制冷红外热像仪

仪器信息网制冷红外热像仪专题为您提供2024年最新制冷红外热像仪价格报价、厂家品牌的相关信息, 包括制冷红外热像仪参数、型号等,不管是国产,还是进口品牌的制冷红外热像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合制冷红外热像仪相关的耗材配件、试剂标物,还有制冷红外热像仪相关的最新资讯、资料,以及制冷红外热像仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

制冷红外热像仪相关的厂商

  • 湖北久之洋红外系统股份有限公司主要从事红外热像仪、激光测距仪的研发、生产与销售,是国内少有的、同时具备红外热像仪和激光测距仪自主研发与生产能力的高新技术企业,是中国高科技产业化研究会光电科技产业化专家工作委员会常务理事单位、中国光电子协会红外专业委员会常务理事单位、湖北省光学学会常务理事单位。公司主要产品包括具有先进水平的各型制冷红外热像仪、非制冷红外热像仪以及激光测距仪等产品,在红外热成像技术、激光测距技术、光学技术、电子技术、图像处理技术等方面具有综合学科优势,技术水平居国内领先地位。 公司拥有光学、红外、激光技术领域具备丰富研发经验的研发团队,专项负责相关领域的技术创新和新产品研发,组建有非制冷红外、制冷红外、激光产品三条生产线,能够满足不同客户定制产品或批量产品的需求。 凭借强大的研发实力、丰富的生产经验和过硬的产品质量,公司产品的市场占有率不断提升,产品广泛应用于海洋监察、维权执法、安防监控、森林防火监控、水上交通安全监管和救助、搜索救援、工业检测、检验检疫以及辅助驾驶等领域。
    留言咨询
  • 海星制冷设备有限公司主营产品:超市风幕柜、便利店风幕柜、便利店饮料柜、超市冷柜、超市冷藏柜、超市风幕柜、便利店冰柜、岛柜、生鲜柜、保鲜柜、冷藏展示柜、冷藏陈列柜、冷藏保鲜柜、冰台、点菜柜、保鲜点菜柜、保鲜展示柜、保鲜陈列柜、制冷展示柜、制冷保鲜柜、玻璃门陈列柜、食品冷藏保鲜陈列柜、大小冷库、鲜花保鲜柜、蔬菜保鲜柜、水果保鲜柜、蛋糕柜、冰淇淋柜、冰粥柜、超市不锈钢设备,不锈钢工作台、厨房冰箱等系列制冷设备。
    留言咨询
  • 宇飞天翼制冷设备科技有限公司成立以来,一直专业从事超低温设备的研制、开发、生产为一体的技术企业,公司拥有一批专业研制开发双机复叠式制冷、单机自动复叠式制冷设备的设计人员队伍,,是国内在超低温领域生产、技术的技术企业。 宇飞天翼制冷设备科技有限公司生产的天翼超温“TY-DW”系列超低温产品完全拥有自主知识产权,长期为各大真空镀膜机厂商、航空航天研究院等项目提供–120℃~ –150℃超低温试验设备。主要产品: -145℃低温捕集泵、-90℃棒式超低温冷阱(Parylene真空涂敷冷阱)、-90℃锅式超低温冷阱、-135℃棒式超低温冷阱、-135℃锅式超低温冷阱、金属低温冷处理箱、快速循环水汽冷凝泵(polycold)、-145℃水汽捕集泵(低温冷阱)、–60℃至–150℃超低温制冷机组、–60℃、–86℃、–120℃、-150℃系列超低温冰箱、-超低温液浴、等超低温设备。产品被广泛应用于真空镀膜、科研院所、医疗卫生、军事航空、生物制药、高校电子、金属加工等行业。
    留言咨询

