当前位置: 仪器信息网 > 行业主题 > >

蠕变松弛率检测

仪器信息网蠕变松弛率检测专题为您提供2024年最新蠕变松弛率检测价格报价、厂家品牌的相关信息, 包括蠕变松弛率检测参数、型号等,不管是国产,还是进口品牌的蠕变松弛率检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蠕变松弛率检测相关的耗材配件、试剂标物,还有蠕变松弛率检测相关的最新资讯、资料,以及蠕变松弛率检测相关的解决方案。

蠕变松弛率检测相关的资讯

  • 南京大学胡文兵教授课题组Polymer:应力松弛在聚合物取向结晶过程中的作用
    在纤维纺丝、薄膜拉伸和塑料注塑成型加工过程中,聚合物结晶一般都发生在高速取向变形过程中,这一过程还伴随着聚合物的应力松弛。因此聚合物结晶、取向和松弛这三种非平衡动力学过程相互竞争,对应的调控因素例如加工温度、应变速率和拉伸应力就共同决定着聚合物材料制品最终的半结晶织态结构及其综合性能。在国家自然科学基金委的项目支持下,南京大学胡文兵课题组在采用动态蒙特卡洛分子模拟研究应变诱导聚合物结晶微观机理方面近年来取得了一系列的进展。分子模拟结果揭示了应变诱导结晶成核阶段所存在的分子内链折叠成核和分子间缨状微束成核之间的竞争关系(Polymer, 2013, 54, 3402)以及结晶成核、晶体生长和后生长三个阶段不同的链折叠变化趋势及其微观机理(Polymer, 2014, 55, 1267);研究还推广到双链长分布聚合物(Chin. J. Polym. Sci., 2014, 32, 1218),无规共聚物(Soft Matter, 2014, 10, 343 Eur. Polym. J., 2016, 81, 34 Polymer, 2016, 98, 282),溶液聚合物(J. Phys. Chem. B, 2016, 120, 6890),结晶/非晶共混物(J. Phys. Chem. B, 2016, 120, 12988),外消旋共混物(J. Phys. Chem. B, 2018, 122, 10928)和短链支化聚合物(Polym. Int., 2019, 68, 225)等复杂多组分体系。最近,他们将麦克斯韦应力松弛模型引入到每条高分子链中。分子模拟结果揭示了非晶聚合物应力松弛的熵势垒微观机制(Chin. J. Polym. Sci., 2021, 39, 906)以及聚合物重复单元结构间各种局部相互作用对链扩散势垒的贡献(Polymer, 2021, 224, 123740),他们甚至还发现了低温区非晶聚合物非线性粘弹性的微观发生机制(Chin. J. Polym. Sci., 2021, 39, 1496)。他们进一步对比了引入和不引入应力松弛的聚合物拉伸结晶过程,如图1所示,发现应力松弛在结晶成核、晶体生长和后生长阶段三个阶段都发挥了独特的作用。图1:没有应力松弛(Strain-induced)和引入应力松弛(Stress-induced)的聚合物应变诱导结晶对比示意图。在结晶成核阶段,聚合物的取向变形减小了构象熵,提升了聚合物的平衡熔点,导致结晶成核的过冷度,即热力学驱动力增强,于是结晶的起始应变随温度升高而变大。增大应变速率,聚合物链内调整这一动力学效应将推迟结晶成核的发生,结晶的起始应变也相应变大。一开始他们合理地猜想应力松弛将削弱聚合物的取向变形程度,给热力学上带来不利于结晶成核的作用。由于在高速拉伸过程中应力松弛的时间窗口很小,对聚合物取向变形程度的影响较为有限,实际的模拟结果显示这一热力学效应并不明显。实际上引入应力松弛对结晶起始应变的影响与增大应变速率的效果相似,即在高温区都不改变结晶的起始应变,说明聚合物来得及链内调整;在低温区都增大了结晶的起始应变,说明应力松弛对结晶主要起到了动力学阻滞效应,而不是预期的热力学削弱效应。在晶体生长阶段,由于折叠链片晶生长动力学主要由链内次级成核机理所控制,应力松弛同样在动力学上阻滞晶体生长。于是,应力松弛显著减缓了拉伸过程中结晶度随应变增大而提高的动力学过程,导致在相同应变程度下,引入应力松弛的结晶过程所能达到的结晶度相对较低。在后生长阶段,聚合物晶体发生应变诱导的熔融重结晶过程。在这一过程中晶体的折叠链被迫打开转变为伸直链,片晶转化为纤维晶,对应于半结晶聚合物冷拉的细颈化过程。分子模拟观察到熔融重结晶带来显著的应力松弛加速现象,证明外力做功迫使折叠链晶体熔化,然后以重结晶生成伸直链纤维晶的形式将外界冲击能转化为热能耗散到周边的环境中去,从而使得半结晶聚合物表现出优异的韧性特点,不同于金属和陶瓷材料。这一阶段应力松弛与增大应变速率对结晶形态的影响有所不同:在其它条件相同时,应力松弛显著减少晶粒的数目,而增大应变速率显著减小晶粒的尺寸,如图2所示。图2:不同拉伸速率下应变诱导与应力诱导结晶的晶区形貌快照,20000对应于相对慢速的拉伸应变过程,5000对应于中速应变。这项工作揭示了聚合物应力松弛、拉伸变形和结晶这三个非平衡过程之间在聚合物取向结晶过程中的微观相互竞争机理,有助于更好地理解实际聚合物高速取向加工成型过程中的高分子结晶行为以及各种加工因素对半结晶聚合物制品内部结构和性能的调控机制。相关成果发表在Polymer(2021, 235, 124306)。论文的第一作者是博士生罗文。文章链接:https://doi.org/10.1016/j.polymer.2021.124306
  • 再中千万大单 中机试验1190万中标持久蠕变试验机项目
    p  近日,中机试验(原‘长春机械科学研究院有限公司’)高温持久蠕变试验机在天津重型装备工程研究有限公司采购项目中成功中标,中标项目包括电子式高温蠕变持久试验机25台、机械式高温持久试验机50台、高温拉伸试验机1台,中标总金额高达1190万元。/pp  此次中标天津重型装备工程研究有限公司距上次中标东方电气集团东方汽轮机有限公司48台持久蠕变试验仅仅两个多月,是近两年来持久蠕变试验设备继北科大、宝钢研究院、浙江国检、中航上大、东方汽轮机后,又一次中标大批量蠕变试验机项目。/pp  据悉,这是天津重型装备工程研究有限公司第三次大批量集中采购中机试验高温持久蠕变相关产品,共计拥有高温持久蠕变试验设备近百台,是中机试验战略性重点客户。/pp  strong立足技术支撑、深耕行业市场/strong/pp  中机试验一直注重对持久蠕变装备技术的不断创新,新一代持久蠕变试验机正是通过多年持久蠕变设备的技术积累,加上先进的设计理念,在机械设计、电气控制、软件操控性、人机工程学等方面寻求突破,在保留设备原有刚度好等优点的前提下,对主机结构、操控方式、集群控制等方面进行了全方位的技术升级,力求为客户提供更加优质完美的试验新体验。/pp  近年来,中机试验还不断加强对战略性重点客户的服务与支持,集中研发力量为客户提供个性化的试验设备及测试解决方案,真正站在客户的角度考虑问题,用心解决客户在试验设备应用、试验方法等方面的问题,同时也赢得了客户的高度认可,此次蠕变大单花落中机试验,再次彰显了中机试验高温持久蠕变产品和服务在行业的绝对优势,奠定了中机试验品牌在中国试验装备行业的领先地位。/pp  strong相关产品介绍:/strong/pp  strong电子式高温蠕变持久试验机/strong/pp  RDL系列电子式蠕变松弛试验机是中机试验与德国DOLI公司联合研制开发的,控制系统采用德国DOLI公司专门为中机试验蠕变试验机开发的EDC数字控制器,软件系统采用双方合作开发具有独家使用权的CreepTest试验软件和中机试验自主开发的CCPS5.0软件系统,该系列设备具有技术稳定可靠,长时试验稳定可靠等特点。/pp  strong机械式高温持久强度试验机/strong/pp  RDJ系列机械式高温持久试验机可完成室温和高温环境下的持久试验,配置具有自主知识产权的试验控制及数据处理软件,控制系统可以单独设定参数进行试验,也可以与计算机实现对试验的集散式控制。/pp  strong满足不同试验标准的要求/strong/pp  GB/T2039-2012《金属拉伸蠕变及持久试验方法》/pp  GB/T10120-1996《金属应力松弛试验方法》/pp  ASTM E139-2011《金属材料蠕变、蠕变断裂和应力断裂的标准试验方法》/pp  HB5151-1996《金属高温拉伸蠕变试验方法》/pp  HB5150-1996《金属高温拉伸持久试验方法》/pp  JJG276-2009《高温蠕变、持久强度试验机检定规程》/pp  JJF1298-2011《蠕变持久、强度试验机型式评价大纲》/pp  ASTM E4-16《试验机力的检定实践》/pp  ASTM E83-16 《引伸计系统的检定和分级实践》/pp  strong高温拉伸试验机/strong/pp  用于600℃-1600℃真空或保护气体环境下金属材料及制品的批量拉伸力学性能试验,满足ASTM E21、EN和ISO及GB/T228.2的相关规定和计量检定标准。/pp  strong客户介绍:/strong/pp  中国一重天津重型装备工程研究有限公司是重型技术装备国家工程研究中心,是国家高新技术企业,以提高国家重大装备自主创新能力的提升和技术进步为宗旨,以“生产一代、试制一代、研发一代、构思一代”的阶梯式创新体系为平台,围绕国家重点工程建设和重型机械行业需求,通过引进、合作和自主研发,在大型板带轧制工艺及设备、重型容器(加氢、核电、煤液化)、电站铸锻件等专业领域持续不断地提供工程化研究成果,提供具有市场前景的国内首台首套重大技术装备。/p
  • 国标委发布47项检测方法国家标准
    国家标准编号国  家  标  准  名  称代替标准号实施日期GB/T 208-2014水泥密度测定方法GB/T 208-19942014-12-01GB/T 3286.5-2014石灰石及白云石化学分析方法 第5部分:氧化锰含量的测定 高碘酸盐氧化分光光度法GB/T 3286.5-19982015-01-01GB/T 3286.8-2014石灰石及白云石化学分析方法 第8部分:灼烧减量的测定 重量法GB/T 3286.8-19982015-01-01GB/T 3286.9-2014石灰石及白云石化学分析方法 第9部分:二氧化碳含量的测定 烧碱石棉吸收重量法GB/T 3286.9-19982015-01-01GB/T 3558-2014煤中氯的测定方法GB/T 3558-19962014-10-01GB/T 4633-2014煤中氟的测定方法GB/T 4633-19972014-10-01GB/T 5059.1-2014钼铁 钼含量的测定 钼酸铅重量法、偏钒酸铵滴定法和8-羟基喹啉重量法GB/T 5059.1-19852015-01-01GB/T 5059.2-2014钼铁 锑含量的测定 孔雀绿分光光度法GB/T 5059.2-19852015-01-01GB/T 5059.3-2014钼铁 铜含量的测定 火焰原子吸收光谱法GB/T 5059.3-19852015-01-01GB/T 5059.5-2014钼铁 硅含量的测定 硫酸脱水重量法和硅钼蓝分光光度法GB/T 5059.5-19862015-01-01GB/T 5059.7-2014钼铁 碳含量的测定 红外线吸收法GB/T 5059.7-19882015-01-01GB/T 5161-2014金属粉末 有效密度的测定 液体浸透法GB/T 5161-19852014-12-01GB/T 5447-2014烟煤黏结指数测定方法GB/T 5447-19972014-10-01GB/T 5448-2014烟煤坩埚膨胀序数的测定 电加热法GB/T 5448-19972014-10-01GB/T 5450-2014烟煤奥阿膨胀计试验GB/T 5450-19972014-10-01GB/T 6730.71-2014铁矿石 酸溶亚铁含量的测定 滴定法 2015-01-01GB/T 8358-2014钢丝绳 实际破断拉力测定方法GB/T 8358-20062015-01-01GB/T 13480-2014建筑用绝热制品 压缩性能的测定GB/T 13480-19922014-12-01GB/T 30592-2014透光围护结构太阳得热系数检测方法 2014-12-01GB/T 30594-2014双层玻璃幕墙热性能检测 示踪气体法 2014-12-01GB/T 30701-2014表面化学分析 硅片工作标准样品表面元素的化学收集方法和全反射X射线荧光光谱法(TXRF)测定 2014-12-01GB/T 30702-2014表面化学分析 俄歇电子能谱和X射线光电子能谱 实验测定的相对灵敏度因子在均匀材料定量分析中的使用指南 2014-12-01GB/T 30703-2014微束分析 电子背散射衍射取向分析方法导则 2014-12-01GB/T 30704-2014表面化学分析 X射线光电子能谱 分析指南 2014-12-01GB/T 30705-2014微束分析 电子探针显微分析 波谱法实验参数测定导则 2014-12-01GB/T 30706-2014可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价 2014-12-01GB/T 30707-2014精细陶瓷涂层结合力试验方法 划痕法 2014-12-01GB/T 30709-2014层压复合垫片材料压缩率和回弹率试验方法 2014-12-01GB/T 30710-2014层压复合垫片材料蠕变松弛率试验方法 2014-12-01GB/T 30711-2014摩擦材料热分解温度测定方法 2014-12-01GB/T 30713-2014砚石 显微鉴定方法 2014-10-01GB/T 30714-2014电感耦合等离子体质谱法测定砚石中的稀土元素 2014-10-01GB/T 30725-2014固体生物质燃料灰成分测定方法 2014-10-01GB/T 30726-2014固体生物质燃料灰熔融性的测定方法 2014-10-01GB/T 30727-2014固体生物质燃料发热量测定方法 2014-10-01GB/T 30728-2014固体生物质燃料中氮的测定方法 2014-10-01GB/T 30729-2014固体生物质燃料中氯的测定方法 2014-10-01GB/T 30732-2014煤的工业分析方法 仪器法 2014-10-01GB/T 30733-2014煤中碳氢氮的测定 仪器法 2014-10-01GB/T 30735-2014屋顶及屋顶覆盖制品外部对火反应试验方法 2014-10-01GB/T 30737-2014海洋微微型光合浮游生物的测定 流式细胞测定法 2014-10-01GB/T 30738-2014海洋沉积物中放射性核素的测定 &gamma 能谱法 2014-10-01GB/T 30739-2014海洋沉积物中正构烷烃的测定 气相色谱-质谱法 2014-10-01GB/T 30740-2014海洋沉积物中总有机碳的测定 非色散红外吸收法 2014-10-01GB/T 30741-2014海洋大气干沉降物中总硫的测定 非色散红外吸收法 2014-10-01GB/T 30742-2014海洋大气干沉降物中总碳的测定 非色散红外吸收法 2014-10-01GB/T 30749-2014矿物药材及其煅制品视密度测定方法 2015-01-01
  • 86项分析测试方法国标本月起正式实施
