当前位置: 仪器信息网 > 行业主题 > >

植物呼吸强定仪

仪器信息网植物呼吸强定仪专题为您提供2024年最新植物呼吸强定仪价格报价、厂家品牌的相关信息, 包括植物呼吸强定仪参数、型号等,不管是国产,还是进口品牌的植物呼吸强定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物呼吸强定仪相关的耗材配件、试剂标物,还有植物呼吸强定仪相关的最新资讯、资料,以及植物呼吸强定仪相关的解决方案。

植物呼吸强定仪相关的资讯

  • 【医学应用】微萃取技术在呼吸生物标志物分析中的应用
    新冠肺炎还未走,支原体肺炎又起!许多企业已经开始纷纷入局呼吸道诊断赛道,尝试通过呼吸物分析能够诊断和监测相关疾病。而前不久,由德国PAS Technology转让到德祥旗下英诺德INNOTEG旗下的技术产品——Needle Trap动态针捕集技术及配套采样装置,在通过呼吸产物分析的诊断与检测应用中具备相当的优势。本文将分享英诺德INNOTEG Needle Trap动态针捕集技术及配套采样装置在临床领域的应用优势。呼吸生物标志物呼气挥发性有机物(VOCs)分析是一种新的医学科学方法,有望成为一种新型的无创诊断工具。呼吸取样与血液或组织分析相反,其无创,并且可以频繁重复检测,对患者和采集样本的工作人员没有任何风险。呼吸 VOCs 的来源可以是作为细胞或微生物的生化产物,也可以是外源污染物或先前吸收。 表1:在人类呼吸中检测到的典型挥发性有机化合物和建议的来源呼吸气体采样一般来说,呼吸周期的不同阶段物质浓度不同,彻 底控制取样是一项关键要求。由于对呼吸采样标准没有严格要求,许多研究使用的是整个呼气的采样(混合呼气)。这就导致了一个问题:混合呼吸会有污染物的影响!该如何解决?解决方案肺泡气中血液中挥发性物质的浓度比混合呼气样高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可 靠性,还可以帮助确定呼气生物标志物的来源。 图1:通过二氧化碳示踪识别呼吸阶段和控制肺泡取样。I+II+III 期=呼气期(“混合呼气期”),III 期=肺泡/潮气期。PetCO2=潮汐末二氧化碳分压自动肺泡取样 图2:英诺德INNOTEG Sampling Case 自动采样器英诺德INNOTEG Sampling Case-B,一种新的呼吸气体自动控制取样装置,可在护理点进行直接肺泡取样,无需任何额外的取样或储存步骤。采样前,设置 CO2阈值(通常为 25 和 30 mmHg pCO2),以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,瓣膜就会打开,肺泡气体可采入一种带填料的捕集针被吸附——英诺德INNOTEG Needletrap 动态捕集针。采样原理图如下,这样可以准确地识别呼吸周期的肺泡期和吸气期: 图3:二氧化碳自动控制动态针捕集微萃取呼吸采样装置结论内源性呼吸生物标志物的浓度变化与肺炎、急性呼吸窘迫综合征(ARDS)等急性肺疾病和哮喘、慢性阻塞性肺疾病(COPD)等慢性疾病有关,因此可以帮助诊断和监测护理。由于细菌在生长过程中会产生VOCs,甚至可能通过呼吸 VOCs识别传染源。NT具备更有针对性的临床应用应用英诺德INNOTEG Needle Trap(动态针捕集微萃取),由于样品体积小以及水的影响小,快速可控的样品制备有利于临床的应用。采样和解吸程序的自动化以及采样稳定性的提高,增强了英诺德INNOTEG Needle Trap作为患者和分析仪器之间的通用接口的潜力,用于筛选以及在临床环境中的有针对性的应用。英诺德INNOTEG 气体采样器Sampling Case 英诺德INNOTEGSampling Case气体采样器是一种采集VOCs样品的便携式自动采样装置,与Needle Trap动态捕集针技术或热吸附管联用,用于挥发性有机物VOCs分析。用户通过设定采样体积,采样流速即可实现自动采集气体样品。 英诺德INNOTEG Sampling Case 气体采样器和Needle Trap动态捕集针相连,采样器自动采集气体样品中的挥发性有机物到动态捕集针或热脱附管中。应用于环境,食品,植物,临床呼吸等不同行业VOCs采样,不仅可用于现场采样和临床采样,还可以便携式带到野外采样。产品优势:1. 便携式设计:可实现实验室和野外采样;2. 取样量:10ml-10L;3. 电子MFC,流速范围: 1-50ml/min或5-250ml/min;4. 控制器:带液晶屏的控制器单元;5. 电源:LiPo-lon锂电池,24V直流,10Ah;6. 充电:110-230V AC,50/60 HZ,2A;7. 多种型号可选,SC-XS和SC-S型号用于常规采集;SC-L型号用于常规采样、静态顶空采样;SC-XL型号用于常规采样、静态/动态顶空采样、外接气源压力控制采样;SC-B型号专门用于呼吸肺泡气采样。型号: 英诺德INNOTEG Needle Trap动态针捕集技术英诺德INNOTEG 新型的动态针捕集装置(Needle Trap),把吸附剂填充在针尖内,可装填多达三种不同商用固体填料,是一种新型的无溶剂微萃取技术,集采样、萃取、浓缩、进样于一体,适于痕量挥发性及半挥发性有机物分析。英诺德INNOTEG Needle Trap动态针捕集技术,为气态基质中的痕量分析提供了一种新的样品制备方式。通过增加吸附剂的量以及复合不同种类的吸附剂在增加吸附能力,尤其是对小分子的吸附。利用样品量少和内部膨胀气流热解析的技术进行快速解析而无需冷凝装置,有利于痕量级别的气体分析,其灵敏度高,检出限低。产品优势:1. 英诺德INNOTEG Needle Trap技术易于操作使用,便捷,可用于现场采样的技术;2. 灵敏度高,填有多种吸附剂的动态针捕集装置分析ppb/ppt级低浓度范围挥发性有机物;3. 英诺德INNOTEG Needle Trap的体积小,需要的样品量少,热解析速率只需30s,一方面不需要冷阱聚焦聚焦来解吸样品并且不会造成拖尾峰,另一方面,投入成本和使用成本大大降低;4. 样品采集和存储稳定性强,针头两端有PTFE堵头密封,易于保存,运输方便。规格:Luer-Lock连接头长度:在50mm至70mm之间直径:三种尺寸可选0.7mm/0.4mm;22号规格 (0.72mm/0.4mm) ;23号规格 (0.64mm/0.35mm) ;针尖形式:圆锥形(侧孔,钝面,或根据需求定制)填料:可根据目标组分选择填充不同种类的吸附剂,增大吸附容量和吸附范围如果您对上述产品感兴趣,欢迎随时联系德祥科技。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多个奖项。我们始终秉承诚信经营的理念,致力于成为更好的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德INNOTEG还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 什么是果蔬呼吸测定仪?果蔬呼吸速率测定全靠它!
    果蔬呼吸测定仪是一种用于测量植物呼吸作用的仪器,它可以精确地测定果蔬等植物组织的呼吸速率。该仪器对于研究植物生理生态、优化果蔬采后管理、提高果蔬贮藏寿命等方面具有重要应用价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C519684.htm 一、采后管理优化 在果蔬的采后管理中,呼吸测定仪可以帮助研究人员了解不同果蔬的呼吸特性,从而优化冷藏、气调等保鲜技术。通过调节贮藏环境的氧气和二氧化碳浓度,可以减缓果蔬的呼吸速率,延长保鲜期。 二、农业科学研究 在农业科学研究领域,果蔬呼吸测定仪用于研究植物对环境变化的生理响应,如温度、光照、水分等对呼吸作用的影响。这些研究对于指导农业生产、提高作物产量和质量具有重要意义。 三、食品加工与贮藏 在食品加工与贮藏行业,该仪器可以测定加工过程中果蔬的呼吸速率,为食品的包装、运输和贮藏提供科学依据。通过控制呼吸作用,可以减少营养损失,保持食品的新鲜度和营养价值。 四、生态环境监测 果蔬呼吸测定仪还可以应用于生态环境监测,评估环境污染对植物生长的影响。例如,通过测定污染环境下植物的呼吸速率,可以评估污染物对植物生理功能的影响。 果蔬呼吸测定仪是一种多用途的科研和生产工具,它在果蔬采后管理、农业科学研究、食品加工贮藏以及生态环境监测等领域发挥着重要作用。随着对食品安全和质量要求的提高,果蔬呼吸测定仪将在未来的农业生产和食品工业中扮演更加关键的角色。
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • ECHA成员国委员会确定第一批被列为高关注度物质的呼吸致敏物
    赫尔辛基2012年12月17日消息,欧洲化学品管理署(ECHA)成员国委员会(Member State Committee,MSC)确定了23种新的高关注度物质(SVHCs):其中12种通过书面程序确定,11种在2012年12月10日到13日的会议上确定。在这23物质中,MSC首次确定了3种呼吸致敏物质:分别为偶氮二甲酰胺(diazene-1,2-dicarboxamide,ADCA)、六氢苯酐(hexahydro-2-benzofuran-1,3-dione,HHPA)及甲基六氢苯酐(hexahydromethylphthalic anhydride,MHHPA)。MSC认为这些物质是强呼吸致敏物,需给予和其他高关注度物质,如致癌、致诱变或致生殖毒性物质(CMRs)同样程度的关注。  在其他通过会议被列入SVHCs清单的物质中,2种物质由于其内分泌干扰的特性,4种物质由于其高持久性和生物累积(vPvB),2种物质因其被归类为生殖毒性物质,而被列入清单。在通过书面程序确定的SVHCs中,11种物质归类为CMR,1种归类为PBT(persistent, bioaccumulative and toxic)/vPvB。  上述23种SVHCs将与另外31种不需MSC参与评定的物质一起,被更新在候选清单中。候选清单将于本周晚些时候公布在ECHA网站上。  另外,MSC还一致同意ECHA提交的推荐列入REACH法规附录XIV(需授权物质清单)物质名单草案。该推荐草案包括10种ECHA拟从候选清单中优先纳入需授权物质清单的物质。这10种物质与今年早些提供给公开评议时是一样的。ECHA将在完成附录XIV推荐物质名单最终版时考虑MSC的意见,之后将转交给欧盟委员会。
  • 犹如向大海滴水,他们成功做到给城市“量”呼吸
    “如果把城市比作人,城市也会呼吸,吸入氧气并呼出二氧化碳。以往我们更多关注污染物和二氧化碳的排放,理所当然地认为氧气含量足够,但现在越来越多的证据表明,氧气已被过量消耗,这会给人类的生命健康带来巨大威胁。”中国科学院院士、兰州大学大气科学学院教授黄建平说。日前,黄建平团队在《环境科学与技术》杂志发表题为“工业重镇氧气观测揭示‘城市呼吸’”的封面文章,在国际上率先开展“城市呼吸”研究,从观测的角度提供了城市氧气浓度下降的有力证据,开拓了氧循环城市健康效应研究的新领域。“城市呼吸”机制图。 课题组供图建立国内首个高精度观测平台现有观测资料表明,过去30年中,大气中二氧化碳快速上升,氧气下降的速度是二氧化碳上升速度的两倍左右。实地测量选在中国西北部半干旱地区甘肃省省会兰州市。兰州总人口超过 440 万,由于两山夹一河的独特地形,以及少风少雨的气候特点,大气扩散受到抑制,导致流域内污染物的稳定积累。“我们看到兰州市中心的地形十分独特,南北最窄处仅1公里左右。考虑到大量人口在如此狭窄的区域聚集,人类的呼吸过程所消耗的氧气势必会影响大气中的氧浓度,因此想对这个问题进行深入的探索。”论文第一作者、大气科学学院2020 级气候学专业博士生刘晓岳说。基于上述考虑,黄建平团队提出“城市呼吸”的新概念,用来衡量城市空气的健康状态。目前,针对“城市呼吸”中二氧化碳、污染物、能源等要素的研究在国际上已经比较全面,但是针对氧气的研究几乎是空白状态。“这主要有两个原因,一是没有意识到氧气减少的危害,现在越来越多的研究表明,氧气浓度减少与人体健康特别是心血管疾病密切相关;二是因为氧气浓度实时观测所需仪器的精度很高,一般仪器测量不到。”黄建平介绍道。国内外一些研究团队多用密封瓶采样,进行大气采样分析,其数据的时空分辨率有限。在大自然背景下探测微小的氧气变化是相当具有挑战性的。“大气中细微的氧气变化信号以百万分之一计,这种探测犹如向茫茫大海中滴一滴水,去讨论这一滴水对于整个海平面的影响,因此,氧气监测对分析仪器的精度和漂移有严格的要求,特别是对于连续监测。”团队负责技术的工程师王莉说。2017年,黄建平团队投入140多万元,在兰州大学城关校区一栋22层建筑的顶楼建立了国内首个高精度大气氧气观测平台。空气采样的采气口正对着兰州市最繁忙的街道——天水路,它有双向10车道,毗邻火车站,路段交通发达,受人为活动影响比较显著。氧气观测平台采用气相色谱热导检测器技术测定大气氧含量,这个技术已经使用了20多年,可以较准确的量化大气氧气的变率。团队利用气相色谱仪直接测量的是氧氮比。由于大气中氮气的变化比氧气的变化小得多,可忽略不计,因此氧氮比的变化可以被认为是氧气造成的。“在氧气观测平台建设初期,我们克服了一系列技术难题,包括仪器调试、定标以及后期数据处理,构建了适用于平台的大气氧观测数据的订正方法等。经过团队的不懈努力,我们的观测资料最终得到了国际同行的认可。”黄建平告诉《中国科学报》。首次揭示居民呼吸影响城市中居民呼吸和化石燃料燃烧是两个独立的过程,因此很难直接将上述两个过程分别从大气氧气观测资料中分离出来。但值得注意的是,居民呼吸是不排放污染物的,而化石燃料在燃烧过程中不仅排放了二氧化碳,同时也排放了包括氮氧化物、一氧化碳、二氧化硫在内的各类污染物。在他们的氧气浓度观测信号里,有一部分是和污染物相关的化石燃料燃烧消耗的氧气,另一部分和污染物无关的则是居民呼吸过程消耗的氧气。将现有的氧气浓度和污染物浓度的观测资料进行对比,就可以从氧气浓度变化的信号中分离出化石燃料燃烧信号和呼吸信号。黄建平团队将城市氧气浓度观测数据分为两组:在空气质量较好的情景中,大气扩散条件较好,工业、交通活动消耗的氧气(化石燃料燃烧)能够较快补充,兰州市氧气浓度整体较高。这种情景下人类呼吸占到氧气亏损的33.08%,化石燃料燃烧占比66.92%。此外,大气传输模型也显示,扩散条件较好时,有利于工业区污染气团远距离传输至兰州市中心城区,因此二氧化硫、一氧化氮等污染物对氧气的消耗占比有所上升。在这种情景下,大气充分混合,各类耗氧过程对兰州氧气浓度的影响较为均衡,对人体健康影响较小。在氧气浓度较低、污染严重的情境下,化石燃料燃烧对氧气的消耗占比升高到72.5%,居民呼吸对大气氧损耗的占比降低。高精度的大气传输模型显示该情景下耗氧过程主要发生在中心城区,氮氧化物和PM1排放过程的耗氧量明显增加,对应机动车尾气排放造成的氧气消耗显著增强。黄建平表示,化石燃料燃烧是引起兰州市氧气浓度下降的主要原因(贡献达66.92%~72.50%),此外,居民呼吸过程可造成27.50%~33.08%的氧气亏损,成为准确估算城市排碳耗氧的主要误差来源之一。植物光合作用是氧气的主要来源,兰州市耗氧量是产氧量的500倍以上,其缺口来自周边植被的支援。这种情况不仅发生在兰州,全球人口超过100万的大城市中,有75%的大城市耗氧量和产氧量的比值超过100。黄建平团队曾做过测算:如果化石燃料燃烧稳定在一定水平不下降,则会发生持续的氧气浓度下降,26世纪将降至20.0%以下,并在29世纪初将降至19.5%,可能会对地球上部分生物的生存造成威胁。 下一步,团队希望对全世界大城市的“呼吸指数”进行估算,通过城市耗氧和产氧的具体数据,来呼吁国际社会关注氧浓度问题,进一步评估不同情景下城市氧气浓度变化带来的健康风险,为制订因地制宜的、与产业结构相协调的‘双碳’现实路径提供科学依据。“这是一个前瞻性的研究,更长远来说,我们希望推动一个关于‘城市呼吸’的大科学计划,呼吁全世界更多的城市关注这个问题,因为它不仅是一个科学问题,对每个城市、国家、地区的可持续发展都至关重要。”黄建平说。