制冷红外热像仪相关的仪器

  • 制冷型红外热像仪 400-860-5168转6159
    长波制冷型红外热像仪技术参数探测器工作波段(7.7~9.5)μm像元数 384 × 288、640 × 512等像元尺寸(25×25)μm、(15×15)μm等制冷方式斯特林制冷探测器材料碲镉汞光学系统F数F2.24焦距长焦:200mm 短焦:50mm 系统视场窄视场:2.74°× 2.06° 宽视场:10.97°× 8.23°视场切换平稳,切换时间 1秒变换视场轴不重合度小于转换后视场最小尺寸的0.5%成像功能输出制式CCIR 625PAL制增益、亮度调节自动/手动极性转换白热/黑热转换十字光标显示/消隐图像冻结有图像镜像/倒像/翻转有视频外同步有校正功能内、外参考温度校正/盲元校正调焦功能手动调焦电路特性通讯接口RS-422标准接口电源接口DC(28±2)V,稳态功率小于16W,启动时间≤6Min,启动电流<1A模拟视频接口标准PAL制,帧频:25Hz(其他输出接口帧频可到200Hz),延迟时间小于25ms。NETD≤30mK环境适应性工作温度-40℃ ~ + 60℃存储温度-55℃ ~ + 70℃产品特点及应用: 1)高分辨率显示; 2)结构外壳、光学系统可按需定制; 3)预留数字信号接口,各种通信协议可按需定制,易于系统集成及二次开发; 4)可应用于夜视引导、搜索、跟踪及评估。如想了解更多产品信息,可通过仪器信息网 400-860-5168转6159 和我们联系!
    留言咨询
  • 1中波制冷型红外热像仪技术参数探测器工作波段(3.7~4.8)μm像元数 320×256、640×512等像元尺寸(30×30)μm、(15×15)μm等制冷方式斯特林循环制冷探测器材料碲镉汞光学系统F数F2焦距200mm系统视场2.74°× 2.19°成像功能输出制式CCIR 625PAL制增益、亮度调节自动/手动极性转换白热/黑热转换十字光标显示/消隐校正功能内、外参考温度校正/盲元校正调焦功能手动调焦电路特性通讯接口RS-422标准接口电源接口DC(28±2)V,稳态功率小于16W模拟视频接口标准PAL制模拟视频信号,帧频:25HzNETD≤30mK环境适应性工作温度-40℃~ 60℃存储温度-55℃~ 70℃ 产品特点及应用 1)高分辨率显示; 2)结构外壳、光学系统可按需定制; 3)预留数字信号接口,各种通信协议可按需定制,易于系统集成及二次开发; 4)可应用于夜视引导、搜索、跟踪及评估。如想了解更多产品信息,可通过仪器信息网 400-860-5168转6159 和我们联系!
    留言咨询
  • MAG-F7科学级中波制冷型热像仪采用640×512 InSb红外探测器,无新增坏像素问题,输出优质红外图像。采用全局快门,全画面数据率高达131Hz,窗口模式高于4000Hz,可记录快速变化过程。搭配微距镜头物方分辨率可达3μm。任意位置快速开窗,精准捕捉感兴趣区域。内部集成200万像素可见光相机,可多光谱同步观测记录。支持高精度同步模式,可用于锁相检测。可录制温度数据流并回放,完美重现历史场景。支持GigE Vision,可接入Halcon,VisionPro,IMAQ等图像处理系统。SDK支持C/C++/C#/JAVA/Python/Matlab/LabView/Restful API等多种接口。提供专业版应用程序。
    留言咨询

