当前位置: 仪器信息网 > 行业主题 > >

真空显示控制器

仪器信息网真空显示控制器专题为您提供2024年最新真空显示控制器价格报价、厂家品牌的相关信息, 包括真空显示控制器参数、型号等,不管是国产,还是进口品牌的真空显示控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空显示控制器相关的耗材配件、试剂标物,还有真空显示控制器相关的最新资讯、资料,以及真空显示控制器相关的解决方案。

真空显示控制器相关的论坛

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】自己动手,DIY一款山寨版的真空控制器

    【原创】自己动手,DIY一款山寨版的真空控制器

    本人曾在本版请教过旋转蒸发有无必要配真空控制器,也按照建议没有配。谁知小日本的真空泵性能实在高于预期,每次浓缩样品时真空度迅速上升,然后爆沸那么一小下;虽然只是一小下,足以让人心惊胆战了:(怎么办?看来只有配真空控制器了。可是……可是……那玩意一万多呢,快赶上一台旋蒸了;而且一时半会到不了货,我可急着要用啊!怎么办?自己动手吧。要把真空度升上去我没招,要把真空度降下来还不简单啊?原料成本:核心部件:真空表一支(36元;也有28元的,小一号);铜制针阀(18元;也有不锈钢的,要二百多,成本太高,个人觉得没必要)。配件:缓冲瓶,橡胶塞,玻璃管,真空管若干,加起来大约50人民币。开工!OK!成品如图所示,虽然山寨了一点,但其实挺好用滴。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903292119_141184_1697752_3.jpg[/img]看看背面的管道。胶塞上打了四个孔,分别接真空表,针阀,旋蒸和隔膜泵:[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903292120_141185_1697752_3.jpg[/img]使用时,先把针阀开到最大,然后缓慢关小使系统达到合适的真空度。个人经验,对于正己烷/丙酮溶液,真空度-0.05~-0.06MPa最合适了,一但超过了-0.07MPa肯定爆沸!真空控制器做好了,从此我的样品再也没有爆沸过了哈哈!不过钻了两个橡皮塞共八个孔(第一个塞子废了),胳膊疼了两天。看来该锻炼啦……

  • 多点拟合功能的PID控制器在真空计线性化处理中的应用

    多点拟合功能的PID控制器在真空计线性化处理中的应用

    [align=center][img=多点拟合功能的PID控制器在真空计线性化处理中的应用,550,416]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141551304705_7372_3221506_3.jpg!w690x522.jpg[/img][/align][size=16px][color=#990000][b]摘要:针对高真空度用皮拉尼计和电离规信号的非线性和线性两种输出规格,为改进高真空度的测量和控制精度,本文提出了线性化处理的解决方案。解决方案的关键是采用多功能超高精度的真空压力控制器,具体内容一是采用控制器自带的最小二乘法多点拟合功能来进行高真空区间的非线性处理,二是采用控制器的数值转换功能对真空度对数线性输出进行相应测试量程转换。此解决方案还可以推广应用于其他具有非线性输出性质的传感器中。[/b][/color][/size][align=center][color=#990000][b]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/b][/color][/align][size=16px][color=#990000][b][/b][/color][/size][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 在真空度测量过程中,一般会根据不同真空度范围选择相匹配的真空度传感器。常用的三类真空度传感器是电容真空计、皮拉尼真空计和电离规,这些传感器会对应所测量的真空度输出相应的电压信号,其中电容真空计的真空电压关系曲线为线性,而皮拉尼计和电离规的真空电压关系曲线基本都是底数为10的幂函数,具有强烈的非线性特征,如图1所示。[/size][align=center][size=16px][color=#990000][b][img=皮拉尼计和电离规的真空度测量与输出电压信号典型关系曲线,660,342]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141555049140_6935_3221506_3.jpg!w690x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 皮拉尼计和电离规的真空度测量与输出电压信号典型关系曲线[/b][/color][/size][/align][size=16px] 皮拉尼计和电离规往往会用在高真空和超高真空范围内的测量,由此这种非线性会给高真空和超高真空范围内的测量带来以下一系列的问题:[/size][size=16px] (1)大多数真空测量仪表基本上都采用的是线性电路,以采集真空计输出信号并进行线性转换后进行显示和输出。这种对非线性信号仅进行简单线性转换的方式,势必会给真空度测量带来巨大误差,这也是皮拉尼计和电离规在高真空度范围内测量精度不高的主要原因。[/size][size=16px] (2)如图1所示,这种非线性特征是以10为底数的幂函数,因此可以通过对数处理将其进行线性化处理。有些国外厂家的真空计也确实具有这种功能,使得真空度的对数与输出电压值呈线性关系。这种线性化处理的最大优点是可以大幅度提高真空计的测量精度,特别是对超高真空度范围内的精度提高更加显著。但这种线性化处理仅是针对真空度到模拟输出信号,如果要对这输出信号进行还原或准确显示真空度,还需后续的处理电路或采集仪表进行反向处理。[/size][size=16px] (3)除了上述在真空度测量中存在的如何准确显示的问题之外,更大的问题是在真空度控制中的应用。在真空度控制中,真空计往往是连接到PID控制器的传感器,无论真空计自身是否采用了线性化处理技术,但都要求线性控制形式的PID控制器具有线性化处理功能,而现状是很少有PID控制器具有这种线性化处理的高级功能,这也是制约高真空度范围内控制精度不高的主要原因。[/size][size=16px] (4)皮拉尼计和电离规的另一个显著特点是具有气体的选择性,对于不同气体环境下的真空度测量其非线性公式中的常数并不相同,需要根据气体类型进行选择。这种气体选择性特征更加大了真空计输出信号的线性化处理难度和复杂程度,很难采用一种通用电路和仪表来满足大多数不同气体氛围下的真空度测量和控制。[/size][size=16px] 为了解决上述皮拉尼计和电离规的信号非线性和气体选择性特性给高真空度测量和控制带来的问题,本文提出了相应的解决方案,关键是采用具有线性化处理等高级功能的PID控制器。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 针对现有的各种皮拉尼计和电离规的真空度电压输出信号,包括非线性信号和已经处理后的线性信号,解决方案的核心是采用如图2所示的具有众多高级功能的超高精度真空压力控制器。[/size][align=center][size=16px][color=#990000][b][img=VPC-2021系列超高精度PID控制器,500,264]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141555336153_2091_3221506_3.jpg!w690x365.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 VPC-2021系列超高精度真空压力控制器[/b][/color][/size][/align][size=16px] 此控制器在具有超高精度24位AD模数转换和16位DA数模转换的同时,还充分发挥了微处理器的速度和数据处理能力,在现有各种温度传感器线性化处理的基础上,增加了八点拟合线性化处理功能和数值变换功能,通过相应的面板按键操作或所配软件的设置,可对皮拉尼计和电离规输出信号进行有效处理,可显著改善高真空度范围内的测量和控制精度。[/size][size=16px][color=#990000][b]2.1 真空计非线性信号的多点拟合处理[/b][/color][/size][size=16px] 对于皮拉尼计和电离规,在0.00001Pa~0.1Pa(甚至更宽泛)的高真空度范围内,随着压力的增大所输出的电压信号基本是缓慢上升的平滑曲线形式,如图1所示。由此,在此高真空范围内,这也是皮拉尼计和电离规的主要测量应用范围,真空度与电压信号的关系曲线完全可以用多项式曲线来准确描述,本解决方案就是采用此特性来进行多点拟合处理,通过拟合处理实现真空度的高精度测量以及后续的准确控制。[/size][size=16px] VPC2021系列多功能超高精度PID控制器具有特殊的8点曲线拟合功能,PID控制器8点线性化处理功能是通过8组数据组成线性化表,将输入值经过最小二乘法拟合计算产生输出值和显示值。如图3所示,在使用此功能时,所选的输入值(X轴,代表真空计输出的电压或电流值)必须是递增形式,而对应的测量值或显示值则可以是递增或递减关系。自定义传感器非线性输入支持以下三种输入类型和对应量程:[/size][align=center][size=16px][color=#990000][b][img=PID控制器8点线性化处理功能示意图,500,306]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141555590193_5542_3221506_3.jpg!w690x423.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 八点线性化处理功能示意图[/b][/color][/size][/align][size=16px] (1)20mV、100mV;(LSB:0.01mV)。[/size][size=16px] (2)0-10mA、0-20mA、4-20mA;(LSB:0.001mA)。[/size][size=16px] (3)0-1V、0-2V、0-5V、1-5V、0-10V、2-10V;(LSB:1mV)。[/size][size=16px] 通过这种多点拟合处理,使得真空度测量和控制具有了以下特点:[/size][size=16px] (1)可提高真空度的测量和控制精度。[/size][size=16px] (2)测量值和控制值可直观的进行准确显示,显示的真空度即为真实的真空度值。[/size][size=16px] (3)可适用于所有皮拉尼计和电离规非线性信号的处理和应用,但局限性是仅适用于变化舒缓的高真空度区间。[/size][size=16px][color=#990000][b]2.2 真空计线性信号输出的数值变换处理[/b][/color][/size][size=16px] 个别厂家和型号的真空计其输出信号已经进行了线性化处理,输出信号与真空度的对数呈线性关系。如图1所示,此时对应于纵坐标的电压输出值,横坐标的真空度变化范围是-10~+5;也可以是对应于横坐标的电压输出值,纵坐标的真空度变化范围是-10~+5。[/size][size=16px] 对于不同的皮拉尼计和电离规,这个线性的电压值与真空度对数值范围并不相同,在具体应用中都需要对其数值范围进行修正以形成一一对应关系。采用VPC2021系列真空压力控制器可以很容易的进行这种数值变换处理并形成准确的线性对应关系,这种处理具有以下特点:[/size][size=16px] (1)建立的输出电压和对数真空度的线性关系,可进一步提高真空度控制的准确性,这是因为经过对数处理后放大了真空度测量灵敏度。[/size][size=16px] (2)局限性是这种线性化处理后的显示值并不直观,所显示的真空度为对数真空度。在具体显示和控制时,真空度控制的设定值输入要求也必须是对数真空度,如果要显示真实真空度,还需上位机进行转换。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过本解决方案可以很好的对信号输出非线性特征明显的皮拉尼计和电离规进行线性化处理,可明显提高高真空度范围的测量控制精度,同时本解决方案可推广应用到其它非线性传感器的线性化处理中。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 冻干机控制器

    冻干机控制器

    智能液晶屏 ATPad 控制的冻干机控制系统 冻干机,有称真空冷冻干燥机。 在工业控制领域,很多设备都涉及温度的采集/存储/分析等,比如真空冷冻干燥机, 其控制系统就要求能实时监测温度和真空度, 并保存这些数据供以后分析用;同时控制系统需要控制制冷设备和抽真空设备的运行和停止。 从功能上分析,这类控制并不算复杂。但系统的主控制器的选择将直接影响系统开发的难易程度和运行的稳定性,以及产品的竞争力。比如,如果选择单片机去实现,那大容量数据存储和 U 盘导出设计将是设计工作中的一个巨大挑战,同时系统的稳定性也很难把握。如果选择 PLC 来实现,那成本又将是一道大的门槛。使用智能液晶屏 ATPad 来实现这一类控制器,很好的解决了上述问题。http://ng1.17img.cn/bbsfiles/images/2014/07/201407181722_507196_2802865_3.jpg工业智能液晶屏 ATPad 特点 : 显示和控制集成在一起,ARM9 处理器,提供多种接口资源; 内置大容量存储,文件系统,可读写 U 盘; 提供多种图形控件,提供完整的应用开发包及开发实例; 专用图形化开发工具,PC 上可视化开发; 彩色触摸屏,全部工业级器件,产品经过专业 EMI/EMS 测试。一, 硬件设计http://ng1.17img.cn/bbsfiles/images/2014/07/201407181719_507193_2802865_3.jpg输入: 4 路温度采集;2 路真空度采集;输出: 1 路压缩机输出;1 路真空泵输出;显示: 7 寸真彩色触摸屏,真彩显示,触摸操作; 实时状态显示;实时波形显示/历史波形显示; 实时数据表格显示/历史数据表格显示;存储:大容量 FAT32 文件系统存储各路数据值,存储量一个月以上;数据导出:USB 接口,直接插上 U 盘后导出数据。二, 软件设计软件说明主要涉及到人机界面和交互设计,控制逻辑设计,数据采集/存储/导出设计等。智能液晶屏 ATPad 提供了完整的软件开发包和开发工具,人机界面和交互设计只需要点几下鼠标就实现了,数据采集/存储/导出设计基本上也是现成的。控制逻辑则需要根据产品的工作特点和工作流程自行设计。http://ng1.17img.cn/bbsfiles/images/2014/07/201407181721_507194_2802865_3.jpg