  • 【瑞士步琦】通过喷雾干燥配制可吸入药物,就像呼吸新鲜空气一样简单
    通过喷雾干燥配制可吸入药物没有什么比在山上徒步旅行和呼吸新鲜空气更让我喜欢的了。事实上,我们呼吸的空气会超过一整个肺,因为普通人每分钟吸入 7 到 8 升空气,相当于每天吸入大约 11000 升。这种无意识的吸入和呼出过程对我们的健康至关重要,并确保身体细胞获得所需的氧气来发挥作用。肺通过气体交换过程吸收氧气,气体交换发生在肺中数以百万计的小气囊(称为肺泡)中。肺泡如此之多,如果你把它们平摊开来,它们会覆盖一个网球场那么大的区域。当我们吸气时,空气沿着我们的气管进入我们的肺部,通过两条被称为支气管的管道,这些管道分支成更小的细支气管,并在微小的肺泡群中结束。每个肺泡都被称为毛细血管的小血管网络所包围。肺泡壁的厚度约为人类头发的 1/50,允许气体通过肺泡壁进入毛细血管中的血液。进入血液的氧气与血红蛋白结合,通过心脏输送到身体的所有细胞。药物制造商利用这种高效的运输系统,制造出可吸入的干粉药物(通常直径小于 5 微米),小到足以通过上呼吸道和支气管。当颗粒沉积在肺部后,它们需要溶解在肺泡内衬的薄层中,然后它们才能被吸收到血液中。一旦进入血液,它就可以被运送到目标部位,最终,药物被代谢并从体内排出,通常是通过肝脏和肾脏。可吸入的干粉药物(通常直径小于 5μm)足够小,可以通过上呼吸道,然后溶解在肺泡内壁的薄层中,在那里它们可以被吸收到血液中。我相信你可以想象,制造足够小的粒子来穿过这个管道网络不是一件简单的任务;然而,这种传输系统的几个优点使这些工作都是值得的。对于需要立即治疗的问题,如哮喘发作,肺部是理想的递送系统。口服的药物必须经过消化系统才能生效;在这个过程中也有活性成分的损失。有些递送系统更容易设计和制造,但它们也有缺点。病毒传递系统简单,最大的优点是在人体组织中转染效率高;然而,病毒的毒性可以引发免疫反应,并且预先存在的抗体可以中和传递系统及其携带的分子,从而降低治疗效率。非病毒输送系统已被用于规避这些问题。脂质、聚合物和肽基系统可以被修改,用以提高生物相容性,增加内化,并定制药物输送的确切要求。这些类型的材料用于药物颗粒的配方,并用于包封或携带药物,保护其免受降解,并增强其在肺部的吸收,在病毒传递系统中发挥病毒的作用。干粉肺输送最常见的辅料之一是乳糖。基于脂质、聚合物和肽的系统可以被修改,用以提高生物相容性,增加内化,并定制药物传递的确切要求。乳糖具有几种有利的材料特性,使其成为可吸入药物的理想材料。它是美国食品药品监督管理局(FDA)批准的载体,因为它在给药后具有的无毒和易于降解的性质。其他美国食品药品监督管理局(FDA)批准的载体包括亮氨酸、甘露醇、葡萄糖、海藻糖和蔗糖。乳糖是理想的,因为它粘性比其他糖更低,并且具有更高的玻璃态化转变温度,在喷雾干燥时易于流动成粉末。雾化用于制造一系列可吸入粉末,包括多肽、抗生素、疫苗和生物可降解的载体颗粒。这些药物可以针对全身的疾病,但它们对治疗囊性纤维化、哮喘、慢性肺部感染、肺癌和结核病的肺部特异性应用尤其有益。使用喷雾干燥技术制造可吸入药物涉及到通过在不同固体浓度的水中溶解活性成分(药物、纳米颗粒)和赋形剂(乳糖或其他)来制备水溶液。偶尔在溶液中加入乙醇来促进蒸发。所得的喷雾干燥粉末由旋风分离器分离并收集在容器中。有几种常用的分析方法用于表征喷雾干粉,例如:扫描电镜分析粒子形态与大小激光衍射颗粒大小安德森撞击器细颗粒部分X射线衍射非晶/结晶状态差示扫描量热仪玻璃态转变温度气体吸附水分含量卡尔费休水分仪水分含量使用喷雾干燥技术制造可吸入药物涉及到通过将活性成分(药物、纳米颗粒)和赋形剂(乳糖或其他)溶解在不同固体浓度的水中来制备水溶液还有其他方法可以制造用于肺部的可吸入药物,例如冷冻干燥和气流粉碎;然而,喷雾干燥与这些方法相比有许多优点。喷雾干燥能产生高度分散的粉末,而不需要冷冻干燥时所需的载体颗粒。射流铣削过程产生流动性能差的扁平颗粒。气流粉碎的乳糖具有结晶结构,而喷雾干燥的乳糖则是无定形的。无定形态复合物形成的原因是干燥过程迅速,蒸发和形成固相的时间很少。喷雾干燥制成的球形颗粒具有较低的接触面积和均匀的粒度分布,从而增加了可吸入的颗粒组分。喷雾干燥也是一种成本效益高的一步工艺,直接从液体到干燥配方,具有较高的工艺放大能力。喷雾干燥制成的球形颗粒具有较低的接触面积和均匀的粒度分布,从而增加了可吸入的颗粒组分。有四种策略可用于制造干粉配方。第一种是小的无载体药物颗粒,它是 1 到 5μm 的气溶胶粉末,是在日益狭窄的气道之外沉积的最佳尺寸。然而,这种小颗粒经常粘在一起,并且具有很强的凝聚力,流动性差。这可以通过使用小药物和更大的载体颗粒,从而改善药物经吸入器的流动。如前所述,乳糖是最常用的载体,通常设计为 50μm 至 80μm 的尺寸。在吸入过程中,较小的颗粒与载体颗粒分离并沉积在肺泡中。第三个策略是在吸入干粉气溶胶研究方面取得突破,涉及低质量密度(0.4g/cm)的大孔药物颗粒(5μm)。作为第一种策略的替代方案,这些较大的颗粒更容易聚集和分解,具有更好的流动性,并且可以逃避肺部的吞噬清除机制。最后一种策略是在药物的载体颗粒中使用胶囊化的纳米颗粒,并已成为大量研究的课题。纳米医学是生物医学领域的一个新兴领域,由于上述肺给药的好处,已经提出了诸多肺给药的建议。然而,细小的颗粒大小限制了肺沉积,使它们在吸入后从肺部呼出。通过喷雾干燥将纳米颗粒结合到载体颗粒中,使其用于肺部药物递送成为可能。喷雾干燥的多功能性和对方法的高度控制使每种策略都成为可能,并且考虑到可吸入药物相对于其他更具侵入性的输送方式的优势,我期待着未来。▲小型喷雾干燥仪 S-300▲纳米喷雾干燥仪高性能款 B-90 HP
  • 测量“城市呼吸”,助力“双碳”目标
    近日,黄建平团队在《环境科学与技术》杂志发表了题为《工业重镇氧气观测揭示“城市呼吸”》的封面文章,在国际上率先开展“城市呼吸”研究,从观测的角度提供了城市氧气浓度下降的有力证据,开拓了氧循环城市健康效应研究的新领域。  国内首个高精度观测平台 作为地球上几乎所有生物生存的必需品,氧气是大气中最关键的气体成分之一。人口众多且密集的城市地区仅占全球土地的2%,却居住着全球56%以上的人口,并消耗了全球70%的化石燃料。近几十年来,随着越来越多的人口涌入城市,城市地区在适应和减缓气候变化方面面临严峻挑战。现有观测资料表明,过去30年中,大气中二氧化碳占比快速上升,氧气下降的速度是二氧化碳上升速度的两倍左右。  针对这一现象,研究人员选取了兰州市进行实地测量。兰州市地处中国西北部半干旱地区,作为甘肃省省会,其总人口超过440万,由于两山夹一河的独特地形,以及少风少雨的气候特点,大气扩散受到抑制,导致了流域内污染物的稳定积累。  “我们看到兰州市中心的地形十分独特,南北最窄处仅1公里左右。考虑到大量人口在如此狭窄的区域聚集,人类的呼吸过程势必会影响大气中的氧浓度,因此我们希望对这个问题进行深入探索。”论文第一作者、兰州大学大气科学学院2020级气候学专业博士研究生刘晓岳说。  基于上述考虑,黄建平团队提出了“城市呼吸”的新概念,用来衡量城市空气的健康状态。  目前,针对“城市呼吸”中二氧化碳、污染物、能源等要素的研究在国际上已经比较全面,但是针对氧气的研究几乎是空白状态。  “这主要有两个原因,一是没有意识到氧气减少的危害,现在越来越多的研究表明,氧气浓度降低与人体健康特别是心血管健康密切相关;二是氧气浓度实时观测对仪器精度要求很高,一般仪器无法测量。”黄建平介绍。  目前,国内外已有一些研究团队在全球设立了大气氧气定期观测站点,探究全球大气氧气浓度的长期趋势。这些观测通常是使用密封瓶进行大气采样分析,密封瓶采样受实验条件的限制,数据的时空分辨率有限,因此还需对大气氧气进行连续观测来提高对大气传输和混合过程的认识。虽然近年已有一些站点开始连续观测,但是大多数氧气观测站点都设在人烟稀少、远离人类活动的区域。  在大的自然背景下探测微小的氧气变化相当具有挑战性。“大气中氧气变化信号以百万分之一计,这种探测犹如探讨一滴水对于整个海平面的影响,因此,对氧气监测分析仪器的精度和漂移有严格的要求。”团队负责技术的工程师王莉说。  2017年,黄建平团队在兰州大学城关校区一栋22层建筑的顶楼建立了国内首个高精度大气氧气观测平台。空气采样的采气口正对着兰州市最繁忙的街道——天水路。这条路有双向10车道,毗邻火车站,路段交通发达,受人为活动影响比较显著。  氧气观测平台采用气相色谱热导检测器(GC-TCD)技术测定大气氧含量,该技术已经使用了20多年,可以较准确地量化大气氧气的变化。团队利用气相色谱仪直接测量的是氧氮比,这是因为大气中氮气的变化比氧气的变化小得多,可忽略不计,因此氧氮比的变化可以被认为是氧气造成的。  “在氧气观测平台建设初期,我们克服了一系列技术难题,包括仪器调试、定标以及后期数据处理,构建了适用于平台的大气氧观测数据的订正方法等。经过团队的不懈努力,我们的观测资料最终得到了国际同行的认可。”黄建平介绍。  定量估算氧气浓度变化  城市中居民呼吸和化石燃料燃烧是两个独立的过程,因此很难直接将上述两个过程的影响分别从大气氧气观测资料中分离出来。但值得注意的是,居民呼吸是不排放污染物的,而化石燃料在燃烧过程中不仅排放了二氧化碳,同时也排放了包括氮氧化物、一氧化碳、二氧化硫在内的各类污染物。因此,在观测到的氧气浓度变化信号中,有一部分是和污染物相关的信号,指示着化石燃料燃烧消耗的氧气,另一部分和污染物无关的信号,则指示着居民呼吸过程消耗的氧气。将现有的氧气浓度和污染物浓度的观测资料进行对比,就可以从氧气浓度变化的信号中分离出化石燃料燃烧信号和居民呼吸信号。  黄建平团队将城市氧气浓度观测数据分为两组。在空气质量较好的情景中,大气扩散条件较好,工业、交通活动等消耗的氧气能够较快补充,兰州市氧气浓度整体较高。这种情景下人类呼吸占氧气亏损的33.08%,化石燃料燃烧占比66.92%。此外,大气传输模型也显示,扩散条件较好时,有利于工业区污染气团远距离传输至兰州市中心城区,因此排放二氧化硫、一氧化氮等污染物的过程对氧气的消耗占比有所上升。这种情景下,大气充分混合,各类耗氧过程对兰州氧气浓度的影响较为均衡,对人体健康影响较小。  在氧气浓度较低、污染严重的情境下,化石燃料燃烧对氧气的消耗占比升高到72.5%,居民呼吸对氧气损耗的占比降低。高精度的大气传输模型显示该情景下耗氧过程主要发生在中心城区,氮氧化物和PM1排放过程的耗氧量明显增加,对应机动车尾气排放过程消耗的氧气显著增加。  植物光合作用是氧气的主要来源,兰州市耗氧量是产氧量的500倍以上,其缺口主要来自周边植被的支援。这种情况不仅发生在兰州,全球人口超过100万的大城市中,有75%的大城市耗氧量和产氧量的比值超过100。  黄建平团队曾做过测算,如果化石燃料燃烧稳定在一定水平不下降,会发生持续的氧气浓度下降,26世纪将降至20.0%以下,并在29世纪初将降至19.5%,可能会对地球上部分生物的生存造成威胁。  下一步,团队希望对全世界大城市的“呼吸指数”进行估算,通过城市耗氧和产氧的具体数据呼吁国际社会关注氧浓度问题,进一步评估不同情景下城市氧气浓度变化带来的健康风险,为制订因地制宜的、与产业结构相协调的“双碳”路径提供科学依据。  “这是一个前瞻性的研究,更长远来说,我们希望推动一个关于‘城市呼吸’的大科学计划,呼吁全世界更多的城市关注这个问题,因为它不仅是一个科学问题,也对每个城市、国家、地区的可持续发展都至关重要。”黄建平说。
  • 果蔬呼吸强度测定仪-一款用于冷藏库中果品呼吸速率测定的仪器2024实时更新
    型号推荐:果蔬呼吸强度测定仪-一款用于冷藏库中果品呼吸速率测定的仪器2024实时更新,在保障果蔬品质和延长储存期方面,准确测定果蔬的呼吸速率至关重要。果蔬呼吸强度测定仪以其高效、精确的特点,为果蔬呼吸速率的测定提供了有力支持。 一、实时监测,精准测量 果蔬呼吸强度测定仪能够实时监测果蔬在呼吸过程中释放的二氧化碳量或消耗的氧气量,从而准确测量其呼吸速率。这种实时监测确保了数据的及时性和准确性,为果蔬储存和运输提供了科学依据。 二、多功能性,适应性强 该仪器不仅可以测量呼吸强度,还可以统计呼吸量、二氧化碳生成量等指标,并可根据果蔬的大小选择不同容积的呼吸室。这种多功能性和适应性强的特点,使得测定仪能够满足不同果蔬在不同储存条件下的测定需求。 三、操作简便,易于使用 果蔬呼吸强度测定仪的操作简便,只需将待测物品放入仪器中,按下开始按钮即可自动测量,并在屏幕上显示结果。同时,该仪器还具有自动校准功能,无需复杂的操作技能,方便用户在不同场合下使用。 四、仪器特点 1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量直接通过仪器设定,可以进行不同流量下果蔬呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、可输入试验果品或蔬菜的种类、名称、重量、产地、采摘日期等要素 6、支持wifi、4G联网;数据可无线上传至云平台 果蔬呼吸强度测定仪以其实时监测、精准测量、多功能性和操作简便的特点,为果蔬呼吸速率的测定提供了有力支持。它帮助农业、食品加工和运输行业及时了解果蔬的呼吸状况,为制定科学的储存和运输方案提供了科学依据。
  • 土壤呼吸 | 积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响