制冷红外热像仪相关的资讯

  • 小菲课堂|制冷型or非制冷型红外热像仪,我们该如何抉择?
    多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用在广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,要想获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。今天,小菲就教大家如何选择制冷型和非制冷型红外热像仪!各有千秋制冷型红外热像仪先进的制冷型红外热像仪配有集成低温制冷机的成像探测器。这是一款可将探测器温度降低至制冷温度的设备。为了将热噪声降至场景成像信号水平之下,探测器温度的下降必不可少。制冷型红外热像仪是最敏感型红外热像仪,可探测物体间最细微的温差。它们工作在光谱中波红外(MWIR)波段和长波红外(LWIR)波段,因为从物理学角度来讲在这些波段热灵敏度较高。热灵敏度是指信号变化相对于目标温度变化。热灵敏度越高,就越容易探测那些目标温度与背景差异不大的场景。FLIR A6700sc是一款科研级中波红外锑化铟热像仪,能生成细节丰富的327,680像素热图像。非制冷型红外热像仪非制冷型红外红外热像仪是一款其中配备的成像探测器无需低温制冷的红外热像仪。常见的探测器设计基于热释电探测器,这是一种拥有较大温度测量系数的小型氧化钒电阻,表面积较大、热容量低,以及热绝缘效果佳。场景温度变化会导致红外探测器温度变化,从而将转化为电信号,并经过处理产生图像。非制冷型探测器用在长波红外(LWIR)波段中,与地面温度类似的目标在该波段中放射出的红外热能最多。相比制冷式探测器,非制冷型探测器的制造步骤更少,产率更高,真空包装成本更低,而且非制冷型红外热像仪无需极其高昂的低温制冷机设备。非制冷型红外热像仪配有较少的活动部件,在类似的工作条件下,其往往较制冷型红外热像仪具有更长的使用寿命。FLIR T650sc配备一台非制冷型氧化钒(VOx)微测辐射热计探测器,能生成640×480像素的热图像。非制冷型红外热像仪展现的优势带来了两难的问题:研发/科学应用什么时候使用制冷型红外热像仪?答案是:取决于应用需求。实例对比如果你想要发现微小的温差变化,需要图像质量,拍摄快速移动或发热目标;如果你需要看清热变化过程,或者测量极小目标的温度;如果你希望在非常明确的电磁波谱部位可见热对象;抑或你希望将红外热像仪与其他测温设备同步工作,制冷型红外热像仪则是适合你的仪器。01速度制冷型红外热像仪的成像速度快于非制冷型红外热像仪。高速热像成像的曝光时间可达到微秒,能够停止动态场景的表观运动,并可捕获每秒62,000帧以上的帧速率。其应用包括热分析和动态分析喷气式发动机涡轮叶片、汽车轮胎或安全气囊检测、超音速弹丸,以及爆炸等。制冷型红外热像仪具有极快的响应速度,并充分利用全局快门优势。这意味着它们能够同时读出所有的像素,而并非如非制冷型红外热像仪一样逐行读取,从而使制冷型红外热像仪能够捕获清晰的图像和对移动物体进行测温。这些红外图像对比了以20 mph速度旋转的轮胎的拍摄效果。左边这张是用制冷型红外热像仪拍摄的。您可能会觉得轮胎并未在转动,但这是制冷型红外热像仪在极其高速条件下的拍摄结果,它会“定格”轮胎的转动。非制冷型红外热像仪的拍摄速度太慢,无法捕捉到轮胎旋转时使得轮辐显得透明的瞬间。02空间分辨率下面热图像对比了采用制冷型和非制冷型红外热像仪系统可实现的特写放大效果。左边的红外图像是用带4倍近焦镜头和像元间距13μm制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为3.5μm。右边的红外图像是用带1倍近焦镜头和像元间距25μm非制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为25μm。由于传感红外波长较短,制冷型红外热像仪通常具有比非制冷型红外热像仪更强的放大功能。由于制冷型红外热像仪的灵敏度更高,因此可使用带更多光学元件或更厚元件的镜头而不降低信号噪声比,从而提升了放大功能。03灵敏度制冷型红外热像仪灵敏度改善带来的价值往往并不显而易见。为了对比灵敏度的优势,我们做了一个快速的灵敏度实验。我们将手按在墙上停留几秒钟来创建手印的热图像,以此进行对比。开始的两张图像显示了手移开瞬间的手印。第二组图像显示了两分钟后手印的热特征。您可看见:制冷型红外热像仪仍能捕捉手印的大部分热特征,而非制冷型红外热像仪仅能捕捉其部分热特征。显而易见,制冷型红外热像仪比非制冷型红外热像仪能检测到更细微的温差,其检测的持续时间也更长。这意味着:制冷型红外热像仪能更清晰地显示被测目标的细节,并能帮助您检测到最微弱的热异常。04光谱滤波制冷型红外热像仪优势之一是能够轻松进行光谱滤波,以便侦测细节和测温,而这两点使用非制冷型红外热像仪则难以做到。实例一:我们使用了滤片,将其置于镜头后的滤片支架内或者内置在杜瓦探测器组件内,以便让火焰完整成像。过去,终端用户希望测量和表征火焰内的煤颗粒的燃烧现象。借助“看穿火焰”的光谱红外滤片,我们对制冷型红外热像仪进行了光谱波段滤波处理,在该波段中火焰为穿透式,因而我们能够对煤颗粒进行成像。图一为不带火焰滤片拍摄的图像,我们看到的都是火焰本身。第二张图为带火焰滤片拍摄的图像,我们能够清晰地看清煤颗粒燃烧情况。05同步精确的红外热像仪同步和触发功能使红外热像仪成为高速、高热灵敏度应用的理想之选。通过快照模式工作,FLIR A6750sc能够同步捕捉热活动中的所有像素。这对于监测快速移动物体时尤其重要,在这种时候,标准的非制冷式红外热像仪会使图像变得模糊。图中的图像即是良好的示例。在该例中,我们扔下一枚硬币,并通过传感器触发红外热像仪拍摄图像。两次抛扔相同硬币时,同时触发红外热像仪,你每次都会看到物体处于相同的位置。借助非制冷式红外探测器红外热像仪,你根本无法捕获硬币,因为其无法触发此类型探测器。如果不走运的话,图像可能模糊不清。FLIR红外热像仪配备制冷型探测器的红外热像仪比配备非制冷型探测器的红外热像仪具有更多优势,但是这类热像仪价格更昂贵。FLIR高性能制冷型红外热像仪有FLIR A6750sc、A8300sc、SC6000、SC7000、SC8000、X6000sc和X8000sc,它们在红外中波和红外长波光谱波段中具有超快速、超灵敏性能,而FLIR A6250sc则可在近红外光谱波段中操作。FLIR还提供各种非制冷式红外热像仪,包括入门级桌面实验套件和像FLIR T650sc一样的高端系统。专用镜头和软件将让您的红外热像仪解决方案满足特定的应用。选择制冷型与非制冷型红外热像仪主要是根据您的用途