  • CVD和MPCVD法钻石生长过程中采用双通道PID控制器控制真空度(气压)和温度

    CVD和MPCVD法钻石生长过程中采用双通道PID控制器控制真空度(气压)和温度

    [size=14px][color=#ff0000]摘要:本文将针对CVD和MPCVD工艺设备中存在的问题,介绍一种国产的两通道24位高精度多变量PID控制器,此一台控制器可对温度和真空度同时进行控制,大大缩小了仪表占用空间和造价。两通道可一次共接入4个传感器,每个通道可以连接备用的温度和真空度传感器,由此可保障长时间钻石生长的安全性又可满足宽量程测控的需要,同时还可用来进行差值和平均值监测。[/color][/size][align=center][size=14px][color=#ff0000][img=CVD工艺生长宝石,450,295]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291558344977_8369_3384_3.png!w690x453.jpg[/img][/color][/size][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size][size=14px]  目前,高等级钻石生长的首选工艺是采用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(CVD)和微波等离子体CVD(MPCVD)技术,另外CVD和MPCVD工艺还可用于在钻石以外的基材上进行钻石沉积,这为许多行业带来了技术上的进步,如光学、计算机科学和工具生产。在CVD工艺中,通过采用气体原料(氢气、甲烷)在低于1个大气压和800~1200℃的温度下,采用外延生长的方式获得完全透明无色大尺寸金刚石单晶,其成分、硬度和密度等与天然钻石基本一致,而价格远远低于天然钻石。[/size][size=14px]  在采用CVD和MPCVD工艺进行钻石生长过程中,需要严格调节和控制CVD工艺的温度、真空压力和气体成分,这三个变量中的任何一个变化或波动都会影响钻石的生长速度、纯度和颜色。这三个变量在实际工艺中分别代表了温度、真空压力和工作气体的质量流量,即在CVD工艺中一般是在进气口处采用气体质量流量计控制氢气和甲烷以达到设定的混合气体成分,通过温度传感器和加热装置来调节和控制工作腔室内的温度,最后在出气口处通过真空计和电动阀门来调节和控制工作腔室内的真空压力。[/size][size=14px]  目前这三个变量的同时控制,在国内的CVD工艺设备上还存在以下几方面问题:[/size][size=14px]  (1)在气体质量流量和温度这两个变量的测控方面,国内仪表已经非常成熟和可靠,但在真空压力的测控方面,普遍还在使用测量精度较差的皮拉尼真空计及相应的控制器,这会严重影响腔室内工作气压的测控精度,而对钻石质量带来影响。[/size][size=14px]  (2)在CVD工艺设备中,上述三个变量都需要独立的传感器和控制器进行独立操作和控制,由此造成一方面的所占空间比较大,另一方面是设计操作复杂且成本无法进一步降低。[/size][size=14px]  (3)部分CVD工艺设备在真空度测控中采用了成熟的国外产品,但价格昂贵且功能单一,只能进行真空度的测控,同时还需要准确的控制算法来适应温度突变情况下的真空度稳定控制,而且还需配套国产的气体质量流量计和温度控制仪表。[/size][size=14px]  总之,国内的钻石生长市场在近几年发展快速,据统计,2018年,国内自主生产供应的宝石级培育钻石约37.5亿元,相比2016年的0.4亿元,呈现了几何级的增长。然而国内掌握CVD技术,特别是MPCVD技术的厂家并不多,目前依旧是欧美厂家占主导,国内很多大厂家都已经涉足该领域,但量产一直是难点,而量产这一难点的根源在于CVD和MPCVD在真空环境下的控制很难。[/size][size=14px]  本文将针对CVD和MPCVD工艺设备中存在的问题,介绍一种国产的2通道24位高精度多变量PID控制器,此一台控制器可对温度和真空度同时进行控制,大大缩小了所占空间和造价。2通道可一次共接入4个传感器,每个通道可以连接备份用的温度和真空度传感器,由此可保障长时间钻石生长的安全性又可满足宽量程测控的需要,同时还可用来进行差值和平均值监测。[/size][size=18px][color=#ff0000]2. 真空压力上游和下游控制模式的选择[/color][/size][size=14px]  在如图2-1所示的工作腔体内部真空压力控制过程中,一般有上游和下游两种控制模式。上游控制是一中保持下游真空泵抽速恒定而调节上游进气流量的方式,下游控制是一种保持上游进气流量恒定而调节下游真空泵抽速的方式。[/size][align=center][img=典型CVD工艺设备框图,690,366]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291600257733_6411_3384_3.png!w690x366.jpg[/img][/align][size=14px][/size][align=center][color=#ff0000]图2-1 CVD工艺设备典型结构示意图[/color][/align][size=14px]  针对CVD和MPCVD工艺设备中的真空压力控制,国内外普遍都采用下游控制模式,也有个别国外公司推荐使用上游控制模式,这里将详细分析上下游两种控制模式的特点和选择依据:[/size][size=16px][color=#ff0000]2.1. 下游控制模式[/color][/size][size=14px]  (1)在采用CVD和MPCVD工艺进行宝石生长过程中,对气体成分有严格的规定并需要精确控制。因此在CVD和MPCVD工艺设备中,通常会在工作腔体进气端采用气体质量流量控制器对充入腔体内的每种工作气体流量进行准确控制,也就是说对进气端调节控制的是气体流量,而且至少是两种工作气体。[/size][size=14px]  (2)在进气端实现对工作气体成分准确控制后,还需要对工作腔体内的真空压力进行控制。下游控制可通过调节真空泵的抽速快速实现真空压力的准确控制,而且在控制过程中并不会影响工作腔室内的气体成分比例。[/size][size=14px]  (3)在CVD和MPCVD工艺过程中,温度变化会对腔体内的真空压力会给真空压力带来很大影响,由此要求真空压力控制具有较快的响应速度,使腔体内的真空压力随温度变化始终恒定控制在设定值上,因此采用下游控制模式会快速消除温度变化对真空压力恒定控制的影响。[/size][size=14px]  (4)在CVD和MPCVD工艺过程中,工作腔体内的真空压力一般在几千帕左右这样低真空的范围内进行定点控制。对于这种低真空(接近一个大气压)范围内的真空压力控制,较快速有效和经济环保的控制方式是下游控制,在进气流量恒定的前提下,只需较小的抽速就能快速实现真空压力的准确控制,排出的工作气体较少。[/size][size=16px][color=#ff0000]2.2. 上游控制模式[/color][/size][size=14px]  (1)上游控制模式普遍适用于高真空(真空压力小于100Pa)控制,即真空泵需要全速抽气,通过调节上游进气的微小变化,即可实现高真空准确控制。[/size][size=14px]  (2)采用上游控制模式对低真空进行控制,在真空泵全速抽气条件下,就需要增大上游进气量,增大进气量一方面会造成恒定控制精度差和响应速度慢之外,另一方面会带来大量的废气排出。因此,在这种低真空的上游控制模式中,一般还需在下游端增加手动节流阀来减小真空泵的抽速。[/size][size=14px]  (3)在真空压力控制中,一般在流量和压力之间选择其中一个参量进行独立控制,也就是说控制了流量则不能保证压力恒定,而控制了压力则不能保证流量恒定,因此在一般真空压力控制中,上游控制模式在一定范围内比较适用。但在CVD和MPCVD工艺过程中,如果在进气端进行流量调节来实现进气成分比例和真空压力的同时恒定,而且还要针对温度变化做出相应的调整,这种上游控制方式的难度非常大,如果不在下游增加节流阀调节,这种上游控制方式几乎完全不能满足工艺过程要求。[/size][size=14px]  (4)有些国外机构推荐在CVD和MPCVD工艺设备中使用上游控制模式,一方面是这些机构本身就是气体质量流量控制器生产厂家,并不生产下游控制的各种电动阀门,因此他们在气体质量流量控制器中集成了真空传感器,这种集成真空计的气体质量流量控制器确实是能够用来独立控制进气流量或腔室内的真空压力,但要同时控制流量和压力则几乎不太可能,还需下游节流阀的配合才行。另一方面,这些生产气体质量流量控制器的机构,选择使用上游控制模式的重要理由是下游控制模式中采用电动阀门的成本较高,情况也确实如此,国外主要电动阀门的成本几乎是气体质量流量控制器的好几倍,但目前国产的电动阀门的价格已经只是气体质量流量控制器的四分之一左右。[/size][size=18px][color=#ff0000]3. 成分、温度和真空压力三参量同时控制方案[/color][/size][size=14px]  在宝石生长专用的CVD和MPCVD工艺设备中,针对气体成分、温度和真空压力这三个控制参数,本文推荐一种全新的控制方案,方案如图3-1所示。[/size][align=center][img=双通道控制器同时控制温度和真空压力示意图,690,348]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291601353557_9929_3384_3.png!w690x348.jpg[/img][/align][size=14px][/size][align=center][color=#ff0000]图3-1 CVD工艺设备中三变量控制结构示意图[/color][/align][size=14px]  控制方案主要包括以下几方面的内容:[/size][size=14px]  (1)进气端采用气体质量流量控制器进行控制,每一路进气配备一个质量流量控制器,由此实现进气成分的精确控制。[/size][size=14px]  (2)采用双通道24位高精度PID控制器对温度和真空压力控制进行同步控制,其中一个通道用于温度控制,另一个通道用于真空压力控制,由此在保证精度的前提下,可大幅度减小控制装置的空间占用和降低成本。[/size][size=14px]  (3)温度控制通道连接温度传感器输入信号和固态继电器或可控硅执行机构,可按照设定点或设定程序曲线进行温度控制,PID控制参数可通过自整定方式进行优化。[/size][size=14px]  (4)真空压力控制通道连接真空计输入信号和电动阀门,同样可按照设定点或设定程序曲线进行真空压力控制,PID控制参数可通过自整定方式进行优化。为了保证真空度测控的准确性,强烈建议采用薄膜电容式真空计,其精度一般为0.25%,远高于皮拉尼计。最重要的是薄膜电容式真空计内部不带电加热装置,在氢气环境下更具有安全性。[/size][size=14px]  (5)双通道控制器除了具有两路控制信号主输入端之外,还有两路配套的辅助输入端,这两路配套的辅助输入端可用来连接温度或真空压力测控的备用传感器,在主输入端传感器发生故障时能自动切换到辅助输入端传感器继续进行测量和控制,这对较长时间的CVD和MPCVD工艺过程尤为重要。[/size][size=14px]  (6)双通道控制器可连接4个外部信号源,在进行两路独立变量的控制过程中,4个外部信号源的组态形式可为控制和监测带来极大的便利,除上述备用传感器功能之外,还可以用来进行差值和平均值的监测等。[/size][align=center]=======================================================================[/align] [align=center][img=CVD和MPCVD工艺生长钻石,690,269]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291602272138_6714_3384_3.jpg!w690x269.jpg[/img][/align]

  • 双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    [size=14px][color=#ff0000]摘要:本文针对真空型热离子能量转换器(发电装置)中真空压力和温度的关联性复杂控制,提出一个简便的控制方式和控制系统的解决方案,控制系统仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个可调参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个电源的功率即可实现真空室气压和阴极温度的同时控制,由此可大幅减小设备造价且无需使用任何软件。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、问题的提出[/b][/color][/size][size=14px] 热离子能量转换器(TEC)是一种将热能直接转化为电能的静态装置,是一种基于热离子发射的转换方法。TEC可分为真空、带有正离子的铯离子和由辅助放电产生的惰性气体(如氩气)等形式。[/size][size=14px] 真空型TEC的简化示意图如图1所示,电极被放置在高真空环境中。阴极与热源热连接,阳极与热沉连接。电极颜色反映了它们温度之间的关系。[/size][align=center][size=14px][color=#ff0000][img=01.真空热离子能量转换器结构示意图,500,373]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931128921_2824_3221506_3.jpg!w690x515.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 真空热离子能量转换器结构示意图[/color][/align][size=14px] 一般情况下,最常见的商用温度控制器都能控制TEC阴极的温度,但如果使用了钡钨分压器阴极,因其氧化性问题则对加热过程有特殊的要求并不可忽视。在使用前,阴极必须烘烤并激活。为了保护阴极免受来自周围结构或焙烤过程中产品的氧化和污染,在真空室中必须保持必要的超高真空水平。此外,为了防止阴极可能被水分永久性污染而造成发射能力降低和钨阴极表面损伤,阴极必须允许浸泡在200~400℃足够长的时间,以允许完全的水蒸气出气。[/size][size=14px] 为了防止上述情况出现,最佳控制指标就是真空压力,即真空室中的压力必须始终小于1.33E-04Pa。因此,在TEC运行过程中,当给阴极加热器通电时,由于出气,温度会升高,真空室压力会增加。如果压力超过1.33E-04Pa,则需要关闭加热器电源,直到压力降到这个水平以下。真空室排气和焙烧后的活化是通过将钨基体中的氧化钡转化为阴极表面的游离钡来实现的。活化速率是真空室清洁度、阴极污染、时间和温度的函数。一般来说,阴极在工作温度或略高于工作温度时被激活。阴极温度不应超过1473K。[/size][size=14px][/size][size=14px] 由此可见,在TEC运行过程中,一个重要前提条件是供电加热和温度控制应确保整个过程的真空压力水平不应超过设定的超高真空度,即在运行过程中,除了温度控制之外,还需控制真空室内的真空度始终不超过额定值,但只有加热功率一个可调装置。[/size][size=14px] 从上述真空型TEC的运行要求可以看出,阴极的加热过程是通过调节一个可控变量(加热功率)来实现两个参数(气压和温度)的同时控制。[/size][size=14px] 为了实现这个特殊的控制过程,文献1采用一种复杂的控制机构,此控制机构基于类似的串级控制方法,使用了一个典型的PID控制器结合一个PXI单元,并编制了专用程序进行整体控制,其控制框图如图2所示。[/size][align=center][size=14px][color=#ff0000][img=02.文献1中使用的控制框图,600,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931510435_9811_3221506_3.jpg!w690x410.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 文献1中使用的控制框图[/color][/align][size=14px] 从图2所示的控制框图可以看出,整个控制装置结构较复杂,还需编制控制软件,整体造价也高。为了实现更简便的控制,本文提出一个更简便的控制方式和控制系统的解决方案,控制系统中仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个调节参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个调节小功率电源来实现真空室气压和阴极温度的控制。[/size][size=18px][color=#ff0000][b]二、解决方案[/b][/color][/size][size=14px] 由于在真空型TEC运行过程中只能调节阴极加热温度而同时不能使真空室内的气压超过设定值,这使得整个工作过程只有阴极加热功率一个可调节变量。为了实现阴极温度和腔室真空度的同时控制,解决方案采用了两个串联电源的新型结构,如图3所示。[/size][align=center][size=14px][color=#ff0000][img=03.新型真空压力和温度同时控制系统结构示意图,600,276]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932179007_2110_3221506_3.jpg!w690x318.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 新型真空压力和温度同时控制系统结构示意图[/color][/align][size=14px] 如图3所示,解决方案中采用了一个高精度的两通道PID控制器,此控制器具有两个独立的PID控制通道。第一通道与真空计和电源1组成第一闭环控制回路,第二通道与安装在阴极上的热电偶温度传感器(TC)和电源2组成第二闭环控制回路。这里的第一控制回路提供阴极的基础温度,其主要用于较低温度段的烘烤,并同时起到控制腔室真空度的作用。第二控制回路是在阴极温度达到一定温度后(如600℃)才开始起作用,其主要作用是将阴极温度最终恒定控制在设定的高温温度上。整个过程的真空压力和温度的控制效果基本与文献1所述的图4和图5所示相同。[/size][align=center][color=#ff0000][size=14px][img=04.全温域的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932441901_8566_3221506_3.jpg!w690x449.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图4 全温域的真空压力和阴极温度的变化[/align][align=center][size=14px][/size][/align][align=center][size=14px][img=05.加热初期的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230933014212_1816_3221506_3.jpg!w690x449.jpg[/img][/size][/align][size=14px][/size][align=center][color=#ff0000]图5 加热初期的真空压力和阴极温度的变化[/color][/align][size=14px] 在实际运行过程中的控制步骤如下:[/size][size=14px] (1)首先抽取腔室真空,使其达到2E-06Pa的超高真空水平。然后运行第一控制回路,真空计采集腔室压力,然后自动调节电源1的加热功率使得阴极温度从室温逐渐升高,其中的压力控制设定值为5E-06Pa。在此控制期间腔室压力始终不会超过设定值,但温度则会逐渐快速升高,且电源1始终有一定的输出功率。[/size][size=14px] (2)当第一控制回路控制中阴极温度达到初级设定温度(如600℃)后,第二控制回路自动开始运行,这使得电源2开始输出加热功率,此时电源1和电源2同时输出,使得阴极温度进一步升高,最终恒定在第二控制回路的温度设定值上。[/size][size=14px] (3)在第二回路工作期间,阴极温度进一步上升,势必会造成腔室气压升高而超出设定值5E-06Pa水平,此时第一回路会自动减小电源1的输出功率,使得阴极温度变化速度放缓。在第二回路运行过程中,第二回路相当于一个正向调节作用,第一回路实际上则是一个反向调节作用,这样既能保证腔室气压不会超出设定值,又能保证阴极温度逐步升高而达到设定的高温温度。[/size][size=14px] 总之,通过上述解决方案及其自动控制,可很便捷的实现热离子能量转换器中真空压力和温度的同时控制,压力水平和阴极恒定温度可根据阴极材料要求任意设定。而且整个控制装置得到了大幅度的简化,且无需进行采用任何软件。[/size][size=18px][b][color=#ff0000][/color][color=#ff0000]三、参考文献[/color][/b][/size][size=14px][1] Kania B, Ku? D, Warda P, et al. Intelligent Temperature and Vacuum Pressure Control System for a Thermionic Energy Converter[M]//Advanced, Contemporary Control. Springer, Cham, 2020: 253-263.[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 【求助】请教:气相 载气控制器没显示问题?

