠性和安全性交互模式,语音、手势、体感、虚拟现实/增强现实(VR/AR)设备等多维度交互的融合协调和高效应用的问题。/pp  span style="color: rgb(0, 112, 192) "strong(3)控制系统标准/strong/span/pp  主要包括控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。主要用于规定生产过程及装置自动化、数字化的信息控制系统,如可编程逻辑控制器(PLC)、可编程自动控制器(PAC)、分布式控制系统(DCS)、现场总线控制系统(FCS)、数据采集与监控系统(SCADA)等相关标准,解决控制系统数据采集、控制方法、通信、集成等问题。/pp  span style="color: rgb(0, 112, 192) "strong(4)增材制造标准/strong/span/pp  主要包括典型增材制造工艺和方法标准 设计规范、文件格式、数据质量保障、文件存储和数据处理等模型设计标准 增材制造设备接口标准 增材制造材料、设备和零部件性能的测试方法标准 增材制造服务架构、服务模式等服务标准。主要用于规范智能制造系统中增材制造相关技术、方法,确保增材制造与智能制造各环节、要素的协调一致及效能最优。/pp span style="color: rgb(0, 112, 192) "strong (5)/strong/spanspan style="color: rgb(0, 112, 192) "strong工业机器人标准/strong/span/pp  主要包括集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。主要用于规定工业机器人的系统集成、人机协同等通用要求,确保工业机器人系统集成的规范性、协同作业的安全性、通信接口的通用性。/pp  span style="color: rgb(0, 112, 192) "strong(6)数控机床及设备标准/strong/span/pp  主要包括智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。主要用于规范数字程序控制进行运动轨迹和逻辑控制的机床及设备,解决其过程、集成与协同以及在智能制造应用中的标准化问题。/pp  span style="color: rgb(0, 112, 192) "strong(7)智能工艺装备标准/strong/span/pp  主要包括成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。主要用于规范智能制造系统中铸造、塑性成形、焊接、热处理与表面改性、粉末冶金成形等热加工成形工艺装备相关技术、方法、工艺,确保成形制造与智能制造系统的协调一致。/pp  span style="color: rgb(0, 112, 192) "strong智能装备标准建设重点/strong/span/pp  span style="color: rgb(0, 112, 192) "strong识别与传感标准。/strong/span标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。/pp  span style="color: rgb(0, 112, 192) "strong控制系统标准。/strong/span控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。/pp  span style="color: rgb(0, 112, 192) "strong工业机器人标准/strong/span。集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。/pp  span style="color: rgb(0, 112, 192) "strong数控机床及设备标准。/strong/span智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。/pp  span style="color: rgb(0, 112, 192) "strong智能工艺装备标准。/strong/span成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。/pp  strong2. 智能工厂标准/strong/pp  主要包括智能工厂设计、建造与交付,智能设计、生产、管理、物流和集成优化等部分,如图6所示,其中重点是智能工厂设计、智能工厂交付、智能生产和集成优化等标准。主要用于规定智能工厂设计、建造和交付等建设过程和工厂内设计、生产、管理、物流及其系统集成等业务活动。针对流程、工具、系统、接口等应满足的要求,确保智能工厂建设过程规范化、系统集成规范化、产品制造过程智能化。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/4d35ea79-85e2-4bba-b8e6-d2e7cfa91494.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center "图6 智能工厂标准子体系/pp span style="color: rgb(0, 112, 192) "strong (1)智能工厂设计标准/strong/span/pp  主要包括智能工厂的基本功能、设计要求、设计模型等总体规划标准 智能工厂物联网系统设计、信息化应用系统设计等智能化系统设计标准 虚拟工厂参考架构、工艺流程及布局模型、生产过程模型和组织模型等系统建模标准 达成智能工厂规划设计要求所需的工艺优化、协同设计、仿真分析、设计文件深度要求、工厂信息标识编码等实施指南标准。主要用于规定智能工厂的规划设计,确保工厂的数字化、网络化和智能化水平。/pp span style="color: rgb(0, 112, 192) "strong (2)智能工厂建造标准/strong/span/pp  主要包括建造过程数据采集范围、流程、信息载体、系统平台要求等建造过程数据采集标准 满足集成性、创新性要求、促进智能工厂建设项目管理科学化、规范化的建造过程项目管理标准。主要用于规定智能工厂建设和技术改造过程,通过智能工厂建造过程的控制与约束,确保智能工厂建设质量、建设周期、建设成本等预定目标的实现。/pp  span style="color: rgb(0, 112, 192) "strong(3)智能工厂交付标准/strong/span/pp  主要包括交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。主要用于规定智能工厂建设完成后的验收与交付,确保建成的智能工厂达到预定建设目标,交付数据资料满足智能工厂运营维护要求。/pp span style="color: rgb(0, 112, 192) "strong (4)智能设计标准/strong/span/pp  主要包括基于数据驱动的参数化设计、专业化并行/协同设计、基于模型的产品生命周期(定义MBD、制造和检验)标准以及产品设计全过程的标准化管理 试验方法设计、试验数据与流程的管理、试验结果的分析与验证、试验结果反馈等试验仿真标准。主要用于规定产品的数字化设计和仿真,以及产品试验验证过程仿真的方法和要求,确保产品的功能、性能、易装配性、易维修性,缩短新产品研制和制造周期,降低成本。/pp  span style="color: rgb(0, 112, 192) "strong(5)智能生产标准/strong/span/pp  主要包括计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发与执行、设计与制造协同、制造资源动态组织、生产过程管理与优化、生产过程可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。主要用于规定智能制造环境下生产过程中计划调度、生产执行、质量管控、设备运维等应满足的要求,确保制造过程的智能化、柔性化和敏捷化。/pp  span style="color: rgb(0, 112, 192) "strong(6)智能管理标准/strong/span/pp  主要包括供货商评价、质量检验分析等采购管理标准 销售预测、客户关系管理、个性化客户服务等销售管理标准 设备可靠性管理等资产管理标准 能流管理、能效评估等能源管理标准 作业过程管控、应急管理、危化品管理等安全管理标准 职业病危害因素监测、职业危害项目指标等健康管理标准 环保实时监测和预测预警能力描述、环保闭环管理等环保管理标准 基于模型的企业战略、生产组织与服务保障等基于模型的企业(MBE)标准。主要用于规定企业生产经营中采购、销售、能源、工厂安全、环保和健康等方面的知识模型和管理要求等,指导智能管理系统的设计与开发,确保管理过程的规范化和精益化。/pp  span style="color: rgb(0, 112, 192) "strong(7)智能物流标准/strong/span/pp  主要包括物料标识、物流信息采集、物料货位分配、出入库输送系统、作业调度、信息处理、作业状态及装备状态的管控、货物实时监控等智能仓储标准 物料智能分拣系统、配送路径规划、配送状态跟踪等智能配送标准。主要用于规定智能制造环境下厂内物流关键技术应满足的要求,指导智能物流系统的设计与开发,确保物料仓储配送准确高效和运输精益化管控。/pp  span style="color: rgb(0, 112, 192) "strong(8)集成优化标准/strong/span/pp  主要包括虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。主要用于规定一致的语法和语义,满足通用接口中应用特定的功能关系,协调使能技术和业务应用之间的关系,确保信息的共享和交换。/pp  strongspan style="color: rgb(0, 112, 192) "智能工厂标准建设重点/span/strong/pp  span style="color: rgb(0, 112, 192) "strong智能工厂设计标准。/strong/span智能工厂参考模型、通用技术要求等总体规划标准 智能工厂信息基础设施设计、物联网系统设计和信息化应用系统设计等工厂智能化系统设计标准 虚拟工厂设计参考架构、虚拟工厂信息模型和虚拟工厂建设要求等虚拟工厂设计标准 达成智能工厂规划设计要求所需的仿真分析、工艺优化、工厂信息标识编码和设计文件深度要求等实施指南标准。