  • 小菲课堂|详细解读制冷型与非制冷型光学气体成像热像仪
    十多年来,FLIR光学气体成像(OGI)热像仪一直用来可视化各种气体泄漏。这些OGI热像仪的开发是为了“看到”各种气体,包括碳氢化合物、二氧化碳、六氟化硫、制冷剂、一氧化碳、氨等。FLIR OGI热像仪被应用于各行各业,包括减少排放、提高生产效率和确保安全的工作环境。与其他检测技术相比,OGI热像仪的一大优势是该技术能够在不中断工业过程的情况下精准定位气体泄漏部件。从历史上看,OGI热像仪一直采用制冷型红外探测器,与非制冷型红外探测器相比具有多个优势,但成本往往更高。非制冷型红外探测器技术的进步使得像FLIR OGI热像仪这样的制造商,能够为相关行业设计和开发成本较低的OGI解决方案。尽管成本较低,但与使用制冷型探测器的热像仪相比,使用非制冷型红外探测器的热像仪存在一定局限性。光学气体成像背后的科学在我们讨论OGI热像仪中制冷或非制冷探测器的问题之前,我们可以先解释这项技术背后的理论。光学气体成像可以比作通过普通的摄像机进行观察,但操作员看到的是一股类似烟雾的气体喷出。如果没有OGI热像仪,这将是肉眼完全看不见的。为了能看到这种气体飘动,OGI热像仪使用了一种独特的光谱(依赖于波长)过滤方法,使它能够检测到特定的气体化合物。在制冷型探测器中,滤波器将允许通过探测器的辐射波长限制在一个非常窄的波段,称为带通,这种技术被称为光谱自适应。光谱自适应OGI热像仪利用某些分子的吸收特性,将它们在原生环境中可视化。热像仪焦平面阵列(FPAs)和光学系统专门调整到非常窄的光谱范围,通常在数百纳米左右,因此具有超选择性。只能检测到由窄带通滤波器分隔的红外区域中的被气体吸收的红外波段。大多数化合物的红外吸收特性取决于波长。氢、氧和氮等惰性气体无法直接成像。黄色区域显示了一个光谱滤波器,设计用于对应大部分背景红外能量将被甲烷吸收的波长范围。(图中横坐标代表波长,纵坐标代表甲烷气体的透射率)如果将OGI热像仪对准没有气体泄漏的场景,视野中的物体将通过热像仪的镜头和滤光片透射和反射红外辐射。如果物体和热像仪之间存在气体云,并且该气体吸收滤波器带通范围内的辐射,那么通过气体云到达探测器的辐射量将减少或增加。具体情况要看气体云与背景的关系,云与背景之间必须有一个辐射的对比。总而言之,让气体可见的关键是:气体必须吸收热像仪看到的波段中的红外辐射;气体云必须与背景形成辐射对比;气体云的表面温度必须与背景不同。此外,运动使气体云更容易可视化。熟悉光学气体成像相关的波长为了解决理解“制冷与非制冷”光学气体成像热像仪的挑战,您需要了解与光学气体成像相关的波长以及这些热像仪中使用的探测器。OGI热像仪的两个主要波长通常被称为中波(3到5微米)和长波(7到12微米)。在气体成像领域,这些区域也可以称为“功能区”和“指纹区”。在功能区,一个热像仪可以看到单一类别的更多气体,而许多单独的气体在指纹区有特定的吸收特征。几乎所有碳氢化合物气体都在FLIR GF320的过滤区域(黄色部分)吸收能量,但在长波或指纹区域(蓝色部分)有不同的吸收特征虽然许多气体在中波和长波区域都有吸收特性,但也有气体仅在一个红外波段发射和吸收。有些气体在中波而非长波光谱中发射和吸收(如一氧化碳/CO)和吸收,另一些仅在长波光谱中发射和吸收(如六氟化硫/SF6)。这些气体不属于指纹或功能区,通常指烃类气体。下面是CO和SF6气体的红外光谱图。制冷与非制冷型探测器制冷型OGI热像仪使用需要冷却到低温(约77K或-321°F)的量子探测器,可以是中波或长波探测器。检测功能区碳氢化合物气体(如甲烷)的中波热像仪通常在3-5μm(微米)范围内工作,并使用锑化铟(InSb)探测器。检测SF6等气体的制冷型长波热像仪在8-12μm范围内工作,可以使用量子阱红外光电探测器(QWIP)。制冷型OGI热像仪有一个集成了低温冷却器的成像传感器,其可以将传感器温度降低到低温。传感器温度的降低对于将探测器噪声降低到低于被成像场景的信号水平是必要的。制冷机运动部件的机械公差非常小,随着时间的推移会磨损,氦气也会慢慢通过气体密封。最终,在运行1万至1.3万小时后,需要对冷却器进行重建。带有制冷探测器的热像仪有一个与探测器连接的滤波器。这种设计可以防止滤波器和探测器之间的任何杂散辐射交换,从而提高图像热灵敏度,进而会使光学气体成像仪更有效地可视化某些气体,甚至使OGI热像仪符合美国环保局的OOOOa或其他要求等监管标准。用制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像用非制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像非制冷OGI热像仪使用微测辐射热计探测器,不需要制冷探测器所需的额外零件。它们通常由氧化钒(VOx)或非晶硅(a-Si)制成,在7-14μm范围内具有响应性。它们比制冷型热像仪更容易制造,但热灵敏度或噪声等效温差(NETD)较差,这使得更难以可视化较小的气体泄漏。NETD是一个指标,表示热像仪可以探测的最小温度差异。上图显示了制冷和非制冷探测器灵敏度的差异。