    刚买的杭州科晓GC1690,我现在想用TCD检测器,载气是氮气,里面有三根柱子,我开仪器升温不是所以的柱子都升温了啊,但是我只通氮气了啊,空气泵和氢气发生器都没开,这样会损坏柱子吗? 我开氮气后,载气控制器没显示,燃气控制器氢气2却有显示,感觉不对啊 有没有提点一下啊,今天刚开,不敢乱动

  • 旋转蒸发仪:真空、温度和旋转的集成式控制器及其耐腐蚀数控调节阀

    旋转蒸发仪:真空、温度和旋转的集成式控制器及其耐腐蚀数控调节阀

    [color=#990000]摘要:目前各实验室有众多各种渠道购置和自行搭建的旋转蒸发仪,在蒸发仪真空度控制方面,国内客户普遍要求能替代价格较贵的国外真空控制系统、提高真空控制的程序化和自动化水平、改进真空控制的精度和稳定性、解决控制阀门的耐腐蚀性问题,甚至要求采用一个控制器对温度、真空度和旋转同时进行程序控制。本文针对用户提出的改进要求,提出了相应的解决方案,并介绍专门用于蒸发仪温度、真空度和旋转电机控制的相关产品。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、用户要求[/color][/size]旋转蒸发仪(旋转蒸发器)是实验室一种常用设备,通过蒸发仪中的电子控制,使烧瓶中的溶剂在合适的旋转速度、温度和真空度下快速蒸发。一般旋转蒸发器的工作真空度范围为 1~760毫米汞柱(绝对真空度),具体应用中会根据不同混合物要求来设定和控制真空度。作为一种简单的实验室常用设备,旋转蒸发仪即可以实验室自行搭建,市场上也有多种规格可供选择订购。针对目前有些用户实验室在用的旋转蒸发仪,用户提出以下几方面的明确要求:(1)有些实验室配备了进口旋转蒸发仪,但还需单独配备价格较高的真空控制器,希望能用国内产品进行替换。(2)国产和自行搭建的旋转蒸发仪,希望配备多功能高精度的真空控制器,以实现试验过程计算机控制的程序化和自动化,希望能存储多组控制过程设定曲线便于直接调用,希望能计算机设定试验程序和显示整个控制过程的变化。(3)目前国内外旋转蒸发仪真空控制过程,普遍都采用阀门通断或真空泵停启方式,控制精度和稳定性较差,希望采用开度可连续可调的高速数字阀门。(4)目前国内外旋转蒸发仪真空控制装置中的控制阀门,普遍缺乏抗腐蚀性,希望采用可耐腐蚀气体和液体的真空调节阀门。(5)对于一些自行搭建的旋转蒸发仪,希望能将温度控制、真空控制和旋转控制集成在一起,减小仪器及其操作的复杂程度,提高集成化和自动化水平。本文将针对上述要求,提出相应的解决方案,介绍了专门用于蒸发器的集成式温度、真空度和旋转控制器以及步进电机驱动的耐腐蚀数控针阀,可满足不同用户旋转蒸发器的试验需求。[size=18px][color=#990000]二、国产24位高精度多功能控制器[/color][/size]为实现旋转蒸发仪的温度、真空度和旋转的测试和程序控制,目前我们已经开发出VPC-2021系列24位高精度可编程PID通用控制器,如图1所示。此系列PID控制器功能十分强大,且性价比非常高。[align=center][color=#990000][img=蒸发器真空控制,650,338]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081749460848_7428_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图1 国产VPC-2021系列高精度PID程序控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)最高采样速度:50ms。(3)多种输入参数:47种(热电偶、热电阻、直流电压)输入信号,可连接各种温度和真空度传感器进行测量、显示和控制。(4)多种输出形式:16BIT模拟信号 、2A (250V AC)继电器、22V/20mA固态继电器、3A/250VAC可控硅。(5)多通道:独立1通道或2通道输出。2通道可实现温度和真空度的同时测控,报警输出通道可用来控制旋转电机启停。(6)多功能:正向、反向、正反双向控制、加热/制冷控制。(7)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(8)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(9)显示方式:数码馆和IPS TFT真彩液晶。(10)软件:通过软件计算机可实现对控制器的操作和数据采集存储。(11)外形尺寸:96×96×87mm(开孔尺寸92×92mm)。[size=18px][color=#990000]三、步进电机驱动耐腐蚀高速数控针阀[/color][/size]为实现真空度控制过程中的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,如图2所示。此系列数控针阀的磁滞远小于电磁阀,并具有1秒以内的高速响应,特别是采用了氟橡胶(FKM)密封技术,使阀门具有超强的耐腐蚀性,详细技术指标如图3所示。[align=center][color=#990000][/color][/align][align=center][color=#990000][img=蒸发器真空控制,450,385]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081750301727_9546_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图2 国产NCNV系列数控针阀[/color][/align][align=center][color=#990000][/color][/align][align=center][img=蒸发器真空控制,690,452]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081750469538_6188_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列数控针阀技术指标[/color][/align]NCNV系列数控针阀配备了一个步进电机驱动电路模块,给数控针阀提供了所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供 RS485 串口通讯的直接控制,其规格尺寸如图4所示。[align=center][color=#990000][img=蒸发器真空控制,690,219]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081752076651_3769_3384_3.png!w690x219.jpg[/img][/color][/align][align=center][color=#990000]图4 NCNV系列数控针阀驱动模块及其尺寸[/color][/align]旋转蒸发仪在使用数控针阀时,可采用开环控制方式将针阀安装来真空泵前端,通过调节抽气流量来实现真空度的控制,但这种开环控制方式的稳定性差,难达到较高的纯度需求。为解决这一问题,可采用闭环控制方式,即在蒸发器上增加一路进气控制阀,通过调节进气流量和排气流量可实现真空度的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 美国MKS公司上游流量控制阀及其控制器的国产化替代

    美国MKS公司上游流量控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标美国MKS公司的148J、248A和154A 系列上游流量控制阀以及244、250、946和651系列控制器,介绍了相应的国产化替代产品电子针阀和多功能高精度控制器,并介绍了国产化替代产品的相应特点和技术指标 。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、MKS公司上游流量控制阀[/color][/size] MKS上游流量控制阀是一类真空型电磁比例阀,如图1所示,主要有以下三个系列产品: (1)148J全金属流量控制阀:金属密封,流量范围0.01~20L/mim。 (2)154B大流量控制阀:橡胶密封,流量范围20~200L/mim。 (3)248D通用型流量控制阀:橡胶密封,流量范围0.01~50L/mim。[align=center][color=#990000][img=MKS上游气体流量控制阀,690,259]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251024178_4191_3384_3.png!w690x259.jpg[/img][/color][/align][align=center][color=#990000]图1 MKS公司上游流量控制阀[/color][/align][size=18px][color=#990000]二、MKS公司流量/压力控制器[/color][/size] MKS公司的流量/压力控制器是一类PID控制器,如图2所示,主要有以下4个系列产品: (1)244系列:手动PID控制,单通道控制,适配多种传感器,0~10VDC输入信号,手动/自动/外部控制模式,精度为满量程的0.25%,多个设定点(3或4),控制偏差指针显示。此型号系列控制器现已停产。 (2)250系列:手动PID控制,单通道控制,适配多种真空传感器,0~10VDC输入信号 ,手动/自动/外部控制模式,精度为满量程的0.25%,最多4个设定点,外部编程设定,数码显示测量值和控制偏差值。此型号系列控制器现已停产。[align=center][color=#990000][img=MKS流量压力控制器,690,102]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251398451_7424_3384_3.png!w690x102.jpg[/img][/color][/align][align=center][color=#990000]图2 MKS公司流量/压力控制器[/color][/align] (3)946系列:自动PID控制,16位A/D采集,6通道控制,适配多种真空传感器,最多可同时监测6路传感器信号,0~10VDC输入/输出信号 , 手动/自动/外部控制模式,内部编程设定,数字显示测量值和控制偏差值,12路继电器输出,RS232/485通讯。 (4)651系列:自调节快速PID控制,16位A/D采集,单通道控制,适配多种真空传感器,0~10VDC输入/ 输出信号 , 手动/自动/外部控制模式,重复性为满量程的±0.1%,外部编程设定,数字显示测量值, 多路I/O接口,RS232/485通讯。[size=18px][color=#990000]三、国产化电子针阀替代MKS电磁控制阀[/color][/size] MKS公司的上游流量控制阀是一种传统的电磁阀,电磁阀最大的问题是磁滞比较大,会明显的影响线性度和控制精度。这些控制阀的整体价格较高,也没有相应的国产品牌。 为了实现上游流量控制阀的国产化替代并提高性价比,我们在针阀技术上采用数控步进电机来代替电磁阀,开发了一些列不同流量的电子针阀,如图3和图4所示,完全实现了国产化替代。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252026101_430_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][img=电子针型阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252322209_7636_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术参数[/color][/align][align=left][size=18px][color=#990000]四、国产化高精度PID控制器替代MKS控制器[/color][/size][/align] MKS公司的气体流量/压力控制属于专用控制器,只能满足真空领域内的气体流量和压力控制,尽管功能十分强大,但价格较贵。国产化替代的PID控制器,采用了更高精度的24位A/D采集器,控制器更趋于通用性,可实现温度和真空压力的同时控制,如图5所示。[align=center][color=#990000][img=VPC-2021系列控制器,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252599268_5639_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/压力控制器[/color][/align] 国产高精度多功能PID控制器主要特点如下: (1)高精度:±0.05%满量程,24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID,分组输出限幅功能。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:支持20条工艺曲线,每条50段,支持段内循环和曲线循环。[hr/]

  • 【求助】请教旋转蒸发仪有必要配真空控制器吗?

    打算买一套东京理化的小型旋转蒸发仪,有必要配真空控制器吗?这个东东跟旋蒸一个价了。当然钱不是问题,但不知道配上了值不值,有什么好处。(我是做农残分析的)。另外,配他家的隔膜泵没什么问题吧?以前用过国产水泵,总是把水腔里弄得腻乎乎的,不爽。

  • 控制器作用

    液相控制器的作用是什么就是连接机器和显示器吗,如果关掉控制器的话机器还能进行检测吗?只看到岛津的机器有单独的控制器,那安捷伦和WATERS是安在内部了还是不是所有的机器都需要控制器啊