    在这银装素裹的世界里,下雪不仅带来了诗意的画卷,还为大地覆盖了一层白色的绒毯,守护着生命的源泉,对土地土壤的呼吸也产生着影响。在漫长的冬季里,积雪和大地度过了一个又一个宁静的时光。积雪不仅保护了土地的水分,还防止了土地温度的剧烈变化;当春回大地,雪慢慢融化,雪水还会滋润着大地。在这些过程中,积雪下土壤中的微生物是一场狂欢还是一片沉寂呢?接下来跟随一篇优秀的文章来了解一下这些过程~积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响永冻层和季节性积雪区域占全球陆地表面的60%左右,占全球土壤有机碳(C)储量的70%以上。积雪直接影响表土和大气之间的热交换,减少土壤温度波动的影响。在严寒条件下,较厚的积雪可防止土壤结霜,为地下微生物活动提供相对稳定的生活环境。然而,在全球气候变化背景下,北半球春季陆地积雪面积正逐年减少,预计本世纪末将减少25%。季节性积雪模式对全球气候变化具有复杂且多样的响应,可能会通过光、热、水和养分等资源再分配来影响森林生态系统的地上和地下过程。土壤呼吸作为土壤C循环的重要过程,占据森林生态系统呼吸的60%以上,气候变化导致的土壤呼吸的微小变化甚至会引起森林生态系统呼吸的重大变化。积雪和气温升高之间的相互作用影响土壤冻融循环,导致土壤性质和土壤CO2排放的变化。作者认为冬季积雪会影响不同季节土壤微生物呼吸及其δ13C值,且会随着林分和凋落物的存在而变化,然而,目前,关于该方向的研究十分有限。基于此,为尽可能降低其他环境因素的影响,研究者们在长白山森林生态系统国家野外科学观测研究站附近的温带森林林地(温带红松阔叶混交林(BKPF)和白桦林(WBF))采集带有凋落物的土柱带回实验室,一半去除凋落物,一半保留。人工雪(轻/重)覆盖,根据野外土壤温度和气温的全年变化,利用低温培养箱进行长期培养实验,合理设置不同季节的模拟温度水平变化。利用SF-3000+碳同位素分析仪测定土柱中的CO2排放量及土壤呼吸CO2的δ13C以研究人工积雪和凋落物的存在对中国东北长白山地区典型温带森林土壤异养呼吸及其δ13C值的影响。不同阶段加雪量及加雪时间研究结果不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱的CO2排放量不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱的平均CO2排放量箱线图不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱释放CO2 的δ13C值的动态变化不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱释放CO2 的δ13C平均值箱线图有/无凋落物下土柱CO2排放量与其相应δ13C值之间的关系研究结论该分析系统可用于研究实验室条件下未受干扰的大型土柱的异养呼吸变化及其相应的δ13C值。根据全年四个不同季节的室内模拟实验,人工积雪对森林土壤异养呼吸及其δ13C值的影响可能因季节、凋落物的存在和森林类型而异。在秋季冻融模拟中,与轻雪覆盖相比,重雪覆盖时的CO2排放量相对较大,土壤呼吸CO2的δ13C值也较小,这表明冬季结冰前积雪增加可能会增加温带森林地下土壤有机碳的分解。随着模拟春季冻融的进行,所有处理中土壤呼吸CO2的δ13C平均值变得不那么小,这与秋季冻融模拟期间观察到的δ13C值的变化相反。模拟春季冻融期间,重雪覆盖时土壤呼吸CO2的δ13C值比轻雪覆盖时更负,这与模拟秋季冻融期间和生长季观测到的δ13C值的变化相反。无论积雪以及凋落物是否存在,在模拟生长季节与非生长季节,所有大型土柱上均观察到土壤异养呼吸13C富集变化(平均约4.2‰),这可归因于土壤水分、释放到土壤中的有机碳化合物的数量和质量以及实验条件下的土壤微生物特性。通常,陆地生态系统土壤异养和自养呼吸的δ13C值的季节变化在一定程度上可以反映SOM分解对环境条件的响应。本研究结果强调了冬季积雪和凋落物的存在对温带森林全年土壤呼吸及其δ13C值的影响,需要未来在野外条件下进一步研究,通过适度考虑土壤理化和微生物特性以及细根生物量引起的激发效应对土壤呼吸δ13C和土壤碳动态的调节作用,探索关键的内在影响机制。
  • 文献分享丨灌溉绿洲农业生态系统中土壤呼吸CO2及其Δ13C值随时间变化的测量策略
    土壤呼吸中13C的天然丰度可以为研究土壤-植物大气圈系统中的碳动力学提供有力的工具,并对大气δ13C产生很大影响,因为它是进入大气的最大CO2通量之一。大气δ13C可以进一步反映陆地生态系统的分馏,为生物圈-大气CO2交换提供有价值的示踪剂。此外,使用稳定同位素13C作为示踪剂是划分土壤呼吸成分的极好方法,因为它可以在对土壤环境干扰最小的情况下识别释放的CO2的来源。如果由于缺乏δs数据而导致陆地呼吸的同位素组成参数化不正确,基于呼吸过程中陆地同位素分馏常数的生态系统和全球碳循环模型可能会给出不正确的结果。在现有的δs研究中,最常用的方法是使用静态封闭土壤室,在选定的时间间隔从中收集空气样本,并通过同位素比质谱仪测定进行后分析。在这些实验中,样品采集的频率固有地受到烧瓶采集和离线质谱分析所需的时间和精力的限制。因此,最佳测量时间对于获得日、月或年平均δs非常重要。 基于此,中国科学院地理科学与自然资源研究所温学发等研究人员采用非稳态条件下在线连续多通道双循环观测系统,在中国西北的灌溉玉米生态系统中进行了Rs和δs的原位连续测量。研究过程中,基于连续和高频(1Hz)测量,研究Rs和δs在日、月和季节时间尺度上的最佳测量时间,量化Rs和Δs的最佳测量频率,以在季节时间尺度下达到一定的准确度(±10%、±20%或±30%)。从而评估生长季节土壤呼吸CO2(Rs)及其δ13C(δs)值以及土壤温度(ST)和土壤含水量(SWC)的最佳测量时间和频率。 研究发现,尽管在生长季节,Rs和δs通常随着非生物和生物因素的变化而表现出明显的日变化和季节变化,但在9:00–10:00或此时(如9:00–11:00)的窗口中测得的Rs和Δs通常与日平均值没有显著差异。因此,如果研究人员无法直接测量昼夜模式,建议将这些时间尺度作为气候和植物类型相似地区的最佳测量时间。这项研究的结果为未来在其他灌溉农业生态系统中使用非连续测量提供了指导,可用于选择最佳测量时间并在保证一定精度的同时降低测量频率。试验方案及设备 下图是整套系统的示意图。整个方案由1)分析模块;2)采样模块;3)控制模块和4)校准模块构成。整体采用多通道双循环的设计思路,实现待测气体既能快速周转,又能互不干扰,并且将死体积降至最低水平。下图中蓝色线条代表的气路循环为整套系统的大循环,气体在呼吸室和控制系统内快速循环,能实时反馈气体浓度的变化。黄色线条代表的气路循环为小循环,从大循环中取分析仪需要的气体流量进行分析检测,测试完成的气体再次送回循环气路。原位多通道双循环观测系统示意图(std1, std2, std3:标准气体;MV:3通电磁阀;OF:溢流;V:流量控制阀;P:KNF泵;F:过滤器) 1、降低每一个呼吸室的关闭速度,最大限度减少呼吸室盖紧过程因空气下压产生的土壤呼吸测量的不确定性,保证数据测量结果的稳定性和准确性。 2、缩短每个循环周期的测量时间,尤其有利于土壤呼吸通量较低需要延长单个呼吸室测量时间,以及单次循环土壤呼吸室较多的情况。 3、有利于提高流速较慢分析仪的响应时间。 4、双泵交替工作有利于延长泵的使用寿命。 土壤空间异质性强,即便是同一区块相同土壤类型的土壤呼吸,其通量差异性也非常大。科学家在进行土壤呼吸研究时,通常需要在空间、时间和气体种类上进行多维度的组合研究,才能更好地解释土壤呼吸的内在机制。基于此,普瑞亿科研发了PRI-8600D 多通道土壤呼吸(群落光合)测量系统,能为上述研究提供时间顺序上、不同位点土壤呼吸循环测量解决方案。 PRI-8600D双循环复路系统是普瑞亿科潜心研发多年的土壤呼吸测量多路系统,具有发明专利(专利号:ZL201710784488.5),并在科技部重点研发计划项目支持下,于2023年完成最新一轮的升级。升级完成后,相对其他厂家的同类产品具有以下特点和优势: 1)具有双循环气路设计:设有奇数组和偶数组两个分组,每组均包含1个一体化的汇流排和1一个循环泵,并通过电磁阀组连接在一起交替为分析仪主机提供气源。两组复路系统交替工作,在前一个呼吸室测量结束前,次一个呼吸室开始工作,并在前一个呼吸室测量结束时,切入第二个呼吸室进行测量。 2)升级高度集成的采集汇流排、双路双循环汇流排、标样汇流排,极大的减少了分析气路的“死体积”;而模块化的设计也大大降低了气路泄漏的风险,保证了测量结果稳定可靠。 3)升级每个通道内置的过滤器材质为SUS304,提高了整机的气密性和稳定性,保障了整套系统能靠运行。 4)升级工业级电控逻辑板,即使在极端的工况下,设备也能稳定可靠的运行。MODBUS RTU的RS485通讯为客户大范围远距离应用提供了可能。 5)具有三路标准气接口,这可以实现高校准频率需要的分析仪时间在线校准,比如光谱同位素分析仪。 6)升级的气电混装定制化接头和线缆,设备更简洁/美观和可靠;同时,实现一个较小尺寸的主机箱连接不少于32个土壤呼吸室。 7)标配一个RS-232、一个RS-485 通讯接口,为一个复路系统驳接多个气体分析仪提供可能(可根据客户应用,拓展RS-232、RS-485和TTL通讯)。 8)具有WIFI接口,可以连接触控设备进行测量参数配置;具有双网口,可以进行数据自动上传和远程数据跟踪。 9)可以同时接驳土壤呼吸明室/土壤呼吸暗室/大容量群落光合室等。 10)若只需要CO2 H2O测量,分析仪可以内嵌到一个主机箱内。 8600-2012 全自动土壤呼吸测量暗室具有发明专利(专利号:ZL202021501088.2),该呼吸室升级了气电混装的线缆结构,升级土壤呼吸的防水等级至IP66,升级呼吸室多层采样装置,设备简洁、美观、可靠。 8600-2012 具有动压平衡装置,通过科学的设计,既能保证呼吸室内大气压于外界大气压的平衡,也能在一定限度内消除外界风速对呼吸室内气体的扰动,保证测量结果的准确性。配合PRI-8600D双循环,8600-2012关闭呼吸室的速率可以很低,最大限度消除其对土壤呼吸的扰动。 8600-2012C 是全自动土壤呼吸明室,呼吸室上部没有任何遮挡,考虑到植物生长高度,透明呼吸室高度可以在一定范围内特殊定制。兼容性好,可连接不同的同位素或气体浓度分析仪;双循环气路设计,能提升不同通道之间的切换效率;定制化程度高,通道数量、气路长度、呼吸室种类;标配3路标准气切换模块,可在线进行系统标定;专利的动压平衡装置,能提升通量测量精度和准度。PRI-8600D 多通道土壤呼吸(群落光合)测量系统主要包含多路复路系统主控箱,双循环泵,触屏PAD;可选配 CO2 H2O 分析仪,高精度 CO2 CH4 N2O 气体浓度分析仪,高精度 CO2 CH4 N2O 同位素分析仪;可选各种呼吸室,如土壤呼吸室、群光光合箱,明暗交替呼吸室/箱(含动压平衡装置),空气温度、土壤温度和土壤湿度传感器等;可选配不同长度的气路管线,标配15 m,可以定制长度至100 m。装置,能提升通量测量精度和准度。 PRI-8600D 多通道土壤呼吸(群落光合)测量系统可以满足不同科学研究需要,适用于生态学、农学、林学、肥料学、冻土、地震学研究,以及垃圾掩埋等领域。
  • 无创呼吸机获得批准生产 打破国外产品垄断
    近日,由中科院沈阳自动化研究所与沈阳新松医疗科技股份有限公司(以下简称新松医疗)共同开发研制的新松DPAP系列无创呼吸机获得辽宁省食品药品监督管理局颁发的医疗器械注册证,可以批量生产上市。该呼吸机的生产上市标志着此类进口无创呼吸机高端产品长期垄断我国无创呼吸机市场的桎梏被打破,对于我国无创呼吸机产业发展具有里程碑的意义。  无创呼吸机是一种人工的机械通气装置,用以辅助或控制患者的自主呼吸运动,以达到肺内气体交换的功能,降低人体的消耗,以利于呼吸功能的恢复。无创呼吸机主要工作原理是患者自主呼吸触发按需流量阀开放,通过口鼻面罩给患者提供可以满足通气需要的高速气流,吸气时呼吸机通过一定的高压力把空气压进人的肺部,呼气时呼吸机通过较低的压力使人把肺内的二氧化碳由口或鼻子从口鼻面罩上面的排气孔排出体外。无创呼吸机流速一般为120L/min以上且能根据患者的需要增加或减少,在提供气流的同时保持管路内的压力在预设的压力水平。当患者没有自主呼吸的情况下,呼吸机会按照预设的吸气压、呼气压、呼吸频率和吸呼时比帮助患者呼吸,并监测包括压力(吸气压,呼气压)、呼气潮气量、呼吸频率、漏气量、峰流速、吸呼时比(I:E)等参数,还可以分别调节吸气和呼气触发灵敏度,在压力超限、漏气、断电、设备操作故障时会以声光警报信号提醒使用者。  无创呼吸机的临床应用分为三大类。一类以呼吸系统疾病为主,包括肺部感染,肺不张、哮喘、肺水肿等影响肺内气体交换功能,此时呼吸机的治疗主要改善肺内气体交换,提高血液中氧浓度和排除二氧化碳 第二类以外科手术为主,有利于病人麻醉恢复,维持正常的呼吸功能,减少呼吸肌运动,降低氧耗量 第三类以睡眠呼吸暂停为主,通过一定的压力解决上气道的堵塞情况。根据世界卫生组织数据显示,全世界共有六亿人口面对慢性阻塞型肺疾病(COPD)的威胁。当其它疾病因医学的发达而日益减少之际,COPD却有逐渐上升的趋势。预计在2020年,将变成世界上第五大疾病。在我国,目前约有3800万个COPD患者。当COPD患者病情发展到呼吸衰竭时,无创呼吸机将成为患者家庭康复治疗的必然选择。在睡眠呼吸疾病方面,国际医学界普遍认为无创呼吸机治疗睡眠呼吸暂停综合症是最为简洁经济的方式,无创呼吸机产品在国外得到普遍的临床应用,每年约有200万台的市场需求。目前中国约有4000万的睡眠呼吸暂停综合征患者,每年有800万患者就诊(按OSAS的发生率为37.5%并结合老龄人口增长率计算),如果有5%的患者遵医嘱采用无创呼吸机进行治疗,每年将有40万台无创呼吸机的需求。  国外无创呼吸机占领我国医疗器械市场是在非典型性肺炎(SARS)爆发的2003年。SARS期间,在疗效尚不明确的情况下,呼吸科医生使用多种药物(如抗生素、抗病毒药、免疫调节剂、糖皮质激素等)和高压氧舱、有创呼吸机、无创呼吸机等医疗设备治愈了数以万计的SARS患者,但通过对愈后患者生活质量统计,发现只有无创呼吸机治愈的患者才能恢复到正常人的生活质量水平。目前,国外此类产品在市场上处于垄断地位。  DPAP系列无创呼吸机的研制得到了辽宁省、沈阳市和沈阳高新区科技计划项目的支持,沈阳自动化所科研人员与企业的产品开发人员紧密配合,在短时间内就完成了无创呼吸机的吸气同步触发技术、漏气补偿技术、气道降噪技术、高稳定性气体流量传感器等关键性技术研究工作并进行了原理性验证,开发了产品样机。2009年12月,DPAP系列无创呼吸机样机通过了国家食品药品监督管理局天津市医疗器械质量监督检验中心进行的医疗器械注册第三方检测,检测结果证明,无创呼吸机符合产品技术标准和注册要求,具备了医疗器械注册证申请条件。相对国外同类型产品更加符合国人生理标准,同时在价格上具有一定的优势。
  • 投资2500万美元 安利植物研发中心落户无锡
    2013年10月9日,安利(中国)植物研发中心在江苏无锡奠基。该中心作为一个国际合作研究平台,未来将主要致力于中草药的有机种植研究、提取物研发及保健美容功能研究。安利中国植物研发中心奠基培土  安利旗下纽崔莱品牌创始人卡尔· 宏邦之子、美国纽崔莱营养与健康研究中心总裁山姆· 宏邦博士表示,其父上世纪二十年代在上海工作和生活时,受中医药及中国传统养生文化影响,坚信植物中含有增进人体健康的营养物质,并于1934年在美国创立纽崔莱品牌,因此可以说纽崔莱品牌源于中国,源于中医药。纽崔莱品牌创立近80年来,一直致力于植物的有机种植并从中提取植物营养素。如今纽崔莱已成为全球保健食品市场的领导品牌。此次安利(中国)植物研发中心落户长三角,并聚焦于中草药的研发,开启了纽崔莱的回归之旅,同时也将继续引领世界保健食品研发的方向。  奠基仪式上,安利将嘉宾祝福卡封存于一个不锈钢制&ldquo 时间胶囊&rdquo ,与奠基石碑一起埋下,并约定在纽崔莱品牌创立100周年时启封。江苏省委常委、无锡市委书记黄莉新,安利中国总裁黄德荫等出席奠基仪式。  保健食品中草药产业化趋势:当有机种植与&ldquo 零缺陷&rdquo 质量管控相结合  随着《黄帝内经》、《本草纲目》被列入世界记忆名录,中医针灸被列入人类非物质文化遗产代表作名录,中草药文化国际影响日增,并成为保健食品研发的宝藏。日前,国务院总理李克强主持召开国务院常务会议,着重提出要加快中医药等重点产业发展。  有关数据显示,作为拥有世界上最丰富的天然中草药资源的国家之一,中国已经发现的中草药资源达12807种。但丰富的资源优势并未真正转变为产业优势、市场优势。首先中草药种植多分散于农户和小企业,种植管理粗放,质量、功效及食品安全难以保证 其次中草药的现代科技研究、保健食品开发及国际市场开拓还处于起步阶段。  安利(中国)植物研发中心即定位于根据国际保健食品市场需求,依据中国传统养生保健理念及积累的丰富中草药使用经验并使用现代科技对其进行研究 同时按照纽崔莱有机种植原则研究中草药的有机种植,并依靠安利引以为豪的质量和食品安全管理体系,形成完整的中草药营养保健品链条。  植物研发中心的研究成果将不仅应用于中国市场,也将推向安利的全球市场,并藉此将中国的传统养生保健理念和经验发扬光大。
  • 动植物检疫实验室常见废弃物的危害和处理方法!