更好的NETD将使制冷型OGI热像仪检测气体的效果至少是非制冷的五倍。用于确定OGI热像仪检测气体效果的类似标准是噪声等效浓度长度(NECL),该标准确定在定义的拍摄距离上可以检测到多少气体。例如,用于甲烷检测的FLIR GF320制冷型OGI热像仪(3-5μm探测器)的NECL小于20 ppm*m,而非制冷型(7-14μm探测器)的NECL大于100 ppm*m。对于非制冷型的OGI热像仪,另一个需要考虑的是滤波器。有些热像仪没有在长波光谱中过滤,这意味着它们只是一个完全开放的探测器,使用独特的分析来可视化气体。FLIR的高灵敏度模式(HSM)是利用软件和分析来增强气体可视化的热像仪示例。有些热像仪内部设置更有针对性的过滤器。这些滤波器可能与镜头有关,在探测器和镜头之间,以多种方式设计。使用非制冷过滤,由于限制到达热像仪探测器的辐射,您会失去热灵敏度。这将导致产生更高的NETD热灵敏度值,但可以提供与气体成像相关的更好图像。随着光谱滤波器宽度变窄以聚焦于特定气体时,来自场景的辐射减少,而探测器的噪声保持不变,来自滤波器的反射辐射增加。这会产生与气体成像相关的更高质量的图像,但会降低热像仪用于温度测量(辐射测量)的热灵敏度。当你使用冷滤镜时,比如制冷型OGI热像仪,这种现象就可以避免,因为反射的辐射量非常小。如何选择制冷与非制冷型OGI热像仪气体显示:在选择OGI热像仪时,首要考虑因素是确保热像仪能够显示气体。之后,再做出综合的考量,而不仅仅基于价格。制冷型的优势:虽然它们的价格可能更高,但制冷型OGI热像仪有相当大的优势。如上所述,这些单元属于烃类气体的功能区域,这意味着只需要一个热像仪就可以看到各种各样的气体。在某些情况下,指纹区域需要多个热像仪才能达到相同的结果。中波热像仪的另一个独特优点是不受水蒸气的干扰。如上图所示,水蒸气在长波或指纹区域有很强的吸收,这可能会导致使用长波热像仪时图像的不确定性。灵敏度和图像质量:在选择OGI热像仪时,提高灵敏度和图像质量也是需要考虑的重要因素。这些不仅影响了对小泄漏的可视化能力,而且在试图满足监管标准时也可能是相当大的因素。FLIR GF320甲烷和VOC检测用红外热像仪非制冷的优势:随着非制冷型OGI热像仪在市场上的推出,这项新技术具有优势。首先,非制冷型OGI热像仪的制造成本大大降低,从而导致市场价格降低。由于设计简单,无需冷却器,因此维护成本也较低,这可能使其更适合连续、24/7全天候运行的应用。无论你是想省钱、满足监管标准、提高工人安全,还是仅仅想成为一名好的环境管理员,如今你的选择比以往任何时候都多,当然有时也可能会让人困惑。选择OGI热像仪的决定有很多因素,而不仅仅是价格。FLIR提供了市场上最广泛的OGI热像仪选择和阵列,可以让您拥有更多选择。
  • 制冷压缩机的全面检修,FLIR E52热像仪均能实现
    制冷剂泄漏是压缩机容易发生的隐患和故障,其会导致系统无法达到制冷效果,这个问题看似简单,其实后果是会造成严重故障。在制冷剂泄漏检测方面,传统检漏方式仍是主流大多需要耗费较多人力且结果只能通过目测观察得到,效果及准确性都较差,因此发掘新型快捷的检漏方式逐渐成为必需。今天小菲就来给大家介绍一款准确率高、操作简便的检漏方式!制冷剂、压缩机、蒸发器、节流器冷凝器是制冷系统五大主要组成部分其中压缩机是制冷系统的“心脏”当其发生故障时气温会发生异常因此“看见”温度的红外热像仪就是检查它的有效工具!压缩机故障的表现和原因压缩机是制冷系统的重要部件,一般由壳体、电动机、缸体、活塞、控制设备 ( 启动器和热保护器 ) 及冷却系统组成。当出现温度异常时,可能有以下表现、原因和后果:1.制冷剂部位温度低:原因是制冷剂泄露,导致能源损耗和制冷达不到效果;2.压缩机壳体温度异常,影响压缩机的使用寿命;3.电动机壳体及其轴承温度异常,可能导致电机和整个制冷系统停止运行;4.缸体或冷却液排出口温度异常,无法达到制冷效果;5.控制设备温度异常,影响系统的工作稳定性和部件使用寿命。压缩电机是制冷系统的重要组成部分使用红外热像仪可以及时发现上述温度异常点从而确定问题并采取补救措施今天小菲就来给大家推荐一款性价比不错的FLIR新品FLIR E52红外热像仪在制冷系统的检查过程中它绝对是你的好帮手!FLIR E52的红外分辨率为240×180(43,200像素),热灵敏度为50mk,最高可测温550℃,搭配FLIR专利技术MSX(专利号:201380073584.9)图像增强功能,以及±2°C或读数的±2%的测量精度,可准确定位故障点。制冷剂泄漏在设计和焊接和生产过程中,可能会出现制冷剂压力容器与钢管处由于焊接问题,或钢管的质量问题,出现微小的泄漏,导致制冷剂非常容易消耗掉,产生质量问题,这时使用FLIR E52可以很轻松的看出制冷剂管道的温度分布不均。电动机温度异常当运行中的电动机,由于散热不良或不均匀、内部线圈老化、负载能力过重、供电系统电能质量问题造成壳体温度超高或温度不均匀,以及电动机由于润滑不良或轴心偏移造成轴承温度异常时,使用可产生高分辨率的FLIR E52热像仪一扫就可以精准发现故障点。热像仪更容易识别电机上的热点,表明其过热可能导致故障一机多用,超值的FLIR E52当压缩机的其他部件出现温度异常时,FLIR E52热像仪都能检测到,不仅如此它还是电气、机械还是建筑领域检测的“佼佼者”,当控制制冷系统的电气设备出现故障时,它就可以化身电工师傅的“眼睛”,无需停机检修,运行期间就可以看清电力设备的状态,及时找到问题点。像一些机械设备的磨损不均、建筑物隔热层缺失、地暖管道的铺设走向等问题,都可以使用FLIR E52检测。拥有4英寸清晰触摸屏,160°视角的E52,可以让你在使用过程,看清、看全需要检测的部位,一机多用非常划算!FLIR E52红外热像仪是Exx系列的基础款产品它满足了电气、机械和建筑等领域温度相关的各项基本检查需求价格也可以被更多专业人员接受