    仪器信息网讯 2014年12月1日,国家标准化管理委员会发布了12月起将要实施的国家标准目录,共382项。仪器信息网编辑经过整理,据不完全统计,其中相关的分析测试标准共有86项,详细目录如下表所示。 2014年12月份实施的分析检测国家标准 标准编号标准名称代替标准号GB/T 11141-2014工业用轻质烯烃中微量硫的测定GB/T 11141-1989GB/T 11743-2013土壤中放射性核素的&gamma 能谱分析方法GB/T 11743-1989GB/T 12701-2014工业用乙烯、丙烯中微量含氧化合物的测定 气相色谱法GB/T 12701-1990GB/T 14420-2014锅炉用水和冷却水分析方法 化学耗氧量的测定 重铬酸钾快速法GB/T 14420-1993GB/T 15893.1-2014工业循环冷却水中浊度的测定 散射光法GB/T 15893.1-1995GB/T 16422.2-2014塑料 实验室光源暴露试验方法 第2部分:氙弧灯GB/T 16422.2-1999GB/T 16422.3-2014塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯GB/T 16422.3-1997GB/T 16422.4-2014塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯GB/T 16422.4-1996GB/T 16801-2013织物调理剂抗静电性能的测定GB/T 16801-1997GB/T 18851.5-2014无损检测 渗透检测 第5部分:温度高于50℃的渗透检测 GB/T 18851.6-2014无损检测 渗透检测 第6部分:温度低于10℃的渗透检测 GB/T 19281-2014碳酸钙分析方法GB/T 19281-2003GB/T 208-2014水泥密度测定方法GB/T 208-1994GB/T 2383-2014粉状染料 筛分细度的测定GB/T 2383-2003GB/T 2386-2014染料及染料中间体 水分的测定GB/T 2386-2006GB/T 2391-2014反应染料 固色率的测定GB/T 2391-2006GB/T 2392-2014染料 热稳定性的测定GB/T 2392-2006GB/T 2399-2014阳离子染料 染色色光和强度的测定GB/T 2399-2003GB/T 2403-2014阳离子染料 染腈纶时染浴pH适应范围的测定GB/T 2403-2006GB/T 24148.7-2014塑料 不饱和聚酯树脂(UP-R) 第7部分: 室温条件下凝胶时间的测定 GB/T 24148.8-2014塑料 不饱和聚酯树脂(UP-R) 第8部分:铂-钴比色法测定颜色GB/T 7193.7-1992GB/T 24148.9-2014塑料 不饱和聚酯树脂(UP-R) 第9部分:总体积收缩率测定 GB/T 2679.1-2013纸 透明度的测定 漫反射法GB/T 2679.1-1993GB/T 2679.12-2013纸和纸板 无机填料和无机涂料的定性分析 化学法GB/T 2679.12-1993GB/T 2792-2014胶粘带剥离强度的试验方法GB/T 2792-1998GB/T 29493.9-2014纺织染整助剂中有害物质的测定 第9部分: 丙烯酰胺的测定 GB/T 30397-2013皮鞋整鞋吸湿性、透湿性试验方法 GB/T 30398-2013皮革和毛皮 化学试验 致敏性分散染料的测定 GB/T 30399-2013皮革和毛皮 化学试验 致癌染料的测定 GB/T 30412-2013塑料薄膜和薄片水蒸气透过率的测定 湿度传感器法 GB/T 30419-2013玩具材料中可迁移元素锑、砷、钡、镉、铬、铅、汞、硒的测定 电感耦合等离子体原子发射光谱法 GB/T 30564-2014无损检测 无损检测人员培训机构指南 GB/T 30565-2014无损检测 涡流检测 总则 GB/T 30701-2014表面化学分析 硅片工作标准样品表面元素的化学收集方法和全反射X射线荧光光谱法(TXRF)测定 GB/T 30702-2014表面化学分析 俄歇电子能谱和X射线光电子能谱 实验测定的相对灵敏度因子在均匀材料定量分析中的使用指南 GB/T 30703-2014微束分析 电子背散射衍射取向分析方法导则 GB/T 30704-2014表面化学分析 X射线光电子能谱 分析指南 GB/T 30705-2014微束分析 电子探针显微分析 波谱法实验参数测定导则 GB/T 30706-2014可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价 GB/T 30707-2014精细陶瓷涂层结合力试验方法 划痕法 GB/T 30708-2014低密度矿物棉毯状绝热材料热阻评价方法 GB/T 30709-2014层压复合垫片材料压缩率和回弹率试验方法 GB/T 30710-2014层压复合垫片材料蠕变松弛率试验方法 GB/T 30711-2014摩擦材料热分解温度测定方法 GB/T 30758-2014耐火材料 动态杨氏模量试验方法(脉冲激振法) GB/T 30773-2014气相色谱法测定 酚醛树脂中游离苯酚含量 GB/T 30776-2014胶粘带拉伸强度与断裂伸长率的试验方法 GB/T 30777-2014胶粘剂闪点的测定 闭杯法 GB/T 30790.6-2014色漆和清漆 防护涂料体系对钢结构的防腐蚀保护 第6部分:实验室性能测试方法 GB/T 30791-2014色漆和清漆 T弯试验 GB/T 30792-2014罐内水性涂料抗微生物侵染的试验方法 GB/T 30793-2014X-射线衍射法测定二氧化钛颜料中锐钛型与金红石型比率 GB/T 30794-2014热熔型氟树脂涂层(干膜)中聚偏二氟乙烯(PVDF)含量测定 熔融温度下降法 GB/T 30824-2014燃气热处理炉温度均匀性测试方法 GB/T 30902-2014无机化工产品 杂质元素的测定 电感耦合等离子体发射光谱法(ICP-OES) GB/T 30903-2014无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS) GB/T 30904-2014无机化工产品 晶型结构分析 X射线衍射法 GB/T 30905-2014无机化工产品 元素含量的测定 X射线荧光光谱法 GB/T 30906-2014三聚磷酸钠中三聚磷酸钠含量的测定 离子色谱法 GB/T 30907-2014胶鞋 运动鞋减震性能试验方法 GB/T 30908-2014摄影 加工废液 硼的测定 GB/T 30909-2014胶鞋 丙烯腈迁移量的测定 GB/T 30910-2014胶鞋 2-巯基苯并噻唑、二硫化二苯并噻唑迁移量的测定 GB/T 30911-2014汽车齿轮齿条式动力转向器唇形密封圈性能试验方法 GB/T 30914-2014苯乙烯-异戊二烯-丁二烯橡胶(SIBR)微观结构的测定 GB/T 30917-2014天然胶乳橡胶避孕套中可迁移亚硝胺的测定 GB/T 30919-2014苯乙烯-丁二烯生橡胶 N-亚硝基胺化合物的测定 气相色谱-热能分析法 GB/T 30921.1-2014工业用精对苯二甲酸(PTA)试验方法 第1部分:对羧基苯甲醛(4-CBA)和对甲基苯甲酸(p-TOL)含量的测定 GB/T 30924.2-2014塑料 乙烯-乙酸乙烯酯(EVAC)模塑和挤出材料 第2部分:试样制备和性能测定 GB/T 30925-2014塑料 乙烯-乙酸乙烯酯共聚物(EVAC)热塑性塑料 乙酸乙烯酯含量的测定 GB/T 5161-2014金属粉末 有效密度的测定 液体浸透法GB/T 5161-1985GB/T 5211.15-2014颜料和体质颜料通用试验方法 第15部分:吸油量的测定GB/T 5211.15-1988GB/T 5616-2014无损检测 应用导则GB/T 5616-2006GB/T 7791-2014防污漆降阻性能试验方法GB/T 7791-1987GB/T 8657-2014苯乙烯-丁二烯生橡胶 皂和有机酸含量的测定GB/T 8657-2000GB/T 8941-2013纸和纸板 镜面光泽度的测定GB/T 8941-2007GB/T 9339-2014反应染料 染料与纤维素纤维结合键 耐酸耐碱性的测定GB/T 9339-2006GB/T 10663-2014分散染料 移染性的测定 高温染色法GB/T 10663-2003GB/T 12604.7-2014无损检测 术语 泄漏检测GB/T 12604.7-1995GB/T 12604.8-2014无损检测 术语 中子检测GB/T 12604.8-1995GB/T 12735-2014带传动 农业机械用V带 疲劳试验GB/T 12735-1991GB/T 30787-2014数字印刷材料用成膜树脂 平均分子量及其分布的测定 凝胶渗透色谱法 GB/T 4516-2013家用缝纫机 缝厚能力测试方法GB/T 4516-1995GB/T 4517-2013家用缝纫机 送料方向稳定性测试方法GB/T 4517-1995GB/T 4518-2013家用缝纫机 缝料层潜移量测试方法GB/T 4518-1984GB/T 7125-2014胶粘带厚度的试验方法GB/T 7125-1999
  • 高光谱成像:检测火炬松梭形锈病发病率
    火炬松是美国南部最重要的森林树种,它生长迅速、适应性强,可用于建筑木材、胶合板和纸浆等。松梭形锈病是由真菌Cronartium quercuum f.sp. fusiforme(Cqf)引起的一种影响该物种的常见且具有破坏性的病害。这种真菌通常会感染幼树的茎,导致被称为“锈瘿”的肿瘤样生长物产生,可能会造成树木死亡或产生“锈丛”,从而妨碍树木生长,降低木材使用价值。种植抗病苗是限制该病害的最有效的措施。温室中抗病性测试在人工接种幼苗后的目视估计病害发病率和严重程度具有高度主观性,容易出现人为错误,且劳动密集。此外,目视评估只有在病害感染一段时间后,症状充分发展时才能进行。而高光谱成像可同时获取空间和光谱信息,提供了在不同空间尺度上分析光谱信息的机会,已成功应用于多种植物物种的病害和胁迫检测。基于此,在本文中,来自北卡罗来纳州立大学和密西西比州立大学的研究团队提出了一种利用高光谱成像技术筛选火炬松幼苗梭形锈病发病率的创新方法,具体目标为(1)开发高光谱图像处理管道,用于从火炬松幼苗图像中的特定感兴趣区域(ROI)中提取光谱数据;(2)基于来自(1)的特定ROI的光谱数据,评估用于区分患病和未患病幼苗的SVM分类模型。图1 火炬松幼苗高光谱图像采集的成像装置。【高光谱图像获取】线性扫描高光谱成像仪(Pika XC2,Resonon Inc.,Bozeman,MT,USA)用于收集400至1000 nm范围内的高光谱数据,光谱分辨率为1.3 nm。高光谱图像立方体的尺寸为1600×n×462,其中n为创建一个数据立方体使用的线扫描数,1600为每条线的像素数。获取高光谱图像后,通过阈值化归一化植被指数(NDVI)图像从背景中分割出幼苗,并通过使用Faster RCNN模型的目标检测来实现个体幼苗的描绘。随后使用DeepLabv3+模型对植物部分进行分割。并使用几何特征分割冠层像素。从植物片段中提取光谱数据后,训练支持向量机(SVM)分类模型用于患病和非患病植物的分类。【结果】图2 测试集随机组图像的茎像素(红色)和非茎像素(绿色)。对于每株植物,左图显示了地面实况标签,右图显示了DeepLabv3+模型预测结果。表1 利用DeepLabv3+对茎叶像素进行分割的像素精度和平均交并比(mIoU)值。表2 不同ROI的分类模型结果。图3 左:箱线图显示了从不同ROI提取的数据中使用SVM判别模型获得的平衡精度。ST:茎上半部分;S:全茎;SB:茎下半部分;WP:整株植物;C:冠层。右图:使用茎上半部分光谱数据的SVM分类模型的接收器操作特征(ROC)曲线与具有完美和不存在判别能力的模型进行比较。【小结】作者通过研究发现,本文所提出的方法可有效检测病害发病率。随着进一步研究图像采集和处理方法,以及通过使用自动化表型平台,火炬松幼苗的高通量表型分析将成为目前在抗性筛选中心所使用方法的一个组成部分。
  • 法国皮具检测中心9月入驻松山湖
    “从今天开始,不用走出皮革鞋材交易中心,就能拿到国际认可的皮革检测证书了。”作为一个皮革经销商,徐文斌心里乐开了花。就在他的皮革商铺附近,增加了一个鞋业皮具检测中心,而且还是一个可以拿到国际认可的检测证书的检测中心。  昨日,南峰国际皮革鞋材交易中心与法国CTC鞋业皮具专业技术中心(以下简称CTC)签订合作协议。按照协议,CTC将在南峰国际皮革鞋材交易中心二楼设立一个定点检测样板收集点,交易中心内的180余商户足不出户,就可以以最优惠的价格,在这里进行提交样板,拿到检测证书。  东莞每年制造15亿双鞋子  东莞一直是全球鞋业的制造中心,制鞋企业超过1500家,跟鞋子有关的企业就有7000多家。据不完全统计,每年由东莞制造的鞋子超过15亿双。东莞造的鞋子如果想要在欧美市场站稳脚跟,拓展市场,需要提供世界或欧盟认可的测试报告。  “以前,东莞的皮革、鞋材等产品检测,往往要委托广州、深圳,甚至是香港、上海的检测机构进行检测,检测周期长,收费高,而且结果不太准确。”市南峰商业广场有限公司副总经理周伟东说,东莞的鞋业大多是外向型的,所以很多都需要做各种各样的检测,每天发往各个检测中心的快递数不胜数。  快递往来,再加上实验室检测的时间,一个皮革样板的检测报告,往往要耗费10天左右。  松山湖检测中心9月开业  2008年5月,CTC总裁伊夫莫林曾向市委常委、副市长江凌规划CTC的东莞宏图:“我们想把东莞的检测中心,建成CTC在中国最大的一个检测中心。”  1年过去了,虽然尚未正式入驻东莞,但昨日CTC已经签下了入莞之后的第一个合作协议。  而位于松山湖中小企业创业园内的CTC东莞检测中心,经过装修和设备调试之后,将于今年9月正式开业。这里不仅仅会成为CTC在中国最大的检测中心,还将成为CTC在亚洲最大的鞋类及皮革监测实验室。  CTC中国区市场营销经理朱汝胜介绍,CTC是专门从事鞋类制品及皮革皮具的技术检测和质量认证的欧盟技术机构,是法国指定机构,直接参与欧盟鞋业技术准入标准的制订,并在全球范围为国际贸易商提供鞋类、皮革制品的检测报告、验货、研发等服务。检测结果获欧盟认可,可提供多种国际标准测试。
  • 长春科新姜松哲:研发以致用
    仪器信息网讯 长春是中国试验机的发源地,长春科新试验仪器有限公司的前身是中国科学院长春科新公司试验仪器研究所,隶属于中国科学院长春分院,2002年改制为长春科新试验仪器有限公司,经过多年的发展,科新在2011年产值已经达到8000余万元。  姜松哲告诉仪器信息网,公司目前遇到了一些问题,比如虽然公司已经改制,但是内部管理还是沿用原来研究所的管理方法,缺乏现代企业的管理理念,产品的宣传不足,这在一定程度上制约了公司的发展。长春科新试验仪器有限公司副总经理姜松哲  “管理理念上,科新有些滞后,但是在研发上,在国内试验机企业中却始终名列前茅。”姜松哲感慨地说。  “公司推崇‘研发以致用’的理念,每年投入大量的人力、物力和财力开展科研,科新从试验机的核心测控技术、机械设计、材料到工艺等,都投入很大的精力。很多项目在研发的初期便与市场挂钩,一有成果就很快完成转化、生产和商品化。”姜松哲讲到。  技术上,姜松哲谈到,公司在教学、研发、质量控制等领域拥有众多专利。这其中包括科新特有的高分辨率A/D转换技术、三态闭环控制、各种专用夹头、非接触式视频引伸计、同轴度调整器等。试验机所有的关键部件和材料均经过严格筛选测试,主机结构、夹头构造、控制器响应、数据采集、数据通讯等均通过电脑辅助设计和计算机模拟仿真系统进行反复试验分析。  高温炉使用粗炉丝 提高使用寿命  姜松哲介绍说:“科新研发的RD系列电子式蠕变持久试验机的拉杆配备了双调心机构,确保试样与受力中心同轴,消除了同轴度不好引起的弯曲力;高温炉在国内首次采用5的粗炉丝,使高温炉的使用寿命提高了近10倍;软件具有通讯校验线程、扩大量程、断电恢复等功能;此外,该试验机不仅可以进行蠕变持久试验,还能做应力松弛、低周循环试验。”RD系列电子式蠕变持久试验机  伺服作动器 采用静压轴承结构  姜松哲告诉仪器信息网(http://www.instrument.com.cn/),PA型电液伺服动静万能试验机的伺服作动器采用静压轴承结构,其与通常的硬支承相比,具有磨阻小,启动压力小,动态响应快;夹头为封闭式结构,体积小,重量轻,刚度高,动态响应快;高刚度的移动横梁由工程缸全程液压升降,并与锁紧缸互锁,使其移动方便,易于定位,锁紧可靠;油源由多台泵组组成,工作时根据需要自动控制1台泵组或多台泵组同时工作。PA型电液伺服动静万能试验机  仪器化摆锤冲击试验机 完整再现冲击全过程  “仪器化摆锤冲击试验机的原理建立在功是作用在物体上的力和移动距离的乘积的物理概念之上。为此,试验机需要配备力传感器、位移传感器及高速数据采集系统,测定整个试验工程中的冲击力和位移,获得弹性、塑性、韧性断裂过程的参数,即屈服力、最大力、不稳定裂纹扩展起始力、不稳定裂纹扩展终止力及与其力相应的位移和能量。”姜松哲介绍到。  姜松哲提到,JBY系列仪器化摆锤冲击试验机具有如下特点:数据采集、运算速度快,并能实时显示,试验机可以完整再现试样冲击全过程 该冲击试验机设有1MHz和100KHz两个采样速率,可根据材料的脆韧性选择。JBY系列仪器化摆锤冲击试验机  超静音伺服油源问世 减少漏油  “国家倡导节约现有能源消耗量,提倡环保型新能源开发。”姜松哲说,为了响应国家号召,公司投资研发出一种新型节能油源-YZ系列超静音伺服油源。众所周知,传统的电液伺服静态试验机油源均由比例伺服阀(或比例阀)控制,无论其是恒压控制,还是恒流量控制,由于受油源升温较快的限制,仅用于断续工作的试验机上。而YZ系列超静音伺服油源,管路简单,减少漏油,既能自动控制压力,亦可控制流量,在长期连续工作状态下,温升低于3℃。此外,该新型油源除具有传统试验机伺服油源的三态闭环控制的功能外,还具有长期控制恒试验力,恒变形的能力。  “目前,公司开发出的全新系列的电液伺服钢绞线拉力及应力松弛试验机、电液伺服混凝土徐变试验机、电液伺服岩石流变试验机等均配备了该油源。”姜松哲补充说。YZ系列超静音伺服油源  附录:长春科新试验仪器有限公司简介  长春科新试验仪器有限公司,是国内最大试验机供应商之一,是国内材料和结构力学性能测试领域的先驱和引领者。  科新试验机型号丰富,包括了各种规格的电子式试验机、电液式试验机、专用试验机等在内的动静态材料试验系统,可进行拉伸、压缩、弯曲、剥离、剪切、疲劳、环境等力学性能试验。科新试验机被应用到各种苛刻的测试应用场合,有着广泛的用户群。科新品质的可靠性已经被多年的使用市场所证明,成为材料测试用户的信心保证。  科新试验仪器应用领域广泛,产品覆盖大专院校、科研院所、工矿企业、质量监督检验、国防、航空航天等领域 涉及冶金、建材、机械、橡胶、塑料、包装、胶粘剂、玻璃钢、型材、涂料、纸张、电碳、帘子线、碳纤维、弹簧、纺织等各个行业。