/pp  span style="color: rgb(0, 112, 192) "strong智能工厂交付标准。/strong/span交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。/pp  span style="color: rgb(0, 112, 192) "strong智能生产标准。/strong/span计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发、协同生产、生产过程管理与优化、可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。/pp  span style="color: rgb(0, 112, 192) "strong集成优化标准。/strong/span虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息模型、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。/pp  span style="color: rgb(0, 112, 192) "strong3. 智能服务标准/strong/span/pp  主要包括大规模个性化定制、运维服务和网络协同制造等三个部分,如图7所示,其中重点是大规模个性化定制标准和运维服务标准。主要用于实现产品与服务的融合、分散化制造资源的有机整合和各自核心竞争力的高度协同,解决了综合利用企业内部和外部的各类资源,提供各类规范、可靠的新型服务的问题。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/40685663-9aef-47ef-af5d-bfc4038d52f0.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "图7 智能服务标准子体系/pp span style="color: rgb(0, 112, 192) " (1)大规模个性化定制标准/span/pp  主要包括通用要求、需求交互规范、模块化设计规范和生产规范等标准。主要用于指导企业实现以客户需求为核心的大规模个性化定制服务模式,通过新一代信息技术和柔性制造技术,以模块化设计为基础,以接近大批量生产的效率和成本满足客户个性化需求。/pp  span style="color: rgb(0, 112, 192) "(2)运维服务标准/span/pp  主要包括基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。主要用于指导企业开展远程运维和预测性维护系统建设和管理,通过对设备的状态远程监测和健康诊断,实现对复杂系统快速、及时、正确诊断和维护,全面分析设备现场实际使用运行状况,为设备设计及制造工艺改进等后续产品的持续优化提供支撑。/pp span style="color: rgb(0, 112, 192) "strong (3)网络协同制造标准/strong/span/pp  主要包括实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。主要用于指导企业持续改进和不断优化网络化制造资源协同云平台,通过高度集成企业间、部门间创新资源、生产能力和服务能力的相关技术方法,实现生产制造与服务运维信息高度共享、资源和服务的动态分析,增强柔性配置水平。/pp  span style="color: rgb(0, 112, 192) "strong智能服务标准建设重点/strong/span/pp  span style="color: rgb(0, 112, 192) "strong大规模个性化定制标准。/strong/span通用要求、需求交互规范、模块化设计规范和生产规范等标准。/pp  span style="color: rgb(0, 112, 192) "strong运维服务标准。/strong/span基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。/pp  span style="color: rgb(0, 112, 192) "strong网络协同制造标准。/strong/span实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。/pp  span style="color: rgb(0, 112, 192) "strong4. 智能赋能技术标准/strong/span/pp  主要包括人工智能应用、工业大数据、工业软件、工业云、边缘计算等部分,如图8所示,其中重点是人工智能应用标准和边缘计算标准。主要用于构建智能制造信息技术生态体系,提升制造领域的信息化和智能化水平。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/f41f5cf5-1a95-47e7-b9e6-0f6b321ae332.jpg" title="9.jpg" alt="9.jpg"//pp style="text-align: center "图8 智能赋能技术标准子体系/pp span style="color: rgb(0, 112, 192) "strong (1)人工智能应用标准/strong/span/pp  主要包括场景描述与定义标准、知识库标准、性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。主要用于满足制造全生命周期活动的智能化发展需求,指导人工智能技术在设计、生产、物流、销售、服务等生命周期环节中的应用,并确保人工智能技术在应用中的可靠性与安全性。/pp  span style="color: rgb(0, 112, 192) "strong(2)工业大数据标准/strong/span/pp  主要包括平台建设的要求、运维和检测评估等工业大数据平台标准 工业大数据采集、预处理、分析、可视化和访问等数据处理标准 数据质量、数据管理能力等数据管理标准 工厂内部数据共享、工厂外部数据交换等数据流通标准。主要用于典型智能制造模式中,提高产品全生命周期各个环节所产生的各类数据的处理和应用水平。/pp strongspan style="color: rgb(0, 112, 192) " (3)工/span/strongspan style="color: rgb(0, 112, 192) "strong业软件标准/strong/span/pp  主要包括产品、工具、嵌入式软件、系统和平台的功能定义、业务模型、技术要求等软件产品与系统标准 工业软件接口规范、集成规程、产品线工程等软件系统集成和接口标准 生存周期管理、质量管理、资产管理、配置管理、可靠性要求等服务与管理标准 工业技术软件化方法、参考架构、工业应用程序(APP)封装等工业技术软件化标准。主要用于促进软件成为工业领域知识、技术和管理的载体,提高软件在工业领域的研发设计、生产制造、经营管理以及营销服务活动中发挥的作用,指导工业企业对研发、制造、生产管理等工业软件的集成和选型,帮助工业企业开展工业技术软件化,对工业知识进行有效积累。/pp span style="color: rgb(0, 112, 192) "strong (4)工业云标准/strong/span/pp  主要包括平台建设与应用,工业云资源和服务能力的接入与管理等资源标准 能力测评规范、计量计费、服务级别协议(SLA)等服务标准。主要用于构建工业云生态体系,指导工业云平台的设计和建设,规范不同工业云服务的业务能力,提升工业云服务的设计、实现、部署、供应和运营管理水平,指导开展各类工业云服务的采购、审计、监管和评价活动。/pp  span style="color: rgb(0, 112, 192) "(5)边缘计算标准/span/pp  主要包括架构与技术要求、计算及存储、安全、应用等标准。主要用于指导智能制造行业数字化转型、数字化创新,解决制造业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求,用于智能制造中边缘计算技术、设备或产品的研发和应用。/pp  span style="color: rgb(0, 112, 192) "strong智能赋能技术标准建设重点/strong/span/pp  人工智能应用标准。场景描述与定义标准,知识库标准,性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。/pp  边缘计算标准。架构与技术要求、计算及存储、安全、应用等标准。/pp  span style="color: rgb(0, 112, 192) "strong5. 工业网络标准/strong/span/pp  主要包括体系架构、组网与并联技术和资源管理,其中体系架构包括总体框架、工厂内网络、工厂外网络和网络演进增强技术等 组网与并联技术包括工厂内部不同层级的组网技术,工厂与设计、制造、供应链、用户等产业链各环节之间的互联技术 资源管理包括地址、频谱等,但智能制造中工业网络仅包括工业无线通信和工业有线通信,如图9所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/7bdbbbf4-685a-40d3-b754-6d1914a40033.jpg" title="10.jpg" alt="10.jpg"//pp style="text-align: center "图9 工业网络标准子体系/pp span style="color: rgb(0, 112, 192) "strong (1)工业无线通信标准/strong/span/pp  针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准。/pp  span style="color: rgb(0, 112, 192) "strong(2)工业有线通信标准/strong/span/pp  针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。/pp  工业网络标准建设重点/pp  工业无线通信标准。