制冷红外热像仪相关的方案

  • 使用红外热像仪检测建筑隔热、暖通空调 和制冷机组
    建筑检测人员使用FLIR红外热像仪进行节能审计已有十余年的历史,但购买红外热像仪的资金投入也让很多建筑安装公司止步不前。近几年,越来越多的平价红外热像仪进入了市场。在瑞典尼布鲁的Hammarstedts咨询公司工作的Bjö rn Blomgren就是抓住这个机遇的其中一位建筑专家,“当初购买红外热像仪时,我担心不会经常用到,投资不划算,但没过多久就发现根本不存在这个问题。慢慢我发现使用红外热像仪的地方越来越多,它真是个用途很广的工具。”
  • 利用红外热像仪检测商用步入式冷冻柜的隔热情况
    需要将大量商品储存在温度远低于零摄氏度的环境中的企业一般安装有大型步入式冷冻柜。这些冷冻柜能够将整个房间的商品(通常是食品)维持在极低的温度。但唯一的弊端是:制冷需要耗费大量能源。因此,防止外部热量渗入尤为重要。为确保冷冻柜的隔热性能正常,热像师利用红外热像仪对隔热材料进行检测。
  • 测量电热效应, 红外热像仪较热电偶更胜一筹
    当今的制冷设备使用可转化成气体的冷却剂。尽管这种类型的冷却剂是有效制冷过程的基础,但可能会对环境造成危害。那么,如果我们可以使用固体材料而不是液体材料作为经济、环保的方式来对食品、饮料、药物甚至电子设备进行制冷呢?这正是卢森堡科学技术研究所(LIST)正在研究的课题。该研究所的研究人员利用FLIR红外热像仪深入研究这一课题。

制冷红外热像仪相关的资料

制冷红外热像仪相关的试剂

制冷红外热像仪相关的论坛

  • 我国非制冷红外热像仪顺利进入民用市场

    我国非制冷红外热像仪顺利进入民用市场

    我国非制冷红外热像仪顺利进入民用市场 高德红外股份有限公司是国内规模最大的集光、机、电、人工智能图像处理技术于一体的红外热像系统生产厂商,在全球测温性红外热像仪领域排名第四,产品广泛用于海陆空各兵种的军事新型武器装备以及电力、医疗、公安、交通等民用领域。 基于红外监控不依赖光源,能在重要安全节点与普通视频监控器共同提高视频监控的质量和效果。高德红外股份有限公司认为,随着智能化安全城市建设全面铺开,机场、银行、政府、主要路口、边防及海防等重要安全节点有必要实现24小时不间断监控。未来在民用领域拥有巨大空间。 几天前,高德红外股份有限公司发布公告:湖北省科学技术厅组织行业专家对高德“基于非晶硅的400*300@25um非制冷红外探测器”项目进行了科技成果鉴定。一致认为该成果整体达到国内领先水平,并在国内率先具备该型号非晶硅红外探测器产业化的能力,同意该成果通过鉴定,并建议进一步加快延伸开发及推广应用。 “基于非晶硅的400*300@25um非制冷红外探测器”项目申请专利达11项,技术上已达进口替代水平,目前净化厂房建设已完成、设备已到货并调试验收合格, 一旦红外探测器实现国产化,将大大降低红外热像仪的制造成本。例如高德红外研发出的车载红外辅助驾驶系统IR312、手持红外热像仪IR510很有可能降至每台数千元。http://ng1.17img.cn/bbsfiles/images/2014/02/201402281022_491362_2855882_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/02/201402281023_491363_2855882_3.png