  • 助力精准医疗I岛津临床质谱一针实现25种精神安定药物监测
    导读精神安定类药物是具有舒缓焦虑、安眠、肌肉松弛、癫痫或痉挛的辅助治疗等作用的药物。此类药物在药代动力学方面存在显著的个体差异。在药物剂量几乎相同的情况下,不同个体的体内稳态药物浓度可以相差20倍以上,其原因可能是患者在共患疾病、年龄、合并用药和遗传特性方面的不同导致的药物在吸收、分布、代谢、排泄方面的差异[1]。 依照中国药理学会发布的《治疗药物监测工作规范专家共识》及AGNP发布的《精神科治疗药物监测共识指南》,需使用TDM(therapeutic drug monitoring,治疗药物监测)指导精神安定类药物治疗。岛津应对方案利用岛津临床质谱,可建立血浆样品中25种精神安定类药物的快速准确定量分析。岛津临床质谱 11.0 min内即可完成25种精神安定类药物分析 血浆样品使用试剂进行蛋白沉淀后即可移取上清液,进样分析。采用内标法定量。基质样本定量下限色谱图 色谱条件质谱条件方法学结果 线性关系、精密度依据各级别基质标准品浓度,采用内标法制作校准曲线。所有待测化合物的线性关系良好,线性相关系数均大于0.99。按前处理方法和分析条件对低浓度点质控品连续分析6次,以考察仪器精密度。保留时间和浓度的相对标准偏差分别在0.07 ~ 0.16%和0.77 ~ 6.84%之间,结果表明仪器稳定性良好。 表1. 方法学结果表 质控样品检测结果按前处理方法和分析条件对低、高两个浓度的质控品进行分析,质控品的准确度结果如下表。低、高两个浓度水平的质控测定值均在靶值范围之内,满足要求。 表2. 质控样品检测结果 结语使用岛津临床质谱建立了一针进样同时分析血浆中25种精神安定类药物的检测方法。该方法分析速度快、灵敏度高、准确性好等特点,可为临床精神安定类药物的浓度监测提供参考。 参考文献:[1]AGNP精神科治疗药物监测共识指南:2011[J]. 实用药物与临床, 2016, 19(10):26.*文中推荐技术方法方案仅用于医学专业人士技术交流,不作为临床诊断依据。 撰稿人:徐明
  • 蠕动泵:引领液体输送,创造无限商机
    传统的液体输送方式在很多场景下存在一系列的限制,如泵送粘稠液体困难、易堵塞、泵送压力不足等问题。然而,通过蠕动泵的应用,这些问题迎刃而解,为液体输送领域打开了一扇崭新的大门。蠕动泵以其卓越的性能和无限的商机,正在成为行业翘楚。蠕动泵采用蠕动输送原理,即通过压缩树脂制成的管路,利用挤压与松弛的作用,实现液体的连续输送。相比传统的离心泵等设备,蠕动泵具有独特的优势。首先,在泵送粘稠液体方面,蠕动泵能轻松应对,无论是高粘度的胶状物还是含有颗粒的液体,都能稳定输送。其次,蠕动泵由于采用柔性管路,不易产生堵塞,大大减少了设备维护和清洗的频率,节省了时间和成本。再者,蠕动泵工作时的蠕动波动可有效地保护被输送物料的性质,不会引起剪切或破坏,确保物料的完整性。此外,蠕动泵无需庞大的压力系统,即可实现高压输送,并能逆向输送,灵活性极高。蠕动泵在各个领域都能发挥重要作用。在化工行业,蠕动泵可用于粘胶、涂料、颜料等高粘度物料的输送;在制药领域,蠕动泵可用于输送细胞培养液、生物制剂等灵敏物料;在环保工程中,蠕动泵可用于污水处理、固液分离等等。而且,随着新材料和新工艺的不断推陈出新,蠕动泵的应用领域还将继续扩大。除了性能上的优势,蠕动泵还有着较高的稳定性和可靠性。庞大的工业系统都需要运行稳定、无故障,而蠕动泵正是它们的首选。柔性的管路和简单的工作原理使得蠕动泵易于操作和维护,能够长期稳定运行,为用户带来极大的便利。而一流的品牌商更是能够提供全方位的售前售后服务,保障用户的利益。作为一种颠覆性的技术革新,蠕动泵将传统液体输送方式推向了全新的高度。它的优异性能和广阔应用前景,为液体输送领域带来了无限商机。无论是在工业生产还是商业领域,蠕动泵都发挥着重要的作用,推动着行业的进步和发展。随着技术的不断创新和改进,蠕动泵有望继续领跑液体输送领域,为人们带来更大的价值。
  • Nature Materials: 玻璃流变的普适标度律
    内容简介 众所周知,玻璃是又硬又脆的固体;然而它们的无序结构其实更像液体。与通过观察固体应力和应变之间的行为来理解其机械性质不同,对于液体力学性能的典型观点是粘度,即剪切应力和应变率之间的行为观察。由于玻璃材料的在流变学上需要关注非常宽的应变率范围,因此在实验上颇为困难;通常的做法是使用合适的测试设计来获得不同的应力分布。从这个视角出发,粘性液体和金属玻璃可以进行类似的测试。在本论文的研究中,作者使用HysitronTI980 TriboIndenter,通过巧妙的动态纳米力学实验设计,进行了大范围的微尺度应力松弛实验,包括纳米压痕测试和微悬臂测试,实现了9个数量级的超宽时间尺度表征金属玻璃在室温下的应力-应变速率响应。采集数据后,作者利用使用流体动力学的通用法则,提出金属玻璃包含温度、体积和应力对于应变率的行为轨迹。该工作 Universal scaling law of glass rheology于2022年4月发表于Nature Materials 上。 研究结果和讨论 文中详细提到如何通过三种类型的实验设计来实现将应变率范围跨到九个数量级的目标。首先对较高数量级应变率,作者进行保持峰值载荷200s的准静态压痕试验;热漂移是限制的主要因素。其次,使用中等强度的动态压痕进行参考蠕变式的保载量测, 实现了在无热漂移条件下长达2000 秒的位移量测。最后,采用不同的尺寸、加载距离和施力参数,在低应变率下进行了1000s的悬臂压痕试验。如图 1a 所示,作者测量了 Zr55Cu30Al10Ni5 金属玻璃在剪切应变速率为10-8 到 100 s-1 的动态剪切应力响应。在应力松弛实验中,根据不同松弛时间下的接触力和位移得出剪切应变率和名义剪切应力。在高速纳米压痕实验(图 1b)和低速悬臂实验(图 1c)中,剪切应力是剪切应变速率的函数。纳米压痕和悬臂实验所需的取样量较小,可有效避免高应力水平下离散剪切带和裂纹的干扰。在 ~10-6 到 10-5 s-1 的应变速率范围内,两种不同方法获得的实验数据点完美重合,并形成一条平滑的曲线(图 2a)。因此, 玻璃态材料的动态机械响应速率范围从 ~10-8 到 100 s-1 , 时间尺度跨越九个数量级。作者进一步分析了归一化粘度与应变速率的关系(图2b)。可以看出,所有数据的归一化粘度(η/ηN)与应变率之间的关系显示出相同的趋势,即从低应变速率下的牛顿流体到高应变速率下的剪切稀释。通过与其它实验结果比较发现,金属玻璃流变的动态响应与其它诸如无机玻璃、聚合物玻璃 、乳化剂、粒状材料、火蚁聚集体等无序体系在一个流体动力学框架内遵循同样的一个普适标度律(图2c)。作者进一步给出归一化粘度与无量纲参数ẏηNV/3kTg的函数关系(见图2d),其中 V 是平均摩尔体积,即 V=M/ρ。作者由此定义了液体行为(ẏηNV/3kTg1)与类固体行为(ẏηNV/3kTg1)的分界判据,揭示了热激活主导的牛顿流体向应力驱动的协同剪切塑性流变转变发生于(ẏηNV/3kTg=1)。这一无量纲普适标度律全面验证了玻璃态物质的动力学转变相图(图3)。通过此普适标度律推导出的玻璃动力学相图,可以将各种“玻璃”的动态行为统一到一个由温度、体积、应力组成的热力学变量参数评价规则下(图3)。 总结 作者基于动态纳米力学测量,得出金属玻璃与其它各种 "玻璃 "系统一起的宽频动态响应,都可以在经典流体动力学框架内用普适标度律加以统一。该普适标度律证明了无序系统的动态转变可以用平衡牛顿液体和非平衡弹塑性固体之间的转变来描述。这项研究揭示了玻璃的液态属性,并通过温度、体积、应力等热力学变量,对 "玻璃 "系统的动态转变进行了定量描述。
  • 重庆计量院2013年检测设备采购结果公示
    重庆市计量质量检测研究院2013年检测设备采购(13A4134)(第二部分)采购结果公示(项目编号=13A4134)  项目名称:2013年检测设备采购(13A4134)(第二部分)  采购编号:0611-BZ140040000241A(13A4134)包号分包名称评审日期品牌、型号预中标金额(元)预中标供应商预中标供应商地址1振动管密度标准装置2014年06月27日Anton Paar DMA4500M348000.0重庆拉曼科技有限公司重庆市渝北区新牌坊三路60号川成商住楼1幢15-53高温热管槽2014年06月25日磐然PR601-50089000.0泰安磐然测控科技有限公司泰安高新区泰山科技城B6座  2014年检测设备采购(14A1002第三部分)采购结果公示(项目编号=14A1002)  项目名称:2014年检测设备采购(14A1002第三部分)  采购编号:0611-BZ140040000243A(14A1002)包号分包名称品牌规格评审日期中标金额(元)中标供应商中标供应商地址3便携式微小气体流量装置、液体流量标准装置 2014年06月26日318600.0成都安迪生测量有限公司成都高新区世纪城南路216号天府软件园D区6栋1103号4温度压力可调型气体流量标准装置 2014年06月26日308000.0成都安迪生测量有限公司成都高新区世纪城南路216号天府软件园D区6栋1103号50.2级水平/垂直式水表检定装置 2014年06月26日156000.0深圳市中图仪器科技有限公司深圳市福田区梅林八号丰林联合企业公司1号厂房二层6燃气表首检装置、G1.6-G4燃气表密封性试验台 2014年06月26日187600.0杭州天马计量科技有限公司杭州市西湖区三墩镇西园五路16号4号厂房4层7二次仪表检定装置设备 2014年06月26日148000.0重庆峻桐贸易有限公司重庆市渝中区中山二路99号华安大厦25楼9音速喷嘴法气体流量标准装置(音速喷嘴并联法气体流量标准装置) 2014年06月26日376300.0杭州天马计量科技有限公司杭州市西湖区三墩镇西园五路16号4号厂房4层1045kW及以下电机能效检测系统(电机能耗检测系统) 2014年06月26日968000.0上海宝准电源科技有限公司上海市龙华路2862号102室  重庆市计量质量检测研究院2014年检测设备采购(14A1002第二部分)(14A1626第一部分)采购结果公示(项目编号=14A1002)  项目名称:2014年检测设备采购(14A1002第二部分)(14A1626第一部分)  采购编号:0611-BZ140040000244A(14A1002、14A1626)包号分包名称评审日期规格型号中标金额(元)中标供应商中标供应商地址2高温蠕变持久强度试验机(微机控制电子式高温蠕变持久试验机)2014年6月26日新三思145000.00美特斯工业系统(中国)有限公司上海市松江区春林路18号3X荧光光谱仪(手持式X射线荧光金属分析仪)2014年6月26日SPECTRO xSORT 派克斯248760.00重庆传优进出口贸易有限公司重庆市江北区观音桥街道塔坪120号东和城5栋17-4号4中空玻璃紫外辐照仪2014年6月26日苏州&ldquo 威克尔&rdquo 、启东&ldquo 白云&rdquo 、欧司朗等118000.00重庆盈贯科技有限公司重庆市江北区金科十年城40号24-75100t电液伺服试验机(100t微机控制电液伺服万能试验机)、高温持久蠕变性能试验机(隔热铝型材高温持久蠕变试验机)、应力松弛试验机2014年6月26日主机、油源、高温炉等948000.00重庆前沿分析仪器有限公司重庆市江北区北滨一路363号4幢18-86石材耐磨试验机(道瑞式耐磨试验机)2014年6月26日变频器、电机、计数器等75800.00重庆盈贯科技有限公司重庆市江北区金科十年城40号24-77施工升降机齿轮锥鼓形渐进式防坠安全器检测台(施工升降机SAJ系列防坠安全器检测台)2014年6月26日上海建科院148600.00重庆前沿分析仪器有限公司重庆市江北区北滨一路363号4幢18-88隔声性能测定装置(建筑构件隔声性能检测装置)、保温性能测定装置(建筑外门窗保温性能检测装置)2014年6月26日JCG建筑窗外空气声隔声性能检测装置BWC-II建筑外门窗保湿性能检测装置382000.00沈阳合兴检测设备有限公司沈阳市沉河区万寿寺街152-1号9全自动化学钢化玻璃表面应力测试仪2014年6月26日日本折原FSM-60LE179000.00重庆佰凯科技有限公司重庆市渝中区长江二路39号附18号4幢18-3号10恒温恒湿试验箱2014年6月26日奥新、国创、爱默生等55000.00重庆英博实验仪器有限公司重庆市江北区港宁路9号2栋1单元1、2层及1栋第2层11内饰件VOC1m3采样舱系统(1立方汽车内饰件环境舱)、内饰件VOC24m3采样舱系统(VOC环境试验舱)2014年6月26日SIMPLEWELL、SMC等1430000.00东莞市明驰光电科技有限公司东莞市长安镇涌头新围工业区新围路  2013年检测设备采购(13A4134)(第一部分)(第二次)采购结果公示(项目编号=13A4134)  项目名称:2013年检测设备采购(13A4134)(第一部分)(第二次)  采购编号:0611-BZ140040000121A(13A4134)包号分包名称评审日期品牌、型号中标金额(元)中标供应商中标供应商地址1F1等级砝码2014年06月27日常熟金羊1mg-100g、1g-500g、1kg-10kg、20kg、20kg227000.0重庆品臻仪表有限公司重庆市北部新区金童路9号1幢22-176水蒸气透过率测试仪、智能电子拉力试验机、蒸发残渣测定仪2014年06月25日广州标际W360广州标际GBH-1广州标际ZF800A360000.0重庆安谱仪器仪表有限公司重庆市北碚区龙凤一村153号3-27气相色谱仪(带顶空进样器)2014年06月25日美国PE Clarus680419800.0重庆润银科贸发展有限公司重庆市沙坪坝区小龙坎新街64-1-7-1号11电磁容器壁厚测试仪、包装中氧气/二氧化碳含量检测仪器、真空干燥箱2014年06月25日奥林巴斯Magna Mike 8600MOCON Checkpoit II上海一恒 DZF-6090134000.0重庆拉曼科技有限公司重庆市渝北区新牌坊三路60号川成商住楼1幢15-5
  • 护肤品中活性成分玻色因的分析检测
    护肤品中活性成分玻色因的分析检测秦旭阳 金燕玻色因(Pro-xylane,羟丙基四氢吡喃三醇)是一种从木糖衍生而来的糖蛋白混合物,而木糖大量存在于山毛榉树中,因此玻色因最初是从山毛榉树中提取分离得到的。玻色因通过促进胶原蛋白合成来增加皮肤弹性。皮肤会随着衰老而逐渐失去弹性,细胞的活性也开始下降,降低或不再生成促进胶原蛋白的合成。而玻色因可以激活粘多糖的合成,促进IV型和VII型胶原蛋白的合成,通过这种促进合成,增加胶原蛋白纤维数量,使我们的表皮层和真皮层更加稳固,紧密,让皮肤重新变得饱满充盈,变得更加紧致和富有弹性。 玻色因还可以通过刺激葡萄糖胺聚糖(GAGs)的合成来改善皮肤皱纹。皮肤细胞外基质中的GAGs以网状结构存在,可防止皮肤水分流失,连接皮肤中的各组织,维持皮肤的弹性和紧致。随着皮肤衰老,合成GAGs的能力不断下降,导致皮肤松弛,产生皱纹。而玻色因可以刺激葡萄糖胺聚糖(GAGs)的合成来改善皮肤弹性、有效缓解皮肤皱纹。 研究发现玻色因改善皮肤弹性和缓解皮肤衰老的功效,因此化妆品企业便进行大规模的人工合成,并添加进各种护肤品中,深受广大消费者的欢迎。 由于玻色因没有紫外吸收,一般采用通用型检测器进行检测。同时护肤品的基质较为复杂,容易产生干扰,因此对检测器灵敏度有着较高的要求。而CAD电雾式检测器作为新型通用型检测器,较传统紫外检测器、ELSD检测器等有着独特的优势:分析物既不需要发色团也不需要离子化,适用于不挥发及半挥发化合物的高灵敏度检测。CAD检测器有更高的灵敏度、更宽的线性范围、更好的重现性,非常适合作为主要检测手段。本实验利用Vanquish Core液相色谱系统和Charged Aerosol Detector H电雾式检测器来分析护肤品中的玻色因。 仪器配置:Vanquish Core系列泵:Quaternary Pump C自动进样器:Split Sampler CT柱温箱:Column Compartment C检测器:Charged Aerosol Detector H 色谱条件:分析柱:Shodex Asahipak NH2P-50 4E 4.6 mm×250 mm,5 μm柱 温: 30℃CAD检测器参数:过滤常数:3.6s,雾化温度:50℃,采集频率:5Hz流动相:乙腈:水(85:15)流速:0.8mL/min进样量:5µL稀释溶剂:乙腈:水(50:50) 实验结果与讨论:玻色因是由两个非对映异构体组成的混合物(Isomer 1和Isomer 2),故CAD图谱表现为两个峰。玻色因对照品色谱图Isomer 1和Isomer 2在0.0586~1.172mg/mL范围内线性良好,相关系数R2 0.999。对照品溶液连续进样5针,其中 Isomer 1峰面积RSD为1.94%,Isomer 2峰面积RSD为2.31%。本方法Isomer 1和Isomer 2检测限为0.0586mg/mL (S/N4),定量限为0.1172mg/mL(S/N10)。对照品检测限色谱图样品前处理简单,样品经溶剂稀释后可直接进样分析。两种护肤品精华液色谱图由实验结果可知,本方法利用CAD电雾式检测器检测护肤品中的玻色因,样品前处理简单,灵敏度高,分离度和重复性好,抗干扰能力强,适合常规的产品质量控制。