    动植物检疫实验室常见废弃物的危害和处理方法!百欧博伟生物:本文说明了一般的动植物检疫实验室所产生的废弃物对人类和环境所带来的危害,并参阅有关资料,整理和总结出一些对废弃物处理的方法,并提出一些减少实验室废弃物的建议,使实验室人员能够认识并重视到废弃物的危害,在处理废弃物时可以借鉴和参考,从而减少实验室废弃物所带来的环境污染和生态破坏,保护生物安全。一、前言随着世界贸易的进一步发展,我国进出口贸易的范围也在进一步扩大,作为一般的动植物检疫实验室,所检测的商品将会更多,所用到与检疫实验有关的药品、试剂、一次性用具、实验器械等将会增多,因此所产生的废弃物也将会随之增加。近年来,实验室所产生的废弃物由于没有进行必要的处理而直接排入外界所造成的危害,已经崭露头角,实验室已经成为一个不容忽视的污染源,特别是生物性实验室,所产生的废弃物或检疫样,可能携带一些危害性生物,极有可能造成疾病的流行或某些有害生物的疯狂生长,破坏生态环境。二、动植物检疫实验室废弃物的分类动植物检疫实验室的废弃物可以分为:⒈化学性废弃物:有氰化物、硝酸盐、邻苯二胺、砒霜等;⒉生物性废弃物:有作废的动植物标本、动植物检疫样品、微生物培养物、染色液等;⒊一般的废物:打碎的玻璃器皿、废纸、废纱布、橡胶以及塑料制品。三、动植物检疫实验室废弃物的危害⒈化学性废弃物⑴氰化物和硝酸盐:氰化钾和硝酸盐常用作微生物培养剂的制作。①氰化物属于剧毒物质,在酸性条件下易产生氰化氢,氰化氢为剧毒气体,在实验现场的z高含量须≤0.3 mg/m3;在居民大气中z高含量须≤0.8mg/m3。CN—能与细胞色素酶牢固结合阻止Fe+3还原,是组织细胞缺氧而窒息,从而抑制多种酶的活性。②硝酸盐容易诱发糖尿病,易造成肾脏的损害,如果人们摄取了高浓度的硝酸盐,肾脏的负担加重,容易引起溶血性贫血。并且硝酸盐可以在酶和细菌的作用下,被还原成亚硝酸盐,亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成具有“三致” 作用的亚硝胺类,可严重危害人体健康。⑵邻苯二胺:邻苯二胺是ELISA实验常用的化学药品,可经过吸入、食入和皮肤侵入,对眼睛、粘膜、呼吸道有刺激作用;可以致微生物突变,遇火、高热可燃,受热分解放出有毒的氧化氮烟气。⑶砒霜(As2O3):为剧毒物质,砷化合物易和体内酶的巯基(-SH)结合,使酶失去活性,阻碍细胞正常代谢,使细胞变性坏死,从而损害神经系统、肝脏和肾脏。慢性砷中毒可伴随“三致”的发生。⒉生物性废弃物⑴动植物标本:动植物标本一般都用福尔马林作为防腐剂,被浸泡过的标本废弃后,上面会有甲醛气体散出。甲醛对神经系统、免疫系统、肝脏等有严重的损害,还会刺激眼结膜、呼吸道粘膜和皮肤,引起过敏性皮炎、结膜炎、咽喉炎、支气管炎等,损害视神经和视网膜,引起头痛、视力下降或失明,并且具有致癌、致畸作用。目前,世界卫生组织(WHO)和美国环境保护局(EPA)已将其列为具有潜在危险的致癌、致畸物质和重要的环境污染物。风干的标本可能因为保存不当而孳生一些病原生物(如:虫子、虫卵或霉菌等)而成为一个传染源,若不进行熏蒸或再烘干处理,则有可能损害其它标本或物品。⑵检疫样品①植物性检疫样:棉花、棉短绒、废丝、水果、花卉、木材等上面可能携带一些杂草籽、霉菌、细菌、病毒以及一些害虫等,检疫实验室对于这些检疫样品一定要妥善保管和处理,若使有害生物进入到外界环境,就有可能在新的地方疯狂生长,从而形成“生物入侵” 。如19世纪美洲仙人掌传入澳大利亚,z初是用来做篱笆,圈养牛羊,但是它迅速生长,到了1925年已侵染牧场,使得其中很大部分不能放牧,土地不能耕种,并且还以惊人的速度扩散。还有就是发生在我国的,在上世纪90 年代初,我国在大量引进观赏植物巴西铁(Dracaena fragrans )时,蔗扁蛾(Opogona sacchari )随之传入,并随巴西铁迅速扩散,现已分布于北京及南方各省,并且由南向北蔓延。经调查,蔗扁蛾目前在北京各花卉生产基地均有不同程度的发生,严重时,每年巴西铁因此虫的淘汰率达50%以上,现已成为北京温室花卉生产中的主要害虫之一。外来生物入侵的危害:diyi,造成严重的生态破坏和生物污染。比如,原产于南美洲的水葫芦现已遍布华北、华东、华中、华南的河流、湖泊、水塘,疯长成灾,严重破坏水生生态系统的结构和功能,导致大量水生动植物的死亡,并且阻塞河道。第二,外来物种通过压制或排挤土著物种,形成单优势种群,导致生物多样性的丧失。第三,生物入侵导致生态灾害的频繁爆发,对农、林、渔业等造成严重损害,给国民经济带来巨大损失。近年来,松材线虫、湿地松粉蚧、美国白蛾等森林入侵害虫严重发生与危害的面积,每年达150万公顷;稻水象甲、非洲大蜗牛、美洲斑潜蝇等农业入侵害虫每年超过140万公顷,据保守估计,全国主要外来物种造成的农林业经济损失平均每年达574亿元。第四,直接威胁到畜禽和人类的健康。如豚草、三裂叶豚草的花粉就是引起人类花粉过敏的主要病原物;紫茎泽兰含有的毒素能使马匹和羊患上气喘病,四川省凉山彝族自治州曾因紫茎泽兰入侵而在一年内减少了6万多头羊,畜牧业损失达2100多万元。由于紫茎泽兰对土壤肥力的吸收力强,能极大地耗尽土壤养分,对土壤可耕性的破坏也极为严重。②动物性检疫样:血液、呕吐物、分泌物、皮张、蚕茧、精液、胚胎、肉、奶、蛋等也可能携带一些我国没有而其它国家有的动物疾病,或者是国家明文规定的一、二类传染病病原(有细菌、病毒、支原体、衣原体、寄生虫等),这些疫病,一旦爆发或流行,将会对我国的畜牧业养殖造成巨大的危害。比如:血液中可能含有致病菌、病毒或者一些血液源性寄生虫(疟原虫、血吸虫、焦虫、边虫、锥虫等);皮张中极有可能含有炭疽;动物的呕吐物、分泌物中含有大量的病原微生物;精液和蛋中可能含有一些垂直传播的疾病(如:精液可以携带猪瘟、PRRS、非洲出血热、口蹄疫等病原微生物;蛋中会携带沙门氏菌、禽白血病、EDS-76等病原微生物… … 这些传染病随时有可能传入我国,作为检验检疫机构,检疫是重中之重,并且检验检疫时,工作人员一定要早好自身的防护。⑶微生物培养物、染色液:微生物的培养、鉴定以及染色观察是实验室常用的用于微生物的观察、研究和判定,废弃后的培养基、染色液上会携带微生物,还有与微生物有过接触的废弃物,如一次性用品:手套、帽子、口罩、工作服、移液器的枪头以及玻璃仪器,均要做好管理和消毒灭菌处理,否则,会造成疾病的流行。例如:2003年非典流行过后,许多生物实验室加强对SARS病毒的研究,之后所报道的非典感染者,多是科研工作者在实验室研究时,由于没有做好自身的保护以及这些危险物的管理和处理工作而被感染的。⒊一般性废物:在实验室,许多打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品被直接装进垃圾袋,扔进垃圾堆,z后再掩埋或焚烧。焚烧后,有的燃烧不彻底,又会产生新的固体废物和有害气体,造成二次污染;直接掩埋后,许多在环境中不易或不能降解,因此对土壤和作物的生长发育产生不良影响:①由于这些物质的阻隔,土壤水分运动受阻,孔隙度、通透性降低,不利于土壤空气的循环及交换,致使土壤中CO2含量过高,不利于作物正常生长发育。有些含有有害成分(如聚氯乙烯类塑料),接触种子或幼芽后,会抑制种子萌发,或会使芽、幼苗灼伤。②使土壤物理性能不良而导致作物扎根困难,吸肥、吸水性能降低而减产。③如果不回收利用或回收不彻底,将会造成资源的浪费。四、动植物检疫实验室废弃物的处理动植物检疫实验室所产生的废弃物因具有潜在的感染性、传播性以及危害性,若处理不当,将会严重的污染环境,危及人类、动物和自然的安全,因此需要进行必要的处理,才能废弃,除了焚烧和深埋以外,还应该提倡回收和综合利用的方式,减少资源浪费。⒈实验室废弃物处理的一般原则为防止污物扩散、污染,应该分类收集、存放,分别集中处理,尽可能采取废物回收以及固化、焚烧或深埋等方法处理。在实际工作中,选择合适的方法进行处理,尽可能减少废物量,减少污染。⒉动植物检疫实验室废弃物的具体处理措施生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。液体废物一般可加漂白粉进行氯化消毒处理。固体可燃性废物分类收集、整理,z后作焚烧处理。固体非可燃性废物分类收集,可加漂白粉进行氯化消毒处理,满足消毒条件后作最终处置。⑴生物性废弃物的处理①一次性使用的制品如手套、帽子、工作物、口罩等使用后放入污物袋内集中烧毁或及时用消毒剂浸泡,彻底消毒后,统一上交,集中存放,重新回收,再利用,减少资源浪费。 ②植物检疫样,如没有发现病虫害,则可以利用;若发现有病虫害,可以装于密闭容器内,在60-120℃下烘干1-2 h后,做焚烧或深埋处理。③动物检疫样,肉、蛋、奶、精液、胚胎、蚕茧等在没用异常的情况下可以加以利用,若有病变或异常,则应集中销毁,或焚烧或深埋。对于利用效 率不大或不能利用的检样(小块皮张等),高压灭菌后,应集中储存,妥善保管,z后统一作深埋或焚烧处理。如果量大,可以化制处理,生产一些有用的工业副产品,减少资源浪费,变废为宝、化害为利。④微生物检验接种培养过的琼脂平板或不能回收的染色液应高压灭菌30min,趁热倒掉废弃处理。尿、唾液、血液、分泌物等生物样品,加漂白粉搅拌后作用2-4h,倒入化粪池或厕所或者进行焚烧处理。⑤可重复利用的玻璃器具如玻片、吸管、玻璃瓶等可以用1-3g/L有效氯溶液浸泡2-6h.然后清洗灭菌后重新使用。⑥盛标本的玻璃、塑料、搪瓷容器可煮沸15min.或者用1g/L有效氯漂白粉澄清液浸泡2-6h,消毒后用洗涤剂及流水刷洗、沥干;用于微生物培养的,用压力蒸汽灭菌后使用。⑵化学性废弃物的处理①氰化物用NaOH调节PH10,加入KMnO4或者漂白粉,经充分搅拌,静置,使氰化物完全被氧化分解。②硝酸盐或者亚硝酸盐类可以,加入尿素,调为酸性条件,充分搅拌,使反应生成氮气。③邻苯二胺可以在酸性条件下加入高锰酸钾,使其氧化分解;也可以利用H-103树脂吸附处理,再用稀盐酸作为脱附剂回收或利用磷酸三丁脂萃取等。奇兵等人应用液膜处理高浓度的邻苯二胺废水,效果较好,主要过程包括制备乳液、液膜萃取、澄清分离等过程,用氯仿作为传质介质,将邻苯二胺以盐的形式回收,乳液可以重复利用或破乳后在制乳。④含砷废液:在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的PH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。静置,分离沉淀,上清液达标后可排放。⑶化学性废弃物的处理一般性废弃物如打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品,应经消毒和灭菌后,分类装进垃圾袋,统一深埋或焚烧或做回收处理。五、减少生物性废弃物的措施⒈不要购买暂时不用的药品和试剂,不要购买过多的药品和试剂。⒉促进实验室人员的知识更新,加强技术培训,避免在实验工程中污染。⒊提高实验室人员的环境保护意识,加强责任心教育和废弃物的管理,做好回收利用工作。⒋制定相应的实验室废弃物管理和处理的制度和措施,使其更加制度化和规范化。⒌研究无毒害、无污染的替代品,减少剧毒物的利用。⒍采用微型实验,开发绿色实验室。六、小结实验室是实践学习和科学研究的试验基地,检疫实验室除此作用外,在进出口贸易中还具有检测货物中的病虫害,发出预警通知,防止外来疫情或有害生物的侵入的作用。所以,检疫实验室产生的废弃物,更应该先处理,后废弃,切实做好国门卫士的角色。为避免检疫实验室的污染危害,实验室要更加完善废弃物的管理和处理制度(保证生物性废弃物能够专库贮存,专人看管,分类存放,贮存废物的容器或垃圾袋必须贴上标签,标明废弃物种类、贮存时间等,贮存时间不能太长,贮存数量也不能太多,合理及时有效的处理生物性废弃物,z大限度地保护实验工作人员的健康,保护我们的生存环境,保护我国的农业、林业、畜牧业及山产养殖业的健康发展,这样才能更好的保护人民的生命财产安全,充分体现社会主义以人为本、以民为贵的优良作风。现今,我们对于废弃物的z终处理,最常用的是焚烧和深埋两种。我国还应该加强对废弃物处理这一领域的研究工作,寻求更彻底、更简便的方法,避免焚烧和深埋带来的二次污染,并且要回收可以重复利用的废弃物,做到既不污染环境又不浪费资源。北京百欧博伟生物技术有限公司拥有对菌种、细胞、培养基、配套试剂等产品需求者的极优质服务,对购买项目的前期资料提供,中期合同保证,后期货物跟踪到z终售后的确保项目准确到位,都有相关人士进行维护,确保您在中国微生物菌种查询网中获得z优质服务!也正因为此,北京百欧博伟生物技术有限公司与国内外多家研制单位、生物制药、第三方检测机构和科研院所院校、化工企业有着良好、长期和稳定的合作关系!