  • 【资料】非制冷热像仪的发展状况

    红外焦平面列阵的发展朝两个不同的方向进行:一种是低温制冷工作的光子型红外探测器列阵,如HgCdTe、InSb和PtSi等;另一种是室温工作的非制冷探测器列阵。制冷型探测器列阵的制作难度大,且需要昂贵的制冷系统,由其构成的热像仪通常用于敏感的军事领域。 由于非制冷红外焦平面探测器列阵具有室温工作、无需制冷、光谱响应与波长无关、制备工艺相对简单、成本低、体积小巧、易于使用、维护、可靠性好等优点,因此形成了一个新的富有生命力的发展方向,其目的是以更低的成本、更小的尺寸和更轻的重量来获得极好的红外成像性能。近年来,已研制成功三种不同类型的非制冷红外焦平面探测器列阵:a. 热电堆:根据塞贝克效应检测热端和冷端之间的温度梯度,信号形式是电压。b. 测辐射热计:探测温度变化引起载流子浓度和迁移率的变化,信号形式是电阻。c. 热释电:探测温度变化引起介电常数和自发极化强度的变化,信号形式是电荷。 在这三种器件中,测辐射热计列阵的发展最为迅速,并且取得了令人瞩目的成就。它采用类似于硅工艺的硅微机械加工技术进行制作,为了实现有效的热绝缘,一般采用桥式结构。探测器与硅读出电路之间通过两条支撑腿实现电互连。测辐射热计的灵敏度主要取决于它与周围介质的热绝缘,即热阻。热阻越大,可获得的灵敏度就越高。目前测辐射热计列阵的温度分辨率可达0.1K,不久将达到0.03至0.05K。对于工业应用来说,这种性能已相当令人满意了。用它构成的热像仪在尺寸、重量和价格方面可与可见光摄录机相媲美,在不远的将来可望获得广泛的应用,是一个新的经济增长点。 非制冷测辐射热计列阵技术也许是红外热成像技术在过去20年取得的最重要的进展。90年代以来,非制冷测辐射热计列阵已形成产品进入市场。美国波音公司研制的U3000型320 X 240 元非制冷测辐射热计列阵和美国Amber公司研制的320 X 240 元非制冷测辐射热计列阵热像仪Sentinel,双双荣膺美国1997年光电子领域优秀奖。美国FLIR公司销售到中国的非制冷焦平面热像仪,就是采用此类探测器。2000年,法国Sofradir公司生产出了他们的第一只非制冷焦平面红外探测器,它是采用由多晶硅材料制备的单片式电阻型微测辐射热计技术,该项技术由法国国家红外实验室转移至Sofradir公司生产,探测器列阵规模320×240,像元中心距45µ m,填充因子大于80%,噪声等效温差(NETD)达到100mK(典型值),器件的性能指标达到了当今世界先进水平

  • 红外热像仪市场分析

    红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域。在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,被广泛应用于军民两个领域。在现代战争条件下,该技术已在卫星、导弹、飞机等军事武器上获得了广泛的应用。同时,随着非制冷红外热成像技术的发展,尤其是随着产业化过程中生产成本的大幅度降低,红外热像仪已在电力、消防、工业、医疗、安防等国民经济的各个部门得到了非常广泛的应用。 随着中国经济、社会的快速发展,中国红外热像仪行业具有巨大的发展空间。 ①军队现代化建设需要大量的红外热像仪。在发达国家,红外热像仪已配置在陆军、空军、海军等各个军种中,海湾战争中平均每个美国士兵配备1.7 具红外热像仪。与发达国家相比,目前我国军队中红外热像仪应用的相对较少,按照我国政府发布的《2006 年中国的国防》白皮书,我国军队的人员数量为230万人,如果未来我军10%的部队装备红外热像仪,则我国军用红外热像仪市场容量就可达到23 万套,按照每套10 万元人民币计算(目前大部份军用红外热像仪实际售价远超过10 万元),其市场远景需求量可达230 亿元人民币。 ②从长期来看,民用领域的潜在市场需求很大 红外热像仪广泛应用于消防、电力、建筑、安防等民用领域,我国红外热像仪在这些行业的应用还处于起步阶段,发展空间巨大。