  • 全国分析检测人员技术能力考核计划公告
    各培训机构和分析检测人员:  2008年,经科技部和国家认监委等部门共同推动成立了“全国分析检测人员能力培训委员会”(以下简称“NTC”),负责对分析检测人员技术能力的培训与考核工作,其宗旨是为提高我国分析检测人员整体的检测能力和水平,促进分析检测结果的准确性和可靠性,为国家科技进步、公共安全、经济社会又好又快发展服务。  根据NTC章程和相关规则要求,每年NTC将定期开展对分析检测人员的考核工作。NTC考核合格证明、证书由全国分析检测人员能力培训委员会统一颁发,该证明/证书可作为实验室资质认定、实验室认可及大型仪器共用共享中分析检测人员的技术能力证明,也为录用和考核分析检测人员提供一个统一、客观和公正的标准。  现将2010 年全国分析检测人员技术能力考核计划及相关要求公告如下:  一、2010年NTC考核技术  NTC秘书处于2010年1月1日向社会发布的首批NTC技术考核与培训大纲所涉及的14项NTC技术,其中包含9项化学专业技术和5项力学专业技术。具体内容详见附件1。  二、考生需具备的条件  1、年龄满18周岁以上。  2、身体健康,并满足所从事分析检测工作对身体的特殊要求。  3、具有中专以上国家承认的学历或者相关再教育经历。  三、报名方式  NTC秘书处统一受理NTC考核报名,考生可通过以下方式报名:  1 、通过中国分析检测培训网站报名:  http://www.analysis-training.org.cn中:首页-考核平台-考试报名  2、 电子邮件报名  Email:ntc@analysis.org.cn ntc@ccai.cc  3、 信函报名  4、通过“全国分析检测人员能力培训委员会培训机构”报名  5、各企事业单位、科研院所、检测机构可统一组织本单位分析检测人员报名参加NTC考核。  四、报名信息  考生的报名信息(身份证号、单位所在地、照片)必须由考生本人核实并签名确认,确保信息采集的准确、完整,同时提交两张1寸浅底彩色照片。报名表及照片均应同时提供纸版及电子版。  NTC考核报名首批截止时间为2010年7月30日,每项技术报名截止期见报名表。报名时应按附件2说明认真填写日常分析样品、领域和所使用的仪器的信息。  五、考核内容及方式  1、 考核命题与组织:  NTC考核全国统一命题,NTC秘书处负责考核的命题组织工作与考核实施。  2、 考核内容:  每项技术的考核内容可参阅《NTC技术的考核与培训大纲》。  3、 考核方式:  每项NTC技术的考核包含笔试、实际操作和样品考核三个部分,分析检测人员可按相应分析检测技术,自行选择参加。  样品考核可以参加NTC组织的考核,若考生参加了权威组织授权的能力验证提供者组织的能力验证计划及测量审核其结果满意。考生提供相关证明,可免去该项技术的样品考核。  4、 证书:  每项技术分别通过笔试、实际操作和样品考核成绩合格者,将分别核发成绩单,每项技术笔试、实际操作和样品均通过者,可以获得NTC技术能力合格证书,成绩单及证书有效期为3年。  六、 考核费用  每项技术收取考核成本费500元(含考核样品费)。  七、考核时间  每项技术的考核时间安排详见附件1。  八、考核地点  根据报名人员地域情况,由秘书处统一安排考点:  1、NTC秘书处所在地:北京  2、全国分析检测人员能力培训委员会培训机构所在地  3、经NTC秘书处与有关机构商定地点  九、NTC秘书处联系方式:  (1)联系人:NTC秘书处一(中国分析测试协会培训部)程群  电话:010-62185309,010-62188310,010-62183362   传真:010-62181163   E-mail: ntc@analysis.org.cn   地址:北京海淀区学院南路76号14信箱  邮编:100081  (2)联系人:NTC秘书处二(国家认监委认证认可技术研究所)郑小云  电话:010-65994387,010-65993916,010-65993928  传真:010-65993920  E-mail:ntc@ccai.cc  地址:北京市朝阳区朝外大街甲10号 中认大厦16层1601  邮编: 100020  特此公告。  附件1:2010年度NTC考核计划  附件2:2010年度NTC考核报名表  全国分析检测人员能力培训委员会秘书处  2010年 5月20日  附件1:2010年度NTC考核计划序号考核技术名称报名截止日期考核时间1ATC 001 电感耦合等离子体原子发射光谱分析技术7月30日8月6-7日2ATC 001.1金属材料拉伸试验技术3ATC 002 火花源/电弧原子发射光谱分析技术7月30日8月13-14日4ATC 013 固体无机材料中碳硫分析技术8月10日8月20-21日5ATM 005.1 金属硬度试验技术6ATC 014 固体无机材料中气体成分(O、N、H)分析技术8月10日8月27-28日7ATC 011 液相色谱分析技术9月10日9月24-25日8ATM 013.1金属材料高温持久、蠕变、松弛试验技术9ATC 006 原子吸收光谱分析技术9月30日10月15-16日10ATM 007.1金属材料冲击试验技术11ATC 005 原子荧光光谱分析技术10月10日10月22-23日12ATC 003 X射线荧光光谱分析技术10月10日10月29-30日13ATC 010 气相色谱分析技术10月20日11月5-6日14ATM 0012.1金属落锤、撕裂试验技术  附件2:2010年度NTC考核报名表姓名 性别 照片身份证号码 工作单位 通讯地址/邮 编 手机号码 固定电话 选项编号技术名称日常分析样品及领域所使用的仪器(请注明厂商及仪器型号) 1. ATC001电感耦合等离子体原子发射光谱分析技术 2. ATC002火花源/电弧原子发射光谱分析技术 3. ATC003X射线荧光光谱分析技术 4. ATC005原子荧光光谱分析技术 5. ATC006原子吸收光谱分析技术 6. ATC010气相色谱分析技术 7. ATC011液相色谱分析技术 8. ATC013固体无机材料中碳硫分析技术 9. ATC014固体无机材料中气体成分(O、N、H)分析技术 10. ATM001.1金属材料拉伸试验技术 11. ATM005.1金属材料硬度试验技术 12. ATM007.1金属材料冲击试验技术 13. ATM012.1金属材料落锤、撕裂试验技术 14. ATM013.1金属材料高温持久、蠕变、松驰试验技术 说明: 此报名表内的个人信息为申请NTC考核所用,请如实填写,我们将对以上信息严格保密。申请人需根据自身条件来选择参加一项或多项技术的考核,并请在编号前打勾,同时注明日常分析样品、领域和所使用的仪器(请注明厂商及仪器型号) 。
  • 862项标准获批,涉及半导体、化工检测和检测仪器等领域
    2020年12月25日,工信部发布《中华人民共和国工业和信息化部公告》,批准《霍尔元件 通用技术条件》等669项行业标准,批准《白云石标准样品》等76项行业标准样品,批准《高纯铝锭》等23项行业标准外文版,批准《75℃热稳定性试验仪校准规范》等94项行业计量技术规范。在669项标准中,多项标准涉及半导体行业(包括了半导体器件、半导体设备和半导体材料等方面)和多种化学品的检测。此外,94项行业计量技术规范涉及了热稳定性试验仪、便携式挥发性有机物泄漏检测仪、漆膜弯曲试验仪、漆膜附着力测定仪、直流辉光放电质谱仪、双联电解分析仪等多种分析检测仪器,相关标准如下:附件:23项行业标准外文版编号、名称、主要内容等一览表.doc94项行业计量技术规范编号、名称、主要内容等一览表.docx76项行业标准样品目录.docx669项行业标准编号、名称、主要内容等一览表.doc半导体相关标准(部分)标准号标准名称标准内容JB/T 9473-2020霍尔元件 通用技术条件本标准规定了霍尔元件的术语和定义、基本参数和符号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于非集成的半导体霍尔元件。JB/T 9481-2020扩散硅力敏器件本标准规定了扩散硅力敏器件的术语与定义、分类与命名、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于半导体扩散硅力敏器件。HG/T 5736-2020高纯工业品过氧化氢本标准规定了高纯工业品过氧化氢的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。本标准适用于高纯工业品过氧化氢。该产品主要用于太阳能光伏行业、液晶显示器件和半导体行业制程的清洗或刻蚀,以及其他对高纯过氧化氢有需求的行业。XB/T 515-2020钪铝合金靶材本标准规定了钪铝合金靶材的要求、试验方法、检验规则与标志、包装、运输、贮存及质量证明书。本标准适用于铸造法制得的钪铝合金靶材,主要用于半导体及光电等领域。QC/T 1136-2020电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法本标准规定了电动汽车用绝缘栅双极晶体管(IGBT)模块环境适应性要求和试验方法。本标准适用于电动汽车用IGBT模块,其他半导体器件模块可参考使用。SJ/T 11761-2020200mm及以下晶圆用半导体设备装载端口规范本标准规定了晶圆承载器与晶圆制造/检测设备之间的机械端口要求,主要包括晶圆承载器在设备上的位置和方向。本标准适用于加工直径200 mm及以下晶圆的半导体设备装载端口。SJ/T 11762-2020半导体设备制造信息标识要求本标准规定了半导体设备制造信息标识的术语和定义、设计和原则、使用及相应的综合标签库。半导体设备制造信息标识包括半导体制造设备选择、安装、使用和维护时需要的各种类型的技术和商业信息。信息类型包括操作手册/指南、安装手册、维护手册、维护计划、备件/零部件清单、维修/故障排除手册、发行说明、培训手册等。SJ/T 11763-2020半导体制造设备人机界面规范本标准规定了半导体制造设备人机界面的术语和要求。本标准适用于半导体制造设备。SJ/T 10454-2020厚膜混合集成电路多层布线用介质浆料本标准规定了厚膜混合集成电路多层布线用介质浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于与金、钯银导体浆料相匹配的厚膜混合集成电路多层布线用介质浆料。SJ/T 10455-2020厚膜混合集成电路用铜导体浆料本标准规定了厚膜混合集成电路用铜导体浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于厚膜混合集成电路用铜导体浆料。化工检测相关标准(部分)标准号标准名称标准内容SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法 本标准规定了采用电感耦合等离子体发射光谱法(ICP-OES)测定聚乙烯和聚丙烯树脂中镁(0.10 mg/kg~50.00 mg/kg)、铝(0.20 mg/kg~100.00 mg/kg)、钙(0.40 mg/kg~130.00 mg/kg)、锌(0.50 mg/kg~200.00 mg/kg)、铬(0.10 mg/kg~3.00 mg/kg)、钛(0.10 mg/kg~6.00 mg/kg)等微量元素含量的方法。 本标准适用于粉末状、颗粒状聚乙烯和聚丙烯树脂。SH/T 1830-2020丙烯腈-丁二烯橡胶中壬基酚含量的测定 气相色谱-质谱法 本标准规定了采用气相色谱-质谱法测定丙烯腈-丁二烯生橡胶中壬基酚含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,壬基酚单组分含量最低检出限为1.4mg/kg。SH/T 1831-2020丙烯腈-丁二烯橡胶中游离丙烯腈含量的测定 顶空气相色谱法 本标准规定了采用顶空气相色谱法测定丙烯腈-丁二烯生橡胶中游离丙烯腈含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,游离丙烯腈含量最低检出限为1.8mg/kg。SH/T 1832-2020异戊二烯橡胶微观结构的测定 核磁共振氢谱法 本标准规定了采用核磁共振氢谱法测定异戊二烯橡胶(IR)中顺式1,4结构(cis-1,4)、反式1,4结构(trans-1,4)和3,4结构(3,4)含量的方法。 本标准适用于异戊二烯生橡胶。SH/T 1142-2020工业用裂解碳四 液态采样法 本标准规定了采取供分析用的工业用裂解碳四以及其他碳四液态烃类样品的设备和方法。 本标准适用于采取工业用裂解碳四及其他碳四液态烃类样品。SH/T 1482-2020工业用异丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异丁烯纯度及烃类杂质的含量。 本标准适用于纯度大于98.00%(质量分数),丙烷、丙烯、异丁烷、正丁烷、反-2-丁烯、1-丁烯、顺-2-丁烯、丙炔、1,3-丁二烯、正戊烷、异戊烷等烃类杂质含量不小于0.0010%(质量分数)的工业用异丁烯测定。SH/T 1483-2020工业用碳四烯烃中微量含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用碳四烯烃中的微量含氧化合物含量。 本标准适用于工业用碳四烯烃中微量二甲醚、甲基叔丁基醚、甲醇和叔丁醇等含氧化合物的测定,其最低测定浓度为0.0001%(质量分数)。SH/T 1492-2020工业用1-丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-丁烯的纯度及其烃类杂质含量。 本标准适用于纯度不小于99.00% (质量分数),丙烷、丙烯、异丁烷、正丁烷、乙炔、反-2-丁烯、异丁烯、顺-2-丁烯等烃类杂质含量不小于0.001%(质量分数),丙二烯、丙炔含量不小于2mL/m3,1,3-丁二烯含量不小于10 mL/m3或0.001%(质量分数)的工业用1-丁烯试样的测定。SH/T 1549-2020工业用轻质烯烃中水分的测定 在线分析仪使用导则本标准规定了测定轻质烯烃气体中微量水分的在线分析仪的工作原理、一般特征、分析程序和结果报告等要求的指南。本标准适用于工业用轻质烯烃中水分的测定。SH/T 1763-2020氢化丁腈生橡胶(HNBR)中残留不饱和度的测定 碘值法 本标准规定了用韦氏(Wijs)试剂测定氢化丁腈生橡胶(HNBR)残留不饱和度(即碘值)的方法。 本标准适用于氢化丁腈生橡胶。SH/T 1814-2020乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的测定 本标准规定了用分光光度法和电感耦合等离子体发射光谱法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的方法。 本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的钒含量范围在0.5 µg/g~40 µg/g的乙丙橡胶。SH/T 3042-2020合成纤维厂供暖通风与空气调节设计规范 本标准规定了合成纤维(涤纶、锦纶、维纶、腈纶、氨纶)厂供暖、通风与空气调节设计的空气计算参数和设计要求。 本标准适用于新建、扩建和改建的合成纤维厂的生产厂房及辅助建筑物的供暖、通风与空气调节设计。SH/T 3523-2020石油化工铬镍不锈钢、铁镍合金、镍基合金及不锈钢复合钢焊接规范 本标准规定了铬镍不锈钢、铁镍合金、镍基合金、不锈钢复合钢的材料、焊接工艺评定、焊工考试、焊接工艺、焊接检验和焊后热处理要求。 本标准适用于石油化工、煤化工、天然气化工设备与管道的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。SH/T 3545-2020石油化工管道工程无损检测标准本标准规定了石油化工金属管道射线检测、超声检测、磁粉检测、渗透检测、衍射时差法超声检测、相控阵超声检测和便携式荧光光谱检测的工艺要求及质量评定。