针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准 /pp  工业有线通信标准。针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。/pp span style="color: rgb(0, 112, 192) "strong (三)行业应用标准/strong/span/pp  依据基础共性标准和关键技术标准,围绕新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业机械装备、新材料、生物医药及高性能医疗器械等十大重点领域,同时兼顾传统制造业转型升级的需求,优先在重点领域实现突破,并逐步覆盖智能制造全应用领域。行业应用标准体系如图10所示。/pp style="text-align: center "  /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/6e36eb49-21b3-4cb8-bdd3-35383350d62b.jpg" title="11.jpg" alt="11.jpg"//pp style="text-align: center "图10 行业应用标准子体系br//pp  发挥基础共性标准和关键技术标准在行业应用标准制定中的指导和支撑作用,优先制定各行业均有需求的设备互联互通、智能工厂建设指南、数字化车间、数据字典、运维服务等重点标准。在此基础上,发挥各行业特点,制定行业亟需的智能制造相关标准。如:新一代信息技术领域的射频识别标准等。高档数控机床和机器人领域的机床制造和测试标准等。航空航天装备领域的复杂装备云端协同制造标准、航天装备数字化双胞胎制造标准等。海洋工程装备及高技术船舶领域的大型船舶设计工艺仿真与信息集成标准、海洋石油装备互联互通和运维服务标准等。先进轨道交通装备领域的轨道交通网络控制系统标准、车载信号系统标准、高速动车组智能工厂运行管理标准等。节能与新能源汽车领域的新能源汽车智能工厂运行系统标准等。电力装备领域的存储管理标准、数据智能采集标准、监测诊断服务标准等。农业机械装备领域的农机装备智能工厂平台化制造运行管理系统标准等。生物医药及高性能医疗器械领域的医疗设备质量追溯标准等。其他领域的标准包括:家电行业空调产品信息集成数据接口标准,石油石化行业智能设备互联互通标准,纺织行业智能装备网络通讯接口、系统集成与互操作标准,锂离子电池制造行业智能工厂标准,采矿、冶金、建筑专用设备制造行业高端工程机械可靠性仿真与协同制造标准等。/pp  智能制造标准体系与机械、航空、汽车、船舶、石化、钢铁、轻工、纺织等制造业领域标准体系之间不是从属关系,内容存在交集。交集部分是智能制造标准体系中的行业应用标准。例如,船舶工业标准体系用于指导船舶相关产品设计、制造、试验、修理管理和工程建设等,智能制造标准体系中的船舶行业相关标准主要涉及到船舶制造环节中的互联互通等智能制造相关内容。/pp  span style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "strong四、组织实施/strong/span/pp  span style="color: rgb(0, 112, 192) "strong加强统筹协调。/strong/span在工业和信息化部、国家标准化管理委员会的指导下,积极发挥国家智能制造标准化协调推进组、总体组和专家咨询组的作用,开展智能制造标准体系的建设及规划。充分利用多部门协调、多标委会协作、军民融合等工作机制,凝聚各类标准化资源,扎实构建满足产业发展需求、先进适用的智能制造标准体系。/pp  span style="color: rgb(0, 112, 192) "strong实施动态更新。/strong/span实施动态更新完善机制,随着智能制造发展水平和行业认识水平的不断提高,根据智能制造发展的不同阶段,每两年滚动修订《国家智能制造标准体系建设指南》。/pp  span style="color: rgb(0, 112, 192) "strong加快标准研制。/strong/span基于“共性先立,急用先行”的原则,完善智能制造标准绿色通道,加快国家和行业标准的制定 推动标准试验验证平台和公共服务平台建设,为标准的制定和实施提供技术支撑和保障。/pp  span style="color: rgb(0, 112, 192) "strong加强宣贯培训。/strong/span充分发挥地方主管部门、行业协会和学会的作用,进一步加强标准的培训、宣贯工作,通过培训、咨询等手段推进标准宣贯与实施。用标准引领行业实现智能转型。/pp  加强国际交流与合作。加强与国际标准化组织的交流与合作,定期举办智能制造标准化国际论坛,组织中外企业和标准化组织开展交流合作,通过参与国际标准化组织(ISO)、国际电工技术委员会(IEC)等相关国际标准化组织的标准化工作,积极向国际标准化组织提供我国智能制造标准化工作的研究成果。/pp  附件1:智能制造相关名词术语和缩略语/pp  附件2:智能制造系统架构映射及示例解析/pp  附件3:已发布、制定中的智能制造基础共性标准和关键技术标准/ppbr//p
  • 中国加强对新型环境污染问题监测力度
    农村环境污染、城市饮用水源地存在的饮水安全风险,近年来成为中国环境保护工作出现的新问题。记者从中国环境保护部了解到,中国正不断加强对这些新型环境污染问题的监测力度。  全国环境监测工作会23日在西安闭幕,记者从会上了解到,在过去的五年时间里,中国环保部门针对新型环境污染问题和潜在的环境风险,积极拓展新的监测领域。  环境保护部副部长吴晓青说,从2008年起,中国逐步开展持久性有机物、挥发性有机物、痕量超痕量污染物、臭氧和细颗粒物监测。随后又对农村环境监测进行了试点,重点开展农村集中式饮用水源地、土壤、畜禽养殖污染监测。  此外,2007年发生的太湖大规模蓝藻事件后,中国环保部门立即组织对太湖、巢湖和滇池开展了蓝藻水华预警应急监测,并从2009年开始每年对环保重点城市饮用水源地水质进行一次全指标监测。  同时,中国各地方监测部门也不断探索新的环境监测领域。北京、上海等地尝试监测挥发性有机物、臭氧等光化学烟雾前体污染物,辽宁省开展了水生生物的监测工作,四川省、云南省对重金属进行了专项监测等。吴晓青说:“在这些新领域的试点监测,为环保工作积累了大量的基础数据和经验,这些都将作为中国环境管理与决策的基本依据。”
  • 工信部发文,石化行业智能仪器装备将迎一批新标准
    据工信部11月21日消息,为切实发挥好标准对石化行业智能制造发展的支撑和引领作用,规范和引导石化行业向数字化、网络化、智能化发展,深入落实国家智能制造及标准化有关政策及要求,工信部组织编制了《石化行业智能制造标准体系建设指南(2022版)》(下称《指南》),并于近日印发。《指南》明确目标:到2025年,建立较为完善的石化行业智能制造标准体系,累计制修订30项以上石化行业重点标准,基本覆盖基础共性、石化关键数据及模型技术、石化关键应用技术等标准;对于原油加工等石化细分行业,优先制定新一代信息技术在生产、管理、服务等特有场景应用的标准,推动智能制造标准在石化行业的广泛应用。《指南》提到智能装备标准建设内容:主要包括传感器与仪器仪表、自动识别装备、控制系统、检验检测装备、人机协作系统、工业机器人、工艺过程装备等七个部分,如下图所示。主要用于规定智能传感器、智能仪表、工艺过程装备、工业机器人等智能装备的数据字典、通信协议、接口、集成和互联互通、优化等技术要求,解决生产过程中智能装备之间,以及智能装备与物流系统、检测系统、工业软件、工业云平台之间数据共享和互联互通的问题。智能装备标准子体系(1)传感器与仪器仪表标准:主要包括面向石化复杂生产过程中的微型化、智能化、低功耗传感器的数据编码与交换、系统性能评估等通用技术标准;温度、压力、流量、在线分析等智能仪器仪表的采集、分析、自诊断等接口、通信、集成标准。主要用于解决数据采集与交换过程中数据格式、程序接口不统一的问题。(2)自动识别设备标准:主要包括石化专有自动识别设备的数据编码、接口规范等标准。主要用于石化物流、仓储应用的自动识别设备及对象的数据采集和分析处理。(3)控制系统标准:主要包括石化专有生产过程控制系统标准。主要用于规定石化生产过程及装置自动化、数字化的信息控制系统,如可编程逻辑控制器(PLC)、分散型控制系统(DCS)、现场总线控制系统(FCS)、数据采集与监控系统(SCADA)等,解决控制系统数据采集、控制方法、通信、集成等问题。(4)检验检测装备标准:主要包括石化专有检验检测装备标准。主要用于石化产品质量检测、泄漏检测、火灾检测等智能识别系统的互联互通和通信集成。(5)人机协作系统标准:主要包括用于石化防爆终端、操作屏等的高可靠性和安全性相关人机协作标准。(6)工业机器人标准:主要包括面向石化生产过程中智能装卸、产成品仓储、长输管线巡检、装置日常巡检等环节专用机器人的统一标识及互联互通、信息安全等通用技术标准;石化专用机器人与人、环境、系统及其他装备间的通信、接口、协同标准。主要用于规定石化专用机器人的系统集成、人机协同等通用要求,确保工业机器人系统集成的规范性、协同作业的安全性、通信接口的通用性。(7)工艺过程装备标准:主要包括炼油、乙烯等成套装备的数据接口、通信协议等通用技术标准。主要用于解决石化工艺过程装备相关的数据采集、集成等问题。附:石化行业智能制造现行和在研标准清单附件:《石化行业智能制造标准体系建设指南(2022版)》.pdf
  • 行业应用 | 查狄伦数字测力计在肌肉力量康复治疗中的应用
    物理治疗是康复过程的重要干预手段,它通过物理方法,针对人体局部或全身性的功能障碍或病变,采用非侵入性、非药物性的治疗来恢复身体原有的生理功能。骨折或肌肉、韧带拉伤后,都会对正常的肌肉功能造成一定的影响,恢复和增强肌肉功能需要进行科学的肌肉力量练习。恢复肌肉力量的康复治疗的第一步要确定主要和次要受损肌群,以及该肌群现有功能水平。再根据功能检查状况制定切实可行的肌力理疗练习计划。Chatillon(查狄伦)测力计提供专业的辅助配件,可以协助医生科学的判断具体受损肌肉,损伤水平及恢复情况,以便为患者制定更为科学的治疗方案。理疗练习必须遵循“超量恢复”和“循序渐进”的原则,既不能间隔太长,也不宜过于频繁。肌力练习的效果要根据恢复进程实时判定,以修正适宜的练习计划,达到治疗效果。具体的治疗需在医生的指导下进行。
  • 《智能检测装备通用技术要求》国家标准开始编制!