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    [b][color=#000099]摘要:远程控制软件是高级PID调节器随机配备的一种计算机软件,可在计算机上远程进行调节器的所有操作,并还具有过程曲线显示和存储功能。本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些最基本的重要操作和参数设置。[/color][/b][align=center][img=PID控制器远程控制软件及其安装使用,550,349]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202138407464_1087_3221506_3.jpg!w690x439.jpg[/img][/align][size=18px][color=#000099][b]1. PID控制器远程控制软件简介[/b][/color][/size] PID控制器在众多控制领域有着十分广泛的应用,但绝大多数控制器并未随机配备相应的远程控制软件,有些控制器也仅配置的简单的显示软件,这使得控制器的操作,特别是在调试阶段,还基本都是使用人员通过按键方式进行手动操作。目前只有比较高端的PID调节器会配备随机控制软件,这些控制软件的使用会带来以下优势: (1)一般PID控制器整体都十分小巧,如最大的标准面板尺寸为96mm×96mm,且大多采用面板式安装形式以便于人工操作和过程数据显示。由于要在如此小的面板上集成更多的数据、功能甚至曲线或图形,绝大多数PID控制器只给人工操作配置了3~4个操作按键,由此造成操作过程十分不友好。如对于功能强大的PID控制器,其按键操作过程往往是复杂的菜单式树状结构,由此造成在使用过程中,特别是在调试和更改控制参数时,操作人员需要仔细阅读使用说明,并对照说明书进行繁复的按键操作,还需经过多次重复操作才能熟练。如果隔段时间不用,还需重新上述学习步骤才能进行正常操作。采用远程控制软件则完全解决了操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作。另外,图形化的控制软件具有更友好的人机界面。 (2)PID控制器随机配套软件由于具有图形化人机界面,可使得操作人员更直观的熟悉和了解控制器的各种功能,可快速完成PID控制器的各种设置并投入使用,这在调试使用阶段十分有效。特别是对于还需要上位机与PID控制器进行通讯并与其他仪表一并集成后进行总体控制编程的开发人员而言,通过配套软件进行先期PID控制器调试运行后,可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,更有利于后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间。 (3)PID控制器随机配套软件除了具备所有设置功能之外,更是具有强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。曲线显示坐标可以根据需要进行改变,由此可观察各种曲线局部或整体的变化细节。 为了展示PID控制器随机软件的强大功能,本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些基本操作,本文同时也可做为软件使用说明书。[align=left][b][size=18px][color=#000099]2. 安装条件[/color][/size][/b][/align] 操作系统要求:WINDOWS 7或WINDOWS 10。 软件运行环境:需要安装MICROSOFT OFFICE(ACCESS)软件和VB6MINI软件,其中随机软件中带有可直接安装和运行的VB6MINI软件。 其他要求:计算机中不能用WPS,暂停360杀毒、360安全卫士等其他安全软件。[b][size=18px][color=#000099]3. 软件安装和计算机通讯接口设置[/color][/size][color=#000099]3.1 软件安装[/color][/b] 在VPC 2021系列真空压力和温度控制器系列中,配备了两个计算机软件,一个用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一个用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在VPC 2021系列真空压力和温度控制器系列中,配备了两套计算机软件,一套用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一套用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在上述相应压缩文件解压后,将解压后的JETR文件夹及其内容拷贝到C盘根目录下即可,在C:\JETR文件夹内的文件清单如图1所示。控制器软件分别为 vpc 2021-1 controller.exe 和 vpc 2021-2 controller.exe 可执行文件。[align=center][b][color=#000099][img=01.控制器软件文件夹内容,600,229]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202144285143_5595_3221506_3.jpg!w642x246.jpg[/img]图1 控制器软件文件夹内容[/color][/b][/align][b][color=#000099]3.2 串口通讯线连接和串口通讯参数设置[/color][/b] 在软件使用之前,需要先在计算机上插入USB转485串口通讯线,并将此通讯线另外一端的的两根引线分别接入控制器的11和12号通讯接线端子,其中12接T/R+,11接T/R-。 当计算机上插入串口通讯线后,在计算机“设备管理器”界面上能看到相应的串口通讯功能和端口编号显示,如图2所示。鼠标双击图1中所示的USB串口端口,进入此串口的参数设置界面,如图3所示。[align=center][b][color=#000099][img=02.485串口通讯,500,342]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202145480183_3300_3221506_3.jpg!w584x400.jpg[/img]图2 USB串口通讯端口[/color][/b][/align][align=center][b][color=#000099][img=03.串口通讯参数设置,462,376]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202146196471_3404_3221506_3.jpg!w462x376.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图3 串口通讯参数设置[/color][/b][/align] 在控制器软件中,默认的串口通讯参数是端口1,其他默认参数如图2中所示,参数设置的原则是要使计算机和软件的通讯参数设置为完全相同,如果要修改计算机的串口通讯参数,如提高波特率以加快传输速度,控制器软件也要进行相应修改。[b][size=18px][color=#000099]4. 软件的主界面[/color][/size][/b] 在控制器软件运行后,出现的软件主界面如图4所示。软件主界面有几个功能区域组成,下面将分别对常用的几个功能区域进行介绍。[align=center][b][color=#000099][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202156131241_560_3221506_3.jpg!w690x425.jpg[/img]图4 VPC 2021-1单通道程序控制器的软件主界面[/color][/b][/align][b][size=18px][color=#000099]5. 通讯端口参数设置[/color][/size][/b] 软件主界面中,进行通讯参数设置的“(一)通讯端口参数设置区域”如图5所示。[align=center][img=05.通讯端口参数设置区域,690,37]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147187832_3612_3221506_3.jpg!w690x37.jpg[/img][/align][align=center][b][color=#000099]图5 通讯端口参数设置区域图[/color][/b][/align] 在软件运行后,首先要在进行通讯端口参数设置,以在控制软件和控制器之间建立通讯以传输数据。首先要根据计算机插入RS485通讯线后形成的通讯端口编号,进行图5中通讯端口选择,可通过键盘数字输入或下拉菜单中的数字选择来设定相应的端口编号。 VPC 2021系列控制器的默认模块地址都为“1”,除非用软件进行多个不同地址的并联控制器的控制操作,则需要同时修改控制器和软件的模块地址。 VPC 2021系列控制器和软件中的“波特率”默认值为9600,若需要选择其他通讯速度,则需要更改控制器、计算机通讯接口和软件的波特率,使它们三者始终保持一致。 VPC 2021系列控制器和软件中的“校验方式”默认值为“偶校验”,同样,若需要选择其他校验方式,则需要更改控制器、计算机通讯接口和软件的校验方式,使三者始终保持一致。 当上述通讯端口参数设置完成后,可分别点击区域右边的“打开”或“关闭”名录按钮,从而在计算机软件和控制器之间建立通讯和断开通讯。[b][size=18px][color=#000099]6. 控制器的软件控制操作[/color][/size][/b] VPC 2021系列控制器的一些常用调试和操作,都可以在软件的第二个功能区域“(二)控制操作区域”内进行,第二功能区域如图6所示。[align=center][b][color=#000099][img=06.控制操作区域,690,44]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147376474_9076_3221506_3.jpg!w690x44.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图6 软件的控制操作区域[/color][/b][/align] 在完成图5所示的通讯参数设置,并点击“打开”命令按钮激活通讯后,有以下两个特征: (1)COM 灯会由黄色背景变为绿色或红色背景,接收数据时背景为绿色并显示RXD字符,发送数据时背景为为红色并显示TXD字符。 (2)控制器内的当前参数(如PV、SV、OP值,手动/自动状态等)都会自动在图6中的相应数字框内显示。如果数字框内的显示数字与控制器面板上的显示数字不同,则表示出现了错误。 通过图6所示的控制操作区域内的数字框和命令按钮,可进行以下内容的操作: (1)用鼠标点击“手动/自动”命令框,可使得控制器在手动和自动之间进行切换,并在“手动/自动”命令框左边的兰色数字框内显示相应状态“手动”或“自动”的字符。当设置为“手动”状态时,PID控制器上的状态指示灯变为红色背景并显示M字符,表示控制器的当前状态为手动状态。当设置为“自动”状态时,PID控制器上的状态指示灯变为黄色背景并显示A字符,表示控制器的当前状态为自动状态。 (2)在设置为“手动”状态时,点击“SV1值”右边的白色输入框,在此输入框内输入设定值“10”数字,并点击随后出现的“修改SV1”命令框进行确认,此时“SV当前值”右边的数字框显示10,同时在控制器面板上会观察到SV值为10的显示。同样,在“手动”状态时,点击“OP值”的右边白色输入框,在此输入框内输入“5.01”设定值,并点击随后出现的“手动OP”命令框进行确认,此时“OP当前值”右边的数字框显示5,同时在控制器面板上也会观察到OP值为5.01%的显示。在手动状态下进行SV和OP值的设定,可以检查软件和控制器连接后是否工作正常。检查完毕后,可以将SV和OP值全部设为“0”。 (3)当需要进行“单点”控制时,首先需要输入设定值SV,然后启动自动状态,使控制器进行自动设定点控制。自动控制要达到准确控制需要合适的PID参数,这时需要在自动控制运行过程中用鼠标点击“主自整定”命令按钮,使控制器进行自整定,“主自整定”命令按钮左边的显示框内会显示自整定状体,此时控制器面板上的“AT”指示灯会发生红黄交替闪烁。当“AT”指示灯停止闪烁后,表示自整定已经完成,自整定得到的PID参数会输出显示到“(七)控制参数状态显示区域”。 (4)同样,用鼠标点击“单点/程序”命令框,可使得控制器在单点和程序控制之间进行切换,并在“单点/程序”命令框左边的兰色数字框内显示相应状态“单点”或“程序”的字符。 (5)同样,用鼠标点击“待机”命令框,可使得控制器切换到待机状态,同时控制器面板表上的状态指示灯会红黄交替闪烁并显示“STB”字符。 (6)同样,用鼠标点击“SV1/2”命令框,可使得控制器在SV1和SV2模式之间切换,并在“SV1/2”命令框左边的显示框内显示所切换的模式。这里SV1值代表控制器内置设定值,SV2值代表远程控制设定定。 注意:为保证以上操作和显示的正确性,还需进行后续控制器的输入/输出参数设置,否则显示数字位数和SV1/2等功能无法正常使用。具体设置参见下章内容。[b][size=18px][color=#000099]7. 控制器的参数设置[/color][/size][/b] VPC 2021系列控制器的所有参数设置和编制控制程序,都可以在软件的第四个功能区域“(四)各种参数设置区域”内进行,第四功能区域如图7所示。这里针对“CONFIG”中必须设置的几个重要参数“主输入设置、仪表参数设置和主输出设置”进行介绍。[align=center][img=07.控制器参数设置区域,689,41]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148015054_637_3221506_3.jpg!w689x41.jpg[/img][/align][align=center][b][color=#000099]图7 软件的参数设置区域[/color][/b][/align][b][color=#000099]7.1 主输入设置[/color][/b] 点击“CONFIG“命令框,首先进入如图8所示的仪表参数设定的“2.主输入设置”界面。[align=center][img=08.控制器仪表主输入设置界面,690,267]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148240223_2270_3221506_3.jpg!w690x267.jpg[/img][/align][align=center][b][color=#000099]图8 软件CONFIG界面的主输入设置[/color][/b][/align] 在图8所示的主输入设置中,依次进行如下设置: (1)输入类型设定:VPC 2021系列PID控制器是一款万能输入型仪表,可输入多达47种传感器信号。具体设置时,需根据所用传感器的输出信号类型和量程进行选择,如真空度传感器,一般选择“28:0V10(0-+10V)”设定,压力传感器一般选择“19:4MA20(4-20MA)”。输入量程的设定非常重要,这会关系到后续的测量值PV和设定值SV显示的小数点位数的选择。 (2)显示上限:显示上限的作用是规定出与传感器最大量程对应的控制器测量最大量程,如对应0-10V的传感器输入量程,显示上限可以选择10。在VPC 2021系列控制器中,显示上限的范围都是-10000至30000,这也就是说可以将传感器最大量程10V,最大放大到三千倍的数值30000。在实际应用中,一般是以十进制放大倍数进行设置,如对应于10V,选择上限为10000,放大一千倍。由此可结合后续的三位小数点位数设置,测量值PV和设定值PV就可以完整的显示0-10.000范围的数值,并都保持小数点后三位小数,从而可以高精度的测量和观察到测量值和设定值。 (3)显示下限:同样,显示下限的作用是规定出与传感器最小量程对应的控制器测量最小量程。对于一般各种物理量传感器最小0V的输出电压,显示下限选择“0”即可。而对于有些具有方向特征的传感器输入信号,如温差热电堆±10mV范围的电压信号,则需选择相应的非零的显示下限。非零显示下限的放大功能,与上述显示上限完全相同,但最好是选择相同的放大倍数。如对上述温差热电堆±10mV范围的电压信号,正负信号要保持相同的放大倍数,那么可选择显示上限为10000,显示下限为-10000。 (4)小数点:小数点位数总共有五种设置,从整数到小数点后面四位。小数点位数的功能正好与上述显示上限功能相反,起到一个测量值除以10的缩小功能。假如一个传感器输入的电压信号为5V,如果控制器显示上限设定为10,小数点设定为“0:XXXXX”的整数,那么控制器面板上的PV显示格式就是整数5;如果显示上限设定为100,小数点设定还是整数,则控制器面板上的PV显示格式就是整数50,但代表还是5V的真实电压信号。为了准确直观的显示5V信号输入,此时则需将小数点位数设定为“1:XXXX.X”,那么PV显示格式就是带一位小数的5.0V。以此类推,若显示上限设定为10000,则小数点位数设定应为“3:XX.XXX”,则PV显示格式就是带三位小数的5.000V。 (5)对于后续的“输入异常处理、输入异常预置值、修正偏移量、冷端补偿类型、输入多点曲线修正”等高级参数的设置,可参看控制器使用说明书内的详细介绍。在一般应用中较少会用到这些高级设置,它们的设置一般选择“0”或禁止。[b][color=#000099]7.2 辅输入设置[/color][/b] VPC 2021系列控制器有个强大的功能,就是具备双通道的功能,由此可衍生出众多应用,可通过对辅助通道进行设置来激活第二通道的功能。具体设置是选择“CONFIG“界面中进入如图9所示的仪表参数设定的“3.付输入设置”界面。[align=center][b][color=#000099][img=09.控制器仪表辅输入设置界面,690,102]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148582742_2164_3221506_3.jpg!w690x102.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图9 软件CONFIG界面中的辅输入参数设置[/color][/b][/align] 辅输入参数设置基本与主输入参数设置相同,主要不同的是有一项“辅助通道功能”设置。辅助通道共有六种选择以实现不同的高级功能,需要根据具体使用情况进行选择。在大多数情况下会选择“禁止”,不使用辅助通道,但如果选择其他设置,所选择的功能需要查看使用说明书中的详细介绍。[b][color=#000099]7.3 仪器参数设置[/color][/b] 选择“CONFIG“界面中进入如图10所示的仪表参数设定的“1.Instrument”界面。[align=center][b][color=#000099][img=10.控制器仪表参数设置界面,690,316]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149212211_8085_3221506_3.jpg!w690x316.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图10 软件CONFIG界面中的仪表参数设置[/color][/b][/align] 在图10所示的仪表参数设置中,本文主要介绍红色方框标识的几个常用的重要参数设置。 (1)控制方式:VPC 2021系列控制器共有五种控制方式,而最常用的是“单输出”。其他如“双输出”等控制方式则是用于冷热控制等其他形式的控制。 (2)设定值上限SVHI:设定值上限的设定范围是-10000~30000,在具体设定时一般要选择与前述“显示上限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (3)设定值下限SVL0:设定值下限的设定范围同样也是-10000~30000,同样,在具体设定时一般要选择与前述“显示下限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (4)显示工程单位:VPC 2021系列控制器共有26种工程单位符号可选,但不可能覆盖所有需要用的工程单位,可根据需要进行定制。[b][color=#000099]7.4 主输出设置[/color][/b] 选择“CONFIG“界面中进入如图11所示的仪表参数设定的“9.主输出1设定”界面。[align=center][b][color=#000099][img=11.控制器仪表主输出设定界面,690,186]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149393277_7139_3221506_3.jpg!w690x186.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图11 软件CONFIG界面中的主控输出1的参数设置[/color][/b][/align] 主控输出1的参数设置是VPC 2021系列控制器重要的一个参数设置内容,详细设定如下: (1)输出方式设定:首先要根据外部执行机构可接受的控制信号进行输出方式的选择,如果外部执行机构是接收模拟信号(如4-20mA或0-10V)进行调节,则选择“0:线性电流输出”选项。在选配VPC 2021系列控制器时,都会明确规定输出方式作为技术指标,也就确定了相应的输出方式,因此这里的输出方式设定只需与控制器技术指标一致即可。 (2)输出作用方向:VPC 2021系列控制器具有“反作用”和“正作用”两种输出作用方向,因此需要根据实际控制需要进行选择。一般选择“反作用”用于进气或加热控制,“正作用”一般用于排气或制冷控制。 (3)输出信号类型:VPC 2021系列控制器具有六种输出信号类型,主要有模拟电流和模拟电压两类形式。同样,在选配VPC 2021系列控制器时,都会明确规定输出信号类型作为技术指标,这也就确定了相应的输出信号类型,因此这里的输出信号类型设定只需与控制器技术指标一致即可。 (4)输出上限:VPC 2021系列控制器规定的输出百分比范围是0.00~100.0%,特别需要注意的是最小输出百分比是小数点后面两位,即0.01%,由此可以提供更高精度的控制。在具体设定过程中,可根据需要选择输出上限,因为在很多具体控制过程中并不需要满功率输出,特别是在一些较低量程范围内的控制时,可选择较小的输出上限可达到很高的控制精度,选择较大的输出上限值反而会使控制精度受到影响。 (5)输出下限:在绝大多数情况下,输出下限会选择“0”。有些特殊控制,则会根据实际控制对象选择不同数值的输出下限,但前提是输出下限一定要小于输出上限。[b][size=18px][color=#000099]8. 控制器PID参数设置[/color][/size][/b] 在使用VPC 2021系列控制器时,一般通过在自动控制状态下运行“自整定”功能可获得满意的PID参数。但有时需要在自整定基础上对PID参数进行人工修改,此时就需要进行PID参数的设置。在控制器软件主界面上点击位于下方的“PID”功能按钮,进入如图12所示的PID参数设置界面。[align=center][b][color=#000099][img=12.PID参数设置界面,511,509]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149545389_762_3221506_3.jpg!w511x509.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图12 PID参数设置[/color][/b][/align] 在PID参数设置界面上,有三组相应参数设置,一组是常用的PID1设置,这组PID1用于单输出方式下的反作用模式,第二组PID2设置则用于双输出方式下的正反向模式,第三组参数设置用于更精细的PID控制,具体内容参见说明书。 (1)输出比例带:P参数。 (2)输出积分时间:I参数。 (3)输出微分时间:D参数。 有关PID参数的调整,请详见使用说明书或其他PID参数调整相关资料。[b][size=16px][color=#000099]9. 图形显示和操作[/color][/size][/b] 控制器软件具有强大的图形显示功能,可在对各种测量值、设定值和输出值进行测量和监视的同时,并进行显示。图13为软件的图形显示界面。[align=center][b][color=#000099][img=13.图形显示操作区域,690,422]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202150197729_5514_3221506_3.jpg!w690x422.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图13 软件图形显示界面[/color][/b][/align] 需要说明的是,为了控制器测控曲线的正常显示,必须要事先安装好OFFICE套装中的数据库软件ACCESS,否则软件界面只能有三分之一区域能够显示变化曲线。 图形显示界面会自动显示测量值PV、设定值SV和输出百分比值OP随时间的变化曲线,并具有两套纵坐标轴。一个纵坐标轴是用于测量值PV和设定值SV的显示,此纵坐标可进行调整以优化显示效果;另一个纵坐标轴是用于输出百分比值OP的显示,其纵坐标最小值为固定值-10,最大值为固定值110%,并不可调整,以显示OP值在0~100%范围内的随时间变化曲线。 如图13所示,在图形显示界面的右上角,还设置了快捷功能区,可通过快捷功能键或鼠标点击进行图形的其他操作。 注:在软件激活通讯后,软件就开始在后台进行运行,并采集控制器仪表的相应数据。这些数据都随时存储在数据库软件的文件中。调用这些历史数据的方法,请咨询技术支持人员。[b][size=18px][color=#000099]10. 总结[/color][/size][/b] 采用远程控制软件彻底解决了体积小巧的工业用PID控制器面板操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作,图形化的控制软件具有更友好的人机界面。 通过配套软件可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,非常后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间,加快设备集成和开发速度。 PID控制器随机配套软件强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。由此,通过软件和计算机,与PID控制器可组成一个完备的控制系统。[align=center][/align][align=center]~~~~~~~~~~~~~~[/align]