  • 远离雾霾,自由呼吸——芯硅谷口罩专题
    雾霾来袭近年来,我国雾霾情况越发严重,雾霾已经成为时下热门话题,关于雾霾你了解多少?雾霾天里我们应该如何应对?什么又是雾霾呢? 雾霾,是雾和霾的组合词。雾霾常见于城市。 雾霾是特定气候条件与人类活动相互作用的结果。高密度人口的经济及社会活动必然会排放大量细颗粒物(PM 2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚,此时如果受静稳天气等影响,极易出现大范围的雾霾。 芯硅谷的产品优势芯硅谷蚌型高效过滤防尘口罩 ,采用双层抗压技术,耐热耐潮,低呼吸阻力设计便于使用和佩戴.耐用的橡胶带,可调节的鼻夹及柔软的鼻梁海绵条,便于使用者更舒适地佩戴 呼吸阀的安装减少热空气形成,在湿热空气中易于呼吸 夹层活性炭有效阻挡外界灰尘。 芯硅谷 四层活性炭口罩 ,四层构造,内外层分别采用水刺布、活性炭布、过滤纸和无纺布制成,可减少纤维脱落现象及增加佩戴的舒适度,有效过滤细菌和颗粒物.可调节鼻梁夹设计可依据不同脸型做最舒适的调整,获得最佳舒适度.广泛应用于用于电子制造业、学校、医院、制药、工厂、喷油、化工厂、家具厂、电子厂、油漆厂、公共场合等。选择芯硅谷防雾霾口罩,让您自强不&ldquo 吸&rdquo 。 产品列表&mdash &mdash 芯硅谷口罩系列项目号品名详细参数包装F1597-06FFP2蚌型高效过滤防尘口罩(单只装),带呼吸阀,带活性炭,防雾霾类型:耳挂式,带呼吸阀,带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:灰色 过滤级别:FFP2 过滤效率:94%10EAF1597-07FFP2蚌型高效过滤防尘口罩(单只装),防雾霾类型:耳挂式,不带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAF1597-08FFP2蚌型高效过滤防尘口罩(单只装),带呼吸阀,防雾霾类型:耳挂式,带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAF1597-09FFP3蚌型带阀高效过滤防尘口罩,带呼吸阀,防雾霾类型:耳挂式,带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:PVC密封,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP3 过滤效率:99%10EAF5952-01四层活性炭口罩层数:4 材料:25gPP无纺布+45g活性炭+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAF5952-02四层活性炭口罩(单片装)层数:4 材料:25gPP无纺布+45g活性炭+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAP1590-09FFP2杯型高效过滤防尘口罩,带呼吸阀,带活性炭,防雾霾类型:头带式,带呼吸阀,带活性炭 层数:四层(涤纶槽+熔喷材料+活性炭+PP纺粘布) 材质:PVC环形密封圈,塑料夹,高密度带 颜色:灰色 过滤级别:FFP2 过滤效率:94%10EAP1590-10FFP2杯型高效过滤防尘口罩,带呼吸阀,带活性炭,防雾霾类型:头带式,带呼吸阀,带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:浅灰色 过滤级别:FFP2 过滤效率:94%10EAP1590-11FFP2杯型高效过滤防尘口罩,防雾霾类型:头带式,不带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:黑色海绵条和氨纶焊带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAP1590-12FFP2杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:黑色海绵条和氨纶焊带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAP1590-13FFP3杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC环形密封圈,塑料夹,高密度带 颜色:白色 过滤级别:FFP3 过滤效率:99%5EAP1590-14FFP2杯型高效过滤防尘口罩,防雾霾类型:头带式,不带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAP1590-15FFP2杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAP1590-16FFP3杯型高效过滤防尘口罩(单只装),带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC环形密封圈和翘角 颜色:白色 过滤级别:FFP3 过滤效率:99%10EAT5944-01三层无纺布口罩层数:3 材料:25gPP无纺布+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAT5944-02三层无纺布口罩(单片装)层数:3 材料:25gPP无纺布+25g过滤纸+35g水刺布 尺寸:175× 95mm50EA更多产品信息请点击这里
  • 吸烟对心、脑血管和呼吸道的影响
    对心、脑血管的影响 许多研究认为,吸烟是许多心、脑血管疾病的主要危险因素,吸烟者的冠心病、高血压病、脑血管病及周围血管病的发病率均明显升高。统计资料表明,冠心病和高血压病患者中75%有吸烟史。冠心病发病率吸烟者较不吸烟者高3.5倍,冠心病病死率前者较后者高6倍,心肌梗塞发病率前者较后者高2~6倍,病理解剖也发现,冠状动脉粥样硬化病变前者较后者广泛而 严重。高血压、高胆固醇及吸烟三项具备者冠心病发病率增加9~12倍。心血管疾病死亡人数中的30%~40%由吸烟引起,死亡率的增长与吸烟量成正比。烟雾中的尼古丁和一氧化碳是公认的引起冠状动脉粥样硬化的主要有害因素,但其确切机理尚未完全明了。多数学者认为,血脂变化、血小板功能及血液流变异常起着重要作用。高密度脂蛋白胆固醇(HDL-C)可刺激血管内皮细胞前列环素(PGI2)的生成,PGI2是最有效的血管扩张和抑制血小板聚集的物质。吸烟可损伤血管内皮细胞,并引起血清HDL-C降低,胆固醇升高,PGI2水平降低,从而引起周围血管及冠状动脉收缩、管壁变厚、管腔狭窄和血流减慢,造成心肌缺氧。尼古丁又可促使血小板聚集。烟雾中的一氧化碳与血红蛋白结合形成碳氧血红蛋白,影响红细胞的携氧能力,造成组织缺氧,从而诱发冠状动脉痉挛。由于组织缺氧,造成代偿性红细胞增多症,使血粘滞度增高。此外,吸烟可使血浆纤维蛋白原水平增加,导致凝血系统功能紊乱;吸烟还可影响花生四烯酸的代谢,使PGI2生成减少,血栓素A2相对增加,从而使血管收缩,血小板聚集性增加。以上这些都可能促进冠心病的发生和发展。由于心肌缺氧,使心肌应激性增强,心室颤动阈值下降,所以有冠心病的吸烟者更易发生心律不齐,发生猝死的危险性增高。 据报告,吸烟者发生中风的危险是不吸烟者的2~3.5倍;如果吸烟和高血压同时存在,中风的危险性就会升高近20倍。此外,吸烟者易患闭塞性动脉硬化症和闭塞性血栓性动脉炎。吸烟可引起慢性阻塞性肺病(简称COPD),最终导致肺原性心脏病。对呼吸道的影响 吸烟是慢性支气管炎、肺气肿和慢性气道阻塞的主要诱因之一。实验研究发现,长期吸烟可使支气管粘膜的纤毛受损、变短,影响纤毛的清除功能。此外,粘膜下腺体增生、肥大,粘液分泌增多,成分也有改变,容易阻塞细支气管。在狗实验中,接触大量的烟尘可引起肺气肿性改变。中国医科大学呼吸疾病研究所的一项研究发现,吸烟者下呼吸道巨噬细胞(AM)、嗜中性粒细胞(PMN)和弹性蛋白酶较非吸烟者明显增多,其机制可能是由于烟粒及有害气体的刺激,下呼吸道单核巨噬细胞系统被激活,活化的AM除能释放弹性蛋白酶外,同时又释放PMN趋化因子,使PMN从毛细血管移动到肺。激活的AM还释放巨噬细胞生长因子,吸引成纤维细胞;以及PMN释放大量的毒性氧自由基和包括弹性硬蛋白酶、胶原酶在内的蛋白水解酶,作用于肺的弹性蛋白、多粘蛋白、基底膜和胶原纤维,从而导致肺泡壁间隔的破坏和间质纤维化。据报导,1986年美国患COPD者近1300万人,1991年死亡9万多人,吸烟是其主要病因。吸烟者患慢性气管炎较不吸烟者高2~4倍,且与吸烟量和吸烟年限成正比例,患者往往有慢性咳嗽、咯痰和活动时呼吸困难。肺功能检查显示呼吸道阻塞,肺顺应性、通气功能和弥散功能降低及动脉血氧分压下降。即使年轻的无症状的吸烟者也有轻度肺功能减退。COPD易致自发性气胸。吸烟者常患有慢性咽炎和声带炎。
  • GE医疗在华首批高端呼吸机投产下线,携手无锡再添中国智造新动力
    GE医疗在华首批高端呼吸机投产下线,携手无锡再添中国智造新动力 GE医疗在华生产的首批高端呼吸机于无锡正式投产下线,以驰援全球抗疫,支持“预防型公共卫生体系”建设 该举措标志着GE医疗拓展供应链国产化布局,践行中国承诺的又一里程碑,也将带动无锡乃至长三角制造业转型和智能医疗产业升级 2020年6月22日,无锡——今天,GE医疗在华生产的首批高端呼吸机正式投产下线,以驰援全球抗疫并支持“预防型公共卫生体系”建设。该项举措是GE医疗国产化进程的重要里程碑,也标志着无锡国家高新技术产业开发区和GE医疗,在联合推动无锡乃至长三角地区制造业转型、提升全供应链智能制造水平方面取得的重要成就。 无锡市政府副市长、高新区党工委书记、新吴区委书记蒋敏表示:“GE医疗扎根无锡20多年,持续不断地把全球领先技术引入中国,造福中国患者,同时让先进的智能制造带动了一批地方企业的发展,其本土创新实力更是影响世界。今天,一条GE全球最高端的呼吸机产线落户无锡,代表着无锡产业链能力达到了国际最高标准。未来,我们期待与GE继续深化合作,在无锡打造一个植根中国、惠及中国老百姓的创新医疗生态系统。” GE医疗中国总裁兼首席执行官张轶昊表示:“在疫情蔓延之时,GE医疗和中国民众站在一起,第一时间为抗疫前线提供急需的医疗设备和物资。GE医疗无锡工厂是我们全球最重要的超声和生命关爱医疗设备的研发和生产中心,为抗疫物资生产做出重大贡献。衷心感谢无锡市各级政府和供应链合作伙伴的大力支持,让我们在无锡原有产线基础上,快速推进呼吸机产线落地,用更快捷的响应速度满足中国和全球市场的需求。这不仅标志着GE医疗全面国产化进程又迈进一步,彰显了我们继续扎根无锡、扎根中国的坚定信心,也标志着无锡智能医疗产业发展和智能制造转型迈上了一个新的台阶。未来,GE医疗将继续携手各级政府伙伴,推进全球创新智能医疗设备的国产化进程,关爱每个中国人的生命重要时刻。” 据悉,此次下线的呼吸机产品系GE医疗全球最高端的重症有创呼吸机CARESCAPE R860,用于无创通气后呼吸窘迫和/或低氧血症无法缓解的危重病患的救治。面对病情几小时内的迅速恶化,R860提供的智能精准肺功能评估、智能营养支持方案是挽救生命危险的关键——能监测残气量和能量代谢的详细数据,可协助医生直观评估肺部的可复张性以及肺复张效果,降低患者肺损伤风险,这也是业界目前仅有的能同时实现两种功能的呼吸机;同时,参数的精准监测、定制化的潮气量输送、根据间接测热法的营养评估,可有效避免呼吸机造成的肺损伤,改善预后,降低感染率并加快ICU流转——这些也均是面对重大卫生事件时辅助医生抢救更多生命的“决赛点”。 生产此类高端呼吸机对无锡工厂的智能制造能力、供应链的可靠性也提出了更高的要求。从项目立项至今天首批产品下线,GE医疗中国团队用时仅3个月。期间,GE医疗无锡工厂与美国工厂紧密协调并与全球近50家供应商合作,通过无锡工厂成熟的精益生产管理体系、严格的质量管控、规范的操作流程使项目顺利推进。呼吸机产线落成后,将很快达到每月1,000台的出货量,销往全球各地。 疫情爆发以来,GE已捐助了价值2,000万人民币医疗物资及现金,其中包括价值1,000万的监护仪和超声设备。同时,GE医疗集合全球供应链资源,向全国和全球疫情医院提供了数千台CT、超声、监护仪、呼吸机等设备和解决方案。此外,GE医疗中国自主创新为前线医院量身定制了“诺亚1号”一体式方舱CT检查室,实现AI自动患者定位和隔室操作,确保医患安全,提高诊疗效率;自主研发了LK 2.0 CT影像智能分析平台,用于新冠肺炎的早期识别。客户服务部门无偿为全国逾千家医院提供CT/MR设备远程支持,并在疫情后期为湖北和全国数家医院的CT、超声无偿焕新,助力医院疫后复工。
  • 全球呼吸机“大作战”:特斯拉跨界Model 3变呼吸机
    p style="text-align: justify text-indent: 2em line-height: 1.75em "新冠疫情在全球暴发,医疗耗材和器械的供应战从口罩、防护服“打到”呼吸机、试剂盒。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4月4日,纽约州州长安德鲁· 科莫(Andrew M. Cuomo)在例行疫情发布会上表示,蔡崇信、马云等向纽约捐助的1000台呼吸机将于当地时间4月4日抵达纽约肯尼迪机场。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "纽约州是美国疫情最严重的地区之一。科莫曾表示在高峰时期纽约需要三万台呼吸机;4月2日,科莫称按照其时的使用和患者情况,纽约州的呼吸机储备只够6天;州政府虽紧急订购了17000台呼吸机,但由于厂商产能不足无法交付,相较之下美国联邦政府的储备大约是10000台。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "随着疫情的蔓延,源源不断的需求一方面促使全球的传统呼吸机厂商开足马力运转,另一方面则促使有相关生产线的公司纷纷“跨界”。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3月30日,医疗器械巨头美敦力公开了其呼吸机的通风设计规范,称此举为“提高全球呼吸机产量”。4月6日,特斯拉官方发布了一则用汽车零部件制造呼吸机的视频,其工程部门讲解如何将已有部件改装成呼吸机,在不消耗医疗物资资源的情况下满足需求。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 337px " src="https://img1.17img.cn/17img/images/202004/uepic/eba177e4-e400-41df-b570-53fcd0e1e281.jpg" title="d499c28b5251895cfd5599f5d3350b9a.jpg" alt="d499c28b5251895cfd5599f5d3350b9a.jpg" width="600" height="337" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 337px " src="https://img1.17img.cn/17img/images/202004/uepic/686b0a21-a3da-41df-8ebb-e3810c47c7e5.jpg" title="4cf61d008b6a38d951f75fd707e4898b.jpg" alt="4cf61d008b6a38d951f75fd707e4898b.jpg" width="600" height="337" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "在应对完国内疫情之后,国内的呼吸机厂商鱼跃医疗和迈瑞医疗接到全球的呼吸机订单已经排至六七月份,但原材料的供应仍然制约着其提升产能的困境。而“跨界”制造、量产呼吸机面临的困难更加艰巨,除了原材料,还面临生产线转变、技术壁垒、供应链、审批等环节,东兴证券估计从零起步的跨界企业可能要花费18个月才能实现量产。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4月5日国务院联防联控机制举办的新闻发布会上,海关总署综合业务司司长金海出示的数据显示,从3月1日到4月4日,全国共验放出口主要疫情防控物资价值102亿元,主要包括口罩约38.6亿只,价值77.2亿元;防护服3752万件,价值9.1亿元;红外测温仪241万件,价值3.3亿元;呼吸机1.6万台,价值3.1亿元;新型冠状病毒检测试剂284万盒,护目镜841万副。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "产能之困/pp style="text-align: justify text-indent: 2em line-height: 1.75em "治疗重症新冠病毒感染对呼吸机有严重的依赖和需求。呼吸系统严重疾病患者(如新冠病毒感染者)需要在呼吸机的支持下才能维持有效的呼吸功能。患者连接呼吸机后,机器将负责供氧并模拟人体呼吸,从而让人的肺脏得到休息,并逐步恢复正常功能。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在3月30日国务院联防联控机制举办的新闻发布会上,工业和信息化部产业政策与法规司司长许科敏介绍,疫情发生以来,我国呼吸机主要生产企业第一时间都恢复生产。