    7月2日上午,在淄博市举办了山东省智能检测装备产业高质量发展推进会暨《智能检测装备通用技术要求》国家标准起草工作组启动会,标志着我国智能检测装备领域的标准化和产业化发展迈出了重要一步。此次会议不仅开启了《智能检测装备通用技术要求》国家标准的编制工作,还展示了智能检测装备标准符合性公共服务平台,并吸引了行业院士、专家学者及领军人物就智能检测装备的未来发展趋势进行深入探讨。智能检测装备作为现代制造业的重要组成部分,其技术进步对提升工业生产的自动化和智能化水平至关重要。此次会议上介绍的标准规定了智能检测装备的系统架构、分类及智能感知、智能分析、人机交互、互联集成、故障诊断、数字化交付、适应优化等方面的技术要求,适用于指导制造商、用户、科研院所等相关机构开展智能检测装备的研发、制造与检测评估。此标准将有助于规范行业发展,还将促进智能检测装备技术的快速进步和应用拓展。前不久,江苏省智能检测装备产业创新发展推进会也在无锡市召开,工业和信息化部副司长汪宏强调了智能检测装备在新型工业化进程和新质生产力形成中的核心作用。他指出,通过创新驱动加快技术突破、需求牵引深化应用推广、统筹推进完善发展生态是智能检测装备产业高质量发展的关键路径。无锡市政府表示将出台行动方案,构建智能检测装备产业发展新高地,同时注重场景需求牵引,推动智能检测装备在高端装备等领域的规模化应用。智能检测装备的发展不仅受到地方政府的重视,也得到了国家层面的支持和引导。江苏省工信厅副厅长张星提出,江苏将智能检测装备作为重点发展方向,并将其纳入“1650”产业体系的重点产业链。此外,江苏省发布的创新产品目录和产业发展报告,以及供需对接活动的启动,均显示出该省在推动智能检测装备领域创新和产业化方面的决心和举措。智能检测装备的技术进步和应用拓展,对于提高制造业的生产效率、降低生产成本、保障产品质量具有显著影响。随着相关标准的制定和技术的不断突破,预计未来智能检测装备将在更多行业领域实现广泛应用,为我国制造业的转型升级和高质量发展注入新动力。参考资料:江苏推进智能检测装备创新发展.中国化工报,2024年7月3日。《智能检测装备通用技术要求》国家标准编制工作启动.博览新闻,2024年7月3日。
  • 征集智能实验室仪器设备国家标准起草专家
    p style="text-align: center "strong关于征集《智能实验室仪器设备 气候环境试验设备的数据接口》与/strong/pp style="text-align: center "strong《智能实验室仪器设备 通信要求》国家标准起草工作组专家的通知/strong/pp各位委员:/pp  检测实验室涉及到设备、人员、耗材、方法和环境等多个要素,而随着社会的发展,实验室人员快速增加,设备和耗材越来越庞大,所使用的方法越来越精密高效,对仪器设备的要求也越来越高。现代信息技术的发展,给我实验室仪器设备的智能化提供了先进技术手段,利用物联网、云计算等新一代信息技术促进实验室仪器设备智能化,使得实验室管理更加规范高效,成为了实验室建设者和管理者重要的任务。/pp  为解决智能实验室仪器设备通信技术领域的标准缺失,为智能实验室的建设提供数据支撑,全国实验室仪器及设备标准化技术委员会计划组织开展《智能实验室仪器设备 气候环境试验设备的数据接口》与《智能实验室仪器设备 通信要求》2项国家标准的起草工作,现征集标准起草工作专家组成员,欢迎在设备研发、信息化技术等领域从事相关工作的单位积极参加。/pp  请拟参加标准起草工作组的专家,于2018年4月5日前,将盖章后的专家报名表(见附件1)寄回标委会秘书处,或扫描后通过电子邮件发至秘书处。/pp  联系人:机械工业仪器仪表综合技术经济研究所 王成城/pp  地 址:北京西城区广安门外大街甲397号 邮编:100055/pp  电 话:010-63461918 传真:010-63490489/pp  Email:18511696673@163.com/pp  附件1:/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201803/ueattachment/5ad7a786-9c30-4ad0-b75d-d1f7df244b54.doc"专家报名表.doc/a/pp style="text-align: right "  全国实验室仪器及设备标准化技术委员会秘书处/ppbr//p
  • 参展CMEF,滨松中国为医疗诊断展现更好的核心光电探测力
    第73届中国国际医疗器械(春季)博览会(CMEF)于5月15-18日在上海国家会展中心盛大启幕。CMEF为亚太地区最大的医疗器械及相关产品、服务的展览会。滨松中国于本次展会上进行了“检验医学”和“医学影像”两方面的主题展示,从器件到仪器,为医疗诊断展现了更好的核心光电探测力。 滨松中国展台 在检验医学方面,滨松中国主要围绕生化分析、血液分析、分子诊断、免疫分析,四个热门应用展示了高集成化的光电探测器解决方案。而近年在体外诊断行业中,及时检测(POCT)受到了极大的关注,小型化、便携化成为了医疗仪器的一个新的话题,为了实现这个应用需求,紧凑微型的核心光电探测器、光源等产品成为了关注焦点,滨松最新开发的一系列微小型光电产品,如手掌大的闪烁氙灯模块,指尖大小的μPMT等,这些产品很好的回应了新应用对光电产品的需求。高集成化的北京滨松探测器模块(左上)、滨松光电倍增管模块(中上)以及2W闪烁氙灯模块(右上)、微型化产品μPMT组件滨松中国医学影像应用光电器件展柜 在医学影像方面,滨松展示的牙科、PET、DR应用的光电探测器亦备受关注。其中新型硅PM产品滨松MPPC(多像素光子计数器)作为最具潜力的PET探测器,在展台中展出。MPPC是由多个工作在盖革模式的APD像素组成,与传统的APD相比,在室温下MPPC也可用获得106增益,并且对噪声也进行了有效的控制,并具有响应快、均匀性好、能量分辨率高、稳定性强等特点。目前除了在核医学领域崭露头角,也在高能物理,粒子探测等领域成为话题。滨松MPPC产品除此之外,滨松亦可为牙科影像提供全方位的X线探测解决方案。种类齐全的高性能探测器产品,可以全面满足牙科诊室的影像诊断设备的所有需求,包括口内、全景、头颅和CBCT。而在成像方面,无论是非晶硅还是CMOS探测器,针状CsI闪烁体直接生长在传感器上,直接沉积,因此空间分辨率更高,光强分布更集中,成像更加锐利和清晰。 滨松在不断发展光电探测器技术的同时,也把这些先进的技术应用在了整体仪器中,开发出了可在35秒内完成病理切片扫描的数字病理切片扫描装置NDP,以及可以应用在前哨淋巴结活检的红外荧光定位仪PDE等系列产品。另外,北京滨松自主开发的小脏器核素显像专家——小γ相机,其核心的探测器件,亦为滨松自己研发的光电倍增管。“光”是如今医疗诊断的重要元素,从细小的光电元器件到整体化的仪器,滨松都不断地为医疗诊断注入着核心的光电探测力,随着人们生活水平的不断提高,对医疗将有着更多的、更高的要求,滨松也将通过对“光”的不断探索,继续促进医疗科技的发展。 欢迎关注滨松中国官方微信号
  • 广东食药监:新增8类食品 加大检测力度
    1月16日,2017年广东省食品药品监督管理工作会议在广州召开。据悉,该局计划从今年开始,在蔬菜和水产品两类食品的基础上,再选取市场消费量大、关注度高的八类食品,作为重点抽检、监管种类。  据介绍,去年广东率先在全国发布《“互联网+食品药品监管”行动计划方案(2015-2020年)》。目前,“智慧食药监”项目已全面启动,其中日常监管、行政执法、检验检测、食品追溯等系统已初步建成,食品安全电子追溯系统新增婴幼儿配方食品、食用油、酒类等重点品种。  去年,广东全省1000家农贸市场开展食用农产品快速检测工作,全年全省开展快检蔬菜和水产品共计265.2万批次,筛查发现并销毁了9574批次共96064.62公斤不合格食用农产品,其中蔬菜类7971批次共83098公斤、水产品类1603批次共12966.53公斤,有效提升了广大市民消费信心。  而今年,广东省政府将继续把食品和食用农产品抽检纳入民生实事项目,确定今年食品检验量从去年2批次/千人提高到今年3批次/千人,对2000家农贸市场开展食用农产品快速检测工作。  因此,广东省食药监局计划从今年开始,在蔬菜和水产品两类食品的基础上,再选取市场消费量大、关注度高的八类重点食品(粮食、食用油、肉及肉制品、鲜蛋、乳制品、婴幼儿配方乳粉和谷类辅助食品、白酒、凉茶),突出重点区域、重点市场、重点品种、重点项目和大型企业,在生产经营环节加大抽样检验和快速检测力度。
  • 基康仪器北交所过会:深耕智能监测传感行业 参与编写国家及行业标准13项