  • MKS集成式压力控制器的技术分析及其国产化替代

    MKS集成式压力控制器的技术分析及其国产化替代

    [color=#ff0000]摘要:目前的MKS系列集成式压力控制器本质上是一种流量调节和测量装置,无法直接用来进行准确的压力控制,而且MKS压力控制器还存在测量精度不高、压力控制范围有限和对工作介质洁净度要求很高的不足。为此,为了弥补这些不足,特别是为了实现国产替代,本文为提出了相应的解决方案,特别是针对不同的应用场景提出一系列的国产替代的配套解决方案,这些解决方案已经在推广使用并可实现高精度的真空压力控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=MKS集成式压力控制的国产化替代,600,365]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300953301520_8126_3221506_3.jpg!w690x420.jpg[/img][/align][color=#ff0000][b][size=18px]1. MKS集成式压力控制器概述[/size]1.1 种类和功能分析[/b][/color] 真空压力控制器在众多领域内有着极其广泛的应用,美国MKS公司在10~5000Torr的绝对压力范围内(从真空到正压)有一系列的相应产品,这些产品的主要技术指标如图1所示。[align=center][color=#ff0000][img=MKS集成式压力控制器的各种型号和主要技术指标,690,321]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300945278484_9825_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#ff0000]图1 MKS集成式压力控制器的各种型号和主要技术指标[/color][/align] 从图1所示的技术指标可以看出各种MKS压力控制器的相互关系及其各自的功能特点,用关系图(图2)进行更直观的描述,主要包括以下几方面的内容:[align=center][color=#ff0000][img=各种MKS压力控制器的相互关系及其不同功能,690,559]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300946036594_5987_3221506_3.jpg!w690x559.jpg[/img][/color][/align][align=center][color=#ff0000]图2 各种MKS压力控制器的相互关系及其功能:(a)常规型号;(b)新型号[/color][/align] (1)如果按照产品推出先后来进行分类,所有MKS集成式压力控制器基本可以分为两个大类,一类是常规型号,主要包括PPCA、GPCA、PPCMA、GPCMA、PDPCA和DPC;另一类是根据新技术迭代和应用发展情况推出的新型号产品,主要包括640B、641B和649B。为了主观的区分这两类压力控制器,常规型号的外观主色为蓝色,而新型号的外观主色为白色。 (2)按照压力控制覆盖范围来分类,MKS集成式压力控制器可分为低压型和高压型两类。低压型一般是指可覆盖5~1000Torr范围的绝对压力控制,高压型一般是指可覆盖500~5000Torr区间的绝对压力控制。其中也有通用型压力控制器,其压力控制可以覆盖整个低压和高压全量程,如640B和641B控制器的压力控制覆盖范围为10~5000Torr。在压力控制器选型时要十分注意,所有压力控制器都有一个实际压力控制区间,其实际最小压力控制下限一般为最大标称压力值的2%~5%。如标称满量程为1000和5000Torr的压力控制器,其实际可控最小压力分别只能达到20Torr和100Torr,因此要根据相应控制器给出的控制范围技术指标来具体确定最小可控制压力。 (3)按照是否集成了质量流量计来分类,MKS集成式压力控制器可分为有无集成质量流量计两大类。MKS对集成式压力控制器产品的布局一般是先推出纯压力控制器,然后在此压力控制器上再集成质量流量计作为另外一个新型号产品推出。 (4)按照被控压力对象与压力控制器的位置关系,MKS压力控制器可分为(Upstream)上游和(Downstream)下游两类。上游控制器用来调节进气流量来实现压力控制,而下游控制器则是用来调节出气流量以实现压力控制。 (5)按照压力控制对象数量来分类,MKS集成式压力控制器一般分为单区和双区压力控制两类。单区意味着只能控制一个对象的压力,而双区则可以同时控制两个对象达到不同压力。 总之,MKS压力控制器基本都是按照压力控制范围、是否集成流量计、上下游控制模式和单双区这四项功能进行各种搭配组合形成各种型号的压力控制器,以满足不同应用要求。[b][color=#ff0000]1.2 技术分析[/color][/b] 纵观所有MKS集成式压力控制器,其核心技术特征可以归纳为以下两点: (1)标准的压力控制器技术和结构。 (2)在标准压力控制器中集成了质量流量计。 为了清晰了解上述特征,图3展示了MKS压力控制器的内部典型结构。[align=center][color=#ff0000][img=MKS集成式压力控制器典型内部结构示意图,690,325]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300946311813_8832_3221506_3.jpg!w690x325.jpg[/img][/color][/align][align=center][color=#ff0000]图3 两种MKS集成式压力控制器的典型结构:(a)标准结构;(b)集成流量计结构[/color][/align] 从图3可以明显看出,MKS集成式压力控制器的标准结构是将电容式压力计、比例阀和PID控制电路进行了集成,而通过再集成质量流量传感器对功能进行了进一步的拓展。 在实际应用中选择MKS集成式压力控制器时要特别注意的一点是,尽管MKS标称是压力控制器,但本质和实际功能则是对流动介质流量的调节,并不能直接用来控制压力,这点可以从图4 所示的MKS压力控制工作原理明显看出。[align=center][color=#ff0000][img=MKS压力控制器工作原理示意图,690,199]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300948271418_5252_3221506_3.jpg!w690x199.jpg[/img][/color][/align][align=center][color=#ff0000]图4 MKS集成式压力控制器的压力控制工作原理[/color][/align] 如图4所示,在对容器进行压力控制时,可以采用上游和下游两种控制模式。但无论采用哪种控制模式,MKS所谓的压力控制器只是起到一个进气或排气流量的调节。在所有容器的压力控制,无论是上游还是下游控制模式,都必须使得进气和排气流量达到一种平衡才能真正实现压力的准确控制。所以在使用MKS集成式压力控制器时,首先要明确被控压力容器的进气或排气流量大小,然后再根据这些流量大小来选择相应的MKS压力控制器,否则很难实现准确的压力控制。 另外,从图1所示的技术指标可以看出,所有的MKS压力控制器的压力测量精度基本都为读数的±0.5%(这是典型的电容式压力计测量精度),而控制精度一般则为读数的±1%。由此可说明在MKS压力控制器所采用的PID控制电路中,其AD和DA的精度并不高。[color=#ff0000][b]1.3 MKS集成式压力控制器存在的不足[/b][/color] 根据上述技术分析,可以发现MKS集成式压力控制器存在以下几方面的不足: (1)MKS集成式压力控制器实际上起到的是流量调节功能,并不能直接用来进行容器的压力控制,特别是对低漏率的密闭容器压力控制,仅使用一个MKS压力控制器无法实现压力控制,虽然可以使用两个MKS控制器分别调节进气和排气流量来准确控制压力,则这种配置的性价比极差,整体成本较高。 (2)同样,在压力控制器中集成质量流量计也是一种严重浪费。一方面,压力控制器用来调节流量来进行压力控制,但在调节过程中流量始终处于动态变化过程,此时测量流量值没有任何意义和作用。另一方面,在采用两个MKS集成式压力控制器进行压力控制时,尽管可以人工设定控制器的进气和排气流量恒定,此时流量计可以读出恒定流量值,但直接采用一个质量流量计就能实现流量测量功能,无需配备复杂价高的MKS集成式压力控制器。 (3)MKS集成式压力控制器的控制精度并不高,仅为读书的±1%,这种控制精度并未充分发挥电容真空计测量精度高的优势,并不适用于很多高精度真空压力控制场合。 (4)MKS集成式压力控制器的低压控制范围非常有限,绝对压力(真空度)最低控制范围仅为0.1Torr~5Torr(13Pa~665Pa),无法满足更低压力(高真空度)的控制需要。 (5)MKS集成式压力控制器采用的比例阀和质量流量计,要求工作介质要非常干净,特别是在下游控制模式中更是要求工作介质无粉尘和颗粒,否则非常容易发生堵塞现象,而这些控制器根本无法进行拆卸清理。所以MKS集成式压力控制器基本无法在复杂气氛环境中使用。 本文基于MKS集成式压力控制器的上述问题,提出了相应的解决方案,特别是提出一整套国产替代的解决方案。[size=18px][color=#ff0000][b]2. 替代方案的基本原理和特点[/b][/color][/size] 替代方案的主要目的是对各种容器(低漏率和高漏率)实现准确的压力控制,压力控制可覆盖从0.1Pa的高真空至1MPa的高压范围,控制精度至少要达到0.1~0.2%。 无论是高真空还是高压控制,替代方案所采用的控制原理是经典的动态平衡法,如图5所示,即同时调节进入和排出密闭容器的介质流量,通过快速达到不同的动态平衡状态,实现高精度压力控制。[align=center][color=#ff0000][img=压力控制解决方案工作原理图,690,440]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300948505632_256_3221506_3.jpg!w690x440.jpg[/img][/color][/align][align=center][color=#ff0000]图5 替代方案中的压力控制工作原理[/color][/align] 此解决方案有如下特点: (1)是一种真正的真空压力控制方法,可直接用来进行真空压力控制而无需再配套其他进气和排气流量调节装置。 (2)可覆盖高真空至高压的大区间控制。高压控制时,进气端可配置高压源;高真空控制时,排气端可配置真空泵。并可采用两个压力传感器覆盖整个真空压力范围的测量,两个压力传感器可同时接入调节器。 (3)通过同时调节进气阀和排气阀的开度大小实现真空压力控制。具体控制方法为分程法,在高真空控制时,以调节进气阀为主,在高压控制时,以调节排气阀为主。而且从高真空至高压的整个范围内,真空压力可以连续控制。 (4)具有很强的适用性。这种解决方案适用于所有容器的真空压力的高精度控制,无论容器是低漏率还是高漏率。如果容器内部装配了容易使气压发生变化的高低温装置,这种真空压力控制方法也非常适用。 (5)可实现小型化集成结构。集成结构是将图5中黄色方框内的两个电子调节阀、双通道PID控制器、压力传感器和空腔进行集成封装为一体结构,空腔留出被控压力输出口,由此形成有三个接口的真正的真空压力控制器,这就是一个典型的电气比例阀。由此可以看出,电气比例阀的这种集成式结构同样与MKS集成式压力控制器有着小巧的体积,但在技术上是一种拓展,是在MKS控制器上增加了一个电子调节阀,并将PID控制器升级为双通道功能。灵巧结构电气比例阀的优势是可以控制低真空至高压的宽泛区域压力,但最大问题是无法进行高真空控制。 (6)可实现分立结构。分立结构就是如图5所示的形式,只是图中的被控压力空腔直接就是被控压力容器,而两个电子调节阀和压力传感器直接安装在真空压力容器上,外置形式的双通道PID控制器采集压力传感器信号来控制两个电子调节阀。 根据上述特点可以看出,解决方案的压力控制形式具有很大的灵活性,可根据具体真空压力控制场景选择集成结构或分立结构。[b][size=18px][color=#ff0000]3. 替代方案的具体内容[/color][/size][/b] 根据上述替代方案的工作原理和特点,替代方案可具有多种形式,可适用于多种应用中真空压力的高精度控制。[b][color=#ff0000]3.1 采用集成式结构的真正压力控制解决方案[/color][/b] 从上述技术分析可知,MKS集成式压力控制器并不能直接用来进行压力控制。为此,我们提出采用集成式结构的电气比例阀来直接进行压力控制的解决方案。方案的整体结构如图6所示。[align=center][img=采集电气比例阀串级控制方法的真空压力控制方案示意图,500,334]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301000007653_8470_3221506_3.jpg!w690x461.jpg[/img][/align][align=center][color=#ff0000]图6 串级控制法的真空压力控制方案结构示意图[/color][/align] 在此解决方案中,可通过高压进气或真空泵抽气方式,通过单独的电气比例阀即可实现密闭容器内的真空压力准确控制。需要注意的是,对于真空度的控制,可采用真空型电气比例阀并开启真空泵。而对于高于标准大气压的高压控制,可选用高压电气比例阀,并开启高压气源。 从图6可以看出,一个比例阀对应于一个被控压力,那么采用多个比例阀,则可实现双区和多区的真空压力控制。此外,对于较大体积或长管件形式的密闭容器,可采用外置压力传感器和PID控制器构成串级控制回路进行控制,可实现真实准确的真空压力控制。[b][color=#ff0000]3.2 采用分离结构的真正压力(真空度)控制解决方案[/color][/b] 上述采用电气比例阀集成结构和串级控制回路的真空压力控制方案,其不足是无法进行高真空区间的控制。为此本文提出采用分离结构形式的真空度控制解决方案,其结构如图7所示。[align=center][color=#ff0000][img=分立结构真空度控制系统结构示意图,600,354]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300950563929_3352_3221506_3.jpg!w690x408.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图7 分立结构真空度控制系统结构示意图[/align] 图7所示的真空度控制解决方案可现实全真空范围内的准确控制,但在具体实施过程中需要注意以下几点: (1)为了保证真空度的控制精度,传感器采用了电容真空计,但一般需要两只真空计才能覆盖全真空范围(0.1Pa~0.1MPa)。 (2)若要实现全真空范围的控制,需同时调节进气阀和出气阀。高真空控制时需设定排气阀开度仅进行进气阀调节,低真空控制时则需设定进气阀开度仅进行出气阀调节。若真空腔体较大,则需抽速较大的真空泵,并需更换电子球阀进行大流量调节。 (3)由于需要对进气阀和排气阀进行同时调节,所以必须配备两通道的PID调节器。另外,为了保证真空度控制精度,除了采用高精度的电容真空计和电子针阀/球阀之外,还需保证PID调节器同样具有较高精度。本方案采用的PID调节器为24位AD和16位DA,且具有0.01%的最小输出百分比,经过大量试验和使用验证,此方案的真空度控制精度可达到读数的0.5%,与MKS控制器比精度提高了一倍。 (4)此解决方案除具有真空度准确控制功能之外,也可以进行高压控制,只是在进气端需要如图6中所示配备高压气源。这种分立结构的高压控制尽管也能达到很高的压力控制精度,但由于电子针阀/球阀的响应速度仅为1秒左右,使得在控制速度上比电气比例阀高压控制要慢。[b][size=18px][color=#ff0000]4. 总结[/color][/size][/b] 通过MKS集成式压力控制器的技术分析,本文有针对性地提出了改进和国产替代的解决方案。此解决方案的技术成熟度很高,并已在众多真空压力控制领域得到了应该。对标MKS集成式压力控制器,总结此改进和国产替代的解决方案,所体现出的主要优势有以下几个方面: (1)真正实现真空压力的直接控制,而不是MKS集成式压力控制器那样仅能进行流量的调节,这使得具体应用更加的简便和降低成本,无需使用人员再进行其他辅助配置的设计和选型。 (2)在真空压力控制范围和精度方面,都超过了MKS集成式压力控制器的技术指标。 (3)解决方案有很强的适用性和灵活性,小型化集成结构和分立结构两种形式可供选择,可满足几乎绝大多数领域对高精度真空压力控制的需要。 (4)解决方案还具有可扩展性,如可单独增加流量传感器进行流量测量。 总之,本文提出的解决方案具有宽泛的真空压力控制范围,较高的控制精度和性价比,完全能够替代MKS集成式压力控制器。[align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    [color=#990000]摘要:本文主要介绍了国产化替代方面所做的工作,替代产品为艾默生TESCOM ER5000系列电子压力控制器及其背压阀。本文介绍了进口产品的性能特点和不足,提出了国产化替代技术路线,描述了国产化替代产品的性能指标,介绍了国产化替代产品的功能扩展和技术创新,使国产化替代产品具有了更高的性价比和使用灵活性。[/color][align=center][img=国产化替代,690,408]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182018432207_7188_3384_3.jpg!w690x408.jpg[/img][/align][size=18px][color=#990000]1. 艾默生ER5000系列压力控制器[/color][/size][size=16px][color=#990000]1.1. 压力控制器结构和原理[/color][/size]艾默生最新一代TESCOM ER5000系列电子压力控制器,是一种多功能集成式的压力控制器,集成了压力传感器、PID(比例-积分-微分)控制器和电动比例阀三个部件,集传感器、控制器和电子阀门于一体构成一个完整的控制机构。TESCOM ER5000电子压力控制器及其基本结构如图1-1所示。[align=center][color=#990000][img=国产化替代,690,249]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025069214_3530_3384_3.png!w690x249.jpg[/img][/color][/align][align=center][color=#990000]图1-1 TESCOM ER5000电子压力控制器结构示意图[/color][/align]从图1-1可以看出,ER5000电子压力控制器的功能就是控制底部出口处的压力,将进气压力降低并控制在设定压力上,使底部出口处的压力始终与设定压力一致。ER5000电子压力控制器实际上是一款电子式的减压阀,其工作原理如图1-2所示。外部气源向ER5000供给压力,供给压力通过打开的进气阀成为出口处的输出压力,同时此输出压力通过压力传感器反馈至PID控制器。如果反馈值低于压力设定值,控制器继续控制进气阀处于开启状态直到反馈值与设定值相等。等到上述两个值相等,进气阀将关闭,此时出口处持续输出恒定的设定值压力。如果反馈值高于设定值,则控制器将启动排气阀,从而排放过量的出口压力直到反馈信号等于设定值。等到上述两个值相等,排气阀将关闭,此时出口处同样持续输出恒定的设定值压力。[align=center][img=国产化替代,690,284]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025348584_2251_3384_3.png!w690x284.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图1-2 TESCOM ER5000电子压力控制器原理图[/color][/align][size=16px][color=#990000]1.2. 典型应用[/color][/size]ER5000压力控制器主要有两类应用方向,一是单机应用,二是与其他特殊阀门的配合应用,以达到不同范围内的压力调节和控制。(1)单机应用:从上述结构和原理可知,TESCOM ER5000电子压力控制器是一款非常典型的电子式减压阀,在单机使用情况下,控制器本身可对压力8.2bar以下的气源进行减压并准确控制,甚至可以实现对粗真空的控制。另外,在单机应用中,可分别采用内部和外部反馈两种控制模式,如图1-3和图1-4所示。[align=center][img=国产化替代,690,244]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025483237_8169_3384_3.png!w690x244.jpg[/img][/align][align=center][color=#990000]图1-3 艾默生ER5000电子压力控制器内部反馈控制模式单机应用[/color][/align][color=#990000][/color][align=center][img=国产化替代,690,266]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025582943_2239_3384_3.png!w690x266.jpg[/img][/align][align=center][color=#990000]图1-4 艾默生ER5000电子压力控制器外部反馈控制模式单机应用[/color][/align](2)配合使用:ER5000电子压力控制器的一个重要应用是作为先导阀与其他调节阀配合使用,以调控更大的压力范围。更大压力减压应用如图1-5所示,与背压阀配合应用如图1-6所示[align=center][color=#990000][img=ER5000国产化替代,690,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026370215_476_3384_3.png!w690x301.jpg[/img][/color][/align][align=center][color=#990000]图1-5 艾默生ER5000电子压力控制器典型减压应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,450]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026463023_179_3384_3.png!w690x450.jpg[/img][/align][align=center][color=#990000]图1-6 艾默生ER5000电子压力控制器典型背压应用[/color][/align][size=16px][color=#990000]1.3. 性能指标[/color][/size]由于TESCOM ER5000系列电子压力控制器是由压力传感器、PID控制器和双阀结构压力调节器三部分的集成,每部分的技术指标则代表了控制器的整体性能,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大8.2bar(820kPa)(4) 出气口压力(绝对压力):最小0.07bar(7kPa),最大8.2bar(820kPa)(5) 输入信号:USB、RS485、4~20mA、1~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、1~5V或0~10V。(7) 内部压力传感器测量精度:±0.10%(FSO),其中包括了±0.05%(FSO)线性度和±0.05%(FSO)迟滞。(8) 控制器A/D转换:16位。(9) 控制器重复性:±0.05%(FSO)。(10) 控制器分辨率灵敏度:±0.03%(FSO)。(11) 控制方式:PID(需结合专用软件ERTune进行PID参数调试和优化)。