本标准适用于下列管道无损检测的质量评定:1)公称厚度为2 mm~100 mm的金属管道对接焊接接头、支管连接焊接接头的射线检测与质量评定;2)公称厚度大于或等于6 mm、外径大于等于108 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的超声检测与质量评定;3)铁磁性材料的表面和近表面缺陷磁粉检测与质量评定;4)表面开口缺陷的渗透检测与质量评定;5)公称厚度为16 mm~100mm、外径大于等于273 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的衍射时差法超声检测与质量评定;6)公称厚度3.5 mm~60 mm、外径大于等于57 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的相控阵超声检测与质量评定;奥氏体不锈钢管道对接焊接接头的相控阵超声检测与质量评定按附录M的规定进行;7)金属材料(包括熔敷金属)中金属元素的便携式荧光光谱检测。行业计量技术规范(部分)技术规范编号技术规范名称技术规范主要内容JJF(石化)030-202075℃热稳定性试验仪校准规范本校准规范适用于爆炸品分类用的75℃热稳定性试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)031-2020固体氧化性试验装置校准规范本规范适用于固体氧化性试验装置的校准,不适用于氧化性固体重量试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)032-2020易燃固体燃烧速率试验装置校准规范本校准规范适用于易燃固体燃烧速率试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)033-2020便携式挥发性有机物泄漏检测仪(氢火焰离子法)校准规范本规范适用于量程小于50000µmol/mol的便携式挥发性有机物(VOCs)泄漏检测仪(氢火焰离子法)的校准,其他相似原理和用途的仪器校准可参照本规范。其主要内容包含本规范的适用范围、引用的技术文件、计量性能、校准条件、校准方法、校准结果、校准时间间隔和不确定度评定示例等。JJF(石化)034-2020石油化工产品软化点试验仪(环球法)校准规范本规范适用于环球法测定软化点的软化点试验仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)035-2020漆膜弯曲试验仪(圆柱轴)校准规范本规范的校准适用于测试漆膜圆柱弯曲试验时用的漆膜弯曲试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)036-2020漆膜附着力测定仪(划圈法)校准规范本规范的校准适用于测试漆膜划圈试验用的漆膜附着力试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)037-2020橡胶门尼黏度计校准规范本规范规定了橡胶门尼黏度计的计量特性、校准条件、校准用设备及校准方法。本规范适用于橡胶门尼黏度计的校准。JJF(石化)038-2020硫化橡胶回弹性试验机校准规范本规范规定了硫化橡胶回弹性试验机的计量特性、校准条件、校准用设备及校准方法。本规范适用于硫化橡胶回弹性试验机的校准。JJF(石化)039-2020橡胶阿克隆磨耗试验机校准规范本规范适用于橡胶阿克隆磨耗试验机的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。JJF(石化)040-2020橡胶压缩应力松弛仪校准规范本规范适用于橡胶压缩应力松弛仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 我国科研人员开发出可精准检测与治疗癌症的纳米粒子
    5 月 7 日消息,中国科学院精密测量科学与技术创新研究院的周欣研究员团队利用肿瘤微环境与正常组织的差异,开发出了一种可智能识别肿瘤的模块化自组装纳米粒子 GQD NT。这是一种能够实现癌症精准检测与治疗的纳米粒子,可显著降低癌症检测治疗过量使用药物带来的副作用。这种纳米粒子通过在肿瘤中不断变形,延长了粒子内的药物在肿瘤中的驻留时间、增强了药物在肿瘤中的穿透性,以极低的药物剂量实现了癌症光动力疗法的长时磁共振成像检测与高效治疗。图源 Pixabay简单来说,药物过量是造成癌症检测与治疗副作用大的主要原因。这是因为现有药物对病灶的靶向不足,难以富集于肿瘤区域,且在病灶部位停留时间短,需要进行大剂量注射以达到预期成像检测与治疗效果。这里提到的光动力疗法(PDT)是一种新兴的治疗癌症的疗法,因为所使用的光敏剂(PSs)只有在受光照射时才具有活性和毒性,并且具有高度的时空选择性。为了最大化其疗效,通常需要反复应用 PDT 来消融各种肿瘤。然而,由于不断的 PSs 注入导致总剂量过高,会引起严重的副作用。因此,研究人员研发出了一种基于酸度激活的石墨烯量子点纳米转化器 (GQD NT) 作为载体,用于实现长时间肿瘤成像和重复 PDT。在 Arg-Gly-Asp 肽的指导下,GQD NT 可主动靶向肿瘤组织,进而在肿瘤酸性中松弛、增大,从而有望在肿瘤中滞留较长时间。然后,GQD NT 会分解成小块,以更好的方式渗透进肿瘤中。在激光照射下,GQD NT 会产生温和的高温热疗效应,从而提高细胞膜渗透性,并促进 PSs 的摄取。最具突破性的是,制备好的 GQD NT 不仅“打开”了荧光 / 磁共振信号,而且实现了高效的重复 PDT。总的来说,这项研究开发了一种智能载体,通过编程变形增强了 PSs 在肿瘤内积累、保留和释放,从而克服了重复 PDT 中过度注射的障碍。图源 Pexels据称,GQD NT 可以使用十分简易的步骤将药物分子封装于其中,通过肿瘤微环境促发 GQD NT 变形,逐步提高药物在病灶部位的富集浓度。小鼠实验发现,GQD NT 在癌症检测中的造影剂使用量仅为现有临床技术的 6% 至 22%。在注射后 4 至 36 小时内,肿瘤部位的造影剂与正常组织对比度高,边界明显,极大延长了磁共振成像时间。团队基于 GQD NT 设计的光动力学治疗方法,单次光动力学治疗后,肿瘤体积下降 82%,两次光动力学治疗后,肿瘤被完全消融。在实验中,光敏药物的总剂量降至 1.76 至 3.50 微摩尔 / 千克的极低水平,与文献报道相比降低了 90%(单次治疗)至 95%(两次治疗),且所用的低剂量激光不会造成皮肤损伤,有望克服光动力学治疗中光敏药物过量的问题。
  • 百亿毒地诉讼风波中的业主:有人想找检测机构屡遭拒,有人无奈推迟儿子婚房装修
    近日,陆家嘴集团与苏钢集团高达百亿的毒地纠纷成为业内关注的焦点,得知自家小区与污染地块相隔仅几十米,这让同在陆家嘴集团苏州绿岸项目,那些已经入住的居民们感到不安。11月11日,极目新闻记者采访了苏州绿岸项目中锦绣澜山锦园和锦绣澜山峰誉庭两个小区的业主,他们的住房建在14号和15号地块上,目前消息称这两个地块没有污染。然而,突如其来的毒地纠纷事件还是打乱了业主们的生活,不少业主表示,他们此前只知道雷丁学校所在的2号地块发现了污染,但没想到锦绣澜山项目17块地中有14块存在污染,其中17号污染地块与小区只有20多米,目前他们没有见到14号和15号两地块的土壤检测报告,无人告知他们,相距如此近是否会对人产生健康威胁。锦绣澜山项目已经建成的大片居民楼记者在锦绣澜山锦园和锦绣澜山峰誉庭走访住户了解到,2019年建成的锦绣澜山峰誉庭已有700多住户,而2021年开售的锦园目前仅入住20多户。其中,锦绣澜山峰誉庭1到3号楼为苏钢集团的安置房,居住者多为老人,而4到6号楼为商品房,购房者多为在苏州务工的外省人员。安徽宿州的王女士一家7口居住在锦绣澜山锦园一套房子中,这套房子是他们卖掉在苏州的另一套房子后买的;锦绣澜山峰誉庭的刘先生则因为此次事件,临时推迟了为儿子装修婚房的计划;一对黑龙江的90后夫妻则暂时取消了生育计划。而最令业主苦恼的是,目前他们没有找到检测机构,愿意为他们小区所在地块的土壤污染情况进行检测。业主寻找检测机构屡遭拒绝锦绣澜山峰誉庭小区航拍锦绣澜山峰誉庭小区2019年开售,业主宣先生来自辽宁朝阳,他2019年买房,当时房价是2万余元每平方米,在附近区域算是高价。他看中的是锦绣澜山项目规划齐全的幼儿园、中小学、商场,还有户外公园。他家的房子83平方米,总价约180万元,目前每个月需要还6800多元的贷款。他们的购房合同上标明了小区周边有铁路、加油站、高压线、变电站等不利因素,但从未有人告知他们,土地存在污染问题。锦绣澜山峰誉庭小区关于房屋的特别因素说明(受访者供图)2022年3月,宣先生夫妻俩带着刚出生不久的孩子,还有家中老人入住了小区。同年4月,网上曝出小区周边有4块地存在污染的情况,他原本以为被污染的地块离小区较远,对小区的影响不大。可到了今年11月“毒地块”事件被曝光后,他才知道17块地中14块都被污染,且其中的17号地块与小区只隔一条马路。他们这才意识到问题的严重性。最近一段时间,他不敢再让老人带孩子到离家不远的公园游玩,因为公园旁边的4号地块是被披露污染最严重的区域。宣先生说,虽然现在陆家嘴集团与苏钢集团等单位的纠纷正在处理,但大家担心双方调解或诉讼结束后,业主所面临的土地污染的问题依然无人解决,“小区的商业配套可以没有,只要小区这个地块是没有污染的,我也能接受。”宣先生表示,他也是做工程的,“业主们想委托我找检测机构来检测小区的土壤,但目前没有一家愿意前来。”来自河南的刘先生于2019年在锦绣澜山峰誉庭购买了一套总价197万元的房子。他在苏州做物流生意,房子是专门为儿子买的婚房,他儿子今年23岁,在沈阳一所大学读研究生。他想着儿子毕业后很快就要参加工作找对象结婚,最近正在忙着为儿子装修婚房,建材市场都跑了不知多少趟,各种装修建材都选得差不多了,但毒地事件发酵后,他只能推迟装修计划。他还担心,以后会因为房子的问题影响儿子的婚姻大事。多名业主向记者介绍,2019年建成的锦绣澜山峰誉庭六栋楼基本上已住满,已有住户700多户,其中,锦绣澜山峰誉庭1到3号楼为苏钢集团的安置房,居住者多为老人,而4到6号楼为商品房,购房者多为在苏州务工的外省人员。业主一直未收到检测报告锦绣澜山锦园位于14号地块,紧邻锦绣澜山峰誉庭小区,但入住率却不高。多名业主告诉记者,小区是在2021年3月开售,同年10月突然暂停出售,小区有26户购买了房屋,其中现居约20户。小区业主王女士来自安徽宿州,一家共7口人一起居住。她也是看中了小区周边完善的配套,卖掉了苏州的另一套房子后,在小区买下一套145平方米的房子,2021年5月签订了购房合同,总价370万元,10月房子交付。2022年4月,她刚开始装修房子时,小区就被曝出周边存在污染的消息,其中一块地就在小区马路对面。业主们非常担忧,找到开发商苏州绿岸房地产开发有限公司,对方一名负责人解释说小区不会有污染,公司很重视,会进行整体的重新检测,检测报告会在同年7月份提供给业主们。然而,小区业主们一直没有收到这份检测报告。后来他们也再去找过开发商,但对方拿不出来检测报告,也没有给他们满意的答复,直到近期“毒地块”事件被曝出。锦绣澜山锦园航拍“陆家嘴集团披露的是说已经有14块地都有污染了,那会不会蔓延到我们这边?”王女士向极目新闻记者说出了自己的担忧,他们发现,存在污染的17号地块和13号地块离两个小区非常近,他们希望能有相关部门重新进行检测,告诉他们小区所在的地块有没有被污染,周边多个被污染的地块对他们有没有影响。锦绣澜山锦园一对90后夫妻,丈夫是黑龙江人,妻子是河南信阳人,2021年两人在结婚前购买了现在的住房。今年,他们已经在为生孩子做准备,但现在他们不得不暂缓生育计划。夫妻二人向记者介绍,锦园的房子是精装修的,他们认为房子的质量是不错的,精装修的品质也是一流,但周边配套地块被曝出污染之后,商业、学校等重要的配套均无法正常运营,这与房屋销售时宣传的性价比却是大相径庭的。小区及周边地块规划示意图(受访者供图)业主:不应由我们来为企业的错误买单除了婚房,还有人为了孩子上学方便在锦绣澜山峰誉庭购买了住房。黄女士与丈夫在苏州打工相识结的婚,婚后一直是租房居住,孩子出生后面临上小学的问题,为了孩子上学方便,他们借钱凑了首付,买了学校附近锦绣澜山峰誉庭的房子,现在他们只有一个要求,就是开发商能够将楼盘所在地块的土壤检测报告给他们看一下,让他们安心。“不应由我们为企业的错误买单。”王先生今年30多岁,十多岁从辽宁朝阳来到苏州打工,靠做电商赚到的第一桶金,一个人在外乡打拼多年,2021年,他攒够首付45万在锦绣澜山峰誉庭买了房子,终于在苏州安了家,陆家嘴集团和苏钢集团毒地纠纷发生后,他不敢将此事告诉父母,只能一个人独自承担。也有多名受访的锦绣澜山峰誉庭、锦绣澜山锦园的业主告诉记者,他们的诉求是退房,拿回购房款。锦绣澜山项目开发商宣传效果图11月4日,陆家嘴集团自发公告称,其花费超85亿元巨资、经过222轮竞价拿下苏州绿岸房地产开发有限公司95%股权后,发现其核心资产地块部分区域存在严重污染风险,因土壤污染问题,陆家嘴及其下属子公司将多家苏州政府机构、事业单位及国有企业告上法庭,涉案金额100.44亿元,目前已立案。但此后再未发声。11月10日,对于苏州绿岸项目“毒地”的纠纷,公众号“苏钢集团”发表情况说明称,在转让股权时,其已如实披露,提示了相关区域可能存在土壤污染风险并质疑陆家嘴施工作业不规范造成二次污染的行为。双方说法大相径庭,但目前仍未有任何一方向700多户已经购房的居民承诺,他们住宅土地没有健康风险,居民们也未看到14号地块和15号地块的土壤检测报告。
  • 中车戚墅堰所试验检测中心:汽车零部件缺陷类型及危害
    汽车由数以万计零部件组装而成,零部件是汽车发展的基础和重要组成部分,其性能优劣直接影响整车性能的优劣。核心零部件一旦出现质量问题,会给驾乘人员带来极大的安全隐患,因此汽车零部件检测对整车安全性起着至关重要的作用。本文将围绕汽车零部件的常见缺陷以及缺陷的危害进行阐述,以期为汽车零部件生产、质控与研究人员提供分析思路。一、汽车零部件缺陷类型汽车零部件从设计图样到制品,要经历一系列工艺流程,详见下图中7个节点。该流程中存在众多复杂因素,极有可能形成某种缺陷,若这些缺陷未被检测发现,或检测手段落后而发现不了,抑或技术标准不合理等,使得原本不应该流入市场的不合格品成为商品,从而成为在后续装配服役过程中失效的潜在因素。图1 汽车零部件工艺流程汽车零部件常见缺陷可以分为:设计缺陷、材料缺陷、制造工艺缺陷。如近日央视315晚会曝光的某品牌汽车,则是由设计缺陷导致变速箱腐蚀失效。图2 某品牌汽车变速箱腐蚀形貌以轴承和螺栓为例,其工艺流程如图3所示,复杂的工艺流程导致制造工艺缺陷呈现多样性,图4为不同制造工艺所对应的不同缺陷类型。产品出现质量问题,通过检测技术对缺陷类型进行表征,分析缺陷具体形成环节,往往是解决问题的基础。图3 汽车零部件工艺流程复杂导致缺陷的多样性图4 制造工艺及对应缺陷下面以螺栓失效为例,选取原材料、设计、热处理、机械加工和装配工艺不同因素导致失效的案例,对缺陷检测技术应用进行阐述。表1 螺栓失效案例案例零部件名称失效现象失效原因预防措施1节点连接螺栓发纹原材料缺陷1.提高原材料质量管理水平;2.加强磁粉探伤。2手动调整销氢脆断裂设计不当1.增加回火温度;2.电镀工艺之后需要加去氢处理。3缸盖螺栓氢脆断裂热处理工艺不当建议严格按照热处理工艺操作,并增加增碳试验检测。4风电螺栓疲劳断裂滚牙工艺不当严格按照滚牙模具管理规程,并使用体式显微镜进行抽检。5吊杆螺栓疲劳断裂装配工艺选用合适的弹性垫片防止预紧力松弛。案例1:原材料缺陷(节点连接螺栓表面缺陷分析)案例2:设计不当(手动调整销延迟性断裂原因分析)案例3:热处理缺陷(柴油机缸盖螺栓氢脆断裂)案例4:机加工缺陷——M16螺栓疲劳断裂原因分析案例5:装配工艺不当——某地铁齿轮箱吊杆螺栓断裂二、缺陷的危害汽车零部件缺陷危害极大,往往会影响零件使用可靠性,降低零件的力学性能,造成应力集中,促进氢脆与应力腐蚀等。缺陷与失效分析的关系(从废品、不合格品、商品三个角度)如下:1. 产品出厂前制造工艺过程中的废品分析,是由缺陷直接引起的失效;2. 因质量管控手段不足,使得原本不应流入市场的不合格品进入市场,并且其所含制造缺陷导致产品失效,是由缺陷直接或间接引起的失效;3. 产品设计、装配工艺或维护工艺不当导致的失效,则与缺陷无关。作者简介:潘安霞:中车戚墅堰机车车辆工艺研究所有限公司失效分析高级工程师,现任全国机械工程学会失效分析分会委员、中国中车技术专家,中车计量理化培训讲师,主要从事轨道交通行业齿轮、紧固件、弹簧等关键零部件失效分析研究工作,著有《紧固件失效分析与案例》。拓展阅读:中车戚墅堰所试验检测中心:汽车零部件缺陷表征技术
  • 树医叶建仁:让松材线虫病检测变得如此简单