    9月28日消息,在今日召开的北交所2022年第48次审议会议上,二次上会的基康仪器(830879)过会。资料显示,公司深耕智能监测传感行业20余年,产品应用于大兴国际机场、大连湾海底隧道等项目,参与编写国家及行业标准13项。据北交所官网显示,基康仪器申报材料于2021年12月15日获受理,2022年4月21日完成第二轮问询回复,于5月13日上会被暂缓审议,9月28日二次上会后过会。据招股书披露,公司拟IPO募资约8455万元,用于智能监测终端产能扩大项目、研发中心建设项目。资料显示,基康仪器深耕智能监测传感行业20余年,主营业务为智能监测终端的研发、生产与销售,同时提供安全监测物联网解决方案及服务。据介绍,公司产品在水电站、核电站、风电场、油气储运等领域中得到了广泛应用。其中包括三峡、白鹤滩、乌东德水电站,山东沂蒙、新疆哈密抽水蓄能电站,辽宁红沿河、广西防城港核电站,江西如东、广西兴安风电场,西气东输、中俄中缅油气管道,南水北调、小浪底水利工程,京沪、兰新高铁,浦东、大兴国际机场,港珠澳大桥,大连湾海底隧道,合肥、重庆智慧城市,贵州、云南地质灾害监测预警、中国天眼、布达拉宫等项目。招股书显示,在安全监测传感器行业领域取得了诸多突破,获得国家实用新型、外观设计及发明专利42项,国家技术发明二等奖1项,省部级奖项2项,行业学会/协会奖项6项,参与编写国家及行业标准13项。业绩方面,2022年上半年,公司实现营业收入1.13亿元,同比增长28.94%,净利润为2247万元,同比增长33.75%。
  • 国内首部智能家居地方标准出炉 或将促国标出台
    日前,国内首个地方性质的智能家居标准即将出炉。重庆市质监局联合经信委审查了智能家居监控系统的技术要求和测试规范,将于近期实施。对此,专家表示,有关部门一直在牵头制定智能家居行业标准,而首个地方性标准提前出炉,有望促进国家标准尽快颁布,为智能家居发展扫清道路。重庆通过两项智能家居地方标准评审。   据悉,此次重庆市政府部门通过审查的是《智能家居监控系统技术要求》和《智能家居监控系统测试规范》。由重庆市质监局和经信委邀请部分高校和科院院所专家,对两个标准逐一认真地评审,将于近期颁布实施,为重庆企业研发智能家居监控系统将有标可依。这两个智能家居地方性标准主要以产品的功能、性能、接口技术、信息安全、关键部件参数为着眼点进行研究,并提出相应的技术指标及测试方法,从而规范重庆市场该类产品的设计、生产、检测、使用、质检工作,为市场规范市场出台统一标准,也促进行业发展。事实上,在今年上半年的智能家居产业峰会上,智能家居产业联盟秘书长周军曾表示,该联盟正在撰写《智能家居标准体系》、《智能家居蓝皮书》、《智能家居发展研究报告》等文件,而且该标准在联盟内部已经可以基本实现互联互通。标准发布实施后,家电、安防、可视对讲、灯光控制以及控制芯片领域中不同厂家的诸多产品都将被囊括进智能家居系统里,有助于行业的发展。  智能家居行业标准出台促进市场普及  其实,自从物联网技术迅速崛起以来,智能家居迎来二次革命,尤其是智能化程度大幅提高,售后服务水平提高,使得智能家居能够快速走进寻常百姓家。今年2月国家工信部就发布了《物联网“十二五”发展规划》,将智能家居列入9大重点领域应用示范工程。此举更坚定了众多智能家居企业欲切蛋糕的信心。  南京物联传感作为智能家居行业标准的起草单位之一,该公司技术部负责人表示,智能家居标准的缺失制约了行业发展,主要原因在于包含的系统太多,而且又都是电子领域的各类子系统,因此标准的建立也非常麻烦。每个子系统都有自己的标准,比如布线,安防,音响等,想要全部整合在一起难度较大。  南京物联采用的无线ZIGBEE技术,作为国际流行的无线传感技术具有低功耗、低复杂度、低成本、近距离等特点。目前无线智能家居安装简易,无需密集布线,只要具备初中以上文化就可安装 自动组网,设备可扩展性强 售后服务方便,能够准确检测故障并及时修复。  物联网专家中国工程院院士邬贺铨认为,目前智能家居市场前景广阔,吸引众多外来行业涉足,但由于处于快速发展期,各家企业采用的技术标准不尽相同,分为有线传输和无线传输方式,无线传输中又有WIFI、蓝牙、ZIGBEE技术,虽然ZIGBEE凭借强大的组网能力在市场中占得上风,但由于缺少国家强制性统一规范,拓展时市场时仍遭遇阻力,如今重庆地方性智能家居标准出台,有望促使行业标准尽早颁布,为智能家居快速发展提供技术支撑和保障。
  • 智能电网关键设备研制及技术标准规划发布
    6月29日,由国家电网公司编制的《智能电网关键设备(系统)研制规划》和《智能电网技术标准体系规划》在京发布。作为《国家电网智能化规划》的子规划,这两个规划的发布,是公司贯彻国家关于发展智能电网工作部署、推动我国智能电网建设的重大举措。  一直以来,国家电网公司联合各方力量,围绕坚强智能电网发展目标,建立产学研用共同参与的创新工作体系,开展试点工程,进行重大专题研究,获得了一批具有国际领先水平的科研成果,推动我国智能电网发展走在世界前列。但由于智能电网在世界范围内是新生事物,我国现有关键设备(系统)对智能电网建设支撑不足的矛盾日渐突出,建立一个系统、完善、开放并拥有自主知识产权的智能电网技术标准体系已迫在眉睫。  《智能电网关键设备(系统)研制规划》在中国首次系统地提出了包括7个技术领域、28个技术专题和137项关键设备的研制规划。该规划分析了目前国内外智能电网关键设备的研制状况,针对“已有设备”、“在研设备”和“待研设备”,提出了明确的工作策略,制定每一类设备的研究内容、目标和计划。该规划是关键设备研制工作的行动纲领,可作为科研、制造企业的设备研制指南,同时也可作为制定相关产业化发展规划的指导依据。  《智能电网技术标准体系规划》在中国首次系统地提出了包括8个专业分支、26个技术领域、92个标准系列的智能电网技术标准体系,明确了可以直接采用、需要修订、需要制定的智能电网技术标准。该规划是用于指导公司智能电网企业标准编制工作的纲领性文件和技术指南,也是我国智能电网行业标准和国家标准编制工作的重要参考资料。  国家电网公司副总经理、党组成员栾军在发布会上说,智能电网涉及经济社会的方方面面,需要社会各界共同努力。要尽快形成政府主导,行业组织、电力企业、制造厂商、研究机构、高校等相关单位密切合作,共同推动智能电网发展的良好局面。两个规划的发布,是各方面密切配合、共同努力的成果。公司将继续坚持开放、创新、合作、共赢的原则,推动智能电网创新发展。  与会代表普遍认为,发展智能电网必须坚持统一规划、标准先行。这两个规划对我国智能电网关键设备的研制及相关行业标准、国家标准乃至国际标准的制定,都具有重要指导作用,并有利于促进和带动智能电网及相关领域与产业有序发展。
  • 华大智造项目成功入围2023年度智能制造标准应用试点项目
    近日,国家标准化管理委员会公示拟入选2023年度智能制造标准应用试点项目名单,全国共78个:智能工厂建设应用类项目50个、新模式实践应用类项目14个、供应量协同应用类项目6个、系统集成服务类项目4个、咨询规划服务类项目2个、新技术融合创新类项目2个。其中,与生命科学领域相关的是由武汉华大智造科技有限公司和深圳华大智造科技股份有限公司共同申报的“生命科学装备智能工厂标准应用试点”项目。本次试点项目申报工作旨在发挥标准支撑引领作用,引导制造业企业运用标准化方式组织生产、经营、管理和服务,形成一批标准化、高水平的系统解决方案,推动制造业高端化、智能化、绿色化发展。围绕智能制造标准在制造业各细分行业中的应用,优先试点已发布、研制中的国家标准,配套应用相关行业标准、地方标准、团体标准和企业标准,2023年在全国范围内遴选不少于70个具有代表性的标准应用试点项目,到2024年遴选出200个以上标准应用试点项目,形成一批推动智能制造有效实施应用的“标准群”,打造一批成熟典型的标准应用实施指南、解决方案、工具库和案例集。附件:2023年度智能制造标准应用试点项目名单
  • 常州毒地事件续:标准缺失明显 检测设备落后
    常州外国语学校以及马路对面的化工污染地。新华社发  据新华社电连日来,常州外国语学校学生疑似中毒事件引发社会关注。记者调查发现,常外周边“毒地”在修复过程中因操作不规范和监管不力,发生了“二次污染”。  据了解,常外周边“毒地”原是化工厂,因工厂有污染气味太大,遭到周围居民投诉,政府下令搬迁。2011年6月前,位于该地的原常隆化工等企业已完成搬迁。  不过,污染企业搬离,“毒”却留了下来。2011年3月至5月,受常州市新北区政府委托,原常州市环境保护研究所对常隆地块内的土壤和地下水的污染情况进行了调查和风险评估。结果表明,常隆地块土壤和地下水环境污染较重,用于商业开发的环境风险不可接受,必须对污染场地实施修复。2012年3月批复的《江苏省常州市高级中学新北校区新建工程》环评报告,也提到了相邻地块是“毒地”,存在人体健康风险和生态风险。  记者调查发现,常州受污染原化工厂地块修复过程中,主要存在两个问题:  第一,没有如期完工。据了解,常州受污染原化工厂地块修复工程方为常州黑牡丹建设投资有限公司。而作为相关地块土壤修复工程方案的设计指导单位,常州市环科院原本预设去年6月完成土壤修复,但由于接收污染物进行无害化处理的水泥企业不能正常生产,修复没有明确时间,相关部门并未就这一变化做相应预案。  第二,没有按方案操作。常州市环科院院长徐圃青说,在修复的过程中,承建方和施工方本应按照相关部门出具的方案进行封闭操作,结果却露天作业,相关环境风险没有把控。黑牡丹公司项目负责人李飞承认,他们并没有采取钢结构封闭措施,只盖了薄膜。  