(12) 控制模式:内部反馈、外部反馈和双环三种模式。这里特别介绍ER5000压力控制器的三种控制模式,这是此控制器的一个技术亮点:(1)内部反馈模式:该模式仅使用内部传感器。内部反馈模式使用ER5000内部压力传感器以监控控制器内部1~100psig/0.07~6.9bar范围内的绝对压力。(2)外部反馈模式:该模式仅使用外部传感器。外部反馈模式利用用户提供的外部传感器以监控系统压力,该传感器安装于过程管线中并向ER5000提供直接反馈。(3)双环模式:该模式是在“循环内循环”配置中同时使用内部和外部传感器。双环模式在一个PID循环中执行另一个PID循环。内部回路使用控制器的内部传感器,外部回路使用外部传感器。[size=16px][color=#990000]1.4. 功能和特点[/color][/size]从上述介绍,可归纳出ER5000压力控制器的以下几方面功能和特点:(1) ER5000压力控制器最主要功能是可进行气体压力(不是流量)控制,即可实现密闭型容器和管道内压力的准确控制。(2) 整体集成式结构,集成了压力传感器、PID控制器和双阀调节器执行结构,使得整体结构小巧,并便于安装使用和多台并行使用。(3) 作为一种典型的压力控制器,即可直接对最大8.2bar的气源压力进行减压并准确恒压控制(进气口为正压),也可用来控制低压(粗真空,进气口为真空),最低压力可达0.07bar(7kPa)。(4) ER5000压力控制器可作为先导阀来驱动各种大量程的减压阀和背压阀,控制器的出口与其他背压阀的先导口连接,可实现更大量程范围内压力调节和控制。(5) 压力传感器±0.1%的测量精度和16位的A/D转换,属于中高端技术指标,可满足大多数应用场合。(6) 数字PID控制方式可实现压力的快速和准确控制。(7) 内部反馈、外部反馈和双环三种控制模式,使ER5000压力控制器具有较大的使用灵活性,可根据实际使用要求选择最佳控制模式。[size=16px][color=#990000]1.5. 压力控制器存在的不足[/color][/size]尽管ER5000压力控制器有上述诸多功能和特点,但在实际应用中还存在以下多方面的限制和不足。(1) ER5000压力控制器集成了真空压力控制领域中三种最常用部件,但由于是集成式结构而不是模块化积木式结构,这反而限制了ER5000压力控制器应用。如ER5000压力控制器中集成了两个电磁阀,但仅能进行气体压力控制,而无法进行只需单电磁阀的气体流量控制。(2) ER5000压力控制器更侧重于正压控制,也可进行部分的负压控制,这主要是由于所用阀门的漏率太高造成,从而并未发挥传感器(特别是外置传感器)和PID控制的强大功能。如果能降低控制器内部阀门的气体漏率,则控制器完全可覆盖整个真空度范围的控制,将目前的7kPa的真空度扩展到1Pa左右。(3) 在驱动各种大量程减压阀和背压阀应用方面,使用价格较高的ER5000压力控制器作为先导阀其性价比非常低,完全可以使用高性价比的国产替代产品。(4) ER5000压力控制器16位的A/D转换,属于中高端技术指标,如果采用外置高精度的压力传感器则需要24位的A/D转换器,这使得ER5000压力控制器无法满足一些测量控制精度要求较高的场合。(5) 尽管ER5000压力控制器采用了PID控制方式,但PID参数的调节都需要使用专用软件,控制器自身缺乏PID参数自整定功能,还需连接计算机,现场操作非常繁复。(6) ER5000压力控制器自身缺乏显示功能,还需连接计算机和使用配套软件才能进行调试和显示控制过程和结果。(7) ER5000压力控制器的整体价格偏高,而且操作复杂,对操作人员有较高的要求。再结合控制器上述不足,这使得ER5000压力控制器的性价比并不高,很多场合下使用显着非常的奢侈和浪费。[size=18px][color=#990000]2. 国产化替代技术路线[/color][/size]对艾默生公司最新一代TESCOM ER5000系列电子压力控制器的国产化替代,技术路线是首先实现ER5000压力控制器的测控功能,提供高性价比国产压力控制器。然后采用模块结构技术路线,将真空压力传感器、PID控制器和电子阀门分离为各自独立模块,每一类模块由一系列不同技术指标的部件组成,通过这些不同性能指标模块的组合来实现不同控制功能和精度要求,拓展控制器功能,满足不同需求,并具有高性价比。[size=16px][color=#990000]2.1. 实现ER5000压力控制器功能[/color][/size](1) 国产化替代产品要达到ER5000电子压力控制器绝大部分功能,即实现ER5000压力控制器自身的减压和控压功能。(2) 国产化替代产品同时与ER5000压力控制器一样,可作用先导阀来对大量程高压范围的气体进行减压和控压。(3) 国产化替代产品具有设定值输入和显示功能,无需软件和连接计算机进行操作。(4) 国产化替代产品价格低,具有高性价比。[size=16px][color=#990000]2.2. 模块化结构和功能拓展[/color][/size](1) 模块化结构分为传感器、PID控制器和电子阀门三个模块。(2) PID控制器模块是所有模块的核心器件,决定了测控精度,决定了可配合使用的传感器和电子阀门的种类,决定了控制方式和控制模式。PID控制器模块将采用24位A/D转换器提高测控精度,集成两个独立控制通道可同时控制2路真空压力或1路真空压力和1路温度,可连接多种真空压力和温度传感器,2通道结合可进行正反双向控制以满足真空压力的上下游控制模式,2通道结合可具备双传感器自动切换功能以覆盖宽泛测控量程,PID控制器带程序设定功能可输入多条控制工艺曲线,可输入和存储多组PID参数,PID参数调整带自整定功能,控制器带彩色液晶屏显示全过程参数和结果。(3) 电子阀门模块由多种规格型号的电子阀门构成,主要有流量调节阀和压力调节阀两大类。流量调节阀主要有小流量电动针阀和大流量大口径电动球阀蝶阀,这些流量调节阀都属于高速调节阀,开闭速度都在1s以内。压力调节阀主要有真空型背压阀和高压型背压阀,两种背压阀都可以在水气两相介质下工作。(4) 传感器模块主要是外协配套件,由多种规格型号的压力传感器和温度传感器构成,主要分为高压传感器、低压(真空)传感器、热电偶、铂电阻、热敏电阻、红外测温仪和直流电压信号,由此可覆盖几乎所有压力和温度范围内的测量。[size=18px][color=#990000]3. 国产化替代产品[/color][/size]根据上述的国产化替代技术路线,上海依阳实业有限公司研制了相应的产品,现分别介绍如下。[size=16px][color=#990000]3.1. 数显压力控制器[/color][/size]国产化的数显式压力控制器包括正压型和真空型两种规格,其压力控制原理和基本结构与艾默生TESCOM ER5000系列电子压力控制器一样,如图3-1所示。[align=center][color=#990000][img=ER5000国产化替代,690,390]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027032534_5519_3384_3.png!w690x390.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 国产化电子压力控制器及其结构原理[/color][/align]国产化的数显式压力控制器同样是压力传感器、控制器和双阀结构压力调节器三部分的集成结构,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大50bar(5MPa)(4) 出气口压力(绝对压力):最小0.21bar(21kPa),最大30bar(3M Pa)(5) 输入信号:4~20mA、0~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、0~5V或0~10V。(7) 内部压力传感器测量精度:±1.0%(FSO),其中包括了±0.5%(FSO)线性度和±0.5%(FSO)迟滞。(8) 控制器A/D转换:12位。(9) 控制器重复性:±0.5%(FSO)。(10) 控制器分辨率灵敏度:±0.2%(FSO)。(11) 控制方式:内置PID自动控制,无需人工干预。(12) 控制模式:内部反馈和外部反馈。从上述技术指标可以看出,国产化压力控制器的有些技术指标进行了降低,如12位的A/D转换和±1.0%测量精度,但拓宽了使用压力范围,增加了显示和输入功能,压力控制器可独立使用无需外接计算机和软件调试,降低了操作难度,提高了性价比,基本上能满足绝大多数领域的应用。[size=16px][color=#990000]3.2. 背压阀(高压型和真空型)[/color][/size]国产化的新型背压阀模块单独分为高压型和真空型背压阀,两种背压阀都采用上述数显压力控制器做先导阀进行控制,但新型背压阀对艾默生TESCOM等传统背压阀做了重大改进。传统的背压阀,都具有一个固定在阀体上的阀座,此阀座与阀芯紧密贴合,来达到密封效果。它可以为大多数简单过程提供基本的压力控制,在这种设计中,通过弹簧或其他的方式提供一个预设加载力,这个加载力使得阀芯与阀座密封。当管路压力作用到阀芯上的力,与加载力相同时,则背压阀在预设的压力状态下正常工作;当阀门的入口端压力升高,使作用在阀芯上的力超过预设的加载力时,阀芯和阀座分离,释放入口端多余的压力,直至恢复预设的压力。传统背压阀结构,在瞬时流量变化较大、或入口压力波动频繁的情况下,控制压力的精度较低,原因如下:(1) 由于大多数控制压力超过20bar的传统背压阀,采用了活塞的方式作为阀芯的负载机构,活塞中的O形密封圈增加了动作摩擦,从而使阀芯动作卡滞;(2) 传统背压阀的进出口流道,多为单一且固定截面积的通路,当阀门入口的流量迅速增加或降低时,阀门的Cv值(流通能力)却没有变化,这样会使入口压力产生剧烈波动;(3) 传统背压阀阀芯和阀座,因密封需要,贴合时存在应力或摩擦,频繁的开合,会使其彼此互相磨损和消耗,破坏初始的形状,使Cv值发生不可预知的改变。新型背压阀是上向下相连接的阀盖和阀体结构,如图3-2所示。阀盖和阀体之间连接有膜片,阀盖顶部开设先导气孔,先导气孔通过阀盖内部开设的气源通道连通至阀盖底部开设的供膜片中部起伏运动的活动槽,形成上下贯通的通路,阀体侧壁上分别开设相对设置的介质入口和介质出口,介质入口与阀体上表面开设的多个入口小孔相连通,介质出口与阀体上表面开设的多个出口小孔相连通。新型背压阀的突出特点是整个动作无摩擦,不会产生压力滞后,入口压力稳定性高,具备更大的流通能力。[align=center][color=#990000][img=ER5000国产化替代,690,259]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027186867_2208_3384_3.png!w690x259.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2多孔式结构新型背压阀[/color][/align][size=16px][color=#990000]3.3. 双通道高精度PID控制器[/color][/size]针对PID控制模块,为满足广泛的真空压力控制要求,上海依阳实业有限公司出品了VPC2021系列PID控制器,此系列控制器可进行真空、压力和温度的测量、显示和控制。采用了24位数据采集和人工智能PID控制技术,可接入各种型号的真空、压力和温度传感器,可控制多种型号的电动针阀、电动阀门和加热器等执行结构,可实现高精度真空、压力和温度等参量的定点和程序控制,是替代国外高端控制器产品的高性能和高性价比控制器。如图3-3所示,VPC2021系列PID控制器具有双通道独立测控功能,可对不同通道上的参数同时进行测量、显示和控制。如果两个通道接入相同类型但量程不同传感器,如图3-4所示,可以根据测试值实现两个传感器之间自动切换,由此可覆盖宽量程的测量和控制。[align=center][img=ER5000国产化替代,690,348]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027332455_2803_3384_3.png!w690x348.jpg[/img][/align][align=center][color=#990000]图3-3 VPC2021系列双通道高精度PID控制器及其应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,369]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027510730_967_3384_3.png!w690x369.jpg[/img][/align][align=center][color=#990000]图3-4 双通道高精度PID控制器的双传感器自动切换[/color][/align]VPC2021系列双通道高精度PID控制器主要技术指标如下:(1) 测量精度:±0.05%FS(24位A/D)。(2) 输入信号:可连接众多真空压力传感器,32种信号输入类型(电压、电流、热电偶、热电阻)。(3) 控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。(4) 控制算法:PID控制和自整定(可存储和调用20组PID参数)。(5) 控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。(6) 通道:双通道,双通道传感器自动切换。(7) 通讯方式:RS 485和以太网通讯。(8) 供电电源:交流(86-260V)或直流24V。(9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)[size=16px][color=#990000]3.4. 高速电动流量调节阀[/color][/size]针对电子阀门模块,为满足不同大小流量的高速调控,上海依阳实业有限公司推出了两个系列的电子阀门,一个系列是电动针阀用于小流量调控,另一个系列是电动球阀和蝶阀用于大流量调控。这两个系列电子阀门的最大特点是可电控,并具有1s以内的高速闭合时间,是国内非常罕见的快速电子阀门。如图3-5所示,电动针阀NCNV系列是将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,599,513]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182028158401_6212_3384_3.png!w599x513.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-5 NCNV系列电子针阀[/color][/align]NCNV系列电动针阀主要技术指标和特点如下:(1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。(2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。(3) 高重复性:通过每次达到0.1%的相同流量,NCNV系列电动针阀可提供长期稳定的一致性。(4) 宽压力范围:通过5或7bar巴的真空,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。(5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。(6) 高分辨率:0.2%的分辨率允许NCNV系列电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。(7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。(8) 工作电压:VDC 24V。(9) 输入信号:4~20mA、0~5V和0~10V。如图3-6所示,电动球阀NCBV系列是将高速电动执行器及高品质V型球阀组成,是目前常用慢速电动球阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,377,500]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182029196473_3852_3384_3.png!w377x500.jpg[/img][/color][/align][align=center][color=#990000]图3-6 NCBV系列电动球阀[/color][/align]NCBV系列电动球阀主要技术指标和特点如下:(1) 最大扭力:2N.m。(2) 阀球转动角度:90°。(3) 开关阀时间:小于1秒。(4) 工作电压:VDC 24V(5) 输入信号:4~20mA、0~5V和0~10V(6) 防护等级:IP67。(7) 环境温度\湿度:-20℃至45℃;≤85%(不凝露)。(8) 介质温度和压力:0~100℃;≤1.0MPa [size=18px][color=#990000]4. 总结[/color][/size]综上所述,通过一系列国产化替代产品的开发,基本可以完全替代艾默生最新一代TESCOM ER5000系列电子压力控制器及其背压阀,且性价比大幅度提高。重要的是,在国产化替代基础上,设计了更灵活易用的模块化结构,对单项模块产品进行了功能扩展和技术创新,开发了新型背压阀和高速电动流量调节阀,新开发的PID控制器具有更强大的功能和测量精度,整个系列的国产化替代产品具有较高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    [size=16px][color=#339999][b]摘要:针对控制领域内广泛使用的PID控制器和可编程逻辑控制器PLC,本文分析了具体应用中PID控制器的几大优点。PID调节器的优点主要体现在测控精度高、更强的控制功能、使用门槛低和操作简单、具有明了的可视化界面和节省成本。[/b][/color][/size][align=center][size=16px][img=相对于可编程逻辑控制器PLC,PID控制器具有哪些优势,600,320]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161607321889_5876_3221506_3.jpg!w690x368.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. 基本概念[/color][/size][/b][size=16px] PID控制器(Proportion Integration Differentiation.比例-积分-微分控制器),由比例单元P、积分单元 I 和微分单元D组成。通过Kp,Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。PID控制器是一个在工业控制应用中常见的反馈回路部件,PID控制器通常是指闭环控制的一种形式,这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。[/size][size=16px][/size] 可编程逻辑控制器(Programmable Logic Controller,PLC)是一种具有微处理器的用于自动化控制的数字运算控制器,可以将控制指令随时载入内存进行储存与执行。可编程逻辑控制器已经相当或接近于一台紧凑型电脑的主机,其在扩展性和可靠性方面的优势使其被广泛应用于目前的各类工业控制领域。[size=16px][/size] 在大多数工业控制应用中,PLC像PID控制器一样使用,PID模块的排列可以在PACs或PLC中完成,从而为精确的PLC控制提供更好的选择。与单独的控制器相比,这些控制器既智能又强大,每个PLC基本都包括软件编程中的PID模块。[size=16px][/size] 然而,尽管PID控制器和PLC有众多类似之处,它们在设置、编程和应用方面仍有显著不同,而综合这些不同来看,PID控制器有以下几方面自己独特的优势。[size=18px][color=#339999][b]2. 测控精度高[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是闭合反馈回路的一部分,该回路主动追踪过程值与设定值的偏差,并根据需要调节输出水平。许多控制器都有 PID 算法,并带自动调节功能,可以实现快速设置,并保持最小的过程值与设定值偏差。目前一些工业用PID控制器已经发展到具有极高精度的水平,如24位AD、16位DA和0.01%最小输出百分比,由此可以实现温度、真空、压力、流量、张力等物理量的超高精度测量和控制。而对于PLC则很难具备如此高精度的能力,就算个别PLC能达到如此高的精度,那价格也会远高于PID调节器。[/size][size=18px][color=#339999][b]3. 控制功能更优[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是一种专门设计用于处理特定的工业过程的调节器,因此包含了与这些过程直接相关的特点、输出和控制功能,例如针对各种不同的传感器需要提供完备的数据采集能力,针对需要阀门电机驱动控制(VMD)的应用提供专门的算法。而PLC需要具备适合广泛制造和自动化功能的特点,因此针对很多具体工业控制的特点是有限的。PLC可以执行基本的控制任务,但不如专门的PID控制器优势明显。此外,由于需要处理模拟信号,控制系统对微处理器的要求非常严苛,PID控制器是专为处理这些需求而设计的,而PLC必须在系统经过测试后才能判定能否满足这些过程要求。如未能符合要求,PLC将无法快速响应过程中的各种变化,并导致超前或滞后,从而影响产品质量。[/size][size=18px][color=#339999][b]4. 使用门槛低和操作简单[/b][/color][/size][size=16px] [/size][size=16px]PLC设计用于多任务控制环境,需要专业编程技巧以及大量时间,由专业人士来打造符合特定应用需要的解决方案。而PID控制器则可以相对快速地安装、设置和优化,并且所需经验极少。特别是一些PID控制器还自带计算机软件,采用图形化界面的计算机软件可以快速实现PID控制器的设置、运行和过程变量的采集和显示,更是大幅度降低了使用门槛。 [/size][size=16px][/size] 大多数PID控制器可以面板安装,也就是可以安装在过程机械的前面板上,并且带可视屏幕,相关人员只需基本的工程知识即可在数分钟内完成设置。PLC则较为复杂,通常安装在面板后面的机架上,不带显示屏,且需要单独的HMI(同样需要设置),因此PLC操作使用的便捷性上劣势明显。[size=18px][color=#339999][b]5. 明了的可视化界面[/b][/color][/size][size=16px] [/size][size=16px]面板安装的PID控制器有多种规格以及复杂程度,因此操作员可轻松查看过程信息以及需要注意的警告或警报信息。PLC通常没有直接的界面,需要一个单独的人机界面(HMI),且人机界面需要单独设置。HIM可以显示必要的过程信息,但它通常还会显示与PLC所管理的其他任务相关的各种数据。这意味着面板安装式PID控制器优势非常明显,有专门的界面方便查看所有相关的信息,可以快速进行调节。许多PID控制器还额外提供数据记录功能,可以用于查看先前所做的更改以及标记潜在问题。[/size][size=18px][color=#339999][b]6. 节省成本[/b][/color][/size][size=16px] [/size][size=16px]当然这是相对来说的,PLC设计用于控制多任务,适用于多回路控制的应用。对于某些单回路,或者少数回路控制的应用,PLC许多特点是应用所不需要的,所以成本显得高昂,这是不如选用专门针对某个工艺参数调控设计的PID控制器。[/size][size=16px][/size] 总之,对于具有相同功能和控制精度的PID控制器和PLC,总体而言PID控制器更节省成本。[size=16px][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 冷热冲击试验箱的控制器系统