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/012b3d42-f7a2-4dba-9536-0b3ca6af1363.jpg" title="NewsDataAction-3.jpeg"//pp style="text-align: center "叶建仁在实验室。王新年摄/pp  他让松材线虫病检测变得像用傻瓜相机一样简单/pp  叶建仁的脸庞因常年在野外林地风吹日晒而显得黝黑,只有身上的白大褂和儒雅的气质,让人觉得他像一位“医生”。/pp  采访叶建仁并不是件容易的事:他平均一个月出差3到5趟,刚从东北林场回来,又被聘为黄山防治病虫害的首席技术专家,还没顾得上歇息,又扎进了实验室。在各种仪器操作声中,他一边注视着手中的玻璃器皿,一边指导他的学生观察和记录变化,里面是团队成员采集回来的线虫样本。/pp strong 40年间不忘树医的职责使命/strong/pp  “我国是世界上森林病虫害发生率最高的国家,身为一名‘树医生’,使命不敢忘!”在南京林业大学林学院实验室,面对三获国家科技进步奖的荣誉,叶建仁这样说。/pp  松树是我国种植最广泛、最常见的树木之一。然而,在过去数十年间,松材线虫病一直危害着广袤松林,其防控成了世界性难题。/pp  1978年,叶建仁考入南京林业大学前身——南京林产工业学院。大学毕业后,他考上本校森林病理学专业的研究生,师从李传道教授。/pp  “在幅员辽阔的国土上,数百种树木都有不同的特征性质,各种病害原因各不相同。”叶建仁解释,我国的森林覆盖率从新中国成立初期的8.6%发展到当前的21.66%,人工林面积比例很高,但也导致树种单一、树龄单一、生物多样性脆弱,一旦出现病虫害就容易流行。/pp  40年间,叶建仁不忘“树医生”的职责使命,他在广阔森林种下的梦想种子开花结果,见证并亲历着我国森林病理学逐渐赶超的过程。/pp  strong培育基因库,检测技术从无到有/strong/pp  “以前,山上栽满了郁郁葱葱的松树,但却因为一场突如其来的病虫害而大片枯死。如今一到冬天,新栽的落叶树木再也没有了昔日的绿意。”叶建仁指着窗外的紫金山,遗憾地说。/pp  那是1982年,南京中山陵一些松树得了松材线虫病。感染上这种病症,松树的水分输导系统就会被摧毁,两个月内便不治而亡。/pp  “这种病害发源地在美国,但当地松树在长期物竞天择、基因改良中相安无事。”叶建仁告诉记者,30多年来,这种外来有害生物已蔓延至全国近20个省份300多个市县。如果不加以干预,九成以上的松树将会受到感染,林业将遭受严重打击,甚至威胁到国土生态安全。/pp  雪上加霜的是,当时没有对病害的有效检测手段。有些地方只能用肉眼观察,不乏难以辨别的。很多情况下,对从疫区来的木材制品的检疫只能是形同虚设。/pp  “找到松材线虫有别于其他虫的基因序列,在检测时就可以准确高效。但这项工作要比想象中艰难得多。”叶建仁解释说,为培育出世界上最大的松材线虫活虫基因库,他和队员频繁地深入各个疫区,采集到300多个虫株,随后反复开展试验,直到找出特异性基因片段。/pp  叶建仁相信,做研究要经得起坐冷板凳。从2000年开始,他带领团队历时6年,终于研制出了关键防控技术——松材线虫病分子检测鉴定技术,结束了检测基本靠形态学肉眼判断的历史,并获得2008年度国家科技进步二等奖。/pp strong 让一线工人也能轻松分辨松材线虫/strong/pp  “我们不可能要求一线的工人像实验室里的博士那样,完成一整套实验。”基因序列的检测手段,由于需要较高的学术性和技术含量,在基层应用上碰到了许多困难。叶建仁琢磨,能不能有一种技术,像傻瓜相机一样简单,只要按下快门,就可以拍摄出好照片?/pp  2009年,叶建仁着手开始新一轮攻关,他与科技公司合作,将检测鉴定技术升级改良为“松材线虫专项自动化检测系统”,时间也从原来的9到25小时缩短为2小时,让现场检验成为可能。两年后,他和团队又研发出松材线虫恒温检测技术,检测仪器成本也从30万元降到1万元以内。/pp  记者在现场看到,一个只有文具盒大小的仪器,却有着神奇功能:如果检测结果是该病,就会出现两道红线,即便是没有专业知识的人员也能轻松分辨。/pp  “就像检测牛奶抗生素那样直观简单,在县里也能用起来啦!”一位基层工作人员坦言,这项革新使松材线虫病变得可防可控,大大降低了潜在损失。/pp  目前,这项技术已在全国18个省份推广,并建立了70多个检测鉴定中心,松材线虫病扩散速度得以大幅降低。今年初,叶建仁主持完成的科研成果“中国松材线虫病流行动态与防控新技术”获2017年度国家科技进步二等奖。/pp  叶建仁还将很多精力放在教书育人上。这些年,他培养出140多名硕、博研究生,并坚持给本科生上课:“希望更多的有志青年投身到森林病虫害研究中,为生态保护贡献一份力量。”/p
  • 松下研发出1小时即可完成检测的基因检测芯片
    松下与比利时微电子研究中心(IMEC)共同开发出了1小时即可完成检测的全自动小型基因检测芯片。该芯片可利用数&mu L血液来检测SNP(Single Nucleotide Polymorphism,单核苷酸多性态)等基因信息。SNP是指不同个体的基因组存在不同种类的碱基,通过检测SNP,可诊断有无遗传病及将来患遗传病的危险率,并可确定与疾病相关的基因。   以前的全自动基因检测装置大都是大型装置,大多采取将检体送到专门的检测机构进行分析的方法。因此,检测结果要等待数天到1周左右的时间才能得知。而此次开发的芯片则不同,包括前处理工序在内只需1个小时即可完成检测,因此在临床现场,医生可当场对患者用药及发病风险做出判断。  此次开发的芯片集成了从微量血液中提取并放大DNA,进行SNP判断的功能。具体而言,在约9cm2的芯片上集成了输送血液及药液的超小型泵、DNA提取及放大部分、高精度滤膜以及高灵敏度传感器等。  为实现该芯片而新开发的必要技术大致有以下三项。  (1)使用导电性聚合物致动器的超小型高压泵  通过在硅基板上层积聚合物薄膜,开发出了可在层积方向大幅伸缩的聚合物致动器,实现了通过移动隔膜来输送液体的隔膜泵。该聚合物致动器可产生最大超过300个大气压的压力,能够在微流路中轻松实现包括向筛选DNA的高精度滤膜注入液体在内的溶液移动。此外还实现了可用电池驱动的低电压(1.5V)工作。  (2)高速PCR技术  进行基因诊断时,需要从DNA上取出含SNP的区域,并使其增至一定数量,一般使用名为PCR(Polymerase Chain Reaction,聚合酶链式反应)的方法来放大DNA,但是,原来的PCR法放大DNA需要2个小时。因此,研究人员使用导热性好的硅基板,优化了隔离周围热量的手段,提高了升降温的温度追随性,同时还实现了通过小液量来引起PCR反应的构造。通过这些措施将放大DNA所需要的时间缩短到了15分钟以内。  (3)高精度、高灵敏度的电化学传感器  以电气方式识别SNP时,需要使用在电极上固定有识别用人造DNA的昂贵的特殊电极。此次凭借新开发的传感器,无需在电极上固定识别用人造DNA,能够以溶解在微量(约0.5&mu L)药液中的状态,电气性地识别SNP。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 123项行业计量技术规范报批,涉及9大行业,上百款仪器
    近日,工信部对《化学转化法低露点湿度发生器校准规范》等123项行业计量技术规范报批进行公示,公示截止日为2021年9月20日。本次公示的行业计量技术规范涉及兵工民品7项目、电子行业24项、纺织行业8项、机械行业23项目、建材行业14项、轻工行业19项、石化行业17项、通信行业6项和有色金属5项,涉及上百款仪器的校准规范。如对报批的行业计量技术规范有不同意见,请在公示期间填写《行业计量技术规范报批稿反馈意见表》(附件2)并反馈至工业和信息化部科技司,电子邮件发送至gaopengfei@miit.gov.cn(邮件主题注明:计量规范报批稿公示反馈)。这些标准将于2021年12月1日实施。以下为报批的标准,技术规范编号技术规范名称JJF(石化)041-2021化学转化法低露点湿度发生器校准规范JJF(石化)042-2021加油站油气回收测试仪校准规范JJF(石化)043-2021自热物质试验仪校准规范JJF(石化)044-2021液体氧化性试验仪校准规范JJF(石化)045-2021微量闭口闪点仪校准规范JJF(石化)046-2021化学品金属腐蚀性试验装置校准规范JJF(石化)047-2021氟化氢气体检测报警器校准规范JJF(石化)048-2021橡胶或塑料软管及软管组合件用无曲挠脉冲试验机校准规范JJF(石化)049-2021落球回弹测定仪校准规范JJF(石化)050-2021橡胶快速塑性计校准规范JJF(石化)051-2021力车胎里程试验机校准规范JJF(石化)052-2021漆膜流挂仪校准规范JJF(石化)053-2021间隙式湿膜制备器校准规范JJF(石化)054-2021润滑油泡沫特性测试仪校准规范JJF(石化)055-2021润滑油高剪切锥形塞黏度计校准规范JJF(石化)056-2021微量法残炭测定器校准规范JJF(石化)057-2021气体中微量硫色谱分析仪(火焰光度法检测器)校准规范JJF(有色金属) 0001-2021慢应变速率应力腐蚀试验机校准规范JJF(有色金属) 0002-2021激光诱导击穿光谱仪校准规范JJF(有色金属) 0003-2021周期浸润试验箱校准规范JJF(有色金属) 0004-2021材料力学性能测试用非接触式视频引伸计校准规范JJF(有色金属) 0005-2021有色金属材料用多维探测器X射线衍射仪校准规范JJF(建材)176-2021低辐射镀膜玻璃膜面辐射率测试仪校准规范JJF(建材)177-2021低辐射镀膜玻璃面电阻测试仪校准规范JJF(建材)178-2021建筑材料不燃性试验装置校准规范JJF(建材)179-2021铺地材料临界热辐射通量测定装置校准规范JJF(建材)180-2021智能坐便器温升及水温稳定性试验机校准规范JJF(建材)181-2021制动衬片压缩热膨胀试验机校准规范JJF(建材)182-2021建材产品挥发物检测用环境测试舱校准规范JJF(建材)183-2021密封材料蠕变松弛率测定仪校准规范JJF(建材)184-2021塑料管材耐压爆破试验机校准规范JJF(建材)185-2021基于微型热导检测器的便携式气相色谱仪校准规范JJF(建材)186-2021智能坐便器寿命试验机校准规范JJF(建材)104-2021水泥净浆搅拌机校准规范JJF(建材)123-2021行星式胶砂搅拌机校准规范JJF(建材)124-2021水泥胶砂试体成型振实台校准规范JJF(机械) 1056-2021残余应力超声检测仪校准规范JJF(机械) 1057-2021机动车转向机器人校准规范JJF(机械) 1058-2021重型汽车远程排放监测系统校准规范JJF(机械) 1059-2021机械手超声检测系统校准规范JJF(机械) 1060-2021机动车便携式排放测试系统(PEMS)校准规范JJF(机械) 1061-2021工频大电流测量系统校准规范JJF(机械)1062-2021绝缘油介电强度测试仪校准规范JJF(机械)1063-2021交流、直流、雷电冲击、通用分压器测量系统校准规范JJF(机械)1064-2021运动场地材料冲击吸收和垂直变形试验机校准规范JJF(机械)1065-2021汽车专用三维H点假人装置(HPM)校准规范JJF(机械)1066-2021超声显微镜性能校准规范JJF(机械)1067-2021霍尔电流传感器校准规范JJF(机械)1068-2021车辆倾翻试验台校准规范JJF(机械)1069-2021钢球直径检查仪校准规范JJF(机械)1070-2021氧化锌避雷器直流参数测试仪校准规范JJF(机械)1071-2021机动车淋雨试验间校准规范JJF(机械)1072-202140kV及以下冲击全波电压试验装置校准规范JJF(机械)1073-2021电力线感应/接触试验发生器校准规范JJF(机械)1074-2021水泵综合性能试验标准装置校准规范JJF(机械)1075-2021单颗粒抗压强度测定仪校准规范JJF(机械)1076-2021磨料堆积密度测定仪校准规范JJF(机械)1077-2021弹性元件特性仪校准规范JJF(机械)1078-2021轴承套圈宽度和油沟深度测量仪校准规范JJF(轻工)145-2021自行车专用量规校准规范JJF(轻工)146-2021自行车检测专用模拟器校准规范JJF(轻工)147-2021自行车盐雾试验箱校准规范JJF(轻工)148-2021自行车专用负荷试验砝码校准规范JJF(轻工)149-2021自行车专用角度量具校准规范JJF(轻工)150-2021整鞋剥离强度试验仪校准规范JJF(轻工)151-2021鞋类耐磨试验机校准规范JJF(轻工)152-2021皮革摩擦色牢度试验机校准规范JJF(轻工)153-2021鞋类橡胶部件喷霜试验箱(臭氧法)校准规范JJF(轻工)154-2021鞋类防滑性能测试仪校准规范JJF(轻工)155-2021鞋跟连续冲击试验机校准规范JJF(轻工)156-2021安全鞋鞋底抗刺穿试验机校准规范JJF(轻工)157-2021背胶剥离强度测试仪校准规范JJF(轻工)158-2021球形耐破度试验仪校准规范JJF(轻工)159-2021生活用纸及纸制品掉粉率测定仪校准规范JJF(轻工)160-2021生活用纸及纸制品可分散性测定仪校准规范JJF(轻工)161-2021家用新风机性能检测装置校准规范JJF(轻工)162-2021电坐便器便座电性能及舒适性检测装置校准规范JJF(轻工)163-2021洗碗机性能检测装置校准规范JJF(纺织)097-2021纤维比电阻仪校准规范JJF(纺织)098-2021振弦式纤维细度仪校准规范JJF(纺织)099-2021棉花分级室模拟昼光照明校准规范JJF(纺织)100-2021纺织品防静电性能电阻测试仪校准规范JJF(纺织)101-2021杠杆式土工合成材料厚度仪校准规范JJF(纺织)102-2021土工布动态穿孔测定仪校准规范JJF(纺织)103-2021曲面摩擦色牢度仪校准规范JJF(纺织)104-2021纺织品恒温恒湿实验室温湿度校准规范JJF(兵工民品)0004-2021原子吸收光衰减器校准规范JJF(兵工民品)0005-2021阿贝折射仪检定用低压钠灯光源校准规范JJF(兵工民品)0006-2021转角扭矩扳子校准规范JJF(兵工民品)0007-2021流量计式气体减压器校准规范JJF(兵工民品)0008-2021折射率法冰点仪校准规范JJF(兵工民品)0009-2021赞恩杯粘度计校准规范JJF(兵工民品)0010-2021旋转蒸发器校准规范JJF(电子)0056-2021网络实时动态差分接收机校准规范JJF(电子)0057-2021数字电视测试接收机校准规范JJF(电子)0058-2021航空无线电导航信号综测仪校准规范JJF(电子)0059-2021长线天线法暗室等效场强校准规范JJF(电子)0060-2021半导体工艺用安时计现场校准规范JJF(电子)0061-2021半导体直流参数验证件校准规范JJF(电子)0062-2021事件顺序记录系统(SOE)测试仪校准规范JJF(电子)0063-2021半导体激光器控制器校准规范JJF(电子)0064-2021二极管反向恢复时间测试系统校准规范JJF(电子)0065-2021固体继电器测试仪校准规范JJF(电子)0066-20212MHz以下通信电缆测试仪校准规范JJF(电子)0067-2021超高阻微电流测量仪校准规范JJF(电子)0068-2021音频功率放大器校准规范JJF(电子)0069-2021手持式雷达目标速度模拟器校准规范JJF(电子)0070-2021表面离子污染度测试仪校准规范JJF(电子)0071-2021电梯平衡系数检测仪校准规范JJF(电子)0072-2021非接触涡流法半导体晶片电阻率测试系统校准规范JJF(电子)0073-2021汽车电点火干扰模拟器校准规范JJF(电子)0074-2021防雷元件测试仪校准规范JJF(电子)0075-2021标准电容损耗箱校准规范JJF(电子)0076-2021模拟断路器校准规范JJF(电子)0077-2021晶体管特征频率测试仪校准规范JJF(电子)0078-2021电子用稳定性试验台校准规范JJF(电子)0079-2021锂离子电池重物冲击试验机校准规范JJF(通信) 052-20215G移动通信综合测试仪校准规范JJF(通信) 053-2021增强机器类通信(eMTC) 综合测试仪校准规范JJF(通信) 054-2021分布式光纤应变和温度测试仪校准规范JJF(通信) 055-2021传导骚扰抗扰度测试仪校准规范JJF(通信) 018-2021时间综合测试仪校准规范JJF(通信) 005-2021网络损伤仿真仪校准规范附件:1.123项部门计量技术规范编号、名称、主要内容等.zip2.行业计量技术规范报批稿反馈意见表.docx
  • 从此告别复杂分析,安捷伦铝膜原位测试方案让微塑料检测轻松易行!