制冷红外热像仪相关的耗材

  • 红外热像仪
    红外热像仪配件是在第三代热成像相机的基础上采用一流的红外技术制造而成的红外热成像仪,是具有高灵敏度,采用人体工程学设计的手持式红外热像仪,非常适合各种红外成像应用。红外热像仪配件特色* 优异的热成像性能,高精度温度测量;* 折叠设计,270度旋转显示;* 自动/电动聚焦,单手即可操作;* 宽广的温度测量范围 * 激光指示器;* 高亮度LED灯;* 内置数字相机;* 宽视场IR镜头;* 自动热/冷/平均温度探测;* 实时热成像视频,可转存到电脑中;* 引导性操作提示,方便操作使用;* 新一代分析软件。红外热像仪配件参数:探测器类型:非制冷型FPA, 384x288像素光谱范围:8-14微米IFOV视场/最小焦距: 21x16度/0.4m (标准镜头), 38x28度/0.3m (宽广镜头,选配,非标配), 11x8.5度/1.2m (telephoto 镜头,选配,非标配)空间分辨率IFOV: 1.2mrad温度灵敏度:图像显示屏:3.2' ' , 270度可转LCD屏;成像模式:热图像,可见图像等 像仪聚焦:自动/电动;电子变焦:4X数字变焦: 连续1-8X测量温度范围:-20到250摄氏度(工业), -20到600摄氏度(可选), -20到1200摄氏度(可选);
  • i5小型红外热像仪
    用途:i5小型红外热像仪堪称目前市场上最为轻盈、性价比最高的红外热像仪。该款产品红外图像分辨率达80×80像素,集便捷灵活、操作简便等优势于一身,无需任何使用经验即可轻松掌握操作要领。“瞄-拍-测”操作一气呵成,高质量红外图像即刻呈现,高效获取所需红外信息。技术规格:图像和光学数据视场角(FOV)17°×17°最小调焦距离0.6 m空间分辨率(IFOV)3.71 mrad热灵敏度/NETD帧频9 Hz调焦免调焦探测器探测器类型非制冷微热量焦平面阵列(FPA)波长范围7.5 ~ 13 μm红外图像分辨率80 ×80像素图像显示显示2.8英寸彩色液晶显示屏图像调整自动调整/图像锁定测量测温范围0~+250℃精度±2℃或读数±2%测量分析点测温中心点温度发射率校正变化范围:0.1~1.0发射率表预先设定材质的发射率表反射温度校正基于输入的反射温度自动校正设置调色板黑白、铁红和彩虹设置命令可设置为本国单位、语言、日期和时间格式图像存储图像存储类型迷你SD卡文件格式标准JPEG,包含14位测量数据数据通讯接口接口迷你USB,与电脑互相进行数据通讯电源系统电池类型可充电锂离子电池电池电压3.6 V电池工作时间大约5小时充电系统电池壳随机充电充电时间充至90%电量需要3小时电源管理自动关机交流电源交流适配器,90~260 VAC输入,5V输出至热像仪环境参数操作温度0~+50 ℃存储温度-40~+70 ℃湿度(工作和存储)IEC 60068-2-30/24h 95%相对湿度EMCEN61000-6-2:2005(抗干扰);EN61000-6-3:2007(抗辐射);FCC 47 CFR Part 15 class B(抗辐射)封装热像仪外壳和镜头:IP43(IEC 60529)冲击25 g (IEC 60068-2-29)震动2 g (IEC 60068-2-6)物理特性热像仪重量(含电池)0.34 kg尺寸(长×宽×高)223×79×83mm产地:美国
  • i5小型红外热像仪
    用途:i5小型红外热像仪堪称目前市场上最为轻盈、性价比最高的红外热像仪。该款产品红外图像分辨率达80×80像素,集便捷灵活、操作简便等优势于一身,无需任何使用经验即可轻松掌握操作要领。“瞄-拍-测”操作一气呵成,高质量红外图像即刻呈现,高效获取所需红外信息。技术规格:图像和光学数据视场角(FOV)17°×17°最小调焦距离0.6 m空间分辨率(IFOV)3.71 mrad热灵敏度/NETD0.1℃帧频9 Hz调焦免调焦探测器探测器类型非制冷微热量焦平面阵列(FPA)波长范围7.5 ~ 13 μm红外图像分辨率80 ×80像素图像显示显示2.8英寸彩色液晶显示屏图像调整自动调整/图像锁定测量测温范围0~+250℃精度±2℃或读数±2%测量分析点测温中心点温度发射率校正变化范围:0.1~1.0发射率表预先设定材质的发射率表反射温度校正基于输入的反射温度自动校正设置调色板黑白、铁红和彩虹设置命令可设置为本国单位、语言、日期和时间格式图像存储图像存储类型迷你SD卡文件格式标准JPEG,包含14位测量数据数据通讯接口接口迷你USB,与电脑互相进行数据通讯电源系统电池类型可充电锂离子电池电池电压3.6 V电池工作时间大约5小时充电系统电池壳随机充电充电时间充至90%电量需要3小时电源管理自动关机交流电源交流适配器,90~260 VAC输入,5V输出至热像仪环境参数操作温度0~+50 ℃存储温度-40~+70 ℃湿度(工作和存储)IEC 60068-2-30/24h 95%相对湿度EMCEN61000-6-2:2005(抗干扰);EN61000-6-3:2007(抗辐射);FCC 47 CFR Part 15 class B(抗辐射)封装热像仪外壳和镜头:IP43(IEC 60529)冲击25 g (IEC 60068-2-29)震动2 g (IEC 60068-2-6)物理特性热像仪重量(含电池)0.34 kg尺寸(长×宽×高)223×79×83mm产地:美国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制