    冷热冲击试验箱PID控制,以PID控制仪为控制核心,通过控制时间继电器、中间继电器、SSR、接触器等达到所要实现的目的,报警系统功能齐全。该控制系统机动性强,稳定,可直接读取老化过程中的温度、电流、电压等参数,方便维修,成本相对较低,但是其控制系统所能达到的功能简单, PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作得不是太好。最重要的是,简单的PID控制器有时却是最好的控制器。东莞高天冷热冲击试验箱的冲击温度控制器:液晶显示触控式莹幕直接按键型控制器,中英文表示5.7”图形之广视角,高对比附可调背光功能之大型LCD液晶显示控制器.一、控制器规格:(1)精度:温度±0.1℃+1digit.(2)分辨率:温度±0.1.(3)具有上下限待机及警报功能.(4)温度入力信号 T型.(5)P.I.D控制参数设定,P.I.D自动演算.二、画面显示功能:(1)采画面对谈式,无须按键输入,屏幕直接触摸选项.(2)温度设定(SV)与实际(PV)值直接显示.(3)显示故障状态及说明故障排除方法.(4)可显示目前执行程序号码,段次,剩余时间及循环次数.(5)温度程序设定值以图形曲线显示,具实时显示程序曲线执行功能.(6)具单独程序编辑画面,可输入温度,时间及循环次数.(7)屏幕可作背光调整.(8)屏幕显示保护功能可作定时,TIMER或手动关闭设定.三、程序容量及控制功能: a.可使用的程序组:最大96个PATTEN(即96个试验规范可设定).(1)可重复执行命令:每一个命令可达999次.(2)SEGMENTS时间设定0--99Hour59Min.(3)具有断电程序记忆,复电后自动启动并继续执行程序功能.(4)程序执行时可实时显示图形曲线.(5)具有预约启动及关机功能.(6)具有日期,时间调整功能.http://www.whgt17.com/uploads/allimg/160524/1-160524163P00-L.jpg