浙江大学空气污染与健康研究中心专家尧一骏分析,在常外周边工业污染场地修复中,无论是原计划将污染土壤挖出移走的异位修复技术,还是后来直接在污染场地进行土壤覆盖的原位修复技术,只要操作规范,并且经过专业的评估和验收,技术层面都是可以实现污染土壤修复的。  但从目前掌握的信息看,该地块在修复中,没有使用大棚全覆盖来隔绝翻出污染土壤释放出的污染物,这是非常不规范的。同时,污染修复没有完成,常州外国语学校就已搬过来,显然不合程序。未加封闭的土壤修复现场,显然会对学校人员构成严重威胁。  此外,在常州“毒地”事件中,“二次污染”检测标准缺失问题表现尤为明显。“老百姓反映有异味,去现场检测结果却是达标的。”新北区环保局一位副局长表示,如果把老百姓的人体感知度比作“民标”,他认为国标与“民标”之间还存在很大差距。  该局长称,目前国内的检测手段与国际先进检测手段有差距,基层的检测力量更是跟不上,检测设备落后。化工企业产生的特征污染物太多,很多的确都不在国家标准检测范围之内。  常州市新北区环境监测站站长王淑媛也表达了目前基层环保部门的“无奈”。她说,发现问题只能依靠现有标准来评价,没有标准的问题或现象则无法给出评价。  全国多地存化工污染地  实际上,在全国各地,随着产业结构升级、城区规划调整,不少城市老化工厂搬迁新址,留下不少废弃“毒地”。  环境保护部和国土资源部2014年4月联合发布的《全国土壤污染状况调查公报》披露,工矿业废弃地土壤环境问题突出,化工、矿业、冶金等行业的工业废弃地是受污染典型地块之一。在调查的81块工业废弃地的775个土壤点位中,超标点位占34.9%。  中国环境科学研究院研究员李发生曾参与主笔《中国污染场地的修复与再开发的现状分析》的研究报告。报告中称,按照主要污染物的类型来划分,中国城市工业污染土地大致可以分为:来自钢铁冶炼企业、尾矿的重金属污染场地 来自农药等化工企业的持续性有机污染物污染场地 以有机污染为主的石油、化工、焦化等污染场地 电子废弃物污染场地。总体上化工企业有毒有害的物质要多一些。  浙江大学空气污染与健康研究中心专家尧一骏表示,来自毒地的气态污染物,在极端情况下可能产生急性健康风险。而在更多情况下,会由于长期暴露在低浓度污染中产生慢性健康影响,这意味着人可能在不知不觉中患上恶性疾病。  据悉,目前,我国对于土壤污染的防治还没有一部法律,相关的工作也很分散。专家们建议,应尽快出台避免对周边环境“二次污染”的相关措施,被称为“土十条”的《土壤环境保护和污染治理行动计划》应尽快实施。  李发生表示,修复一吨污染的土比处理一吨污染的水,价格可能要高出上千倍。受地方财力的影响,有些地方只能量入为出地控制污染土地的环境风险。建立费用合理分担的多方筹资机制,解决污染土地的修复治理问题,是保障土地可持续利用的重要政策机制。
  • 旷视、百度等12家单位共同起草国内首个智能测温标准
    p  4月10日,中关村标准化协会发布了国内首个智能测温标准——T/ZSA 76—2020《非接触式智能体温筛查系统技术规范》团体标准。该标准由北京旷视科技有限公司、中国电子科技集团公司第十一研究所、同方威视技术股份有限公司、北京百度网讯科技有限公司、北京久译科技有限公司、北京千方科技股份有限公司、北京格灵深瞳信息技术有限公司、北京必创科技股份有限公司、北京中科天云科技有限公司、北京质信标准咨询服务有限公司、北京电信技术发展产业协会、北京国检信泰检测认证有限公司十二家单位共同起草,并于4月11日正式实施。/pp  标准中规定了非接触式智能体温筛查系统(以下简称系统)的通用技术要求和试验方法,适用于公共交通、商超、学校、社区等场景利用智能人体温度筛查与智能告警,实现发热人员的筛查区分。/pp  该标准对体温筛查系统性能提出了具体要求:/pp  strong体温筛查检出率/strong/pp  a)对于单目标体温筛查系统,体温筛查检出率应不低于98%。/pp  b)对于多目标体温筛查系统,体温筛查检出率应不低于95%。/pp  注:体温筛查的目标包括正确佩戴口罩的受筛查人员。/pp  strong实验室测温误差/strong/pp  在校准模式下,实验室测温误差最大值应不大于± 0.3° C。/pp  strong温度测量范围/strong/pp  系统支持的温度测量范围为28° C到40° C。/pp  平均测量时间完成体温筛查的平均测量时间应不大于1s。/pp  strong最大测温距离/strong/pp  对于单目标体温筛查系统,最大测温距离应不小于1.5m。/pp  对于多目标体温筛查系统,最大测温距离应不小于3m。/pp  strong最大并行筛查人数/strong/pp  对于多目标体温筛查系统,支持最大并行筛查人数应不少于6人。/pp  strong人脸检出图分辨率/strong/pp  人脸检出图应满足水平分辨率应不少于1280像素,垂直分辨率不少于720像素。/pp  strong佩戴口罩检测准确度/strong/pp  当系统支持检测受筛查人员是否佩戴口罩时,佩戴口罩检测准确度应不小于90%。/pp  新冠疫情发生以来,旷视、中电科11所、百度、格灵深瞳、久译、千方、同方威视等企业,推出了双光测温系统、非黑体测温系统、AI测温安检门、测温闸机、AI多人体温快速检测智能系统等多款红外智能测温产品,在疫情防控中发挥了重要作用。然而如果标准跟不上,限制相关技术产品化推广速度的同时,也会导致因技术及应用较为分散、产品差异较大,一定程度上限制相关技术的深入研究。因此,制定统一适用的标准显得尤为重要。/pp /p
  • 标准缺失 儿童玩具涂层安全需警惕
    美国消费品安全委员会(CPSC)最近宣布了一项暂行政策,关于部件测试和证书在儿童产品及其它消费品中涂层的铅含量限值为0.009% (90ppm)和儿童产品非涂层的铅含量限值为0.03% (300ppm)。  此前,因涂层铅含量超标,中国产玩具、服装、饰品等被美国CPSC多次召回,2010年1月26日年,美国消费品安全委员会与Blip玩具公司联合宣布对中国产Nature Wonders HD花马玩偶实施自愿性召回。召回原因为,该花马表面油漆的铅含量超标,违反了美国联邦含铅涂料标准。2009年10月6日,美国消费品安全委员会CPSC与Daiso(加利福尼亚)有限公司联合宣布对中国产木制玩具、中国产儿童玩具、钱包和笔袋实施自愿性召回。召回原因为,笔袋或钱包上的拉链和平衡玩具表面涂料的铅含量超标,违反了美国联邦含铅涂料标准 充气棒球棒的DEHP(邻苯二甲酸(2-乙基己基酯))含量超标,违反了美国联邦邻苯二甲酸酯限量标准。7、8月份中国产玩具产品也曾多次遭美国消费品安全委员会CPSC召回,9月份召回次数有所减少,但10月份目前已有两宗,这也继续给出口企业的质量管控敲响警钟。  美国及其他欧洲国家对产品质量特别是儿童用品的标准十分严格,除了CPSC,加拿大卫生部发布的关于儿童玩具表面涂层含有特定重金属的通知规定,如果儿童玩具、装备及供儿童学习玩乐的其它产品的表面涂料中含有总铅、特定可迁移的重金属及汞化合物,则禁止在加拿大宣传、进口或销售。一方面,我们要看到,这对于以出口为主的国内企业提出了更高的要求标准,另一方面,我们也不禁要问,为什么国内市场儿童产品质量标准多年来一直处于缺失的状态呢?  临近春节,中国人的传统习俗是走亲拜友,如果家中有小朋友的,可能会收到很多玩具、儿童用品等。细心的家长不妨留意一下,这些产品上可有质量标准认证、完整的警示标签、追踪标签等?恐怕大多数产品都不能提供完整的信息。排除某些无良商家制造的假冒伪劣产品,即使是正规厂家生产的产品,也很少将这些消费者本应知晓的信息标注在产品上。究其原因,很重要的一点是国内对于儿童产品没有像CPSC的规定一样严格的标准,或者即使有标准,其限制也不够严格。因此造成目前市场上流通的儿童玩具质量安全性良莠不齐,家长选购玩具时对其安全性不能完全信任的现状。  含重金属的涂料做涂层以提高部件的亮度和美观度,但高浓度的重金属铬对人体皮肤黏膜有刺激作用,易引起皮炎、湿疹、气管炎和鼻炎,并有致癌作用。尤其是儿童玩具产品,对自我保护不强,器官幼嫩的儿童伤害更加严重。笔者在搜集国内市场儿童玩具涂层检测结果时发现,这方面的报道并不多见,只有2009年7月,北京3种儿童玩具涂层涂料不合格下架,其中,广东飞轮科技实业有限公司生产商经销的乐豹爵士鼓,重金属铬含量超标下架等寥寥几条报道。与外销玩具频频被召回相比,国内市场玩具涂层不合格的报道如此之少,是因为国内市场的儿童玩具比欧美国家更加安全吗?笔者认为,恐怕更主要的原因是我们的检测标准不够严格,检测力度不够大所致。这样的对比,不仅不能让人放心,反而使家长们更为担忧。  孩子是我们民族的未来,新的一年,我们希望国家能够加大儿童玩具产品质量检测力度,明确产品标识,让孩子们每天相伴的玩具不仅是新奇有趣的,更是安全的,希望食品、玩具损害儿童健康的新闻不在见诸报端,希望每个孩子都能健康成长。事实上,随着涂料技术的进步,制品表面涂层正朝着绿色环保的方向发展。在涂料企业和国家监管部门的共同努力下,让我们共同创造一个更加安全的儿童产品消费环境!