“多地工信部门很快实现其上游853家全国配套商中794家复工复产,及时帮助企业解决零部件短缺、物流运输不畅等问题。截至3月29日,主要呼吸机企业累计向全国供应呼吸机2.7万多台,其中有创呼吸机3000多台。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "国外对有创呼吸机的需求量特别大。目前我国有创呼吸机生产企业共有21家,其中8家的主要产品(周产能约2200台)取得了欧盟强制性CE认证,约占全球产能五分之一。目前已签订单量约2万台,同时,每天还有大量的国际意向订单在洽谈。据不完全统计,3月19日以来十天内,已紧急向国外提供有创呼吸机1700多台,达到了今年以来提供国内总量的一半。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "不断刷新的全球确诊人数让呼吸机的缺口持续放大,但短时间内要满足需求并不容易。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "呼吸机根据应用场景和使用患者的不同主要分为几大类,包括重症和亚重症治疗呼吸机、新生儿呼吸机、转运和急救呼吸机、家用呼吸机等。迈瑞医疗生命信息与支持事业部总经理李新胜在接受21世纪经济报道采访时表示, “家用呼吸机每年市面上的产量超过500万台,拉升产能会更容易一些。但重症和亚重症治疗用的呼吸机,全世界一年的产能也就在10万台左右,现在有几十万台甚至上百万的需求,短时间内快速地拉升产能是不太现实的。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "许科敏指出,“一台呼吸机有上千个零部件,主要的零部件供应商不仅有在国内的,也有一些在国外包括欧洲。在疫情影响下想大规模增产并非易事,全部满足所有需求也是不现实的。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "“全球呼吸机做得比较好的厂商在德国、美国和瑞士。”一位业内人士对21世纪经济报道表示,呼吸机涉及的零部件很多,“比如空气压缩模块,是一个非常特殊的部件,是从国外采购的。制约产能的很大一部分原因就是空气压缩涡轮的产能是有限的。即使找替代的压缩模块,涡轮模块里的核心部件高速电机也需要从瑞士进口。没有高速电机,涡轮是做不好的。而且零部件的供应商要有几十年的积累才能打磨出好部件,里面有很多技术诀窍。所以说很难短时间内把产能拉升上来,不管国内还是国外厂商,都受此制约。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "鱼跃医疗在4月1日公告称其获得了美国食品药品监督管理局FDA对于其无创呼吸机签发的紧急使用授权(EUA),此次批准是用于在COVID-19大流行期间治疗患者的医疗环境中的紧急使用。如果在紧急情况终止后,鱼跃仍希望在美国市场销售该产品,则需要完成已在进行中的相应 FDA 注册工作。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "鱼跃方面称,目前收到了大量的呼吸机海外订单,由于呼吸机产品技术较为复杂、品控要求严格,上游供应商产能爬升需要一定时间,预计呼吸机订单排队情况还将持续,“当前呼吸机产能爬升主要受制于原材料供应,每日产量有一定波动。产能提升有限,前期积累订单仍在消化中,获批FDA EUA对业绩的具体影响还需视实际业务发生情况”。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "跨界之难/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3月30日,美敦力公司宣布公开其PB 560型号的呼吸机设计文件,供各行业评估加快制造呼吸机的可行性。该呼吸机2010年上市,在全球35个国家和地区销售,其产品服务手册、设计文件、制造文件以及电路图现公布在美敦力全球官网上,之后美敦力将提供该呼吸机的软件代码及其他信息。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "这是美敦力在3月18日宣布将自己的呼吸机产能和供应增加一倍之后的一次“开源”行为。美敦力方面对21世纪经济报道称,“开放设计和知识产权朴素的想法就是:大家一起来造。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "“美敦力理解目前对呼吸机的需求远超供给,”美敦力执行副总裁兼微创治疗业务集团总裁Bob White说,“没有一个公司可以单枪匹马满足全球医疗体系的需求。但所有的制造商正在与全球政府、医院和健康组织合作,增加呼吸机产能。通过公开分享PB 560呼吸机的设计,我们希望能够增加全球范围内呼吸机的产量,用以抵抗新冠肺炎。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "同时美敦力方面也称,呼吸机的制造是一个复杂的流程,有赖于高技能的工作人员团队、全球化的供应链,以及经验丰富的临床培训团队。为确保患者安全,呼吸机制造还需要遵守全球各地的监管要求。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "虽然美敦力喊话行业“大家一起来”,但呼吸机不是“谁想造就能造”。除了制约产能的零部件,呼吸机还有其技术壁垒。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "呼吸机的技术壁垒在于信号处理和控制算法技术,“呼吸机所用的部件都是行业内专用的标准件,大家都买得到,如何用同样的部件达到最好的通气控制精度和人机同步效果,就是每家的核心技术所在。目前市场上每个呼吸机厂家产品质量的差异就体现在通气控制技术和人机同步技术上。”李新胜表示,造汽车的、承接生产外包的代工厂等都有很强的生产能力,“但是它的能力很难短时间内转化成生产呼吸机能力。因为这类产品需要在呼吸机行业积淀多年,建立医疗设备质量管理体系、开发生产工装和检测校准工艺、培养专业的人才,这个过程都需要花大量的时间。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "一些政府也已经呼吁非医疗技术制造商转变生产线来制造呼吸机,一些厂商也积极响应。但业界担忧这远低估了呼吸机的复杂性,Evaluate MedTech数据显示,在过去五年中,没有一家全球领先的制造商获批上市的新呼吸机数量超过十种,最多的是Resmed,获批7种,其次为瑞士Hamilton(5)和Hill-Rom(5),另一巨头Philips获批数量为4种,美敦力为3种。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "上市获批数量较少说明呼吸机具有一定技术壁垒,但在当前环境下,更重要的是制造能力,传统大型厂商美敦力和GE Healthcare占据主导地位。但是呼吸机制造商也声称,大量增加产量可能需要三到四个月。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "看上去比较有希望的可能是GE和福特的联合。3月24日,GE Healthcare与福特宣布合作加快和扩大呼吸机的生产。福特将提供其技术和生产专业知识,以简化GE Healthcare现有呼吸机的设计。该新系统将专门为解决新冠肺炎大流行期间的紧急需求而构建,配备安全治疗COVID-19患者所需的基本功能。自COVID-19疫情暴发以来,GE Healthcare称其呼吸机生产能力已翻了一番,并计划在2020年第二季度末再翻一番,以应对前所未有的需求,而无需再与福特合作。/p
  • 昆虫动物呼吸代谢能量测量系统在农科院蜜蜂研究所成功安装运行
    3月开学季来临,易科泰携手农科院蜜蜂所为科研实验提供助力,昆虫动物呼吸代谢能量测量系统包括双通道氧气分析仪,高精度二氧化碳分析仪、双通道SS4稳定气流控制单元、RM-8气流切换单元,高精度昆虫呼吸室。可测量单只昆虫的呼吸能量代谢情况、多只昆虫的呼吸能量代谢情况以及不同环境(不同气体浓度比例条件下)的昆虫呼吸代谢情况。其适用的昆虫,小到蚜虫,蚊子,大至蜜蜂、蛾类;尤其适用于果蝇等模式动物。该套系统能够精准有效的反映昆虫的能量代谢、新陈代谢等情况。 昆虫动物呼吸代谢能量测量系统 位于北京植物园内的农科院蜜蜂研究所 位于高精度昆虫呼吸室内的蜜蜂昆虫呼吸代谢能量测量系统广泛应用于动物生理生态学、遗传学、生物医学、媒介生物学等学科,可准确的测量动物的CO2呼出量和耗氧量,并可计算呼吸熵、能量消耗等。同时可选配昆虫活动强度监测、红外热成像等系统对昆虫的能量消耗进行全方位的监控检测。以研究昆虫等动物的生理生态、昆虫活动与温度的关系、昆虫活动与呼吸代谢的关系、昆虫健康状况及生理状态、杀虫剂对昆虫的影响及最小致死量、临界热极值CTmax(critical thermal maximum)、不连续气体交换DGC(discontinuous gas exchange cycle)等。另外,由于昆虫的野生型较多,易科泰根据科研需求推出了便携式昆虫呼吸代谢测量系统。该系统将氧气分析仪、二氧化碳分析仪以及气体抽样单元等高度集成于一个手提箱内,可在野外任何地方对当地的昆虫的呼吸代谢情况进行测量,尽最大可能保证了昆虫的原位野生状态,对于昆虫的生态学研究提供了强有力的工具。北京易科泰生态技术公司近20年来致力于生物呼吸与能量代谢技术的推广和技术服务,为您提供全面生物呼吸与能量代谢测量方案:高通量昆虫呼吸与能量代谢测量技术方案(CO2与O2测量)SSI实验动物能量代谢测量系统与热成像仪联用方案便携式动物呼吸代谢测量系统与热成像仪联用方案人体能量代谢与活动强度研究测量方案
  • 国药医工院获批筹建“上海呼吸系统药物工程技术研究中心”
    近日,国药集团上海医工院重点实验室获得上海市科委立项,筹建“上海呼吸系统药物工程技术研究中心”。  这一中心将以研发治疗呼吸系统药物及其中试产业化为主要研究内容,具体包括药物体外细胞毒性评价、吸入气雾剂中CFC替代及工业化实施、时控脉冲控释制剂的中试放大、新型干粉吸入剂的产业化及给药装置设计等。该中心将通过建立呼吸系统药物研究、评价、工程化开发的平台,进行呼吸系统疾病新产品的开发及产业化关键技术的研究,力争建成国内领先且有较强国际竞争力的工程化研究中心。
  • 5分钟出结果 基于拉曼光谱的无创呼吸分析仪为新冠病毒提供即时检测
    新加坡南洋理工大学的研究团队日前设计出一款基于表面增强拉曼散射(SERS)的呼气分析模组,可在5分钟内完成新冠病毒的筛查,这是比鼻咽拭子和聚合酶链式反应(PCR)检测更优的方案。此项研究成果已发表于ACS Nano杂志:《Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min》,论文链接为:https://doi.org/10.1021/acsnano.1c09371 。聚合酶链式反应(PCR)技术是检测SARS-CoV-2最准确的方法,但它涉及昂贵和复杂的实验室设备,这往往意味着可能需要几个小时,甚至几天才能得到检测结果。另一方面,快速抗原测试是一种更快的测试病毒存在的方法,但它有准确性的局限性,经常提供不一致的结果。研究人员设计了一款手持模组,该模组包含了搭载三组SERS探针分子的芯片,SERS探针分子附着于银纳米立方体上。当被测者向设备呼气10秒,呼气中的新冠病毒生物标志物会与传感器发生化学反应。然后,将呼吸分析仪装入便携式拉曼光谱仪中,再根据SERS信号的变化对反应后的化合物进行表征。研究人员最近在501人身上对该原型设备进行了测试,他们也都接受了PCR检测。令人印象深刻的结果显示,假阳性率为0.1%,假阴性率为3.8%。这与实验室PCR检测的准确性相当。将光谱技术应用于传染病的检测,一直是极具吸引力的应用方向,目前该应用因新冠病毒(Covid-19)检测而凸显得愈加重要。虽然还需要更多的工作来验证这些结果并使该技术商业化,然而,从智能手机测试套件到夹子式暴露监测器,这种新型呼吸分析仪是许多新出现的技术创新之一,使COVID-19检测变得简单和便携。
  • 【瑞士步琦】人体免疫助力天然植物吉洛伊的冷冻干燥处理
    天然植物吉洛伊的冷冻干燥处理吉洛伊(Giloy)也称为心叶青牛胆(Tinospora Cordifolia),是一种印度阿育吠陀草药,在印度医学中得到认可并长时间使用;在我国湖北西部、陕西南部、四川东部、西藏东南部、贵州、江西、福建及两广地区均有分布。在梵语中,吉洛伊被称为“仙露”(Amrita),译为“永生之根”,源于它具有丰富的药用特性。在传统的印度医学中,吉罗伊是最有用的阿育吠陀草药之一。它被用作:增强免疫力治疗慢性发热促进消化治疗糖尿病减少压力和焦虑减轻哮喘症状治疗关节炎减缓肿瘤生长提高视力减少年龄痕迹防治呼吸系统问题在本应用中冷冻干燥作为一种干燥方法来保存吉洛伊。由于实验过程处于无液态水、无氧气和低温的操作环境下,冷冻干燥一直被认为是最适合保存天然植物及生物材料的技术之一。它用一种温和的方式来去除水分,同时获得最高质量的最终产品,能够保留生物活性化合物,以及质地、颜色和气味,同时减少样品重量更加方便运输。吉洛伊茎和其研磨的膏体可以直接进行冷冻干燥处理,干燥后的吉洛伊茎和膏体可以研磨成粉末,直接食用或做成果汁享用。尽管冷冻干燥是一种温和的干燥过程可以保留产品的特性,但某些特质:例如颜色、气味、质地、复水性、体积特性、流动性、水分活性以及营养物质和挥发性化合物的保留,都可能受到干燥过程的影响。例如,生物活性化合物和营养质量的保留,会受氧含量或过高温度的影响。因此,在制定冻干方法时应考虑到这点:以吉罗伊为例,如果温度超过45°C,营养成分可能会受到影响,在设置冷冻干燥方法时必须注意这一参数。 1仪器和实验材料冻干机 BUCHI Lyovapor&trade L-200 Pro,搭配可加热搁板冻干软件 BUCHI Lyovapor&trade Software真空泵 Pfeiffer Duo 6”海尔低温冰箱 -40°C 2实验流程样品准备:新鲜采集的绿色吉洛伊茎 600g,切成长度约 5cm 块。用蒸馏水清洗干净后放入托盘中,连同搁板一起放入 -40℃ 冰箱中进行预冻。冻干参数设定:经过一夜深度冷冻后,冷冻的吉洛伊茎连同托盘和搁板一同被转移到 Lyovapor&trade L-200 冻干机中,冷冻干燥参数如下表所示。可加热搁板的初始加载温度设定为 -25℃,然后设定升温至0℃。此次冷冻干燥分为初级干燥和二级干燥两步,初级干燥时长约为 12 小时,二级干燥搁板温度设定为 40℃,持续时间 12 小时 30 分钟。为保护植物中营养物质不受破坏,因此搁板温度控制在 40℃ 以避免达到临界温度。 3 实验结果冷冻干燥前冷冻干燥后在冷冻干燥处理后,可观察到吉洛伊茎已成功干燥。从上图中可以看出植物外形未受任何影响,去除水分93.5%(下表)。描述重量(g)初始重量600最后重量172.58吉洛伊重量161.40总除水量%93.5 %本实验使用 LyovaporTM L-200 冷冻干燥机,采用一级和二级冷冻干燥编程的方法成功干燥吉洛伊植物茎。冷冻干燥是以温和并高效的方式除去产品中水分的技术,所以非常适合温和干燥吉洛伊这类天然植物。在干燥处理后,冻干的吉洛伊茎可以使用研磨机磨成粉,直接食用或制备成胶囊,也可以加入到果汁中,以获得其中植物性免疫活性成分增强身体免疫能力。4参考文献https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/emmbros-overseas-lifestyle-pvt-ltd-565631-02052019https://food.ndtv.com/health/10-amazing-benefits-of-giloy-the-root-of-immortality-1434732#:~:text=%E2%80%9CGiloy%20(Tinospora%20Cordifolia)%20is,of%20its%20abundant%20medicinal%20propertiesMayer, A.M. Harel, E. Polyphenol oxidases in plants. Phytochemistry 1979, 18, 193–215.Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766.Kulkarni RC, Mandal AB, Munj CP, Dan A, Saxena A, Tyagi PK. Response of coloured broilers to dietary addition of geloi (Tinospora cordifolia) during extreme summer. Indian Journal of Poultry Science. 2011 46(1):70-74Bhattacharyya C, Bhattacharyya G. Therapeutic potential of Giloy, Tinospora cordifolia (Wild.) Hook. f. and Thomson (Menispermaceae): The magical herb of ayurveda. International Journal of Pharmac. Biol. Arch. 2013 4(4):558-584.