    为了进一步解决微塑料测试过程中操作复杂耗时的问题,且实现环境样品大规模实时监测研究的可行性,安捷伦最新推出了 8700 LDIR 红外成像搭配镀铝滤膜(0.8um, 25mm)进行微塑料原位分析的解决方案。该方案在保证测试结果精确度的同时,将进一步简化用户样品前处理的工作流程。镀铝滤膜安装及过滤流程使用镀铝滤膜(0.8um, 25mm)搭配小孔玻璃砂芯真空抽滤装置,对前处理完的样品进行直接过滤,并使用不含微塑料的水(提前过滤处理)冲洗瓶子和漏斗的内部各一次,尽量确保将瓶内的所有微塑料收集到。抽滤完成后,将滤膜自然晾干后安装到滤膜支架上,并尽量保持滤膜表面的平整度。具体操作流程如图 1 所示:图 1. 样品抽滤装置及滤膜过滤安装流程为保证滤膜的平整度,请使用提供的镊子对滤膜进行转移。与镀金滤膜相比,涂层的硬度增加使得镀铝滤膜不易折叠,用户能更加轻松地将其放置到滤膜支架上。使用 8700 LDIR 红外成像原位测试镀铝滤膜上微塑料颗粒为对比仪器测试结果的精度及准确性,我们使用了自动测试和手动计数方式来评估 LDIR 对镀铝滤膜上颗粒的检测能力。将 20µ m 透明聚苯乙烯微球悬浮于 10mL 无水乙醇中,然后使用镀铝滤膜直接进行过滤后上机测试,并对测试结果进行如下对比。LDIR 利用 1442 cm-1 对目标测试区域进行快速成像,软件对成像区域内的颗粒进行自动识别对上述同一测试区域生成的可见光图像进行高倍放大后,利用人眼手动计数的方式识别颗粒如图 2 所示,使用软件自动检测流程共测试出 31 个颗粒,而在可见光图像中通过人眼仅能识别出 30 个颗粒。结果表明,LDIR 对镀铝滤膜上的颗粒具有优异的检测能力。与容易出错的可见光图像颗粒检测方法相比,基于红外成像的自动颗粒检测方法的测试结果更加便捷精准,且大大提高了工作效率并降低了小颗粒人眼识别的辨别难度。图 2. 同一目标测试区域采集的两张图像。(A)通过固定波数红外成像图自动识别的微塑料颗粒总数;(B)通过高倍放大可见光图像人眼手动识别的微塑料颗粒总数颗粒数、粒径及定性结果数据重现性对比我们使用 Clarity 软件中的微塑料颗粒自动分析测试流程,从颗粒数、粒径和定性统计结果三个方面综合评价了 LDIR 测试镀铝滤膜样品的结果重现性。在不移动样品的情况下,对直径为 9mm 的圆形区域共进行了 10 次测量。从测试结果看,检测到的微塑料颗粒数的总平均值为 407 个,10 次运行之间的差异性 1%(如图 3A)。基于粒径范围和聚合物鉴定的颗粒数重现性显示出相似的性能,10 次运行的差异性 1%(如图 3B 和图 3C)。以上结果均证实 LDIR 对镀铝滤膜上微塑料的测试结果具有良好的可靠性和准确度。图 3. 使用 LDIR 自动颗粒分析工作流程,对同一测试区域进行 10 次重复测试结果的重现性对比。(A)颗粒总数重现性;(B)粒径范围颗粒数重现性;(C)定性统计结果重现性粒径准确度对比由于微塑料研究中准确的粒径测定对于获得可靠且有意义的结果至关重要,因此对粒径测定数据的准确度进行了评估。通过监测 NIST 可溯源的 50 µ m 和 20 µ m 聚苯乙烯微球,来考察镀铝滤膜上样品测试颗粒粒径的准确度。如图 4 所示,检测到 37 个 50 µ m 的微球,它们的平均粒径为 55.10 µ m,标准偏差为 3.67 µ m;检测到 223 个 20 µ m 的微球,它们的平均粒径为 22.9 µ m,标准偏差为 2.3 µ m。这些结果表明,使用 LDIR 自动颗粒分析工作流程能够在镀铝滤膜上实现准确的粒径测定,且差异极小。图 4. 使用自动颗粒分析工作流程得到的粒径统计结果。其中(A)为 50 µ m NIST 微球粒径分布统计结果;(B)为 20 µ m NIST 微球粒径分布统计结果大样本研究对于全面了解微塑料污染物对环境和健康的影响以及制定减少微塑料污染影响的策略至关重要。与其他技术相比,使用 8700 LDIR 红外成像直接分析滤膜上的微塑料颗粒能够大幅减少样品处理,降低样品污染的可能性并提高样品通量,使实验室能够在更短时间内表征更多数量的样品。点击下载:利用 8700 LDIR 激光红外成像系统分析镀铝滤膜上的微塑料 (agilent.com.cn)
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 升级版DGB-402A型便携式余氯/总氯测定仪——轻松搞定医疗废水中的余氯检测
    面对来势汹汹的奥密克戎病毒,涉疫重点场所废水消毒是重中之重,要严格按照要求做好涉疫重点场所废水消毒,充分考虑不同疫情形势下涉疫废水处置方式,确保在极端情况下涉疫废水得到有效处理,余氯含量保持在6.5-10mg/L之间。但是过量加入消毒剂会影响水环境并破坏城镇污水处理系统,面对治疗和防护过程中源源不断产生的医疗废水,如何及时、有序、高效、无害化的检测及处理? 序号项目详情1依据新型冠状病毒污染的医疗污水应急处理技术方案(试行)2场所接收肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)以及相关单位3消毒剂液氯、二氧化氯、氯酸钠、漂白粉或漂白精4要求有效氯投加量为50mg/L:消毒接触池的接触时间≥1.5小时,余氯量大于6.5mg/L(以游离氯计)有效氯投加量为80mg/L:接触时间为1.0小时的,余氯大于10mg/L(以游离氯计) “雷磁”2022年新上市的升级版DGB-402A型便携式余氯/总氯测定仪,采用DPD法测量原理,内置锂电池续航能力强,内置校准曲线,一键校零,一键完成测量,标配手提箱和配套检测试剂。与旧版相比,简单易用,极大地方便现场操作人员的工作,已经在一线生态环境检测机构和医疗机构得到应用。 型号名称升级版DGB-402A型便携式余氯/总氯测定仪旧版DGB-402F便携式余氯/总氯测定仪产品照片基本误差≤±0.03 mg/L 或 ±5%≤1mg/L:±0.05 mg/L;>1mg/L:±5%重复性≤1%≤2.5%供电内置锂电池5号碱性电池*4尺寸/重量80*190*60mm,0.35kg85*230*50mm,0.4kg比色管比色瓶,φ25*60(具有2/5/10ml刻度线及定位标志)16mm 直径比色管,5只,φ16*100mm防护箱310*245*110 mm470×350×130 mm测试过程:1. 开机后等待约30秒,让光源稳定下来。2. 用水样清洗比色瓶三次。3. 向比色瓶中加入10mL水样,将比色瓶放入仪器中。按“□”键进行清零。若水样中余氯或总氯浓度超过仪器量程,比色瓶中自带2mL、5mL、10mL刻度,则取适当水样,用无氯水稀释至10mL进行显色。最终水样浓度将仪器测量浓度乘以稀释倍数即可。4. 取出比色瓶,加入试剂包(测量余氯和总氯需加入相对应的试剂包),盖好瓶盖,摇晃比色瓶使显色剂溶解。上下颠倒比色瓶,消除气泡后放入仪器。按“√”键开始测量,约几秒后直接读取测试结果。5. 测试完的比色瓶应立即用纯水清洗。 疫情期间,废水检测的一线检测人员工作人员,在取样和检测过程中一定要做好防疫防护,检测完成后也需要对检测仪器及配套配件进行消杀,确保安全。
  • 松材线虫检测行业标准正式发布
    7月1日,经国家认证认可监督管理委员会审定批准,由北仑检验检疫局负责起草的行业标准《松材线虫实时荧光PCR检测方法》正式实施。北仑局负责起草的松材线虫实时荧光PCR检测方法标准,通过研磨样品,提取松材线虫的DNA,进行实时荧光PCR试验,能对单条线虫进行检测,目前检测成功率为100%,且不论是雄虫、雌虫或幼虫均能检测出来,整个检测过程仅需2个半小时。该标准的实施填补了单条线虫检测标准的空白,对提高疫情检出率,有效防止有害生物的传入和传出,保护农林业生产安全,促进对外贸易,都有重要意义,具有明显的社会经济效益。  松材线虫是危害松树特别是赤松和黑松的毁灭性线虫病害,是植物线虫中能迅速传播、迅速危害致死寄主的罕有线虫种,也是现知罕有的以另一种动物为宿主迁移传带的植物线虫。此线虫现已被世界各国列为对外检疫对象,我国的浙江、江苏、安徽、四川、广东、上海、香港、台湾等地均有发现,由于其具有寄主广泛、繁殖快、发病迅速、传播途径广、防治难度大等特点,近年来对我国的松林资源,自然景观和生态环境造成了严重的破坏。虽然目前与松材线虫相关的标准较多,但仅1个国家标准与检测有关,已发布的2项行业标准均是采用形态学来鉴定,检测上容易造成误判、漏判,且无法对单条线虫进行准确判定。口岸检测时经常遇到样品中线虫较少的情况,如果采用原有的检测方法,难以满足快速、准确、灵敏鉴定的工作需要,不符合当前快速通关的要求。
  • 滨松UV-NIR绝对量子产率测试仪Quantaurus-QY Plus面世
    滨松近期推出了新一代UV-NIR绝对量子产率测试仪Quantaurus-QY Plus。新产品突破了传统技术无法测试300nm-1650nm大范围量子产率的瓶颈,实现了紫外-近红外(300nm-1700nm)发射光探测范围的覆盖。同时配备了高能氙灯、980nm固体激光器(可根据客户需求,配置其它波长激光器)及多通道背照式CCD探测器。以此,有效解决了上转换荧光量子产率难以测试的问题。Quantaurus-QY Plus具有极高的灵敏度,低至1%以下的量子产率也轻松测得,并精确至0.01%。可广泛用于固体、液体材料的上转换发光,单线态氧测试及光化学机理研究等。紫外-近红外绝对量子产率测量仪Quantaurus-QY Plus
  • 乳品企业需要分析仪器行业不断技术革新——访圣元国际集团检测技术总监宋晓丹先生
    p  strong仪/strongstrong器信息网讯/strong 近日《婴幼儿配方乳粉产品配方注册管理办法(试行)》(征求意见稿)(以下简称:《注册管理办法》)出台,人们的目光又聚焦到中国的乳制品行业。国家对乳制品行业如何布局?今后的乳制品行业将会发生哪些变化?对检测仪器有哪些更高的需求?带着这些问题,仪器信息网采访了圣元国际集团检测技术总监宋晓丹先生。Waters公司食品和环境高级市场经理黄春陪同参加本次采访活动。/pp style="TEXT-ALIGN: center"img title="IMG_8456_副本.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/28e4e5eb-3fe0-4f60-b893-66f85796109c.jpg"//pp style="TEXT-ALIGN: center"img title="IMG_8458_副本.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/c6d07cfb-9f30-4a4e-99ad-fff175f86c21.jpg"//pp style="TEXT-ALIGN: center"strongspan style="COLOR: #366092"圣元国际集团检测技术总监宋晓丹先生/span/strong/pp  strong国家布局加大对婴幼儿配方乳粉中营养成分的检测/strong/pp  谈到目前国内乳制品行业现状,宋晓丹说道,“今天可以负责任讲,中国的婴儿奶粉监管是全世界最严的,中国婴儿奶粉企业的食品安全管理能力是全世界最强的。我们所有的婴儿奶粉企业,包括乳品企业,食品安全检验项目是全世界最多的。”,“即便现在我们在食药总局网站上还能看到有一些企业还有这样那样的不合格”,但“没有一个是食品安全风险,它只是一个标签的标识错误,营养素的含量是不是完全达标,但都没有安全风险,这个就是我们的进步。证明中国政府和企业对乳品的质量管理是极其严格的,我们消费者都应该放心饮用中国的乳制品。”/pp  安全已经不是中国乳制品最大的问题,那么乳制品的营养呢?宋晓丹介绍道:“70-80年代中国的奶粉只有全脂奶粉和全脂甜奶粉。牛奶直接干燥就是全脂奶粉,但是这种奶粉有个缺点就是不易溶。在其中加入蔗糖帮助乳粉溶解,就是全脂甜奶粉。后来国际交流多了,发现我们的孩子,尤其是没有母乳吃全脂甜奶粉的孩子体质不如别人。我们寻找原因,添加各种营养成分研发了自己的婴幼儿配方奶粉。”/pp  参照母乳在原料奶中添加各种营养元素生产的奶粉,也就是现在的婴幼儿配方乳粉。乳制品尤其是婴幼儿乳粉中的营养成分含量是衡量产品质量的关键指标,即将出台《注册管理办法》中规定企业要将生产婴幼儿配方乳粉使用的所有原辅料及其使用量,以及产品中营养成分的含量均需登记在册。/pp  国家开始布局,加大对婴幼儿配方乳粉中营养成分的全面监测。/pp  strong乳清蛋白成婴幼儿配方乳粉中营养成分检测热点/strong/pp  在婴幼儿配方乳粉营养成分中,乳清蛋白含量是一个很重要的指标。乳清蛋白十分易于婴幼儿吸收,改善婴幼儿体质。但是牛乳中乳清蛋白要远远低于母乳,国家为了保证婴幼儿奶粉质量,提供足够的营养,规定婴幼儿配方乳粉中乳清蛋白和酪蛋白之比为6:4。乳企需要大批采购乳清蛋白以提高产品乳清蛋白含量。/pp  然而乳清粉造价很高,乳清蛋白检测却是一个难题。/pp  国家在1997年出台了采用电泳的方法检测乳清蛋白含量。宋晓丹评价道,这个方法对检测人员的技术能力、实证性要求高,做成功的人不多,真正能精确定量的不多。在这种情况下,一些供应商用低含量乳清蛋白原料代替高含量乳清蛋白,给乳企的质量管控带来巨大的挑战。无独有偶,近年来羊奶粉已经逐渐成为婴儿奶粉市场上新利润增长点。而羊乳清蛋白原料价格远远高于牛乳清蛋白原料,差价更是达到4倍之巨。为了防止企业减少生产成本,使用牛乳清蛋白加羊酪蛋白的方式生产所谓的羊奶粉产品,国家在即将出台的《注册管理办法》中规定:婴幼儿配方乳粉原料为羊乳(粉)的,产品名称可标注为婴幼儿配方羊奶粉,并应当在配料表中标明每100g产品中羊乳(粉)所占比例,以及乳清蛋白来源。就是为了严格防止乳制品中乳清蛋白含量造假问题。/pp  strong乳清蛋白检测技术革新将掀起仪器采购热潮/strong/pp  近期国内科学家成功寻找到乳清蛋白特异性肽段,应用液质联用仪建立了乳清蛋白的定性和定量的检测方法,据此制定的婴幼儿配方食品和乳粉中乳清蛋白测定的新国标也已发布了征求意见稿。/pp  宋晓丹高度评价这种乳清蛋白检测方法,他说,这个检测方法是中国人的独创,革命性创新的检测方法,具有我们中国人自己的知识产权。曾有位院士对这个方法的评价说,这个创新代表着中国最高水平的检验技术的创新,将分子生物学技术引入到我们日常的食品营养检测,开创了中国食品组学的一个先例,把几十年困扰我们的检验技术问题解决掉了。/pp  宋晓丹说:“圣元作为这个方法的支持者,一直在跟进,很早就开始用这种方法做乳清蛋白的检测。圣元用这个方法挽回了不少损失,有些供应商用低含量乳清蛋白粉代替高含量乳清蛋白粉,我们在原料入厂检测中就把它抓住了。这个方法还没有成为国标的时候,我们就把它引进到实验室里。这要感谢科学家的创新技术,同时也要感谢Waters公司有这么好的色谱柱分离,同时有这么好的质谱检测器把它检测出来。”/pp  strong乳制品企业效率的提高,很大程度上取决于仪器企业技术的革新/strong/pp  如何保证乳制品质量安全,宋晓丹说,就是认真、坚持。目前圣元每天做100多个样品,在这么高强度任务下,需要检测仪器一直保持数据的稳定和精准。同时仪器厂商开发的新技术,能否提升我的检验能力和检验效率也是合作的前提。他举例说,在2004年的时候,Waters在全世界推出了超高效液相色谱仪(UPLC),我们公司在07年采购了这套分析仪器。当时Waters一位工程师做了一个维生素A的检测试验。维生素A和维生素D在食品营养成分中是比较难做的项目。当时做出结果来只花了2分钟,而传统的检测时间要20到30分钟才出结果,效率大幅提高,我们当时就选择了与Waters合作。到后来采购的合相色谱、进样管理器等,这些对我们企业检测来说,都有很好的帮助。而且仪器非常的耐用,我们在使用过程中24小时不停机,它依然能保持数据的精准和稳定。/pp  对检测仪器的选择,宋晓丹概括说,“圣元采购仪器,我的原则就是买东西要值。他的产品技术是否对我的工作推动有帮助。我会根据不同仪器公司的特点,选择最优的仪器,他的产品和技术帮助我提升了我的检验能力和检验效率,这个是我跟仪器公司合作的前提。”/pp  strong仪器公司为乳品企业保驾护航/strong/pp  沃特世公司食品和环境高级市场经理黄春补充道:“从宋总的介绍中,我们看到圣元这类大型的国内乳品企业已经有了很成熟的管理体系和成功的经验,但是,在检验方法和能力上还有挑战。面对越来越高这些食品企业要求,我们期望不断推出新产品、新的解决方案,来帮助圣元这类用户,应对这些挑战。