  • 78家!2023年度智能制造标准应用试点项目名单公示
    根据《关于开展2023年度智能制造标准应用试点工作的通知》(市监标技发〔2023〕83号),现将拟入选的2023年度智能制造标准应用试点项目名单进行公示。如有异议,请在公示期内将意见书面反馈至市场监管总局标准技术司、工业和信息化部装备工业一司。公示时间:2023年12月1日至8日联系方式:市场监管总局标准技术司 010-82262645工业和信息化部装备工业一司 010-68205630市场监管总局标准技术司工业和信息化部装备工业一司2023年12月1日
  • 《煤矿智能化标准体系建设指南》发布,加快技术装备等体系标准制定
    为深入贯彻《国家标准化发展纲要》有关部署,落实《关于加快煤矿智能化发展的指导意见》(发改能源〔2020〕283号)和《关于加快推进能源数字化智能化发展的若干意见》(国能发科技〔2023〕27号)重点任务,构建适应行业发展趋势、满足技术迭代要求、引领产业转型升级的煤矿智能化标准体系,加快推动重点标准研制,持续强化标准实施应用,全面提升智能化煤矿建设水平,培育发展新质生产力,支撑煤炭行业高质量发展,制定本指南。一、基本要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,落实“四个革命、一个合作”能源安全新战略,立足新发展阶段,完整准确全面贯彻新发展理念,构建新发展格局,以促进新一代信息技术和煤炭行业深度融合为主线,制定完善相关标准规范,推动建立系统完备、结构合理、衔接配套、科学严谨的煤矿智能化标准体系,切实发挥标准的基础性、引领性作用,全面提升煤矿智能化建设的科学化、标准化、规范化水平,为推动煤炭行业高质量发展提供有力支撑。(二)基本原则。坚持统筹规划,有序实施。建立健全分工明确、协同推进的煤矿智能化标准体系工作机制,加强顶层设计指导,统筹做好相关标准制修订计划,分年度分重点推进标准体系建设工作。坚持夯实基础,创新驱动。重点推进煤矿智能化基础共性和关键技术标准制定,加快科研创新成果向标准转化,助力智能化新技术新装备在煤炭行业落地。坚持急用先行,动态完善。有计划、分步骤推进煤矿智能化重点和急需标准制定,实行动态更新完善机制,根据煤矿智能化发展的不同阶段对标准体系进行滚动修订。坚持国际接轨,开放合作。加强同国际标准化组织的交流合作,推进煤矿智能化国际标准制定,推动国产煤矿智能化先进技术装备“走出去”。(三)建设目标。到2025年,推动100项以上煤矿智能化国家标准和行业标准制修订,加快数据编码、通讯协议、网络融合、数字化平台、智能感知、新型装备、新能源应用、人机协作、功能安全、信息安全、管理运维等重点标准制定,初步建立起结构合理、层次清晰、分类明确、科学开放的煤矿智能化标准体系,满足煤矿智能化建设基本需求。到2030年,煤矿智能化标准体系基本完善,在智能化煤矿设计、建井、生产、管理、运维、评价等环节形成较为完善的系列标准,逐步引领国际标准化组织(ISO)、国际电工委员会(IEC)煤矿智能化国际标准制定。二、标准体系框架综合考虑智能化煤矿建设周期和系统层级,煤矿智能化标准体系主要包括基础通用、信息基础、平台与软件、生产系统与技术装备、运维保障与管理5个标准子体系。其中,基础通用子体系为煤矿智能化标准体系底层,是其他子体系的基础;信息基础子体系、平台与软件子体系、生产系统与技术装备子体系涵盖煤矿智能化建设生产实践关键环节,是煤矿智能化标准体系的建设主体;运维保障与管理子体系服务于煤矿智能化建设关键技术标准,为装备和系统正常运行提供保障。本标准体系框架根据发展需要进行动态调整。煤矿智能化标准体系框架三、重点建设内容(一)基础通用。基础通用子体系对煤矿智能化领域的基础共性要求进行规定,包括基础标准、通用标准、设计标准、评价标准4个部分。1.基础标准,主要包括术语和定义、煤矿智能化体系架构、煤矿工业互联网平台体系架构等方面标准。2.通用标准,主要包括煤矿智能化设备通用要求与管理规范、煤矿电磁兼容要求、煤矿智能装备功能安全等方面标准。3.设计标准,主要包括煤炭工业智能化矿井设计、智能化生产系统建设、生产保障系统建设、智能化选煤厂建设、智能化园区建设技术规范等方面标准。4.评价标准,主要包括煤矿智能化验收评价标准、智能化质量评价、智能化效益评价、智能化数据管理能力成熟度评估、智能化煤矿互联网应用成熟度评估等方面标准。(二)信息基础。信息基础子体系对煤矿智能化系统信息传输和处理所需要的基础设施进行规定,包括信息网络、数据标准、数据中心、信息安全4个部分。1.信息网络标准,主要包括煤矿有线网络、无线网络、组网与网络设备、联网与接入设备、通信联络系统、通信协议、物联网等方面标准。2.数据标准,主要包括数据编码与标识、数据采集、数据治理、数据资产目录、数据质量、数据共享等方面标准。3.数据中心标准,主要包括智能化煤矿数据中心、云计算、边缘计算、云边协同管理等方面标准。4.信息安全标准,主要包括煤矿智能化系统建设信息安全评估、信息安全防护、信息安全管理、数据安全及数据分级定级、隐私保护等方面标准。(三)平台与软件。平台与软件子体系对煤矿智能化平台载体及应用软件涉及的架构、功能要求、开发管理等进行规定,包括地理信息平台、管控智能平台与煤炭工业软件、数据智能平台、算法智能平台与智能视频系统、数字孪生系统5个部分。1.地理信息平台标准,主要包括煤矿地测数据管理、地理信息软件系统、矿井地质建模、矿井电子地图服务、地理空间数据质量和安全、生产制图与简报产品规范等方面标准。2.管控智能平台与煤炭工业软件标准,主要包括煤矿智能化综合管控平台与煤炭工业软件的技术架构、功能要求、评估指标、应用管理等方面标准。3.数据智能平台标准,主要包括煤炭企业和煤矿大数据平台通用技术、数据采集与存储、数据分析、数据仓库、业务应用模型、数据服务与应用、数据备份与恢复等方面标准。4.算法智能平台与智能视频系统标准,主要包括煤炭行业人工智能以及智能视频监控系统涉及的应用平台架构、集成要求、软硬件产品、应用管理等方面标准。5.数字孪生系统标准,主要包括煤炭行业建设数字孪生系统在参考架构、信息模型、设备模型、数据接口及全矿井数字孪生服务应用等方面标准。(四)生产系统与技术装备。生产系统与技术装备子体系对煤矿智能化技术装备和系统的设计、制造、功能要求、测试等进行规定,包括井工煤矿智能化系统与装备、露天煤矿智能化系统与装备、智能洗选系统与装备3个部分。1.智能化系统与装备(井工)标准,主要包括智能地质保障、智能建井、智能掘进、智能开采、智能主运、智能辅运、智能通风、智能压风、智能供电、智能安全监控、智能灾害防治装备、智能矿压管理、智能供排水、智能水资源管控、智能辅助作业装备、煤矿机器人等方面标准。2.智能化系统与装备(露天)标准,主要包括智能地质测量开采保障系统、智能穿爆系统、单斗—卡车间断工艺智能化系统、半连续工艺智能化系统、轮斗连续工艺智能化系统、智能调度系统、智能灾害防治预警、智能辅助生产系统及露天煤矿机器人等方面标准。3.智能洗选系统与装备标准,主要包括智能生产控制、智能煤质检测、智能生产辅助、智能生产工艺、智能洗选筛分设备、智能储装运等方面标准。(五)运维保障与管理。运维保障与管理子体系对智能化煤矿的生产运行、经营管理进行规定,包括运行维护、设备状态保持、生产管理、智能化园区4个部分。1.运行维护标准,主要包括智能化矿井运维共性基础、信息网络平台运维、智能控制系统与装备运维、运行维护保障等方面标准。2.设备状态保持标准,主要包括面向设备全生命周期管理涉及的煤矿设备可靠性要求、设备故障诊断方法与系统、设备维修维护管理等方面标准。3.生产管理标准,主要包括煤矿智能化人员能力、人才建设、岗位设置、柔性生产管控、现场作业流程管理数字化、安全风险管控等管理过程及相配套的智能化系统等方面标准。4.智能化园区标准,主要包括指挥调度中心、智能仓储与物资调度、园区智能系统、园区安防系统、生态治理等方面标准。四、组织实施(一)健全工作机制。国家能源局牵头建立煤矿智能化标准体系工作机制,研究建立煤矿智能化领域标准化组织,在年度能源、煤炭行业标准立项中重点支持,统筹推进有关标准制修订。结合煤矿智能化技术发展水平和标准实施情况,适时修订完善煤矿智能化标准体系建设指南和政策文件,推动煤矿智能化发展迈上更高水平。(二)强化专业支持。煤炭行业标准化管理机构、有关标准化技术委员会要按照国家相关部署要求,跟踪分析煤矿智能化技术装备发展水平,研究提出标准制修订立项计划,组织标准计划项目的技术审查、报批等,统筹推进煤矿智能化国家标准、行业标准、团体标准制修订,推动符合条件的团体标准及时转化为国家和行业标准。(三)推动成果转化。煤炭企业、煤机装备制造企业、相关科研机构要加快煤矿智能化技术协同创新,积极参与适用性较强的关键性、基础性煤矿智能化标准制修订工作,及时总结固化煤矿智能化建设成熟经验,推动重要科技成果转化应用,提升标准合理性、可行性、先进性;要积极参与相关国际标准化组织交流活动,加速国内标准和国际标准的双向转化,提升煤炭领域国际标准化影响力。(四)加大宣贯实施。国家能源局结合煤矿智能化示范项目建设,强化相关标准宣贯实施。各产煤省区煤炭行业管理部门、有关中央企业要结合本地区、本企业煤矿智能化发展实际,加大煤矿智能化相关技术标准宣传培训,支持煤炭企业因地制宜推广应用先进技术标准。有关行业协会要搭建上下游企业交流合作平台,通过多渠道广泛宣贯,引导煤炭行业在设计、施工、生产、运维、管理等环节积极应用煤矿智能化标准。