  • 紧盯“保卫蓝天”目标 扬尘监测系统助力实现“呼吸自由”
    “十三五”以来,我国大气污染治理取得明显成效。生态环境部的数据显示,与2015年相比,2019年细颗粒物(PM2.5)未达标地级及以上城市年均浓度下降23.1%,全国337个地级及以上城市年均优良天数比例达到82%。2020年,蓝天保卫战的成绩更加亮眼。1月至8月,全国337个地级及以上城市平均优良天数比例为86.7%,同比上升5个百分点;PM2.5浓度为31微克/平方米,同比下降11.4%。蓝天白云的好天气正在成为常态。但我国生态环境“从量变到质变”的拐点还没有到来。今年3月中旬,一场强烈的沙尘天气给我国的环境空气质量带来严重影响。来自国家环境空气质量监测网络的数据显示,沙尘过境期间,我国北方多地空气质量达到严重污染,预计有177个地级及以上城市在两次强沙尘天气影响下导致空气质量超标702天。同时,这也将直接导致全年优良天数比例下降0.6个百分点左右。为了持续巩固“十三五”的治理效果,实现长久的“呼吸自由”,“十四五”以PM2.5和臭氧协同治理、扬尘治理、低碳技术、零碳技术、负碳技术以及CCS等技术作为大气污染治理的偏重方向。其中,扬尘治理受到人们的广泛关注。众所周知,空气质量不佳意味着环境中的悬浮颗粒物增多,而后者也是大气污染的重要组成部分。对颗粒物的管控牵涉到了扬尘污染治理,其中两大来源是施工工地以及道路扬尘。国家也采取了严格的扬尘管控和监测措施,提出现场洒水清扫、进出车辆冲洗、扬尘在线自动监测设施安装等规定,不断强化各项措施。建大仁科扬尘在线自动监测系统是为帮助改善空气质量而研发的一款环境自动监测系统,符合国家监测要求。该系统由扬尘检测仪、通讯服务器和环境监控云平台组成,可实时采集安装环境中的温度、湿度、噪声、大气压力、风力、风速、风向、PM2.5、PM10、TSP等环境参数,并通过GPRS/4G方式将数据上传至环境监控平台,实现集中监测、远程查看、超限报警等功能。目前,该系统广泛应用于建筑工地、交通工地、砂石场、堆煤场、秸秆焚烧等无组织烟尘污染源排放及居民区、商业区、道路交通、施工区域等的环境空气质量的自动监控。扬尘检测仪硬件产品噪声扬尘监测仪主要由扬尘监测单元、噪声监测单元、气象监测单元、数据采集处理单元、数据传输单元、LED 屏显示单元、太阳能供电单元、视频字符叠加单元组成,具有对现场环境的PM2.5、PM10、环境温湿度及风速风向监测、噪声监测、视频监控及污染物超标视频抓拍(选配)、有毒有害气体监测(选配)等多种功能,实现测量环境参数的监测、展示、数据上传、视频叠加功能。应用到工地环境监测时,可对接政府监测平台,实现工地环境参数的 24 小时监管。设备采用激光散射测量原理,用气动流量泵作为动力,压强比风扇的强很多,大颗粒粉尘不会附着到腔体内部,并且测量腔体采用直通式结构,长时间使用不会造成灰尘堆积,稳定性比普通扬尘要好的多,数据的一致性也好很多。另外还带有自动除湿装置,消除雨雾影响,不会出现雨雾天PM值爆表的问题。环境监控云平台环境监测云平台将现场的多要素数据进行集成,实现集中监控。平台可实现实时监控,方便查看,数据超标报警,并可给指定联系人推送告警短信或邮件,同时平台有数据记录功能,正常数据和超标数据亦可分类显示。平台可对各设备进行站点排名、数据统计分析,为各级主管部门调度决策提供有力支持。 此平台留有二次开发接口,可接入其他厂家扬尘设备。
  • 气候变化对南极植物和土壤微生物的影响研究
    原文以Biology Researchers Studying Climate Change' s Effect on Plants and Soil Microbes in Antarctica为标题发表于2019年1月22日的https://today.ttu.edu/上原文作者:Glenys Young翻译:毅 德克萨斯理工大学(Texas Tech University)在南极的学术研究历史非常悠久。早在20世纪60年代,由Alton Wade领导的地质研究组就在南极考察。当时他们试图回答:数百万年前,世界是什么样子的? 然而,最近关于南极的研究并不着眼于我们这个星球的历史,这是它的未来。 德克萨斯理工大学生物科学系助理教授Natasja van Gestel正在研究气候变化如何影响那里的植物和微生物活动。 ? 确实,目前南极只有不到1%的土地是无冰的,但是,这个数字正在增长。van Gestel博士正在研究的区域在1960年前后还被冰川所覆盖,但是现在,冰川已经消退了大约500m。随着冰川退缩,植物开始在这一地区生长。?图1 van Gestel博士在这里安装了美国METER公司制造的EM50数据采集器和气象土壤测量传感器图2 美国METER制造的6通道数据采集器ZL6和一体式集成气象站ATMOS41首次安装在南极 “我们有一个很好的时间序列,来研究植被覆盖与距离冰川远近的关系。”van Gestel说。“自1950年以来,南极洲的244个冰川中有近90%已经退缩,并且这一过程仍在持续。因此,时间顺序信息可以帮助我们预测其他区域(冰川未消退区)会如何应对气候变暖。” 图3 冰川消退进程记录(1963~2018) 与研究生Kelly McMillen一起,van Gestel正在研究冰川消退区的整个环境梯度:从裸地到完全被植被覆盖的区域。 “我们发现了大约有100种苔藓以及两种维管束植物,南极发草和珍珠草(Antarctic hairgrass and Pearlwort)。”van Gestel说,“生产力最高的区域位于利奇菲尔德岛(Litchfield Island),这是一个需要特殊许可才能进入的保护区。生产力最低的区域距离冰川的边缘只有几米。虽然那里没有可见的植物,但土壤中的微生物是可以进行光合作用的。这些微生物是碳通量的重要贡献者。” 图4 生产力最高的利奇菲尔德岛(Litchfield Island)所在位置图5 冰川消退后岩石上开始着生地衣和苔藓? 碳通量测量是van Gestel博士研究的重要组成部分。这有助于了解植物生产力梯度格局以及植物和微生物对气候变暖的响应。 图6 van Gestel博士使用美国LI-COR公司制造的LI-6800测量地表碳通量(1) “我们预计碳通量会随着植被覆盖度的增大而增加。”van Gestel说,“而且,微生物的数量也会增多。随着植被覆盖度的增大,它们的代谢活动会更高。同时,我们预期微生物的群落组成也会发生改变。” “相当多的微生物目前并不活跃,它们可能从其他地方被风吹来,处于休眠状态。但是一旦时机成熟,它们就会打破休眠。”图7 van Gestel博士使用美国LI-COR公司制造的LI-6800测量地表碳通量(2) 与此同时,van Gestel博士还开展了野外增温实验。这一实验用于确认微生物响应发生的速度。北亚利桑那大学的博士Alicia Purcell将使用一种称为定量稳定同位素探测(qSIP)的技术,这是由van Gestel的合作者——北亚利桑那大学Bruce Hungate发明的一种新方法。这种方法可以确定哪些微生物正在积极生长,以及生长的速度。 van Gestel和McMillen使用可以在阳光下捕获热量的敞口加热室(Open-Top Warming Chambers),加热小面积的土壤和植被。这种方法的优势是,除温度以外的其他变量可基本保持和自然环境一致。 图8 敞口加热室(Open-Top Warming Chambers)制作与效果评估 Van Gestel的研究团队沿生产力梯度,选取了四个研究站点,在每个站点上采集完整的土壤苔藓样本土核四个,然后向样本土核中添加水并放置在敞口加热室内。两个样品土核添加纯水,另外两个样品土核添加氧18重水。 图9 野外安置的敞口加热室(Open-Top Warming Chambers) “微生物活跃后将会吸收水,”van Gestel说,“那些重氧将被整合到他们的DNA中,从而使他们的DNA变得更重。我们可以根据DNA的重量变化来计算其生长速度。” 最终,这些研究将能回答:气候变化如何影响南极洲的植物和微生物?这些改变又如何影响该地区生态系统的碳平衡。 “温暖的条件可能会使某些微生物受益,但不会使所有微生物受益。对植物来说也是如此。”van Gestel说。“我们预期微生物群落会发生改变。由于植物生长非常缓慢,因此短时间内较难确定植物群落的变化规律。为此,我们需要对植被覆盖进行长期定位监测。” “相对于对照地块,温暖地块的碳通量会更大。生态系统光合作用和呼吸速率都会有所增加,但哪一个组分增加的更多呢?因为这最终决定了整个系统的净碳通量对气候变暖的反馈。” ? “由于南极生态系统比地球上的其他生态系统更简单”,van Gestel说,“在这里的发现可以为生态系统的碳储存提供更多机制信息,进而对气候模型完善做出贡献。” “例如,微生物碳利用效率的温度敏感性如何?微生物利用一部分碳构建生命体,其余部分则通过呼吸作用消耗掉。那问题来了,温度变暖会使微生物更加浪费碳吗?微生物碳利用效率是气候模型中的一个重要参数。如果微生物的碳利用效率下降,那么更强的呼吸损失会导致更多的碳从土壤迁移到大气中,从而进一步加剧全球变暖。”
  • PRI-2012土壤呼吸叶室
    table width="624" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="491" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"PRI-2012/span/strongstrongspan style=" line-height:150% font-family:宋体"土壤呼吸叶室/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"北京普瑞亿科科技有限公司/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"寻梅梅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="162" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"info@pri-eco.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 □合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/b81d3a2f-e92b-468a-b3be-569bff8e0776.jpg" title="27.jpg" style="width: 400px height: 301px " width="400" vspace="0" hspace="0" height="301" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"PRI-2012/spanspan style=" line-height:150% font-family:宋体"土壤呼吸叶室是一种对于来自土壤的气体进行收集测量的土壤呼吸测量系统和动压平衡装置,可对多点土壤CO2通量的长期、连续监测。同时,该系统还可用于大气CO2、水蒸气廓线研究。另外,通过连接其它环境传感器,如太阳辐射、土壤温度和土壤水分传感器等,可研究环境条件变化与土壤CO2通量的相关性。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"1/span/strongstrongspan style=" line-height:150% font-family: 宋体"、系统参数:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"整体外形尺寸:440mm(L)× 260mm(W)× 260mm(H)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"整体重量:5.0Kg/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"携带方式:便携式手提/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"工作方式:可控自动旋转开合/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"测量方式:动压平衡流通式测量/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"驱动方式:步进电机驱动/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"控制方式:单片机控制 /span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"2/span/strongstrongspan style=" line-height:150% font-family: 宋体"、测量腔室参数:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"腔室尺寸:200mm(D)*130mmm(H)(可根据需要调整腔室高度)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"测量体积:4000cm3/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"测量面积:315cm2/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"气压监测:10—120KPa 测量精度:± 1.5% 传感器类型:压力传感器/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"温度监测:-40℃—85℃ 测量精度:± 2% 传感器类型:温度传感器/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"土壤湿度监测:0~100% 测量精度:± 2% 传感器类型:湿度传感器/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"腔室重量:1Kg/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"腔室材质:铝合金5052/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"密封方式:橡胶密封/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"防锈处理:腔室外表面涂氟碳涂料(乳白),内表面致密氧化处理(不吸水不吸气)/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"3/span/strongstrongspan style=" line-height:150% font-family: 宋体"、控制系统:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"单片机类型:STM32/AVR/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"通讯方式:RS232串口通讯/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体"、PRI-2012土壤呼吸叶室采用PLC控制步进电机驱动腔室自动测量,触摸屏进行远端操作,减少人为因素对土壤呼吸的影响。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体"、PRI-2012土壤呼吸叶室可以旋转角度达到110° ,完全运到控制盒的上方,不会由于阳光照射的原因而影响到测量结果(测试动作为电机带动臂梁旋转,从而叶室跟随臂梁旋转,到达控制盒上方后,臂梁停止旋转。腔室回位,呈闭合状态,叶室开始测量)。且由于平行摆臂设计使其抗风强度大大增强,而市场上其他品牌的产品均易收到风力和旋转角度的影响。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体"、土壤呼吸受到压力的影响比较大,对此,科学界建议使用通风口装置使得测量腔室中的压力与外部的压力保持平衡,从而消除土壤呼吸作用下腔室内压力增大从而抑制气体从土壤中溢出的不利效果。PRI-2012土壤呼吸叶室通过动压平衡装置(自主专利),即使在有风的情况下(自然风≤5m/s)仍可以进行有效测量(动压平衡装置可以使腔室内压力与土壤表面压力保持一致,从而大大消除了腔室内外压力不一致对土壤呼吸的影响)。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"PRI-2012/spanspan style=" line-height:150% font-family:宋体"土壤呼吸叶室应用市场广阔,土壤呼吸在碳通量研究中具有重要意义,在全球碳循环中具有重要的意义。全球碳循环中需要大尺度、长期和连续的生物圈-大气之间的CO2通量观测数据的支撑,全球通量观测网络是获取这些信息的重要手段,目前fluxnet主要由美洲、欧洲、澳洲、加拿大、日本、韩国和中国等6个地区性研究网络组成,具有266个注册观测站点,正在开展地区尺度或者大洲尺度的CO2通量的观测研究。随着红外CO2分析技术的成熟,呼吸叶室进行通量研究的方法越来越成熟,成为ChinaFLUX各通量观测站土壤呼吸的重要研究技术之一。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family: 宋体"PRI-2012/spanspan style=" line-height:150% font-family:宋体"土壤呼吸叶室核心技术为自主研发,《动压平衡装置及土壤呼吸测量系统》获得实用新型发明专利,专利号【ZL 2014 2 0354126.4】 控制系统软件《通量观测数据处理系统V1.0》获得计算机软件著作权证书,证书号【2017SR697408】。/span/p/td/tr/tbody/tablepbr//p
  • 共同战疫 | DFS风机在医疗呼吸机中的应用
    疫情COVID-19前后呼吸机市场现状呼吸机原本处于一个垂直而细分的小众医疗器械市场,却被这次疫情推上了风口浪尖。按照世界卫生组织的说法,新冠肺炎患者中有13%的重症患者和6%的危重患者需要给予及时的呼吸机治疗,呼吸机成为生死攸关的战略资源。因此,当3月中下旬疫情在全球爆发时,呼吸机资源紧张的问题开始大范围暴露,至今仍缺口巨大。呼吸机已成为重要的战略供应物资,但各国目前资源不足。市面上对呼吸机的分类为:无创呼吸机和有创呼吸机。(来源中国产业信息网)知名英国家电公司戴森为了应对世界在疫情中呼吸机短缺的问题,已经开始设计并制造了新的呼吸机。此前,通用、福特和特斯拉都宣称将生产呼吸机以解决短缺问题,但现有的呼吸机使用的都是专有技术,汽车制造商调整修改生产线可能要耗费数月的时间,包括终端产品认证资质等。 AMETEK DFS风机在呼吸机上的应用AMETEK DFS风机主要多数应用于无创呼吸机,其工作原理是吸气时呼吸机通过一定的高压力把空气压进人的肺部,呼气时机器给于较低的压力使人把二氧化碳由口或鼻子从面罩上面的排气孔排出体外,来完成一次呼吸。如图:呼吸机考虑到便携性与美观性,趋向于小型化,留给风机的空间越来越小,而风机是呼吸机中提供动力的“灵魂部件”。AMETEK DFS风机在呼吸机设计应用中有着丰富的经验,典型产品系列如下图(风机直径已对应标注),所具备特点:噪音小最小型号68mm直径 体积小巧 节省空间可选12V或24V供电 0-10V或PWM调速长寿命可达3万小时连续运转 免维护高转速 达到5万转/分钟 响应速度快医用设备安规认证联系我们:https://www.instrument.com.cn/netshow/SH102493/关于阿美特克流体解决方案阿美特克流体解决方案(DFS)部门是隶属于阿美特克集团机电设备业务,总部位于美国俄亥俄州,在全球有3个生产制造基地,分别位于中国上海、美国和墨西哥,提供全球领先的提供直流无刷风机、无刷水泵、环形高压鼓风机、高速串励通用电机、永磁式直流电机、绕线磁极式直流电机和直流伺服电机的制造企业。公司所生产的电机和风机产品被广泛用于医疗、印刷商用设备、灭菌、空气采样、半导体除烟除尘设备、各种工业应用、中央吸尘器、商用地面清洁、食物料理机、饮料贩卖机、干手机、电动车、健身器材、液压系统、绞盘、交通运输等。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 呼吸居然有苹果味?其实是疾病征兆
    中医中有望闻问切,闻诊这种说法,就是通过声音和气味诊断疾病。听着非常邪乎,闻一下怎么就能看病了呢? 中医“闻诊”就是通过声音和气味诊断疾病。随着西医发展至今,才揭示了其背后真正的奥妙——呼出气中含有多种挥发性有机物VOCs(如脂族化合物、醇、醛、酮、胺及卤代化合物),通过对不同疾病相关的生物标志物的检测,辅助疾病的早期诊断,早发现早干预早治疗。案例一:“葡萄状”气味的2-氨基苯乙酮 如感染铜绿假单胞菌的患者呼出气会释放一种“葡萄状”气味分子2-氨基苯乙酮[1]。案例二:“烂苹果味”的丙酮 糖尿病酮症酸中毒的病人呼出气体中常常伴有“烂苹果味”,这其实是呼出气中含有丙酮含量远远高出正常人。丙酮是糖尿病患者呼出气的生物标志物,也是一种VOCs。到底什么是呼出气VOCs?呼出气VOCs是指人体呼出,沸点介于50-260℃之间的挥发性有机化合物,分为外源性VOC和内源性VOC。外源性VOC可以产生于环境大气中,通过呼吸道或皮肤吸入或者吸烟后,同样会产生VOCs。而内源性VOC则产生于身体各个部位细胞的生化反应,反应了身体的新陈代谢,这部分的VOCs主要来源于肺泡,所以肺泡的呼出气中的生物标志物更能反应身体的疾病情况。那怎么才能采集到肺泡部分的挥发性有机物VOCs呢?可以根据不同的呼吸阶段CO2分压值的不同来区分。人呼出的气可以分为不同阶段人正常呼吸的全部气体是呼出混合气,大致可分为三个阶段,第I阶段为呼吸道内的死腔气,基本不含二氧化碳,第II阶段为肺泡和腔的混合气,第III阶段是肺泡气,二氧化碳值较高。所以可根据二氧化碳的分压值,识别呼吸阶段以及控制肺泡取样。(图1中表示:I+II+III 期=呼气期(“混合呼气期”,III 期=肺泡气期。PetCO2=呼气末二氧化碳分压) 图1:不同呼吸阶段的二氧化碳分压值 图来源:Elsevier Science & Technology Journals(2004)由于对呼吸采样标准没有严格要求,目前很多研究使用的仍然是整个呼气的采样(混合呼气)。由于混合呼吸会有污染物的影响,而肺泡气中的VOCs浓度比混合呼出气的高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可靠性,还可以帮助确定呼气生物标志物的来源。呼吸气采样的便捷性和非侵入性(Non-Invasive),可以频繁重复检测,对患者和采集样本的工作人员没有任何风险,呼吸VOCs分析有望成为一种新型的无创诊断工具。呼吸采样分析挑战在于如何收集肺泡气 Sampling case-B气体采样器可在护理点进行直接肺泡取样,无需任何额外的采样、储存或预浓缩步骤。采样前,设置CO2阈值,以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,阀门将会打开,呼出的肺泡气体将被自动收集到一种带填料的捕集针被吸附——Needle trap 动态捕集针。采样原理图如图2,这样可以准确地识别呼吸周期的肺泡期和吸气期。 图2:二氧化碳自动控制动态针捕集呼吸采样装置应用案例:Needle trap动态捕集针技术在护理点呼吸采样实验步骤:● 采样方式:猪肺泡呼吸样本通过手动和自动肺泡采样的两种采样方式。● 动物接受了血管外科手术以研究脊髓缺血的影响。分别从麻醉诱导后、手术准备后、脊髓动脉夹闭后5min取标本。异丙酚诱导维持麻醉。● 样品体积为20毫升,每次取样时用每种取样方法重复两次。在这些实验中只使用了定制的NT,填料为2 cm的甲基丙烯酸和乙二醇二甲基丙烯酸酯共聚物。 图3:手动采样 图4:自动肺泡采样 *结果 图5:手动和自动采样的比较当自动取样时,峰面积要高得多。这些结果表明,自动采样,特别是在高呼吸频率下,比人工采样更有效。(如图5所示)所以,Needle trap动态捕集针技术为气态基质中的痕量分析提供了一种全新的、强有力的样品制备方式。 图6:Needle trap动态捕集针技术 Needle trap动态捕集针技术具有以下优点:● 灵敏度高,适用于痕量级别的气体分析,减少采样时间和体积;● 结合采样器可实现直接肺泡采样,容易储存和运输;● 解析速率快,直接进样口分析,无需冷阱聚焦;● 可复合多种吸附剂,适用不同化合物。参考文献[1] 呼出气分析在肺炎病原体诊断中的研究进展.[2] Microextraction techniques in breath biomarker analysis. Bioanalysis (2014) 6(9), 1275–1291[3] Analytical Chemistry, Vol. 81, No. 14, July 15, 2009[4] Anal Bioanal Chem (2013) 405:3105–3115 DOI 10.1007/s00216-013-6781-9
  • 托玛斯配套医疗呼吸机和消毒机,与武汉同呼吸、共命运!