例如在企业日常质量监测中,我们开发出了简单、灵敏、遵从法规的四极杆质谱农药、兽药筛查库 在食品营养、风味研究方面,我们提供了从前处理到检测、实验室数据处理一整套方案。宋总刚提到的牛、羊奶鉴别、品牌保护等这些问题,Waters一方面和专家们进行方法研究上的合作,还将方法转化成圣元这类乳品企业实用的工具。 Waters公司一直以来信奉的宗旨就是:保证客户的成功。我们期望通过加强与用户的沟通,提供真正实用的解决方案,最终让所有的消费者受益。”/pp style="TEXT-ALIGN: center"img title="IMG_8460_副本.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/f289086d-17dd-4be3-b552-f5946c036b6d.jpg"//pp style="TEXT-ALIGN: center"strongspan style="COLOR: #366092"合影/span/strong/pp style="TEXT-ALIGN: right"span style="COLOR: #000000"strong撰稿:孙立桐/strong/spanstrongspan style="COLOR: #366092"/span/strong/pp  strong关于圣元国际:/strong/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"圣元国际集团(Synutra International Inc.,以下简称“圣元”)于1998成立于青岛。2002年在青岛投资兴建成了中国乳制品行业第一个符合GMP药厂标准的现代化生产厂,2005年又是第一家在纳斯达克主板成功上市的中国婴幼儿食品企业。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  圣元公司专注于奶粉、婴幼儿辅食等营养食品的研发、生产、销售和售后全系列服务。经过十七年的努力,已经成为中国母婴营养食品领域的重要品牌之一。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  圣元拥有具备国际化视野的儿科、营养及食品加工等专业的团队,与中国顶级专家合作开展了中国母乳脂肪酸成分研究项目,持续不断地为中国的妈妈和宝宝研发生产最好的配方和营养食品。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  目前,圣元(中国)工厂已建立了较为完善的产品质量追溯系统,实现了“来源可追溯,去向可追查,责任可追究”,从原材料到消费者、从消费者到原料的全程双向追溯。正在建设中的圣元(法国)工厂,质量管控会按照中国婴幼儿奶粉建厂标准和欧盟国家生产药品的双重高级别要求进行严格要求,工厂追溯系统将会更系统、更完善,数据采集更信息化,实现在线数据采集自动上传,工厂的信息平台与奶源供应商的信息平台直接对接,实现对牧场奶源信息的溯源。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  专业关注婴幼儿的营养健康,为中国妈妈宝宝提供全方位服务始终是我们的理想追求。圣元——为儿童健康水平的提高持续做出不懈的努力。/span/pp /p
  • 应用案例 | T型光声池的光声光谱技术用于同时检测基于三重共振模态的多组分气体
    近日,来自西安电子科技大学、哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室的联合研究团队发表了《T型光声池的光声光谱技术用于基于三重共振模态的多组分气体的同时检测》论文。Recently, the joint research team from School of Optoelectronic Engineering, Xidian University, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality 油浸式电力变压器是现代电力分配和传输系统中最重要的绝缘设备之一。通过同时测量绝缘油中的溶解气体,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在电力变压器的过热、电弧和局部放电故障的早期诊断中提供合适的解决方案。变压器故障主要可分为过热故障和放电故障。CO、CH4和C2H2的含量变化是变压器故障的主要指标。过热故障包括裸金属过热、固体绝缘过热和低温过热。裸金属过热的特征是烃类气体(如CH4和C2H2)浓度的上升。上述两种气体的总和占总烃类气体的80%以上,其中CH4占较大比例(30 ppm)。CO的浓度(300 ppm)强烈指示固体绝缘过热和变压器故障中的低温过热。当变压器处于放电故障时,C2H2会急剧增加(5 ppm,占总烃类气体的20%-70%)。因此,本研究选择CO、CH4和C2H2作为目标分析物。传统的多组分气体定量检测方法,如气相色谱仪、半导体气体传感器和电化学传感器,在实时监测、恢复时间、选择性和交叉敏感性方面存在一定限制。基于光声光谱技术的光学传感器平台具有高灵敏度、高选择性、快速响应、长寿命和成熟的传感器设备等优点,在多组分气体传感领域发挥着重要作用。已经开发出多种基于光声光谱技术的多组分气体传感器模式,如傅里叶变换红外光声光谱模式、基于宽带检测的热辐射体或黑体辐射体使用多个带通滤波器、多激光器与时分复用(TDM)方法的结合,以及采用多共振器和频率分割复用(FDM)方案。然而,由于宽带光源的相对弱强度,弱光声(PA)信号易受到背景噪声的干扰,这是高灵敏度检测的主要障碍。Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (30 ppm). The concentration of CO (300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (5 ppm, 20%&minus 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection. 由于吸收和共振圆柱体共同决定了其共振频率,设计并验证了一种T型光声池作为适当的传感器。通过引入激励光束位置优化,从模拟和实验中研究了三种指定的共振模式,呈现了可比较的振幅响应。使用QCL、ICL和DFB激光器作为激发光源,同时测量CO、CH4和C2H2,展示了多气体检测的能力。A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.图片显示了配备了T型光声池的基于PAS的多组分气体传感器配置的示意图。使用三个激发激光器作为激光源,包括DFB ICL(HealthyPhoton,型号HPQCL-Q)、DFB QCL(HealthyPhoton,型号QC-Qube)和NIR激光二极管(NEL),分别在2968 cm&minus 1、2176.3 cm&minus 1和6578.6 cm&minus 1处发射,以实现对CH4、CO和C2H2的同时检测。ICL、QCL和NIR激光二极管在目标吸收波长处的光功率分别为8 mW、44 mW和32 mW,通过热功率计(Ophir Optronics 3 A)进行测量。所有激光源都通过调节电流和温度控制来驱动。A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm&minus 1, 2176.3 cm&minus 1 and 6578.6 cm&minus 1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.Fig. The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.HealthyPhoton, model HPQCL-QHealthyPhoton, model QCQube结论建立了基于T型光声池的多共振光声光谱气体传感器,并验证其能够进行多组分同时检测,达到ppb级别的灵敏度。通过有限元分析(FEA)模拟优化和实验光束激发位置设计,三个指定的谐振频率的光声响应相互比较,确保了同时检测多种微量气体的高性能。选择了CO、CH4和C2H2这三种可燃气体作为目标气体,使用QCL(4.59 µ m,44 mW)、ICL(3.37 µ m,8 mW)和NIR激光二极管(1.52 µ m,32 mW)作为入射光束进行同时检测验证。F1模式下,光束照射到缓冲腔体壁上,信噪比(SNR)相比通过吸收圆柱体的情况提高了4.5倍。实验得到了CO、CH4和C2H2的最小检测限(1σ)分别为89ppb、80ppb和664ppb,对应的归一化噪声等效吸收系数(NNEA)分别为5.75 × 10&minus 7 cm&minus 1 W Hz&minus 1/2、1.97 × 10&minus 8 cm&minus 1 W Hz&minus 1/2和4.23 × 10&minus 8 cm&minus 1 W Hz&minus 1/2。对湿度交叉敏感性进行改进的研究提供了对光声光谱传感器在湿度松弛相关效应方面的更好理解。利用单个光声腔体和单个探测器进行多组分气体传感的这种开发的光声光谱模式,具有在电力变压器故障的早期诊断方面的独特潜力。Conclusions A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µ m, 44 mW), an ICL (3.37 µ m, 8 mW) and a NIR laser diode (1.52 µ m, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10&minus 7 cm&minus 1 W Hz&minus 1/2, 1.97 × 10&minus 8 cm&minus 1 W Hz&minus 1/2 and 4.23 × 10&minus 8 cm&minus 1 W Hz&minus 1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.Fig. 1. Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.Fig. 2. Schematic structure of the developed T-type PAC.Fig. 3. Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).Fig. 4. Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.Fig. 6. The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.Fig. 7. The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement (b) The PA amplitude vs. frequency of F1 for the two incident ways (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.Fig. 8. Noise level analysis of F1, F2 and F3 modes for two incidence ways.Fig. 9. Experimental frequency responses of the developed T-type PAC.Fig. 10. The PA signal amplitudes vs. laser modulation amplitudes for multi-component gas sensing. (a) The ICL modulation amplitudes for 100 ppm CH4 detection (b) The QCL modulation amplitudes for 400 ppm CO detection (c) The NIR laser diode modulation amplitudes for 100 ppm C2H2 detection.Fig. 11. The experimental results for simultaneous detection of multi-component gases. (a), (b) and (c): Measured 2f-PAS spectral scans of the CO, CH4 and C2H2 absorption features for F1, F2 and F3 modes, respectively.Fig. 12. Schematic of the improved humidification system for humidity control.引用:Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.https://doi.org/10.1016/j.pacs.2023.100492
  • 祛痘液、养发液、婴儿爽身粉等化妆品检测出禁用成分!
    28日,国家药品监督管理局发布5批次化妆品检出禁用物质的通告。包括标示为云南木源堂化妆品有限公司等生产的本草秀复祛痘原液二号1批次祛痘/抗粉刺类产品,标示为广州莎莎化妆品制造有限公司生产的德生源育发健发养发液1批次养发/育发类产品,标示为汕头市金雅虹精细化工有限公司生产的采媚芦荟保湿霜(高度保湿)1批次保湿护肤类产品,标示为广州名露药业有限公司生产的婴瑞儿婴儿松花玉米爽身粉、白美人金银花热痱粉2批次爽身粉类产品检出4类禁用物质。1、氯霉素经重庆市食品药品检测研究院检测,该化妆品氯霉素含量为854μg/g,为《化妆品安全技术规范》(2015年版)中的禁用物质。据公开资料显示,氯霉素(chloramphenicol)是一种抗生素,易溶于甲醇、乙醇、丙醇及乙酸乙酯,微溶于乙醚及氯仿,不溶于石油醚及苯。氯霉素极稳定,其水溶液经5h煮沸也不失效。由于氯霉素分子中有2个不对称碳原子,所以氯霉素有4个光学异构体,其中只有左旋异构体具有抗菌能力。 抗生素类药物属于处方药,必须在医生指导下方可使用。据了解,长期使用添加抗生素的化妆品,可能引起接触性皮炎等不良反应,表现为红斑、水肿、糜烂、脱屑、渗出、瘙痒、灼热。其中,长期使用氯霉素还会造成肝损害。2、米诺地尔经深圳市药品检验研究院检测,该化妆品米诺地尔含量为0.13μg/g,为《化妆品安全技术规范》(2015年版)中的禁用物质。据公开资料显示,米诺地尔化学名为6-(1-哌啶基)-2,4-嘧啶二胺-3-氧化物,是一种有机物,呈白色或类白色结晶性粉末。临床上作为钾离子通道开放剂,能直接松弛血管平滑肌,有强大的小动脉扩张作用,使外周阻力下降,血压下降,而对容量血管无影响,故能促进静脉回流。同时,由于反射性调节作用和正性频率作用,可使心输出量及心率增加,但不引起体位性低血压。外用制剂可能会引起红斑、瘙痒等皮炎反应。3、甲基氯异噻唑啉酮江苏省药品检验研究院检测出该化妆品含有甲基氯异噻唑啉酮,为《化妆品安全技术规范》(2015年版)中的禁用物质。据公开资料显示,甲基异噻唑啉酮(MIT),分子量为115.15,是一种高效杀菌剂。对于抑制微生物的生长有很好的作用,可以抑制细菌、真菌、霉菌及霉菌的生长。长期使用,可能出现头晕头痛、皮疹或关节疼痛等现象,并且有一定的细胞毒性与神经毒性。4、铅经研究院检测,婴瑞儿婴儿松花玉米爽身粉中铅含量达17.6mg/kg,白美人金银花热痱粉中铅含量达17.4mg/kg,严重超均标。铅是一种金属化学元素,元素符号Pb,原子序数为82,原子量为207.2,是原子量最大的非放射性元素。金属铅为面心立方晶体。如果长期使用重金属超标的产品,重金属会在体内积累,具有一定的致癌性。值得一提的是,铅超标的产品在初期可能会使皮肤变白,但是很快皮肤会产生大量色素沉淀,造成深层色斑,也可能诱发其他疾患,如过敏性皮炎、婴幼儿神经感觉下降,发育不良等等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制