  • 广东构建亚运会食品安全标准体系和生产溯源体系
    日前,食品质量安全关系着亚运会和亚残会的顺利举行。广东省各级质监部门以创先争优为契机,构建亚运会食品安全标准体系和生产溯源体系,不仅确保了自亚运会开幕以来的食品质量安全,而且也为亚残会的顺利举行奠定了基础。  在亚运会之前,广东省质监局就制定了亚运会食品安全保障工作方案和供亚运会食品生产企业监督检查、检验工作要求。一方面明确了食品监管的重点产品、重点单位和重点区域及采取的措施。另一方面明确了对供亚运食品的监管工作要求以及检验机构、抽样程序、抽样频率、检验项目和判定依据。根据要求,各地质监部门通过夜间执法、交叉执法、飞行检查等方式,深入开展食品行业整顿,消除了一些行业性质量问题,提高了食品行业的整体水平。  在构建亚运会食品安全标准体系方面,广州市质监局根据亚组委明确的供亚运会食品安全要求,制定发布了亚运会食品标准清单688项以及《亚运会食品安全执行标准和适用原则》等13项广州市地方技术规范,填补了食品安全标准的空白。其中包括亚运会食品安全执行标准和适用原则、食品追溯编码规则、包装、贮运执行标准和适用原则等6项通用标准,以及植物饮料、生食海水产品、代用茶等卫生要求和调味品卫生规范等7项专用标准,为遴选供亚运会食品生产企业,以及供亚运会食品生产、检验及监管提供了标准依据。  在建立亚运会食品生产溯源体系方面,广州市质监局还制定发布了广州市地方技术规范《食品生产溯源系统管理要求》,从标准的高度规范企业从原材料采购、产品生产、产品检验到产品出货各个环节的数据记录,确立了从原材料到成品的完整生产链管理,实现产品的可追溯性。  两个体系为开展供亚运会食品生产企业遴选和监管工作提供了依据。广州市质监局根据亚运会餐饮原材料需求,按照《亚运会食品生产企业备选条件》,组织监管人员和技术专家分组分行业对有关企业进行现场考察,以企业的质量管理体系和溯源召回能力为考察重点,综合考虑后确定行业排名靠前的67家企业作为供亚运会食品企业。  为确保供亚运会食品安全,广东省质监局按照要求,首先对直接供应亚运会食品生产企业加大监督检查频次,督促企业落实原材料进货查验、生产过程控制、出厂产品批批检验等各项保障措施,同时加大风险监测力度,对订单产品实施批批监测,对动物源性食品批批检验食源性兴奋剂 要求企业确定专门场地、设备、人员进行供亚运会食品的生产,在关键生产环节加装视频监控设备实施全程录像,对生产过程全程记录,对原辅材料、成品仓库实施“双人双锁”等措施。其次是对产品销往广州、佛山、东莞和汕尾等亚运会赛区食品生产企业,要求各地质监部门在开展调查摸底、全面掌握其基本情况的基础上,加大监督检查和风险监测力度,督促企业落实质量安全主体责任,保证销往赛区的食品安全和产品可追溯性。  为切实做好亚运会和亚残运会食品安全保障工作,广东省质监局按照当地政府负总责、定点供亚运会食品企业负主体责任、主管部门负监管职责的原则,对食品生产企业采取分类分级监管的措施,提高了对亚运会和亚残运会食品安全保障的针对性和有效性。
  • 家具检测新标准待发 年内解决甲醛难题
    据悉,为解决甲醛检测难题,正在研究制定中的《家具环保检测新标准》(以下简称“新标准”)预计年内正式颁布实施,新标准对家具行业的监督越来越严格。新标准将尝试采用无损检测取代破损检测,并拟采用“气候箱检测法”取代现有的“大气检测法”, 所谓“气候箱检测法”就是在保持恒温恒湿的房间中进行检测,可以准确体现送检家具有毒、有害物质的整体实际释放情况。  “气候箱检测法”能对甲醛等有害物质的释放量做出判定,只要有一种材料环保不达标,都能集中体现在综合检测结果中。相信这两个检测方法的出台定会很好的满足消费者对环保的需求。  家具漆中含有的甲醛、苯等有害物质是造成室内污染的重要来源,对消费者的健康造成严重损害,近期频频曝光的室内甲醛超标事件充分地说明了这一点。随着家具带来的污染危害的日益严重,消费者在购买家具时越来越迷茫,与此同时,对于家具的健康和环保要求也越来越高。  新标准的颁布与出台,无疑是家具行业的好消息。传统家具环保性能检测方法是按比例取样检测,这样就对家具造成了一定程度上的破坏,被检测家具无法继续销售或使用。而无损检测在保证检测结果的同时,避免了对检测单品造成的损坏,节约了资源,对销售和使用不会造成任何影响。  新标准在对家具行业的监督越来越严格的同时也对家具的“外衣”——家具漆提出了更高的要求。  《家居环保检测新标准》的颁布和实施对于家具漆行业的影响是巨大的。新标准提高了家具漆产品的市场准入门槛 整合了家具漆行业的产业 净化了家具漆行业。新标准预示着家具行业越来越规范、合理,也直接加大了对家具漆产品的监测力度,家具漆企业只有不断改善自身技术问题,提高产品的质量和环保性能,才能符合家具行业的发展需求。  此外,新标准对于家具环保的要求加大了市场对于水性涂料、UV家具漆等环保产品的需求,能够促使家具漆企业进行产业升级,提高生产技术和水平,推进整个行业的发展与整合。得益于新标准的出台,一些具有良好竞争力、正在从事环保家具漆研发和推广的家具漆企业将获得新一轮的发展机遇,而一些鱼目混珠、生产山寨和假冒伪劣产品的企业将被市场淘汰。  随着健康环保观念逐步深入人心,以及《家具环保检测新标准》的实施这种全新局面,家具漆企业还需不断创新,与时俱进,完善自我,提高产品质量,满足市场发展的需求,才能信心百倍的迎接新的发展机遇。
  • 电网设备智能巡检等两个能源行业标准化技术委员会即将成立
    近日,国家能源局发函同意成立能源行业电网设备智能巡检标准化技术委员会、能源行业配网系统标准化技术委员会。复函详情如下:国家能源局关于同意成立电网设备智能巡检等两个能源行业标准化技术委员会的复函国能函科技[2021]30号中国电力企业联合会:  报来《关于能源行业电网设备智能巡检标准化技术委员会组建方案的请示》(中电联标准〔2021〕4号)、《关于能源行业配网系统标准化技术委员会组建方案的请示》(中电联标准〔2021〕5号)收悉。经研究,现函复如下。  一、同意成立能源行业电网设备智能巡检标准化技术委员会、能源行业配网系统标准化技术委员会,其编号、职责范围、秘书处承担单位、委员名单详见附件。  二、请根据《能源行业标准化技术委员会管理实施细则》和《国家能源局关于进一步完善能源行业标准化技术委员会管理的通知》(国能发科技〔2021〕9号)有关要求,对两个新成立的标准化技术委员会加强指导和管理。要充分发挥秘书处承担单位的自主性,调动各方面积极性,建设开放式的标准化工作平台。  三、请按照《国家能源局 国家标准化管理委员会 关于加快能源领域新型标准体系建设的指导意见》(国能发科技〔2020〕54号)有关要求,扎实推进电网设备智能巡检、配网系统领域的新型标准体系建设,严格按照各类标准的属性定位开展相关标准制修订工作。要避免标准之间、标准化技术委员会之间、能源行业标准化管理机构之间交叉重复,确保标准体系协调统一。  四、请组织相关领域的企业、社会团体、教育机构、科研机构等一体化推进本领域技术创新、工程示范和标准化,加强标准全生命周期管理,确保标准质量并推动标准的有效实施和推广应用,切实发挥标准在推动能源高质量发展中的支撑引领作用。  特此函复。  附件:1. 能源行业电网设备智能巡检标准化技术委员会  2. 能源行业配网系统标准化技术委员会国家能源局2021年6月21日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制