    p  让好多医疗设备客户在长假期间就纷纷向托玛斯(Thomas)订购Nexus压缩机。托玛斯(Thomas)无锡工厂迅速从原先海外客户的订单中,调拨了300余台Nexus压缩机,支援抗疫所需。/pp  新冠肺炎重症患者会出现比较严重的呼吸衰竭症状,防疫专家倡导不仅要观察患者心率,血压特别是血氧的变化,还特别要加强呼吸支持的力度,对有创呼吸的力度要关口前移,积极开展有创呼吸机的机械通气支持。作为此次疫情中心的武汉,医疗资源短缺导致许多重症患者只能在临时的ICU里进行救治。这使得可以连接集中供气也可单独连接气源的呼吸机成为广大新冠肺炎重症患者的生命机,而托玛斯(Thomas)压缩机恰恰是呼吸机配套空压机模块的心脏部件,是各大临时医院ICU的必须配置。/pp  托玛斯(Thomas)Nexus系列压缩机是托玛斯(Thomas)压缩机系列中的旗舰产品,该系列产品所运用的Wob-L摇摆活塞泵技术早在1976年就获得了美国专利。目前Wob-L摇摆活塞泵技术已经成为医疗设备配套压缩机的标杆技术。同该项专利一道获批的一体式头盖设计杜绝了气体泄漏,确保托玛斯(Thomas)Nexus压缩机可以在无油的环境中,高效率工作。它的长寿命,免维护和低震动等特性受到广大呼吸机和医疗设备厂商的青睐。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/32b7070d-661e-423a-9c1c-c9b524d5f83b.jpg" title="图片2_副本.png" alt="图片2_副本.png"//pp style="text-align: center "strong配备在呼吸机空压机模块中的托玛斯(Thomas)Nexus压缩机/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/453840ca-0704-421d-b9ed-fe2eec7c406d.jpg" title="图片1_副本1.png" alt="图片1_副本1.png"//pp style="text-align: center "strongWob-L早在1976年就获得了美国专利/strong/pp  为了确保托玛斯(Thomas)无锡工厂能够顺利复工,Thomas核心管理团队根据无锡当地的复工指导政策,进行了周密的计划和部署,从2月1日起就根据每一个员工的春节长假轨迹,进行了每日汇报,并上报相关主管部门。Thomas呼吸机客户也在第一时间通过深圳市工信部,把其空压机模块生产配套需求上报国务院。这次跨省协调很快启动,经深圳和无锡两市工信局对接,托玛斯(Thomas)无锡工厂顺利成为国务院疫情联控机制医疗物资保障组首批核准的保障呼吸机装备配套生产企业,并于2020年2月10日顺利复工。未来一个月有近千台配套托玛斯(Thomas)压缩机的呼吸机可以第一时间发往武汉。/pp  过氧化氢消毒机因其可以通过压缩过氧化氢,大大提高病房的灭菌消毒效率,最近被列入国家工信部《疫情防控重点保障物资(医疗应急)清单》名录。2月10日复工以来,许多制氧机和消毒灭菌厂商也来订购托玛斯(Thomas)Nexus压缩机。近期,还会有近千台配备托玛斯(Thomas)Nexus压缩机的过氧化氢消毒机在武汉火神山医院,武汉协和医院,武汉金银潭医院和各省市疾病预防控制中心医院投放使用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/07744898-8e96-4de7-b96f-05234c6aa41d.jpg" title="图片3_副本1.png" alt="图片3_副本1.png"//pp style="text-align: center "strong过氧化氢消毒机配套的托玛斯(Thomas)压缩机/strong/pp  在这个特别困难时期,托玛斯(Thomas)无疑是国内外呼吸机、制氧机、灭菌设备值得信赖的压缩机解决方案合作伙伴。对于托玛斯(Thomas)无锡工厂来说,复工只是此次新冠肺炎抗疫战役的起点。在未来的日子里,托玛斯(Thomas)将和广大医疗设备客户一起并肩奋斗,排除万难、共克时艰。武汉加油!中国加油!/p
  • 新研究阐明微塑料在呼吸道沉积
    研究表明,人类每小时可能会吸入约16.2块微塑料,相当于1周吸入1张信用卡的塑料量。而这些微塑料通常含有有毒污染物和化学物质,吸入后可能会造成严重的健康风险,因此了解它们如何在呼吸系统中传播对于预防和治疗呼吸系统疾病至关重要。据13日发表于《流体物理学》杂志的论文,来自澳大利亚悉尼科技大学、伊朗乌尔米亚大学、孟加拉国科米拉大学等单位的一个国际研究团队开发出一种计算流体动力学模型,分析了微塑料在上呼吸道的传输和沉积特征。团队研究了不同形状(球形、四面体和圆柱形)和大小(直径为1.6、2.56和5.56微米)的微塑料在缓慢和快速呼吸条件下的运动。微塑料往往会聚集在鼻腔、口咽或喉咙后部的热点部位。研究人员解释说,呼吸道的形状复杂且高度不对称,加上鼻腔和口咽部复杂的流动行为,导致微塑料偏离流动路径并沉积在这些区域。流动速度、颗粒的惯性和不对称形状影响微塑料的总体沉积,并增加其在鼻腔和口咽区的沉积浓度。呼吸条件和微塑料大小影响呼吸道内总的微塑料沉积速率。流速越大,沉积越少,最大的(直径5.56微米)微塑料比较小的微塑料更容易沉积在呼吸道中。2022年,科学家首次在人类呼吸道深处发现了微塑料,这引发了人们对严重的呼吸道健康危害的担忧。研究人员强调,人们需要更多地意识到空气中存在微塑料及其对健康的潜在影响。他们希望这一结果能为靶向药物输送系统提供参考,并改善健康风险评估。
  • 食品补充检验方法《植物源性食品中奥克巴胺的检测》解读
    一、目的和依据奥克巴胺也叫章鱼胺,因首次于章鱼唾液中发现而得名,是一种天然的β3-肾上腺素能受体激动剂,具有对-羟苯-β-羟乙胺的化学结构,是去甲肾上腺素的同类物。世界反兴奋剂组织《世界反兴奋剂条例国际标准禁用清单》(WADA清单)中明确将其列为赛内禁用物质。研究表明奥克巴胺在水果、蔬菜、肉、奶和鱼等食品中被检出,然而,目前关于食品中奥克巴胺的研究和监测多关注动物源食品,对植物源食品关注较少。研究发现,奥克巴胺在柑橘类植物源性食品及相关制品中被广泛检出。此外,在某些保健食品或膳食补充剂中可能非法添加奥克巴胺用于减肥。适量的奥克巴胺对人体的健康有益,但过量摄入会引起人体的内分泌紊乱和新陈代谢失衡,引起诸如头痛、恶心、心悸、血压变化、血糖不稳、呼吸紊乱等反应,严重的还会危及生命。目前国内关于奥克巴胺的检测标准仅有GB 5009.208-2016《食品安全国家标准 食品中生物胺的测定》,其仅适用于酒类、调味品、水产品以及肉类,不包含柑橘类水果及其制品等植物源性食品,我国尚无适用植物源性食品中奥克巴胺检测的国家标准,无法满足大型赛事食源性兴奋剂防控及日常监管需求。为避免食用含奥克巴胺浓度较高的柑橘类水果及制品、保健食品或膳食补充剂给运动员带来兴奋剂检出风险,降低对人民群众身体健康的不良影响,北京市食品检验研究院制定了BJS202211《植物源性食品中奥克巴胺的检测》方法。二、在食品监管实际中的应用BJS202211《植物源性食品中奥克巴胺的检测》适用于柑橘类(柑橘、橙子、柚子)及其制品(橘子汁、橙子汁、柚子汁)中奥克巴胺含量的测定,可用于柑橘等植物源性食品中奥克巴胺分布情况、本底含量等情况的系统调研活动,用以在大型赛事过程中加强柑橘类及果汁制品中奥克巴胺的内部控制。该检测方法的制定可为食品安全监管提供技术支撑,对减少运动员兴奋剂检出风险具有重要意义。三、先进性和创新性本次是对《植物源性食品中奥克巴胺的检测 液相色谱-串联质谱法》的首次制定。试样中的奥克巴胺经1%甲酸50%乙腈溶液提取、固相萃取净化后,采用液相色谱-串联质谱仪进行分离和测定,内标法定量。由于食品基质中组分复杂,本方法引用了内标,可使基质效应得以矫正,使其具有更好的适用性,从而极大提高分析结果的准确度、精密度和方法的可靠性。使用的液相色谱-质谱联用技术是近年来广泛使用的检测技术,由于其准确、高效和高灵敏度,符合目前食品安全检测所追求的快速高效的要求。该方法填补了奥克巴胺在植物源食品中无检测方法标准的空白,对柑橘及其制品中奥克巴胺含量的检测,可以建立奥克巴胺的防控规范,避免运动员的误食风险,为供赛食品供应渠道把关筛选工作提供了技术支撑,为大型体育赛事供应食品食源性兴奋剂防控工作提供了技术手段。四、操作注意事项实验操作中需要注意的要点如下:1.称取样品后加入内标,再进行提取净化操作,在前处理步骤之前加入内标可以更好地校正前处理带来的目标物损失;2.由于内标离子(139.193.1)对附近存在较强的基质干扰,在选择色谱柱及流动相条件时,应着重考察此内容;3.试样中奥克巴胺的测定值超曲线范围时,须重新进行测定,建议适量减少称样量,并通过增加提取液、复溶液体积等方式,对样品进行重新测定。在此过程中,要注意对稀释倍数进行准确的计算,使最终溶液中内标含量与标准溶液上样浓度保持一致,使其上机浓度在线性范围内再进行定量。
  • 《医疗技术展望》: Top医用呼吸机解决方案提供商2021
    准确的呼吸分析是诊断和评估肺部疾病的关键。呼吸分析是一个重要的评估工具,在呼吸治疗师和肺科医生诊断和治疗各种呼吸疾病中给到支持。不幸的是,水分是呼吸分析的一个障碍。呼吸样气中的水分会对呼吸分析的准确性产生不利影响,并损坏设备。因此,呼吸设备供应商寻求可靠的解决方案,减少呼吸样气中的水分,并帮助设备提高准确的结果。位于新泽西州的博纯提供制造商所需的湿度控制。博纯干燥器由Nafion™ 管材料制成,代表了湿度挑战的可靠答案。目前的应用包括二氧化碳测定EtCO2和患者监测、呼出气一氧化氮(FeNO)、肺功能测试及吸入气体治疗。这种高选择性的管路与气体采样管线无缝集成,减少冷凝,并在呼吸样气中完好地保留分析物。因此,医护人员可以更准确地诊断和评估患者呼吸状况,同时减少警报和设备损坏的风险。警报疲劳的减少使卫生保健专业人员专注于为患者提供更好的护理。博纯总裁Sharon Bracken表示:“每当呼吸设备制造商找到我们,我们都会指派工程师了解他们的需求,并根据他们的设备定制Nafion™ 管解决方案。”虽然Nafion™ 管材质主要用于去除水分,但其独特的性能还可被反向使用。用Nafion™ 管加湿气流的灵感来自于我们一位工程师的亲密朋友。他在癌症治疗期间接受低流量氧疗时感到极度不适。而加热和加湿则被认为是减少这个过程不适的一种方式。“了解患者的需求,我们将Nafion™ 管材料嵌入一个易于使用和维护的轻型解决方案,使护理人员确保更舒适的治疗,”Sharon补充道。博纯支持的另一个OEM,他们重新设计现有解决方案,使最终用户在更换干燥器时变得更容易。在OEM的参数内,博纯为他们的解决方案确定了优化的干燥器和接头。当在开发中出现困难阻碍项目时,博纯通过协作、工程能力和设备投资提供解决方案。“我们不仅提供组装,我们还在模具上投入了大量资金。因此,我们可以更快地提供样品进行评估,并促进整个制造过程。”Sharon说。通过解决新的水分问题和全面服务于呼吸设备制造商,博纯实现了可持续增长。在疫情期间,在处理严重呼吸问题时Nafion™ 管在水分管理中成为关键部件。随着全球对这些呼吸系统问题的认识的增加,也推动了对高流量氧疗等可用治疗的兴趣。了解Nafion™ 管如何提高这种疗法, 将使博纯去支持他们的应用。Sharon提到:“通过重塑我们的组织和加强我们的核心专业知识,我们将扩大我们的能力,并支持下一代呼吸设备的发展。”博纯是值得信赖的增强型湿度控制解决方案的呼吸系统供应商。多年来,Nafion™ 管帮助制造商解决患者的挑战,优化治疗和呼吸分析的方案。通过对我们的工程、监管和制造能力的投资,博纯继续加强与现有伙伴关系,并与新呼吸设备供应商建立联系。在未来的几年里,市场将见证这支湿度控制专家团队创造出更多新的解决方案—不断焕新呼吸分析面貌,帮助世界各地的人们呼吸更轻松、更健康。Nafion™ 是The Chemours Company FC, LLC的商标,在Perma Pure LLC许可下使用。关键词:#呼吸更容易更健康 #医疗技术展望 #EtCO2 #麻醉监测 #肺功能测试 #吸入氮氧化物 #呼吸护理 #呼吸理疗 关于博纯:博纯有限责任公司(Perma Pure)使用独特技术为您的医疗仪器提供可靠的湿度控制方案和高质量定制服务。博纯解决方案适用于多种应用,包括EtCO2与患者监测、麻醉监测、肺功能测试和吸入气体治疗。通过与我们合作,帮助人们呼吸更轻松,更健康。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制