  • 质量流量控制器

    为您提供,本着严谨的品质和完善的服务,而生产制造的WARWICK(沃威)质量流量控制器,产品有:模拟、数字橡胶密封型,模拟数字共存橡胶密封型,全纯金属模拟、数字密封型,还有带OLED显示可调流量模拟型质量流量控制器。通讯除有485外,还有profibus协议,devicenet协议。详见:www.warwick-ins.com

  • 盐雾试验箱的温度控制器操作说明

    [url=http://www.dongguanruili.com/product/26.html][color=#000000]盐雾试验箱[/color][/url]可以进行中性、酸性、铜盐醋酸的盐雾腐蚀的环境模拟,主要是人工模拟了自然环境下的盐雾腐蚀场景和一些工业生产中产生的盐雾腐蚀场景。通过对自然场景的模拟,让盐雾腐蚀试验更加具备有效性。盐雾试验箱主要用于一些金属或表面电镀材料的耐腐蚀试验,根据试验结果来改善产品耐腐蚀的性能。[align=center][img=盐雾试验箱,500,342]http://www.dongguanruili.com/d/file/bb3c2f0825bdad95decb557f54fe93a0.jpg[/img][/align]  盐雾试验箱进行试验时,有时需要采用加热盐溶液的方式来对试验物品进行加速腐蚀,我们在进行设备操作时,就可以通过盐雾试验箱上的温度控制器来进行操作,分别对盐雾试验箱的箱内温度、压力桶温度进行调整,以保证能够达到加速腐蚀的效果。  温度控制器操作说明:  1. 点击△/▽键直接加减温度值到所需温度即可,控制器将自动确认设定值。  注:如做中性盐雾试验时,设置实验室温度为35℃,压力桶温度为47℃,如做酸性测试时,设置实验室温度为50℃,压力桶温度为63℃  2. 当显示温度上下波动不稳定时,点击O键,控制器显示AT OFF,此时只需点击△键,OFF变为ON 控制进入自动调整状态,此时不要关闭电源,机台运转十分钟左右温度就可以稳定。  3. 当计量温度与显示温度不符合时,点击O键,控制器显示AT OFF,此时只需点击C键切换,控制器显示CN5,此时点击△/▽键,调整与检测温度相偏差值即可。

  • 短程分子蒸馏器的升级改造以实现高精度的真空控制

    短程分子蒸馏器的升级改造以实现高精度的真空控制

    [align=center][img=通过超高精度真空控制提高分子蒸馏分离纯度的方法,550,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040202188410_3231_3221506_3.jpg!w690x492.jpg[/img][/align][color=#990000]摘要:为了提升蒸馏纯度,针对现有分子蒸馏中气体流量计式真空度控制系统存在精度较差和响应速度慢的问题,本文提出了更高精度的真空度控制解决方案。解决方案采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,可实现任意设定真空度下±0.5%的控制精度,同时对温度等因素所带来的真空度变化有极快的响应,可保证分子蒸馏过程中真空控制的高精度和稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px]一、问题的提出[/size][/color]分子蒸馏是一种特殊的液-液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出,由此达到物质分离的目的。短程蒸馏器是一个工作在0.001~1mbar(0.1~100Pa)绝对压力下热分离技术过程,它较低的沸腾温度,非常适合热敏性和高沸点物。在分子蒸馏工艺中,真空度的控制精度决定了分离物质的纯度,目前绝大多数分子蒸馏设备中真空度控制系统普遍还都采用液环真空泵与旋片式真空泵结合气体流量计的技术,这种通过气体流量计调节进气流量的方法无法实现高精度的真空度稳定控制,具体是以下几方面原因:(1)分子蒸馏过程的真空度变化范围一般为0.1~100Pa,这种高真空范围对气体流量计的真空漏率有较高要求,一般气体流量计很难满足要求,必须使用专门用于高真空的气体流量计。(2)气体流量计的调节精细度普遍较粗,如果要实现高精密的气体流量调节,同样要使用高档更精密的气体流量计。(3)通常气体流量计的响应速度比较慢,很难实现在1秒之内完成全闭到全关的动作时间。(4)多数分子蒸馏中的真空传感器普遍采用精度较差的数字皮拉尼电阻规和电热偶规等。(5)绝大多数调节气体流量计的PID控制器精度较差,多为12位AD和DA转换器,极少用到16位的AD和DA转换器,PID控制器的精度是决定分子蒸馏真空度控制精度的关键。为了提升蒸馏纯度,针对上述现有分子蒸馏中气体流量计式真空度控制系统存在的问题,本文提出了更高精度真空度控制的解决方案。解决方案将采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,由此可实现分子蒸馏工艺中任意设定真空度下±0.5%的控制精度,并对温度等因素所带来的真空度变化有极快的响应,有效保证分子蒸馏过程中真空度的高精度和高稳定性。[size=18px][color=#990000]二、解决方案[/color][/size]通过上述分析可以看出,限制现有短程分子蒸馏工艺真空度控制精度的主要因素分别是:(1)气体质量流量计调节精度和响应速度。(2)真空度传感器的测量精度。(3)PID控制器的测量和控制精度。为解决上述问题,本文提出的具体解决方案是采用相应的三个替换装置,如图1所示。[align=center][color=#990000][img=短程分子蒸馏高精度真空度控制装置,690,282]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040201378335_1412_3221506_3.jpg!w690x282.jpg[/img][/color][/align][align=center][color=#990000]图1 短程分子蒸馏高精度真空度控制装置[/color][/align]如图1所示,为提高蒸馏纯度,实现高精度真空度控制,解决方案采用了以下三个装置:[color=#990000](1)采用高速电动针阀代替气体质量流量计[/color]分子蒸馏高真空度控制的基本原理是调节蒸馏器的进气流量和出气流量并达到一个动态平衡,所以这里的技术关键是如何实现进气流量的精密调节。尽管气体质量流量计可以进行进气流量调节,但采用的是电磁阀技术,有着较大的迟滞现象和较慢的响应速度,这些都会影响真空度的控制精度。解决方案中所采用的高速电动针阀是一种高速步进电机驱动的纯机械式针型阀,在大幅度减少迟滞误差的同时,还将整体响应时间缩短到了800微秒,同时精细步长可实现阀门的快速精密调节。驱动控制只需采用0-10V的模拟电压,整体结构简单且可靠性强。多个规格的电动针阀具有不同的气体流量调节能力,可满足不同容积的蒸馏器的真空度控制,同时还可以采用FFKM全氟醚橡胶密封提高耐腐蚀性。[color=#990000](2)采用薄膜电容规代替皮拉尼电阻规和电热偶规[/color]薄膜电容规的测量精度要远高于皮拉尼电阻规和热偶规,在任意真空度下其精度都可以达到±0.25%。那么对于短程蒸馏器0.001~1mbar(0.1~100Pa)的真空度量程内,可直接选择一只1Torr的薄膜电容规即可满足全量程的真空度测量,如果为了保证0.1~1Pa范围内的测量精度,还可以再补充一只0.1Torr的薄膜电容规。这样,通过两只不同量程的薄膜电容规可覆盖全真空度范围内的准确测量。[color=#990000](3)采用超过精度真空控制器代替普通精度PID控制器[/color]在任何PID反馈式闭环控制系统中,无论传感器和执行器精度多高,最终的控制精度都需要控制器的精度予以保证,为此,在解决方案中采用了超高精度的PID真空控制器。此超高精度PID真空度控制器具有24位AD和16位DA,采用了双精度浮点运算可实现0.01%的最小输出百分比,这是目前国内外最高技术指标的工业用PID控制器。采用此真空控制器可充分发挥电动针阀执行器和薄膜电容规真空传感器的精度优势,而且此系列控制器具有单通道和双通道不同型号。单通道控制器是可编程PID控制器,突出特点是可以进行不同量程双真空计的自动切换来实现全量程自动控制。双通道控制器是一种定点控制器,两个通道可以分别独立控制真空度和温度。[size=18px][color=#990000]三、结论[/color][/size]新型的真空控制系统对短程分子蒸馏工艺的真空度控制过程进行了优化,对其中的真空度控制系统做出了以下三方面的改进:(1)采用电动针阀代替气体质量流量计,提高了进气流量调节执行器的精度。(2)采用薄膜电容规代替拉尼电阻规和电热偶规,提高了真空度测量的精度。(3)采用真空控制器代替传统的PID控制器,提高了PID控制精度,并扩展了控制功能,可实现双传感器自动切换和两个工艺参数同时控制。总之,通过以上改进可大幅提高短程分子蒸馏工艺的真空度控制水平,通过大量考核试验和实际应用已经证明,此解决方案成熟度很高,在全真空度范围内可轻松实现±0.5%的控制精度,如果采用更高精度的真空计,此解决方案可进一步达到±0.1%的控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 微流控控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html]微流控控制器[/url][/b]是[b]控制微流体器件[/b]如微型泵,微型阀的功能强大的[b]流控控制器[/b],[b]微流控控制器[/b]简化了实验室科研的复杂设计。微流控控制器OEM版本操作简单,更加有效,更适合微流体和微流控产业化使用,可以广泛用于医疗设备,生物处理系统,实验室仪器,化学仪器和科学设备和许多其它使用流体控制装置(泵,阀等)的领域,方便用户集成和制造工具。[img=微流控控制器]http://www.f-lab.cn/Upload/flowtest_.jpg[/img][b][/b]微流控控制器:[url]http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html[/url][b]微流控控制器[/b]FlowTest™ OEM版本结合:[list][*]现代化和高品质的控制板,不仅是设计和流体控制子系统开发的关键工具,也是在工业化和制造阶段新直接整合成新的先进仪器的关键工具。[/list][list][*]开发和集成成套套件是一个灵活的,有效的和用户友好的软件套件,用于快速开发,高效编程和易于集成。这些软件大大简化了新先进仪器的流体功能。也降低了集成的成本和时间,同时在工业化工作期间促进在仪器内的操作控制器。[/list]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制